
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 1 

Bio-precipitation of uranium by two bacterial isolates recovered from extreme 1 

environments as estimated by potentiometric titration, TEM and X-ray absorption 2 

spectroscopic analyses 3 

 4 

Mohamed L. Merroun
a,b

*, Marta Nedelkova
a#

, Jesus J. Ojeda
c,d

,
 
Thomas Reitz

a§
, 5 

Margarita López Fernández
b
, José M. Arias

b
, María Romero-González

c, Sonja 6 

Selenska-Pobell
a 7 

aInstitute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden, Germany 8 

bDepartamento de Microbiología, Universidad de Granada, Campus Fuentenueva s/n 18071, 9 

Granada Spain 10 

c Cell-Mineral Interface Research Programme, Kroto Research Institute, University of 11 

Sheffield, Broad Lane, Sheffield, S3 7HQ, UK 12 

d Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK 13 

 14 

Present address:  15 

# Biotechnologisches Zentrum, Technical University of Dresden, Dresden, Germany  16 

§ Department of Soil Ecology, Helmholtz Centre for Environmental Research � UFZ, 17 

Theodor-Lieser Strasse 4,  06120 Halle, Germany 18 

 19 

 20 

*Corresponding author at: Tel: + 34 958 249331, fax: + 34 958 249486 21 

E-mail adress: merroun@ugr.es (M.L. Merroun)  22 

 23 

 24 

 25 

26 

*Revised Manuscript

Click here to view linked References



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 2 

ABSTRACT 1 

This work describes the mechanisms of uranium biomineralization at acidic conditions by 2 

Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme 3 

environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4 

4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray 5 

absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated 6 

uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-7 

autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific 8 

localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) 9 

precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) 10 

precipitates were observed both on the cell surface and intracellularly. The observed U(VI) 11 

biomineralization was associated with the activity of indigenous acid phosphatase detected at 12 

these pH values in the absence of an organic phosphate substrate. The biomineralization of 13 

uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate 14 

ligands from the cells. This study increases the number of bacterial strains that have been 15 

demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid 16 

phosphatase.  17 

 18 

Keywords: Uranium biomineralization; potentiometric titration; XAS; TEM/EDX; acid 19 

phosphatase 20 
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 3 

1.  Introduction 1 

 2 

Uranium is a long-lived, naturally occurring radionuclide that is an ecological contaminant 3 

and a human health hazard. The main sources of U pollution include mining activities, 4 

manufacture of nuclear weapons, nuclear energy production, and storage of radioactive wastes 5 

[1]. In Eastern Germany, the majority of U mining activities were concentrated in Saxony and 6 

Thuringia and produced 220.000 metric tons of U starting from 1946 until 1991[2]. These 7 

operations ended due to financial and political causes resulting in the accumulation of 8 

abandoned contaminated mine works with a subsurface void volume greater than 108 m3. In 9 

addition, 5 x 108 tons of radioactive mining waste was spread over 3000 piles and 20 tailings 10 

in densely populated areas [2]. These U contaminated sites need a long-term stewardship in 11 

addition to remediation.  12 

The microbial based remediation of environmental metal pollution offers an efficient and 13 

cheap alternative to the commonly used physicochemical approaches, such as chemical 14 

precipitation and osmosis [3]. The most developed microbial remediation techniques are 15 

biosorption and biomineralization. Biosorption is constrained by the bioavailability of metal-16 

binding sites [4], however biomineralization mechanisms are less limited. Hence, 17 

biomineralization continues to be one of the more promising technologies for metal removal 18 

from highly diluted solutions.   19 

The bacterial remediation of uranium in anoxic environments has been previously 20 

documented by work mainly focused on the enzymatic reduction of soluble, highly mobile 21 

U(VI) to a  less toxic, solid U(IV) oxide (uraninite) species [5-8]. Uraninite has low solubility 22 

and is very stable in reducing environments. However in oxidizing water, it readily dissolves 23 

to form aqueous uranyl complexes [9]. In contrast to anaerobic microbially-induced reductive 24 

precipitation, biomineralization takes place under aerobic conditions. Therefore, 25 

biomineralization is being considered as a potential remediation strategy for radionuclides in 26 
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 4 

oxygenated subsurface zones and contaminated ground water [10-12].  1 

Previous studies have described the use of indigenous and genetically introduced 2 

recombinant acidic phosphatases for the biomineralization of uranium and its removal from 3 

aqueous solutions as uranium phosphate mineral phases [13-15].  However, these studies used 4 

an exogenous organic phosphate substrate (e.g. glycerol 2-phosphate) to liberate the inorganic 5 

phosphate groups which are responsible for the precipitation of the radionuclide. To date, no 6 

study has been performed on the bioprecipitation of U by acid phosphatase from naturally 7 

occurring microbes in the absence of an external organic phosphate source. The novelty of 8 

this work resides in the fact that the bacterial strains used here are capable of releasing and 9 

hydrolyzing stored phosphorus as a consequence of increased cell wall permeability and 10 

indigenous acid phosphatase activity.  11 

In this study, we have used U LIII-edge X-ray absorption spectroscopy (XAS), TEM/EDX 12 

and potentiometric titration to examine the ability of these bacterial strains, isolated from 13 

extreme habitats, to bioprecipitate U(VI) from solution under acidic conditions. XAS was 14 

used as a suitable tool for the determination of the local coordination of radionuclides in 15 

biological systems and for fine atomic characterization of the precipitated amorphous U 16 

complexes [16-20]. 17 

 18 

2. Materials and methods 19 

 20 

2.1. Bacteria, isolation media and culture conditions 21 

 22 

The two bacterial strains used in this work were isolated from two different extreme 23 

habitats. The Sphingomonas sp. S15-S1 strain was isolated from a ground water sample; 24 

collected at a depth of 290 to 324 meters below the surface from the S15 monitoring well, 25 

located near the nuclear waste repository site Tomsk-7 in Siberia, Russia [21]. The B. 26 
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 5 

sphaericus JG-7B strain was isolated from acidic sediment (pH 4.5) of a uranium mining 1 

waste pile near the town of Johanngeorgenstadt, Germany [22]. Both strains were isolated 2 

using an enrichment culture. An oligotrophic R2A medium was used for the isolation of 3 

Sphingomonas sp. S15-S1 [23].  In the case of B. sphaericus JG-7B, a nutrient broth (NB) 4 

medium (8 g L-1, pH 7.0) was employed. Details of the molecular characterization for the 5 

isolated species, the acid phosphatase enzymatic assay and colorimetric determination of 6 

phosphates are presented in the supporting information. 7 

 8 

2.2. Potentiometric titration studies 9 

 10 

Potentiometric titrations were carried out to determine the characteristic functional groups 11 

present on the bacterial surfaces [24]. All titrations were performed using a Metrohm Titrino 12 

718 STAT automatic titrator (Metrohm, UK) at 25 °C. The temperature was kept constant and 13 

continuously monitored during the titration. The titrator was set to only add successive acid or 14 

base once a drift equal or less than 5 mV min-1 was achieved. 15 

An  amount of live bacteria equivalent to 0.05-0.1 g of dry biomass (washed four times 16 

with NaClO4) was suspended in a vessel with 25 mL of 0.05, 0.1 or 0.5 M NaClO4, and then  17 

purged with N2 for 1h to remove dissolved CO2. A positive N2 gas pressure was maintained 18 

during the titration. The suspension was titrated with 0.1 M HCl to pH 3.5 followed by 0.1 M 19 

NaOH to pH 10.0. To test the reversibility of the protonation-deprotonation behavior, the 20 

suspension was back-titrated with 0.1 M HCl from pH 10.0 to 3.5. The HCl and NaOH were 21 

previously calibrated against primary standards.  22 

To calculate the acidity constant (pKa) values and the corresponding total concentration of 23 

the binding sites for the two strains, Sphingomonas sp. S15-S1 and B. sphaericus JG-7B, data 24 

from five replicates of each titration curve were fitted using the program Protofit 2.1 [25]. 25 

Variations in the experimental results are reported as the average ± standard deviation. 26 
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 6 

2.3. Experimental procedure for XAS sample preparation  1 

 2 

Bacterial cells grown to the late-exponential phase were harvested by centrifugation at 3 

15.000 x g for 20 min at 4 °C and washed three times with 0.1 M NaClO4 to remove the 4 

interfering ingredients of the growth medium. The pellet was suspended in 10 mL of a 5 

previously filtered 0.5 mM UO2 (NO3)2 · 6 H2O solution prepared at three pH values (2.0, 3.0 6 

and 4.5). The samples were shaken for 48 h in an orbital shaker (Gallenkamp, London, UK) at 7 

200 rpm. The cells were harvested by centrifugation after being in contact with the uranium 8 

solution and washed with 0.1 M NaClO4. The cell pellets were powdered after being dried in a 9 

vacuum incubator at 30 °C for 24 h. Experimental details for the XAS measurements can be 10 

found in the supporting information. 11 

 12 

2.4. Sample Preparation for TEM/EDX Analyses  13 

 14 

Bacterial cells grown to the late-exponential phase were harvested by centrifugation at 15 

15.000 x g for 15 min at 4 °C and washed twice using 0.1 M NaClO4 to remove interferences 16 

from the growth medium. The pellet was then suspended in 10 mL UO2(NO3)2 solution (0.5 17 

mM, pH 2.0, 3.0 and 4.5) and incubated for 48 h. The metal-treated cells were harvested by 18 

centrifugation and washed with 0.1 M NaClO4 to remove any excess of uranium solution. The 19 

TEM sample preparation was carried out as described in Merroun et al. [17]. The samples 20 

were examined using a high-resolution Philips CM 200 transmission electron microscope at 21 

an acceleration voltage of 200 kV under standard operating conditions with the liquid nitrogen 22 

anti-contaminator in place. Energy-dispersive X-ray (EDX) analysis, which provides 23 

elemental information via the analysis of X-ray emissions caused by a high-energy electron 24 
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 7 

beam, was also performed at 200 kV using a spot size of 70 Å and a live counting time of 200 1 

s.  2 

 3 

3. Results 4 

 5 

3.1. Phylogenetic affiliation of the bacterial isolates 6 

 7 

The phylogenetic affiliation of the two bacterial isolates studied in this work, based on 8 

their 16S rRNA gene analysis, is shown in Fig. 1. The results indicated that the strain B. 9 

sphaericus JG-7B was affiliated with two other strains of B. sphaericus (JG-A12 and DSM28) 10 

with a 100% of 16S rRNA gene identity.  The strain JG-A12 was enriched from a soil sample 11 

of the same uranium mining waste pile (near Johanngeorgenstadt, Saxony, Germany) and was 12 

demonstrated to have an unusually high capability to bind U(VI) reversibly [17, 26]. The 13 

strain DSM28 is the type strain of B. sphaericus deposited at the German collection of 14 

microorganisms (DSMZ, Braunschweig, Germany). The 16S rRNA gene sequence of the 15 

isolate S15-S1 is related to S. yabuuchiae A1-18 isolated from the space laboratory Mir [27]. 16 

Direct molecular and cultivation dependent approaches have demonstrated that representatives 17 

of Bacillus and Sphingomonas strains, similar to those described here, were also found in 18 

extreme habitats including those contaminated with radionuclides and heavy metals. Strains of 19 

Bacillus species have been recovered from uranium contaminated sites with acidic pH values 20 

[26] and high concentrations of inorganic contaminants [16]. Representatives of 21 

Sphingomonas have also been identified as major components of biofilm populations formed 22 

in naturally nickel-rich river water [28]. These bacteria lack special growth requirements and 23 

grow easily in nutrient limited environments [29-30]. 24 

25 
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 8 

3.2. Potentiometric Titration studies  1 

 2 

The potentiometric titration curves of Sphingomonas sp. S15-S1 and B. sphaericus JG-7B 3 

are presented in Figs. 2A and 2B. The concentration of deprotonated sites is standardized per 4 

mass of dry biomass (mol g-1) and calculated according to Fein et al. [31] as follows: 5 

[H+]consumed/released = (Ca  !Cb  ![H
+] + [OH ]) / mb 6 

 7 

where mb is the biomass concentration in the suspension (g L-1), Ca and Cb are the 8 

concentrations of acid and base added at each step of a titration, and [H+] and [OH-] represent 9 

molar species concentrations of H+ or OH-. In order to calculate the acidity constants and the 10 

total concentration of each binding site, the titration curve data was fitted using ProtoFit 2.1 11 

[24] using a Non-Electrostatic Model (NEM). 12 

The titrated bacterial suspensions exhibited a protonation-deprotonation behavior over the 13 

whole pH range studied (Figs. 2A and 2B). No evidence of saturation was found with respect 14 

to proton adsorption. This indicates that, even at pH 3.5, full protonation of the functional 15 

groups on the cell wall was not achieved. For all titration curves, the 16 

protonation/deprotonation process was reversible. 17 

Figs. 3A and 3B show a comparison of the titration data at different ionic strengths. An 18 

intersection point around pH 5.8 and 5.5 can be seen for Sphingomonas sp. S15-S1 and B. 19 

sphaericus JG-7B, respectively. These values were set as the experimental pH of zero proton 20 

charge (pHzpc), and are in agreement to the values predicted by ProtoFit 2.1 (see Table 1). 21 

There is an ionic strength effect over the pH range studied (Figs. 3A and 3B). However, these 22 

effects are weak when compared to the experimental errors associated with potentiometric 23 

titrations of bacteria [31-33]. 24 

Table 1 summarizes the pKa values for Sphingomonas sp. S15-S1 and B. sphaericus JG-25 

7B. The calculated values are 4.27 ± 0.45 and 4.37 ± 0.27 for pK1, 7.03 ± 0.86 and 6.37 ± 0.31 26 
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 9 

for pK2 and 9.92 ± 0.32 and 9.95 ± 0.16 for pK3, for Sphingomonas sp. S15-S1 and B. 1 

sphaericus JG-7B respectively. The obtained pKa values are representative of carboxylic 2 

groups for pK1, phosphate groups for pK2 and amine and hydroxyl groups for pK3 [34-36]. 3 

The surface site densities obtained using ProtoFit are also presented in Table 1. The pKa 4 

values for both bacterial strains are comparable indicating similar concentration of the active 5 

functional groups on the cell wall. However, the concentration corresponding to 6 

amine/hydroxyl groups (C3) is slightly higher for Sphingomonas sp. S15-S1.  7 

 8 

3.3. X-ray Absorption spectroscopy 9 

 10 

A visual comparison of the XANES fingerprints for the reference samples U(VI) and 11 

U(IV) indicated the presence of U(VI) in the six samples studied in this work (Figs. 4A and 12 

4B). The presence of U(VI) in the XANES spectra is evidenced by the display of a 13 

characteristic shoulder at 17.188 eV, which is consistent with the U(VI) oxidation state [37].  14 

 The uranium LIII-edge EXAFS spectra and their corresponding Fourier transforms (FT) 15 

for the uranium species formed at pH 2.0, 3.0 and 4.5 by the cells of Sphingomonas sp. S15-16 

S1  and B. sphaericus JG-7B are presented in Figs. 5A and 5B. The FT represents a pseudo-17 

radial distribution function of the uranium near-neighbor environment.  18 

The FT of the EXAFS spectra of the samples at pH 2.0, 3.0 and 4.5 show five to six 19 

significant peaks (Figs. 5A and B). Tables 2 and 3 show the quantitative fit results (distances 20 

are phase shift corrected). The adsorbed U(VI) observed has the common linear trans-dioxo 21 

structure: two axial oxygen atoms at a radial distance of 1.76 - 1.79 ± 0.02 Å, and an 22 

equatorial shell of 4 to 5 oxygen atoms at 2.27 - 2.36 ± 0.02 Å. As evident from the results 23 

presented in Tables 2 and 3, the coordination numbers, bond distances and Debye-Waller 24 

factors of the U-Oeq1 shell are affected by the pH of the uranium solution. A four-fold 25 

coordination of uranium to ligands of the bacterial cells (N ~ 4 and R= 2.27 ± 0.02 Å) was 26 
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 10 

observed on the EXAFS spectra of both bacterial strains at pH 4.5 and in that of the JG-7B at 1 

pH 3. The lower Debye-Waller factors obtained (0.0040-0.0046 Å2), indicated the absence of 2 

a disorder in U-Oeq1 distances contributing to the EXAFS signal. However, the higher Debye-3 

Waller factor of the EXAFS spectrum of S15-S1 at pH 3 (0.0132 Å2) indicated that there is 4 

probably a wide spread of U-Oeq1 distances with an average value of 2.32 ± 0.02 Å. The 5 

samples incubated at pH 2.0, showed the presence of a five-fold uranium coordination (N ~ 5 6 

and R= 2.34-2.36 ± 0.02 Å). The U-Oeq1 bond distance is within the range of previously 7 

reported values for phosphate bound to uranyl [16-21].  8 

Adding an oxygen shell at a distance of R = 2.82-2.87 ± 0.02 Å improved significantly the 9 

fit for all samples. The fitted distance between uranium and oxygen atoms is not related to 10 

direct bonding but has been previously interpreted as scattering contributions from 11 

neighboring ligand shells!known!as!�short!contacts�!in!crystallography![16,21]. 12 

The fifth FT peak observed at R+D ~ 3 Å (radial distance R = 3.59 - 3.62 Å), is the result 13 

of a back-scattering from phosphorus atoms. This distance is typical for a mono-dentate 14 

coordination of U(VI) by phosphate [16-21]. 15 

The EXAFS spectra of the U-treated bacterial cell samples at pH 4.5 and that of JG-7B 16 

treated at pH 3.0 are comparable to the spectra of meta-autunite. All spectra showed similar 17 

features and distances for U-Oeq, U-P and U-U. These findings suggest the precipitation of an 18 

inorganic m-autunite-like uranyl phosphate by the bacterial cells.  19 

The EXAFS spectra of the samples treated at pH 2.0 showed close similarities to that of 20 

organic phosphate ligands complexed with U such as fructose 1,6-phosphate (see Fig. 5) [38]. 21 

At pH 3, the EXAFS spectrum of S15-S1 may consist of both uranyl phases (organic and 22 

inorganic phosphates complexes). This suggestion is supported by the high Debye-Waller 23 

factor value of the U-Oeq1 bond distance (Table 3). 24 

 25 

26 
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 11 

3.4. Cellular localization of the bound U(VI) by TEM 1 

 2 

The TEM of B. sphaericus JG-7B cells exposed to U solution (0.5 mM, pH 4.5) (Fig. 6A) 3 

revealed the presence of electron-dense accumulations on the cell surface. There was no 4 

intracellular accumulation of U observed in these samples. The EDX spectrum derived from 5 

these deposits (Fig. 6B) indicated that their chemical composition was mainly oxygen (O), 6 

phosphorus (P), and uranium (U).  In the case of Sphingomonas sp. S15-S1, samples prepared 7 

at pH 2.0 showed very small amount of U bound to bacterial cell surfaces of both isolates 8 

(data not shown). Similarly to B sphaericus, the presence of U associated with intracellular 9 

space was not observed. At pH 3.0 and 4.5, Sphingomonas sp. S15-S1 cells accumulated U in 10 

the form of precipitates at the cell membrane and intracellular accumulation of U was also 11 

observed in the form of electron dense granules (Figs. 7A-E). EDX analysis of the 12 

intracellular and cell wall deposits of the thin sections of the Figs. 7A-B shown in Figs. 7F-G, 13 

respectively, indicated the presence of phosphorus and U.  14 

 15 

3.5. Acidic phosphatase activity and determination of inorganic phosphate  16 

 17 

The measured acidic phosphatase (APase) activity of JG-7B and S15-S1 cell suspension at 18 

pH 2.0, 3.0 and 4.5 are presented in Fig. 8. In addition, the APase activity was also calculated 19 

for heat-killed cells. 20 

The results indicate that the enzymatic activity is highly strain-specific. The cells of the 21 

strain S15-S1 showed activities 20 orders of magnitude higher than those of the strain JG-7B. 22 

In both cases, the phosphatase activity increases with increasing pH and reaches an optimum 23 

value at pH 4.5. Acidic phosphatase activity (within the experimental errors) was neither 24 

detected in the suspensions of heat-killed cells, nor in cells incubated in NaClO4 at pH 2.0 for 25 

both strains.  26 
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 12 

The concentration of orthophosphate in the supernatants of the cells of the two strains 1 

incubated for 48 h at pH 4.5 in 0.1 M NaClO4  (control sample) and in 0.5 mM uranium 2 

solution (U treated samples)  are shown in Fig. 9. As evident from this figure, the amount of 3 

the orthophosphate liberated by the control samples is two to three orders of magnitude higher 4 

than the samples containing U.  5 

 6 

4. Discussion  7 

 8 

In the present work, a complex methodological approach involving a combination of 9 

surface chemistry, transmission electron microscopy and advanced solid state speciation 10 

techniques were used to characterize uranium biomineralization mechanisms. Bacterial strains 11 

isolated from two different extreme environments were studied under acidic and aerobic 12 

conditions. The studied strains were: the Gram-positive strain B. sphaericus JG-7B, cultivated 13 

from a uranium mining waste sediment in Germany; and the Gram-negative 14 

Alphaproteobacterial strain Sphingomonas sp. S15-S1, recovered from ground water extracted 15 

from the S15 deep monitoring well of the Siberian radioactive waste subsurface depository 16 

Tomsk-7 in Russia. In these extreme environments, bacteria may interact efficiently with 17 

these inorganic contaminants through different mechanisms such as intracellular accumulation 18 

[16], precipitation [39,40] and biosorption at the cell surfaces [17].  19 

 20 

4.1. Potentiometric Titration studies 21 

 22 

Bacterial cell walls contain a variety of functional groups that provide metal binding sites, 23 

such as hydroxyl, phosphoryl, amino, and carboxylate groups. These functional groups can 24 

protonate or deprotonate when interacting with their immediate surroundings and as a result 25 

the cell walls develop a net pH-dependent charge [24,32,34,41-42]. Therefore, knowledge of 26 
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 13 

the cell surface properties is crucial to understand the interaction mechanisms between 1 

bacteria and surrounding metals. The concentration and characteristics of proton active 2 

carboxylic, hydroxyl, phosphate, phosphodiester, and amine groups on the cell surfaces play 3 

an important role in this respect, as they are responsible for surface binding ability [36]. The 4 

results of potentiometric titration experiments on the studied Sphingomonas sp. and B. 5 

sphaericus strains indicated that the cell surface groups capable for metal binding are sites 6 

involving carboxyl groups (pK < 4.27-4.37), sites involving phosphate groups (pK � 7), and 7 

sites involving hydroxyl and amine groups (pK > 8). These findings are in agreement with 8 

previous studies on bacterial surfaces [31, 42]. Haas et al. [42] showed that in the presence of 9 

U(VI), sorption is accounted for by using two separate adsorption reactions that form the 10 

surface complexes >COO�UO2
+ and >PO4H�UO2(OH)2. This mechanism indicates that 11 

phosphate and carboxyl groups are expected to be involved in the binding of this radionuclide. 12 

However, XAS studies demonstrated that for the investigated bacterial strains, phosphate 13 

groups are the main binding sites for uranium in the pH range studied. The extent of the 14 

carboxyl group involvement in the uranium binding is probably too insignificant to be 15 

detected by titration methods. 16 

 The titration studies also showed that the surface site density of B. sphaericus JG-7B is 17 

similar to those found for B. subtilis by Chatellier and Fortin [43], except for the lower value 18 

obtained for phosphate groups on B.  sphaericus. Cox et al. [44] reported that the presence of 19 

a thick peptidoglycan layer on Gram positive bacteria seems to be responsible for a higher 20 

binding capacity for metals. The Sphingomonas sp. and B. sphaericus JG-7B strains studied in 21 

this work showed site densities of the same order of magnitude, suggesting a similar potential 22 

capacity to bind metals.  23 

 24 

4.2. X-ray Absorption spectroscopy molecular scale analysis of U/bacteria complexes 25 

 26 
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The speciation of U associated with cells under the studied conditions is a pH dependent 1 

process. At pH 4.5, EXAFS analysis indicated that cells of the S15-S1 and JG-7B strains 2 

precipitated uranium as a meta-autunite mineral-like phase since the local coordination of U in 3 

these samples matches that of meta-autunite. In addition, evidence from the acidic 4 

phosphatase studies indicated the presence of phosphatase enzyme in the cell suspensions. 5 

These findings suggest a direct link on the precipitation of U by liberation of inorganic 6 

phosphates in solution. The amount of the orthophosphate in the supernatant of U treated 7 

samples of S15-S1 and JG-7B decreased by 2 to 3 orders of magnitude in comparison to that 8 

of the control sample, indicating that these ions are scavenged for the precipitation of U in 9 

solution.  The implication of acid phosphatase activity in the precipitation of U is supported 10 

by the fact that at pH 2 no enzymatic activity was detected and therefore uranium 11 

biomineralization did not occur. Several studies reported the role played by this enzyme in the 12 

liberation of inorganic phosphates that precipitate uranium [16,39,45,46]. Citrobacter sp. was 13 

shown to accumulate heavy deposits of uranyl phosphate at the cell surface after 14 

enzymatically liberating phosphate ligands via the activity of a phosphatase, resulting in 15 

biomineralization of NaUO2PO4 and/or HUO2PO4 [46]. Indigenous acidic phosphatase 16 

activity in naturally occurring strains of the genera Bacillus and Rahnella isolated from 17 

radionuclide- and metal-contaminated soils has been recently demonstrated to be involved in 18 

the precipitation of uranium [15]. This is due to the liberation of orthophosphate from the 19 

added glycerol-3-phosphate as a source of organic phosphates.  20 

In the present study, no organic phosphate sources were added to the metal-bacteria 21 

mixture. At this stage of investigation, the origin of the phosphates which precipitate U is still 22 

unknown. One possible source of organic phosphate is the lysis of dead cells. The presence of 23 

dead cells in the treated samples was demonstrated earlier in our previous study by using 24 

TEM [21]. In the same work we have shown also by using live/dead staining approach that 25 

the percentage of dead cells represents 40% of the cell population. In uranium contaminated 26 
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sites, dead cells of U-sensitive microbial populations will liberate significant quantities of 1 

biopolymers able to precipitate uranium after lysis [47-48]. These phosphorylated biological 2 

components could be used as substrates for acidic phosphatase activity, precipitating uranium. 3 

Similar results were found with microbial strains Myxococcus xanthus [39] and Sulfolobus 4 

acidiocaldarius [49] which precipitated uranium as an m-autunite-like phase due to the 5 

activity of indigenous acidic phosphatase expressed in uranium treated cell suspensions 6 

without an external organic phosphate source. The biomineralization of uranium by bacteria 7 

based on indigenous or introduced recombinant alkaline phosphatase has been proposed as 8 

appropriate technology for the treatment of alkaline waters containing uranium [50].  9 

At pH 3, the speciation of U associated with cells of the two strains is dominated by the 10 

uranium phosphate mineral phase. Uranium organic phosphate species were found on samples 11 

of JG-7B cells. In the case of strain S15-S, the uranium speciation is a mixture of U organic 12 

phosphate species and U inorganic phosphates mineral phases. The mixture of these two U 13 

phases is evidenced by the high Debye-Waller factor of the U-Oeq1 shell, estimated to be 14 

0.0132 Å2 by EXAFS spectroscopy. 15 

 16 

4.3. TEM cellular localization of U precipitates 17 

 18 

The presence of precipitated uranium at cell level is strain-specific and affected by the 19 

uranium solution pH as demonstrated by TEM analysis. B. sphaericus JG-7B cells 20 

precipitated uranium at the cell wall, which consists of peptidoglycan and S-layer protein. The 21 

latter envelope component may play a crucial role in the protection of the cells of this 22 

bacterium against uranium toxicity. These results are in agreement with those found for a 23 

different B. sphaericus strain, where the accumulated uranium was only localized at the cell 24 

envelope [16]. In the case of Sphingomonas sp., microscopic observations of cells exposed to 25 

uranium solution showed electron-dense precipitates at the cell envelope and in some cases 26 
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also within the cells. The intracellular accumulation occurs in two different forms, as electron 1 

dense granules and as needle-like fibrils. These findings reveal that Gram-negative and Gram�2 

positive bacteria accumulate uranium via different mechanisms. These differences could be 3 

explained by variations on the structural composition of their cell walls.  4 

 5 

4.4 Environmental implication of U biomineralization at acidic conditions 6 

 7 

The remediation of polluted sites by conventional methods, such as excavation and pump 8 

and treat, can be costly and disruptive. Therefore in situ remediation strategies, based on the 9 

stimulation of the growth of microbial strains with acid phosphatase activity such as the ones 10 

reported here (Sphingomonas sp. and Bacillus sp.), could be considered as a potential strategy 11 

for decontamination of such environments. The high acid phosphatase activity demonstrated 12 

for these strains makes them ideal candidates to use on bioremediation of uranium 13 

contaminated sites. The natural habitats of these bacteria are characterized by extremely 14 

complex biogeochemistry (low pH values, high concentrations of heavy metals) and high 15 

microbial diversity and activity. Despite these complexities, these bacterial strains are capable 16 

to produce inorganic phosphate species in sufficient quantities to remove at least 70% (and in 17 

some cases nearly 100%) of U(VI) from solution via phosphate-associated precipitates. These 18 

characteristics add extra features to the biomineralization process widening the possibilities of 19 

using this technique as a remediation route for radionuclides in the environment.  20 

 21 

5. Conclusions 22 

 23 

This study demonstrates that inorganic phosphate responsible for uranium 24 

biomineralization at pH 4.5 and 3 is liberated by the cells of Sphingomonas sp. and B. 25 

sphaericus strains, as a consequence of both increased cell wall permeability and the APase 26 
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activity of the strains. The impact of uranium precipitation at acidic and aerobic conditions by 1 

bacteria isolated from different extreme environments must be acknowledged in attempts to 2 

fully understand actinide cycling and dispersal in the environment. This work supports 3 

previous findings that uranium bioremediation could be achieved via the biomineralization of 4 

U(VI) in phosphate minerals as a complementary process to the more widely investigated 5 

U(VI) bioreduction.   6 
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FIGURES LEGEND 1 

Fig. 1. 16S rDNA based affiliation of the studied bacterial isolates (given in bold), recovered 2 

from extreme environments. 3 

Fig. 2. Potentiometric titration data for cell suspensions of Sphingomonas sp. S15-S1 (A) and 4 

B. sphaericus JG-7B (B) compared with the 0.1M NaClO4 electrolyte. Closed symbols 5 

correspond to the forward titration data and open symbols correspond to back titration. 6 

Fig. 3. Potentiometric titration data for cell suspensions of Sphingomonas sp. S15-S1 (A) and 7 

B. sphaericus JG-7B (B) at different electrolyte concentrations (0.05, 0.1 and 0.5M NaClO4). 8 

Fig. 4. Normalized uranium LIII-edge XANES spectra of 0.04 M U(IV) in 1 M HClO4, 0.04 M 9 

U(VI) in 1 M HClO4, U(VI)-treated cells of JG-7B and S15-S1 isolates at pH 2, 3 and 4.5. 10 

The spectra were normalized to equal intensity at 17230 eV. 11 

Fig. 5. Uranium LIII-edge k
3
�weighted EXAFS spectra (left) and the corresponding Fourier 12 

transforms (FT) (right) of uranium complexes formed by the cells of bacterial isolates at pH 13 

values 2, 3 (A) and 4.5 (B) and reference compounds (m-autunite and U-fructose(1,6) 14 

phosphate). 15 

Fig. 6. Transmission electron micrographs (A), coupled with Energy Dispersive X-ray 16 

spectrum (B), of a thin section of B. sphaericus JG-7B treated with uranium at pH 4.5. The 17 

metal accumulated is localized on the cell surface. 18 

Fig. 7. Transmission electron micrographs of thin sections of Sphingomonas sp. S15-S1 19 

treated with uranium at pH 4.5 (A, B) and 3 (C, D, E). Energy Dispersive X-ray spectra of 20 

intracellular (F) and cell wall (G) U precipitates showed by heads of B and D, respectively.  21 

Fig. 8. Acidic phosphatase activity of cells of Sphingomonas sp. S15-S1 and B. sphaericus 22 

JG-7B incubated in 0.1 M NaClO4 for 48 h at pH 2, 3 and 4.5, and that of heat killed cells.  23 

Fig.9. Concentrations of ortho-phosphates liberated in the supernatant by cells of 24 

Sphingomonas sp. S15-S1 and B. sphaericus JG-7B -incubated in 0.1 M NaClO4 (control 25 

sample) and -treated with 0.5 mM U at pH 4.5. 26 



Table 1: Deprotonation constants and surface site concentrations for Sphingomonas sp. 

S15-S1 and B. sphaericus JG-7B as calculated by ProtoFit 2.1 

 

 

 

pK1 pK2 pK3 

C1         

 (x10
-4

 

mol/g) 

C2         

 (x10
-4

 

mol/g) 

C3         

 (x10
-4

 

mol/g) 

pHzpc 

Sphingomonas sp. S15-
S1 

4.27±0.45 7.03±0.86 9.92±0.32 4.91±1.04 3.16±0.56 9.24±2.97 5.75±0.54 

B. sphaericus JG-7B 4.37±0.27 6.37±0.31 9.95±0.16 4.70±0.55 2.19±0.25 4.56±0.77 5.55±0.28 
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Table 2. Structural parameters of the uranium complexes formed by the bacterial 

isolates at pH 2 and 3 

 

 
a: Errors in coordination numbers are ±25%, and standard deviations, as estimated by 
EXAFSPAK are given in parentheses. 
b: errors in distance are ±0.02 Å. 
c: Debye-Waller factor. 
d: value fixed for calculation. 
 

 
Sample 

 
Shell Na R(Å)b 

 
s

2 (Å2)c  E (eV) 

 
JG-7B pH2  

 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 
 

 

2d 

4.4(4) 

0.8(2) 

2.6(4) 

5.2 
 

 

1.77 

2.36 

2.86 

3.62 

3.74 
 

 

0.0024 

0.0071 

0.0038d 

0.0027 

0.0027 

 

-12.40 

 
JG-7B pH 3 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 
U-U 

 

2d 

4.2(3) 

1.0(2) 

3.2(5) 

6.4 
3.2(6) 

 

1.79 

2.27 

2.87 

3.60 

3.72 
5.21 

 

0.0024 

0.0052 

0.0038d 

0.0040 

0.0040 

0.0080d 

-12.60 

 
S15-S1 pH 2 

 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 
 

2d 

4.8(5) 

0.8(2) 

1.5(3) 

3.0 
 

1.77 

2.34 

2.86 

3.60 

3.73 
 

0.0025 

0.0105 

0.0038d 

0.0010 

0.0010 

 

-13.40 

 
S15-S1 pH 3 

 
 
 
 
 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 
 

2d 

4.6(6) 

0.7(3) 

1.9(5) 

3.8 
 

1.76 

2.32 

2.82 

3.59 

3.72 
 

0.0040 

0.0132 

0.0038d 

0.0034 

0.0034 

 

-15.50 
 
 
 
 
 

 

Table(s)



Table 3. Structural parameters of the uranium complexes formed by the bacterial 

isolates at pH 4.5 

 

 
 
 
a: Errors in coordination numbers are ±25%, and standard deviations, as estimated by 
EXAFSPAK are given in parentheses. 
b: errors in distance are ± 0.02 Å. 
c: Debye-Waller factor. 
d: value fixed for calculation. 
 

 
Sample 

 
Shell Na R(Å)b 

 
s

2 (Å2)c  E (eV) 

 
 

S15-S1 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 

U-U 

 

2d 

4.0(3) 

0.8(1) 

1.8(2) 

3.6 

1.9(6) 

 

1.77 

2.27 

2.86 

3.59 

3.71 

5.19 

 

0.0021 

0.0082 

0.0038d 

0.0040d 

0.0040d 

0.0080d 

-13.54 

 
 

JG-7B 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 
U-U 

 

2d 

4.4(2) 

1.0(2) 

3.2(5) 

6.4 
2.4(6) 

 

1.79 

2.27 

2.85 

3.61 

3.72 
5.20 

 

0.0024 

0.0046 

0.0038d 

0.0050 

0.0050 

0.0080d 

-12.40 

 
Sample 

 
Shell Na R(Å)b 

 
s

2 (Å2)c  E (eV) 

 
 

S15-S1 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 

U-U 

 

2d 

4.0(3) 

0.8(1) 

1.8(2) 

3.6 

1.9(6) 

 

1.77 

2.27 

2.86 

3.59 

3.71 

5.19 

 

0.0021 

0.0082 

0.0038d 

0.0040d 

0.0040d 

0.0080d 

-13.54 

 
 

JG-7B 

U-Oax 

U-Oeq1 

U- Oeq2 

U-P 

U- Oeq1-P (MS) 
U-U 

 

2d 

4.4(2) 

1.0(2) 

3.2(5) 

6.4 
2.4(6) 

 

1.79 

2.27 

2.85 

3.61 

3.72 
5.20 

 

0.0024 

0.0046 

0.0038d 

0.0050 

0.0050 

0.0080d 

-12.40 
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