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Video summaries present the user with a condensed and succinct representation of the content of a video stream. 

Usually this is achieved by attaching degrees of importance to low-level image, audio and text features. 

However, video content elicits strong and measurable physiological responses in the user, which are potentially 
rich indicators of what video content is memorable to or emotionally engaging for an individual user. This paper 

proposes a technique which exploits such physiological responses to a given video stream by a given user to 

produce Entertainment-Led VIdeo Summaries (ELVIS). ELVIS is made up of five analysis phases which 
correspond to the analyses of five physiological response measures: electro-dermal response (EDR), heart rate 

(HR), blood volume pulse (BVP), respiration rate (RR), and respiration amplitude (RA). Through these 

analyses, the temporal locations of the most entertaining video sub-segments, as they occur within the video 
stream as a whole, are automatically identified. We also demonstrate how ELVIS can be integrated into video 

summary applications by presenting a media player that utilises ELVIS. The effectiveness of the ELVIS 

technique is verified through a statistical analysis of data collected during a set of user trials. Our analysis shows 
that ELVIS is significantly more effective than random selection in identifying the most entertaining video sub-

segments for content in the comedy, horror/comedy, and horror genres. 

 
Categories and Subject Descriptors: H.5.1 [Information Interfaces and Presentation]: Multimedia Information 

Systems – Video; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing – Abstracting 
Methods; H.1.2 [Models and Principles]: User/Machine Systems 

General Terms: Experimentation, Human Factors 

Additional Key Words and Phrases: video summarisation, video content, semantics, personalisation, 

physiological response, affect, emotion 

________________________________________________________________________ 
 

1. INTRODUCTION 

The amount of digital video that is available to us is growing on a daily basis. As a 

consequence, users need assistance in accessing this content more efficiently and 

effectively [Furini and Ghini 2006]. Video summarisation research responds to this need 

by developing video summarisation techniques that condense full length video streams 

through the identification and abstraction of the most entertaining content within those 

streams. The video summaries that arise are abbreviated surrogates of the original 

semantic content from the video [Barbieri et al. 2003], which can subsequently be 

integrated into a range of applications, such as interactive browsing and searching 

systems, thereby offering the user an indispensable means of managing and effectively 

accessing digital video content [Lew et al. 2006; Li et al. 2006].  

A number of video summarisation techniques have been presented in the research 

literature. Previously [Money and Agius 2008], we have surveyed the research literature 

and identified three types of techniques that can be used to generate video summaries: 

internal, external and hybrid video summarisation techniques. Figure 1 shows these 
 
Authors' addresses: Brunel University, School of Information Systems, Computing and Information Systems, St 

John’s, Uxbridge, UB8 3PH.   * denotes corresponding author 

Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee 
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, 

the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, 

Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific 
permission and/or a fee. 

© 2008 ACM 1073-0516/01/0300-0034 $5.00 



2 

 

 
Figure 1: Internal, external and hybrid summarisation techniques 

 

video summarisation techniques and how they relate to video content. Another useful 

survey of contemporary video summarisation techniques is provided by Truong and 

Venkatesh [2007]. 

The majority of video summarisation research in the last 20 years has focused on 

developing internal video summarisation techniques, which summarise video by 

analysing low-level features that are present (only) within the video stream such as 

colour, shape, object motion, speech, or on-screen text [Money and Agius 2008]. For 

example, Shipman et al. [2007] analyse low-level audio features to identify applause, 

cheering, excited speech, normal speech and music to plot a level of importance curve to 

represent the summarised content of the video. Damnjanovic et al. [2007] segment video 

by analysing the image stream. Initially scenes are identified by means of shot change 

detection, and then the level of motion activity measured and equated with level of 

importance. Jung et al. [2007] summarise television dramas. They apply theory from 

narrative theory in the form of a narrative abstraction model (NAM) and use it to map 

semantic structure onto the low level image and audio features embedded within video 

content. Hanjalic [2003; 2005] combines analysis of motion activity and cut density with 

a sound energy measure to probabilistically infer the affect related content of a video 

such as perceived levels of user excitement or arousal.  

External video summarisation techniques tend to achieve more personalised levels 

of summarisation by collecting and analysing information external to the video stream, 

notably contextual information, such as the time and location in which video was 

recorded [de Silva et al. 2005], and/or user-based information, such as a user’s 

descriptions of video content and/or browsing and viewing activity. For example, Jaimes 

et al. [2002] employ a high-level semantic analysis of basic manual annotations created 

by users, in combination with a manually supervised learning algorithm that derives a 

user’s preference for particular content events based on their prior expressions of 

importance. Takahashi et al. [2005] summarise baseball videos using manual annotations; 
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summaries contain information such as player information, key event information (e.g. 

‘plays of the ball’), and information about the extent to which the user enjoyed specific 

events. The annotations are temporally linked to the original video to indicate important 

events and individual players.  

Lastly, hybrid video summarisation techniques use a combination of internal and 

external information, thereby employing both internal and external summarisation 

techniques, based on the premise that external techniques can compliment internal 

techniques by providing additional levels of detail to reduce semantic ambiguity. For 

example, in one hybrid technique [Aizawa et al. 2004], a video camera (worn by a user) 

captures video content, whilst contextual information, such as location, speed and 

acceleration, is captured from a worn GPS unit. Spoken voice annotations can be 

provided by the user. Low-level analysis on the video’s audio track is also carried out to 

identify interesting segments within the captured video content. Rui et al. [1999] produce 

video summaries automatically by using a training set of manually annotated videos 

which are then propagated to unannotated video content by matching against the 

similarity of internal video stream information. Babaguchi et al. [2001] obtain detailed 

contextual information sourced from sports websites about a particular soccer game and 

combine this with an analysis of image features. Web-based information is then 

associated with the video stream of that game and used to summarise the key events that 

occur within the game. Another example of soccer video summarisation is presented by 

Xu et al. [2006] who use webcast text to achieve real time event detection of live soccer 

coverage, where events such as goal, shot and save are identified from the text. 

Despite many promising efforts, internal video summarisation techniques struggle 

to overcome the challenge of the semantic gap [Smeulders et al. 2000], which is the 

disparity between the semantics that can be abstracted by analysing low-level features 

and the semantics that the user associates with and primarily uses to remember the 

content of a video. This is primarily because contextual and user-based information is not 

incorporated into the analysis process at any stage. As a result, internal techniques are not 

able to produce personalised video summaries (summaries that represent the most 

significant content to an individual use), despite increasingly expectant users requiring 

more personalised video summaries that are in-step with their individual tastes and 

preferences [de Silva, et al. 2005; Lew, et al. 2006]. In light of the challenges faced by 

internal summarisation techniques, external and hybrid techniques are receiving more 

attention. This is because they are more likely to produce video summaries that are 

personally relevant to individual users due to the fact that they incorporate user-based and 

contextual information into the summarisation process. In particular, external video 

summarisation techniques show much promise, since they produce video summaries 

based purely on external information. External techniques have the added advantage of 

potentially being integrated into hybrid techniques if this is desirable. At present, 

however, there are only a small number of external techniques presented in the research 

literature. Furthermore, existing external techniques face challenges of their own; for 

example, user-based information is often obtained in the form of manual annotations 

from the user, which is impractical due to the time and conscious effort required. 

Consequently, new external information sources are needed that can be used to develop 

personalised video summaries but minimise the demands put on the user in terms of time 

and conscious mental effort. 

User physiological response is one external information source since it can be 

captured directly from the user while requiring no conscious effort from them. 

Physiological response is yet to be fully incorporated into existing video summarisation 

techniques, however. Consequently, this paper proposes ELVIS (Entertainment-Led 

Video Summaries), an external video summarisation technique that identifies sub-

segments (in terms of their temporal location) within a given video segment for inclusion 
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within a video summary (which may be an entire video stream), based on real-time user 

physiological responses. The remainder of this paper is structured as follows. Section 2 

reviews the potential of using physiological response data as video summarisation 

information and demonstrates the role of ELVIS within this context. In Section 3, the 

ELVIS technique is presented, which is used to process the users’ physiological 

responses to video content, and identify temporally the video sub-segments for inclusion 

in each individual user’s personalised video summaries. To demonstrate its application, 

the section also presents a media player that utilises ELVIS. In Section 4, the design, 

implementation and results of user trials to verify the effectiveness of ELVIS for three 

different video genres (comedy, horror/comedy, and horror) are described. Section 5 

concludes the paper by discussing implications and future research directions. 

 

2. EXTERNAL VIDEO SUMMARIES USING PHYSIOLOGICAL RESPONSE 

Video content elicits strong physiological responses in the user [Brown et al. 1977; 

Detenber et al. 1998; Lang et al. 1999]. For example, Detenber et al. [1998] found that 

moving images (video) elicits higer levels of arousal, compared with still images. In 

addition to motion, video content (particularly that which is professionally produced) 

heightens arousal by using sounds and music to heighten the emotions within the user. In 

the words of Ian Maitland, an Emmy award-winning director [cited in Picard 1995]: “A 

film is simply a series of emotions strung together with a plot ... It’s the filmmaker’s job 

to create moods in such a realistic manner that the audience will experience those same 

emotions enacted on the screen, and thus feel part of the experience.” It is therefore 

understandable that researchers have used video as the tool of choice to elicit user 

emotional response in a range of contexts, including broadcasting research [Detenber, et 

al. 1998; Lang, et al. 1999], psychophysiological studies [Piferi et al. 2000; Simons et al. 

2000], and  psychological studies [de Wied et al. 1997; Morrone-Strupinsky and Depue 

2004]. 

Measures of user physiological response are a recognised and effective means of 

gaining insight into users’ emotional responses to video content [Detenber, et al. 1998; 

Ekman et al. 1983; Gross and Levenson 1995; Lang, et al. 1999; Nasoz et al. 2003; Piferi, 

et al. 2000; Simons, et al. 2000; Suziki et al. 2004]. Physiological responses also provide 

valuable insight into real-time changes in a user’s affective state [Allanson and 

Fairclough 2004; Scheirer et al. 2002], which is a generic term that refers to the user’s 

underlying emotion, attitude, or mood at a given point in time [Simon 1982]. Affective 

state can be considered to be made up of two dimensions: valence, the level of attraction 

or aversion the user feels toward a specific stimulus, and arousal, the intensity to which 

an emotion elicited by a specific stimulus is felt. A range of physiological response 

measures have been used to infer changes in a user’s affective state, the most common of 

which are as follows: 

 Electro-Dermal Response (EDR) measures the electrical conductivity of the skin, 

which is a function of the amount of sweat produced by the eccrine glands located 

in the hands and feet. EDR is believed to be linearly correlated with the arousal 

dimension, hence the higher EDR value, the higher the arousal level and vice versa 

[Gomez and Danuser 2004; Gomez et al. 2004; Steinbeis et al. 2006]. 

 Respiration amplitude (RA) can be used to indicate arousal and valence levels; for 

example, slow deep breaths may indicate low arousal and positive valence. Shallow 

rapid breathing may indicate high arousal and negative valence [Frazier et al. 2004; 

Philippot et al. 2002]. 

 Respiration rate (RR) has been used as an indicator of arousal. An increase in the 

number of breaths the user takes per minute can be an indicator of increased arousal, 
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while lower number of breaths per minute can indicate lower levels of arousal 

[Gomez and Danuser 2004; Gomez, et al. 2004; Palomba and Stegagno 1993]. 

 Blood Volume Pulse (BVP) measures the extent to which blood is pumped to the 

body’s extremities. This can serve as a measure of a user’s valence: restricted blood 

flow to the user’s extremities may indicate negative valence, while, conversely, 

increased blood to the extremities may indicate positive valence [Carlson 2001; 

Fridja 1986; Healey 2000; Picard 1997; Wang et al. 2004]. 

 Heart Rate (HR) acceleration and deceleration has also been shown to be an 

indicator of valence [Cacioppo et al. 1997]. Negative valence may be signified by a 

greater increase in HR than positive valence [Frazier, et al. 2004; Greenwald et al. 

1989; Steinbeis, et al. 2006; Van Diest et al. 2001; Winton et al. 1984]. 

Due to advances in sensor technology, user physiological responses can be 

measured in real time, requiring no conscious input from the user [Money and Agius 

2005]; for example, via wireless wearable sensors such as the SenseWear armband from 

BodyMedia. As outlined in the previous section, some internal video summarisation 

techniques [Hanjalic 2003; Hanjalic 2005] have been developed that summarise video 

streams relating to their affective content, and consequently, some multimedia metadata 

standards now allow for some limited affective description [Agius et al. 2006; McIntyre 

and Göcke 2007]. With regards to processing and evaluating physiological response data 

for the production of personalised video summaries, to the best of our knowledge there 

appears to be no research to date.  

Consequently, through the development of the ELVIS technique, we explore 

whether users’ physiological responses may serve as a suitable external source of 

information for producing individually personalised affective video summaries. In order 

to substantiate the value of physiological response as a usable external information source 

in its own right, ELVIS has been developed as an external video summarisation technique 

and therefore it also has the potential to be integrated into a hybrid technique if this were 

desirable. Consequently, summarisation is achieved by analysis of external information 

only, which in this case is user physiological response data relating to the video the user 

has viewed. User physiological responses are likely to be most significant during the 

segments of a video stream that have most relevance to that user, since these will tend to 

be the segments that have the most impact and are the most memorable; hence, it is these 

segments that are the foremost candidates for inclusion within a summarised version of 

the video stream. Figure 2 shows how physiological responses are used within the ELVIS 

technique and how the output of ELVIS can be used to playback personalised affective 

video summaries.  

Initially, the user views the full video stream while physiological responses are 

captured and measured. ELVIS then processes this data and produces an internal 

representation of the video content in terms of the significance of physiological response. 

In step with the duration of the video summary requested by the user, ELVIS identifies 

the temporal locations of the most significant physiological responses. It should be noted 

that currently it is infeasible to map physiological responses onto a full range of specific 

emotions [Scheirer, et al. 2002], hence we do not aim to summarise and label the discrete 

emotions that occur within a video. Therefore, the ELVIS technique prescribes the use of 

the above five measures of physiological response (EDR, HR, BVP, RR and RA) and 

assumes that each of these measures have equal levels of importance in representing the 

user’s response. ELVIS assumes that the higher the number of individual significant 

physiological responses to a video sub-segment, the higher the likelihood that this is 

indicative of an entertaining video sub-segment. The temporal locations of the significant 

responses identified by ELVIS can then be associated with the viewed video content by a 

media playback application (in this example, the ELVIS Media Player) and the video 
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summary can then be played back to the user. The result is a personalised video summary 

that incorporates the video segments that elicited the most significant physiological 

responses in the user during viewing. 

 

 
Figure 2: Physiological responses for an external video summarisation technique. 

 

Data relating to user physiological response is typically recorded in time series 

format, i.e. the data is a continuous data source recorded in temporal order. Retaining the 

time evolving perspective, when analysing this data, gives valuable insight into the 

granular shifts that occur in the user’s affective state, which may not otherwise be 

measurable by other methods [Kramer 1991]. This format is particularly well suited to 

video, when considering the similarly time evolving nature of video content. However, 

processing of physiological response data is a non-trivial task [Picard 1997], and hence a 

major step towards developing video summaries, based on user physiological responses, 

is developing appropriate effective techniques to process this data. In the following 

section, we propose one such technique. 

 

3. THE ELVIS TECHNIQUE 

The ELVIS (Entertainment-Led Video Summarisation) technique processes, analyses, 

and evaluates user physiological responses, subsequently identifying the most 

entertaining video sub-segments (VSSs) within a full length video segment (VS) for 

inclusion in a video summary. We use ‘entertaining’ to signify content that has evoked 

strong and measurable physiological responses in the user. In this section, a brief 

summary of the ELVIS technique is presented and then a more detailed formal 

description is given. The ELVIS Media Player (EMP) is then presented, which serves as 

an example of how video summaries can be played back based on the information output 

by ELVIS. 

 

3.1. ELVIS overview 
Based on the premise that ELVIS has the main aim of processing user physiological 

responses to a given VS, so that the most entertaining VSSs from within a full length VS 

can be identified and included within a video summary, the five phases of processing, 

analysis, and evaluation are carried out. Figure 3 is an overview of the five phases that 

make up the ELVIS technique. 
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Figure 3: The ELVIS technique 
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sensor. Five response measures (EDR, HR, BVP, RR and RA) are interpolated and 

standardised. 

In Phase 2, moving window average values are calculated to produce constructed S 

(standardised) values for HR, BVP, RR and RA. Detrended moving window maximum 

deflection values are calculated for the EDR response measure. Initial percentile rank 

(IP) values are then calculated for S values (relating to HR, BVP, RR and RA) which are 

converted into bi-directional Low and High dataset values. 

In Phase 3, low and high value datasets for each physiological response measure are 

combined to produce a uni-directional (UD) response. Uni-directional percentile rank 

(UDP) values are then calculated for each UD dataset; resulting in the production of 

EDR_UDP, HR_UDP, BVP_UDP, RR_UDP and RA_UDP datasets.  

In Phase 4, EDR_UDP, HR_UDP, BVP_UDP, RR_UDP and RA_UDP are 

combined to produce a unified user response measure (UURM) dataset. The significance 

of unified user response measure percentile ranked (SUURMP) dataset is then produced 

from the UURM datasets. 

In Phase 5, video sub-segment temporal location (VSSTL) values are derived from 

the values in the SUURMP dataset. Video sub-segment temporal location start (VSSTLS) 

and video sub-segment temporal location end (VSSTLE) times are based on the desired 

number of observations (D) the user has requested to be included in the video summary. 

The VSSTLS and VSSTLE values therefore serve as segmentation criteria that can be 

referenced by an external application in order to output the video summaries. 

 

3.2. Phase 1: Standardise the raw physiological response data 
The initial phase of ELVIS involves standardising the user physiological response data. 

This includes initial capture and temporal synchronisation of the physiological response 

signal with the video content, deriving appropriate response measures from the raw signal 

values, interpolating raw response values, standardising the sampling rate, and finally 

outputting completed datasets for each derived physiological response and for the time 

element corresponding with each physiological observation. 

The five physiological measures (EDR, HR, BVP, RR and RA) are derived from the 

raw signal of three sensors: a skin conductance sensor for EDR, a HR/BVP sensor for HR 

and BVP, a respiration sensor for RA and RR. Such sensors are readily available, e.g. the 

ProComp Infiniti system from Thought Technologies supports a Skin Conductance 

Flex/Pro Sensor (SA9309M), a HR/BVP Flex/Pro Sensor (SA9308M), and a Respiration 

Sensor (SA9311M). At the point of capturing the user’s physiological responses to video 

content, the data is temporally synchronised with the video content that is being viewed 

by the user so that physiological responses can be later mapped onto the video content. 

Typically, the data in its raw form is captured at various default sampling rates; for 

example, the ProComp Infiniti Skin Conductance and HR/BVP sensors capture raw data 

at 2048 Hz, whereas the Respiration Sensor captures raw data at 256 Hz.  Consequently, 

after the data is captured, the five derived physiological response measures must be 

standardised and interpolated, at the standardised sampling rate (ssr) measured in Hz, and 

interpolated to enable appropriate processing and to afford comparison between response 

measures at a later stage. ELVIS standardises the sampling rate of the five derived 

physiological measures at any level up to a maximum level equal to the lowest sampling 

rate of the respective measures, i.e. in the above example, the maximum standardised 

sampling rate is 256 Hz, since this is the maximum sampling rate achieved by the 

respiration sensor. As demonstrated in [Money and Agius 2008], a standardisation at 8 

Hz gives sufficient detail, whilst significantly reducing the necessary computation 

required. Hence, 8Hz is the default standardised sampling rate adopted by ELVIS. 

Standardisation and interpolation of the five physiological response datasets results 

in all physiological observations being synchronised so that a time stamp corresponds 



9 

 

with each physiological observation within each of the five physiological response 

datasets for each set of derived values (EDR, HR, BVP, RR, and RA). 

 

3.3. Phase 2: Construct S values and convert to high-low datasets  
Standardised datasets produced in Phase 1 are subjected to moving window average and 

detrending calculations, which then enable initial percentile rank (IP) datasets to be 

constructed. Finally, IP datasets can be converted into high-low datasets in order to cater 

for the bi-directional nature of some physiological response measures. 

 

3.3.1. Construct S Values for HR, BVP, RR, RA and EDR 

The HR, BVP, RR and RA are subjected to a moving window average calculation: 

 

*

( 1)

1

1

*

_ | _ | _ | _ :

ssr mvssl

t i

i

t
ssr mvssl

HR BVP RA RR

S C
 



 
   * , * 1,...,t ssr mvssl ssr mvssl T   

(1) 

 

where ssr is the number of Hz of the standardised physiological response data, mvssl is 

the minimum VSS length requested by the user (seconds), St  represents the constructed 

HR, BVP, RR, and RA values respectively, and t is the indicator which identifies each 

point in time from which the moving average is calculated. St values are calculated for the 

full duration of user response values corresponding to the observed video content, and Ct-i 

is the actual value of the raw signal of a physiological unit at time t-i. 

Equation 1 derives the duration of the moving window from the value provided by 

the user, which represents the minimum video sub-segment length (mvssl) the user 

requires to be included in the video summary. The mvssl value is then multiplied by the 

standardised sampling rate (ssr), i.e. the rate at which the physiological sensors have been 

standardised to capture response data, which determines the number of observations that 

must be included in each cycle of the moving average calculation. Since it is likely that 

the user may have their own preference as to the duration of the VSSs that are to be 

included in the video summary, ELVIS accommodates this by synchronising the moving 

average values to match the user’s requested minimum segment length. 

The EDR dataset is treated differently to the HR, BVP, RR and RA datasets since its 

baseline varies significantly during the course of an experimental session, as observed by 

Scheirer et al. [2002]. However, similar to the HR, BVP, RR and RA datasets, EDR_ St 

values are also calculated to reflect the user’s requested minimum VSS length, where 

ssr*mvssl determines the duration of the moving window. The EDR measure can be used 

to identify increased eccrine gland activity, which, as discussed in Section 2, has been 

directly correlated with levels of arousal. However, unlike the other four physiological 

response measures used by ELVIS, the rate at which the EDR signal falls is often 

influenced by whether there has been a recent rise in the EDR signal. Typically, the EDR 

signal falls sharply after a rise, with the half recovery time after a rise ranging between 3 

and 10 seconds [iWorx 2006]. The EDR signal will continue to fall until it reaches a 

baseline, unless there is another period of activation, at which point it will rise again. The 

rate at which the EDR signal falls cannot typically be used as a direct inference of the 

level to which the user is not aroused. It is only appropriate to measure the increases in 

EDR activity, whereby the baseline can be considered as the signal value immediately 

before a rise. Therefore, in order to establish an effective measure of the fluctuations of 

the signal, and particularly periods of increased activation, a detrended EDR signal is a 

more accurate representation of EDR activity. Our approach, which is an adaptation of 
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the detrending approach taken by van Reekum and Johnstone [2004], identifies the value 

of the signal immediately before a rise in EDR, calculated within an appropriately sized 

moving window. This constitutes a method for evaluating local fluctuations in the EDR 

signal regardless of unpredictable baseline variations. Each EDR_St value is therefore 

calculated as follows: 

 

1 2 1 2(( * ) 1) (( * ) 1)
( ) (_ ), , ,.... , , ,....,t tt t t tt ssr mvssl t ssr mvsslt

Max MinEDR S C C C C C C C C      
 

 

* , * 1,...,t ssr mvssl ssr mvssl T   

(2) 

where EDR_St represents the constructed EDR value, for each point in time t from which 

the moving average is calculated. Ct is the actual value of the raw EDR signal at time t. 

Each EDR_St  is calculated with the assumption that the point in time corresponding with 

Min(Ct , Ct-1 , Ct-2 ,…., Ct-((ssr*mvssl)-1) ) occurs prior to the point in time corresponding with 

Max(Ct , Ct-1 , Ct-2 ,…., Ct-((ssr*mvssl)-1) ). If not, then EDR_St is set to zero.  

 

3.3.2. Calculate initial percentile rank (IP) values for HR_S, BVP_S, RR_S and RA_S 

datasets 

In order to standardise and normalise the S values for HR, BVP, RR, and RA so as to 

establish a measure of the significance of each value within the sample, initial percentile 

rank (IP) values are calculated for each of the four derived physiological measures, 

respectively. Percentile rank calculations of the constructed S values provide a means of 

ensuring that the response values for each physiological measure are directly comparable 

and reflect the distribution of the sample, even for skewed datasets. Therefore, percentile 

rank values represent the degree of significance of each physiological response value as a 

product of the whole dataset. ELVIS calculates percentile rank values for every S value in 

each dataset. This is a key enabling factor for ELVIS to combine and compare user 

responses and consequently to identify the most significant responses. The constructed S 

values produced in Equation 1 are subjected to the following calculation: 

 
_ | _ | _ | _ :

) ( , )

( ) 1

( ,
e b

w

t t
t

HR BVP RA RR

n n S S
IP

n S

S S 


  

(3) 

where St represents a given HRS(t)|BVPS(t)|RAS(t)|RRS(t) produced by Equation 1, S is the 

whole sample, ne(S,St) is the number of S values within the whole sample that are equal to 

St, nb(S,St) represents the number of S values within the whole sample that are less than St, 

and nw(S)represents the total number of S values within the sample S. IP values are 

calculated for each of the physiological measures, namely HR, BVP, RA, and RR. The 

result of applying this calculation to the respective S values for each measure is a set of 

initial percentile rank values which represent the significance of each S value within the 

context of each physiological measure dataset. 

The IP values for HR, BVP, RA and RR are representative of bi-directional 

fluctuations in user response to video content. For example, the HR_IPt produced in 

Equation 3 can be used for determining significantly low heart rate values for a given 

threshold (l) or significantly high heart rate values for a given threshold (h) for a given 

HR dataset. Identifying responses representing significantly low heart rates could be 
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achieved by HR_IPt ≤ l, while significantly high heart rates could be identified by HR_IPt 

≥ h. A similar principle can be applied to the BVP_IPt, RA_IPt and RR_IPt  values.  

In Phase 3, a single measure of user response to video content is constructed by 

combining all physiological measures to represent the overall user responses to video 

content. In preparation for this, HR, BVP, RA and RR IP values are split into High and 

Low datasets. The Low values are considered as IP values < 0.50 and High values 

represent values ≥ 0.50. Values in the Low datasets are then inverted (1 – Low value) so 

that their significance is expressed on a similar scale to the High values, i.e. on a scale of 

0 to 1, with 1 being most significant and 0 being least significant. The following 

calculation is carried out on IP values in order to prepare Low and High values to be 

combined to form a uni-directional representation of the user responses in Phase 3. Low 

values are calculated as follows: 

 

If HR_ | BVP_ | RA_ | RR_ : IPt  < 0.50 

 Then HR_ | BVP_ | RA_ | RR_ : Lowt = 1 - HR_ | BVP_ | RA_ | RR_ : IPt   

ElseIf HR_ | BVP_ | RA_ | RR_ : IPt  ≥ 0.50 

Then HR_ | BVP_ | RA_ | RR_ : Low_t = 0 

 

High values are calculated as follows: 

 

If HR_ | BVP_ | RA_ | RR_ : IPt  < 0.50 

 Then HR_ | BVP_ | RA_ | RR_ : Hight = 0 

ElseIf HR_ | BVP_ | RA_ | RR_ : IPt ≥ 0.50  

Then HR_ | BVP_ | RA_ | RR_ : Hight = No Change 

 

3.4. Phase 3: Construct uni-directional percentile rank (UDP) datasets for each 
physiological response measure 

In this phase the High-Low datasets produced in Phase 2 are combined to produce 

unidirectional datasets for each physiological response measure. These are then used as 

the basis for calculating uni-directional percentile rank (UDP) values, which represent 

standardised representations of each physiological response measure. 

 

3.4.1. Construct uni-directional datasets 

The Low and High value calculations carried out in Phase 2 produce two datasets for 

physiological measures HR, BVP, RA, and RR. Each of the datasets convert low HR, 

BVP, RA, and RR values so that they appear as significant responses on the same scale as 

high HR, BVP, RA, and RR values. Low and High HR, BVP, RA, and RR values are 

then combined respectively to produce significance of response values irrespective of the 

direction of the response measure. Combination of respective values results in one 

combined HR, BVP, RA, and RR dataset respectively for each physiological response 

measure. Combined values are calculated as follows: 

 

_ | _ | _ | _ :

| | | : | | | :t t t

HR BVP RA RR

UD HR BVP RA RR Low HR BVP RA RR High 
 

(4) 

 

3.4.2. Calculate uni-directional percentile rank datasets 

In order to facilitate comparison of values, it is necessary to re-standardise the respective 

measures. This is achieved by constructing percentile rank values for the respective UD 

datasets, like so: 
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_ | _ | _ | _ :

( , ) ( , )

( 1)

e b

w

t t
t

HR BVP RA RR

n UD UD n UD UD
UDP

n UD




  

(5) 

where UDt represents a given HR|BVP|RA|RR:UDt value produced by Equation 4, UD is 

the whole sample, ne(UD,UDt) is the number of UD values within the whole sample that 

are equal to UDt, nb(UD,UDt) represents the number of UD values within the whole 

sample that are less than UDt, and nw(UD)-1 represents the total number of UD values 

within the sample UD less one case. UDPt, represents uni-directional percentile rank 

values which are calculated from the constructed UDt values for HR, BVP, RR and RA 

calculated from point in time t. UDP values are calculated for each of the physiological 

measures: HR, BVP, RA, and RR respectively. The result is a uni-directional percentile 

ranked dataset for the measure. The higher the UDP value, the more significant the 

response value is considered to be.  

Since the EDR measure is naturally presented as a uni-directional measure, 

representing increased levels of activation of eccrine glands, Equation 2 processes the 

EDR signal to identify increases in EDR activity. EDR_S values are converted to UDP 

values by applying the percentile rank calculation directly to the EDR_S values produced 

in Equation 2. EDR_UDP values for EDR are calculated as follows: 

 

( _ , _ ) ( _ , _ )
_

( _ 1)

e b

w

t t
t

n EDR S EDR S n EDR S EDR S
EDR UDP

n EDR S





 

(6) 

where EDR_S is the whole EDR sample, ne(EDR_S, EDR_St) is the number of EDR_S 

values within the whole sample that are equal to EDR_St, ne(EDR_S, EDR_St) represents 

the number of EDR_S values within the whole sample that are less than EDR_St, and 

nw(EDR_S)-1 represents the total number of EDR_S values within the sample EDR_S less 

one case. EDR_UDPt are uni-directional percentile rank values calculated from the 

constructed EDR_St values calculated from point in time t. 

Note that the EDR_UDP values bypass the stage of being converted to UD values, 

since they naturally occur in uni-directional format, whereas the HR, BVP, RA, and RR 

values are subjected to uni-directional conversion, before the percentile rank calculation 

can be carried out.  

 

3.5. Phase 4: Construct the significance of unified user response measure 
percentile ranked (SUURMP) dataset 

Since all physiological response measures are in standardised UDP format, these are 

combined to produce a unified user response measure (UURM) which forms the basis for 

constructing a significance of unified user response measure in percentile rank form 

(SUURMP) dataset. 

 

3.5.1. Calculate UURM values 

Since all physiological measures are now uni-directional percentile rank values, 

EDR_UDP, HR_UDP, BVP_UDP, RA_UDP and RR_UDP values are combined, 

representing a dataset of unified user response measure (UURM) values. Combining 

physiological measures UURM values are calculated as follows: 
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_ _ _ _ _
t t t t t t

UURM EDR UDP HR UDP BVP UDP RR UDP RA UDP    
 

(7) 

where EDR_UDPt ,HR_UDPt ,BVP_UDPt ,RR_UDPt , RA_UDPt are as defined in 

Equations 5 and 6. 

 

3.5.2. Calculate SUURMP from UURM values 

A final percentile rank calculation is then applied to each UURM dataset, which 

standardises the responses and assigns each UURM value a significance rating between 0 

and 1. Each UURM value is allocated a unique percentile rank value, which reflects the 

significance of each unified user response measure in percentile rank format (SUURMP). 

Each SUURMP value is calculated as a calculation of the total number of UURM values 

that are equal to or less than the specified UURM value in the dataset. UURM are 

calculated to a default of five decimal places, providing the potential for 99999 unique 

values, which, for an 8Hz signal, is sufficient to uniquely represent user responses to 

more than 208 minutes of video content.  SUURMP values are calculated using a similar 

calculation as Equations 5 and 6, but substituting UURM values as the comparison and 

full sample values, as follows: 

 

( , ) ( , )

( 1)

e b

w

t t
t

n UURM UURM n UURM UURM

n UURM
SUURMP





 

(8) 

where UURM is the whole sample, ne(UURM, UURMt)is the number of UURM values 

within the whole sample that are equal to UURMt, , nb(UURM, UURMt) represents the 

number of UURM values within the whole sample that are less than UURMt, and 

nw(UURM)-1 represents the total number of UURM values within the sample UURM less 

one case. SUURMPt are the significance of each unified user response measure in 

percentile rank format calculated from the constructed UURMt values calculated from 

point in time t. 

 

3.6. Phase 5: Identify segments for inclusion in video summary 
In this final phase, the SUURMP dataset produced in Phase 4 is used as a means of 

temporally identifying segments of video that should be included in the final video 

summary. SUURMP values are processed according to the percentage of the video 

segment duration (VSD) that the user requires the video summary to be. These values 

represent a series of video sub-segment temporal location start (VSSTLS) and video sub-

segment temporal location end (VSSTLE) values, which represent the temporal location 

of video sub-segments that are to be included in the final video summary. 

 

3.6.1. User requested video summary duration 

In order to temporally identify VSSs for inclusion in the final video summary, the 

required video summary duration (VSD) is initially specified by the user as a percentage 

ranging between 1% and 100%. This is required to calculate the total number of 

observations (D) that must be selected in order to identify the correct percentage of 

physiological response values that correspond with the viewed video content. The total 

number of observations collected is determined as the product of the standardised 

sampling rate (ssr) in Hz and the full video summary duration (VSD) in seconds. 

Therefore D = ssr*VSD. As an example, consider a user who requests 30% video 

summary of a video that has a total run time of 100 minutes (6000 seconds); therefore 

VSD = 6000, so let ssr = 8Hz (i.e. 8 observations per second). D = VSD*ssr, which 
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equates to 48000 observations over the course of the video; hence, D = 14400 (where 

30% of 48000 = 14400). 

 

3.6.2. Incrementally identify the most significant SUURMP values 

The D value is then taken as an input value for the video sub-segment temporal location 

(VSSTL) function which is applied to the SUURMP dataset. The VSSTL function 

incrementally steps through the SUURMP dataset values, starting with the highest value 

(representing the most significant user response value), in order to identify the temporal 

locations of the most significant user responses. Each SUURMP value is temporally 

associated with the video content that elicited the physiological responses from which the 

SUURMP values were calculated. Consequently a given SUURMPt value temporally 

represents the user’s physiological responses to VSS for the duration of t,…,t-(ssr*mvssl). 

Therefore, a number of t values correspond with one SUURMPt value, thus ensuring that 

the calculations carried out in Equations 1 and 2 (that aggregate the raw physiological 

responses for the time period ssr*mvssl) are taken into account when identifying the time 

period that a selected SUURMPt corresponds with. Each t value in the dataset has a 

SUURMP_Flagt value associated with it, which can be set to true or false (default value 

is false). When a SUURMPt value is selected, the associated SUURMP_Flagt values are 

true, indicating that the time points corresponding with the selected SUURMPt value 

represent points in time mapping to the original video content that should be included in 

the final video summary.  A count of the number of SUURMP_Flag(t) values flagged as 

true is then performed. On each occasion an additional SUURMPt value is identified, 

until the number of flagged SUURMP_Flag(t) ≥ D. This results in a number of 

consecutively flagged groups of t values, which identify the temporal locations of video 

sub-segments that are to be included in the video summary. Flagging of the t values is 

carried out according to the algorithm presented in Figure 4(a). 

 

 
Figure 4: (a) Flagging of t values (b) Calculating VSSTLS and VSSTLE values 

 

3.6.3. Calculate video sub-segment temporal locations 

Finally, each group of consecutively flagged t values is processed in order to identify the 

start and end points of the VSSs. The t value that corresponds with the first value of each 

flagged group represents a VSS temporal location start (VSSTLS) and the last t value in a 

flagged group represents the video sub-segment temporal location end (VSSTLE). These 

VSSTLS and VSSTLE values are output as a series of time stamps (seconds) which can 

then be fed into an external application for the rendering of the video summary. Figure 

4(b) gives an example of how the VSSTLS and VSSTLE values are calculated. 

 

3.7. Video summaries produced by ELVIS 
To demonstrate how the ELVIS technique can be used to produce video summaries, the 

ELVIS Media Player (EMP) has been developed to playback video summaries based on 

the data output by ELVIS. EMP was developed using standard VB.NET tools and the 

k = 1

For h = 1 to 99999

For t = 1 to (VSD*ssr)

If  = k then

For j = 1 to (ssr*mvssl)

SUURMP_Flag(t+1-(j)) = true

Next

Count(SUURMP_Flag = true)

If Count ≥ D then

h = 99999

End If

End If

Next

k = k - 0.00001

Next

For t = 1..(VSD*ssr)

If SUURMP_Flag(t) = true then

VSSTLS = Time_SUURMP(t) 

For j =1 to (VSD*ssr)

If  SUURMP_Flag(t+j) ≠ true then

VSSTLE = Time_SUURMPt+(j-1) 

j = (VSD*ssr)

End if

Next

End if

Next

(a) (b)
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Windows Media Player 11 Software Development Kit (WMP11SDK). It plays back 

personalised video summaries based on the VSSs identified for inclusion in a video 

summary by ELVIS. EMP directly references the VSSTLS and VSSTLE values calculated 

by ELVIS, which are then used to identify the respective video sub-segment start and end 

temporal locations. EMP also references the SUURMP values produced by the ELVIS 

technique, which are presented as the entertainment value associated with each VSS as it 

is played back on-screen. The entertainment value for each VSS is the highest SUURMP 

value that was recorded for each respective video sub-segment. Entertainment values 

range between 0 and 1, where 1 is the highest entertainment value. 

To demonstrate how VSSTLS, VSSTLE and SUURMP values produced by the 

ELVIS technique are used by the EMP, ELVIS was applied to user physiological 

response values for video segments from various TV shows, including a 30 minute 

episode of the BBC’s ‘Top Gear’ (a very popular UK motoring show). Figure 5 plots, in 

temporal order, the SUURMP values calculated by the ELVIS technique which are used 

to represent the entertainment values as they unfold over the course of the video segment, 

which are used to produce entertainment value curves, and shows the EMP playing back 

the first six selected video sub-segments.  In this example, the user requested that 40% of 

the original video segment should be included in the video summary. In addition, a 

minimum video sub-segment length of 30 seconds was specified. As can be seen, nine 

video sub-segments were selected by the ELVIS technique. 

During playback of the VSSs, EMP displays the entertainment value. As can be 

seen, the entertainment value of 0.981 was observed for the ‘Shopping for a Corvette’ 

video sub-segment, which corresponds with the highest entertainment value recorded 

during this video sub-segment (this can be verified by examining the entertainment value 

curve). Similarly, the second selected video sub-segment, ‘Threat of being shot beyond 

79
th

 street’, had an entertainment value of 0.916 which also corresponds with the 

entertainment value curve. The same can be observed for all nine video sub-segments. 

 

4. VERIFYING VIDEO SUMMARIES PRODUCED BY ELVIS 

In order to empirically verify the effectiveness of ELVIS to identify the most entertaining 

video sub-segments for inclusion in a video summary, a set of user trials was carried out. 

The aim of these user trials was to verify the performance of ELVIS compared with 

chance (RANDOM) in matching the most entertaining video sub-segments as self-

reported by individual users. Consequently the following hypotheses are posed as being 

of primary concern for this study: 

 

Null Hypothesis (H0): The ELVIS technique, on average, does no better at matching the 

self-reported video sub-segments than a RANDOM selection of video sub-segments. 
 

Research Hypothesis (H1): The ELVIS technique, on average, does better at matching 

self-reported video sub-segments than a RANDOM selection of video sub-segments. 
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Figure 5: Graphical summary showing the entertainment value curve and the video sub-segment selections identified by ELVIS (as displayed in the EMP) for the first 30 minutes of Top Gear. 
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4.1. Trials procedure 
In these user trials, physiological response data was collected from 60 users as they 

viewed video content using the ProComp Infiniti system and BioGraph software 

produced by Thought Technologies. Each user viewed one of three 35 minute video 

segments (VSs), thus each of the three VSs was viewed 20 times (20 users per VS). 

Based on research findings from a prior study [Money and Agius 2006] that revealed 

their efficacy, VSs from the Comedy, Horror/ Comedy, and Horror genres were used. 

These were an episode from Series 2 of Fawlty Towers entitled ‘The Psychiatrist’ [Spiers 

1979]), Shaun of the Dead [Wright 2004], and The Others [Amenabar 2001], 

respectively. 

After viewing the VS, the user was presented with still screenshot cards 

representing the video content they had just viewed. Each card, containing three 

screenshots (one screenshot per five seconds of video), represented 15 seconds of video 

content. Therefore, 140 cards were used to represent each 35 minute VS. The user was 

required to self-report a set of video sub-segments by selecting 42 screenshot cards out of 

140 (also equalling 30% of the total duration of the viewed video segment) that they 

deemed to be most entertaining (note that this stage is not part of the ELVIS technique, it 

is for verification purposes only). The user response data collected during the trial was 

then processed by ELVIS, and as a result specific video sub-segments (totalling 30% of 

the viewed video content) for each of the users that took part in the trials were identified 

for inclusion within video summaries. A RANDOM selection of video sub-segments 

(also totalling 30%) was also identified.  

The extent to which the ELVIS and RANDOM video sub-segment selections 

overlapped (matched) with the self-reported video sub-segment selections was then 

calculated. The extent to which the RANDOM selection overlapped with self-reported 

video VSS selections served as a baseline/control (equivalent to chance), with which the 

overlap percentages achieved by ELVIS could be compared. This then served as a basis 

against which a statistical analysis of the differences between ELVIS and RANDOM 

overlap percentages could be carried out, in order to establish whether ELVIS 

significantly outperformed RANDOM in matching the most entertaining VSSs as 

reported by the end user. Verifying the effectiveness of video summaries, by measuring 

the extent to which video sub-segments overlap with a benchmark selection of video sub-

segments, is a recognised verification approach, and hence followed by a number of 

video summarisation studies [e.g. Babaguchi et al. 2004; Moriyama and Sakauchi 2002; 

Rui et al. 2000]. Figure 6 provides an overview of the process adopted to evaluate the 

ELVIS and RANDOM video sub-segment selections. In the next section, the statistical 

analysis method is presented in more detail. 

 

4.2. Statistical analysis method 
A statistical analysis of overlap percentages achieved by the two video sub-segment 

selection procedures (ELVIS and RANDOM) was carried out for each group of 20 users 

to evaluate the extent to which each of the respective video sub-segment selections 

achieved statistically significant overlaps with self-reported video sub-segments. The 

primary aim of this analysis was to verify the performance of ELVIS in identifying the 

most entertaining video sub-segments in accordance with the hypotheses outlined at the 

start of this section. For each of the three video segments used, the user trials can be 

considered as a within subjects one-way repeated measures design with the above two 

treatment conditions:  

 ELVIS selection 

 RANDOM selection 



18 

 

 

 
Figure 6: Overview of trials and statistical analysis process for evaluating video sub-segment selections of 

ELVIS 

 

 

In order to formally test hypotheses H0 and H1, paired t-tests are performed for 

overlap scores achieved by ELVIS compared to RANDOM. The P-values produced by 

the paired t-tests allow the performance of ELVIS to be evaluated and to establish 

whether ELVIS outperforms the RANDOM treatment condition to a statistically 

significant degree (α = 0.05).  

In addition, the effect size (Cohen’s d) of the difference between respective 

treatment conditions as defined by Cohen [Clark-Carter 1997] is also calculated. Often, 

Cohen’s d and the associated power analysis are carried out retrospectively. First, the 

hypothesis test is performed using a one-tail paired t-test. Should the null hypothesis be 

rejected then the effect size is estimated from the sample values. After this, the associated 

power for the estimated effect size is determined by looking up the corresponding d value 

from a table similar to Table A15.3 in [Clark-Carter 1997]. This is the approach taken in 

this study. 

We propose that a large effect size would be necessary if ELVIS is to be of practical 

use to the end user. Consequently, for the repeated measures trial in this study, it can be 

determined that for a sample of size 20 (20 users per VS), the use of a one-tailed paired t-

test performed at the 5% level of significance is capable of detecting a large effect size (d 

= 0.8) with power 0.96 (see [Clark-Carter 1997], Table A15.3, p.609). In practice, 

researchers usually perform the test at the 5% level of significance and try to achieve a 

power of 80% [Clark-Carter 1997].  So for this study, for each group of 20 users, a power 

of 96% is substantially above the level normally aspired to in practice. 

 

4.3. User trial results 
In this section, the overlap percentages achieved for each respective user by ELVIS and 

RANDOM treatment conditions are first presented, followed by the results of the paired 

t-tests comparing ELVIS mean overlap percentages with the RANDOM treatment 

condition. The results for each video segment, Comedy VS, Horror/Comedy VS, and 

Horror VS, are presented in turn. 
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4.3.1. User trial results  

The overlap percentages achieved by ELVIS and RANDOM treatment conditions for 

each individual user are presented in Table 1. These percentages show the extent to 

which the ELVIS and RANDOM selections overlapped with the users’ self-reported 

selection of VSSs. The results in Table 1 are presented in three parts, relating to each of 

the three video content types used in the user trials: Comedy, Comedy/Horror, and 

Horror.  

 
Table 1:  Overlap percentages of RANDOM and ELVIS with self-reported selections 

User No. RANDOM ELVIS User No. RANDOM ELVIS User No. RANDOM ELVIS

U#1 32.54 51.79 U#21 31.57 29.33 U#41 31.9 42.34

U#2 36.31 45.24 U#22 38.33 47.20 U#42 23.27 33.02

U#3 22.44 33.35 U#23 29.33 41.37 U#43 19.64 36.90

U#4 26.03 42.50 U#24 41.23 32.94 U#44 31.55 58.10

U#5 30.97 52.38 U#25 21.94 40.81 U#45 32.96 51.41

U#6 29.66 47.52 U#26 35.83 49.21 U#46 24.25 37.36

U#7 37.92 37.38 U#27 29.67 55.89 U#47 29.8 40.67

U#8 29.23 52.26 U#28 29.60 45.20 U#48 29.92 52.36

U#9 30.42 58.99 U#29 34.17 61.96 U#49 32.3 42.76

U#10 37.96 42.20 U#30 28.69 49.05 U#50 32.92 28.97

U#11 30.30 45.97 U#31 33.59 35.85 U#51 26.55 37.98

U#12 26.09 39.78 U#32 35.75 56.29 U#52 27.56 30.52

U#13 29.29 44.38 U#33 29.76 35.71 U#53 25.97 25.50

U#14 28.89 50.83 U#34 27.02 38.23 U#54 30.95 49.11

U#15 30.36 44.33 U#35 36.33 44.80 U#55 20.85 31.75

U#16 36.57 45.63 U#36 26.05 37.10 U#56 25.81 43.53

U#17 37.34 42.16 U#37 35.48 38.51 U#57 26.37 47.16

U#18 16.53 39.37 U#38 22.88 27.98 U#58 34.03 56.33

U#19 31.77 63.81 U#39 30.34 60.56 U#59 29.96 47.04

U#20 26.73 39.26 U#40 29.27 47.48 U#60 31.05 41.93

Mean Tot 30.37 45.96 Mean Tot 31.34 43.77 Mean Tot 28.38 41.74

highest overlap with self-reported video sub-segment selection per user

Comedy VS Comedy/Horror VS Horror VS

 
 

As can be seen, for the Comedy VS, ELVIS achieved higher overlap scores than 

RANDOM in 19 out of 20 cases; the only exception being U#7, for which RANDOM 

achieved an overlap of 37.92% compared with ELVIS which achieved 37.38%.  Overall 

for the Comedy/Horror VS, ELVIS achieved higher overlap scores than RANDOM. The 

mean total of all percentage overlap scores for ELVIS at 45.96% was higher than the 

RANDOM mean total of 30.37%. 

The Comedy/Horror VS once again resulted in ELVIS achieving higher overlap 

scores than RANDOM. For this type of video content, ELVIS achieved higher overlap 

scores for 18 out of 20 users. The only exceptions were for U#21 and U#24, where the 

RANDOM versus ELVIS overlap scores were 31.57% and 41.23% versus 29.33% and 

32.94% respectively. The overall mean total overlap score achieved by ELVIS was 

43.77%, which was higher than the RANDOM mean total overlap score of 31.34%. 

The Horror VS also showed that ELVIS achieved higher overlap percentages than 

RANDOM for the majority of users (19 out of 20 cases). The only exception was U#53, 

where RANDOM achieved an overlap score of 25.97% compared with ELVIS which 

achieved 25.50%. Overall the mean total on the overlap percentages showed that ELVIS 

achieved 41.74% which was a higher score than RANDOM which achieved 28.38%. 

When considering the mean total overlap percentages achieved for each of the three 

video content types, ELVIS achieved the highest score for Comedy VS (45.96%), the 

next highest score was achieved for the Comedy/Horror VS (43.77%) and lowest mean 
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total overlap score was achieved for the Horror VS (41.74%). In all three cases, ELVIS 

achieved higher mean total overlap scores than RANDOM. 

The results of the paired t-tests comparing mean overlap differences between 

ELVIS and RANDOM treatment conditions for the Comedy, Horror/Comedy and Horror 

VSs are now presented. Included in the results are measures of significance of the 

differences in means overlap scores, and effect size and power values. Table 2 presents 

the mean paired differences in percentage overlap between ELVIS and RANDOM for 

Comedy, Horror/Comedy and Horror VSs respectively. To assess ELVIS from a practical 

significance perspective, a retrospective power analysis (as described in Section 4.2) was 

carried out. As a result of this analysis, Table 2 presents the effect sizes achieved in the 

user trials, which are estimated and recorded in the column labelled “Effect size (d)”, and 

the power (i.e. the probability of correctly accepting the alternative hypothesis) 

corresponding to the effect size, which is determined by looking up the power 

corresponding to the estimated effect size in Table A15.3 in [Clark-Carter 1997]; the 

latter is presented in the last column of Table 2 and labelled “Est. Power”. 

 

Table 2: Paired t- test, effect size and power for Comedy, Horror/Comedy and Horror 

VSs  

Mean Std. Dev. t df Sig. (1-tailed) Effect size (d) Est. Power

Comedy: ELVIS - 

RANDOM 15.59 8.18 8.524 19 0.000 1.91 1.00

Horror/Comedy: ELVIS 

- RANDOM 12.43 10.06 5.529 19 0.000 1.24 1.00

Horror: ELVIS - 

RANDOM 13.36 7.75 7.712 19 0.000 1.72 1.00

statistically significant at the 5% level

Paired Differences

 
 

As can be seen from the “Sig. (1-tailed)” column, ELVIS performs significantly 

better than RANDOM at the 5% level of significance. Therefore, in statistical terms, 

ELVIS performed significantly better than RANDOM. The effect size achieved for the 

Comedy VS is large (Cohen’s d suggests over 0.8 can be considered a large effect size), 

with the estimated power of 100%. There is therefore strong evidence of the ability of 

ELVIS to outperform RANDOM by a ‘large’ amount. Based on the results for the 

Comedy VS, there is strong evidence to reject the null hypothesis (H0) and support the 

research hypotheses (H1), i.e. that ELVIS achieves on average significantly higher mean 

percentage overlap scores compared to RANDOM.  

As can be seen from results of the paired t-tests comparing mean overlap differences 

between ELVIS and RANDOM treatment conditions for the Horror/Comedy VS in Table 

2 in the column labelled “Sig. (1-tailed)”, statistically ELVIS performs significantly 

better than RANDOM at the 5% level of significance. The effect sizes achieved in the 

user trials were also large for ELVIS compared to RANDOM, with an effect size of 1.24. 

So, there is strong evidence of the ability of ELVIS to outperform RANDOM by a large 

amount. Based on the results for the Horror/Comedy VS, there appear to be significant 

differences in mean percentage overlap scores between the ELVIS and the RANDOM 

treatment condition i.e. ELVIS achieved a significantly higher mean percentage overlap 

score compared to RANDOM. There is therefore strong evidence to reject the null 

hypothesis (H0), and support the research hypotheses (HA), i.e. that ELVIS achieves on 

average significantly higher mean percentage overlap scores compared to RANDOM. 
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The results of the paired t-tests comparing mean overlap differences between 

ELVIS and RANDOM treatment conditions for Horror VS, as can be seen from the 

column labelled “Sig. (1-tailed)” in Table 2, statistically ELVIS performs significantly 

better than RANDOM at the 5% level of significance. The effect sizes achieved in the 

user trials were again large for ELVIS compared to RANDOM with an effect size of 

1.72. Therefore, in this case, there is strong evidence of the ability of ELVIS to 

outperform the RANDOM treatment condition by a large amount. The results of this 

study show that there appear to be significant differences in mean percentage overlap 

scores between treatment conditions. Specifically, ELVIS achieved significantly higher 

mean percentage overlap scores compared to RANDOM, and therefore there is strong 

evidence to reject the null hypothesis (H0), and support the research hypotheses (H1). 

To summarise the results findings of these trials, statistically ELVIS achieved 

significantly higher mean overlap percentages compared to RANDOM for each of the 

three video segments viewed in the user trials. Therefore, in all cases, not only was there 

strong evidence that the null hypothesis (H0) could be rejected at the 5% level of 

significance, but in all cases, the estimated power values were close to 100%, all with a 

large effect size. This also provided strong evidence that there is a high probability that 

the research hypothesis (H1) could be correctly accepted. In other words, there was strong 

evidence to show that on average ELVIS does significantly better at matching self-

reported video sub-segments than a RANDOM selection. Furthermore, due to the large 

effect size achieved by ELVIS compared with RANDOM in every case, it is proposed 

that the differences in mean overlap percentage are large enough to be of practical value 

to the user of a video summarisation system that uses the ELVIS technique. The 

statistically significant results achieved by ELVIS has a number of implications for our 

own video summarisation research and the video summarisation research domain as a 

whole, which are now discussed. 

 

5. CONCLUSIONS 

Current video summarisation research has shown that although internal summarisation 

techniques successfully summarise video content, they are not able to produce 

personalised video summaries and still face the challenge of overcoming the semantic 

gap [Smeulders, et al. 2000]. In response to these challenges, external and hybrid 

techniques are receiving more attention, however, there is only a limited number of 

existing external video summarisation techniques presented in the literature. 

Consequently there is a need to identify new external information sources, and develop 

external video summarisation techniques that successfully use these information sources. 

In this paper, we have proposed that physiological response data may potentially 

serve as a valuable external information source for personalised affective video 

summarisation. As a result, we have presented the ELVIS technique, which effectively 

processes and analyses physiological response data and identifies the most entertaining 

video sub-segments according to the user’s physiological responses to video content. The 

Elvis Media Player (EMP) was also presented, to demonstrate how ELVIS can be used 

within real world video browsing and playback applications. In order to verify the 

effectiveness of ELVIS in identifying the most entertaining video sub-segments, a set of 

laboratory based user trials were carried out in which 60 users viewed one of three video 

segments representing content from comedy, comedy/horror and horror genres. 

Subsequently, one-tailed paired t-tests were carried out to compare the extent to which 

video sub-segments identified by ELVIS and randomly selected video sub-segments 

matched the most entertaining video sub-segments as self-reported by the user. ELVIS 
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was shown to consistently overlap with self-reported video sub-segment selections at a 

significantly higher level of accuracy compared with a randomly selected selection. 

Furthermore, the level of overlap achieved by ELVIS was significant enough to achieve a 

large effect size which indicates that the video summaries produced by ELVIS are likely 

to be of practical value to the end user.  

The fact that ELVIS has been shown to consistently identify the most entertaining 

video sub-segments for individual users across a range of video content, has numerous 

implications for future video summarisation research, which include the following: 

 

 In light of the need to find new external sources of information to assist in the video 

summarisation process overcoming the long-standing challenge of the semantic gap 

[Smeulders, et al. 2000], this study demonstrates that physiological response data can 

be used to produce personalised video summaries. This is a valuable level of detail 

relating to the extent to which the individual user was ‘entertained’ while viewing 

specific sub-segments of video content that does not appear to be available via video 

stream based information sources. 

 In light of the fact that processing physiological response data is a non-trivial task 

[Picard 1997], the ELVIS technique provides a valuable means of achieving video 

summaries based on this information in spite of the complexities posed by this type 

of data. As a result, the ELVIS technique serves as an example of the feasibility of 

physiological response data being used within the video summarisation context, and 

opens the door to such data being more frequently incorporated within the context of 

video summarisation research. 

 Only a small number of external summarisation techniques exist within current video 

summarisation research literature [Money and Agius 2008]. As demonstrated in this 

study, the ELVIS technique has the potential of summarising video content as a 

standalone solution, as demonstrated via EMP, and thus can be considered as a 

valuable addition to the range of existing external video summarisation techniques.  

 Existing internal and hybrid video summarisation techniques now have the potential 

to widen the range of summarisable semantics by incorporating the ELVIS technique 

into existing solutions. In turn, this would be beneficial to the user by providing a 

wider range of personally relevant semantics by which the user could access the 

content within a video. 

 

In terms of future research, the potential hybridisation of ELVIS may be explored 

by integrating the ELVIS technique into existing internal video summarisation 

techniques. This should serve to maximise the range of semantics that can be extracted 

from video content. In this way, the relative strengths of ELVIS can be used to 

complement other existing video summarisation techniques. Furthermore, as wireless 

wearable sensors that stream physiological response data directly from the user to a 

remote home entertainment device become more of a reality, the notion of an ELVIS 

based system used in a home based ‘living room’ setting becomes feasible. With such 

sensors, the ELVIS technique could be used to unobtrusively generate video summaries 

as family members view content streamed to their set top boxes, thus creating a 

repository of popular, entertaining video sub-segments that family members may wish to 

later enjoy with each other, less immediate family members, and friends. Future research 

would need to address the development of software that was appropriate for use in the 

home by less experienced users and which could seamlessly store and organise 

summarised video content so that it was readily accessible at a later time. 

 



23 

 

6. REFERENCES 

AGIUS, H., CROCKFORD, C. AND MONEY, A.G. 2006. Geographic video content. In Encyclopedia of 
Multimedia, B. FURHT Ed. Springer, New York, NY, USA, 257-259. 

AIZAWA, K., TANCHAROEN, D., KAWASAKI, S. AND YAMASAKI, T. 2004. Efficient retrieval of life log based 

on context and content In Proceedings of the 1st ACM Workshop on Continuous Archival and Retrieval of 
Personal Experiences (CARPE '04), New York, NY, USA, 15 October, ACM Press, 22-31. 

ALLANSON, J. AND FAIRCLOUGH, S.H. 2004. A research agenda for physiological computing. Interacting with 

Computers 16, 857-878. 
AMENABAR, A. 2001. The Others. Miramax. 

BABAGUCHI, N., KAWAI, Y. AND KITAHASHI, T. 2001. Generation of personalized abstract of sports video. In 

Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '01), Tokyo, Japan, 22-
25 August, IEEE, 800-803. 

BABAGUCHI, N., KAWAI, Y., OGURA, T. AND KITAHASHI, T. 2004. Personalized abstraction of broadcasted 

American football video by highlight selection. IEEE Transactions on Multimedia 6, 575-586. 
BARBIERI, M., AGNIHOTRI, L. AND DIMITROVA, N. 2003. Video summarization: methods and landscape. In 

Internet Multimedia Management Systems IV, J.R. SMITH, S. PANCHANATHAN AND T. ZHANG Eds. SPIE, 

Bellingham, WA, USA, 1-13. 
BROWN, W.A., CORRIVEAU, D.P. AND MONTI, P.M. 1977. Anger arousal by a motion picture: A 

methodological note. American Journal of Psychiatry 134, 930-931. 

CACIOPPO, J.T., BERNTSON, G.G., KLEIN, D.J. AND POEHLMANN, K.M. 1997. The psychophysiology of 
emotion across the lifespan. Annual Review of Gerontology and Geriatrics 17, 27-74. 

CARLSON, N.R. 2001. Psychology of Behaviour. Allyn and Bacon, Boston, MA, USA. 

CLARK-CARTER, D. 1997. Doing Quantitative Psychological Research: From Design to Report. Psychology 
Press, London. 

DAMNJANOVIC, U., PIATRIK, T., DJORDJEVIC, D. AND IZQUIERDO, E. 2007. Video summarisation for 

surveillance and news domian. In Proceedings of the the second international conference on semantic and 
digital media technologies, Genova, Italy, 5-7 December 2007, Springer-Verlag, 99-102. 

DE SILVA, G., YAMASAKI, T. AND AIZAWA, K. 2005. Evaluation of video summarization for a large number of 

cameras in ubiquitous home. In Proceedings of the 13th ACM International Conference on Multimedia, 
Singapore, 6-11 November, ACM Press, 820-828  

DE WIED, M., HOFFMAN, K. AND ROSKOS-EWOLDSEN, D.R. 1997. Forewarning of graphic portrayal of 

violence and the experience of suspenseful drama. Cognition and Emotion 11, 481-494. 

DETENBER, B.H., SIMONS, R.F. AND BENNETT, G. 1998. Roll 'em!: The effects of picture motion on emotional 

responses. Journal of Broadcasting & Electronic Media 42, 113-127. 

EKMAN, P., LEVENSON, R.W. AND FRIESEN, W.V. 1983. Autonomic nervous system activity distinguished 
between emotion. Science 221, 1208-1210. 

FRAZIER, T.W., STRAUSS, M.E. AND STEINHAUER, S.R. 2004. Respiratory sinus arrhythmia as an index of 

emotional response in young adults. Psychophysiology 41, 75 - 83. 
FRIDJA, N. 1986. The Emotions. Cambridge University Press, Cambridge. 

FURINI, M. AND GHINI, V. 2006. An audio-video summarisation scheme based on audio and video analysis. In 

Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC '06), Las Vegas, 
NV, USA, 8-10 January, IEEE, 1209-1213. 

GOMEZ, P. AND DANUSER, B. 2004. Affective and physiological responses to environmental noises and music. 

International Journal of Psychophysiology 53, 93-103. 
GOMEZ, P., STAHEL, W. AND DANUSER, B. 2004. Respiratory responses during affective picture viewing. 

Biological Psychology 67, 359 - 373. 

GREENWALD, M.K., COOK, E.W. AND LANG, P.J. 1989. Affective judgement and psychophysiological 
response: Dimensional covariation in the evaluation of pictorial stimuli. Journal of Pyschophysiology 3, 51-

64. 

GROSS, J.J. AND LEVENSON, R.W. 1995. Emotion elicitation using films. Cognition and Emotion 9, 87-108. 
HANJALIC, A. 2003. Generic approach to highlight extraction in a sport video. In Proceedings of the IEEE 

International Conference on Image Processing (ICIP 2003), Barcelona, Spain, 14-18 September, IEEE, 1-
4. 

HANJALIC, A. 2005. Adaptive extraction of highlights from a sport video based on excitement modeling. IEEE 

Transactions on Multimedia 7, 1114-1122. 
HEALEY, J.A. 2000. Wearable and Automotive Systems for Affect Recognition from Physiology. In Department 

of Electrical Engineering and Computer Science MIT, Cambridge, MA, USA, 158. 

IWORX 2006. Experiment 33: The Galvanic Skin Response (GSR) and Emotion. Psychological Physiology 
Courseware No. <http://www.iworx.com/LabExercises/lockedexercises/LockedGSRANL.pdf> 

JAIMES, A., ECHIGO, T., TERAGUCHI, M. AND SATOH, F. 2002. Learning personalized video highlights from 

detailed MPEG-7 metadata. In Proceedings of the IEEE International Conference on Image Processing 
(ICIP 2002), New York, NY, USA, 22-25 September, IEEE, 133-136. 

http://www.iworx.com/LabExercises/lockedexercises/LockedGSRANL.pdf


24 

 

JUNG, B., SONG, J. AND LEE, Y. 2007. A narrative-based abstraction framework for story-oriented video. ACM 

Transactions on Multimedia Computing, Communications and Applications 3, 1-28. 
KRAMER, A.F. 1991. Physiological metrics of mental workload: a review of recent progress. In Multiple-Task-

Performance, D.L. DAMOS Ed. Taylor & Francis, London, 329-360. 

LANG, A., BOLLS, P., POTTER, R. AND KAWAHARA, K. 1999. The effects of production pacing and arousing 
content on the information processing of television messages. Journal of Broadcasting and Electronic 

Media 43, 451-476. 

LEW, M.S., SEBE, N., DJERABA, C. AND JAIN, R. 2006. Content-based multimedia information retrieval: state 
of the art and challenges. ACM Transactions on Multimedia Computing, Communications and Applications 

2, 1-19. 

LI, Y., LEE, S., YEH, C. AND KUO, C. 2006. Semantic retrieval of multimedia. IEEE Signal Processing 
Magazine 23, 79-89. 

MCINTYRE, G. AND GÖCKE, R. 2007. The Composite Sensing of Affect. In Affect and Emotion in Human-

Computer Interaction. LNCS, C. PETER AND R. BEALE Eds. Springer, Heidelberg, Germany. 
MONEY, A. AND AGIUS, H. 2006. Are affective video summaries feasible? In Emotion in HCI: Joint 

Proceedings of the 2005, 2006, and 2007 International Workshops at the BCS HCI Group Annual 

Conferences, C. PETER, R. BEALE, E. CRANE, L. AXELROD AND G. BLYTH Eds. London, UK, 12 

September 2006, Fraunhofer IRB Verlag, Stuttgart, Germany, 142-149. 

MONEY, A.G. AND AGIUS, H. 2005. ‘Once more, with feeling’: an emotional approach to multimedia content 

analysis. In Proceedings of the 9th IASTED International Conference on Internet and Multimedia Systems 
and Applications (IMSA 2005), Honolulu, Hawaii, USA, 15-17 August, ACTA Press: Anaheim, CA, USA, 

436-441. 

MONEY, A.G. AND AGIUS, H. 2008. Feasibility of personalized affective video summaries, Lecture Notes in 
Computer Science, vol. 4868. In Affect and Emotion in Human-Computer Interaction, C. PETER AND R. 

BEALE Eds. Springer-Verlag, Berlin Heidelberg, Germany. 

MONEY, A.G. AND AGIUS, H. 2008. Video summarisation: A conceptual framework and survey of the state of 
the art. Journal of Visual Communication and Image Representation 19, 121-143. 

MORIYAMA, T. AND SAKAUCHI, M. 2002. Video summarization based on the psychological unfolding of 
drama. Systems and Computers in Japan 33, 1122-1131. 

MORRONE-STRUPINSKY, J.V. AND DEPUE, R.A. 2004. Differential relation of two distinct, film-induced 

positive emotional states to affiliative and agentic extraversion. Personality and Individual Differences 36, 
1109-1126. 

NASOZ, F., ALVAREZ, K., LISETTI, C.L. AND FINKELSTEIN, N. 2003. Emotion recognition from physiological 

signals for presence technologies. International Journal of Cognition 6, 1 - 32. 
PALOMBA, D. AND STEGAGNO, L. 1993. Physiology, perceived emotion and memory: responding to film 

sequences. In The Structure of Emotion: Psychophysiological, Cognitive, and Clinical Aspects, N. 

BIRBAUMER AND A. OHMAN Eds. Hogrefe & Huber, Toronto, 158-168. 
PHILIPPOT, P., CHAPELLE, C. AND BLAIRY, S. 2002. Respiratory feedback in the generation of emotion. 

Cognition and Emotion 16, 605-627. 

PICARD, R.W. 1995. Affective Computing. MIT Media Laboratory Perceptual Computing Section Technical 
Report No. 321, November. <http://vismod.media.mit.edu/tech-reports/TR-321.pdf> 

PICARD, R.W. 1997. Affective Computing. MIT Press, Cambridge, MA. 

PIFERI, R.L., KLINE, K.A., YOUNGER, J. AND LAWLER, K.A. 2000. An alternative approach for achieving 
cardiovascular baseline: Viewing an aquatic video. International Journal of Psychophysiology 37, 207-217. 

RUI, Y., GUPTA, A. AND ACERO, A. 2000. Automatically extracting highlights for TV Baseball programs In 

Proceedings of the 8th ACM International Conference on Multimedia, Los Angeles, CA, USA, 30 October, 
ACM Press, 105-115. 

RUI, Y., ZHOU, S.X. AND HUANG, T.S. 1999. Efficient access to video content in a unified framework. In 

Proceedings of the IEEE International Conference on Multimedia Computing and Systems (ICMCS '99), 
Florence, Italy, 7-11 June, IEEE, 735-740. 

SCHEIRER, J., FERNANDEZ, P., KLEIN, J. AND PICARD, R.J. 2002. Frustrating the user on purpose: A step 

toward building an affective computer. Interacting with Computers 14, 93-118. 
SHIPMAN, S., DIVAKARAN, A. AND FLYNN, M. 2007. Highlight scene detection and video summarization for 

PVR-enabled television systems. In Proceedings of the IEEE International Conference on Consumer 

Electronics, Hiroshima, Japan, 10-14 January 2007, IEEE, 1-2. 
SIMON, H.A. 1982. Comments. In Affect and Cognition, C. SYDNOR AND S.T. FISKE Eds. Lawrence Erlbaum 

Associates, Hillsdale, NJ, 333-342. 

SIMONS, R.F., DETENBER, B.H., REISS, J.E. AND SHULTS, C.W. 2000. Image motion and context: A between- 
and within-subject comparison. Psychophysiology 37, 706-710. 

SMEULDERS, A.W.M., WORRING, M., SANTINI, S., GUPTA, A. AND JAIN, R. 2000. Content-Based Image 

Retrieval at the End of the Early Years. IEEE Transactions on pattern analysis and machine intelligence 
22, 1349-1380. 

http://vismod.media.mit.edu/tech-reports/TR-321.pdf


25 

 

SPIERS, B. 1979. The Psychiatrist. BBC Television. 

STEINBEIS, N., KOELSCH, S. AND SLOBODA, J.A. 2006. The role of harmonic expectancy violations in musical 
emotions: evidence from subjective, physiological, and neural responses. Journal of Cognitive 

Neuroscience 18, 1380-1393. 

SUZIKI, J., HIROSHI, N. AND HORI, T. 2004. Level of interest in video clips modulates event-related potentials 
to auditory probes. International Journal of Psychophysiology 55, 35-43. 

TAKAHASHI, Y., NITTA, N. AND BABAGUCHI, N. 2005. Video summarization for large sports video archives. In 

Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2005), Amsterdam, 
The Netherlands, 6-8 July, IEEE, 1170-1173  

TRUONG, B.T. AND VENKATESH, S. 2007. Video abstraction: A systematic review and classification. ACM 

Transactions on Multimedia Computing, Communications, and Applications 3, 1-37. 
VAN DIEST, I., WINTERS, W., DEVRIESE, S., VERCAMST, E., HAN, J.N., VAN DE WOESTIJNE, K.P. AND VAN 

DEN BERGH, O. 2001. Hyperventilation beyond fight/flight: respiratory responses during emotional 

imagery. Psychophysiology 38, 961 - 968. 
VAN REEKUM, C.M. AND JOHNSTONE, T. 2004. Psychophysiological responses to appraisal dimensions in a 

computer game. Cognition and Emotion 18, 663-688. 

WANG, H., PRENDINGER, H. AND IGARASHI, T. 2004. Communicating emotions in online chat using 

physiological sensors and animated text. In Proceedings of the ACM Conference on Human Factors in 

Computing Systems (CHI '04), Vienna, Austria, 24-29 April, ACM Press, 1171-1174. 

WINTON, W.M., PUTNAM, L.E. AND KRAUSS, R.M. 1984. Facial and autonomic manifestations of the 
dimensional structure of emotion. Journal of Experimental Social Psychology 20, 195-216. 

WRIGHT, E. 2004. Shaun of the Dead. Universal Pictures. 

XU, C., WANG, J., WAN, K., LI, Y. AND DUAN, L. 2006. Live sports detection based on broadcast video and 
Web-casting text. In Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, 

CA, 23-27 October, ACM Press, 221-230. 

 
 

 


