
Controllability Problems in
MSC-based Testing

Haitao Dan and Robert M. Hierons

School of Information Systems, Computing & Mathematics
Brunel University, Uxbridge, Middlesex UB8 3PH, UK

Email: {haitao.dan, rob.hierons}@brunel.ac.uk

In testing systems with distributed interfaces/ports we may place a separate
tester at each port. It is known that this approach can introduce controllability
problems which have received much attention in testing from finite state machines.
Message Sequence Charts (MSCs) form an alternative, commonly used, language
for modelling distributed systems. However, controllability problems in testing
from MSCs have not been thoroughly investigated. In this paper, controllability
problems in MSC test cases are analysed with three notions of observability: local,
tester and global. We identify two types of controllability problem in MSC-based
testing. It transpires that each type of controllability problem is related to a type
of MSC pathology. Controllability problems of timing are caused by races but not
every race causes controllability problems; controllability problems of choice are
caused by non-local choices and not every non-local choice causes controllability
problems. We show that some controllability problems of timing are avoidable
and some controllability problems of choices can be overcome when testers have
better observational power. Algorithms are provided to tackle both types of
controllability problems. Finally, we show how one can overcome controllability
problems using a coordination service with status messages based on algorithms

developed in this paper.

Keywords: Testing; Controllability Problems; Message Sequence Charts; Race; Non-local
Choice

Received 00 January 2011; revised 00 Month 2011

1. INTRODUCTION

Message Sequence Charts (MSCs) are a specification
language suitable for describing the behaviour of
distributed systems [1]. MSCs have become increasingly
popular in the telecommunications and software
industries and are widely used for requirements
analysis, system design and formal verification [2, 3,
4, 5]. Sequence Diagrams (SDs), from the UML, are
similar.

Model Based Testing (MBT) is a technique that
automates the processes of test generation and
execution on the basis of a model of the System
Under Test (SUT). There has been much interest in
MBT from both academia and industry [6, 7, 8, 9,
10, 11, 12, 13, 14, 15] and recent experience suggests
that there can be significant resultant benefits [16].
However, there has been relatively little work on testing
from MSCs [17, 18, 19, 20, 21]. This is in contrast
to other popular behaviour models such as Finite
State Machines (FSMs) and Input/Output Labelled
Transition Systems (IOLTSs) [22, 23, 24, 25]. This
seems surprising since there has been much interest in
the use of MSCs and analysing MSCs to, for example,

find pathologies [26, 4, 27, 28, 29, 30, 31, 32]. As MSCs
are popular in modelling distributed systems, they have
the potential to play an important role in MBT for
distributed systems including systems based on grid and
cloud technologies.

In our previous research [33], a formal conformance
test framework was derived for testing from MSCs.
Since MSCs model behaviours of multiple users and
processes within the SUT, it leads to a complex test
architecture in which there are multiple testers and
system processes. Testers are used to simulate the
users’ behaviour in testing with an MSC architecture.
In addition, testers may only have limited observability
of the events that occur on system processes. Three
different notions of observability, local, tester and
global, were discussed [33]. When running MSC test
cases with a limited observability, it is observed that
testers may not be able to assure that the input to
the SUT follows the given test cases. We say these
are controllability problems in MSC-based testing. This
problem has been investigated for other types of models
with different test assumptions [34, 35, 36, 37, 38, 39,
40, 41].

The Computer Journal, Vol. ??, No. ??, ????

2 Haitao Dan and Robert M. Hierons

The concept of controllability problems in distributed
testing was first explored in the context of testing
from a Deterministic Finite State Machine (DFSM) and
in the situation in which the SUT interacts with its
environment at two physically distributed interfaces,
called ports [41, 36, 37]. It is assumed that the tester
at a port p only observes the input and output at p and
so cannot be aware of events at the other port. When
testing from a DFSM M , a test sequence is a sequence
σ = x1/y1, . . . , xk/yk of input/output pairs that is the
label of a path of M that starts at the initial state of
M . In distributed testing, if there are m > 1 ports
then an output yi is an m-tuple where the pth value of
yi denotes the (possibly null) output sent to port p in
yi. Let us suppose that there are two ports and we wish
to apply a test sequence that involves the input of x1
at port 1, this should lead to output y1 at port 1 and
then the tester at port 2 should supply input x2. The
problem here is that x2 should be received by the SUT
after the input/output pair x1/(y1,−) but the tester at
port 2 does not observe either the input or output from
this pair and so cannot know when to send x2. Thus,
the testers cannot guarantee that the correct test is run
and an apparent failure might be the result of a correct
SUT receiving input in the wrong order.

When testing from a DFSM, a sequence σ =
x1/y1, . . . , xk/yk of input/output pairs is considered to
be controllable if for all 1 < i ≤ k, the tester to supply
the input xi knows when to send this input. This is
the case if and only if for all 1 < i ≤ k we have that
the tester to send xi either sent xi−1 or observed an
output in yi−1. If this property does not hold for a test
sequence σ = x1/y1, . . . , xk/yk then σ is said to have
a controllability problem. There has been significant
interest in distributed testing from a DFSM and most
work has either tried to avoid controllability problems
[42, 35, 39, 43] or to add coordination messages between
testers in order to overcome controllability problems
[34, 44].

Most of the work on controllability problems in
distributed testing has considered this in the context
of testing from a DFSM. However, many distributed
systems are non-deterministic and for such systems
DFSM models are not suitable. While there has
been some work on testing from a non-deterministic
FSM [45] or an IOLTS [46], MSCs and SDs provide
alternative but popular formalisms. Despite this,
it appears that controllability problems have not
previously been investigated for testing from such
formalisms. When considering controllability problems
in an MSC specification, the specification might either
be a system model or it might model a proposed test
scenario. For example, [17, 18] use MSCs as the
behaviour model and generate test cases from them, but
[19, 20] generally use MSCs to describe test purposes
and test cases are generated in the form of TTCN (Tree
and Tabular Combined Notation).

In this paper we analyse controllability problems

in testing from MSCs under different types of
observability. Except the discussions in Section 8, we
assume that all the communications are asynchronous
and non-FIFO. We give a definition of controllability
problems based on whether MSC test cases lead to
problematic test scenarios. In addition, two types of
controllability problems are identified: controllability
problems of timing and controllability problems of
choice. Interestingly, we show that controllability
problems of timing are related to the race pathology
of MSCs [4] and controllability problems of choice are
related to the non-local choice pathology [47]. Based on
definitions of the two types of controllability problems,
we build formal relationships between MSC pathologies
and controllability problems. These relationships show
that there is potential to adapt previous algorithms
regarding MSC pathologies to deal with controllability
problems in MSCs. Indeed, we give polynomial
time algorithms (Algorithms 1 and 3) that capture
controllability problems in testing from MSCs based on
algorithms originally given in [4, 48, 31] for detecting
race and non-local choice, respectively.

It is shown that some controllability problems of
timing are avoidable by introducing an enforced order
between a pair of observable events when testers have
a better observational power than local observability.
An algorithm (Algorithm 2) is given to find the
races that lead to unavoidable controllability problems
of timing under a given type of observability. It
is also observed that some controllability problems
of choice under local observability no longer exist
when testers have better observabilities. We say
that avoidable controllability problems of timing and
reducible controllability problems of choice can be
overcome. Consequently, a solution is proposed to
overcome such controllability problems. We discuss the
technique of implementing a coordination service with
the support of status messages based on the knowledge
of the controllability problems that can be overcome.

The remainder of this paper is organised as follows.
In the next section, we introduce MSCs, the MSC
test architecture and notions of observability for MSC
testers. Based on the MSC test architecture, the
definition of test case is derived to fit the multiple
types of observability in Section 3. In Section 4,
controllability problems in MSC test cases are analysed
and defined. In addition, two subtypes of controllability
problem are introduced. Section 5 analyses the
relationship between controllability problems of timing
and race. In Section 6, the relationship between
controllability problems of choice and non-local choice
is analysed. We then propose a solution to overcome
controllability problems using a coordination service
and status messages in Section 7. Section 8 provides
a brief discussion on adapting the results in Section 5
and 6 when communications are FIFO. Finally, Section
9 presents conclusions and future work.

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 3

m1

U1 U2P1 P2
M1

m2
m3

m5
m6

m7

m4

FIGURE 1. An MSC

2. PRELIMINARIES

In the first part of this section we briefly introduce
MSCs and focus on the core constructs. We refer the
reader to [1] for further information regarding MSCs. In
the second part, we introduce the testing architecture
and three possible types of observability in the MSC
conformance test framework first given in [33].

2.1. MSCs

The graphical form of MSCs is straightforward as shown
in Figure 1. A process in a distributed system is
represented by a vertical line. Messages are horizontal
or sloped lines exchanged between the processes and the
direction of a message is denoted by the arrow at the
end of the line. Events, usually only the sending and the
receiving of messages, are represented by the end points
of messages. Time progresses from top to bottom along
the vertical lines [1].1

Definition 2.1. (MSCs) An MSC M is a tuple
〈E,C,P, l,msg,<〉 in which E is a set of events, C
is the message alphabet and P = {P1, . . . , Pn} is a set
of processes. The set E is partitioned into a set S of
send events and a set R of receive events (E = S ∪ R)
and l : E 7→ A is a labelling function. We use
send(i, j,m) to represent the sending of message m
from Pi to Pj and receive(i, j,m) the receiving of the
corresponding message2. We define A = AS∪AR where
AS = {send(i, j,m) : 1 ≤ i, j ≤ n ∧ m ∈ C} and
AR = {receive(i, j,m) : 1 ≤ i, j ≤ n ∧ m ∈ C}. We
use Ai to represent the set of labels on process Pi and
msg : S 7→ R is a bijection from send to receive events,
matching each send with its corresponding receive, the
inverse mapping being msg−1 : R 7→ S. We also use
a helper mapping p : E 7→ [1, n] that maps each event
e ∈ E to the index of the process on which e occurs.
For each 1 ≤ i ≤ n, there is a total order <i on the
events of process Pi such that the transitive closure of
the relation < =̇

⋃
1≤i≤n <i ∪ {(s,msg(s)) : s ∈ S} is

1Coregion is not considered in this paper. However, the main
results of this paper are capable of dealing with MSCs with
coregions, because an MSC with coregions can be transformed
to a set of MSCs without coregions.

2We will use !m and ?m as abbreviations of send(i, j,m) and
receive(i, j,m), respectively, where i, j are clear.

a partial order on E, namely the visual order (<∗).

Example (Event, label and visual order of an
MSC) Consider MSC M1 in Figure 1.3 The sending
of m1 is an event e on process U1 and this has label
send(U1, P1,m1) in A. There is an event e′ with label
receive(U1, P1,m1) such that msg(e) = e′ and e <∗ e′.
The event of receiving of m7 on U1 is preceded under
<∗ by the sending of m1 and the receiving of m4.

Throughout this paper, we discuss MSCs under
the non-degeneracy condition. Non-degeneracy means
that degenerate MSCs are not allowed. An MSC is
degenerate if two send events e1 and e2 exist such
that l(e1) = l(e2), e1 < e2 and msg(e2) < msg(e1).
Based on the non-degeneracy condition, a word w =
w1 · · ·w|E| over the alphabet A is a word of an MSC
M if there exists a total order e1 · · · e|E| of the events
in E such that whenever ei < ej we have i < j, and
for 1 ≤ i ≤ |E|, wi = l(ei). The word is well-formed
if for each receive event there is a corresponding send
event and is complete if all send events have matching
receives. For an MSC M , the language of M , L(M), is
the set of all words of M [48].

In this paper, we consider MSC specifications that
contain a finite number of MSCs.

Definition 2.2. (MSC Specification) An MSC
specification, M is a finite set of k MSCs M1, . . . ,Mk

in which Mj has event set Ej, message alphabet Cj

and set Pj of processes and E1, · · · , Ek are disjoint.

E =
⋃k

j=1Ej is the sets of events of M; χ =
⋃k

j=1 Cj

is the message alphabet of M; ψ =
⋃k

j=1 Pj is the set
of processes in M.

The language of an MSC specification is the union of
the languages of all MSCs inM, L(M) =

⋃k
j=1 L(Mj).

We note that the message alphabets and process names
of different MSCs in an MSC specification need not be
disjoint. From an MSC specification M, the process
behaviour of Pi can be derived from L(M), namely the
process language.

Definition 2.3. (Process Language) The process
language at Pi of an MSC specification M is the
projection of L(M) onto Pi, denoted L(M)|Ai.

In Definition 2.3, | is used as the projection operator
which only keeps letters in alphabet Ai and removes
others from the words of the language. For an MSC
specification, it is clear that there may be multiple
possible behaviours that can be chosen from after a
common prefix for a process. Let pref(L) represent
the set of prefixes of words from language L, possible
behaviours form choices which are defined as follows.

Definition 2.4. (Choice [31]) Given an MSC
specification M and process Pi, a choice on Pi is a

3In this paper, U∗ and P∗ may be used to represent user and
system processes in figures, respectively.

The Computer Journal, Vol. ??, No. ??, ????

4 Haitao Dan and Robert M. Hierons

U1 U2P1

m2

M1

U1 U2P1

m3

m4

M2

m1

U1 U2P1

M3

m1

m3

FIGURE 2. An example of controllability problems of choice

triple (w, x, y), where w ∈ pref(L(M)|Ai), x, y ∈ Ai

and x 6= y such that wx,wy ∈ pref(L(M)|Ai).

Example (Choice) Consider MSC specification M1
formed by M1 and M2 shown in Figure 2. There is a
choice, (ε, !m1, ?m4), on process U1. Here, ε represents
the empty word. This choice on U1 means that, from
the start, U1 can choose to sendm1 or wait for incoming
m4.

2.2. Testing from MSCs

Conformance testing is about checking whether the
behaviour of a system conforms to the corresponding
specification. An MSC specification generally involves
multiple user and system processes. For testing
from MSC specifications, testers thus simulate the
users’ behaviour according to the specification and
check the conformance by comparing the observation
of the SUT to the system behaviour described by
the specification. In MSCs, a system process may
communicate with many users and other system
processes through channels set up between each pair
of these entities. Therefore, the SUT described by
the MSC specification contains multiple subsystems,
each subsystem has multiple ports and a tester may
communicate with any of the ports.

SUT

Tester 1

Tester 2

MSC test architecture

A traditional distributed
test architecture

Border

channels

User channels

Internal
channels

Tester

Subsystem

Coordinate channels

FIGURE 3. Distributed test architectures

The traditional distributed test architecture is
shown on the right-hand side of Figure 3 [38, 39,
40] in which the SUT has two distributed ports
each of which communicates with only one tester.
It is clear that the SUT described by an MSC
specification requires a more complex test environment.

Therefore the MSC test architecture, shown on the
left-hand side of Figure 3, was developed [33]. In
the MSC test architecture, triangles are used to
represent system processes and squares are used to
represent testers. Interactions between entities are
transmitted through communications channels. The
communications channels are divided into three groups:
border, user and internal channels which correspond
to channels between one user process and one system
process, two user processes and two system processes,
respectively. The groups of channels are represented
by concentric circles in the test architecture given in
Figure 3. The inner circle denotes the internal channels;
the first ring out from the inner circle denotes border
channels; the second ring denotes the user channels.
Real channels may be set up for pairs of entities.
In addition to these three types of channels, there
may be coordination channels between the testers and
these allow them to exchange coordination messages.
In Figure 3, coordination channels are represented by
the outer ring in the architecture. These differ from
user channels since messages exchanged in coordination
channels are not from the MSCs; they are included
in order to assist the test execution. When there
are distributed testers, the observational power of a
single tester depends upon the testing infrastructure
used. For example, the separate testers may be
able to communication through coordination channels
and testing might use a specific technology such as
monitoring systems [49]. In this paper, we discuss
controllability problems based on three notions of
observability.

• Local observability: a tester can only observe
events on its process due to the distributed testing
architecture.

• Tester observability: in addition to the events on
itself, one tester shares the information with other
testers by communication through coordination
channels.

• Global observability: testers can observe all events
including those on processes within the SUT.

3. MSC TEST CASES

Test cases can be derived from an MSC specification
to check whether the behaviour of the SUT conforms
to the specification. Individual testers in an MSC test

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 5

architecture obtain verdicts, such as pass and fail, by
comparing their observations to the specification.

As mentioned in Section 2, testers in the MSC test
architecture may have different types of observability.
For a tester, the observation of a test run varies with
different types of observability.

Example (Types of observability) Consider a test
run following MSC M1 given in Figure 1, with testers
T1 and T2 simulating user processes U1 and U2,
respectively. With local observability, T2 can observe
events ?m3 and !m5. In addition to ?m3 and !m5,
T2 can also observe !m1 and ?m4 and ?m7 with tester
observability since testers share information. If T2 has
global observability, all events in M1 can be observed
by T2.

Consequently, the set of possible valid observable
sequences of the SUT changes with the type of
observability; the word that captures an execution of
the SUT may conform to an element of L(M) under
one notion of observability but not another. For MSC
specification M with a tester simulating process Pi,
L(M) is the set of the desirable observations of a
tester with global observability. If the tester has local
observability, a word of process language L(M)|Ai

describes a valid observation. Let P1, .., Pk be the set of
user processes and Au =

⋃k
1 Ai be the alphabet on user

processes. With tester observability, the set of valid
observable sequences is L(M)|Au. Obviously, global
observability gives the testers the greatest ability to
distinguish between the behaviours of the SUT and the
specification.

To give a unified definition, a test case for
MSC-based testing is defined based on the possible
observable sequences from each participating tester.
The observation of every tester in a test run should
conform to the MSC specification and otherwise the
SUT fails the test. Let Ai denote the observable
alphabet of the tester simulating user process Pi.
Alphabet Ai changes with the type of observability.
For example, Ai = Ai with local observability; Ai =
Au with tester observability and Ai = A with global
observability. The set of observable sequences for the
tester under a type of observability can be formalised as
the projection of the MSC language on Ai and we call
this the tester language. We denote the tester language
of user process Pi as Li = L(M)|Ai. A tester language
Li is the process language if we have local observability;
Li is L(M)|Au with tester observability and Li is L(M)
with global observability. The notion of a test case can
be formally defined as follows.

Definition 3.1. (MSC Test Case) Given an MSC
specification M with k user processes {P1, ..., Pk}, 1 ≤
i ≤ k, an MSC test case of M is a group of tester
languages T = (L1, ..., Lk). 4

4For both tester and global observabilities, L1 = L2 = ... =

U1 U2P1

m1

m2

M1

U1 U2P1

m1

m3

M2

FIGURE 4. Controllability problems of timing

This definition says that, in executing a test case,
each tester follows its tester language. This means
that only ‘sensible’ positive (send) events can happen.
From the other perspective, this also means that a
tester can make a decision on a choice according to the
tester language, simply because any decision on a choice
conforms to the tester language.

The verdicts of test runs are given by all testers. Each
tester gives pass verdicts if its observations conform to
its tester language, otherwise fail verdicts are given.

4. CONTROLLABILITY PROBLEMS

According to the definition of an MSC test case, testers
can provide the input to and wait for the output
from the SUT following the test specification (tester
language). One question is whether this is enough
to assure that all testers behave properly and provide
desirable input to the SUT. We will see that a tester
might not have enough information to ensure that it
makes correct decisions.

The time between behaviours of a tester is not
normally defined in an MSC specification. So, in a test
run, if a tester on process Pi is to supply an input then
it might do so immediately or choose a delay. We will
see that the overall behaviour of the test run can depend
on the delay. In addition a tester may confront choices
(Definition 2.4). Some options of choices may lead to
problematic test scenarios.

The first problem is that, due to the absence of the
information on transmission time in MSCs, there are
cases where messages from the testers arrive at the SUT
in a wrong order. As a result, even if all testers follow
their tester languages, an observed failure may not be
caused by implementation problems of the SUT but by
an error in the order in which messages from testers are
received.

Example (Problem of timing) Consider the test
case for the MSC M1 given in Figure 4. Here two
testers U1 and U2 should send messages m1 and m2
respectively to process P1 of the SUT. According to
the specification M1, message m1 should arrive at P1
before message m2. With local or tester observability,

Lk. In these cases, the definition can be simplified. However, the
given definition has a unified form and supports possible fine-
grained types of observabilities in complex distributed testing
environments.

The Computer Journal, Vol. ??, No. ??, ????

6 Haitao Dan and Robert M. Hierons

m1

U1 U2P1 P2

M1

U1 U2P1 P2

M2

m2

m3

m4
m2

m5

U1 U2P1 P2

M3

m1
m2

m5

FIGURE 5. Another example of controllability problems of choice

U2 cannot know when P1 receives m1. Therefore,
it is possible that the testers send their messages as
desired but m2 arrives at P1 before m1 in a test run.
Another example is given in M2 shown in the same
figure. In this example, two messages are sent from
tester U1. As described in M2, m1 should arrive before
m3. The problems is that the tester simulating U1
cannot assure that m3 always arrives after m1, because
m3 may overtake m1 in a test run.

Another type of problem can occur when a tester Ti
has made a choice on a send event according to its tester
language, but this choice is forbidden as a result of a
previous decision made by another process Pj . The
problem is that the tester Ti cannot be aware of the
choice made by Pj . In such a situation, a decision
by Ti regarding a choice that involves the sending of
a message may lead to test scenarios that violate the
MSC specification.

Example (Problem of choice) Consider MSC
specification M1 containing MSCs M1 and M2 shown
in Figure 2, the valid test runs described by M1
are !m1?m2 and !m3?m4. Let us suppose that the
tester simulating U1 chooses to send m1. The choice
between sending of m3 and receiving of m2 is non-
deterministic for U2 under local observability since the
tester simulating U2 cannot know what has been sent
from U1. M3 thus can be the actual run of the test
case and M3 is obviously an undesirable test scenario.
Another example is given in Figure 5 that shows the
MSC specification M2 with two MSCs M1 and M2.
The non-deterministic choice happens after U2 receives
m2 with local observability. U2 cannot decide whether
to send m3 or m5 since U2 does not know what has
been sent from U1 to P1. Therefore, M3 can be the
test run which is undesirable.

Base on these observations, we define the problematic
test scenarios as follows.

Definition 4.1. (Problematic Test Scenario)
Given an MSC specification M with alphabet A, wa,
where a = l(f), is a problematic test scenario if wa is
a well-formed word such that w ∈ pref(L(M)) and:

• (Type 1) f ∈ R is on a system process Pi

and is sent from a user process and wa|Ai /∈
pref(L(M)|Ai);

M1 M2

U1 P1

m1

m2

U1 P1

m2

M3

U1 P1

m1

m2

m1

FIGURE 6. A non-local choice causes no controllability
problems

• or (Type 2) f ∈ S, f is on a user process Pj,
wa|Aj ∈ pref(Lj) and wa /∈ pref(L(M)).

Example (Type 1 problematic scenario) In the
MSC M1 given in Figure 4, two testers U1 and
U2 should send messages m1 and m2 respectively.
However, U2 cannot know when to send its message
in order to ensure that P1 receives m2 after m1. Based
on Definition 4.1, !m1!m2?m2 can be the problematic
test scenario and we have w =!m1!m2 and a =?m2.

Example (Type 2 problematic scenario) Let the
testers have local observability in Figure 5, where U1
and U2 have choices in MSC specification M2 that
contains M1 and M2. The problem is that U2 has
to decide whether to send m3 or m5 after receiving
m2. In this case, we have two combinations of w and a
that satisfy Definition 4.1: one is w =!m1?m1!m2?m2
and a =!m5; the other is w =!m4?m4!m2?m2 and
a =!m3.

It is required that f ∈ S (sending of a message) in
Type 2 problematic test scenarios. Receive events are
ruled out based on a common assumption in research
on formal conformance testing: testers cannot block
output from the SUT [46]. The undesired incoming
messages to testers may lead to scenarios violating the
MSC specification, but the resultant scenarios are not
controllable for testers. Therefore, they are excluded
from problematic test scenarios.

Example (Explanation of the sending of message
requirement) Consider MSC specification M3 with
two MSCs, M1 and M2 shown in Figure 6, in which
there is a possibility that system process P1 decides to
send m1 then m2 but m2 overtakes m1 and arrives at
user process U1 first. This scenario is shown in M3
in the same figure. The tester simulating U1 cannot

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 7

decide that M3 is a problematic run since the receiving
of m2 is described by M2. However, M3 already
violates the specification since M3 is not described by
the specification. Obviously, M3 is not controllable for
the tester in this case.

The relationship between the two types of problem-
atic test scenario are stated in the following proposition.

Proposition 4.1. Type 1 and Type 2 problematic
test scenarios are disjoint.

Proof. This follows immediately from the event f ,
where a = l(f), in the problematic scenario wa being a
receive event in a Type 1 scenario and a send event in
a Type 2 scenario.

Controllability problems of MSC test cases lead to
problematic test scenarios and are results of design
problems in MSC specifications.

Definition 4.2. (Controllability Problems of
MSC Test Cases) Given an MSC specificationM, its
MSC test case T has controllability problems if there can
be problematic test scenarios even if each tester follows
its tester language.

Both designers and testers can benefit from tech-
niques that detect and avoid controllability problems.
For system designers, it is desirable to avoid specific
types of controllability problems and this might be
achieved by detecting the corresponding types of de-
sign problems at an early stage. Testers can benefit
explicitly when parts of designs are being considered as
potential test cases. Interestingly, in the following sec-
tions we show that controllability problems in MSC test
cases are highly related to two types of MSC patholo-
gies: race and non-local choice [4, 28, 31]. Therefore,
we investigate the relationships between controllability
problems and the existing research on MSC pathologies
[50, 26].

5. CONTROLLABILITY PROBLEMS OF
TIMING

In this section, we first give definitions of controllability
problems of timing and of race in an MSC and in
an MSC specification. Based on these definitions, we
derive the relationship between race and controllability
problems of timing. It is also shown that some
controllability problems caused by races can be avoided
by introducing enforced orders between observable
events. Finally, algorithms are provided to check
whether a test case of an MSC specification has
controllability problems of timing and whether the
controllability problems can be overcome.

As mentioned in Section 4, controllability problems
can be classified by the types of problematic test
scenarios that they cause. The Type 1 problematic test
scenarios are caused by the testers not knowing when

U1 U2P1

m1

m2

M1

U1 U2P1

m2

m1

M2

FIGURE 7. Races in an MSC specification

to send input. Therefore, we call them controllability
problems of timing.

Definition 5.1. (Controllability Problems of
Timing) Given an MSC specification M, its MSC test
case T has controllability problems of timing if testers
may lead to Type 1 problematic test scenarios.

5.1. Race

Race in an MSC defines discrepancies between two
orders: the visual order and the enforced order. This
means that the visual order between some events
cannot be assured in executions. The enforced order
depends on the underlying communication system [4].
In this paper, since we assume that communications
between processes are asynchronous and non-FIFO,
enforced order among the events in MSCs is the same
as that produced when making no assumptions on
communication systems. In both situations, causalities
are the only constraints on the orders among the events
in MSCs. The causalities are defined by the sending of
a message always being before the receiving of the same
message and a send event on some process always being
after the events visually above it on the same process.
So the enforced order of an MSC is defined as follows.

Definition 5.2. (Enforced Order) Given an MSC
M with set E of events, the transitive closure of the
relation, � =̇{(x, y) ∈<: y = msg(x)∨ (y ∈ S ∧ p(x) =
p(y))}, is a partial order on E, namely the enforced
order (�∗).

Races in an MSC are defined as follows [4].

Definition 5.3. (Race in an MSC) Events e and
f from process Pi in MSC M are said to be in a race,
denoted as [e, f], if e <∗ f but not e�∗ f .

However, races in an MSC specification are not the
union of the races in each member MSC of the MSC
specification.

Example (Race in an MSC specification) Con-
sider MSC specification M4 with two member MSC
M1 and M2 shown in Figure 7. In each MSC, the
event pair, ?m1 and ?m2, forms a race on process P1,
but no matter whether m2 arrives before m1 or the con-
verse situation happens, they are both allowed by the
specification M4.

The Computer Journal, Vol. ??, No. ??, ????

8 Haitao Dan and Robert M. Hierons

Therefore, a race in an MSC specification should
first be a race of a member MSC and, in addition the
problematic scenario caused by the race should not be
described by the specification. The definition of race in
MSC specifications is as follows and was first given in
[32].

Definition 5.4. (Race in MSC Specifications)
Let us assume that M is an MSC specification and
e, f are two events on process Pi. [e, f] is a race
of M if [e, f] is a race in some member MSC M of
M such that uau′b ∈ pref(L(M)|Ai) where a = l(e),
b = l(f) and u, u′ are two words in alphabet Ai and
ub /∈ pref(L(M)|Ai).

In the definition, uau′b represents a prefix of the
projection of M on process Pi. It contains the labels
of the two events which form race [e, f]. ub is the
projection of a partial scenario M ′ in which f overtakes
e. M ′ is therefore the problematic scenario caused by
the race [e, f].

5.2. Race and controllability problems

Race causes controllability problems of timing.

Example (Controllability problem and race) Let
us reconsider the examples given in Figure 4. The
controllability problems in M1 and M2 are actually
caused by races in those MSCs. [?m1, ?m2] is a race in
M1 since ?m1 <∗?m2 but ?m1 6�∗?m2 and [?m1, ?m3]
is a race in M2 since ?m1 <∗?m3 but ?m1 6�∗?m3.

Not every race in MSCs causes controllability
problems. A race will not cause a controllability
problem if the second event of the race is a system
process receiving a message that is sent from a system
process.

Example (Race not causing controllability prob-
lems 1) [?m2, ?m3] is a race of MSC M1 in Figure 8
which may lead to a new scenario in which m3 arrives
before m2. The actions of the testers does not influence
this and the SUT may contain mechanisms that ensure
that such a scenario cannot occur.

In addition, if a race is on a user process, it will
not cause controllability problems but may cause a fail
verdict.

Example (Race not causing controllability prob-
lems 2) [?m4, ?m5] is a race of MSC M2 in Figure 8
which may lead to a scenario in which m5 overtakes m4.
This undesired behaviour is observable for tester U1. If
this occurs then U1 will give a failure verdict to the test
run since the observations are not consistent with the
specification.

We can conclude the relationship between races and
controllability problems of timing as follows.

m3

U1 P1 P2

m1

M1

m2

U1 P1 P2

m1

M2

m2

m4

m4

m5

FIGURE 8. Races but no controllability problems

Proposition 5.1. A test case T of the MSC
specification M has controllability problems of timing
if and only if there is a race [e, f] of M on a system
process Pi such that msg−1(f) is on a user process.

Proof. First let us suppose that the test case T of M
causes no Type 1 problematic test scenarios; we then
prove that there is no race [e, f] in M on a system
process Pi such that msg−1(f) is on a user process. We
will use proof by contradiction. Let us assume that M
causes no Type 1 problematic test scenarios but there
is a race [e, f] of M on a system process Pi such that
msg−1(f) is on a user process. Let us use word wbuau′

to represent M where w, u and u′ are three words on
alphabet A, a = l(f) and b = l(e). Since [e, f] is a
race ofM, all events after e (including e) on Pi are not
enforced before f . Therefore, ua represents a scenario
M ′ which is well-formed. According to Definition 5.4,
L(M ′)|Ai /∈ pref(L(M)|Ai). M ′ is thus a Type 1
problematic test scenario. This gives a contradiction
as required.

For the converse direction, let us suppose that M
does not contain a race [e, f] ofM on a system process
Pi such that msg−1(f) is on a user process; we then
show that T has no Type 1 problematic test scenarios.
We will use proof by contradiction: assume that the test
case of M causes a Type 1 problematic test scenario
which can be represented by wa where a = l(f).
According to the definition of Type 1 problematic test
scenarios, f ∈ R happens on a system process Pi such
that w is a prefix of L(M) but well-formed wa is not.
Notice that every MSC M in M that contains f and
has prefix w can be represented by a well-formed and
complete word wuau′, where u and u′ are two words
on alphabet A. We then have wuau′|Ai ∈ L(M)|Ai.
In addition, since wa /∈ pref(L(M)), wua|Ai 6= wa|Ai

and so u|Ai 6= ε. This means that in M there is at
least an event x on Pi that happens immediately after
the event sequence corresponding to w|Ai but before f .
Because wa is well-formed, msg−1(f) corresponds to a
letter in w and so we have that x 6<∗ msg−1(f) and
x 6= msg−1(f). Therefore [x, f] is a race of M . Because
wa|Ai /∈ pref(L(M)|Ai), [x, f] is a race of M. This
provides a contradiction as required.

This proposition says that only a special type of race
leads to controllability problems. The race [e, f] should

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 9

m3

U1 U2P1 P2

m1

M1

m2

m4

U1 U2P1 P2

m1

M2

m2

m4

FIGURE 9. Controllability problems of timing and
observabilities

happen on a system process and event f is the receiving
of message m which is sent from a user process.

Another interesting observation is that sometimes
testers have the ability to avoid Type 1 problematic
test scenarios.

Example (Avoidable controllability problem of
timing) Consider the MSC M1 given in Figure 9 in
which there is a race [!m3, ?m4] on P2. This race causes
a controllability problem for U2 with local observability
since U2 cannot guarantee that m4 arrives after the
sending of m3. However, with tester observability, this
problem can be resolved for U2 by waiting for the
observation of ?m3. This is because ?m3 happens on
U1 and events on U1 can be observed by U2 according
to tester observability. Waiting for ?m3 introduces an
enforced order between !m3 and ?m4, so no problematic
test scenarios will happen.

This example shows that a controllability problem
caused by a race [e, f] can be overcome by testers if
[e, f] satisfies the following conditions: there is an event
x which is after e in the enforced order; x is not after
the sending event msg−1(f) in the visual order; and
x can be observed by the tester. In other words, the
technique actually prunes the Type 1 problematic test
scenarios by introducing enforced orders between tester
observable events.

However, not all controllability problems can be
avoided with tester observability.

Example (Unavoidable controllability problem
of timing) Considering MSC M2 given in Figure 9
in which [?m2, ?m4] is a race on P2. This race causes a
controllability problem that is not avoidable with tester
observability. U2 still cannot decide when to send m4
since ?m2 is a system event which is not observable for
U2 with tester observability.

We define avoidable controllability problems of
timing as follows.

Definition 5.5. (Avoidable Controllability
Problems of Timing) The controllability problems of
timing caused by race [e, f] are avoidable if there are
two observable events e′ and f ′ where e′ 6�∗ f ′ such
that we have e �∗ f after we introduce enforced order
between e′ and f ′.

Based on Definition 5.5, we have the following
proposition.

Proposition 5.2. The controllability problems of
timing caused by race [e, f] can be avoided if any event
in {e} ∪ {x ∈ E : e �∗ x ∧ msg−1(f) 6<∗ x} is
observable.

Proof. Let the observable event in {e} ∪ {x ∈ E :
e �∗ x ∧ msg−1(f) 6<∗ x} be y. An enforced order
between y and msg−1(f) can be introduced since both
events are tester observable. This leads to e�∗ f since
y �∗ msg−1(f). Therefore, e is no longer a race with
f . The proposition is established.

Based on Proposition 5.2, if testers have global
observability, we have the following proposition.

Proposition 5.3. All controllability problems of
timing can be avoided with global observability.

Proof. This proposition follows from Proposition 5.2
and the fact that all events are observable with global
observability.

5.3. Algorithms

We provide two algorithms to solve the following
problems: detecting races that cause controllability
problems of timing in an MSC test case (Algorithm 1);
if there are controllability problems of timing, deciding
whether they can be avoided (Algorithm 2).

Our algorithms are based on the race detection
algorithm for an MSC [4]. The original algorithm
calculates the enforced order between any two events
in an MSC M with n events. The result is stored in
an n× n matrix C. Its first step is generating an index
for each of the n events such that the numbering of the
events defines a total order which is consistent with the
visual order. In our algorithms, we will reuse the index
generated for each event in the original algorithm.

Algorithm 1 first constructs automata for process
languages for checking whether races of member MSCs
are races of the specification. In the beginning of
the outer level loop, the algorithm detects all races
in each member MSC and stores them in R (Line 4),
then the races of an MSC that are on system process
and have the second event sent from a user process
are picked for further validation (Line 6). Function
isRaceOfSpec in Line 7 is used to check whether the
race of a member MSC is a race of the specification.
This is necessary because Definition 5.4 rules out the
races of member MSCs which do not cause problematic
scenarios. Function isRaceOfSpec can be achieved as
follows. Let us suppose that [e, f] is a race on Pi

based on M of specification M. A word ub can be
constructed, where b = l(f) fromM . If ub is not a prefix
of pref(L(M)|Ai), isRaceOfSpec returns true otherwise
false.

The correctness of Algorithm 1 is stated in the
following proposition.

The Computer Journal, Vol. ??, No. ??, ????

10 Haitao Dan and Robert M. Hierons

Input: M
Output: R′

/*Races that lead to controllability

problems. */

Initialise R′1

Construct N /*A set of automata, each2

Ni ∈ N corresponds to process

languages L(M)|Ai */

forall M ∈M do3

/*R is the set of races based on

M detected using the original

algorithm in [4]. In the

process, matrix C, giving the

enforced order, and indexes of

events are stored for further

usage. */

R = detectOriginalRaces()4

forall [e, f] ∈ R do5

if (msg−1(f) on a user process) &&6

(e on system process) then
if isRaceOfSpec((a, b))/*Check7

if [e, f] is a race of M */

then8

/*Insert the race causing

controllability

problems into R′ */

insert ([e, f], R′)9

end10

end11

end12

end13

Algorithm 1: Detecting races that cause control-
lability problems

Proposition 5.4. Given an MSC specification M
with a finite set of events, the output R′ of Algorithm 1
is the set of races which cause controllability problems
of timing. The output R′ is empty if M is free of
controllability problems of timing.

Proof. We use a two-step approach to prove the
correctness of Algorithm 1. We first prove the
termination of Algorithm 1. Second, we prove the
output is the set of races that cause controllability
problems of timing.

For the first step, functions detectOriginalRaces and
isRaceOfSpec called by Algorithm 1 terminate sinceM
contains a finite number of events. The two loops of
Algorithm 1 are controlled by the number of member
MSCs in M and the number of race in M, so the
two loops will only executed a finite number of time.
Therefore, the first step is established.

For the second step, the output R′ contains all the
races causing controllability problems of timing. This is
based on the fact that Algorithm 1 is designed following
Proposition 5.1. The correctness of output follows
Proposition 5.1.

The following proposition states the computational
complexity of Algorithm 1.

Proposition 5.5. Given an MSC specification M
with l MSCs and each with at most n events, the
computational complexity of Algorithm 1 is O(ln3).

Proof. The computational complexity of detectOrigi-
nalRaces is O(n2) [4]. According to the definition of
race in an MSC, the upper bound on the number of
races in M is n2. Process languages of MSC spec-
ifications with a finite number of member MSCs can
be represented as automata without cycles. It is clear
that the construction of N is linear in the total number
of events. Function isRaceOfSpec can thus be imple-
mented by checking whether ub, where b = l(f), is a
prefix of a word which is accepted by the corresponding
automaton in N . The complexity of this step is linear
in the length of ub which is O(n) since the upper bound
of the length is n. Therefore, the computational com-
plexity of the inner loop is O(n2 × n) = O(n3). The
computational complexity of the algorithm inside the
outer loop is O(n3) + O(n2) = O(n3). Therefore, the
computational complexity of the outer loop is O(ln3)
since there are l MSCs in M. The overall computa-
tional complexity is therefore O(ln3). The proposition
is established.

It is clear that controllability problems of timing
cannot be avoided under local observability and all
controllability problems caused by races in R′ can be
avoided under global observability. Algorithm 2 checks
whether controllability problems caused by races in R′

can be avoided under tester observability.
Algorithm 2 first calculates the transitive closures

of visual order of every member MSC with the same
technique used in the original algorithm for race
detection in MSCs [4] and stores this in V (Line
2). Lines 5-20 check whether the controllability
problems caused by race [e, f] can be avoided according
to Proposition 5.2. It checks whether there is an
observable event enforced after e and visually not
behind msg−1(f), including e. If there is such an event,
the controllability problems caused by [e, f] can be
avoided otherwise it will be added into R′′. Therefore, if
R′′ is empty at the end, it means that all controllability
problems are avoidable with the given observability.
The computational complexity of Algorithm 2 is stated
in the following proposition.

Proposition 5.6. Given an MSC specification M
with l MSCs, each having at most n events, the
computational complexity of Algorithm 2 is O(ln2+n3).

Proof. The complexity of computing each transitive
closure of visual order V is O(n2) using the same
approach to calculate the transitive closure of the
enforced order [4]. Therefore, the computational
complexity of Line 2 is O(ln2) since there are l member
MSCs. The upper bound on the number of races

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 11

Input: R′

/*R′ is the set of races detected by

Algorithm 1 */

Output: R′′

/*Races that lead to controllability

problems that cannot be avoided. */

Initialise R′′1

calculate and store V for each M ∈M2

/*V is the transitive closure of

visual order of an MSC */

forall [e, f] ∈ R′ /* i and j are the3

indexes of e and msg−1(f),
respectively. */

do4

if e is not observable then5

isObservable = false6

forall x ∈ E /* k is the index7

of x */

do8

if C[i][k] = true &&9

V [j][k] 6= true/*C is a

matrix which stores the

enforced order of M
calculated in Algorithm 1

*/

then10

if x is observable then11

isObservable = true12

break13

end14

end15

end16

if isObservable = false then17

insert([e, f], R′′)18

end19

end20

end21

Algorithm 2: Determining whether controllability
problems of timing can be avoided

in R′ is n2 and the upper bound of the number of
events that have to be checked in the inner loop
(Line 7-16) is n. The computational complexity of
the loop is thus O(n2 × n) = O(n3). Therefore, the
overall computational complexity is O(ln2 + n3). The
proposition is established.

6. CONTROLLABILITY PROBLEMS OF
CHOICE

In this section we first define controllability problems
of choice and non-local choice in MSC specifications.
We then derive the relationship between controllability
problems of choice and non-local choice. Finally, an
algorithm is provided to detect non-local choices that
cause controllability problems of choice.

The Type 2 problematic test scenarios are caused

m1

U1 U2P1 P2

M1

U1 U2P1 P2

M2

m2

FIGURE 10. Non-local choice with terminations

by testers making particular decisions on choices.
Therefore, we call them controllability problems of
choice.

Definition 6.1. (Controllability Problems of
Choice) Given an MSC specification M, its MSC test
case T has controllability problems of choice if testers
may lead to Type 2 problematic test scenarios.

6.1. Non-local choices

A non-local choice can be described as a choice that
depends on information from other processes, but
the information is not accessible due to the local
assumption. Here, the local assumption is that a
process is prevented from directly accessing the status
of other processes. Generally, a choice is between two
event labels. There is a special case that a choice may
happen between the termination of a process and an
event label.

Example (Non-local choice with a termination
of process) Consider MSC specification M5 with two
member MSCs M1 and M2 shown in Figure 10. Both
user processes have problems in deciding whether to
send a message or terminate the processes directly.
For instance, U2 should send m2 if U1 has sent m1.
However, U2 has no observability of the events on U1, so
there is a non-local choice between !m2 and termination
of U2.

To explicitly describe choices between the termina-
tion of a process and other events, we include termina-
tions into the alphabet of MSC languages [31] and so L′

is used to denote the MSC language extended with an
alphabet of terminations of processes, represented by
↓P= {↓i: Pi ∈ P}. The formal definition of non-local
choices based on Definition 2.4 is as follows.

Definition 6.2. (Non-local Choice [31]) Given an
MSC specification M, a non-local choice is a choice
(w, x, y) on Pi, such that there exists a word v ∈
pref(L′(M)), where v|Ai = w, vx ∈ pref(L′(M)), vy
is well-formed and vy /∈ pref(L′(M)).

It has been shown that a non-local choice results in
implied scenarios [31].

Definition 6.3. (Implied Scenarios [31]) w
represents an implied scenario of M if w is a well-
formed word and for each w|Ai i ∈ [n], a word v ∈

The Computer Journal, Vol. ??, No. ??, ????

12 Haitao Dan and Robert M. Hierons

pref(L′(M)) exists such that w|Ai = v|Ai, but w /∈
pref(L′(M)).

The concept of implied scenarios was identified in
the research on synthesising automata from MSCs [48].5

In [48], an MSC specification M with a finite number
of member MSCs is said to be safely realisable if and
only if there exists a synthesised model whose behaviour
contains no implied scenarios. It is clear that we have
also the following proposition.

Proposition 6.1. An MSC specification has no
implied scenarios if and only if it is safely realisable.

The relationship between non-local choice and
implied scenarios can be established.

Proposition 6.2. An MSC specification is non-local
choice free if and only if it does not lead to implied
scenarios.

Proof. According to Proposition 23 in [31], we know
that an MSC specification is non-local choice free if and
only if it is safely realisable. Moreover, Proposition
6.1 shows that an MSC specification has no implied
scenarios if and only if it is safely realisable. The
proposition is established.

By comparing the definition of Type 2 problematic
test scenarios and implied scenarios, it is clear that
Type 2 problematic test scenarios are implied scenarios
with the restriction that the first event violating the
specification is on a user process and is a send event.

6.2. Non-local choice and controllability prob-
lems

It appears that controllability problems of choice
are actually caused by non-local choices in MSC
specifications.

Example (Non-local choice and controllability
problems) Consider again an MSC specification M1
with two member MSCs, M1 and M2 given in Figure 2.
There are non-local choices on U1 and U2 according to
Definition 6.2. (ε, ?m4, !m1) is a non-local choice on U1
since we can find !m3?m3!m4?m4 ∈ pref(L(M1)) but
!m3?m3!m4!m1 /∈ pref(L(M1)); (ε, ?m2, !m3) is a non-
local choice on U2 since we can find !m1?m1!m2?m2 ∈
pref(L(M1)) but !m1?m1!m2!m3 /∈ pref(L(M1)).
These non-local choices lead to an implied scenario,
M3 given in Figure 2, according to Proposition 6.2.
Under local observability, M3 is a problematic test
scenario.

However, some non-local choices do not lead to
controllability problems. Obviously, non-local choices
on system processes do not cause controllability
problems.

5The definition of implied scenarios in this paper involves
deadlock scenarios described in [48].

m1

U1 U2P1 P2

M1

U1 U2P1 P2

M2

m2
m3

m4
m2

m5

FIGURE 11. Non-local choice not leading to
controllability problems

Example (Non-local choice on user process) MSC
specification M6 given in Figure 11 contains two
MSCs M1 and M2. There is a non-local choice
on P2: (?m2, !m3, !m5) since !m1?m1!m2?m2!m3 ∈
pref(L(M6)) but !m4?m4!m2?m2!m3 /∈ pref(L(M6)),
but it is on a system process.

Non-local choice (w, x, y) causes no controllability
problems of choice if y ∈ R in a non-local choice
(w, x, y). This is because the tester does not control
the receiving of a message.

Example Reconsider MSC specification M3 given
in Figure 6 with two MSC M1 and M2. There
is a non-local choice (ε, ?m1, ?m2) on U1 and it
leads to a implied scenario M3 shown in the same
figure. However, this non-local choice does not cause
controllability problems of choice because it involves U1
receiving a message.

Whether a non-local choice causes controllability
problems also depends on the type of observability
applied.

Example (Controllability problems of choice
only with local observability) Reconsider MSC
specifications M1 and M2 in Figures 2 and 5. For
controllability problems in M1, once U1 or U2 sends
the first message, the other tester is aware of this with
tester observability. For M2, U2 knows what has been
sent from U1 to P1, so it will choose the right message
to send accordingly.

In fact, the problematic test scenarios under local
observability may be automatically ruled out by the test
cases generated with tester observability.

Example (Problematic test scenarios avoided by
tester observability) Consider MSC specificationM1
in Figures 2. Let the process index for U1 and U2
be 1 and 2, the test case is thus (L1, L2) and L1 =
L2 = {!m1?m2, !m3?m4} with tester observability. At
the beginning of a test run, U1 and U2 both can
choose to send messages. However, once one of the
testers sends a message, the other tester is restricted to
receiving the corresponding message. This is because,
for example, after U1 sends m1, U2 cannot send m3
otherwise it will violate the test case generated with
tester observability.

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 13

U1 P2P1

m1

m2

M1

U1 P2P1

m3

m4

M2

FIGURE 12. A controllability problems of choice with
tester observability

There are non-local choices that cause controllability
problems of choice with tester controllability.

Example (Controllability problems of choice
with tester observability) Consider an MSC
specification M7 given in Figure 12. This specification
is similar toM1 given in Figure 2. The difference is that
the right most process inM7 is a system process. With
tester observability, the tester cannot observe events on
P2, so after P2 sends m3, the choice to send m1 is
still open for tester U1. Therefore, the non-local choice
on U1, (ε, ?m4, !m1), may lead to an implied scenario
!m3!m1 which is also a problematic test scenario.

To conclude, we have the following proposition.

Proposition 6.3. The test case T of an MSC
specification M has controllability problems of choice if
and only if there is a non-local choice (u, x, y) on user
process Pi and y ∈ AS such that the non-local choice
leads to an implied scenario wy such that w|Ai = u and
wy|Ai ∈ pref(Li).

Proof. For the forward direction, let us suppose that the
test case has controllability problems of choice. We then
show that there is a non-local choice (u, x, y) on a user
process Pi and y ∈ AS and (u, x, y) leads to an implied
scenario wy such that wy|Ai ∈ pref(Li). The test case
having controllability problems of choice means that it
causes a Type 2 problematic test scenario according
to Definition 6.1. Let us use wy /∈ pref(L(M)) to
represent the problematic test scenario. We have
wy|Ai ∈ pref(Li) according to Definition 4.1. This
implies that wy|Ai ∈ pref(L(M)). Therefore, wy is
an implied scenario according to Definition 6.3. In
addition, according to Proposition 6.2, there is a non-
local choice on Pi that can be represented as (u, x, y),
where x ∈ Ai for implied scenario wy. Finally, by
Definitions 6.1 and 4.1, y is sending of a message and
in alphabet AS . The forward direction is established.

For the converse direction, it is clear that an
implied scenarios wy can be constructed from the non
local choice where w|Ai = u. wy is a problematic
test scenario since wy /∈ pref(L(M)) and y ∈ AS .
Therefore, a non-local choice on a user process causes a
controllability problem.

The proposition states that only non-local choices
on user processes such that the tester observations

are consistent with the specification will cause
controllability problems. In addition, the condition
y ∈ AS means that the non-local choice should involve
a sending of a message. This proposition applies
with all notions of observability since Ai changes with
corresponding observability. In particular, we have the
following proposition with global observability.

Proposition 6.4. No non-local choice causes con-
trollability problems with global observability.

Proof. This follows from Proposition 6.3 and the
fact that all events are observable with global
observability.

6.3. Algorithm

We can now derive an algorithm to check whether a
test case is free of controllability problems of choice
and detect non-local choices that cause controllability
problems of choice. This algorithm is developed based
on the non-local choice detection algorithm in [31]. The
algorithm in [31] was an extension of the algorithm
for checking whether an MSC specification is safely
realisable [48]. After running the algorithm in [31],
a set of non-local choices N is found for the given
MSC specification M. Algorithm 3 checks the set of
non-local choice based on Proposition 6.3. The input
of Algorithm 3 is M. The output is the set of non-
local choices which lead to controllability problems of
choice in the test case generated with a given type of
observability. The test case T of MSC specification M
is free of controllability problems of choice if the output
is empty.

Given an MSC specification M = {Mi : 0 < i ≤ k}
with k MSCs, a non-local choice (w, x, y) on Pj is
actually formed by two member MSCs Ms and Mt

where 0 < s < t ≤ k. w is the common prefix on Pj

of Ms and Mt. After w, x and y describe two possible
behaviours according to the process language L(M)|Ai.
At line 4 of the algorithm, two partial MSCs M ′s and
M ′t are recovered from x and y. M ′s contains all events
visually before x in Ms and M ′t contains all events
visually before y in Mt. Let Ed be the set of events in
Ms but not in Mt, we thus can decide whether the non-
local choice causes controllability problems by checking
whether there is an event in Ed that is observable
according to the corresponding observability. If an
event in Ed is observable, then the non-local choice does
not cause a controllability problem.

We have following proposition to state the computa-
tional complexity of Algorithm 3.

Proposition 6.5. Given an MSC specification with r
events, k processes, l MSCs, each with at most n events
and containing q non-local choices, the computational
complexity of Algorithm 3 is O(l2k + rk + qn).

Proof. We know that it is possible to detect the non-
local choices in an MSC specification with l MSCs, k

The Computer Journal, Vol. ??, No. ??, ????

14 Haitao Dan and Robert M. Hierons

Input: M
Output: N ′ /*non-local choices that

lead to controllability problems.*/

Initialise N ′1

N = detectNonLocalChoice() /*N is the2

set of non-local choices found

using the algorithm in [31] */

forall (w, x, y) ∈ N with y ∈ AS do3

Compute partial MSCs M ′s and M ′t4

leadToCP = true;5

forall e ∈ Ed /* Ed is the set of6

events that appear in M ′t but

not in M ′s */

do7

if e is observable then8

leadToCP = false9

end10

end11

if leadToCP = true then12

/*Insert the non-local choice

causing controllability

problems into N ′ */

insert ((w, x, y), N ′)13

end14

end15

Algorithm 3: Justify whether non-local choices
cause controllability problems

processes and r events in time O(l2k + rk) [48, 31].
The computational complexity of Algorithm 3 depends
on the number of events in Ed. We know that the
upper bound of the number is n. In addition, from
an event such as x, the corresponding M ′s can be
computed in time linear in the number of events in
Ms. The upper bound of the number is also n. The
computational complexity of the loop in Algorithm 3 is
thus O(qn) when the number of non-local choice in N
is q. Therefore, the overall computational complexity
of detecting non-local choices that cause controllability
problems is O(l2k + rk + qn)

7. OVERCOMING CONTROLLABILITY
PROBLEMS

In practice, different techniques proposed in the
literature can be used to overcome controllability
problems that occur in MSC-based testing, for example,
monitoring systems [49], status messages [51] and a
coordination service [46]. In this section, we propose
to use both status messages and a coordination service
to tackle the controllability problems in MSC-based
testing.

The coordination service collects the status informa-
tion from all testers and, if possible, also from system
processes. The coordination service thus can provide di-
rection to testers when they come across controllability
problems.

Coordination service CS can be implemented as a
component on one of the testers. This makes the tester
a coordination tester. CS receives status updates from
each process after the changes of status of each tester or
system process. Status updates can be implemented as
status messages. Status messages are sent to CS from
testers and SUT processes after every communication
event happens. In this way, CS can build an overview
of the current test scenario. However, some additional
routines need to be developed to help overcoming
controllability problems.

7.1. Avoiding controllability problems of tim-
ing

According to Propositions 5.2 and Proposition 5.3,
controllability problems of timing may be avoided if
enforced orders can be introduced between specific
pairs of observable events in the MSC specification.
More specific, let us suppose that race [e, f] causes a
controllability problem, if we can introduce an enforced
order between event x which is enforced after e but
not visually after msg−1(f) (the sending of a message
from a tester leading to the receive event f), the
controllability problem can be overcome.

If CS receives status messages only from testers,
a given pair of events, x and msg−1(f), are on two
different testers, Ti and Tj , respectively. The enforced
order between the two events can be achieved as
follows. The tester Tj , which will send event msg−1(f),
waits until it receives permission from CS; CS sends
permission once it has received the update that event
x has happened on the other tester Ti. The correctness
of using CS to overcome avoidable controllability
problems of timing is stated in Proposition 7.1. We note
that the proofs of correctnesses of overcoming other
controllability problems are similar.

Proposition 7.1. Let us suppose that M is an
MSC specification and test case T for M has set C
of controllability problems of timing. Controllability
problems of M can be avoided by using a coordination
service CS which receives update messages and sends
coordination messages from testers.

Proof. Given MSC specificationM and its test case T ,
to prove that controllability problems of timing can be
avoided by coordination service CS, we consider CS as
an additional user process. A new MSC specification
M′ including process CS is thus formed from M. We
then prove the test case T ′ of M′ formed considering
CS as a tester contains no avoidable controllability
problem of timing. We prove the proposition in two
steps. First we show that no new controllability
problems of timing will be introduced in T ′. Second,
existing races that causes controllability problems of
timing in T have been removed.

For the first step, messages between CS and other
user processes will not introduce any event on system

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 15

processes of M′. In addition, the introduction of CS
adds events into the partial order of member MSCs
of M′, so no enforced order in member MSCs of M
is reduced. Therefore, no race on system processes is
added. Therefore, no new controllability problems of
timing will be introduced in T ′.

For the second step, let c be any controllability
problem in C which is caused by a race [e, f] on a
system process. Let x be the observable event where
e �∗ x ∧msg−1(f) 6<∗ x on tester Ti and msg−1(f)
is on Tj since c is avoidable. Let Ti send update mx

to CS after x happens and CS sends a coordination
message mf to Tj after it receives mx. We thus have
x �!mx, !mx �?mx, ?mx �!mf , !mf �?mf and
?mf � msg−1(f). Consequently, e � f and the pair
of events no longer forms a race in M′. Therefore, e
and f do not form a controllability problem of timing
in T ′ and the second step is established.

If CS also receives status messages from system
processes, x can be e in the problematic race [e, f]. In
this case, CS sends permission to the tester which sends
event msg−1(f) once it receives the update that e has
happened.

In the routine described above, the premise is that
testers and CS know the pairs of x and msg−1(f).
This can be achieved by running a variant of Algorithm
2 which calculates the problematic races [e, f]. The
only modification is that x and msg−1(f) are output
after line 12 and this modification does not change the
complexity of the original algorithm.

7.2. Overcoming controllability problems of
choice with better observability

The number of controllability problems of choices can
be reduced if testers have better observabilities as
explained in Section 6. According to Propositions 6.3
and 6.4, it is clear that there are most controllability
problems with local observability, some controllability
problems with local observability do not happen with
tester observability and there are no controllability
problems if testers have global controllability. With the
help of CS, we can achieve a similar effect on reducing
controllability problems of choice as all testers have
tester observability or global observability.

Let us suppose that (u, x, y) is a non-local choice on
Pi that causes a controllability problem of choice with
local observability. (u, x, y) is thus a choice on the tester
simulating Pi and y is a send event.

With CS receiving status messages from all testers,
the tester simulating Pi can overcome the controllability
problems as follows. When the tester comes across non-
local choice (u, x, y) and it considers sending message,
y, which may lead to a problematic test scenario, the
tester is required to send a request to CS before it
sends y. Once CS receives such a request, it checks
whether y will lead to a problematic test scenario

by constructing wy where w is the word representing
the current running test scenario. w is maintained
by CS based on previous status messages. With
the assumption that an MSC specification contains a
finite set of MSCs, checking whether wy represents a
problematic test scenario can be solved in time that is
linear in the number of events in wy. Having checked
whether the sending of y will lead to a problematic
scenario, CS responds to the request from the tester.

If all system processes send status messages to
CS, testers can overcome all controllability problems
under local observability. Once CS receives a request
regarding a problematic non-local choice, CS checks
whether it leads to an implied scenario according to
the specification.

This solution is based on all non-local choices under
local observability being known by testers, so that
they can send coordination requests to CS. For
an MSC specification with a finite number of MSCs,
problematic non-local choices under local observability
can be efficiently calculated using Algorithm 3.

8. DISCUSSION

In discussing controllability problems in previous sec-
tions, we assumed that communications are asyn-
chronous and non-FIFO. In fact, it is not difficult to
extend the corresponding results to other types of com-
munication if corresponding races and non-local choices
are detectable.

Let us consider the controllability problems with
FIFO communications as an example. Obviously,
it is reasonable to assume that the communications
described in the MSC specifications do not violate FIFO
rule. Some of the Type 1 problematic test scenarios
which may happen with the non-FIFO communication
do not happen with the FIFO communication. This is
because the FIFO rule introduces additional enforced
order pairs among MSC events and these additional
orders may reduce races in MSC specifications.
Formally, with the FIFO communication, enforced
order of an MSC can be defined as follows.

Definition 8.1. (Enforced Order with FIFO)
Given an MSC M with set E of events, the transitive
closure of the relation, � =̇ {(x, y) ∈< : y =
msg(x) ∨ (y ∈ S ∧ p(x) = p(y))} ∪ {(x, y) : x, y ∈ E ∧
msg−1(x) < msg−1(y) ∧ p(x) = p(y) ∧ p(msg−1(x)) =
p(msg−1(y))}, is the enforced order of M with the FIFO
communication.

Example (FIFO communication) M2 in Figure 4
does not cause Type 1 problematic test scenarios. With
the modified enforced order, events ?m1 and ?m3 in M2
of Figure 4 do not form a race since m1 always arrives
at P1 before m3 with the FIFO communication.

Races in an MSC specification may change when the
nature of communication changes to FIFO, but this

The Computer Journal, Vol. ??, No. ??, ????

16 Haitao Dan and Robert M. Hierons

does not invalid Proposition 5.1 since the proposition
is based on detected races. In addition, Algorithms 1
and 2 are also applicable. This is because the change of
communication only affects function detectOrininalRace
and the enforced order referred to by the algorithms.

For the controllability problems of choice, we notice
that implied scenarios may violate the FIFO rule.

Example (Implied scenarios violating FIFO
communication) Consider MSC specification M3
given in Figure 6, the implied scenario M3 violates the
FIFO rule.

However, the type of non-local choices as shown
in the example do not lead to Type 2 problematic
test scenarios according to Definition 4.1 in which
it is required that the problematic option should
be a positive behaviour. Actually, we can show
that Proposition 6.3 and Algorithm 3 apply to the
FIFO communication. Let us suppose that non-local
choice (u, x, y) of MSC specification M causes Type
2 problematic test scenarios. y ∈ AS and a word w
can be found such that wx ∈ pref(L(M)) but wy /∈
pref(L(M)). Obviously, u does not violate the FIFO
rule because it is a prefix of an MSC that satisfies the
FIFO assumption. It is clear that uy does not form
a scenario that violates the FIFO rule since y is a
send label. Therefore, non-local choice (u, x, y) with
y ∈ AS causes Type 2 problematic test scenarios with
the FIFO communication. Proposition 6.3 applies to
the FIFO communication. Consequently, Algorithm
3 is applicable for checking whether non-local choices
in MSC specifications cause controllability problems of
choice with the FIFO communication.

9. CONCLUSIONS

This paper investigated controllability problems that
might happen when testing distributed system based
on MSC specifications. The analysis was based on an
MSC conformance testing architecture in which there
are multiple testers and system processes. In addition,
three different types of observability (local, tester and
global) were considered. The results could be used
when analysing an MSC specification of the SUT, where
we wish to test based on the entire specification, or
when considering test cases defined using MSCs. Both
situations are highly relevant since MSCs (and SDs)
are widely used to model distributed systems but also
to describe test cases.

We showed that there are only two types of
controllability problems: controllability problems of
timing and controllability problems of choice. We
showed that one important type of pathology of MSC,
race, causes controllability problems of timing and
another type of pathology, non-local choice, causes
controllability problems of choice. Moreover, not
all races and non-local choices lead to controllability
problems. In addition, some controllability problems

of timing with local observability can be avoided with
tester observability and all controllability problems
of timing can be avoided if testers have global
observability. For controllability problems of choice, we
showed that some non-local choices cause problems with
local observability but not with tester observability;
if testers have global observability, there are no
controllability problems of choice in MSC test cases.

With the given relationships between MSC patholo-
gies and controllability problems, algorithms were de-
rived to capture controllability problems of timing and
choice. We introduced Algorithm 1 to find races that
cause controllability problems of timing based on the
race detection algorithm in [4]. The result of Algorithm
1 is then input to Algorithm 2 to determine whether
the detected controllability problems of timing can be
avoided with better observability. The algorithm for
controllability problems of choice was derived from two
algorithms: one checks the safe realisability of an MSC
specification with a finite number of MSCs [48] and the
other detects all non-local choices in such an MSC spec-
ification [31]. We showed that all of the algorithms had
polynomial time complexity. This means that the con-
trollability problems of test cases of MSC specifications
with a finite member MSCs can be efficient resolved.

In practice, controllability problems can be overcome
by different techniques. We showed that a coordination
service with status messages could be used to alleviate
the controllability problems in testing with MSCs. In
the proposed approach, races and non-local choices
that lead to controllability problems were calculated
before the testing process and this can be achieved
by applying the algorithms provided in this paper.
With the knowledge of the existing controllability
problems, coordination messages between testers and
a coordination service were transmitted in run-time to
coordinate the behaviour of testers.

We note that the algorithms apply to MSC
specifications with a finite number of MSCs. With more
complex MSC specifications such as high-level MSCs
(HMSCs) which may have an infinite number of MSCs,
the algorithms may need further improvements. It has
been shown that detecting races and non-local choices
in complex MSC specification are EXSPACE-hard
problems [28, 52]. We might solve the controllability
problems of MSCs in complex MSCs by adding
restrictions. For example, restricting the number of
unfoldings of the loops in HMSCs specifications. In
addition, Interaction Diagrams (IDs) of UML 2.0 have
become a popular modelling language in the software
industry. It would be worth extending current work
to IDs. However, it has been shown that there are
significant differences between IDs and MSCs [53, 54].
Finally, an MSC-based testing tool which implements
algorithms and coordination services proposed in this
paper would have been a nice contribution.

The Computer Journal, Vol. ??, No. ??, ????

Controllability Problems in MSC-based Testing 17

ACKNOWLEDGEMENTS

This research was partially supported by the UK
EPSRC project EP/G04354X/1, The Birth, Life and
Death of Semantic Mutants.

REFERENCES

[1] ITU-T (2004). ITU-T Recommendation Z.120 Message
Sequence Chart.

[2] Mauw, S., Reniers, M., and Willemse, T. (2001)
Message Sequence Charts in the software engineering
process. Handbook of Software Engineering and
Knowledge Engineering, 1, 437–464, World Scientific
Publishing.

[3] Haugen, Ø. (2001) MSC-2000 interaction diagrams for
the new millennium. Computer Networks, 35, 721–732.

[4] Alur, R., Holzmann, G., and Peled, D. (1996) An
analyzer for message sequence charts. Software
Concepts and Tools, 17, 70–77.

[5] Muscholl, A., Peled, D., and Su, Z. (1998) Deciding
properties for message sequence charts. Proceedings of
the 1st Conference on Foundations of Software Science
and Computation Structures, Lisbon, Portugal, pp.
226–242, Springer-Verlag, London.

[6] Hierons, R. M. and et al. (2009) Using formal
specifications to support testing. ACM Computing
Surveys, 41, 1–76.

[7] Ural, H. and Yang, B. (1991) A test sequence selection
method for protocol testing. IEEE Transactions on
Communications, 39, 514 –523.

[8] Dalal, S., Jain, A., Karunanithi, N., Leaton, J.,
Lott, C., Patton, G., and Horowitz, B. (1999) Model-
based testing in practice. Proceedings of the 21st
International Conference on Software Engineering, Los
Angeles, CA, USA, pp. 285–294, IEEE Computer
Society.

[9] Offutt, J., Liu, S., Abdurazik, A., and Ammann,
P. (2003) Generating test data from state-based
specifications. Software Testing, Verification and
Reliability, 13, 25–53.

[10] Tretmans, G. and Brinksma, H. (2003) Torx:
Automated model-based testing. Preceedings of the
first european conference on Model-Driven Software
Engineering, Nuremberg, Germany, pp. 31–43.

[11] Petrenko, A., Boroday, S., and Groz, R. (2004)
Confirming configurations in EFSM testing. IEEE
Transactions on Software Engineering, 30, 29–42.

[12] Muccini, H., Inverardi, P., and Bertolino, A. (2004)
Using software architecture for code testing. IEEE
Transactions on Software Engineering, 30, 160 – 171.

[13] Pretschner, A., Prenninger, W., Wagner, S., Kühnel,
C., Baumgartner, M., Sostawa, B., Zölch, R., and
Stauner, T. (2005) One evaluation of model-based
testing and its automation. Proceedings of the 27th
International Conference on Software Engineering,
New York, NY, USA, pp. 392–401, IEEE Computer
Scoiety.

[14] Campbell, C., Grieskamp, W., Nachmanson, L.,
Schulte, W., Tillmann, N., and Veanes, M. (2005)
Model-based testing of object-oriented reactive systems
with spec explorer. Technical Report MSR-TR-2005-59.

[15] Shousha, M., Briand, L., and Labiche, Y. (2010) A
UML/MARTE model analysis method for uncovering
scenarios leading to starvation and deadlocks in
concurrent systems. IEEE Transactions on Software
Engineering, Preprint, 1–54.

[16] Grieskamp, W., Kicillof, N., Stobie, K. and Braberman,
V. (2011) Model-based quality assurance of protocol
documentation: tools and methodology. The Journal
of Software Testing, Verification and Reliability, 21,
55–71.

[17] Baker, P., Bristow, P., Jervis, C., King, D., and
Mitchell, B. (2003) Automatic generation of confor-
mance tests from message sequence charts. Telecom-
munications and beyond: The Broader Applicability of
SDL and MSC, Lecture Notes in Computer Science,
2599, pp. 170–98. Springer-Verlag.

[18] Chung, I. S., Kim, H. S., Bae, H. S., Kwon, Y. R.,
and Lee, B. S. (1999) Testing of concurrent programs
based on message sequence charts. Proceedings of the
3rd International Symposium on Software Engineering
for Parallel and Distributed Systems, Los Alamitos, CA,
USA 72–82, IEEE Computer Scoiety.

[19] Koch, B., Grabowski, J., Hogrefe, D., and Schmitt, M.
(1999) Autolink – a tool for automatic test generation
from SDL specifications. Proceedings of the 2nd IEEE
Workshop on Industrial Strength Formal Specification
Techniques, Boca Raton, FL, USA, 10, pp. 114–25,
IEEE Computer Scoiety.

[20] Grabowski, J., Hogrefe, D., and Nahm, R. (1993)
Test case generation with test purpose specification by
MSCs. Proceedings of the 6th SDL Forum, Darmstadt,
Germany, pp. 253–65.

[21] Boroday, S., Petrenko, A., and Ulrich, A. (2009)
Implementing MSC tests with quiescence observation.
Proceedings of the 21st International Conference on
Testing of Software and Communication Systems
and 9th International FATES Workshop, Berlin,
Heidelberg, pp. 49–65, Springer Berlin, Heidelberg.

[22] Lee, D. and Yannakakis, M. (1996) Principles and
methods of testing finite state machines - a survey.
Proceedings of the IEEE, 84, 1090–1123.

[23] Petrenko, A. (2001) Fault model-driven test derivation
from finite state models: Annotated bibliography.
Modeling and Verification of Parallel Processes, Lecture
Notes in Computer Science, 2067, pp. 196–205.
Springer Berlin, Heidelberg.

[24] Brinksma, H. and Tretmans, G. (2001) Testing
transition systems: An annotated bibliography.
Modeling and Verification of Parallel Processes, Lecture
Notes in Computer Science, 2067, pp. 187–195.
Springer Berlin, Heidelberg.

[25] Tretmans, G. (2008) Model based testing with labelled
transition systems. In Hierons, R. M., Bowen, J. P.,
and Harman, M. (eds.), Formal Methods and Testing,
Lecture Notes in Computer Science, 4949, pp. 1–38.
Springer.

[26] Hélouët, L. (2001) Some pathological message sequence
charts, and how to detect them. Proceedings of the 10th
International SDL Forum, Copenhagen, Denmark, 1,
pp. 348–364.

[27] Mitchell, B. (2005) Resolving race conditions in asyn-
chronous partial order scenarios. IEEE Transactions
on Software Engineering, 31, 767–784.

The Computer Journal, Vol. ??, No. ??, ????

18 Haitao Dan and Robert M. Hierons

[28] Muscholl, A. and Peled, D. (1999) Message sequence
graphs and decision problems on Mazurkiewicz traces.
Proceedings of the 24th International Symposium
on Mathematical Foundations of Computer Science,
London, UK, pp. 81–91, Springer Berlin, Heidelberg.

[29] Ben-Abdallah, H. and Leue, S. (1997) Syntactic
detection of process divergence and non-local choice
in message sequence charts. Proceedings of the 13th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Enschede,
Netherlands, pp. 259–274, Springer Berlin, Heidelberg.

[30] Uchitel, S., Kramer, J., and Magee, J. (2004) Incre-
mental elaboration of scenario-based specifications and
behavior models using implied scenarios. ACM Trans-
actions on Software Engineering and Methodology, 13,
37–85.

[31] Dan, H., Hierons, R. M., and Counsell, S. (2010) Non-
local choices and implied scenarios. Proceedings of the
8th International Conference on Software Engineering
and Formal Methods, Pisa, Italy, pp. 53–62, IEEE
Computer Scoiety.

[32] Dan, H., Hierons, R. M., and Counsell, S. (2011)
A Framework for Pathologies of Message Sequence
Charts. submitted, N/A.

[33] Dan, H. and Hierons, R. M. (2011) Conformance
testing from Message Sequence Charts. Proceedings of
the 4th International Conference on Software Testing,
Verification and Validation, Berlin, Germany, pp. 279–
288, IEEE Computer Scoiety.

[34] Cacciari, L. and Rafiq, O. (1999) Controllability and
observability in distributed testing. Information and
Software Technology, 41, 767–780.

[35] Chen, W. and Ural, H. (1995) Synchronizable
checking sequences based on multiple UIO sequences.
IEEE/ACM Transactions on Networking, 3, 152–157.

[36] Dssouli, R. and von Bochmann, G. (1985) Error
detection with multiple observers. Proceedings of
the IFIP WG6.1 Fifth International Conference on
Protocol Specification, Testing and Verification V,
Toulouse-Moissac, France, pp. 483–494, North-Holland,
Amsterdam, The Netherlands.

[37] Dssouli, R. and von Bochmann, G. (1986) Conformance
testing with multiple observers. Proceedings of the IFIP
WG6.1 Sixth International Conference on Protocol
Specification, Testing and Verification VI, Montreal,
Canada, pp. 217–229, North-Holland, Amsterdam, The
Netherlands.

[38] Haar, S., Jard, C., and Jourdan, G.-V. (2007) Testing
input/output partial order automata. Proceedings
of the 19th International Conference on Testing of
Communicating Systems, Tallinn, Estonia, pp. 171–
185, Springer Berlin, Heidelberg.

[39] Hierons, R. M. and Ural, H. (2008) The effect of the
distributed test architecture on the power of testing.
The Computer Journal, 51, 497–510.

[40] Hierons, R. M., Merayo, M. G., and Núñez, M.
(2008) Implementation relations for the distributed test
architecture. Proceedings of the 20th International
Conference on Testing of Software and Communicating
Systems, Tokyo, Japan, pp. 200–215, Springer-Verlag
Berlin, Heidelberg.

[41] Sarikaya, B. and v. Bochmann, G. (1984) Synchroniza-
tion and specification issues in protocol testing. IEEE
Transactions on Communications, 32, 389–395.

[42] Boyd, S. and Ural, H. (1991) The synchronization
problem in protocol testing and its complexity.
Information Processing Letters, 40, 131–136.

[43] Ural, H. and Williams, C. (2006) Constructing checking
sequences for distributed testing. Formal Aspects of
Computing, 18, 84–101.

[44] Khoumsi, A. (2002) A temporal approach for testing
distributed systems. IEEE Transactions on Software
Engineering, 28, 1085–1103.

[45] Hierons, R. M. Controllable testing from nondetermin-
istic finite state machines with multiple ports. IEEE
Transactions on Computers, to appear.

[46] Jard, C., Jéron, T., Kahlouche, H., and Viho, C.
(1998) Towards automatic distribution of testers for
distributed conformance testing. Proceedings of IFIP
TC6 WG6.1 Joint International Conference on Formal
Description Techniques and Protocol Specification,
Testing and Verification, pp. 353–368. Kluwer.

[47] Ladkin, P. B. and Leue, S. (1994) Four issues
concerning the semantics of Message Flow Graphs.
Proceedings of the 7th International Conference on
Formal Description Techniques, Berne, Switzerland,
pp. 355–369, Chapman & Hall, Ltd. London, UK.

[48] Alur, R., Etessami, K., and Yannakakis, M. (2003)
Inference of message sequence charts. IEEE
Transactions on Software Engineering, 29, 623–633.

[49] Zulkernine, M. and Seviora, R. E. (2002) A
compositional approach to monitoring distributed
systems. Proceedings of International Conference
on Dependable Systems and Networks, Bethesda,
Maryland, USA, pp. 763–772, IEEE Computer Scoiety.

[50] Baker, P., Bristow, P., Jervis, C., King, D., Thomson,
R., Mitchell, B., and Burton, S. (2005) Detecting
and resolving semantic pathologies in UML sequence
diagrams. Proceedings of the 10th European Software
Engineering Conference held jointly with the 13th
International Symposium on Foundations of Software
Engineering, Lisbon, Portugal, pp. 50–59, ACM New
York, NY, USA.

[51] Hierons, R. M. (2009) Using status messages in the
distributed test architecture. Information & Software
Technology, 51, 1123–1130.

[52] Alur, R., Etessami, K., and Yannakakis, M. (2005) Re-
alizability and verification of MSC graphs. Theoretical
Computer Science, 331, 97–114.

[53] Dan, H., Hierons, R. M., and Counsell, S. (2007)
Thread-based analysis of Sequence Diagrams. Pro-
ceedings of the 27th International Conference on For-
mal Methods for Networked and Distributed Systems,
Tallinn, Estonia, pp. 19–34, Springer Berlin, Heidel-
berg.

[54] Dan, H., Hierons, R. M., and Counsell, S. (2007)
A Thread-tag based semantics for Sequence Diagram.
Proceedings of the 5th International Conference on
Software Engineering and Formal Methods, London,
UK, pp. 173–182, IEEE Computer Scoiety.

The Computer Journal, Vol. ??, No. ??, ????

