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STATISTICAL PROCEDURES

In these Supplementary Materials we describe some
threats to our procedures and demonstrate how the
alternative analyses that we performed do not materially
alter our findings and therefore our conclusions.

The Response Variable is non-Gaussian

As mentioned in the main paper, one slightly awkward
property of the Matthews Correlation Coefficient (MCC)
is that depending upon the marginal distributions of
the confusion matrix, plus or minus unity may not be
attainable and so the theoretical maxima and minima are
constrained. Some statisticians propose a ¢/¢mq, rescal-
ing [1]. We choose not to follow this procedure since
it results in an over-sensitive measures of association
in that a very small change in the count of correctly
classified instances (TP or TN) lead to unintuitively large
changes in the correlation. This is a particular problem in
the setting of imbalanced data sets which are the norm
for software defects. The deleterious effects of this can
be seen very plainly in Fig. |1} in particular for the tails,
when compared with the original distribution shown by
Fig. 2|

Correlation coefficients tend not to normally distrib-
uted due to their tails being constrained to unity and
minus unity (as opposed to plus or minus infinity). This
is usually corrected using the Fisher r to Z transform-
ation which is based on an inverse hyperbolic function
[2]. In principle this also has the beneficial impact of
stabilising the variance so that it doesn’t diminish as
it approaches either limit. (NB Our data set contains
values of MCC=1, therefore 0.0001 was subtracted before
applying the r to Z transformation to prevent mapping to
infinity). Unfortunately our data reveals highly unstable
behaviour as illustrated by the qqplot in Figure
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Figure 1. qgplot of MCC After the Phi/Phimax Correction

The explanation seems to be that the tails and in par-
ticular the upper tail are rather over-represented prior
to the transformation (see Figure [2) so the ‘correction’
exacerbates this deviation. This is probably explained by
the tendency of researchers to select their most ‘interest-
ing’ results thus our response variable is not a random
sample of all experimental results [3]. Thus we do not
use this transformation.

Use of Robust Alternatives to ANOVA

Given these possible problems we also explore a robust
analysis based upon the following. The square of the
MCC (or phi) is approximately a chi-squared distri-
bution with one degree of freedom [4]. A chi-squared
distribution is a special case of a gamma distribution
so we check the linear model using MCC-squared and
a generalised linear model (GLM) where the choice of
exponential family of distributions is gamma and the
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Figure 2. ggplot of the Matthews Correlation Coefficients
without transformation
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Figure 3. qgplot of MCC after the Application of the Fisher
r to Z Transformation

link function is inverse (in R this is Family=gamma and
link=inverse). The results are shown in Table 1 which
again indicate that Researcher Group is the dominant
factor in terms of deviance (rather than variance which
we use for ANOVA).

A 4-way ANOVA model is over complex

The complexity of the 4-way model means that from a
factorial point of view many of the cells are empty since
if we count the levels this yields (23 x24 x 7x 8 = 30912).
For this reason we looked at “dense” subsets of our data.

We performed the following analysis for both ECLIPSE
and NASA datasets. We only used the most popular class
of Metric and for the single data set thereby reducing the
model to two-way.

The results using just Eclipse are given in Table [2| and
for NASA in Table Bl The factors are listed in order of
importance. In both analyses both factors and the inter-
action term is significant and Research Group remains
dominant (accounting for between 5 and 60 times more
variance than the choice of Classifier technique). Note,
however that for the Eclipse data set the model does not
show a very good fit with the residual term accounting
for more than 80% of the total variance. This suggest that
adding extra factors improves the explanatory value of
our model and provides the ability to fit to a wider range
of experimental results.

Table 2
Eclipse Only Analysis: 2-way ANOVA (MCC =
ResearcherGroup*Classifier)

% of total

Df Sum Sq variance F value Pr(>F)
ResearcherGroup 4 0.304 18.95 3.595 0.011
Classifier 4 0.006 0.35 0.067 0.992
ResearcherGroup: 2 0.005 0.31 0.118 0.889
Classifier
Residuals 61 1.290 80.39

Table 3
NASA Only Analysis: 2-way ANOVA (MCC =
ResearcherGroup*Classifier)
% of total

Df Sum Sq variance F value Pr(>F)
ResearcherGroup 13 1.546 20.12 7.168 0.000
ResearcherGroup: 19 0.600 7.81 1.904 0.013
Classifier
Classifier 7 0.379 492 3.259 0.002
Residuals 311 5.161 67.15

Lastly we repeat the 4-way analysis on the three most
widely used data sets (Eclipse, NASA and Mozilla) to
explore whether our main findings are the result of a
few infrequently used data sets.

We see from Table [} which is again arranged in
decreasing importance of factors, that the results remain
broadly similar to our 4-way model for all data (given
in the main paper). Researcher Group still dominates,
although in this case the second order interaction term
of Researcher Group with Classifier now becomes the
second term. Given Data Set is now limited to three
levels this may explain it’s reduced importance. Overall
the model accounts for about 40% of the overall variance
in MCC which represents a small reduction in fit from
43.6% in our model for all experimental results contained
within the main paper.



Table 1
4-way ANOVA (M CC? = Response Variable)

Df Deviance Resid. Df Resid. Dev

NULL 599 879.41
ResearcherGroup 22 150.03 577 729.38
Dataset 20 87.47 557 641.91
Metric 5 15.12 552 626.80
Classifier 7 18.25 545 608.55
ResearcherGroup:Dataset 3 5.76 542 602.79
ResearcherGroup:Metric 6 15.30 536 587.49
Dataset:Metric 1 0.11 535 587.38
ResearcherGroup:Classifier 32 95.63 503 491.75
Dataset:Classifier 7 2.14 496 489.61
Metric:Classifier 4 0.27 492 489.34
ResearcherGroup:Dataset:Metric 0 0.00 492 489.34
ResearcherGroup:Dataset:Classifier 0 0.00 492 489.34
ResearcherGroup:Metric:Classifier 0 0.00 492 489.34
Dataset:Metric:Classifier 0 0.00 492 489.34
ResearcherGroup:Dataset:Metric:Classifier 0 0.00 492 489.34

Table 4
4-way ANOVA Using the 3 Most Frequently Used Datasets (MCC = Response Variable)

% of total
Df Sum Sq variance F value Pr(>F)

ResearcherGroup 17 2.380 22.16 8.449 0.000
ResearcherGroup:Classifier 23 0.636 5.93 1.670 0.028
Dataset 2 0.578 5.38 17.452 0.000
Classifier 7 0.378 3.52 3.263 0.002
ResearcherGroup:Dataset 2 0.236 2.19 7.113 0.001
Residuals 394 6.528 60.78

RAw DATA

Our raw data and the R scripts are available from
https:// codefeedback.cs.herts.ac.uk/mlbias.
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