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THESIS ABSTRACT 

Cerebral palsy (CP) is a heterogeneous disorder in which movement and posture are 

affected. Increased excitation of the central nervous system leads to neural symptoms, 

which can cause spasticity and muscle weakness. These neural abnormalities result in 

secondary CP-related mechanical adaptations of muscles and tendons, which can lead to 

muscle contracture, joint deformities and pain. Therapeutic interventions are therefore 

essential to treat CP-induced abnormalities. Passive stretching in particular is a popular 

treatment method in clinical practice. However, due to a lack of scientific evidence, 

clinicians often have to make assumptions about the mechanical adaptability of muscles 

and tendons. Currently, the mechanical properties of muscles and tendons in children 

with CP and their adaptability are not well understood, which makes it difficult to 

implement evidence-based practice in clinical settings. Therefore, the overall purpose of 

this research was to examine the mechanical properties of the medial gastrocnemius 

muscle and Achilles tendon in children with spastic CP, and the adaptations of the 

muscle and tendon to acute and long-term passive stretching.  

 

The first experimental Chapter (3) was carried out in healthy adults, to assess the 

agreement between two methods of deriving Achilles tendon stiffness (i) active 

contraction of the triceps surae muscles to elongate the Achilles tendon, or (ii) passive 

rotation of the ankle joint. Taking into consideration the tendon’s viscoelastic response, 

the effects of strain-rate on Achilles tendon stiffness were also described. Results 

revealed that tendon stiffness measured using the “active method” was 6% greater than 

the “passive method”. There was also a significant increase in Achilles tendon stiffness 

in response to increased strain-rate. As the more commonly used active method is 

problematic to be used in children with CP, due to muscle weakness and excessive co-



v 
 

contraction, the passive method of deriving tendon stiffness was used in subsequent 

experimental studies. In experimental Chapter 4, differences in the mechanical 

properties of the Achilles tendon and triceps surae muscles between children with CP 

and their typically developing (TD) peers, were investigated. The results revealed that 

estimates of triceps surae muscle stiffness were significantly greater in children with 

CP compared to TD children. The results also showed that despite a smaller tendon 

cross-sectional area in children with CP, Achilles tendon stiffness was not different 

between groups. In addition, children with CP had a steeper tendon stiffness-strain-rate 

relationship compared to TD children. These results have significant clinical 

implications regarding the diagnosis of spasticity using the current clinical methods. 

 

Experimental Chapters 5 and 6 examined the muscle’s and tendon’s response to stretch. 

Passive stretching, implemented by a clinician or by the children themselves, is a 

commonly used intervention for children with CP with the aim of inducing structural 

alterations in muscles and tendons to improve function. In order for these alterations to 

take place, elongation of the muscle and fascicles would presumably need to occur with 

acute stretching. To date, this assumption has not been tested. Thus, the purpose of 

Chapter 5 was to investigate the medial gastrocnemius and muscle fascicle response to 

acute stretching, using two commonly used stretch techniques. Results of this study 

revealed that 100 s of stretching caused a transient increase in tendon (1.0 cm), muscle 

(0.8 cm) and fascicle lengths (0.6 cm). This effect was independent of stretch technique. 

These results provide evidence that the muscle and fascicles are capable of elongating in 

response to stretch in children with spastic CP. They provide a basis for the hypothesis 

that the spastic muscle may be able to adapt in response to long-term stretching. Thus, 

the purpose of the final experimental Chapter (6) was to assess the effects of a six week 
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passive stretching intervention (four days per week, 15 minutes per day) on muscle and 

tendon properties, and gait parameters in children with CP. Results revealed there was a 

significant reduction in joint stiffness in the experimental group following six weeks of 

stretching. This was accompanied by a reduction in muscle stiffness, but with no 

alterations in Achilles tendon stiffness. Additionally, there were no positive effects of 

passive stretching on gait parameters. Together, the results of the present series of 

investigations demonstrates how fundamental knowledge of muscle and tendon 

mechanics in children with spastic CP, can be implemented to support evidence-based 

clinical practice. 
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CHAPTER 1: GENERAL INTRODUCTION 

Cerebral palsy is the most common movement disorder in children, with an incidence of 

1.5 to 2.5 cases per 1000 live births (Cans, 2000). The exact cause is unclear, but it is 

thought to occur most commonly during pregnancy or birth (Rosenbaum, 2003). In 

patients with CP, aspects of normal function are disturbed by damage to the motor 

cortex and descending tracts, and several aetiologies may occur as a result. The 

heterogeneity of symptoms is vast, and the degree of the resultant disability can also 

span a wide spectrum, ranging from mild to severe. The most prevalent form is spastic 

CP, affecting around 80% of all children diagnosed (Cans, 2000).  

 

During the time course of CP, neurological symptoms are initially dominant, causing 

inhibitory effects on the central nervous system resulting from the extinction of many 

spinal reflex responses (Sheean & McGuire, 2009). As interrupted and disused 

descending nerve cells degenerate, there is an emergence of abnormal and excessive 

reflex responses, shifting the central nervous system towards a state of increased 

excitation; suggesting some neuronal plasticity of the central nervous system (Sheean, 

2002). In particular, increased excitation of the tonic stretch reflex may cause spasticity, 

which is defined as “a velocity-dependent increase in muscle tone” (Burke, Gillies & 

Lance, 1970; Burke, Levine & Zajac, 1971; Lance, 1980, pp. 485). This can lead to 

excessive co-contraction (Stackhouse, Binder-Macleod & Lee, 2005) and also muscle 

weakness, which are common neurological symptoms caused by altered neural 

activation of the muscle (Rose & McGill, 2005) and impaired motor unit recruitment 

patterns (Macefield, Fuglevand & Bigland-Ritchie, 1996).  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sheean%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19769916
http://www.ncbi.nlm.nih.gov/pubmed?term=McGuire%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=19769916
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CP-related neurological changes can lead to secondary musculoskeletal adaptations. 

Since the antagonist muscles are often too weak to counteract contraction of the spastic 

muscle, it remains in a constantly shortened state, preventing it from stretching during 

daily functional tasks (Smith et al., 2009). A lack of stretch stimulus to the spastic 

muscle prevents it from adapting in line with bone growth (Hägglund & Wagner, 2011; 

Rang, Silver & de la Garza, 1986). This can lead to musculoskeletal alterations 

including a reduced muscle belly length (Wren et al., 2010), accompanied by fewer in-

series sarcomeres (Smith, Lee, Ward, Chambers & Lieber, 2011), as well as alterations 

in the structure and integrity of intra- and extra-muscular connective tissue (Gagliano et 

al., 2013; Smith et al., 2011). These secondary CP-related musculoskeletal changes can 

lead to further increases in joint stiffness for children with spastic CP (Alhusani, 

Crosbie, Shephard, Dean & Scheinberg, 2010; Barber, Barrett & Lichtwark, 2011a). 

 

Currently, treatment interventions for CP mainly focus their attention towards children, 

as opposed to adults. The reason is that secondary musculoskeletal alterations get 

progressively worse during the time of maturation because of accelerated bone growth 

(Miller, 2007, pp. 218). However, bones and musculature do not usually become fully 

established until adolescence, which provides a window of opportunity in which 

interventions can influence musculoskeletal adaptations. These interventions are vast, 

and with no consensus with regards to durations, frequencies and intensities (Pin, Dyke 

& Chan, 2006; Wiart, Darrah & Kembhavi, 2008). This demonstrates that a significant 

gap exists between clinical rationale and research evidence. As such, some of the 

assumptions made in clinical practice with regards to CP are questionable. One such 

assumption is that the muscle-tendon unit adapts atypically in children with CP 

compared to TD children (Alhusani et al., 2010; Barber et al., 2011a)  It becomes clear 



3 
 

that a fundamental knowledge of the mechanical properties of the muscle and tendon in 

children with CP is necessary, in order to implement effective and evidence-based 

clinical practice. 

 

Over recent years, researchers have started to describe the mechanical abnormalities of 

the muscle in children with spastic CP (Barber et al., 2011a; Barber, Hastings-Ison, 

Baker, Barrett & Lichtwark, 2011b; Wren et al., 2010). Some of these changes include a 

reduced muscle belly length (Malaiya et al., 2007; Wren et al., 2010), reduced muscle 

volume (Barber et al., 2011b; Malaiya et al., 2007) and increased intra- and extra-

muscular connective tissue (Booth, Cortina-Borja & Theologis, 2001). Results from 

these studies have increased our understanding of the spastic muscle dramatically, and 

provide the basis for several lines of research. These include CP-related abnormalities in 

the mechanical properties of the tendon and the muscle’s mechanical response to 

clinical interventions such as stretching, which are the focus of this thesis.  

 

A large gap exists in the literature, relating to the tendon’s adaptations in response to 

abnormal mechanical properties of the spastic muscle. The stimuli through which 

tendon stiffness develops during maturation in TD children, may be different in children 

with spastic CP due to a lack of mechanical loading (Samson-Fang & Stevenson, 1998). 

In children with CP, where excessive muscle weakness and reduced force producing 

capabilities are prevalent, the stiffness of the tendon is likely to be even more central to 

the production of movement (Fonseca, Holt, Fetters & Saltzman, 2004; Tedroff, 

Knutson & Soderberg, 2008). Thus, the CP-related changes and mechanical properties 

of the muscle and tendon should not be considered independent to one another, and this 
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warrants further investigation of how the tendon, in particular, adapts in children with 

spastic CP.  

 

The tendon itself has viscoelastic properties (Le Veau 1992, pp. 33-37), which implies 

that tendon stiffness increases with an increase in the rate at which the tendon is 

stretched (Pearson, Burgess & Onambele, 2007), although this has not been 

demonstrated in the Achilles tendon. A velocity-dependent increase in tendon stiffness 

would raise questions with regards to the clinical test of spasticity. For example, 

spasticity, defined as a “velocity dependent increase in tone” (Lance, 1980, pp. 485), is 

currently assessed using the Modified Ashworth Scale (Bohanon & Smith, 1987). Here, 

an increase in tone in response to repeated joint rotations at different angular velocities 

is considered to represent spasticity. However, it could be the case that any velocity-

dependent increase in stiffness using this method is the result of the tendon’s 

mechanical properties such as viscoelasticity, and not a neural response (spasticity). 

Such knowledge would have important implications for the current clinical test of 

spasticity.  

 

Our current lack of understanding with regards to CP-related muscle and tendon 

abnormalities makes it difficult to determine what the aim of clinical interventions 

should be. Currently, increased muscle and joint stiffness represent the target of several 

clinical interventions. Specifically, increased stiffness is considered to impair function 

for children with CP by restricting joint range of motion (ROM) (Ward & Bandi, 2010, 

pp. 370). The clinical assumption is that increasing muscle length and decreasing joint 

stiffness may restore joint ROM and improve function; whilst delaying or preventing 

muscle contracture. For this purpose, passive stretching has been commonly and 
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routinely prescribed for children with spastic CP for a number of years and still 

continues to be advocated, often in conjunction with other interventions (Damiano, 

2009; National Institute for Health and Care Excellence, 2012). Passive stretching can 

be delivered by physiotherapists and/or prescribed as part of a home therapy 

programme, delivered by parents and care givers. In theory, passive stretching may 

stimulate an increase in the number of in-series sarcomeres, (Coutinho, Gomas, França, 

Oishi & Salvini, 2004; Lieber, Steinman, Barash & Chambers, 2004) and/or alter the 

intra- and extra-muscular connective tissue, thereby reducing passive stiffness within 

the muscle. However, the clinical assumption that passive stretching can alter muscle 

mechanics is not obvious. For example, different relative stiffness’s of the muscle and 

tendon could cause different magnitudes of stretch in each component of the muscle-

tendon unit for a given force. If the tendon is more compliant than the muscle, any 

stretch applied acutely to the joint could be taken up solely by the tendon, with no 

alterations in the length of the muscle or fascicles. If this were the case, the muscle 

would not be expected to respond to long-term stretching, and this would bring into 

question the efficacy of passive stretching as an intervention to induce muscle length 

and muscle stiffness changes. 

 

Despite the lack of understanding with regards to CP-related muscle and tendon 

abnormalities, there is still widespread use of passive stretching as a long-term 

intervention in CP (Wiart et al., 2008). The main issue with stretching studies to date 

are the relatively global outcome measures used (Pin et al., 2006; Wiart et al., 2008). 

For example, maximal joint ROM and joint stiffness are commonly reported following 

weeks or months of stretching (Guissard & Duchateau, 2004; McNair & Stanley, 1996; 

Rosenbaum & Hennig, 1995) but these do not provide information on the constituent 
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components i.e., muscle and tendon changes. This makes it difficult to assess the 

effectiveness of current treatment outcomes.  

 

In clinical practice, the assumption made is that long-term stretching can reduce muscle 

stiffness, which will lead to overall reductions in joint stiffness and improved function. 

The research on long-term passive stretching is largely inconclusive (Miedaner & 

Renander, 1987; O’Dwyer, Neilson & Nash, 1994). Evidence from animal studies 

(Coutinho et al., 2004; Tabary, Tabary, Tardieu, Tardieu & Goldspink, 1972) suggests 

that stretching may be able to alter muscle length and stiffness, but it is not clear to what 

extent stretching could alter the properties of the tendon. Crucially, previous research 

rarely represents frequencies or durations commonly used in clinical practice (Wiart et 

al., 2008), and clinicians often use much shorter duration stretches than has previously 

been studied. Thus, the effectiveness of these clinically relevant stretching interventions 

on the properties of the muscle and tendon must be investigated more thoroughly. 

 

Finally, it is assumed that reducing joint stiffness and increasing joint ROM will lead to 

improvements in functional movement for children with spastic CP. The clinical 

assumption is that increased joint stiffness is a direct result of neurological damage to 

the central nervous system, causing alterations in movement patterns, and leading to 

movement dysfunction. However, studies of populations, whose ability to perform 

voluntary movements is impaired (i.e., aging, Stroke, Down’s syndrome), suggest the 

idea that observed movements are different, but not necessarily dysfunctional (Latash & 

Anson, 1996). This view would suggest that muscle and tendon adaptations in children 

with spastic CP may be, at least in part, a compensatory mechanism through which 
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some degree of function is maintained. Thus, the effects of long-term passive stretching 

on function will also provide important information for clinicians. 

 

The overall purpose of this research was to investigate triceps surae muscle and 

Achilles tendon alterations in children with spastic CP, and the response to passive 

stretching, with the goal of informing evidence-based clinical practice. For this purpose, 

four experiments were performed. The first two experimental Chapters (3 and 4) were 

designed to gain a fundamental knowledge of the relevant muscle and tendon 

mechanical properties. Specifically, the purpose of the Chapter 3 was to determine the 

agreement between two methods for measuring tendon stiffness. Commonly, Achilles 

tendon stiffness is derived by activating the muscle and recording associated changes in 

tendon elongation and force during this time. Previous observations have demonstrated 

that this method may be problematic for children with CP due to excessive muscle 

weakness and co-contraction (Sheean, 2002; Stackhouse et al., 2005; Tedroff et al., 

2008). This may also affect the ability of children with CP to standardise the rate at 

which force is developed. Thus, the agreement between passively rotating the ankle 

joint to elongate the Achilles tendon in healthy adults, and the commonly used “active 

method” of deriving Achilles tendon stiffness was investigated. In addition, the strain-

rate response of the Achilles tendon to stretch was also described. The purpose of the 

Chapter 4 was to describe the material and mechanical properties of the triceps surae 

muscles and Achilles tendon in children with spastic CP compared to TD children, 

using the “passive method” of determining stiffness. Additionally, the strain-rate 

response of the Achilles tendon in these groups was investigated. 
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The final two studies Chapters (5 and 6) were designed to apply this fundamental 

knowledge in clinically relevant contexts. Specifically, their goal was to understand the 

muscle and tendon response to stretch in CP. Chapter 5 examines the effects of acute 

stretching on medial gastrocnemius muscle belly and fascicle lengths, with the goal of 

establishing whether the muscle is capable of receiving a stretch during passive 

exercises. Following on from the findings of this study, the purpose of the final Chapter 

(6) was to examine the adaptability of the triceps surae muscles and Achilles tendon to 

long-term repeated stretching over six weeks. The effect of stretching on gait 

parameters in children with spastic CP was also investigated. Before these experimental 

Chapters are presented, the literature relevant to the background of the experimental 

research is critically reviewed. The topics of interest describe the nature of CP and the 

associated symptoms related to their effect on muscle and tendon properties. Research 

related to acute and long-term effects of stretching in CP are also reviewed.   
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CHAPTER 2: CRITICAL REVIEW OF THE LITERATURE 

2.1 Control of voluntary movement  

Voluntary motor commands that reach the spinal cord, are the result of distributed 

activity in several areas of the brain. The primary motor cortex (Broadmann area 4), 

situated in the pre-central gyrus, makes the majority of connections with motor neurons 

in the spinal cord to produce voluntary movement. Also involved is Broadmann area 6, 

which can be sub-divided into two main areas; the pre-motor area and supplementary 

motor area. Besides sending fibres to the spinal cord, these two areas send fibres to the 

primary motor cortex and thus, are thought to instruct it of what to do. Upper motor 

neurons from Broadmann areas 4 and 6 give rise to most fibres of the corticospinal 

tract, which together with the corticobulbar tract; form the pyramidal tract. The 

intactness of this pathway is considered to be crucial in our ability to perform voluntary 

movement. From here, the axons of upper motor neurons descend through the internal 

capsule, the cerebral peduncle, the pons and the medulla, and finally establish synaptic 

connections in the spinal grey matter (Figure 2.1). Here, upper motor neurons synapse 

onto lower motor neurons and interneurons in the ventral (anterior) horn. Other efferent 

fibres from the primary motor cortex reach other cortical and sub-corticol nuclei also 

involved in movement control. From these nuclei arise the reticulospinal and 

vestibulospinal tracts, which collectively form the parapyramidal tract. Further 

modification of the motor commands occurs at the spinal cord level by spinal reflex 

mechanisms. These may be simple monosynaptic connections involving only one 

synapse between a peripheral sensory receptor and the central motor neurons, or more 

complex involving several synapses and interneurons. 
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Figure 2.1. Diagram of the cerebral cortex and the main descending tracts involved in 

the control of voluntary movement.  

 

2.1.1 Stretch reflex  

The spinal reflex responsible for the control of muscle length and tone is termed the 

“stretch reflex”, and is important for the regulation and modification of movement. 
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Many other synapses also exist to control more complex changes in length and tone, for 

example during joint motion. These synapses are moderated by several pre- and post-

synaptic mechanisms. The stretch reflex arc is initially regulated by sensory muscle 

spindles. These are proprioceptive stretch receptors, which lie in the muscle belly and 

transmit information regarding muscle length and the rate of change in muscle length. 

Depending on the velocity of stretch, fast, slow or no phasic response at all can be 

produced. For example, a muscle stretched at high velocity will evoke a strong phasic 

stretch reflex response. Here, type Ia sensory fibres, which surround specialised 

intrafusal muscle fibres (nuclear bag and nuclear chain fibres) within the spindle are 

excited due to mechanical stimulation. When a muscle is stretched and held at a 

stretched length, a tonic stretch reflex will also be elicited. Stretch of the spindle 

receptors in this situation elicits excitations in type II fibres. These fibres initially 

respond by resisting the stretch due to their passive elastic properties. At a particular 

length, termed the “tonic reflex threshold”, the muscle spindle is activated.  

 

Type Ia sensory afferent fibres enter the spinal cord via the dorsal (posterior) roots, and 

make monosynaptic connections with alpha motor neurons of the origin muscle. A 

single alpha motor neuron innervates a varying number of extrafusal muscle fibres, 

which can cause contraction, and resistance against the stretch. The Ia afferent fibres 

also connect with inhibitory interneurons, which are under supraspinal influence. These 

project directly to the alpha motor neurons of both agonist and antagonist muscles, and 

may cause pre- or post-synaptic inhibition through the release of neurotransmitters: 

Gamma-aminobutyric acid and Glycine. Consequently, when the agonist muscle is 

excited, antagonists are inhibited simultaneously; a mechanism called reciprocal 

inhibition.  
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 The stretch reflex can also be modified via other mechanisms. Gamma motor neurons 

transmit impulses to intrafusal muscle fibres from supraspinal structures, thereby 

influencing the responsiveness of the spindle afferents. Specialised interneurons located 

in the ventral (anterior) horn, Renshaw cells, are excited by recurrent collateral branches 

of alpha motor neurons before they exit the spinal cord. Renshaw cells inhibit the alpha 

motor neuron in order to limit and stabilise the discharge frequency (recurrent 

inhibition).  

 

Finally, Golgi tendon organs located in the muscle-tendon junction, detect changes in 

tension exerted by the muscle (Ivanhoe & Reistetter, 2004; Sehgal & McGuire, 1998). 

They supply feedback to the central nervous system via type Ib afferents. Together 

muscle receptors (spindles and the Golgi tendon organs) can influence the control of 

movement via the regulation of muscle length and tone. At the same time, interneurons 

receive a wide range of inputs from several different sources, both peripheral and 

supraspinal. As a consequence, spinal cord reflex responses depend upon ongoing 

activity in the surrounding interneurons. Excitation of these interneurons reduces 

neurotransmitter release, thereby maintaining a tonic inhibitory influence on the reflex 

arc. Overall, the activation of motor neurons via the reflex arc, leads the muscle to 

develop an active force, which further opposes the stretch (Figure 2.2).  
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Figure 2.2. Polysynaptic spinal reflex.  

 

In patients with CP, aspects of this normal pattern of cortical and spinal control are 

disturbed by damage to the motor cortex and descending tracts, along with other areas 

of the cerebrum (sensory, memory, learning, language). Some of the primary 

impairments include abnormal muscle tone, excessive co-contraction, sensory deficits, 

spasticity and muscle weakness. As a result of these impairments, children with CP 

have one of the most sedentary lifestyles across paediatric disability (Longmuir, 2000). 

This cycle of inactivity may become progressively worse leading to the development of 
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secondary impairments in the musculoskeletal system, and a further loss of function 

(Bottos, Feliciangeli, Sciuto, Gericke & Vianello, 2001; Damiano, 2006).  

 

2.1.2 Classifications of CP 

The exact symptoms and the extent to which these affect movement are dependent on 

the type of CP (Figure 2.3). Three main types exist: ataxic, dyskinetic and spastic, with 

each being characterised by the area of the brain which is damaged. In patients with 

ataxic CP, impairments of coordination are dominant, often with hypermetric 

movements in the extremities. Dyskinetic CP can be divided into athetoid, characterised 

by involuntary movements, or dystonic, where powerful contractions of the agonist and 

antagonist muscles occur simultaneously. These types of CP are considered “whole 

body involvements”. Spastic CP is the most common affecting approximately 85% of 

patients (Cans, 2000). It is caused by an interruption of descending input to the spinal 

cord from the brain, and is characterised predominantly by spasticity and muscle 

weakness (Damiano, Vaughan & Abel, 1995).  

 

Spastic CP is further classified with regard to localisation. Hemiplegia predominantly 

affects one side of the body, and as such is defined as a unilateral involvement where 

damage to the upper motor cortex (affecting the foot and hip) and lower motor cortex 

(affecting trunk, arm and hand) on one side of the brain will cause a deficit in the 

contralateral side of the body. Diplegia is a bilateral involvement in which only the 

lower limbs are affected, or are more affected than the upper limbs. It is caused by 

damage to the upper motor cortex of the brain. Finally, quadriplegia is defined as a 

bilateral involvement, in which the upper extremities are equally, or more affected than 

the lower extremities. 
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Figure 2.3. Classification of CP. Ataxic and dyskinetic CP have “whole body 

involvement”, whilst spastic CP is classified according to which limbs are affected and 

is a “partial body involvement”. 

 

2.2 Neural symptoms of spastic CP 

Neurological symptoms that contribute to a loss of function are the first to develop after 

a lesion to the brain and upper motor neurons (Sheean & McGuire, 2009). This lesion 

commonly results in the immediate extinction of many spinal reflex responses. As 

interrupted and disused descending nerve cells degenerate, extensive sprouting occurs at 

the level of the spinal cord. The physiological result is the gradual emergence of 

abnormal and excessive reflex responses. There may also be rearrangement in higher 

centres, such as new strategies for eliciting movement and an increased reliance on 

undamaged descending pathways (Gracies, 2001). These mechanisms result in a 

Diplegia Hemiplegia Quadriplegia Dystonic Athetoid 

SPASTIC ATAXIC DYSKINETIC 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sheean%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19769916
http://www.ncbi.nlm.nih.gov/pubmed?term=McGuire%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=19769916
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complex pattern of atypical movement, muscle weakness and altered spinal reflex 

activity.  

 

The symptoms of upper motor neuron syndrome are described as either “positive 

phenomena”, characterised as excess symptoms, which are additional to normal motor 

behaviour, and “negative phenomena”, characterised by deficits in motor behaviour 

(Figure 2.4).  Spasticity is one positive sign associated with upper motor neuron 

syndrome, but is often used as a generic term for all features (Sheean, 2002). Upper 

motor neuron syndrome can occur following any lesion affecting some, or all of the 

descending motor pathways. 
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Figure 2.4. Positive and negative signs of upper motor neuron syndrome (Adapted from 

the work of Jackson, 1958). 

 

2.2.1 Aetiology of positive signs 

Upper motor neurons include supraspinal inhibitory and excitatory pyramidal fibres, 

which descend into the spinal cord and exert a balance of inhibitory and excitatory input 

to spinal reflexes. Parapyramidal fibres, under cortical control, arise from the pre-motor 

cortex and facilitate the medullary reticular formation - a powerful inhibitory centre to 

regulate muscle tone. From this descends the medullary reticulospinal tract. Higher up 
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in the brainstem, the hypothalamus and sub-hypothalamus are thought to be the origin 

of excitatory inputs, which descend through the pontine reticulospinal tract. 

Additionally, the vestibular nucleus gives rise to the vestibulospinal tract, which is also 

involved in excitation and facilitates spinal reflexes (Sheean, 2002) (Figure 2.1).  

 

Research has shown that damage to just the pyramidal tract produces only minimal 

neurological deficits (Bucy, Keplinger & Siqueira, 1964). There may be some hand and 

foot weakness, a mild exaggeration of the deep tendon reflex and a Babinski sign, but 

spasticity and other forms of muscle overactivity do not occur. Instead, there are also 

parapyrimidal fibres, which run close to the pyramidal tract that must also be affected 

for spasticity to be present (Burke, 1988). Specifically, these are thought to be lesions 

affecting the reticulospinal tracts and the vestibulospinal tract. Damage to these gives a 

net loss of inhibitory control in the spinal reflexes (Brown, 1994; Burke, 1988; Pandyan 

et al., 2005). Since these fibres run in different areas of the spinal cord, lesions may 

affect one fibre tract but not another. It is the variations in severity and the location of 

lesions, which leads to a variety of clinical syndromes. Consequently, different patients 

with a lesion in the same area can show vast variations in the clinical pattern of spastic 

CP. 

 

2.2.2 Positive signs 

Abnormal processing of spinal reflexes contributes to a great deal of the positive 

phenomena seen in upper motor neuron syndrome, including spasticity (Sheean, 2002). 

These symptoms may be a result of disturbed efferent or afferent drives, which can 

affect both nociceptive (cutaneous) reflexes and proprioceptive reflexes. The 

mechanisms underlying these abnormal reflexes are not clear but may result from 



19 
 

inhibitory changes such as Ia pre-synaptic inhibition, Ib non-reciprocal inhibition, 

impaired recurrent and/or reciprocal inhibition and increased alpha motor neuron 

excitability (Sheean, 2008, pp. 40-50). The clinical symptoms associated with disturbed 

efferent and afferent drives are briefly described below. 

 

Efferent drives from the motor neurons during reflex activity are not only dependent 

upon peripheral afferent feedback, but may be driven by reflex activity higher in the 

central nervous system. One positive symptom of upper motor neuron syndrome, spastic 

dystonia, may arise from efferent mediated sources such as a tonic supraspinal drive to 

the alpha motor neurons, although the underlying cause is unclear. Children with CP 

may sometimes adopt a posture, not related to voluntary movement or to reflex action, 

and can be considered to display the symptom of spastic dystonia. 

 

2.2.2.2 Nociceptive reflexes.  These reflexes are mediated by non-proprioceptive 

afferents from the skin, and other tissues, which sub-serve the sensory modalities. These 

lead to the clinical phenomena of flexor spasms, extensor spasms, and the Babinski 

sign.  Both flexor and extensor spasms occur in the TD brain to withdraw a limb away 

from a stimulus. In a spastic muscle, these spasms represent a disinhibited and distorted 

flexor withdrawal reflex, probably due to a loss of supraspinal control. Additionally, the 

Babinski sign is also best considered a disinhibited flexor withdrawal reflex. It is 

present in newborn babies and disappears shortly after. However, in upper motor neuron 

syndrome, the Babinski reflex returns and can inhibit aspects of movement for children 

with CP. 

 

2.2.2.3 Proprioceptive reflexes. These reflex arcs relay sensory information about 

movement and position, and are mediated by muscle spindles. A stretch of the spindles 
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causes a discharge of their sensory afferents, which synapse directly with, and cause 

excitation, of alpha motor neurons. As previously described (Section 2.1.1 Stretch 

reflex), this stretch reflex arc may be phasic or tonic. Hyperexcitability of the phasic 

reflex causes clinical signs including hyperreflexia and clonus. The traditional view is 

that percussion of the tendon causes a brief muscle stretch, and a synchronous discharge 

of muscle spindle and Ia afferent activity, which excites alpha motor neurons. These 

signs may be difficult to extinguish, occurring spontaneously after only minor 

movements of the limb. In addition, the clasp-knife phenomenon can also be observed 

in clinical practice as an initial resistance to stretch, which then suddenly diminishes. 

This also arises because of hyperexcitability of the phasic stretch reflex and also the 

tonic stretch reflex.   

 

The positive phenomenon of hypertonia describes an increase in muscle tone, but does 

not distinguish between the neural and mechanical components. Muscles may become 

stiff, as a result of secondary musculoskeletal changes (discussed in section 2.3), which 

manifests as an increase in tone in children with spastic CP. Additional increases in tone 

are thought to be due to hyperexcitability of the tonic stretch reflex, thus, compromising 

a neural component (spasticity). For some time, the accepted definition of spasticity was 

that proposed by Lance (1980), “a motor disorder characterised by a velocity-dependent 

increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting 

from hyperreflexia of the stretch reflex as one component of the upper motor neurone 

syndrome” (Lance, 1980, pp. 485). This describes spasticity with two main features; 

increased resistance to stretch that increases above a threshold, and increased resistance 

to stretch with increased speed of stretch, due to alterations in the tonic stretch reflex.  
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Evidence for spasticity seems to favour a decrease in the threshold of the tonic stretch 

reflex. Specifically, less afferent input is necessary to trigger stretch reflex activity in 

the presence of an upper motor neuron lesion. This would mean that patients with 

spasticity can have the muscle triggered by a smaller stimulus than in people with no 

spasticity. The shift of the stretch reflex threshold has been based on the “equilibrium 

point hypothesis” (Jobin & Levin, 2000). Briefly, this theory emphasises that in a 

healthy muscle, central commands from the brain use stretch reflexes to change the 

muscle length threshold at which motor neurones are recruited. For a fixed descending 

command, all equilibrium points will form a force-length curve. Typically, a muscle can 

relax at any angle. This means that the force-length properties of the muscle can be 

shifted outside the range of anatomical muscle length. A person can also produce high 

force even when the muscle is at its shortest length. In a spastic muscle, patients lose the 

ability to shift the threshold over the whole range, perhaps due to a lack of sensory 

feedback (Latash, 2008, pp. 314). A constricted range of voluntary threshold shifts may 

be associated with excessive muscle activity, while afferent signals may trigger 

threshold shifts that lead to uncontrolled spasms.  

 

Also described in the definition of spasticity, is the velocity-dependent aspect, which 

describes that slow movements would not reveal hypertonia but fast movements would. 

Thilmann, Fellows and Garms (1991), showed the stretch reflex threshold to occur at 

200 deg∙s
-1

 in a healthy population. This was an important finding because it indicated 

that at the lower velocities of movement used to test muscle tone, there is no stretch 

reflex. The situation was different in spastic muscles where a stretch reflex could be 

elicited in movements as slow as 35 deg∙s
-1

. In this context, spasticity may be 

considered as a new reflex rather than the disinhibition of an existing one. 
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A positive correlation between velocity and stretch reflex activity also confirms the 

velocity-dependent aspect of spasticity (Burke et al., 1970; Burke et al., 1971; Burke & 

Ashby, 1972; Powers, Campbell & Rymer, 1989). However, this velocity-dependence is 

not exclusive to spasticity, and there is insufficient evidence to support the theory that 

the abnormal muscle activity results exclusively from hyperexcitability of the stretch 

reflex, as other afferents (nociceptive and proprioceptive pathways) may also be 

implicated. For this reason, the SPASM consortium has recently given spasticity a 

wider definition, “disordered sensori-motor control resulting from upper motor neuron 

lesion presenting an intermittent or sustained involuntary activation of muscles” 

(Pandyan et al., 2005). This incorporates all positive aspects of upper motor neuron 

syndrome. 

 

Spasticity is the most widely studied of all positive phenomena in upper motor neuron 

syndrome, because for some time, spasticity was considered the main cause of muscle 

contracture and atypical movement in a spastic muscle. However, this assumption has 

been built largely on circumstantial evidence, with no human study supporting it. In a 

key study by Cosgrove, Corry and Graham (1994), one group of spastic newborn mice 

were injected with Botulinum toxin-A (to relax the muscle), and a second (control) 

group with saline. After a two month growth period, the Botulinum Toxin-A group 

showed no signs of muscle contracture compared to the group injected with saline. The 

authors concluded that their findings provided evidence that spasticity was the cause of 

muscle contracture. However, since then it has been demonstrated that in mice, 

symptoms of tremors and spasms are prevalent, which differs from the clinical picture 

of spasticity in humans (Gough, Fairhurst & Shortland, 2005). In addition, O’Dwyer, 

Ada and Neilson (1996) also demonstrated that in a spastic muscle, contracture was 
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present even in the absence of an abnormal stretch reflex. They argued the abnormal 

stretch reflex associated with spasticity was insufficient to explain the increased muscle 

tone (Hufschmidt & Mauritz, 1985; O’Dwyer et al., 1996). Thus, other non-neural 

factors, such as musculoskeletal alterations, must also play a role. 

 

2.2.3 Negative signs 

The neurological mechanisms that contribute to symptoms of spasticity are also thought 

to play a role in the muscle weakness seen in CP (Cowan, Stilling, Naumann & 

Colborne, 1998; Leonard, Moritani, Hirschfeld & Forssberg, 1990; O'Sullivan et al., 

1998; Sheean, 2002; Stackhouse et al., 2005; Tedroff et al., 2008). A reduced/altered 

neural activation of the muscle has been demonstrated in children with CP during a 

maximal voluntary contraction, compared to controls (Rose & McGill, 2005), which 

may contribute to muscle weakness. This abnormal neural activation is thought to be 

caused by an incomplete motor unit recruitment pattern (Macefield et al., 1996), a 

reduced motor neuron firing rate (Harrison & Connolly, 1971) and/or a reduced ability 

to recruit higher threshold (fast) motor units (Rose & McGill, 1998). This inability to 

produce high firing rates could also be responsible for structural abnormalities, 

including a predominance of Type I muscle fibres, and fibre size variability (Rose et al., 

1994), further contributing to muscle weakness. 

 

 During agonist contraction, the role of inhibitory neurons is to prevent the excitation of 

alpha motor neurons to the antagonist muscle. Without this mechanism, the contraction 

of both muscles occurs simultaneously. In TD children, a degree of co-contraction is 

used within the muscles as a basic motor control strategy for stability and improved 

motor control accuracy (Tedroff et al., 2008). Children with spastic CP however, 
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exhibit an inability to control the reciprocal inhibition of agonist and antagonist muscles 

(Leonard, Hirschfeld & Forssberg, 1991) due to increased excitation, coupled with the 

reduced function of inhibitory neurons. This often results in excessive co-contraction in 

children with CP. Stackhouse et al. (2005) demonstrated that children with spastic CP 

had significantly greater co-activation than TD children. This was also demonstrated by 

both Elder et al. (2003) and Ikeda, Abel, Granata and Damiano (1998) who observed 

significant reductions in agonist torque, as a result of antagonist overactivity. Thus, co-

contraction is thought to be the main neurological contributor to muscle weakness and 

reduced force output in children with spastic CP. 

 

In summary, several positive and negative phenomena occur as a result of a lesion to the 

brain and upper motor neurons. In the case of positive signs, spinal reflexes are usually 

tightly regulated. Therefore, if inhibitory control is lost, the balance is shifted in favour 

of excitation (Sheean, 2002), resulting in hyperexcitability of spinal reflexes. However, 

if the symptoms of spastic CP were simply a case of imbalance, then spinal reflexes 

should become hyperactive very quickly after the lesion. However, in most cases there 

is a delay particularly in humans, which suggests some neuronal plasticity or change in 

receptor sensitivity. Coupled with reductions in neuromuscular activation, children with 

spastic CP often suffer a range of debilitating symptoms, which prevent typical 

musculoskeletal growth.   

 

2.3 Musculoskeletal symptoms 

It is generally acknowledged that secondary CP-related alterations in the muscle and 

tendon, which cause further functional deficits, occur after the development of neural 

symptoms such as spasticity (Lieber et al., 2004). With the help of animal models and 
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clinical studies, a number of secondary musculoskeletal alterations to neurological 

impairment have been proposed, which may contribute to an increase in muscle-tendon 

unit stiffness and a reduction in muscle strength in children with spastic CP. These 

secondary changes are considered to be the main cause of muscle contracture (Wilson-

Howle, 1999).  

 

In TD children, maturational changes occur in the muscle, in line with changes in the 

skeletal system. As bone growth occurs, there is a stimulating effect on protein 

synthesis through regular load bearing. Muscle cross-sectional area increases as the 

muscle fibre splits lengthways, and there is a synthesis of new myofibrils within the 

existing muscle fibres (McComas, 1996, pp. 66-67). Muscle length also increases in line 

with bone growth, through regular stretching of the muscle and fascicles during daily 

movement. This stretch stimulus is thought to provoke the process of 

myofibrillogenesis, causing the addition of in-series sarcomeres to the ends of 

myofibrils.  

 

In children with spastic CP, reduced functional movement will reduce load bearing and 

muscle stretch. As such, muscles develop atypically in children with spastic CP. For 

example, neurological weakness of the antagonist muscle prevents it from counteracting 

hypertonia of the spastic muscle. Thus, it is constantly in a shortened state and is 

prevented from stretching during daily activity (Smith et al., 2009). As a result, the 

muscle does not lengthen in line with bone growth. This causes secondary structural 

changes within the muscle, which may contribute further towards movement 

inefficiencies in children with spastic CP (Rose, Gamble, Burgos, Medeiros & Haskell, 

1990).  
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2.3.1 Fibre type 

One such adaptation is a change in muscle fibre type. Skeletal muscle consists of 

different fibre types that can be classified into type I (slow oxidative fibres), type IIa 

(fast oxidative fibres) or type IIb (fast glycolytic fibres) based on their contractile and 

metabolic properties (Engel, 1998; Schiaffino et al., 1989). These muscle fibres are 

present in different proportions and are typically regarded as being genetically 

determined (Bouchard et al., 1986). However, research has shown that the proportion of 

fibre types is capable of changing depending on the muscle’s function (Pette & Staron, 

1997). 

 

In children with spastic CP, morphologic changes in contractile and non-contractile 

elements of the muscle have been described (Fridén & Lieber, 2003). Ito et al. (1996) 

found that muscle obtained from children with CP had almost twice the expected 

number of type I muscle fibres. In spastic CP, muscle activity is almost continuous and 

firing frequencies are never high, as a consequence the muscles contract at a much 

slower rate (Rose & McGill, 1998). This, in turn, produces a compensatory shift to a 

higher proportion of type I muscle fibres, which can produce only relatively small 

amounts of tension, but over a long period of time. Smith et al. (2011) identified this 

shift to slower fibre types from a significant increase in type I myosin heavy chain in 

spastic CP muscles. This may also partially explain the muscle weakness observed in 

children with spastic CP. 

 

2.3.2 Change in muscle size  

Muscle structure consists of repeating sarcomere units, which form myofibrils and are 

enclosed by a sarcolemma membrane, which receives and conducts electrical signals to 
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initiate myofibril contraction. Large numbers of myofibrils assemble together to form 

muscle fibres, and fibres are bound together into fascicles by perimysium to form the 

muscle. In TD children, it is well established that determinants of muscular strength 

include muscle size and fibre composition, although the main influencing factor is 

thought to be the muscle’s physiological cross-sectional area (Close, 1972; Ikai & 

Fukunaga, 1968; Maughan, Watson & Weir, 1983), which defines the number of 

sarcomeres in parallel. Most muscles have fibres that run at an angle (pennate) to the 

longitudinal axis of the muscle. Pennation angle allows a greater number of fibres to run 

in parallel, increasing the muscle’s physiological cross-sectional area and allowing the 

velocity of shortening to be higher (Woittiez, Huijing & Rozendal, 1984). Muscle 

pennation also allows a greater quantity of contractile tissue to attach to the tendon, and 

overall, affects the force-generating potential of the muscle.  

 

In the absence of measures of muscle physiological cross-sectional area, previous 

studies have reported muscle volume to make inferences about the reduced force-

producing capabilities of the muscles in children with CP (Fry, Gough & Shortland, 

2004; Lampe, Grassl, Mitternacht, Gerdesmeyer & Gradinger, 2006; Malaiya et al., 

2007; Mohagheghi et al., 2007). Given that physiological cross-sectional area can be 

computed from the ratio of muscle volume to fascicle length, and the differences in 

muscle volume tend to be more pronounced than differences in observed fascicle length 

(discussed in section 2.3.3), it seems reasonable to suggest that muscle volume is a 

major determinant of reduced physiological cross-sectional area in CP. Thus, in children 

with spastic CP, muscle weakness, secondary to a deficiency in motor unit activation, 

may also be related to reductions in muscle volume. Several studies have revealed that 

children with CP have muscle bellies up to 50% smaller compared with their TD peers 
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(Fry et al., 2004; Lampe et al., 2006; Malaiya et al., 2007; Mohagheghi et al., 2007).  

This reduction in volume has been attributed to a loss of in-series (Fridén & Lieber, 

2003; Fry et al., 2004; Tabary et al., 1972; Tabary, Tardieu, Tardieu & Tabary, 1981; 

Tardieu, Huet de la Tour, Bret & Tardieu, 1982; Williams & Goldspink, 1973) and/or 

in-parallel sarcomeres (Shortland, Harris, Gough & Robinson, 2002), which may 

contribute to muscle weakness and motor dysfunction. 

 

Due to the high correlation between muscle thickness and pennation angle (Ichinose, 

Kanehisa, Ito, Kawakami & Fukunaga, 1998; Kawakami, Abe & Fukunaga, 1993), it 

may be expected that the muscle volume reductions in spastic CP would also be 

accompanied by a reduction in pennation angle. However, this has not been 

conclusively demonstrated. Zhao et al. (2011) found that pennation angle was indeed 

reduced in patients with CP, due to a reduced muscle volume. However, both 

Mohagheghi et al. (2007) and Shortland et al. (2002) observed no change in pennation 

angle in CP. Mohagheghi et al. (2007) suggests that although pennation angle may be 

smaller due to a reduced muscle volume, other mechanisms may exist, which offset the 

negative effect of atrophy on pennation angle. In a non-disabled population, muscle 

fascicles rotate about their insertion points during contraction which increases pennation 

angle (Maganaris, Baltzopoulos & Sargeant, 1998a; Narici et al., 1996). In CP patients, 

hypertonia may cause this same fascicle rotation, thus increasing pennation angle. The 

conflicting results may be explained by different levels of hypertonia in patients. That 

is, with lower levels of hypertonia the muscle will not undergo the same degree of 

shortening or fascicle rotation. If patients with CP do indeed have no change in 

pennation angle, coupled with shorter muscle fibres, this will further affect the force-

generating capacity of the muscle (Maganaris, et al., 1998a). 
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2.3.3 Muscle length 

One of the most predominant alterations to disuse or immobilisation is a reduction in 

muscle belly length (Wren et al., 2010), and alterations in its constituent components. In 

animal studies, it has been shown that immobilisation of a muscle can lead to atrophy, 

which is shown to be the result of a reduced number of in-series sarcomeres. This was 

largely based on the work of and Tabary et al. (1981) and Williams and Goldspink 

(1973), who investigated the effect of immobilisation on rodent and cat muscle. When 

the muscle was immobilised in a shortened position it adapted by shortening muscles 

fibres through a significant reduction in the number of in-series sarcomeres.  Human 

models of disuse, such as unloading (De Boer, Maganaris, Seynnes, Rennie & Narici, 

2007; Seynnes, Maganaris, De Boer, di Prampero & Narici, 2008), bed rest (De Boer et 

al., 2008) and even ageing (Narici, Maganaris, Reeves & Capodaglio, 2003), have been 

shown to result in reduced muscle size, fascicle length and pennation angle, indicating a 

loss of in-series and in-parallel sarcomeres. 

 

Evidence for shorter fascicles in children with spastic CP is less conclusive (Barber et 

al., 2011b; Gao, Zhao, Gaebler-Spira & Zhang, 2011; Malaiya et al., 2007; Mohagheghi 

et al., 2007; Mohagheghi et al., 2008; Shortland et al., 2002).  Tardieu et al. (1982) 

observed an increase in the hypoextensibility of the triceps surae muscles compared 

with muscles of TD children. They concluded this reduction in extensibility was the 

result of an adaptive response through a loss of in-series sarcomeres. More recently, 

ultrasonography measurements have allowed for more direct estimations of fascicle 

length. Mohagheghi et al. (2007) observed a reduced fascicle length in the medial 

gastrocnemius in the affected leg of hemiplegic patients, which supported a reduction of 

in-series sarcomeres. However, using a similar method, Shortland et al. (2002) noted 
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that although muscle thickness was reduced compared to the control group, fascicle 

length did not differ. This was supported by Malaiya et al. (2007) who demonstrated no 

difference in fascicle lengths in children with CP. Moreau, Teffey and Damiano, (2009) 

supported both findings by demonstrating a reduced fascicle length in the rectus femoris 

but not in the vastus lateralis muscle. Thus, the evidence for a reduced fascicle length is 

inconclusive and may be dependent on the muscle of interest, or the methods of 

calculating absolute or relative fascicle length (Mohagheghi et al., 2008). 

 

Further research has reported an adaptation of the sarcomere itself (Carey & Burghardt, 

1993; Smith, et al., 2011). Lieber and Fridén (2002) used an intraoperative laser 

technique on the flexor carpi ulnaris muscle and revealed first, that sarcomere lengths 

were increased in spastic muscles, which may be the reason for an increase in observed 

passive stiffness. Second, sarcomeres in spastic muscle operate at lengths greater than 

the optimal sarcomere length, and on a different portion of the length-tension curve, 

inhibiting force generation (Gordon, Huxley & Julian, 1966). In TD children, the 

optimal sarcomere length is thought to be around 2.5-2.7 μm (Walker & Schrodt, 1974). 

It is at this point that there is an optimal overlap between actin and myosin filaments 

and the maximum number of crossbridges can be formed. With CP patients operating at 

longer lengths of the passive length-tension curve, the muscle will be experiencing 

higher levels of stiffness, and less crossbridges will be formed. This difference is likely 

to become more pronounced at extreme flexion and extension and may limit joint ROM 

(Smith et al., 2011). It should however be noted that findings of a longer sarcomere 

length have previously been confounded (Fridén & Lieber, 2003). Fridén and Lieber 

(2003) actually demonstrated a shorter sarcomere length compared to healthy muscles, 

and an increase compliance of the fascicle. However, in both studies biopsies were 
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taken from a range of different muscles in both CP and healthy groups. It has since been 

demonstrated that different muscles have significantly different mechanical properties 

(Ward et al., 2009), which may explain the differing results. More recently, Smith et al. 

(2011) showed sarcomeres to be longer in the spastic gracilis and semitendinosus 

muscles in children with CP, compared with sarcomeres from the same muscle in TD 

children. They report that fewer in-series sarcomeres cause each of the remaining 

sarcomeres to be stretched, which could help to explain the excessive passive tension 

and muscle weakness in a spastic muscle. Smith et al. (2011) argued that based on 

measured human filament lengths (Walker & Schrodt, 1974) and the 0.5 μm increase 

they reported in CP patients, the decrease in force from a TD child operating on the 

plateau of the length-tension curve, compared to a CP child operating on the descending 

limb would be 33%. Therefore, this structural change within the sarcomere itself would 

lead not only to an increase in muscle stiffness, but could also contribute to muscle 

weakness.  

 

2.3.4 Changes in non-contractile proteins 

Muscles consist of both contractile and connective tissue. This connective tissue 

primarily consists of the endomysium, perimysium and epimysium, which encapsulates 

the muscle and has a significant effect on passive stiffness. Each element of connective 

tissue is composed of both collagen and elastic fibres. The collagen fibres are arranged 

in bundles, and each molecule contains three polypeptide chains, which form a triple 

helix. These are overlapped to form a myofibril tubule around which is wound a surface 

band. In children with CP, there is thought be a substantial remodelling of intra- and 

extra-muscular connective tissue, contributing to the observed increased muscle 

stiffness (Smith et al., 2011). This remodelling may occur in line with immobilisation 
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causing fibro-fatty connective tissue to proliferate and encroach into joint space. If this 

is long-term, fibrous adhesions may occur, and joints lose connective tissue extensibility 

(Farmer & James, 2001). Smith et al. (2011) demonstrated an increase in passive 

muscle tension due to changes in the extracellular matrix in children with CP. They 

found that collagen content was significantly increased compared to TD children. In 

spinal-cord injured patients, Lamontagne, Malouin and Richards, (1997) suggested a 

lack of mechanical stress may influence the synthesis of collagen fibres, such that the 

organisation of fibres may impair the materials tensile strength; thus increasing the 

extensibility of the extracellular matrix.  

 

Collagen is considered the primary load bearing structure within the muscle’s extra-

cellular matrix (Peter, 1989) and makes up a large proportion of the tendon’s material, a 

change in the type, or organisation of fibres would be expected to influence passive 

stiffness. Moreover, Goldspink and Williams (1990) reported that during 

immobilisation, connective tissue is lost at a much slower rate than contractile tissue 

which, in turn, results in a change in the stiffness of the muscle. One other hypothesis 

for increased muscle stiffness is alterations in titin, which is considered to be the major 

passive load-bearing structure within the muscle fibre (Prado et al., 2005). However, 

alterations of this type have not been conclusively shown. Smith et al. (2011) found no 

change in the size of titin isoforms in the gracilis or semitendinosus muscle of children 

with spastic CP. This would indicate that for the human hamstring muscles at least, 

increased passive stiffness in the muscle is due to a change in extracellular matrix 

stiffness and perhaps, an increase in the previously described length of sarcomeres. 

Although traditionally, this change in connective tissue has been considered detrimental 

to function, research has suggested that children with CP may actually exploit the 
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increase in connective tissue as a functional spring (Hufschmidt & Mauritz, 1985; 

Tardieu et al., 1982). This allows them to store and release elastic energy particularly 

during the early stance phase of walking, in the absence of adequate muscle force 

(Fonseca et al., 2004).  

 

2.3.5 Muscle stiffness 

The CP-related abnormalities in the morphology of the spastic muscle are considered to 

be the source of increased spastic muscle stiffness. However, despite increased muscle 

stiffness being the basis for several therapeutic interventions, relatively few studies have 

quantified the mechanical properties. Those studies which have confirm the clinical 

assumption that children with CP have increased muscle fascicle (Barber et al., 2011a) 

and joint stiffness (Alhusani et al., 2010; Barber, et al., 2011a) compared to TD 

children. For example, Fridén and Lieber (2003) demonstrated that muscle cells of the 

flexor carpi ulnaris of children with CP were twice as stiff as the muscle cells of 

patients without neurological impairment. In the upper limbs, Vaz, Mancini, Fonseca, 

Vieira and De Melo Pertence, (2006) also demonstrated increased resistance against 

passive movement, in the absence of muscle activity. They suggest this reflects changes 

predominantly in the mechanical properties of the spastic muscle. More recently, 

Alhusani et al. (2010) demonstrated that the ankle joint of children with spastic CP was 

significantly stiffer than TD children, reporting a difference in stiffness of 242%. This 

was supported by Barber et al. (2011a), who reported a smaller, but significant 51% 

group difference in ankle stiffness between CP and TD children. This study also found 

the muscle fascicles underwent 47% less strain in the spastic CP group compared with 

the TD group, in the absence of group differences in peak torque. The steeper slope of 
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the torque-fascicle length curve for the spastic CP group could therefore be suggestive 

of increased stiffness of the muscle fascicles.  

 

2.3.6 Tendon stiffness 

In children with CP, the properties of the tendon are less well reported compared to the 

spastic muscle. The gross tendon structure is made of up of water and collagen fibres, 

which form fibrils that run longitudinally. Several parallel fibrils are also embedded 

together within a tendon’s extracellular matrix to form fibres (Benjamin & Ralphs, 

1996; Kastelic, Galeski & Baer, 1978; O’Brien, Reeves, Baltzopoulos, Jones & 

Maganaris, 2010; Vogel, 2003). This gives the tendon both elastic and viscous 

properties, which are central to its role in movement. The basic role of the tendon is to 

transmit tensile forces from muscle to bone, storing and releasing elastic energy and 

thereby reducing the work of the muscle (Lichtwark & Wilson, 2008; Maganaris & 

Paul, 1999). The tendon also allows muscle fibres to operate on an optimal portion of 

the force-length curve to maximise force generation.  

 

In children with CP, it has been suggested that the tendon may develop atypically. For 

example, an abnormally long Achilles tendon(Barber, Barrett & Lichtwark, 2012; Gao 

et al., 2011) and smaller cross-sectional area (Gao et al., 2010) in CP has been reported 

compared to TD children, but with no alterations in tendon stiffness (Barber et al., 

2012). According to Hooke’s law (that states the deformation of an elastic body is 

proportional to its deforming load) longer tendons are more compliant because stiffness 

decreases as more material is arranged in series. Additionally, tendons with a smaller 

cross-sectional area are also more compliant because less material is arranged in 

parallel. Therefore, the results of a longer tendon with no changes in stiffness may 
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suggest some alterations in the material properties of the tendon in children with CP, 

although this has not been investigated.  

   

The mechanical properties of both muscle and tendon have important implications for 

understanding atypical movement in children with spastic CP. A longer, or more 

compliant tendon compared to the muscle, may explain movement inefficiencies in CP 

(Rose et al., 1990).The tendon’s mechanical properties will govern its function and its 

interaction with the muscle. Therefore, the development of the tendon in CP compared 

to TD children warrants further investigation.  

 

2.3.7 Measuring muscle and tendon stiffness 

The majority of previous studies investigating changes in muscle and tendon 

mechanical properties in CP have often used a measure of joint stiffness. From this it is 

not possible to determine which structure, be it the muscle or the tendon, contributes 

most to the increased muscle-tendon unit stiffness. More recently, studies in non-

disabled populations have attempted to determine the stiffness of the muscle and tendon 

(Morse, Degens, Seynnes, Maganaris & Jones, 2008). This is relevant given that passive 

joint stiffness will originate from combined stiffness’s of both the muscle and the 

tendon, and both structures could potentially develop atypically in CP. Therefore, 

understanding the individual contributions of these components is valuable in assessing 

or predicting appropriate treatment outcomes.  

 

Several methodologies exist to measure different aspects of stiffness (e.g., series elastic 

component stiffness, musculo-tendinous or musculo-articular stiffness). In addition to in 

vitro methodologies, there are several in vivo techniques that are commonly used to 



36 
 

measure tissue-specific stiffness. Prior to the 1990s, the elastic properties of biological 

tissues were estimated by means of mechanical testing on excised tissue (Abrahams, 

1967; Bennett, Ker, Imery & Alexander, 1986; Butler, Grood, Noyes & Zernicke, 1978; 

Ker, 1981; Rigby, Hirai, Spikes & Eyring, 1959), or on anaesthetised animals (Morgan, 

Proske & Warren, 1978; Rack & Westbury, 1984). Methods to characterise the stiffness 

of the series-elastic component used the quick release method, and other methods have 

quantified stiffness from a limb-system’s response to sinusoidal perturbations (Cannon 

& Zahalak, 1982; Winters & Stark, 1988).  

 

More recently, advances in imaging technology have allowed accurate, non-invasive 

methods of assessing muscle and tendon properties in vivo (Fukashiro, Rob, Ichinose, 

Kawakami & Fukunaga, 1995; Henriksson-Larsen, Wretling, Lorentzon & Oberg, 1992; 

Maganaris & Paul, 1999). For estimating tendon stiffness using ultrasonography, the 

change in tendon length attributable to an applied muscular load is usually measured by 

tracking the displacement of the muscle-tendon junction during a voluntary maximal 

isometric muscle contraction. The corresponding tendon force is then calculated as the 

ratio between joint moment and a tendon’s moment arm (Ito, Akima & Fukunaga, 2000; 

Maganaris, Baltzopoulos & Sargeant, 2000; Spoor & van Leeuwen, 1992). Tendon 

stiffness is calculated as the gradient of the slope produced from plotting the 

relationship between tendon force and muscle-tendon junction displacement (Fukashiro 

et al., 1995; Maganaris & Paul, 1999) (Figure 2.5). Despite several methodological 

considerations that must be taken into account when using this method (Arampatzis et 

al., 2005; Maganaris, 2005; Magnusson, Aagaard, Dyhre-Poulsen & Kjaer, 2001; 

Reeves, Maganaris & Narici, 2003), ultrasound-based measurements of tendon stiffness 

in vivo has greatly enhanced our understanding of human tendon stiffness and its 
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adaptation with growth, aging, loading and immobilisation (Kubo, Kanehisa, Ito & 

Fukunaga, 2001a; Kubo, Kanehisa, Kawakami & Fukanaga,  2001b; Maganaris et al., 

2006; O'Brien et al., 2010; Reeves et al., 2003; Seynnes et al., 2008).  

 

 

 

Figure 2.5. Ultrasound images visualising the displacement of the muscle-tendon 

junction during a ramped isometric muscle contraction at rest (A), mid contraction (B) 

and at maximal force (C). Muscle-tendon junction displacement is plotted against the 

corresponding force to produce a force-elongation graph. Tendon stiffness is measured 

as the slope, or the ratio between the Δ force and Δ length. 
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Previous research using this method for the determination of tendon stiffness, has 

interchangeably used maximal or ramped voluntary contractions of different shortening 

velocities, and passive rotations (Kubo, Kanehisa & Fukunaga, 2002a; Morse et al., 

2008), which may present a problem when comparing across studies. For example, the 

tendon has been shown to possess viscoelastic properties, specifically, its mechanical 

properties, such as stiffness, will be dependent on the rate at which a load is applied 

(Fung, 1993; Pioletti, Rakotomanana, Benvenuti & Leyvraz, 1998; Sanjeevi, 1982). The 

result is that the tendon will be stiffer when stretched at high velocities, compared to if 

it is stretched slowly, thus a maximal voluntary contraction compared to a slower 

ramped contraction may impact the results of stiffness values obtained using this 

method. This ultrasound method has also recently been used to gain an estimate of 

“global” muscle stiffness in addition to tendon stiffness (Morse et al., 2008). Here, the 

joint is passively rotated at a constant speed to stretch the muscle and tendon 

components. The main limitation of this method for estimating muscle stiffness is the 

inability to quantify the actual force contribution from individual muscles. In this 

estimate of stiffness several other passive structures will also contribute to the passive 

torque produced at the joint (Morse et al., 2008).  

 

This method of passive elongation of the tendon to determine stiffness may be more 

appropriate than the active method for use in children with CP. For example, Barber et 

al. (2012) showed that tendon stiffness in children with CP was not significantly 

different to TD children, which was mainly explained by lower peak torques in the CP 

group. Here, the authors used a slow, ramped maximal voluntary contraction for the 

subsequent determination of stiffness. It would be logical that as a result of muscle 

weakness and excessive co-contraction, children with CP may have difficulty activating 
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the correct muscle, and producing enough force to elongate the tendon. In this respect, 

the passive method may be a more appropriate choice for deriving estimates of tendon, 

and “global muscle”, stiffness.  

 

2.4 Treatment intervention 

For children with spastic CP, a variety of treatments and interventions exist, although 

there is no cure. These treatments have tended to focus primarily on spasticity and the 

associated neural symptoms. Anti-spasticity drugs such as Botulinum toxin-A, 

Intrathecal Baclofen and Benzodiazepines have been shown to be somewhat effective in 

reducing some symptoms of muscle overactivity and spasticity (Verrotti, Greco, 

Spalice, Chiarelli & Iannetti, 2006). However, as previously described, children with 

spastic CP also develop mechanical changes in the muscle-tendon unit, which may 

contribute to movement dysfunction and contracture more than spasticity (Dietz, 

Quintern & Berger, 1981).    

 

The progressive muscle weakness and increased tone (both neural and muscular) leads 

to a lack of weight-bearing movement, and prevents the joint from moving through its 

full ROM. This eventually leads to a loss of ROM and can result in subsequent muscle 

contracture (Gracies, 2005). A contracture arises when the fibres become too 

functionally short and extremely stiff. It has been shown that contracture makes a 

significant contribution to clinical ratings of resistance to passive movement 

(Vattanasilp, Ada & Crosbie, 2000), and further prevents functional movement, 

secondary to muscle and joint pain. The treatment for contracture is most often 

orthopaedic surgery, to lengthen the muscle-tendon unit and reduce joint deformities. 

However, research has shown that surgery usually makes the muscle significantly 
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weaker (Delp, Statler & Carroll, 1995) and requires intense physical therapy to improve 

strength and function. Moreover, depending on the age of the child it is likely that 

repeated surgery in the future will be needed. Therefore, given the effects and the 

irreversible nature of surgery, less invasive long-term intervention strategies are 

extremely important to slow the process, or even reverse some of the dysfunctional 

musculoskeletal changes in children with spastic CP. Studies which investigate the 

efficacy and underlying mechanical changes as a result of these long-term interventions 

are therefore critical.  

 

Long-term Interventions such as strength training, splints and casting have 

demonstrated some positive effects towards treating musculoskeletal adaptations. 

Despite less conclusive evidence for the use of long-term passive stretching, it is still 

widely used in clinical practice as a treatment for children with spastic CP. The 

rationale for passive muscle stretching is twofold. First, it is thought that the main effect 

of long-term stretching could be to induce the addition of in-series sarcomeres, which 

may be lacking from an immobilised muscle. Second, long-term passive stretching may 

also reduce spasticity via inhibition of the tonic stretch reflex.  

 

The neural mechanisms in response to muscle stretch are mostly studied at the level of 

the spinal cord to assess modulation of reflex activity, commonly through a measure of 

the Hoffman (H) reflex. The H-reflex can provide information about the state of 

excitability of the stretch reflex, which is under the influence of higher centres; hence, it 

gives indirect information about the state of the central nervous system. Modification of 

spinal reflexes has been shown to occur in response to long-term stretch in healthy 

individuals. For example, passive stretching of the triceps surae muscles has been 
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associated with a decrease in H-reflex amplitude (Avela, Kryöläinen & Komi, 1999; 

Guissard & Duchateau, 2004; Guissard, Duchateau & Hainaut, 2001), demonstrating 

reduced excitation of the motor neuron pool through reduced sensitivity of Ia afferents. 

In addition, longer duration stretching interventions have also been shown to reduce 

both H-reflex and tendon-reflex amplitudes (Guissard & Duchateau, 2004). 

 

There are several mechanisms proposed, which may contribute to reduced tonic reflex 

activity. Pre- and post-synaptic spinal mechanisms might be involved in the inhibition 

of reflexes, by reducing motor neuron excitability. This may also depend on the 

magnitude of stretch. For example, pre-synaptic inhibition via Ia afferents might be 

involved in reducing motor neuron excitability during small magnitude stretches. 

Similarly, Golgi tendon organ type Ib afferents, Renshaw loops and supraspinal 

interneuronal circuitry may be involved in large magnitude stretches (Guissard et al., 

2001).  

 

In a clinical population, several studies have demonstrated a significant short-term 

reduction in spasticity, through depression of the stretch reflex (Al-Zamil, Hassan  & 

Hassan, 1995; Tremblay, Malouin, Richards & Dumas, 1990; Tsai Yeh, Chang & Chen, 

2001; Zhang et al., 2002). These studies demonstrated that after 30 minutes of passive 

stretching, EMG activity, H-reflex amplitude and the Hmax/Mmax ratio were significantly 

reduced, illustrating reduced excitability of the stretch reflex. 

 

Conversely, studies have also demonstrated no change in spasticity following manual 

stretching, likely due to large individual and methodological differences. Richards, 

Malouin and Dumas (1991) demonstrated that 30 minutes of standing on a tilt-table, did 

http://www.ncbi.nlm.nih.gov/pubmed?term=Guissard%20N%5BAuthor%5D&cauthor=true&cauthor_uid=14755490
http://www.ncbi.nlm.nih.gov/pubmed?term=Duchateau%20J%5BAuthor%5D&cauthor=true&cauthor_uid=14755490
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not alter EMG activity during standing or walking. This was supported by Bakheit, 

Maynard and Shaw (2005) as well as Chung, Bai, Rymer and Zhang (2005), who failed 

to identify any changes in reflex components after 30 minutes of stretching. In a longer 

duration study, Kunkel et al. (1993) found that positioning in a standing frame did not 

alter the latency and amplitude of the H-reflex during a six month study protocol of 

standing for 45 minutes twice daily. The role of stretching in spasticity is therefore not 

conclusive. Furthermore, in all studies showing a positive effect of stretching on 

spasticity, effects were short-lived. It should also be noted that different upper motor 

neurone syndromes may have different responses to stretch, as a result of cause and 

location of lesion. Thus, observed responses to stretch might be different for different 

pathologies. The neural changes associated with spasticity are not within the scope of 

this thesis, but provide an interesting direction for future research.  

 

The effect of stretching on mechanical muscle and tendon changes are the focus of this 

thesis. For example, research on animal models has shown the adaptable nature of 

muscles and tendons, and their ability to remodel in response to long-term stretching 

(Goldspink, 1977; Goldspink, 1978; Williams & Goldspink, 1973).  Days or weeks of 

continuous stretching has been shown to stimulate the addition of in-series sarcomeres, 

and change the collagen concentration and arrangement within the muscle (Goldspink, 

Tabary, Tabary, Tardieu & Tardieu, 1974; Tabary, Tardieu, Tardieu, Tabary & 

Gagnard, 1976; Williams & Goldspink, 1978). This has been used as a basis to assume 

stretching may increase muscle length, thereby increasing joint ROM, and preventing or 

delaying the need for orthopaedic surgical intervention (Holt, Baagøe, Lilllelund & 

Magnusson, 2000b). In addition, these studies largely use healthy animals, whilst here 

we are dealing with a pathological condition that is not completely understood. In a 



43 
 

human model, the effectiveness of passive stretching is limited for two reasons. First, 

the mechanisms and aetiology of muscle contracture are not well understood, making it 

difficult to know if the theory underlying stretching is correct. Second, clinical research 

investigating its effectiveness is inconclusive, due to large individual differences and 

heterogeneity of symptoms (Wiart et al., 2008). Further, responses to stretch may be 

muscle-specific, as different muscles have been shown to have different mechanical 

characteristics (Ward et al., 2009). Therefore, conclusions on passive stretching for 

spastic muscles are inconclusive. Thus, a significant gap currently exists between 

research evidence and clinical practice. 

 

2.4.1 Stretching 

Passive stretching is defined here as a static stretch, applied to a joint by either a 

physiotherapist, parent/guardian, or by the child. The effects of acute (short-term) 

stretching, involving a single session, and long-term stretching, involving repeated 

sessions over weeks or months, must be investigated. If long-term stretching is to be 

effective to induce structural and lasting adaptations in the muscle, then acute, albeit 

transient changes in muscle and fascicle lengths would presumably need to be present. 

If transient changes are not present, then the efficacy for long-term stretching to cause 

structural changes to the muscle may not be valid.  

 

 2.4.1.1 Acute stretching. Passive stretching in healthy adults has previously been shown 

to bring about increases in joint ROM accompanied by decreases in the stiffness of the 

muscle-tendon unit (Evetovich, Nauman, Conley & Todd, 2003; Halbertsma, van 

Bolhuis & Göeken, 1996; Wilson, Elliott & Wood, 1992; Witvrouw, Mahieu, Danneels 

& McNair, 2004). A decrease in muscle-tendon unit stiffness may be achieved by both a 
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reduction in tendon stiffness (Herbert, Moseley, Butler & Gandevia, 2002; Kubo, 

Kanehisa, Kawakami & Fukunaga, 2001c) and/or a reduction in muscle stiffness 

(Kawakami, Kanehisa & Fukunaga, 2008; Kay & Blazevich, 2009; Mizuno, Matsumoto 

& Umemura, 2011; Morse, et al., 2008).  During passive stretching, both the muscle 

and tendon are thought to elongate, although the fascicles have been shown to undergo 

smaller length changes than the whole muscle-tendon unit (Herbert et al., 2002).  This 

would suggest the tendons are responsible for the majority of the length change.  This 

was supported by Kubo, Kanehisa and Fukunaga (2002b) who found that after five 

minutes of stretching, tendon stiffness decreased by 8% with a 29% decrease in 

hysteresis. Conversely, Morse et al. (2008) determined the stiffness of tendon and 

muscle during passive dorsiflexion.  They reported a 56% decrease in muscle stiffness 

after stretching, but no significant change in tendon stiffness.  The inconsistency 

between study results may be explained by the different methods employed.  Kubo et al. 

(2002b) measured tendon stiffness under high torques generated by isometric 

contractions, whereas Morse et al. (2008) measured stiffness of muscle and tendon 

under relatively low torques.  Regardless, these two studies demonstrate that stiffness of 

the muscle-tendon unit decreases after acute stretching, although it remains unclear 

whether this change is due to alterations in muscle stiffness, tendon stiffness or some 

combination of the two. 

 

Only two studies have attempted to quantify the acute stretch response in CP, which 

both found no changes in muscle activation (Richards et al., 1991; Tremblay et al., 

1990). No study to date has investigated whether there are alterations in muscle and/or 

tendon length in CP following acute stretching. If there is no elongation of the muscle 

or fascicles during an acute bout of stretching, this would suggest that no muscle 
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alterations are likely to occur with long-term stretching. Therefore, research which 

assesses the effects of acute stretch on muscle and tendon structures in spastic CP is 

needed. 

 

2.4.1.2 Long-term stretching. The purpose of long-term stretching differs to that of acute 

stretching. In long-term stretching, the aim is to develop structural adaptations within 

the muscle, which are not readily reversible upon removal of the stretch (Folpp, Deall, 

Harvey & Gwinn, 2006).  Tabary et al. (1976) evaluated the response to long-term 

stretching in cat muscle. When the soleus was initially immobilised in a shortened 

position, it adapted by shortening muscle fibres, through a 40% reduction of in-series 

sarcomeres. When the muscle was then positioned in an elongated position, it responded 

by gaining sarcomeres.  This structural adaptation was considered responsible for 

reducing passive stiffness in the muscle, so that less force was required to stretch it to a 

given length. In the rat soleus muscle, Coutinho et al. (2004) showed that stretching, 

applied every three days for three weeks, resulted in increased muscle length, and a 4% 

increase in serial sarcomere number. The results of these animal studies largely suggest 

the addition of in-series sarcomeres is possible following long-term stretching, although 

there has not been rigorous evaluation of this assumption in human muscles (Lieber et 

al., 2004). One recent case study which does provide some evidence towards this, 

showed a 10 cm increase in vastus lateralis fascicle length following femoral 

lengthening, with a concurrent increase in serial sarcomere number (Boakes, Foran, 

Ward & Lieber, 2007), demonstrating the adaptive nature of the muscle in humans. 

Thus, as previously outlined, if one main mechanism for increased muscle stiffness in 

children with spastic CP is a reduced number of in-series sarcomeres, then this may lend 

some support the use of passive stretching.  
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For obvious reasons, investigating sarcomere number pre- to post-stretch in humans is 

too invasive, but studies have attempted to quantify the change in muscle length 

indirectly. In a non-disabled population, Weppler and Magnusson (2010) generalised 

the findings of a review on the muscle and tendon alterations to stretching. They suggest 

3-8 weeks of stretching caused similar increases in serial sarcomeres, as those seen in 

animal models. The addition of sarcomeres should be accompanied by a rightward shift 

in the torque-angle curve, that is, for a given angle less torque should be produced in a 

passively stretched muscle with a greater number of in-series sarcomeres. This has been 

demonstrated in one study of ankle plantarflexors. Guissard and Duchateau (2004) 

observed a right shift in the torque-angle curve following six weeks of stretching for 20 

minutes per day, five days a week. Similarly, Halbertsma, Göeken, Hof, Groothoff and 

Eisma (2001) demonstrated that two 10 minute bouts of stretching the hamstring 

muscles, five days per week, over a four week period on the hamstring muscles 

increased torque levels. However, no direct measures of muscle or fascicle length were 

made. Joint ROM has also been shown to increase as a result of long-term stretching 

(McNair & Stanley, 1996; Rosenbaum & Hennig, 1995).  Magnusson, Simonsen, 

Aagaard, Sørensen and Kjaer, (1996a) reported that a three week intervention induced a 

greater hamstring ROM, but the mechanism for this change is unclear. Despite the lack 

of clarity, the findings have been used as a justification for stretching in children with 

spastic CP.  However, to date, the assumption that stretching can reduce muscle-tendon 

unit stiffness and increase ROM in CP has not been clearly demonstrated, despite the 

use of long-term stretching as a management strategy (Harvey, Herbert & Crosbie, 

2002; Pin et al., 2006). The minority of studies that have attempted to document the 
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effectiveness of stretching in CP show large methodological variation and inconclusive 

findings (Table 2.1). 

 

2.4.1.2.1 ROM.  Children with spastic CP have a reduced joint ROM compared to their 

TD peers (Barber et al., 2011b; Malaiya et al., 2007). Several authors have investigated 

the effect of stretching interventions on joint ROM in patients with reduced joint range 

(Fragala, Goodgold & Dumas, 2003; Lespargot, Renaudin, Khouri & Robert, 1994; 

McPherson, Arends, Michaels & Trettin, 1984; Miedaner & Renander, 1987; O'Dwyer 

et al., 1994), but the results obtained from these studies are equivocal, possibly due to 

methodological variations. Two of these studies showed an increase in ROM post-

stretching (McPherson et al., 1984; Miedaner & Renander, 1987). McPherson et al. 

(1984) showed a significant increase in knee ROM and a reduction in knee flexion 

contracture after a two year stretching intervention. Miedaner and Renander (1987) also 

showed a significant increase in two out of 14 joint measurements following stretching 

for five days per week, for five weeks, in children with exaggerated lower limb joint 

stiffness. One further study reported no change in joint ROM following stretching, and 

also demonstrated a loss of ROM after the cessation of stretching (Fragala et al., 2003). 

Similarly, studies by Lespargot et al. (1994) and O’Dwyer et al. (1994) demonstrated 

no change in hip or ankle ROM following long-term passive stretching. It is evident that 

the effectiveness of stretching interventions on ROM is not straight forward. It seems to 

depend on the joint or muscle of interest and the type and duration of the stretching 

intervention. As most of the authors in these studies did not state acceptable cut-off 

points for clinical significance, it is difficult to judge if improvements in ROM were 

clinically relevant (Pin et al., 2006).  
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2.4.1.2.2 Muscle-tendon unit stiffness.  Measuring stiffness in children with CP should 

aim to identify the contributions of both the muscle and tendon. However, studies often 

use a global measure of joint stiffness. The first study to attempt to identify stretching in 

spastic muscle was conducted by Tardieu, Lespargot, Tabary and Bret (1988).  The 

researchers investigated the amount of time required for the soleus to be lengthened in 

24 hours, in order to prevent contracture. They concluded that six hours a day of active 

movement training, functional movement and positioning; prevented contracture. This 

contrasts with most passive stretching interventions where the muscle is in a lengthened 

position for only a few minutes at a time. Four further studies were found which 

investigated the effects of shorter duration interventions on muscle tone (McPherson et 

al., 1984; Miendaner & Renander, 1987; O'Dwyer et al., 1994; Zhao et al., 2011). Two 

of these studies, which employed a more representative stretch duration (McPherson et 

al., 1984; Miendaner & Renander, 1987) along with daily positioning, also observed a 

reduction in clinically assessed muscle tone. Miendaner and Renander (1987) 

demonstrated that there was no difference between passive stretching two times a week 

versus five times a week for six out of seven joint motions. Since both studies included 

daily positioning (30 minutes) along with manual stretching it difficult to assess what 

the contribution of manual passive stretching was. One study which did look at the 

effects of manual stretching only (O’Dwyer et al., 1994) also demonstrated a decrease 

in muscle tone of the triceps surae muscles. The ability to generalise findings from 

these studies is limited due to small sample sizes and a lack of homogeneity of patients. 

In many of these studies, the intervention exceeded what is feasible for patients, and in 

none of these studies was it possible to determine whether stiffness was reduced in the 

muscle structure, tendon or both. 
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In a more recent study, Zhao et al. (2011) found an increase in fascicle length and 

decreased pennation angle in both the soleus and gastrocnemius muscles of children 

with spastic CP. They also observed that Achilles tendon length decreased, which was 

accompanied by an increase in tendon stiffness. Passive stretching was implemented 

using an ankle stretch device for 30 minutes, three sessions per week, for six weeks. 

They also incorporated active movement for 30 minutes in each of the sessions. Again, 

it is difficult to determine whether the observed changes were from active movement 

training or passive stretching. It is also unclear whether the observed changes led to any 

improvement in functional movement.  

 

2.4.1.2.3 Gait. From a developmental perspective, children with spastic CP and TD 

children present similar early gait patterns when learning to walk. In TD children, this 

gait pattern matures into a pendulum pattern (Figure 2.6), with the correct timing of 

plantarflexion activation to provide the majority of propulsive force (Francis, Lenz, 

Lenhart & Thelen, 2013). In children with spastic CP the maturation of this gait pattern 

does not develop. Due to muscle weakness, children do not have adequate power 

through the ankle during the push-off phase of walking (Fonseca, Holt, Saltzman & 

Fetters, 2001). In addition, alterations in the phases of gait are also different including a 

plantarflexed foot at initial contact, resulting in a pattern of atypical gait (Fonseca et al., 

2004). Research on the spatiotemporal parameters of gait in children with spastic CP 

reveal a reduced gait velocity, and a shorter stride length. In addition, a deterioration of 

gait stability also occurs over time, which increases the time spent in the double support 

phase of gait (Johnson, Damiano & Abel, 1997).     
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This abnormal gait pattern is thought to result largely from increased muscle and joint 

stiffness. As such, the clinical assumption is that stiffness impairs gait, by reducing foot 

contact time and impairing foot positioning (Salem, Lovelace-Chandler, Zabel & 

McMillan, 2010). In addition, clinicians may assume that reducing stiffness would 

result in improved movements such as gait in children with spastic CP. Conversely, 

there is also a view that atypical gait patterns emerge as a result of neurological and 

mechanical alterations in the muscle-tendon unit to muscle weakness. In this view, 

alterations such as increased muscle stiffness, co-contraction and a plantarflexed foot at 

initial contact allows energy to be generated, where sufficient muscle force cannot. 

Thus, allowing for the emergence of an atypical, but functional gait pattern (Holt, 

Fonseca & LaFiandra, 2000a).  

 

The pattern of gait in CP has been compared to that of running in a non-disabled 

population, perhaps by using greater elastic energy, which can be stored and released in 

the tendon (Figure 2.6). This is supported by low levels of muscle activation observed 

in CP during gait (Berger, Quintern & Dietz, 1982). In addition, a plantarflexed foot on 

initial contact would facilitate a vertical spring by creating a longer external moment 

arm at the point of ground contact compared to a heel strike. This, in turn, would load 

the tendon to store elastic energy.   

 

These conflicting views of gait in CP make it difficult to determine if gait parameters 

would potentially be expected to improve or deteriorate with stretching. With long-term 

stretching in CP, Salem et al. (2010) demonstrated 45 minutes in a standing frame, three 

days per week for three weeks significantly improved gait parameters including speed, 

stride length, stride time, stance phases and maximum ankle dorsiflexion angle. These 



51 
 

improvements returned to baseline three weeks after the cessation of stretching. 

Similarly, Wu, Hwang, Ren, Gaebler-Spira and Zhang, (2011) showed that a 

combination of passive and active stretching over a six week period,  improved clinical 

tests of walking speed using the six minute walk test and timed up and go. Conversely, 

in patients with limited dorsiflexion ROM, three weeks of passive stretching for five 

minutes each day, improved maximum dorsiflexion, but did not decrease stance time 

during gait (Johanson et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Varying gait patterns in children with CP and TD children.  

 

2.5 Summary 

A number of complex CP-related neural and musculoskeletal changes take place in 

response to damage to the developing brain in children with spastic CP. Although a 

number of studies have reported the properties of the spastic muscle, the developmental 

changes of the tendon are less well reported. Understanding the properties of both 
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muscle and tendon in children with spastic CP compared to TD children has important 

implications for understanding atypical movement.  

 

Stretching is a commonly used intervention to treat a spastic muscle, despite a lack of 

research evidence. Due to large individual differences and heterogeneity of symptoms, 

results from intervention studies are difficult to assess (Tedroff et al., 2008). Many 

studies also use long durations of stretching, which are not representative of those used 

in clinical practice. Both Pin et al. (2006) and Wiart et al. (2008) emphasise the 

inconclusiveness of the current body of research. They also highlight methodological 

shortcomings in the current literature, such as lack of randomised control trials and 

statistical power, as well as lack of homogeneity within the experimental groups. 

 

There is some evidence to suggest that passive stretching may reduce muscle-tendon 

unit stiffness and increase ROM, but how the constituent components of the muscle-

tendon unit are affected remains an unanswered question. There is theoretical evidence 

to suggest muscles may adapt to stretch and increase in length, as illustrated in animal 

models. This may serve to reduce muscle-tendon unit stiffness and increase joint ROM 

(Pin, et al., 2006).  However, on the other hand, the effect of any potential muscle and 

tendon changes on function has not been investigated. It could be the case that increased 

stiffness, in part, compensates for muscle weakness, creating some stability during 

certain movements for children with spastic CP. Most importantly however, since 

passive stretching is still widely used and advocated in clinical practice (National 

Institute for Health and Care Excellence, 2012), its effects on muscle and tendon 

mechanics and functional movement must be thoroughly and correctly established. 
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These results will help clinicians to make more informed decisions about treatment 

interventions for children with spastic CP in the future. 
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Study Participants Method of stretch Outcome measure Result 

Fragala et al. 

(2003) 

7 children (4-18 y) with CP 

GMFCS IV and V 

Passive stretching and positioning 

40-60 s, 3 repetitions, 1-2 times per week, 

and positioning in the classroom 

Knee and Hip 

extension ROM 

No change in ROM 

Lesparagot et 

al. 

(1994) 

10 children (9-13 y) with 

spastic CP 

Manual stretch: 15-20 minutes and wedge 

sitting 5-7 hours daily 

 

Passive hip abduction 

angle 

No change 

McPherson et 

al.(1984) 

4 children (10-18 y) with 

severe spastic quadriplegic 

CP 

Passive stretching and positioning 

Year 1: 60 s knee extension stretch, 5 

repetitions, 3 times per day, 5 days per week 

Year 2: Prone or supine standing for 1 hour 

per day 

 

Hip extension ROM 

Muscle tone with special 

device 

 

  

Knee extension increased 

(4-9º) Decreased by 5-10º 

during non-treatment 

periods 

Miedaner et al. 

(1987) 

13 children (6-20 y) with 

CP (severe cognitive and 

physical impairment)  

Passive stretching 

20-60 s, 5 repetitions, 5 days per week and 

2 days per week 

Passive hip, knee, ankle 

and forefoot ROM 

No change in 6 of 7 joint 

angles. Popliteal angle 

increased in higher 

frequency intervention 

Table 2.1. Research findings from stretching in CP 
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Study Participants Method of stretch Outcome measure Result 

O’ Dwyer et al. 

(1994) 

15 children (6-19 y) with 

spastic CP 

Sinusoidal stretch: 

30 minutes, 3 times per week, for 42 days 

Triceps surae contracture  

(Ankle joint passive 

torque) 

No change 

Spasticity reduced 

Richards et al.  

(1991) 

8 children (3-13 y) with 

spastic diplegia or 

hemiplegia 

Acute passive stretch: 

standing on a tilt table with varying ankle 

positions for 30 minutes  

Muscle activation of 

tibialis anterior and 

triceps surae 

Gait analysis 

Reduction in pre-/post-

ratio of tibialis anterior 

during initial gait cycle 

Tardieu et al. 

(1988) 

4 children with spastic CP Positioning for different durations up to 6 

hours 

 

Ankle dorsiflexion ROM 6 hours of stretching in 

24 hours prevented 

contracture 

     

Tremblay et al. 

(1990) 

21 children (3-14 y) with 

spastic CP 

Acute passive stretch:  

standing on a tilt table for 30 sec to stretch 

dorsiflexors 

Quality of passive ankle 

movement 

 Quality of triceps surae 

contraction 

Decreased resistance to 

passive movement up to 

35 minutes post-stretch 

Decreased EMG response 

up to 35 minutes post-

stretch 
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Study Participants Method of stretch Outcome measure Result 

Zhao et al. 

(2011) 

7 children (5-15 y) with 

spastic diplegic or 

hemiplegic CP 

Passive and active stretching using an ankle 

rehabilitation robot 30 minutes of passive, 30 

minutes of active, 3 sessions per week for 6 

weeks 

Medial gastrocnemius and 

Soleus fascicle length, 

pennation angle, and 

fascicle and Achilles 

tendon stiffness 

Fascicle lengths 

increased, pennation 

angle decreased, fascicle 

stiffness decreased and 

tendon length decreased 
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CHAPTER 3: METHOD AND STRAIN-RATE DEPENDENCE OF ACHILLES TENDON 

STIFFNESS 

3.1 Introduction 

Muscle and tendon stiffness are important parameters when performing daily motor 

activities or sporting movements (Hof, Vanzandwijik & Bobbert, 2002; Fukunaga et al., 

2001). The stiffness of the body’s elastic tissues governs the storage and release of 

elastic potential energy, and humans take advantage of this to maximise movement 

efficiency (Lichtwark & Wilson, 2008; Maganaris & Paul, 1999). Within this context, 

tendon stiffness has been widely studied in athletic (Kubo et al., 2001c; McNair & 

Stanley, 1996) and clinical populations (Vaz et al., 2006; Tardieu et al., 1982). The 

findings of such studies have led to an enhanced understanding of how tendon stiffness 

influences force production (Reeves, 2006) as well as how tendon stiffness adapts to 

changes in loading (Kubo, Ikebukuro, Yata, Tsunoda & Kanehisa, 2010; Seynnes et al., 

2009).  

 

Tendon stiffness is calculated by dividing the estimated tendon force by the tendon’s 

elongation (Maganaris & Paul, 1999; Morse et al., 2008). For this purpose, participants 

are commonly asked to perform a maximal isometric contraction to shorten the muscle 

and thereby elongate the tendon (“active method”) (Kubo et al., 2002b). An alternative 

method is to record tendon force and elongation from a passive stretch, applied by an 

isokinetic rotation (“passive method”) (Morse et al., 2008).  

 

The choice of method is often driven by the specific purpose of an experiment and by 

the population of interest. For example, in clinical populations where patients with 

neuromuscular or musculoskeletal disorders may be unable to perform a maximal 

voluntary contraction reliably (Tedroff et al., 2008), it may be more appropriate to use 
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the passive method. The primary advantage of this method is that it allows for both 

tendon stiffness and muscle stiffness to be estimated (Morse et al., 2008). The 

disadvantage with this method is that that tendon stiffness can only be calculated at 

relatively low levels of force. The force-stiffness relationship has been shown to be non-

linear (Rigby et al., 1959), as at lower tendon stiffness values the un-crimping of 

collagen fibrils causes significant tendon elongation. As a result, tendon stiffness is 

greater at high compared to low force levels (Mizuno et al., 2011).  

 

A further variable, which may affect the comparability between stiffness obtained from 

the two methods, is the tendon’s strain-rate. Tendons exhibit viscoelastic behaviour in 

response to stretch, meaning that tendon stiffness increases with an increased strain-rate 

(Le Veau, 1992, pp. 33-37; Pearson et al., 2007). Thus, strain-rate needs to be taken into 

consideration when comparing different methods of obtaining tendon stiffness.  

 

A range of methods, which are likely to result in different strain-rates have been used in 

the literature to obtain tendon stiffness, including the passive method (Mizuno et al., 

2011; Morse et al., 2008), and several variations of the active method (e.g., fast 

maximal voluntary contraction manoeuvres - Kay & Blazevich, 2009; Muraoka, 

Muramatsu, Fukunaga & Kanehisa, 2005; or slow, ramped maximal voluntary 

contractions - Kubo et al., 2002b; Peltonen, Cronin, Avela & Finni, 2010; Waugh, 

Blazevich, Fath & Korff, 2012). Such differences in strain-rates could potentially 

explain the relatively large range of tendon stiffness values reported across these 

studies. Thus, it is important to understand whether the passive and active methods are 

comparable to interpret findings from the literature appropriately and to compare results 

from studies employing different methodologies. Such an understanding would also 

enable researchers to make more informed decisions about the most appropriate method 
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to use within a specific research context. Therefore, the purpose of this study was to 

compare tendon stiffness obtained from the active and passive methods across different 

strain-rates. 
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3.2 Methodology 

3.2.1 Participants  

With institutional ethical approval, 20 healthy adults participated in this study (11 male, 

9 female; age 24 ± 4 y; stature 1.8 ± 0.1 m; mass 74.9 ± 13.0 kg) (For sample size 

calculations see Appendix III). All participants were recreationally physically active and 

free from known neuromuscular or musculoskeletal problems. Written consent was 

obtained from all participants prior to participation. 

 

3.2.2 Procedure 

Participants attended the laboratory on one occasion. They were seated in the isokinetic 

dynamometer (Biodex Medical Systems, New York, USA), which was adjusted for 

each participant. To remove the compliance of the dynamometer, which was evident 

during maximal plantarflexion manoeuvres, the chair was adjusted so the right knee was 

initially flexed with a relative joint angle of approximately 20 deg (with 0 deg being full 

knee extension). The knee was then straightened to full extension, which locked the 

knee joint and allowed the leg to act as a passive strut (Cannavan, Coleman & 

Blazevich, 2012). Subsequent ankle plantarflexion manoeuvres deformed the 

dynamometer system only minimally. The relative hip angle was set to 85 deg. The 

lateral malleolus of the right ankle was aligned with the centre of rotation of the 

dynamometer arm. The dynamometer footplate was positioned perpendicularly to the 

tibia, which was the start position for all trials. To isolate the ankle movement, 

stabilisation straps were firmly tightened over the foot, thigh and chest, and participants 

were instructed to cross their arms over their chest. A gravity torque correction was 

performed by means of an automated correction procedure as part of the Biodex system 

software. Briefly, the measurement of total gravitational torque was made during a 

passive weighing of the segment in a mid-range plantarflexion position, approximately 
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50% of maximum plantarflexion ROM. The torque values recorded during the 

experimental trials were subsequently adjusted by either subtracting or adding the 

gravitational torque, depending on dorsi- or plantarflexion.   

 

Participants were familiarised with the procedures by performing five sub-maximal 

isometric plantarflexions on the dynamometer, and were instructed to keep the heel in 

contact with the footplate throughout the contraction. After these practise trials, 

participants performed three to five maximal voluntary contraction manoeuvres until 

plantarflexion efforts were reproducible within 5%. All participants achieved this within 

five trials. These trials also provided pre-conditioning of the triceps surae muscle-

tendon unit to ensure minimal variation in the load-deformation curves (Maganaris & 

Paul, 1999). To avoid fatigue, a 10 minute passive rest period was given before data 

collection. Participants then performed the active and passive trials, the order of which 

was randomised. 

 

3.2.2.1 Passive method 

First, the participant’s maximum dorsiflexion angle was determined by slowly, 

manually dorsi-flexing the foot, until the onset of electrical activity (EMG) in the 

medial gastrocnemius muscle or until the participant reported any discomfort. This 

occurred between 21.5 ± 3.7 deg dorsiflexion. The ROM for the subsequent tests was 

defined by this maximum dorsiflexion angle and a plantarflexion angle of 

approximately 20 deg (20.3 ± 1.4 deg). We then applied an angular rotation of the right 

ankle joint at constant angular velocities of 1, 10 and 30 deg·s
-1

 throughout the ROM. 

EMG of the medial gastrocnemius and tibialis anterior muscles were monitored to 

ensure no muscle activity was invoked by the passive rotations. Participants were 

instructed to relax the muscles of the lower limb. Three rotations were recorded at each 
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angular velocity, and the order of these was randomised. EMG data of the tibialis 

anterior and medial gastrocnemius muscles (Telemyo 2400R, NorAxon U.S.A Inc, 

Arizona) as well as torque and position data from the dynamometer were collected at 

1000 Hz.  

 

3.2.2.2 Tendon elongation 

Tendon elongation was measured by tracking the displacement of the gastrocnemius 

muscle-tendon junction during the passive and active trials using B-mode 

ultrasonography (Megas GPX, Esaote, Italy; 45 mm Linear array probe, 10 MHz 

transducer scanning). The video transmission was digitally captured at 25 Hz using a 

video converting frame grabber (ADVC-55, Grass Valley, France). A layer of water-

based gel (Henley’s Medical, Hertfordshire, UK) was applied between the ultrasound 

probe and skin, which enhanced acoustic transmission. The probe was placed 

perpendicularly to the skin surface above the muscle-tendon junction and orientated to 

reveal a line running between the aponeuroses of the medial gastrocnemius and soleus 

muscles. The probe was then fixed in position using a custom made holder. A 2 mm 

wide strip of echoabsorptive tape placed on the skin in contact with the probe provided 

a reference to which any probe movement could be identified. 2D coordinates of the 

muscle-tendon junction were obtained by manual digitisation (Peak Performance, 

Cambridge, UK). The relative change in muscle-tendon unit length with respect to 

change in ankle angle was estimated using a cadaveric regression model (Grieve, 

Pheasant & Cavanagh, 1978). 

 

3.2.2.3 Active method 

Participants initially performed three isometric maximal voluntary contraction 

manoeuvres (after the pre-conditioning contractions) to establish maximum torque. To 
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achieve a range of strain-rates during the active method, participants were instructed to 

perform ramped maximal voluntary contractions of different durations (3 s, 5 s, 8 s and 

10 s). Specifically, participants were instructed to gradually increase the pressure on the 

footplate to gain a steady rise in torque up to their maximum. They were asked to 

develop this torque within 3 s, 5 s, 8 s or 10 s as determined by the experimenter. The 

order of these durations was randomised. A digital timer and visual display of the torque 

trace was positioned in front of the participant, so they could track the duration of the 

contraction. Verbal encouragement from the investigator was provided throughout. Two 

trials were initially recorded at each duration separated by a 30 s rest period. An 

additional measurement was allowed if the maximum torques achieved in the two trials 

differed by more than 5%. 

 

3.2.2.4 Antagonistic co-contraction 

To quantify antagonist co-contraction, the dorsiflexion torque-tibialis anterior EMG 

relationship was measured (Telemyo 2400R, NorAxon U.S.A Inc., Arizona) at 1000 Hz. 

Signals were amplified, digitally filtered (Spike2 v5.12a, Cambridge Electronic Design, 

UK) using a 10-500 Hz band pass filter, and smoothed by means of calculating the root 

mean square over a 100 ms sliding window. The dorsiflexor torque was estimated from 

the EMG-torque relationship during a ramped dorsiflexion contraction. A third-order 

polynomial was fitted to the EMG-torque data corresponding to the greatest level of the 

tibialis anterior EMG observed throughout the plantarflexion trials (R
2
 = 0.95 ± 0.02 

across participants). The resulting regression equation was then used to estimate the 

antagonist torque present during the plantarflexion trials. The estimate of dorsiflexor 

torque was then added to the torque measured on the dynamometer to provide a 

corrected plantarflexor torque. One limitation to this correction is that the effect of 

strain-rate on the torque-angle relationship is neglected. For example, by a applying a 
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constant antagonistic co-contraction torque, the torque produced by the dorsiflexors at 

higher speeds would have been underestimated, and overestimated at lower contraction 

speeds. Additionally, the effect of agonist co-contraction was neglected during the 

dorsiflexion contractions, and therefore dorsiflexor co-contraction torque may have 

been overestimated.  

 

Coordinate data were captured at 100 Hz, then filtered and downsampled to 25 Hz to 

match the frequency of the ultrasound data. The movement of the muscle-tendon 

junction attributable to ankle movement was then subtracted from tendon elongation 

measured during the trial. Torque and coordinate data from both methods were filtered 

using low-pass, fourth-order, zero-lag Butterworth filters with cut-off frequencies of 14 

and 5 Hz respectively, as determined by residual analysis (Winter, 1990) (see Appendix 

IV). Digitised muscle-tendon junction position data for both methods were filtered 

using a low-pass fourth-order zerolag Butterworth filter with a 3.25 Hz cut-off 

frequency. 

 

3.2.3 Data analysis 

For both methods, tendon stiffness was calculated as the change in ankle torque divided 

by the corresponding change in tendon length. It is important to acknowledge that 

“tendon stiffness” as measured using the passive method is not “tendon stiffness” per 

se. The term “tendon stiffness” is referred to in this chapter and throughout the thesis, 

but it is acknowledged that passive tendon stiffness data is based on joint torque in 

passive conditions and we acknowledge that many other structures will contribute to 

passive joint stiffness in addition to the Achilles tendon. 
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To make valid comparisons between the two methods, tendon stiffness was calculated 

in a common torque region. This was dictated by the peak torque observed during 

dorsiflexion in the slowest passive trial of each participant. A range of 50-60% of 

maximum torque in this trial was chosen for the calculation of tendon stiffness. This 

same absolute range was then identified in the remaining passive and active trials for 

each participant. The comparable torque range in the active trials was 12.3 ± 1.6% to 

15.4 ± 2.2%. For both methods, tendon strain-rate was calculated over this range, by 

dividing the change in tendon length by change in time. For the active trials and for 

each ramped duration, final stiffness was calculated using the mean of two ramped 

maximal voluntary contraction trials that were within ± 5% of maximum recorded 

torque. For the passive trials at each angular velocity, tendon stiffness was calculated 

using torques recorded during dorsiflexion over the torque range as described above. 

Final stiffness was then calculated by averaging stiffness of the two trials that were 

most closely matched in terms of strain-rate. For both methods, final tendon strain-rate 

was obtained as the average strain-rate over the two trials that contributed to the final 

stiffness. Figure 3.1 shows representative torque-elongation curves obtained from both 

active (A) and passive (B) methods for one participant. Averaged across participants, 

the tendon strain-rates measured during the 1, 10 and 30 deg∙s
-1

 rotations were 0.09 ± 

0.02; 0.45 ± 0.06; 0.84 ± 0.01 cm·s
-1

, respectively. For the active method, the final 

stiffness values were chosen based on the strain-rates most closely matching these 

values. For all participants, this corresponded to the 5 s, 8 s and 10 s, ramped 

contractions, respectively. Averaged across participants, the corresponding strain-rates 

were 0.12 ± 0.01, 0.40 ± 0.03 and 0.80 ± 0.04 cm·s
-1

, respectively. Within a given trial, 

these strain-rates did not deviate by more than 10%. Based on these results, the final 

stiffness values from both the active and passive methods were plotted against strain-

rate, and a linear regression line was used to approximate these relationships for each 
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participant (R
2
 = 0.98 ± 0.02 and 0.98 ± 0.03 for active and passive methods, 

respectively). The resulting regression equation was used to interpolate the data to give 

stiffness values for both methods at strain-rates 0.1, 0.4, and 0.8 cm·s
-1

. 

 

 

 

 

 

Figure 3.1. Ankle torque and Achilles tendon elongation during an isometric maximal 

voluntary contraction manoeuvre (top) and during passive dorsiflexion at 10 deg·s
-1

 

(bottom). 
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3.2.4 Statistical analysis 

The agreement between the interpolated active and passive tendon stiffness values was 

assessed in four ways. First, to determine whether systematic bias existed between the 

two methods across strain-rates, we performed an ANOVA. Here, we tested for a main 

effect of method and a method × strain interaction. In case of statistical significance, 

paired samples t-tests (Bonferroni correction) were used. Second, at each strain-rate, the 

Pearson’s correlation coefficient was obtained to quantify the relationship between 

tendon stiffness values obtained from both methods. Third, an analysis of agreement 

was conducted according to Bland and Altman (1986). Before limits of agreement were 

calculated, an assessment of the normality of data (Shapiro-Wilk test) and of 

heteroscedastic error was conducted. As neither non-normality nor heteroscedacity 

existed, the absolute limits of agreement were determined using the calculated mean and 

standard deviation, indicating bias and random error. Standard errors and 95% 

confidence intervals were also calculated. Fourth, intraclass correlation coefficients with 

a two way random model and absolute agreement were calculated at each strain-rate. 

Finally, to specifically quantify the dependence of tendon stiffness on strain-rate, two 

statistical procedures were performed. First, using the aforementioned ANOVA, we 

tested for a main effect of velocity. In case of significance, follow up paired samples t-

tests (Bonferroni correction) were performed. Second, strain-rate was correlated with 

tendon stiffness, and a linear regression was performed to approximate this relationship. 

All statistical tests were performed using SPSS statistical software (v16.0, SPSS Inc., 

Chicago, USA), and the p-value was set at 0.05. 
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3.3 Results 

Results from the ANOVA revealed that the method-by-strain-rate interaction was non-

significant (F1, 19 = 1.63, p = 0.60). Further, there was a significant main effect for 

method (F1, 19 = 134.20, p < 0.01). A follow up paired samples t-test revealed that 

stiffness values obtained from the active method were significantly greater compared to 

the passive method at all strain-rates (t59 = 17.15, p < 0.001). The Pearson’s correlation 

coefficients describing the relationship of tendon stiffness obtained from methods 

across participants were 0.98, 0.99 and 0.99 for 1, 4 and 8 mm·s
-1

, respectively (Figure 

3.2). The mean difference between tendon stiffness for both methods was plotted 

against the corresponding means (Figure 3.3). Examining the direction and magnitude 

of the scatter around the zero line on the Bland and Altman plots provides an indication 

of systematic bias and random error. This bias was consistent with the main effect for 

method obtained from the ANOVA. On average, the active method produced 6% 

greater stiffness values than the passive method.  
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Figure 3.2. Relationship between tendon stiffness measured during the active and 

passive methods at 0.1, 0.4 and 0.8 cm·s
-1

 (top to bottom) measured by Pearson’s 

correlation coefficient. 
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Figure 3.3. Bland and Altman plot. Differences (Active method–Passive method) 

plotted against the mean, at strain-rates of 0.1, 0.4 and 0.8 cm·s
-1

 (top to bottom). 
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The limits of agreement and confidence intervals are shown in Table 3.1. All data points 

for 0.1 and 0.8 cm·s
-1

, and 95% of data points for 0.4 cm·s
-1

 fell within the 95% 

confidence intervals. The intraclass correlation coefficients were 0.99, 0.99 and 0.98, at 

0.1, 0.4 and 0.8 cm·s
-1

, respectively (p < 0.001 for all correlations).  

 

Table 3.1. Limits of agreement (L of A) for strain-rates 1, 4 and 8 mm·s
-1 

 

 

 

Bias 

 

SE
a
 

 

95% CI
b 

 

Random  

error
 

 

SE
a
 

 

95% CI
b
  

for lower 

 L of A
c 

 

95% CI
b
 

for upper  

L of A
c 

 

0.1 cm·s
-1 

 

1.81 

 

0.26 

 

1.26-2.36 

 

2.47 

 

0.46 

 

-1.61-0.30 

 

3.32-5.23 

 

0.4 cm·s
-1 

 

 

2.03 

 

0.20 

 

1.44-2.45 

 

1.90 

 

0.35 

 

-0.61-0.86 

 

3.19-4.66 

0.8 cm·s
-1

 2.51 0.14 2.22-2.80 1.29 0.24 0.72-1.72 3.30-4.31 

 

 

a 
Standard error 

b 
Confidence intervals 

c 
Limits of agreement 

 

Finally, the main effect for strain-rate on tendon stiffness was significant (F1, 19 = 48.90, 

p < 0.01). Post-hoc t-tests revealed that Achilles tendon stiffness was significantly 

greater at 0.8 cm·s
-1

 than at 0.4 cm·s
-1

 and 0.1 cm·s
-1

. Further, this measure was greater 

at 0.4 cm·s
-1

 when compared to 0.1 cm·s
-1

 (p < 0.001). For both methods, tendon 

stiffness increased linearly with increasing tendon stiffness (Figure 3.4). By 

experimental design, both methods exhibited perfect correlations between tendon 

stiffness and strain-rate derived from interpolated data. However, even correlations 

obtained from raw data showed values close to 1. The specific relationships between 
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tendon stiffness and strain-rate derived from the interpolated data are given in the 

equations below: 

 

Passive: Tendon Stiffness (Nm·cm
-1

) = 3.65 (Strain-rate (mm·s
-1

)) + 32.78 

Active: Tendon Stiffness (Nm·cm
-1

) = 3.55 (Strain-rate (mm·s
-1

)) + 31.11 

 

 

 

Figure 3.4. Change in tendon stiffness with increasing strain-rate at 0.1, 0.4 and 0.8 

cm·s
-1 

for the active (squares) and passive (triangles) methods. 
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Figure 3.5. Ankle torque and Achilles tendon elongation during an isometric maximal 

voluntary contraction manoeuvre (top) and during passive dorsiflexion (bottom) at 

strain rates 0.1, 0.4 and 0.8 cm·s
-1
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3.4 Discussion 

The purpose of this study was to investigate the agreement between Achilles tendon 

stiffness obtained from the active and passive methods across different tendon strain-

rates. We found that (1) the active method produced greater stiffness values than the 

passive method across all strain-rates, (2) in spite of this difference, agreement existed 

between the two methods across all strain-rates, and (3) tendon stiffness increased 

linearly across strain-rates for both methods.  

 

Tendon stiffness is dependent on both the level of torque (Rigby et al., 1959) and the 

tendon’s strain-rate (Pearson et al., 2007). Therefore, in the present study we matched 

both torque and strain-rate for both methods. Regardless of this, tendon stiffness values 

obtained from the active method were 6% higher than those obtained from the passive 

method at all strain-rates.  

 

The systematic differences between methods could be explained by both stress-

relaxation properties of the tendon, or the absence of moment arm measurements. First, 

although tendons were pre-conditioned by means of maximum voluntary contraction 

manoeuvres prior to the testing, the exact time course of stress-relaxation recovery for 

the in vivo tendon is not clear. A tendon not sufficiently pre-conditioned may have 

undergone more stress-relaxation in the passive trials as the tendon is stretched through 

its full dorsiflexion range, compared to the shorter duration active trials, resulting in 

differing torque levels and therefore stiffness values. However, both in vitro and in vivo 

studies have demonstrated that pre-conditioning alters the properties of the tendon for 

>30 minutes (Vidik, 1973; Kay & Blazevich, 2009), suggesting that tendons would still 

have been sufficiently pre-conditioned following the maximal contractions and rest 

period used in the current study. Second, due to the nature of the tendon stiffness 



 

 
75 

 

measures used in this study, moment arm calculations were neglected. As moment arm 

would have changed depending on joint angle and also contraction state, this may have 

also accounted for the systematic bias between methods. However, given that the actual 

difference between methods was minimal (2.1-7%) and within the coefficient of 

variation for tendon stiffness measures (6.5%), suggests that the physiological 

significance of both stress-relaxation and moment arm would also be minimal. Future 

research should specifically aim to determine the cause of this bias between methods.  

 

Although there was an absolute difference in tendon stiffness between the two methods, 

the intraclass correlation coefficients and the limits of agreement indicated agreement 

between the methods. All data points for 0.1 and 0.8 cm·s
-1

, and 95% of data points for 

0.4 cm·s
-1

 fell within the 95% confidence intervals. Based on this analysis of limits of 

agreement, our results imply that a participant’s (active) tendon stiffness could be over 

or under-estimated by 2.1%, 4.0% and 7.0% using the passive method, for strain-rates 

0.8, 0.4 and 0.1 cm·s
-1

, respectively. This degree of error will be acceptable in many 

situations in which tendon stiffness obtained from both methods is compared to each 

other.  

 

The agreement between the passive, compared with the more commonly used active 

method for measuring Achilles tendon stiffness has practical implications. In contrast to 

the active method, the passive method allows for the estimation of global muscle (in 

addition to tendon) stiffness (Morse et al., 2008). Further, the passive method may be 

more suitable for clinical populations who may not be able to perform maximal 

voluntary contraction manoeuvres reliably. Therefore our findings have implications for 

researchers wishing to calculate muscle and tendon stiffness independently and who 

seek to investigate muscle and tendon mechanics in clinical populations. In such cases, 
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the passive method may be used. One limitation to this recommendation is that the 

passive method only allows for stiffness calculations at relatively low torque levels.  

 

Before concluding that both methods are in “good” agreement, it is important to bear in 

mind that the quality of agreement is context-dependent. For example, when comparing 

stiffness values obtained by different methods from the literature, any observed 

differences need to be interpreted relative to the differences reported here in our direct 

comparison. Similarly, when using different methods to obtain Achilles tendon stiffness 

(e.g., different methods for different populations), researchers will need to account for 

the differences reported here. It may be the case that differences in stiffness values 

between two populations are smaller than the difference between methods, in which 

case using different methods for different populations would not be advisable.  

 

Both active and passive methods have been used to investigate tendon stiffness resulting 

in a large range of reported tendon stiffness values (Kay & Blazevich, 2009; Kubo et 

al., 2002b; Mizuno et al., 2011; Morse et al., 2008; Waugh, et al., 2012). For example, 

Morse et al. (2008) used the passive method, whilst Kubo et al. (2002b) used the active 

method. The tendon stiffness values by Kubo et al. (2002b) are 56% greater than those 

reported by Morse et al. (2008). Mizuno et al. (2011) speculated that the difference in 

tendon stiffness observed between the two studies was the result of methodological 

differences. The results of the present study support this speculation. However, whilst 

methodological differences partially explain these discrepancies in the literature, 

different torque levels used in these two studies are likely to be another contributor.  

 

Our results further highlight that strain-rate affects tendon stiffness. Pearson et al. 

(2007) found that in the patellar tendon stiffness increased as the duration of contraction 
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increased. This was attributed to the composition of tendinous tissue, which includes 

collagen fibres that exhibit viscoelastic properties, which causes it to deform slowly in a 

non-linear fashion, and respond to the rate of loading. Our data extend these results on 

several levels. First, they demonstrate that the results by Pearson et al. (2007) who, 

investigated the patellar tendon, are transferrable to the Achilles tendon. Second, our 

results specifically quantify the relationship between tendon stiffness and strain-rate. In 

particular, we found that stiffness increases linearly by approximately 41% with an 

eightfold increase of strain-rate. This velocity-dependent increase in tendon stiffness is 

independent of the method being employed. This is similar to previously reported 

values in vivo and in vitro. For example, Pearson et al. (2009) reported an increase of 

approximately 43% in the patellar tendon from a slow to fast stretch. In the tibialis 

anterior of adult rabbits, Taylor, Dalton, Seaber and Garrett (1990) reported an increase 

of 40-44% with increasing stretch velocity, which supports the findings here of the in 

vivo Achilles tendon. 

 

Our findings have implications when comparing tendon stiffness values reported in the 

literature, as different studies employ different protocols. Hansen, Bojsen-Moller, 

Aagaard, Kjaer and Magnusson (2006), for example, measured the mechanical 

properties of the patellar tendon under loading conditions, but used a slow ramped force 

rise (~10 s), which resulted in a relatively low strain-rate. Kubo et al. (2010) and 

Maganaris and Paul (1999) used shorter durations of force rise (~5 s and ~1 s, 

respectively). In light of our findings, the velocity-dependence of stiffness needs to be 

taken into consideration when comparing stiffness values reported in these studies. Our 

results further highlight the importance for future studies examining tendon mechanical 

properties to adopt a standard protocol and/or to report tendon strain-rates in order to 

allow comparisons between studies to be made more readily.  
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CHAPTER 4: MECHANICAL AND MATERIAL PROPERTIES OF THE TRICEPS SURAE 

MUSCLES AND ACHILLES TENDON IN CHILDREN WITH SPASTIC CEREBRAL PALSY AND 

TYPICALLY DEVELOPING CHILDREN 

4.1 Introduction 

Spastic CP results from damage to the developing brain before, during or shortly after 

birth (Reddihough & Collins, 2003). During maturation, secondary musculoskeletal 

adaptations occur, which can affect the mechanical and material properties of muscles 

and tendons.  Previous research has primarily focused on the atypical development of 

the muscle in children with spastic CP compared to their TD peers. There is consistent 

evidence of a shorter gastrocnemius muscle belly length (Malaiya, et al., 2007; Wren et 

al., 2010) reduced muscle volume (Malaiya et al., 2007), increased connective tissue 

(Booth et al., 2001), and increased muscle and fascicle stiffness (Barber et al., 2011a; 

Fridén & Lieber, 2003; Smith et al., 2011). The adaptations of the tendon in children 

with spastic CP are less well established. However, the tendon also plays an integral 

role in movement, alongside the muscle.  The mechanical properties of the tendon 

govern the transfer of muscular forces to the bone, and the storage and return of elastic 

energy during functional activities. It is possible that the aforementioned CP-related 

changes in the mechanical properties of the muscle, result in secondary mechanical 

adaptations of the tendon, which have implications for functional movement. Thus, the 

overall goal of this study was to characterise the mechanical properties of the tendon in 

children with spastic CP, and compare them to TD children. 

 

Since the muscle and tendon are closely integrated in the production of movement, the 

mechanical properties of both structures in children with spastic CP should not be 

considered independent to one another. Importantly, the length and compliance of the 

Achilles tendon can affect the force-generating capacity of the muscles (Lichtwark, 
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Bougoulias & Wilson, 2007; Lichtwark & Wilson, 2008). For example, certain tendon 

compliance may allow muscle fibres to operate close to an optimal length and at 

relatively low shortening velocities, thereby aiding force production (Lichtwark et al., 

2007; Lichtwark & Wilson, 2006). Since movement is governed by both the stiffness of 

the muscle and tendon, it is important to understand how tendon mechanical properties 

change in concert with changes in the muscle. Therefore, the first specific aim of this 

study was to compare triceps surae muscle and Achilles tendon stiffness in children 

with spastic CP and TD children.  

 

Tendon stiffness is determined by both its dimensions and material properties. 

Regarding the former, a long tendon with a small cross-sectional area will be more 

compliant than a short tendon with a large cross-sectional area. Regarding the latter, the 

tendon’s material properties are independent of its dimensions and depend primarily on 

collagen fibre type, size and organisation (Silver, Freeman & Seehra, 2003). One way to 

differentiate between the dimensional and material properties of the tendon is to 

calculate Young’s modulus (E), which can be thought of as tendon stiffness normalised 

by its dimensions (i.e., E = tendon stiffness × resting length/cross-sectional area). It has 

previously been demonstrated that in TD children, tendon stiffness increases with 

maturation (Waugh et al., 2012) due to changes in both dimensions and material 

properties. The adaptations of the material properties in particular, are thought to occur 

mainly in response to chronic mechanical loading, predominantly due to an increase in 

muscle size and force (Kubo et al., 2001b). Within the context of CP, mechanical 

loading from increased stiffness of the spastic muscle may allow typical growth of the 

tendon’s material properties. However, dimensional tendon differences in children with 

spastic CP have previously been reported. For example, the Achilles tendon has been 

shown to be longer than in TD children, and with a smaller cross-sectional area (Gao et 
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al., 2011), presumably as an adaptation to the atypical shortening of the muscle belly 

(Barber et al., 2012; Wren et al., 2010). Due to the aforementioned dependence of 

tendon stiffness on dimensions, one might expect these dimensional changes to cause a 

greater tendon compliance in children with spastic CP. However, Barber et al. (2012) 

did not find any differences in tendon stiffness between children with CP and TD 

children, which could indicate concomitant alterations in tendon cross-sectional area 

and maturation of the tendon’s material properties, independent of dimensions. 

Understanding the CP-related changes in the dimensional and material properties to 

tendon stiffness is an important prerequisite to better understand movement efficiency 

and control in children with spastic CP. Therefore, the second specific aim was to 

compare dimensions and material properties of the Achilles tendon between children 

with spastic CP and TD children. 

 

Another mechanical property of the tendon is its viscoelasticity. Tendons recoil 

elastically after stretch, but they also act viscously; meaning that they become stiffer at 

higher loading rates (Knudson, 2007, pp. 73; Le Veau 1992; Pearson et al., 2007; Theis, 

Mohagheghi & Korff, 2012b). Previously, we have shown that the slope describing the 

strain-rate-stiffness relationship is lower in TD children than in adults (Theis, 

Mohagheghi & Korff, 2012a). This has implications for the transfer of force to the 

muscle, and may partly explain differences in movement efficiency between adults and 

children. Within the context of CP, an abnormal strain-rate response could have 

important implications in the interpretation of clinical tests of spasticity. For example, a 

widely accepted definition of spasticity is that of Lance (1980, pp. 485), which defines 

spasticity as a “velocity-dependent increase in muscle tone”. In clinical practice, the 

Modified Ashworth Scale uses this definition as a basis for the identification of 

spasticity in the muscle (Bohanon & Smith, 1987). Implicit in this test is the assumption 
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that an increased joint stiffness at faster movement speeds is reflective of increases in 

muscle stiffness (and is therefore a neural phenomenon). However, if the 

aforementioned strain-rate-stiffness relationship in the tendon (Knudson, 2007, pp.73; 

Theis et al., 2012b) was exaggerated in children with CP, then perceived abnormalities 

in joint stiffness may partially be explained by typical viscoelastic (i.e., passive) 

properties of the Achilles tendon. Thus, from a clinical perspective, it is vital to 

understand the strain-rate-tendon stiffness relationship in children with CP, as it could 

lead to more differentiated (and therefore more meaningful) assessments of spasticity. 

Thus, the third aim of the study was to determine the strain-rate response of the Achilles 

tendon in children with spastic CP, compared to TD children. 
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4.2 Methodology 

4.2.1 Participants 

Ten children with clinically diagnosed diplegic or quadriplegic spastic CP (5 males, 5 

female; age 11.4 ± 3.0 y), and ten age-matched TD children (5 males, 5 female; age 

12.0 ± 2.9 y) participated in this study. Six children with CP were classified as level III 

and four children with CP were classified as level IV on the Gross Motor Classification 

system (GMFCS) (Palisano et al., 1997) as assessed by a physiotherapist. Written 

consent was obtained from all parents/guardians and written assent was obtained for all 

children, prior to participation. The study was approved by the Research Ethics 

Committee at Brunel University and relevant local NHS Ethics Committees (see 

Appendix VI).  

 

4.2.2 Protocol and Instrumentation 

Ankle torque was measured using an isokinetic dynamometer. For the TD children, we 

used a Biodex dynamometer system (Biodex Medical Systems, New York, USA). For 

logistical reasons, children with CP were tested using a Cybex dynamometer system 

(Cybex Norm, Lumex, Ronkonkoma, NY, USA). To ensure that any between group 

differences would not be confounded by differences in the measurement modalities, we 

established the comparability of the data obtained from both systems. For this purpose, 

we compared angular velocity data obtained at 1 and 30 deg∙s
-1

. The mean deviation 

between systems was 0.60% and 0.64% for 30 deg∙s
-1 

and 1 deg∙s
-1

, respectively. The 

mean deviation between systems for torque, measured under constant load conditions 

(22.3 N and 44.6 N), was 0.76% and 0.84%, respectively. These differences were 

deemed to be negligible. 
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To measure ankle torque, participants were seated on the dynamometer chair. The right 

knee was straightened to full extension for the TD group, and for the CP group the knee 

was straightened as much as possible, which was on average 7.0 (± 2.0) deg from full 

extension across participants. The relative hip angle was set to 85 deg for both groups. 

The lateral malleolus of the right ankle was aligned with the rotational axis of the 

dynamometer arm. The dynamometer footplate was positioned perpendicularly to the 

tibia, and this was considered to be 0 deg. Stabilisation straps were applied tightly over 

the foot, thigh and chest to minimise movement of the upper body or leg.  

 

The participants’ available ROM was determined by dorsi- and plantarflexing the foot at 

10 deg·s
-1

, until any discomfort was reported. This occurred between 6.3 ± 0.7 deg 

dorsiflexion and 20.3 ± 4.0 deg of plantarflexion for the CP group, and 19.0 ± 8.3 deg 

dorsiflexion and 23.1 ± 3.6 deg of plantarflexion for the TD group. The dynamometer 

system was then set to apply passive angular rotations to the right ankle joint at constant 

angular velocities of 1, 10 and 30 deg·s
-1

 within the available ROM.  Participants were 

instructed to relax the muscles of the lower limb during the passive rotations. Three 

rotations were recorded at each angular velocity, and the order of angular velocities was 

randomised. The electrical activity of the medial gastrocnemius (EMG) was monitored 

throughout the rotations (Trigno wireless system, Delsys Inc., Ltd., Boston, USA). Both 

torque and EMG data were sampled at 1000 Hz. Torque data were filtered using a low-

pass, fourth-order, zero-lag Butterworth filter with a cut-off frequency of 14 Hz as 

determined by residual analysis. 

 

Muscle and tendon elongation were measured as the displacement of the medial 

gastrocnemius muscle-tendon junction throughout the passive rotations. The muscle-

tendon junction was visualised using B-mode ultrasonography (Megas GPX, Esaote, 
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Italy; 45 mm Linear array probe, 10 MHz transducer scanning). The probe was placed 

perpendicularly to the skin surface above the muscle-tendon junction and orientated to 

clearly display the aponeuroses separating the medial gastrocnemius and soleus 

muscles. The probe was fixed in position using a custom-made holder. A 2 mm wide 

strip of echoabsorptive tape, placed on the skin in contact with the probe, provided a 

reference to which any probe movement could be identified. Peak Motus tracking 

software (Peak Performance, Cambridge, UK) was used to manually digitise 2D 

coordinates of the muscle-tendon junction. Extensive practise of the manual digitisation 

procedure during pilot testing allowed a high reliability to be obtained (coefficient of 

variation = 4.1%). Digitised muscle-tendon junction position data were filtered using a 

low-pass fourth-order zero-lag Butterworth filter with a 3.25 Hz cut-off frequency as 

determined by residual analysis.  
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Figure 4.1. Experimental setup for measuring muscle and tendon lengths. 

 

4.2.3 Derivation of dependent variables  

Using the coordinates of two markers from the handle of the ultrasound probe, 

combined with the coordinates of the muscle-tendon junction in the ultrasound image, 

the global 2D position of the muscle-tendon junction was calculated in the sagittal 

plane. Tendon length was defined as the linear distance from its insertion on the 

calcanei to the medial gastrocnemius muscle-tendon junction. Medial gastrocnemius 

muscle length was defined as the distance between the medial femoral epicondyle and 

the global 2D coordinates of the muscle-tendon junction (Figure 4.1). Thus, both medial 

gastrocnemius and Achilles tendon were modelled as straight lines, using custom 

written analysis software (Matlab v7.14, MathWorks, Cambridge, UK) (see Appendix 

V). The resting length of the Achilles tendon was calculated as the length at which there 
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was a sustained increase in ankle torque above zero (Barber et al., 2012), and thus, 

where tendon slack had been taken up. Tendon resting length was expressed in absolute 

terms at this point, and was also normalised to resting muscle-tendon unit length. 

 

Tendon stiffness was calculated as the change in ankle torque divided by the 

corresponding change in Achilles tendon length. Ankle torque was calculated over the 

range, neutral (0 deg) to maximum dorsiflexion. An estimate of “total” triceps surae 

muscle stiffness was derived using the method described by Morse et al. (2008). For 

this purpose, the change in passive ankle torque was divided by changes in medial 

gastrocnemius muscle length. 

 

Muscle and tendon stiffness for both groups was determined during dorsiflexion in the 

10 deg·s
-1

 trial. Stiffness was calculated relative to each participant’s maximal force, 

subsequently referred to as stiffnessREL. Specifically, we determined the slope of the 

force-elongation curve, between 20-80% of each participant’s peak torque. This interval 

was chosen for two reasons. First, children with spastic CP have been reported to have a 

greater slack length, and greater “toe region”. Thus, using 20% as the minimum range 

allowed stiffness to be calculated outside of this region. Second, it has been reported 

that towards maximum dorsiflexion, passive elastic structures such as ligaments, 

connective tissue and skin, contribute more to passive resistance (Abellaneda, Guissard 

& Duchateau, 2009). To minimise the influence of these structures, 80% was chosen as 

the maximal range. Tendon stiffness measured over the range of 20-80% gave a 

coefficient of variation of 6.0%. This was calculated from tendon stiffness in six 

children with spastic CP, on three separate occasions.  
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Tendon stiffness was also calculated in a common region of torque (subsequently 

referred to as stiffnessCOM) to allow inferences to be made about the passive mechanical 

properties of the tendon between groups. For this purpose, we used the range, which 

corresponded to 20% and 80% of peak torque from the second weakest participant 

(corresponding to an absolute torque range of 1.1 - 4.5 Nm). For this analysis, we 

excluded the weakest participant, as 20% of their peak torque was lower than the 

minimum torque for some of the stronger participants.  

 

The tendon’s Young’s Modulus was calculated by multiplying tendon stiffnessCOM by 

its resting length and dividing by tendon cross-sectional area. For this purpose, we used 

a modified silicon ultrasound gel pad (Aquaflex 2 × 9 cm, Parker Labs Inc., NJ, USA) 

to take three discrete ultrasound images of the Achilles tendon cross-sectional area, 

approximately 30 mm proximally to the tendon insertion (Magnusson et al., 2001). The 

tendon perimeter was traced using specialist software (Esaote, Italy) (Figure 4.2), and 

the image with the smallest cross-sectional area was used for further analysis. The 

smallest cross-sectional area was chosen to represent the highest stress values of the 

tendon, and was compared between groups. The inter-test reliability, determined from 

three separate trials from three individuals, was 3.7%. The intra-observer reliability for 

determining the cross-sectional area, obtained by analysing 30 images three times, was 

3.5%. 
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Figure 4.2. Measurement of Achilles tendon cross-sectional area 

 

Lastly, relative tendon stiffness (stiffnessREL) was also calculated from the slope of the 

torque-elongation curve, corresponding to 20-80% of each participant’s peak force. 

StiffnessREL was plotted against angular velocities of 1, 10 and 30 deg·s
-1

. The tendon 

strain-rates corresponding to these angular velocities were 0.12 ± 0.02, 0.43 ± 0.04, 0.81 

± 0.03 cm·s
-1

 for the CP group and 0.14 ± 0.03, 0.46 ± 0.10, 0.88 ± 0.09 cm·s
-1

 for the 

TD group, respectively. A linear regression line was fitted through the strain-rate-

stiffness relationship to calculate the slope of the line. 

 

4.2.4 Statistical analysis  

To address the first specific aim of this study, we determined differences in muscle and 

tendon stiffnessREL between groups using a mixed design repeated measures ANOVA. 

Here, we tested for a structure (muscle vs. tendon) × group (CP vs. TD) interaction. In 

case of significance, Bonferroni corrected t-tests were performed to locate any between 

group (independent t-test) differences and between structure (paired t-tests) differences.  
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Regarding the second specific aim, we performed a MANOVA on stiffnessCOM, tendon 

cross-sectional area, absolute resting tendon length and resting tendon length expressed 

as a percentage of muscle-tendon unit length, with Bonferroni corrected t-tests. One 

further independent t-test was performed on Young’s modulus. In addition to these 

statistical tests, we also determined the effect sizes (Cohen’s D) to describe group 

differences for all dependent variables.  

 

With regards to the third specific aim of the study, a mixed design repeated measures 

ANOVA was performed to test for a main effect of strain-rate on tendon stiffnessREL, 

and a group × strain-rate interaction. In case of main effect significance, two 1 × 3 

repeated ANOVA’s were performed. Following significance, paired t-tests with 

Bonferroni correction were performed to determine within-group differences in strain-

rate. In case of a significant interaction, independent t-tests were performed to compare 

tendon stiffnessREL between groups at each strain-rate.  One further independent t-test 

was used to compare the slope of the strain-rate-stiffnessREL relationship between 

groups. 
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4.3 Results 

Results from the first ANOVA revealed a significant group × structure interaction effect 

(F1, 18 = 8.04, p < 0.05). The main effect of structure on stiffnessREL was non-significant 

(F1, 18 = 1.88, p = 0.19). Follow up independent samples t-tests revealed that muscle 

stiffnessREL was significantly greater in the CP group compared to the TD group (t18 = 

2.37, p < 0.029), with no difference in tendon stiffnessREL (t18 = 0.34, p = 0.74). Follow 

up paired samples t-tests revealed muscle stiffnessREL was significantly greater than 

tendon stiffnessREL in the CP group (t9 = 2.98, p < 0.015), whilst this effect was non-

significant in the TD group (t9 = 1.03, p = 0.33) (Figure 4.3). 

 

 

 

Figure 4.3. Triceps surae muscle and Achilles tendon stiffnessREL in CP and TD groups 

(values are mean ± SD, *p = < 0.05). 

 

 

The MANOVA procedure revealed significant differences in tendon cross-sectional 

area, resting tendon length and stiffnessCOM by group (Hotelling’s T
2
 = 1.60, F4, 14 = 
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5.59, p < 0.01). Tendon cross-sectional area was significantly smaller in the CP group 

compared to the TD group (t18 = -5.16, p < 0.01). In addition, normalised resting tendon 

length was significantly greater in the CP group compared to the TD group (t18 = 2.72, p 

< 0.05). In contrast, absolute resting tendon length and tendon stiffnessCOM were not 

significantly different between groups (t18 = 0.13, p = 0.90; t17 = -1.05, p = 0.31), 

respectively. In addition, there were no differences in Young’s modulus between groups 

(t17 = 0.44, p = 0.67, Effect size = -0.21) (Figure 4.4) (Table 4.1). 

 

 

 

 

Figure 4.4. Achilles tendon stiffnessCOM (left figure) and Young’s modulus (right figure) 

in children with CP compared to TD groups (values are mean ± SD). 

 

The strain-rate by group ANOVA on stiffnessREL revealed a significant interaction (F2, 

29 =6.13, p < 0.05). The main effect of strain-rate was also significant (F2, 29 =24.35, p < 

0.01). Independent samples t-tests revealed no significant difference between groups at 

any time points, 1, 10 and 30 deg∙s
-1

, respectively (1 deg∙s
-1

: t18 = 0.16, p = 0.88; 10 

deg∙s
-1

:
 
t18 = 0.34, p = 0.74; 30 deg∙s

-1
: t18 = -1.25, p = 0.28). To investigate the source 

of the strain-rate by group interaction, we determined the effect sizes (Cohen, 1988) 
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quantifying the group difference at each strain-rate. This analysis revealed that the 

group differences at the low velocities were small (effect size = 0.04 and 0.16 at 1 deg∙s
-

1
 and 10 deg∙s

-1
, respectively) whilst the group effect was moderate at 30 deg∙s

-1
 (effect 

size = -0.29) (Figure 4.5).  

 

 

Figure 4.5. Achilles tendon stiffnessREL measured at strain-rates 1, 10 and 30 deg∙s
-1

 in 

CP compared to TD children (values are mean ± SD, *p = < 0.05). 

 

The group by strain-rate interaction also expressed itself in different strain-rate effects 

between groups. Post-hoc paired samples t-tests revealed that in the CP group, Achilles 

tendon stiffnessREL was significantly greater at 30 deg∙s
-1

,
 
than at 10 deg∙s

-1 
and 1 deg∙s

-1 

(p < 0.01). In the TD group, Achilles tendon stiffnessREL was greater at 10 deg∙s
-1 

than at 

1 deg∙s
-1

 (p < 0.01), but not different between 10 deg∙s
-1 

and 30 deg∙s
-1

 (p > 0.05) 

(Figure 4.5). Finally, the slope of the strain-rate stiffnessREL curve was significantly 

steeper in the CP group (Slope = 6.2 ± 4.1 Nm∙cm
-1

/deg∙s
-1

, R
2
 = 0.85 ± 0.11) compared 

to the TD group (Slope = 2.5 ± 1.4 Nm∙cm
-1

/deg∙s
-1

, R
2
 = 0.70 ± 0.3) (t18 = 2.67, p < 

0.05).  
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Table 4.1. Descriptive characteristics of the variables associated with calculating the 

mechanical properties of the muscle and tendon. Calculations are taken from 10 deg·s
-1

 

trial. (Values are mean ± SD). 

 

 TD CP Effect size 

(Cohen’s D)  

DF angle (deg) 19.0 ± 8.3 6.3 ± 0.7 1.46 

Tendon cross-sectional area (cm
2
) 4.95 ± 0.7 3.54 ± 0.5 1.51 

Resting tendon length (cm) 17.5 ± 2.6 17.7 ± 4.0 -0.05 

Normalised resting tendon length 

(%) 

Peak ankle torque (Nm) 

49.9 ± 6.1 

 

19.4 ± 14.0 

55.8 ± 2.9 

 

11.1 ± 5.0 

-1.05 

 

0.61 

Muscle stiffnessREL (Nm·cm
-1

) 

Tendon stiffnessREL (Nm·cm
-1

) 

Tendon stiffnessCOM (Nm·cm
-1

) 

Young’s modulus (Nm·cm
-2

) 

16.0 ± 9.0 

18.8 ± 8.0 

14.9 ± 6.7 

70.1 ± 35.4 

25.8 ± 9.4 

17.7 ± 6.8 

12.2 ± 4.4 

87.2 ± 32.0 

-0.95 

0.16 

0.48 

-0.25 
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4.4 Discussion   

The overall goal of this study was to characterise the mechanical properties of the 

tendon in children with spastic CP, and compare them to TD children. The first purpose 

of this study was to compare triceps surae muscle and Achilles tendon stiffness in 

children with spastic CP and TD children. For this purpose, we calculated muscle and 

tendon stiffness relative to each participant’s maximum force. The results showed that 

triceps surae muscle stiffness was significantly greater in children with CP compared to 

TD children. This result is consistent with previous findings of spastic muscle stiffness 

(Barber et al., 2011a; Friden & Lieber, 2003; Smith et al., 2011). Potential mechanisms 

underlying these spasticity-related differences in muscle stiffness include a reduced 

number of in-series sarcomeres (Smith et al., 2011) and remodelling of intra- and extra-

muscular connective tissue (Booth et al., 2001).  

 

More interestingly, we also found that children with CP had greater muscle compared to 

tendon stiffness, whereas in TD children the stiffness between the two structures was 

not different. This difference in the muscle to tendon stiffness ratio may have important 

implications for movement control. For example, in a healthy system, tendon stiffness is 

tuned to optimise muscle fibre shortening velocity and minimise muscle activation 

(Lichtwark & Wilson, 2008). The tendon also has the ability to store and release elastic 

energy for more efficient movement during locomotion (Alexander, 1990). In children 

with spastic CP, a greater muscle to tendon stiffness ratio may partly explain the high 

mechanical energy cost and greater mean energy expenditure experienced during 

walking (Rose et al., 1990; Olney, Costigan & Hedden, 1987).   

 

We also showed that tendon stiffness, when expressed relative to each participant’s 

force generating capacity, was not different between TD and CP. This finding is 
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consistent with Barber et al. (2012), who demonstrated no differences in Achilles 

tendon stiffness, measured in absolute terms, in children with CP compared to TD 

children. As such, the authors state that differences in stiffness were mainly explained 

by differences in ankle torque. In the present study, we also expressed stiffness relative 

to the individual’s force capacity, which provides information about muscle and tendon 

stiffness as experienced in normal motor tasks. To understand differences in the 

mechanical properties of the tendon, however, it is necessary to also quantify tendon 

stiffness over a common force range (i.e., stiffnessCOM).  

 

 Normalising tendon stiffness by its dimensions allows us to tease out eventual 

contributions of dimensions and material properties to tendon stiffness in CP. Therefore, 

the second specific aim was to compare dimensions and material properties of the 

Achilles tendon between children with spastic CP and TD children. Our results 

demonstrate that absolute Achilles tendon stiffness was not significantly different 

between children with spastic CP and TD children. This result is in contrast to the 

findings by Barber et al. (2012) and Gao et al. (2011), and is likely to be explained by 

between subject differences in limb lengths. Support for this explanation is provided by 

our results that when expressed as a percentage of muscle-tendon unit length, the 

Achilles tendon was significantly longer in CP compared to TD children. The results 

also revealed that children with spastic CP had a smaller tendon cross-sectional area, 

with no group differences in resting tendon length or Young’s modulus. A smaller 

cross-sectional area in CP has previously been reported (Gao et al., 2011), but it is not 

clear as to the mechanisms, which alter tendon dimensions. One speculation could be 

that tendon dimensions in children adapt in line with bone growth, which potentially 

develops slower in children with CP, due to a lack of weight-bearing activity (Samson-

Fang & Stevenson, 1998). In contrast to Barber et al. (2012) and Gao et al. (2011), we 
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found that Achilles tendon length was not longer compared to the TD group. This may 

be due to small variations in limb lengths between groups, or the younger and more 

severely affected participants used in our study. For example, the participants used by 

Barber et al. (2012) were likely to be more ambulant and perhaps with more opportunity 

for maturational adaptation than the participants in the present study. In addition, a 

greater sample size may be needed to detect changes in tendon stiffness in this 

population. Theoretically, a smaller cross-sectional area should make the tendon more 

compliant (Effect size = 0.48). However, the reduction may not have been strong 

enough to elicit significant changes in tendon stiffness. These changes could have been 

partially compensated for by a reverse change in Young’s modulus (Effect size = -0.25), 

suggesting a different mechanism for alterations in the tendon’s material properties 

compared to dimensions. 

 

On the surface, the fact that Young’s modulus was not different between the groups 

suggests that the integrity of the tendon’s material properties is unaffected in children 

with spastic CP. These results suggest the increased spastic muscle stiffness may 

provide mechanical loading of the tendon, as is the case in TD children. The proposed 

mechanisms, based on findings from animal studies, suggest that both collagen turnover 

and the density of collagen fibrils may increase with loading (Woo et al., 1980). 

Additionally, alterations in the crimp angle of collagen fibrils have also been shown to 

occur following loading in animal tendons (Wood, Cooke & Goodship, 1988). Whilst 

our results suggest that the intrinsic tendon structure is not different between CP and 

TD, they do not reject this speculation irrefutably. It could be the case that concomitant 

alterations in the microstructure of the tendon resulted in no overall observed changes in 

the material properties. For example, it could be the case that alterations in the integrity 

of the extracellular matrix (which may decrease tendon stiffness) are accompanied by a 
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maturational increase in collagen fibre size and density (which may increase tendon 

stiffness), resulting in no overall change in tendon stiffness. Future research should 

specifically address these questions.  

  

The third purpose of the study was to describe the strain-rate response of the Achilles 

tendon in children with spastic CP compared to TD children. Both groups showed an 

increase in absolute tendon stiffness with increasing strain-rate. This is consistent with 

previous studies of adults in both the patellar tendon (Pearson et al., 2007) and the 

Achilles tendon (Theis et al., 2012b). Specifically, we found that the slope describing 

the strain-response was steeper in the CP group, indicating that at higher strain-rates 

(i.e., 30 deg·s
-1

), tendon stiffness was greater in children with spastic CP compared to 

TD children. This could again be indicative of alterations in the tendon’s material 

properties, which would alter the viscoelastic response of the tendon, without 

specifically affecting tendon stiffness. These results have important implications for the 

clinical test of spasticity. The fact that at 30 deg·s
-1

 tendon stiffness is markedly higher 

in children with CP compared to TD children needs to be taken into consideration when 

conducting tests which make the assumption that joint stiffness is reflective of muscle 

stiffness. This is particularly relevant as the tonic stretch reflex is elicited at 35 deg·s
-1

 in 

a spastic muscle (Thilmann et al., 1991), and so tests for spasticity should not be 

conducted exclusively below this point.  

 

4.4.1 Limitations and future research 

It is important to recognise the limitations of the present study, in particular, the 

derivation of “muscle stiffness”. Firstly, torque measured at the ankle is not only 

attributable to the triceps surae muscle-tendon unit, but also to other passive elastic 

structures - the contribution of which cannot be measured in vivo. Second, our 
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calculation of stiffness does not account for potential different contributions of the 

gastrocnemii and soleus to the total torque. In part, it could be the case that relative 

differences in the cross sectional areas of the individual muscles of triceps surae differ 

between children with CP and TD children (Elder et al., 2003; Lampe et al., 2006). 

Future research could address this by measuring the physiological cross-sectional of all 

triceps surae muscles, so that torque measured at the ankle joint could be attributed to 

each muscle. Whilst this would still neglect the contribution of passive elastic 

structures, incorporating any differences in muscle cross-sectional area may highlight 

greater between group differences. 

 

It further assumes that all triceps surae muscles elongate equally to that of the medial 

gastrocnemius muscle. In children with spastic CP, Barber et al. (2011a) reported that 

soleus elongation was similar to that of the medial gastrocnemius; however, we cannot 

rule out the possibility of some systematic error in the calculation of muscle stiffness 

used in the present study. Lastly, modelling the muscle as a straight line does not take 

the actual individual muscle paths into consideration. From these limitations it becomes 

clear that our measure of muscle stiffness is, to a certain extent, a theoretical construct. 

However, we believe that within the context of this study our measure of “global muscle 

stiffness” provides important insights into the interactions between spasticity-induced 

differences in muscle and tendon properties.  

 

4.4.2 Summary 

The overall purpose of the study was to characterise the mechanical properties of the 

tendon in children with spastic CP compared to TD children. In line with previous 

results, we found that children with CP have stiffer muscles than TD children, and that 

tendon stiffness is not different between the groups. These results provide us with a 
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more differentiated understanding of spasticity-induced tendon mechanical properties. 

This knowledge needs to be taken into consideration when interpreting and treating 

movement abnormalities in children with CP. The fact that strain-rate-induced increases 

in tendon stiffness are more pronounced in children with CP compared to TD children 

have dramatic consequences for the interpretability of current clinical tests of spasticity.  

  



 

 
100 

 

 

CHAPTER 5: DOES ACUTE PASSIVE STRETCHING INCREASE MUSCLE LENGTH IN 

CHILDREN WITH CEREBRAL PALSY? 

5.1 Introduction 

Children with CP show increased muscle stiffness and reduced muscle length, which 

may contribute to reduced function. Stretching is commonly used in the treatment and 

management of children with spastic CP and is considered to be an important part of 

preventing or delaying the onset of contractures (National Institute for Health and Care 

Excellence, 2012). The assumptions made in clinical practice are that repeated bouts of 

stretching over periods of weeks or months can increase muscle length and reduce 

stiffness (Herbert, 2004; Odeen, 1981) by providing the necessary stretch stimulus that 

allows the muscle to lengthen in line with bone growth. 

 

The increased stiffness (hypertonicity) of the muscle can have both neural and 

mechanical components. Spasticity (neural) and reduced muscle length (mechanical) 

can both theoretically be addressed with stretching, although the mechanisms by which 

these changes occur are not fully understood (Guissard & Duchateau, 2006). Regarding 

the former, the reduction in neural hypertonia may be related to reduced motor neuron 

excitability or reduced neural input to motor neurons through both pre- (e.g., input from 

Ia afferents) and/or post-synaptic mechanisms (Hummelsheim, Munch, Butefisch & 

Neumann, 1994). The consequence of this for a spastic muscle may be a decrease in 

tonic reflex activity or an increase in the threshold of tonic stretch reflex, thus allowing 

an increase in joint ROM and muscle-tendon unit length with stretch (Calota, Feldman 

& Levin, 2008). Regarding the latter, chronic stretching may affect mechanical 

hypertonia by causing an inducing effect to increase muscle fascicle length (Coutinho et 

al., 2004). This plasticity of muscle has been demonstrated in several animal studies, 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0060
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0140
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0050
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0065
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0065
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0035
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0035
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0040
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0040
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where daily stretching over a period of several weeks was sufficient to increase the 

number of in-series sarcomeres (Williams, 1990). 

 

Regardless of the mechanism involved, it seems that repeated elongation of the muscle 

during stretch is the key to inducing changes, both neural or mechanical (Williams, 

1990). There is no consensus either in clinical practice or in the literature, with regards 

to the appropriate time of application, duration or frequency of stretch. However, before 

determining the appropriate stimuli for long-term changes in the musculoskeletal 

system, it should first be established whether spastic muscles are indeed able to receive 

a stretch during changes in joint ROM. 

 

Acute stretching has been shown to cause short-term increases in ROM in adults 

(McNair & Stanley, 1996), but the underlying mechanisms are inconclusive. Whilst 

some studies suggest that a passive ankle dorsiflexion stretch induces length changes of 

the gastrocnemii (Blazevich et al., 2012; Morse et al., 2008) other studies suggest that 

increases are largely accounted for by changes in Achilles tendon length (Herbert et al., 

2002; Kubo et al., 2002b). Muscle elongation for a given stretch intensity is governed 

by muscle and tendon stiffness, which are determined by their dimensions as well as 

material properties. In addition, muscle stiffness is also determined by neural factors 

(i.e., spasticity). For this reason, acute alterations to muscle length in response to 

stretching could be different in children with CP compared to healthy populations. Both 

Wren et al. (2010) and Barber et al. (2012) showed that tendons are longer in children 

with CP compared to their TD peers. Whilst this dimensional difference is not 

necessarily associated with differences in tendon stiffness (Barber et al., 2012), children 

with CP have been shown to have a greater tendon slack length (Barber et al., 2012). 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0165
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0165
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0165
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0115
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0030
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0125
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0055
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0055
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0075
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0180
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0025
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0025
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0025
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During stretching, rotation of the joint may cause tendon slack to be taken up without 

any elongation of the muscle. 

 

With regards to muscle properties, several dimensional and mechanical differences have 

been reported between children with CP and TD children. These include differences in 

muscle length (Malaiya et al., 2007), cross-sectional area (Elder et al., 2003) and 

alterations in connective tissue (Smith et al., 2011). In addition, in a spastic muscle, the 

increased gain or lower threshold of the stretch reflex may cause the muscle to be 

activated even during low levels of stretch. If the net result of these factors was an 

increase in muscle stiffness, this could prevent the muscle from elongating in response 

to stretch. Even if muscle elongation does occur during stretch, it is not clear whether 

any change in muscle length will be due to the elongation of the muscle fascicles or the 

surrounding connective tissue. Morse et al. (2008) demonstrated that although acute 

stretching increased the length of the gastrocnemii, this lengthening was caused by 

changes in the connective tissue alone and not increases in fascicle length. In a 

hypertonic muscle this effect may be exaggerated due to a greater abundance of 

connective tissue in the muscle (Smith et al., 2011). In contrast, Barber et al. (2011a) 

showed that although children with CP have stiffer muscle fascicles than TD children, 

some fascicle elongation did occur. Thus, it is not clear whether or not muscles and 

fascicles elongate during acute passive stretching in children with CP. If this was not the 

case, the effectiveness of long-term stretching to increase muscle length or reduce 

muscle stiffness in children with spastic CP would be questionable. Therefore, the first 

purpose of the study was to examine whether short-term increases in ROM in children 

with CP as a result of acute stretching would be due to transient changes in medial 

gastrocnemius muscle and fascicle length, and/or Achilles tendon length. 

 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0110
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0045
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0160
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0125
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0160
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0020
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In addition to the knowledge of the mechanism underlying stretch-induced increases in 

ROM, stretch technique is another important factor to consider in clinical practice. 

Several techniques are used by physiotherapists and taught to parents/carers, which may 

be classified into two broad categories; passive stretches administered manually by a 

physiotherapist (“PT-stretch”), often with the patients lying supine, or standing stretches 

performed by the individuals themselves (“self-stretch”). These two techniques are the 

most commonly used stretches in clinical practice to increase ROM and muscle 

extensibility, and have been developed based on guidelines related to the aims of 

physical therapy (Bandy & Sanders, 2001). 

 

If the primary goal of stretch is to elongate the muscle, two potential reasons exist as to 

why these techniques could have different effects. Due to the voluntary nature of the 

standing self-stretch, it might be difficult for children with CP to coordinate muscle 

activity to maintain the body position required for the muscle to be stretched (Rose & 

McGill, 2005), which could negatively impact the effectiveness of the stretch. 

Conversely, during the standing self-stretch proprioceptive inputs from the foot sole 

and/or altered input from the vestibular system, which may serve to suppress the H-

reflex (Alrowayeh, Sabbahi & Etnyre, 2005), could reduce the activation level of the 

muscle and thereby increase the muscle's extensibility. From a basic science 

perspective, an understanding of the effect stretch technique has on muscle extensibility 

is important as it would provide further insights into these conflicting mechanisms. 

From an applied perspective, such an understanding would help to inform clinicians as 

to which technique is most effective in terms of achieving the greatest potential stretch 

of the muscle. Therefore, the second purpose of this study was to investigate the effect 

of stretch technique on muscle extensibility in children with spastic CP. 

  

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0015
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0150
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0150
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0010
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5.2 Methodology 

5.2.1 Participants 

Eight children with clinically diagnosed spastic diplegic CP (three males, five females; 

mean age 10.2 ± 3.2 y (range = 6-14 y) were recruited through the British National 

Health Service (NHS) paediatric physiotherapy services. Five patients were classified as 

Level II, and three patients were classified as Level I on the GMFCS as assessed by a 

physiotherapist (Palisano et al., 1997). No children had received any form of 

orthopaedic surgery or Botulinum toxin injection prior to participation in the study. The 

study was approved by institutional as well as the relevant local NHS Ethics 

Committees. The study was conducted in accordance with the Declaration of Helsinki. 

Written parental consent was obtained in addition to written assent from the children. 

 

5.2.2 Experimental design 

Participants attended the physiotherapy clinic on one occasion. During this time, each 

participant underwent a series of passive ankle dorsiflexion stretches using both the 

self-stretch and PT-stretch techniques (described below). The order of stretch 

techniques was administered in a random order. Both techniques were applied to the 

right and left legs, the order of which was also randomised. For each participant, the 

first stretch technique was initially performed on the ipsilateral leg, followed by the 

same stretch technique applied to the contralateral leg. After a period of rest, the 

ipsilateral leg was stretched again using the second stretch technique, followed by a 

stretch of the contralateral leg using the same second stretch technique (Figure 5.1). 

Within this context we ensured that the rest period was a minimum of 60 minute 

between the two different stretch techniques on the same leg. This period has previously 

been shown to be sufficient to eliminate the acute effects of stretch on muscle and 

tendon properties in healthy individuals (Magnusson, Simonsen, Aagaard & Kjaer, 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0145
http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0005
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0100
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1996b). The majority of this 60 minute rest period was taken up with testing the 

contralateral leg. For the remainder of the rest period participants were seated with the 

muscle in a relaxed position. Passive stretches were performed five times on each leg 

with each technique. Each stretch was held at maximum ROM for 20 s, followed by a 

60 s rest period between stretches. Maximal ankle dorsiflexion was assessed before and 

after each of the five passive stretches using the PT-stretch technique outlined below. 

 

 

Figure 5.1. Experimental design 

 

5.2.3 Procedure for stretching 

 5.2.3.1 PT-stretch 

For the PT-stretch, participants lay supine on a foam mat, with the physiotherapist 

positioned to the side of the participant - opposite to the leg being stretched. To gain the 

initial stretch position, the leg was lifted with the knee flexed to 90 deg. To initiate a 

stretch of the gastrocnemius muscle, the physiotherapist's hand was cupped around the 

heel, with the palm of the hand flat against the foot. The knee was supported and slowly 

guided into full extension. This position was stabilised and maintained by pressure at 

the proximal tibia. Once the knee was locked in an extended position, the ankle was 

slowly dorsiflexed, with pressure from the hand and forearm on the plantar surface of 
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the forefoot. Joint rotation continued to be applied by the physiotherapist until feedback 

from the participant indicated the point of discomfort. This point was considered to be 

maximal dorsiflexion. Once in a maximal stretch position, the joint was held for a 

period of 20 s. A similar method was used to assess maximum dorsiflexion angle before 

and after a set of five passive stretches. However, here, the stretch was held only until 

maximum dorsiflexion had been reached. 

 

 5.2.3.2 Self-stretch 

For the self-stretch, children were instructed to stand facing the wall. To gain the initial 

stretch position, participants were positioned at approximately arm’s length from the 

wall with their hands flat on the wall at shoulder height. The leg to be stretched was 

placed behind the body, and the contralateral leg was flexed and placed in front of the 

body for support. To maintain an upright posture, participants were instructed to keep 

their hips facing the wall and to draw the belly button inwards. This pulled the pelvis 

towards the centre line of the body, maintaining a straight line between the back leg, 

hips and trunk. For the stretch, participants were asked to ease the back leg away from 

the wall keeping the knee in an extended position, and pressing the heel into the floor. 

Once in this stretched position as determined by the participant and physiotherapist, this 

position was maintained for 20 s. Each participant performed the self-stretch five times 

on each leg (see Figure 5.1). Maximum dorsiflexion was determined before and after 

the sequence of five stretches as described in the previous section. For all participants, 

the same physiotherapist was responsible for implementing all passive stretches, and 

provided all detailed instructions and demonstrations during the self-stretches. 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0005
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5.2.4 Data processing 

For both techniques, participants were positioned equidistantly between six infrared 

LED motion capture cameras (Motion Analysis, Santa Rosa, USA). The cameras were 

positioned on both sides of the participant. Reflective markers were placed bilaterally 

on the heads of the first and fifth metatarsals, the medial and lateral malleoli, and lateral 

and medial femoral epicondyles. Further markers were placed on the calcanei as well as 

the greater trochanters of the right and left femur. Finally, two markers were placed on 

the handle of the ultrasound probe, perpendicularly to the field of view. All kinematic 

data were filtered using a low-pass, fourth-order, zero-lag Butterworth filter with a cut-

off frequency of 5 Hz, as determined by residual analysis (Winter, 1990). The relative 

ankle angle was defined as the angle between the shank and foot. To account for 

eventual movements out of the sagittal plane, the angle was calculated using the 3D 

coordinates. For this purpose, the 3D locations of the midpoints between the 1
st
 and 5

th
 

metatarsals, the lateral and medial malleoli as well as the lateral and medial femoral 

epicondyles were calculated. The relative ankle angle was calculated from these three 

3D coordinates using the law of cosines. 

 

During each trial, muscle and tendon elongation were measured by tracking the 

displacement of the medial gastrocnemius muscle-tendon junction, using B-mode 

ultrasonography Megas GPX (Esaote, Genova, Italy; 45 mm Linear array probe, 

10 MHz transducer scanning). The video transmission was digitally captured at 25 Hz 

using a video converting frame grabber Canopus ADVC-55 (Grass Valley, Paris, 

France). A layer of water-based gel (Henleys Medical Supplies Ltd., Hertfordshire, UK) 

applied between the ultrasound probe and skin enhanced acoustic transmission without 

depressing the dermal surface. The probe was placed perpendicularly to the skin surface 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0170
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above the muscle-tendon junction of the medial gastrocnemius and orientated to reveal a 

line running between the aponeuroses of the medial gastrocnemius and soleus muscles. 

The probe was fixed in position using a custom made holder. Peak Motus tracking 

software (Peak Performance, Cambridge, UK) was used to manually digitise 2D 

coordinates of the muscle-tendon junction from the ultrasound images. Medial 

gastrocnemius muscle fascicle length was also quantified in six children, using open 

source digital measurement software ImageJ (NIH, Bethesda, USA) on the existing 

ultrasound trials. These measurements were made at approximately the mid-belly of the 

muscle as changes at this site have been shown to be relatively uniform (Lichtwark et 

al., 2007). Three optimal and identifiable fascicles were selected and measured from 

deep to superficial aponeuroses. These fascicles were tracked in each frame of the pre- 

and post-stretch trials, and an average of the three fascicles was used for subsequent 

analysis. The ultrasound data were synchronised with kinematic data by means of an 

electrical trigger (Trigger module SP-U03, Delsys Inc., Ltd., Boston, USA). Digitised 

muscle-tendon junction position data were filtered using a low-pass fourth-order zero-

lag Butterworth filter with a 3.25 Hz cut-off frequency. Filtered motion analysis data 

were down-sampled to 25 Hz to match the sampling frequency of the ultrasound data. 

Muscle and tendon lengths were calculated from a combination of motion analysis and 

ultrasound data. Using the positions of the two markers from the ultrasound probe, 

combined with the coordinates of the muscle-tendon junction in the ultrasound image, 

the global 3D position of the muscle-tendon junction was calculated in the inertial 

reference frame. During pilot testing performed on four healthy adults, the coefficient of 

variation for muscle-tendon junction location obtained from three separate measures 

was determined to be 1.35%. 

 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0085
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0085
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Medial gastrocnemius muscle length was defined as the distance between the midpoint 

coordinates of the femoral epicondyles and the global 3D coordinates of the muscle-

tendon junction. Achilles tendon length was calculated as the distance between the 

muscle-tendon junction to the calcanei. Thus, both medial gastrocnemius and Achilles 

tendon were modelled as straight lines. This analysis was performed using custom 

written analysis software Matlab v7.14 (MathWorks, Cambridge, UK). To ensure the 

correctness of this algorithm, we used a sample data set to confirm that the programme's 

outcome measures were identical to those obtained “manually” by means of spreadsheet 

calculations. 

 

5.2.5 Dependent variables 

Muscle length, muscle fascicle length and tendon length were expressed firstly at a 

reference angle (defined as the relative ankle angle of 10 deg plantarflexion). This angle 

was calculated from the pre-stretch trials where the ankle was slowly and passively 

moved from a relaxed plantarflexed position into dorsiflexion. In subsequent analyses, 

we identified the three data points that were closest to this reference angle for a given 

trial. For all participants, the ankle angle corresponding to these data points did not 

deviate by more than one degree from the reference angle. Muscle and tendon lengths 

were then averaged across these three points. Ankle angle, muscle and fascicle lengths, 

and tendon length at maximum dorsiflexion were then measured before and after five 

passive stretches. For each of these variables, we calculated the mean of right and left 

legs for the corresponding conditions. 

 

5.2.6 Statistical analysis 

To test whether the acute effects of the first stretch technique had diminished before the 

measurements of the second stretch technique with the same leg, a paired t-test on 
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maximum dorsiflexion angle was conducted. Three time (reference angle, pre-stretch, 

post-stretch) by technique (self-stretch, PT-stretch) repeated measures ANOVAs were 

performed on ankle dorsiflexion angle, muscle length, and tendon length. A further time 

(pre-stretch, post-stretch) by technique (self-stretch, PT-stretch) ANOVA was 

performed on muscle fascicle length. To examine the effects of stretching per-se, we 

tested for a main effect of time. To test whether stretching effects would be dependent 

on stretch technique, we tested for a time by technique interaction. In the case of 

significance, follow up paired t-tests with Bonferroni correction were performed. 

Statistical significance was accepted at p < 0.05. 
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5.3 Results 

The paired samples t-test showed no significant difference in maximum dorsiflexion 

angle (t7 = 1.12, p = 0.29) between pre-stretch trials (i.e., before the two different stretch 

techniques were applied to the same leg). We also found that maximum muscle length 

increased progressively during the five stretches (Figure 5.2), which confirmed the 

assumption that the muscle was indeed receiving a stretch across the five stretch trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Change in muscle length across the five stretch trials for the PT-stretch (top 

figure), and the self-stretch (bottom figure). This change is calculated from muscle 

length in the pre-stretch trials (values are expressed as mean ± SD). 

 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0015
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The ANOVAs revealed that the main effects for technique and the time by technique 

interactions were non-significant for ankle angle, muscle and tendon length (F2, 

14 = 0.34–2.98, p > 0.05) and fascicle length (F2, 12 = 0.21–1.69, p > 0.05). The main 

effects for time were significant for ankle dorsiflexion angle (F2, 14 = 150.0, p < 0.001), 

muscle length (F2, 14 = 268.27, p < 0.001), tendon length (F2,14 = 459.61, p < 0.001) and 

fascicle length (F2, 12 = 640.76, p < 0.001). Since there was no interaction effect, data 

were collapsed across techniques for post-hoc analyses. These tests  

revealed that all variables were significantly greater during the pre-stretch condition 

compared to rest (p < 0.05). Further, all variables were significantly greater during the 

post-stretch condition compared to the pre-stretch condition (p < 0.05) (Table 5.1) (see 

Figure 5.4). 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#t0005
http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0025
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Table 5.1. Absolute and relative changes in dorsiflexion angle and muscle-tendon 

variables (Values expressed as mean ± SD. Asterisks represent significance, **p < 

0.01). 

 Change Percentage change t(7) 

  

PT-stretch 

 

Self-stretch 

 

PT-stretch 

 

Self-stretch 
 

Maximum ankle 

dorsiflexion (deg) 

     

Rest to Pre-stretch 1.80 ± 0.27 1.84 ± 0.23 21.9% 22.5% 21.02** 

Pre- to Post-stretch 9.8 ± 1.7 0.93 ± 0.16 11.9% 11.4% 16.56** 
 

Muscle length (cm) 

     

Rest to Pre-stretch 1.15 ± 0.16 1.12 ± 0.18 8.2% 8.0% -15.07** 

Pre- to Post-stretch 0.83 ± 0.26 0.80 ± 0.29 5.8% 5.7% -9.14** 

Tendon length (cm)      

Rest to Pre-stretch 0.99 ± 0.18 9.0 ± 2.7 6.2% 5.7% -12.98** 

Pre- to Post-stretch 1.02 ± 0.19 9.6 ± 1.6 6.3% 6.0% -17.38** 

Muscle fascicle length (cm)      

Rest to Pre-stretch 

 

0.58 ± 0.06 

 

0.53 ± 0.15 
 

14.3% 12.9% -17.33** 

 

Muscle-tendon unit length 

(cm) 

     

Rest to Pre-stretch 2.14 ± 0.30 

 

2.02 ± 0.37 

 

7.1% 6.7%  

Pre- to Post-stretch 1.85 ± 0.41 1.76 ± 0.42 5.8% 5.5%  

 

To illustrate the physiological significance of the effects of stretching on the dependent 

variables, we also report the relevant absolute and relative changes (Table 5.1). 

Following the stretching protocol, maximal dorsiflexion angle increased by 

approximately 12% pre- to post-stretch (Figure 5.3). This change was accompanied by 

increases of muscle and tendon length of approximately 6% and a change in muscle 

fascicle length of 14% pre- to post-stretch. The absolute change in maximal dorsiflexion 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#t0005
http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0020
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angle was approximately 10 deg and accompanied by an 8 mm change in muscle length 

and 10 mm in tendon length (Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Comparison of muscle and tendon length at each testing condition for the 

PT-stretch technique (empty columns) and the self-stretch technique (hashed columns) 

(values are expressed as mean ± SD. Asterisks represent significance, **p <  0.01). 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0025
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Figure 5.4. Percentage change in ankle dorsiflexion angle (DF) (closed circles), muscle 

length (closed squares) and tendon length (closed triangles) at each testing condition for 

the collapsed data (values are expressed as mean ± SD). 
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5.4 Discussion 

The first purpose of the study was to examine whether stretch-induced increases in 

ankle ROM in children with CP would be due to alterations in medial gastrocnemius 

muscle length and/or Achilles tendon length. Following five stretches, ankle 

dorsiflexion angle increased approximately 10 deg, which is in agreement with previous 

findings (Miedaner & Renander, 1987). This increase was accompanied by relatively 

equal amounts of Achilles tendon elongation (1 cm), and medial gastrocnemius 

elongation (0.8 cm). Muscle fascicles lengthened by 0.6 cm pre- to post-stretch. This 

result was not necessarily expected, as children with CP have an abnormally large 

amount of connective tissue in their muscles (Smith et al., 2011), which could decrease 

the muscle’s extensibility. However, in our participants, this accumulation of connective 

tissue did seem not to affect the extensibility of muscle fascicles. A possible explanation 

for this result is a lack of organisation and integrity of the connective tissue in spastic 

muscles, which may impair the tissue’s tensile strength (Lamontagne et al., 1997). A 

consequence could be that this connective tissue is therefore weak and compliant, which 

would, in turn, allow the muscle fascicle to stretch. Interestingly, we also showed that 

the muscle fascicles underwent a smaller length change than the whole muscle belly, 

which is consistent with previous findings (Morse et al., 2008). This suggests that 

during a stretch, the muscle’s connective tissue (endomysium, perimysium and 

epimysium) situated between the fascicles, is stretched, which increases the distance 

between the fascicle insertion points (muscle “opens up”). The result is an increase the 

overall length of the muscle, which is greater than the length change of the muscle 

fascicles”. 

 

The stretch-induced increases in muscle and fascicle lengths were not necessarily 

expected for two reasons. First, increased neural activation in the spastic muscle could 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0120
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0160
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0080
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increase its resistance to stretch (Calota et al., 2008). An increased gain or lower 

threshold of the tonic stretch reflex could cause the muscle to become active during 

periods of stretching, preventing elongation of the muscle. Second, in children with CP, 

rest and slack lengths of the Achilles tendon are longer, whilst gastrocnemius muscle 

length has been reported to be shorter than in TD children (Wren et al., 2010). This was 

also the case in our participant population (see Figure 5.3). Longer tendons have 

previously been shown to be more compliant (Zhao, Ren, Wu, Liu & Zhang, 2009), and 

so one might have expected the tendon to take up more of the stretch than the muscle. 

However, our results show that despite muscle spasticity and tendon length differences, 

muscles and tendons elongate relatively equally in response to stretching, with smaller 

length changes from the fascicles. 

 

From a clinical perspective, these results are of immense importance. Previously, 

inferences about a spastic muscle's extensibility have been made based on the 

assumption that changes in ROM would be reflective of muscle length changes. This 

assumption is not intuitive, as increases in ROM can be due to the extensibility of 

tendons and other passive structures. Our results demonstrate that in a group of children 

with spastic diplegic CP classified as GMFCS levels 1 or 2, passive stretching at the 

ankle joint resulted in a significant and acutely sustained elongation of the muscle. They 

thereby confirm the clinical assumption that acute stretching might increase muscle 

length in children with CP. Therefore, the present study is a useful and necessary 

prerequisite to examine the effectiveness of long-term stretching as a clinical 

intervention to achieve a sustained increase in muscle length in this group of children. 

 

The acute and transient changes in muscle length in response stretching raise the 

question about the underlying mechanisms. Acute changes in muscle length in response 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0035
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0180
http://www.sciencedirect.com/science/article/pii/S0268003313002209#f0015
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0185
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to stretch have been previously reported in healthy adults (Magnusson et al., 1996b) and 

are thought to result from two main mechanisms. First, the Golgi tendon organs dampen 

the effect on the motor neuronal discharges, thereby causing relaxation of the muscle-

tendon unit, which would in turn reset its resting length. Second, Pacinian corpuscles 

serve as pressure sensors to regulate pain tolerance. Both mechanisms lead to a change 

in the muscle's tolerance to stretch. Repeated stretching has also been shown to reduce 

passive tension and to allow greater elongation through small changes in the 

viscoelastic properties of the muscle-tendon unit (Ryan et al., 2008). These mechanisms 

cause only acute changes in maximal muscle and tendon lengths, which dissipate 

shortly after stretching has stopped. However, they may provide the necessary stimulus 

for the muscle's adaptive process. Whilst the exact mechanism for sarcomere addition 

and longitudinal growth in the muscle is unknown, previous research has indicated that 

muscle stretching is a very powerful stimulant (Williams, 1990). Future research is 

needed to confirm the speculation that an appropriately designed stretching regime 

would result in long-term longitudinal muscle growth, reductions in spasticity and 

potential improvements in function in children with CP. Within this context, our results 

may provide a possible avenue to induce muscle elongation in an ethical and 

ecologically valid fashion. A limitation to this recommendation is that it is not clear 

whether the magnitude or duration of this stimulus would be sufficient to bring about 

long-term adaptations in the muscle. A logical question arising from these results is 

whether such mechanical changes in muscle structure can be achieved with an 

ecologically valid and clinically applicable long-term stretching protocol. Our results 

provide a first step towards answering this question. 

 

The second purpose of the study was to determine whether any change in muscle length 

was dependent on stretch technique. The results demonstrate that changes in ankle 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0105
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0155
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0165
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ROM, maximal muscle and tendon lengths were independent of stretch technique. It 

was hypothesised that there may be a reduction in neural activation associated with 

standing (Ali & Sabbahi, 2000), through inhibition of the H-reflex, which could have 

resulted in a greater maximal stretch. This may be because the self-stretch position 

required less modulation of the vestibular system as participants were asked to place 

their hands on the wall in front of them and were not unstable in this position. Therefore 

the magnitude of inhibition may not have been different between techniques. This 

finding has direct clinical implications, by providing parents and clinicians reassurance 

that as the child takes steps towards self-management, and transitions from 

physiotherapist led stretching to self-stretching, both techniques are equally effective. It 

needs to be noted that in our study, the self-stretch technique was performed under the 

supervision of a physiotherapist who gave verbal feedback where necessary. Thus, our 

findings do not rule out the possibility that the self-stretch would be less effective if 

performed without professional supervision. 

 

It is important to recognise the limitations of this method for calculating muscle and 

tendon lengths. We modelled muscle and tendon paths as two straight lines. This 

approach does not take the curvature of muscle and tendon into consideration. At 

maximal ankle dorsiflexion this systematic error may have been minimal since any 

slack from muscle and tendon would have been taken up in this position. At rest, muscle 

and tendon lengths may have been underestimated by assuming two straight lines due to 

muscle, and in particular, tendon slack. Another limitation of our approach is that our 

estimate of “muscle length” included the length of the proximal tendon of the medial 

gastrocnemius. However, its role within the context of muscle/tendon dynamics is 

considered to be negligible (Maganaris & Paul, 2002; Morse, 2011), and therefore, we 

believe that this assumption does not affect our results. 

http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0005
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0095
http://www.sciencedirect.com/science/article/pii/S0268003313002209#bb0130
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In summary, we found that acute stretching causes transient increases in both muscle 

and tendon length in children with CP independent of stretch technique. The results 

thereby suggest that stretching in children with CP is a suitable treatment to gain short-

term increases in muscle length, which may lead to long-term adaptations in the spastic 

muscle if repeated over a period of weeks or months. These findings constitute a first 

step towards a more refined understanding of the relationship between stretching and 

changes in the mechanical structure of muscles and tendons. They thereby have direct 

implications for clinicians treating children with CP. 
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CHAPTER 6: DOES LONG-TERM PASSIVE STRETCHING ALTER MUSCLE-TENDON UNIT 

MECHANICS AND GAIT IN CHILDREN WITH SPASTIC CERBERAL PALSY? 

6.1 Introduction 

Children with spastic CP experience greater overall joint stiffness compared with TD 

children (Alhusani et al., 2010; Barber et al., 2011a; Tardieu et al., 1988). The common 

view in clinical practice is that this increased stiffness arises as a direct consequence of 

neurological insult (e.g., an abnormal tonic stretch reflex threshold), and/or from 

secondary CP-related musculoskeletal adaptations, in response to impaired control and 

posture (e.g., when spastic muscles are maintained in a shortened position). These 

secondary changes in the musculoskeletal system can lead to further increases in joint 

stiffness, as well as muscle contracture and joint deformities. In this context, passive 

stretching has been the most common method of rehabilitation for a number of years 

(Damiano, 2009; National Institute for Health and Care Excellence, 2012). Its use is still 

widely advocated for children with spastic CP, as a means of reducing neural and 

mechanical components of joint stiffness, with a view to improving function (Farmer & 

James, 2001; Lieber & Bodine-Fowler, 1993). Specifically, the clinical assumption is 

that passive stretching may potentially delay or prevent muscle contracture, increase 

joint ROM and reduce spasticity (Wiart et al., 2008). 

 

Although the clinical assumption is that increased joint stiffness impairs function, 

research has demonstrated that actually, excessive muscle weakness, rather than 

increased stiffness, negatively affects function (Burke, 1988; O’Dwyer et al., 1996). 

This discrepancy demonstrates that the role of stiffness in functional tasks is probably 

not well understood in CP. This brings into question what the aim of clinical 

interventions should be. For example, it has been speculated that stiffness may be, at 

least in part, a compensatory mechanism to excessive muscle weakness (Holt et al., 
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2000a; O’Dwyer et al., 1996). Specifically, this increased stiffness in CP may act as a 

mechanical spring allowing greater storage and release of energy during aspects of 

walking, in the absence of adequate force production. In addition, increased stiffness 

may also provide joint stability, to counter some weakness of the muscle (Holt et al., 

2000a; Tedroff et al., 2008). This alternative view of joint stiffness, suggests the current 

clinical rationale for passive stretching may not be correct (Latash & Anson, 1996). 

Based on this speculation, it could be the case that reducing joint stiffness does not lead 

to improvements in function. This highlights a current gap between research evidence 

and clinical rationale for long-term stretching to alter muscle and tendon mechanics and 

improvements in function, for children with spastic CP.  

 

There is some evidence from animal studies that demonstrate the ability of the healthy 

muscle to adapt to long-term stretch by increasing its number of serial sarcomeres 

(Coutinho et al., 2004; Salvini , Coutinho, Russo & DeLuca, 2006; Tabary et al., 1976; 

Williams, 1990), and some evidence that healthy human muscles may respond similarly 

(Boakes et al., 2007). In children with spastic diplegic CP, there are evidences for the 

potential responsiveness of the muscle to stretching (Theis, Korff & Mohagheghi, 

2013), but such long-term changes are not yet reported. Few studies have demonstrated 

increased joint ROM in response to long-term stretching in CP (McPherson et al., 1984; 

Miedaner & Renander, 1987), and decreased resistance of the joint to passive stretch 

(Kubo, Kanehisa & Fukunaga, 2002c; McPherson et al., 1984; Nakamura, Ikezoe, 

Takeno & Ichihashi, 2012; O’Dwyer et al., 1994), but none report the effects on muscle 

or tendon stiffness.  

 

Current research evidence on passive stretching in CP is not adequate to support or 

refute the effectiveness of stretching as a management strategy (Pin et al., 2006; Wiart 
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et al., 2008). Previous studies commonly investigate joint stiffness and ROM as 

outcome measures, which lack information regarding alterations in the muscle and 

tendon. Joint stiffness could theoretically remain unchanged, but with alterations in the 

relative stiffness’s of the muscle and tendon. Thus, the effectiveness of long-term 

passive stretching on these constituent components should be investigated from a 

theoretical point of interest, and to provide a basis for future interventions.  

 

The second purpose of this study was to investigate whether any potential alterations in 

stiffness would affect gait parameters. Conflicting findings have been reported with 

regards to stretching and gait in CP. For example, Salem et al. (2010) demonstrated 

improved speed, stride length, stride time, stance phases and maximum ankle 

dorsiflexion angle following a standing frame intervention. Similarly, Wu, Hwang, Ren, 

Gaebler-Spira and Zhang, (2011) showed that a combination of passive and active 

stretching over a six week period,  improved clinical tests of walking speed. 

Conversely, it has also been reported that passive stretching in patients with limited 

dorsiflexion ROM did not decrease stance time during gait (Johanson et al., 2006). 

Further, Crosbie Alhusaini, Dean and Shepherd (2012) demonstrated an association 

between stiff calf muscles and greater speed, stride length and cadence in children with 

spastic CP. They propose that the increased muscle stiffness may provide a stable ankle, 

which facilitates a more rapid gait.  

 

The results will have important implications for the prescription of passive stretching, 

and whether this, or alternative interventions should be used to treat children with 

spastic CP in the future. Therefore, the first aim of this study was to identify whether six 

weeks of passive stretching altered the mechanical properties of the triceps surae 
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muscles and Achilles tendon in children with spastic CP. Second, we also investigated 

whether any potential alterations in stiffness affected clinical gait parameters.  
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6.2 Methodology 

6.2.1 Participants  

Thirteen children with spastic CP (seven male, six female; mean age 10.3 ± 3.0 y) 

participated in this study. Seven children had diplegic CP, and six children had 

quadriplegic CP. It was important to maintain a homogenous group so only children 

with both lower limbs affected were included in this study. Participants were recruited 

from a local school for children with disabilities. Children were identified by a 

physiotherapist as diplegic or quadriplegic, and with a clinical diagnosis of spasticity in 

the lower limbs. Children were randomly assigned to an experimental (seven 

participants) or control group (six participants). Six patients attained GMFCS level III 

and seven patients attained GMFCS level IV as assessed by a physiotherapist. None of 

these children had received any form of lower limb surgery, 24 months prior to 

participation in the study, and none had received Botulinum toxin injections to the legs 

4 months prior to participation. All children were wheelchair users, but were ambulant 

with the use of a walking aid. The study was approved by institutional as well as the 

relevant local NHS Ethics Committees. The study was conducted in accordance with the 

Declaration of Helsinki. Written parental consent was obtained in addition to written 

assent from the children. 

 

6.2.2 Experimental set-up 

The experimental group completed a six week stretching programme in addition to their 

normal routine. The control group did not receive the additional stretching programme 

but continued with their normal routine. Before and after the six week intervention 

period, all participants underwent two testing sessions. Pre-intervention data were 

collected 24 hours prior to the first stretching session. Post-intervention data were 

collected 48-72 hours after the final stretching session.  
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During the first testing session, we obtained data for the mechanical properties of the 

muscle, tendon and fascicles of the right leg. During the second session, we obtained 

data on gait parameters. Six participants (three control group and three experimental 

group) were also tested again in a follow-up session, four weeks after the cessation of 

the stretching intervention. 

 

6.2.3 Stretching programme design 

Each participant in the experimental group received an ankle dorsiflexion stretch to both 

the right and left legs, applied by a clinician. Stretches took place on four days per week 

for six weeks. The stretch was performed for a total of 15 minutes on each leg, in 60 s 

repetitions followed by a 30 s rest period. These stretch durations and frequencies were 

chosen based on durations frequently used in clinical practice (Wiart et al., 2008).  

 

The stretches were performed with the children seated in their wheelchair. To gain the 

initial stretch position, the leg was lifted and the knee was slowly guided into extension. 

To initiate a stretch of the triceps surae muscles, the clinician’s hand was cupped 

around the heel, with the palm of the hand flat against the foot. The knee was supported 

in an extended position and the ankle was slowly dorsiflexed, with pressure from the 

hand. Once in a maximal stretch position, defined also as maximal ROM, the muscle 

was held for a period of 60 seconds. To ensure continuity of each stretch trial, an 

electrogoniometer (Type F35, Biometrics Ltd., UK) was placed on the ankle joint to 

monitor maximal dorsiflexion angle achieved during the stretch. A new maximal ankle 

angle was recorded at the start of each week.  The free end of the goniometer was 

placed on the lateral part of the foot, just below the fifth metatarsal. The fixed end was 

placed just above the lateral malleolus. Initially the strain gauge was relaxed and the 
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electrogoniometer calibrated with the foot in a resting plantarflexed position. Ankle 

angle was displayed throughout the dorsiflexion stretch. This angle or greater was 

achieved in all subsequent stretches.  

 

6.2.4 Pre, post and follow-up data acquisition  

Part one of the pre, post and follow-up testing sessions, measured the mechanical 

properties of the medial gastrocnemius muscle and fascicles, and the Achilles tendon. 

For this purpose, participants were seated on an isokinetic dynamometer (Cybex Norm, 

Lumex, Ronkonkoma, NY, USA). Hip angle was set to 85 deg and the knee was 

straightened as much as possible, which was approximately 7 ± 2 deg from full 

extension. The lateral malleolus of the right ankle was aligned with the centre of 

rotation of the dynamometer arm, to ensure movement in the sagittal plane. Stabilisation 

straps were firmly tightened over the foot, thigh and chest. Three infrared LED motion 

capture cameras (Motion Analysis, Santa Rosa, USA) were positioned on one side of 

the dynamometer. Reflective markers were placed on the head of the first metatarsal, 

the medial malleoli, the calcanei, the medial femoral epicondyle, and two markers on 

the handle of the ultrasound probe. All kinematic data were filtered using a low-pass, 

fourth-order, zero-lag Butterworth filter with a cut-off frequency of 5 Hz.  

 

We initially determined each participant’s ROM, by manually dorsi- and plantarflexing 

the foot, until any discomfort was reported. A rotation of the right ankle joint at 10 

deg·s
-1

 was then applied through the ROM, starting at maximal dorsiflexion. This 

angular velocity was chosen so as not to evoke stretch reflex activity in the spastic 

muscle (Thilmann et al., 1991). Participants were instructed to relax the muscles of the 

lower limb as much as possible during this time, while three rotations were recorded. 

Muscle activity from the medial gastrocnemius and tibialis anterior muscles were 
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monitored throughout the passive rotation using EMG to ensure muscle activity was not 

evoked by the rotations. EMG data of the tibialis anterior and the medial gastrocnemius 

muscles (EMGworks, Delsys Inc., Ltd., Boston, USA) as well as torque data from the 

dynamometer were collected at 1000 Hz. Torque data were filtered using a low-pass, 

fourth-order, zero-lag Butterworth filter with a cut-off frequency of 14 Hz. Data for all 

participants in each condition (pre, post and follow-up) were analysed after the final 

follow-up testing session. To reduce experimenter bias, the experimenter was blinded to 

the “condition” during data analysis.   

 

Joint stiffness was determined by plotting filtered torque data against ankle angle 

(expressed as a percentage of each participants maximum ROM). Specifically, average 

joint stiffness was calculated in the range corresponding to 20% and 80% of each 

participant’s peak torque. This interval was chosen so as to avoid the “toe region” at the 

lower end of the stiffness curve, and also to minimise the contribution of passive elastic 

structures such as ligaments, connective tissue and skin at the upper end of the stiffness 

curve (Abellaneda et al., 2009). This interval provided reliable stiffness data across 

trials in children with CP (coefficient of variation = 5.7%).   

 

6.2.4.1 Muscle and Tendon Stiffness  

Achilles tendon stiffness was calculated as the change in passive ankle torque divided 

by the corresponding change in Achilles tendon length. A measure of “total triceps 

surae muscle stiffness” was also derived from the data by dividing passive ankle torque 

and elongation of the medial gastrocnemius muscle. Muscle and tendon stiffness were 

calculated from the slope of the torque-elongation curves, in the same range as joint 

stiffness, which corresponded to 20% and 80% of each participants peak torque.  
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6.2.4.2 Muscle and tendon length 

For the calculation of muscle and tendon stiffness, elongation of the medial 

gastrocnemius muscle and Achilles tendon were measured, respectively. This was done 

by tracking the displacement of the gastrocnemius muscle-tendon junction, using B-

mode ultrasonography (Megas GPX, Esaote, Italy; 45 mm Linear array probe, 10 MHz 

transducer scanning), captured at 25 Hz. A layer of water-based gel (Henley’s Medical, 

Hertfordshire, UK) applied between the ultrasound probe and skin enhanced acoustic 

transmission. The probe was placed perpendicularly to the skin surface above the 

muscle-tendon junction and orientated to reveal a line running between the aponeuroses 

of the medial gastrocnemius and soleus muscles. The probe was then fixed in position 

using a custom made holder. A 2 mm wide strip of echoabsorptive tape placed on the 

skin in contact with the probe provided a reference to which any probe movement could 

be identified. The 2D coordinates of the muscle-tendon junction were obtained by 

manual digitisation (Peak Performance, Cambridge, UK). Digitised muscle-tendon 

junction position data for both methods were filtered using a low-pass fourth-order 

zero-lag Butterworth filter with a 3.25 Hz cut-off frequency. 

 

The lengths of the medial gastrocnemius muscle and Achilles tendon were combined 

with the ultrasound and motion analysis data. Specifically, the position of the muscle-

tendon junction was calculated by combining coordinates from the handle of the 

ultrasound probe, with muscle-tendon junction coordinates from the ultrasound image; 

to give the position of the muscle-tendon junction with respect to the global coordinate 

system of motion analysis. Medial gastrocnemius muscle length changes were 

calculated as the distance from the medial epicondyle marker to the global muscle-

tendon junction marker, and the Achilles tendon changes, as the distance from the 

muscle-tendon junction to the calcanei, using custom written analysis software (Matlab 
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v7.14, MathWorks, Cambridge, UK). Medial gastrocnemius muscle and Achilles 

tendon resting lengths were calculated at 100% plantarflexion ROM. This was used for 

the subsequent calculation of muscle and tendon strain, which was calculated by 

dividing elongation at maximum dorsiflexion, by resting length. 

 

6.2.4.3 Fascicle strain 

Medial gastrocnemius muscle fascicle strain was calculated by dividing change in 

fascicle length by fascicle resting length, which was quantified using open source digital 

measurement software (Image J, NIH, USA). These fascicle measurements were made 

at the mid-belly of the muscle. Three optimal and identifiable fascicles were selected 

and measured from deep to superficial aponeurosis. An average of the three fascicles 

was used for the subsequent analysis of resting fascicle length, taken with the ankle at 

100% plantarflexion ROM. For each participant, fascicle strain was calculated at 

maximum dorsiflexion.  

 

Mechanical properties of the medial gastrocnemius and Achilles tendon were compared 

pre- to post-intervention, for both the experimental group and the control group. Muscle 

and tendon stiffness in six participants (three control and three experimental) was also 

measured again during the follow-up session, four weeks after the cessation of the 

intervention period. 

 

6.2.4.4 Gait analyses 

For the second part of the pre and post-intervention session, each participant was asked 

to complete two 6 m overground walks, with the use of walking aids, at a self-selected 

pace. Eight infrared LED motion capture cameras (Motion Analysis, Santa Rosa, USA) 

were positioned around the 6 × 4 m area. Reflective markers were placed bilaterally on 
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the heads of the first and fifth metatarsals, the medial and lateral malleoli, the calcanei, 

the medial and lateral femoral epicondyles, and the greater trochanters. We focused the 

analysis on three key spatiotemporal parameters: stride length, stride velocity and time 

in double support stance. These variables were chosen on the basis that they are widely 

used in the assessment of CP children and are valid and reliable parameters (Dini & 

David, 2009), which adds to the clinical relevance of these results. In addition, 

spatiotemporal parameters have been reported as being more sensitive indicators of 

motor involvement in CP than single joint kinematics (Damiano & Abel, 1996). In 

addition, we calculated the internal ankle joint angle at initial contact (0%), mid-way 

into the stance phase (50%) and toe-off (100%). These variables were computed for 

both groups, and compared pre- to post-intervention.  

 

We were also interested in inter-segmental coordination pre- to post-intervention. For 

this purpose we calculated continuous relative phase (CRP) during the stance phase of 

the right leg. Stance phase was defined as the point of initial contact to toe-off. For 

continuous relative phase, we first calculated the angle of the foot (represented by the 

distance between the fifth metatarsal and the lateral malleolus) and the angle of the 

shank (represented by the distance between the lateral malleolus and the lateral femoral 

epicondyles). These were calculated with respect to the horizontal axis using filtered 

coordinates (low-pass fourth order zero-lag Butterworth filter with 10 Hz cut-off 

frequency). For each segment, phase angle was calculated according to the following 

equation: 
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 = tan
-1

  

(Equation 6.1) 

Where φ: phase angle, i: data point within stance phase, ωi  = angular velocity, and θi = 

angular displacement.    

 

The CRP between these two segments was then calculated. This is defined as the 

difference between the two phase angles at any point of the gait cycle (Figure 6.7). We 

defined the CRP between the foot and shank as follows:  

 

CRPFoot-Shank = φFoot - φShank 

 

For the calculation of CRP, phase angles of the foot and shank segments were ensemble 

averaged across three step cycles. A CRPFoot-Shank of 0 deg indicates that the segments 

move in-phase (as two constrained segments with no movement at the ankle). A 

positive CRPFoot-Shank indicates that the foot “leads” the shank in its phase trajectory, and 

a negative CRP indicates the foot “leads” the shank (Barela, Whitall, Black & Clark, 

2000; Hamill, van Emmerik, Heiderscheit, 1999). Segment coordination patterns were 

analysed by calculating the mean absolute relative phase (Kyvelidou et al. 2009), 

which captured the entire relative phase in a single value. This was calculated for each 

participant and compared pre- to post-intervention.  

 

6.2.5 Statistical analysis 

Several group (experimental vs. control) × condition (pre vs. post-intervention) 

ANOVAs with repeated measures on condition, were used to determine changes in the 
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mechanical properties of the muscle and tendon, and parameters of gait. Specifically, 

for mechanical changes, ANOVAs were performed on ankle dorsiflexion angle, joint 

stiffness, muscle and tendon stiffness, muscle, fascicle and tendon strain and resting 

fascicle length. To determine changes in gait parameters, ANOVAs were performed on 

spatiotemporal parameters of gait, and mean absolute relative phase (pre vs. post-

intervention) between the experimental and control groups.   

 

One further group (experimental vs. control) × condition (pre vs. post-intervention) × 

stance (0%, 50% and 100% stance) ANOVA with repeated measures on condition and 

stance was used to determine changes in ankle joint angle at different phases of stance 

between the experimental and control groups. Follow-up t-tests with Bonferroni 

correction were used where relevant. The significance level for alpha was set at p < 

0.05.  
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6.3 Results 

Compliance to the stretching intervention in the experimental group was 99.4%, with 

just one participant from the experimental group missing one session. The first ANOVA 

revealed that both the main effect of condition (F1, 11 = 32.30 p < 0.001) and its 

interaction with group on maximum dorsiflexion angle (F1, 11 = 38.90, p < 0.001) were 

significant. These results show that maximum dorsiflexion angle increased from pre- to 

post-intervention in the experimental group, but not in the control group (Figure 6.1).   

 

 

Figure 6.1. Ankle ROM in the experimental (grey) and the control (white) groups, at pre 

and post-intervention. 

 

6.3.1 Joint, muscle and tendon stiffness 

Results for joint stiffness and muscle stiffness indicated significant main effects for 

condition (F1, 11 = 26.91 p < 0.001; F1, 11 = 11.58 p < 0.01, respectively), and significant 

group × condition interaction effects for joint (F1, 11 = 43.00, p < 0.001) and muscle 

stiffness (F1, 11 = 57.73, p < 0.001). Joint (Figure 6.2) and muscle (Figure 6.3) stiffness 

decreased significantly post-intervention in the experimental group. In the control group 
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muscle stiffness increased significantly during the intervention period. No significant 

changes in tendon stiffness were observed in either group, pre- to post-intervention. 

 

 

 

 

 

 

 

 

 

Figure 6.2. Passive torque-angle curve plotted as percentage of dorsiflexion ROM for 

the experimental group (values are mean ± SD). 

 

 

 

 

 

 

 

 

 

Figure 6.3. Change (Δ) in muscle and tendon stiffness pre- to post-intervention in the 

experimental and control groups (values are mean ± SD, **p < 0.01).  
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6.3.2 Muscle, fascicle and tendon strain 

There was also a significant main effect of condition on muscle strain (F1, 11 = 8.89 p < 

0.05), and a significant interaction effect between condition and group (F1, 11 = 35.54, p 

< 0.001). Muscle strain increased from pre- to post-intervention in the experimental 

group. For fascicle strain there was also a significant main effect (F1, 11 = 97.75 p < 

0.001) and a significant interaction effect (F1, 11 = 235.64, p < 0.001). Fascicle strain 

increased in the experimental group following the stretching intervention (Figure 6.4).  

There was no change in resting fascicle length from pre- to post-intervention (F1, 11 = 

0.66, p = 0.44). In addition, there were no significant changes in tendon strain in either 

the experimental or control group, pre- to post-intervention.   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Changes in muscle strain (left), fascicle strain (centre) and tendon strain 

(right) in the experimental group and control group, pre- to post-intervention. 
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6.3.3 Findings from follow-up 

To assess whether any effects of stretching were maintained after the cessation of the 

stretching intervention, three participants from the experimental group and three from 

the control group also took part in one further follow-up session, which measured 

muscle and tendon stiffness. In the experimental group, the percentage change in muscle 

stiffness was -12.7% pre- to post-intervention, and -6.3% when measured post-

intervention to follow up. Although there was still a reduction in muscle stiffness four 

weeks after the intervention,  the percentage change was smaller indicating an increase 

in muscle stiffness post-intervention to follow up, back towards baseline values. For 

tendon stiffness, percentage change measured pre- to post-intervention was -2% in the 

experimental group. When measured post-intervention to follow up, the percentage 

change was -0.2%, indicating no considerable alterations in tendon stiffness four weeks 

after the intervention.  For the control group, there was also no considerable percentage 

change in muscle and tendon stiffness from pre- to post-intervention (3.9% and 1.3%, 

respectively), or from post-intervention to follow up (2.1% and 2.7%, respectively). 
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6.3.4 Gait parameters  

An analysis of the spatiotemporal gait characteristics demonstrated a significant main 

effect of condition on stride velocity (F1, 11 = 29.82, p < 0.01), and a significant 

interaction effect between group and condition (F1, 11 = 7.33, p < 0.05). Stride velocity 

decreased in the experimental group post-intervention. In addition, no differences were 

observed pre- to post-intervention in either group for stride length (F1, 11 = 2.14, p = 

0.55) or for the stance time in double support (F1, 11 = 0.18, p = 0.68).  

 

For ankle angle, the main effect of condition (F1, 11 = 24.09, p < 0.001) and its 

interaction with group (F1, 11 = 18.08, p < 0.001) were significant, which showed that 

overall, dorsiflexion angle increased post-intervention and the increase was larger in the 

experimental group. The main effect of stance phase (F2, 22 = 15.55, p < 0.001) and its 

interaction with condition (F2, 22 = 11.01, p < 0.001) were significant. This meant that 

overall, dorsiflexion angle was not the same at all phases of stance. The results showed 

that at post-intervention ankle joint was more dorsiflexed in at least one phase of stance, 

compared to pre-intervention. The significant three-way interaction (F2, 22 = 6.07, p < 

0.001) showed that increased dorsiflexion for at least one phase of stance was larger in 

the experimental group. Further, multiple t-tests with Bonferroni correction (p < 0.016) 

showed that post-intervention dorsiflexion angle decreased more profoundly in the 

experimental group at 50% (t6 = 6.68, p < 0.001) and 100% (t6 = 8.43, p < 0.001) of the 

stance phase. There were no changes in ankle angle after the intervention period, at any 

phase of stance in the control group (Figure 6.5).  
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Figure 6.5. Ankle angle measured during the stance phase of gait in both the 

experimental and control groups, pre and post-intervention.    

 

CRPFoot-shank during the stance phase, at pre and post-intervention for the experimental 

and control groups are illustrated in Figure 6.6. In general, CRPFoot-shank values close to 

zero imply that the foot and shank move in-phase with each other, whilst positive values 

imply that the foot segment “leads” the shank through its phase trajectory and vice 

versa. Larger standard deviations of the CRPFoot-shank in the experimental group imply 

that, as a group, the coordination between the foot and shank was less stable during 

stance - although this was not directly measured.  

 

There was a significant main effect of condition on mean absolute relative phase (F1,11 = 

10.70, p < 0.01) and a significant interaction effect between group and condition (F1, 11 

= 7.35, p < 0.05). Mean absolute relative phase was higher in the post-intervention 

condition compared to pre-intervention, which implied that the foot and shank segments 

moved more independently from each other (out of phase). In addition, mean absolute 
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relative phase at post-intervention was also larger in the experimental group compared 

to the control group (Figure 6.7).  

  

 

 

Figure 6.6. CRPFoot-shank during the stance phase, at pre (dashed line) and post (solid 

line) intervention for the experimental (left) and control groups (right). Mean ensemble 

CRP (± SD) of the right leg over three stance cycles, pre (dashed line) and post (solid 

line) intervention, for the experimental (left) and control (right) groups. 
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Figure 6.7. Mean absolute relative phase measured in the experimental and control 

groups, pre- to post-intervention (solid black lines indicate group means ± SD).  
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6.4 Discussion 

The overall purpose of this study was to describe the mechanical and functional 

adaptations resulting from a six week passive stretching intervention of the triceps 

surae muscle-tendon unit in children with spastic CP. Regarding the first purpose, six 

weeks of passive stretching increased maximal passive dorsiflexion angle and also 

reduced joint stiffness. This was associated with a reduction in muscle stiffness, with 

concurrent increases in muscle and fascicle strain. However, no differences in tendon 

stiffness or strain were found following the intervention. Regarding the second purpose, 

six weeks of passive stretching increased ankle dorsiflexion angle at 50 and 100% of 

stance. In addition, foot and shank inter-segmental coordination became more variable, 

suggestive of the foot and shank segments moving more “out of phase” following the 

intervention. In addition, no positive effects of stretching, on spatiotemporal parameters 

of gait were found. In fact, there was a decrease in stride velocity following the 

intervention. 

 

The stretching intervention elicited an increase in maximal passive ankle dorsiflexion 

from 6 deg to 9 deg, accompanied by a 32% decrease in passive joint stiffness. This 

finding has previously been reported in healthy populations following stretching (Kubo 

et al., 2002c; Nakamura et al., 2012). Nakamura et al., (2012) reported a 13% reduction 

in passive joint stiffness following four weeks of stretching using a smaller volume (120 

s per day) than in the present study. Similarly, in children with spastic CP, O’Dwyer et 

al. (1994) showed a reduction in passive joint stiffness after 30 minutes of stretching, 

three times per week for six weeks, which is consistent with the findings in this study. 

  

The most significant findings in the present study were that changes in joint stiffness 

were associated with a 12% reduction in muscle stiffness, confirming the clinical 
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assumption in this regard. These are the first data to show a clear tissue-dependent 

response to stretching exercise in this population, and indicate importantly, that the 

spastic muscle can respond to long-term stretching. It should be noted that the measures 

of muscle stiffness made in this study are somewhat conceptual. “Muscle stiffness” as 

measured here, contains not only stiffness of the triceps surae muscles, but all 

surrounding tissues, the contribution of which cannot be known. Despite this limitation, 

the findings of “muscle stiffness” are in line with the finding of a concurrent reduction 

in joint stiffness and no alterations in tendon stiffness. A lack of alteration in the 

tendon’s stiffness suggests that passive stretching does not provide an effective stimulus 

to alter the mechanical properties of the tendon in children with spastic CP. This is in 

line with previous research in a healthy population, which found that static stretch 

training was not sufficient to elicit changes in tendon properties (Kubo et al., 2002c; 

Mahieu et al., 2007).  

 

The changes in stiffness were concurrent with changes in strain. There was an increase 

in muscle (23%) and fascicle strain (13%) post-stretch in the experimental group. The 

present results are of substantial importance, showing that the muscle offers a greater 

plasticity in response to passive stretching than the tendon. The results from the follow-

up session showed a trend towards increased muscle stiffness towards baseline, four 

weeks after the intervention, although some reduction in stiffness compared to pre-

intervention did still exist.  

 

The factors which contribute to muscle and joint stiffness in CP are not completely 

understood, but given that a decrease in muscle stiffness was observed after six weeks 

of passive stretching, it is interesting to speculate as to the possible mechanisms 

underpinning the change. One mechanism is a change in the mechanical properties of 
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the series elastic component. Although no changes were observed in the tendon, it 

cannot be ruled out that changes in other tissues occurred such as changes in 

myofilaments or titin (Prado et al., 2005). Changes may also have occurred within the 

parallel elastic component. The endomysium, perimysium and epimysium are thought 

to substantially influence passive resistance to stretch (Gajdosik, 2001), although it is 

not possible to directly measure these in humans. Given that muscle strain showed a 

greater change post-stretch, than the fascicle, changes are likely to have occurred in the 

parallel elastic component and intra-muscular connective tissue, which is shown to 

contribute to increased passive stiffness in CP (Smith et al., 2011). In addition, fascicle 

strain did also increase suggesting some alterations in intra-fascicular structures (Prado 

et al., 2005), fibre-based connective tissues (Prado et al., 2005), or the number of 

serially-arranged sarcomeres within fibres (Tabary et al., 1981). Of these, a change in 

in-series sarcomere number is often speculated to underpin changes in muscle or 

fascicle extensibility (Gajdosik, 2001) and, in fact, increases in sarcomere number were 

observed after long-term, intense muscle strain was imposed by tibial lengthening in 

humans (Boakes et al., 2007). Nonetheless, the present data are not consistent with this 

finding because there was no change in absolute resting fascicle length. In the absence 

of firm evidence in this and other studies, it suggests that this volume of passive 

stretching was not sufficient to alter sarcomere number in children with spastic CP.  

 

Neural factors could contribute to the reduction in stiffness. For example, a reduction in 

stretch reflex gain or an increase in the threshold of the stretch reflex could theoretically 

reduce muscle stiffness, although there has been no conclusive evidence of a change in 

these parameters in CP following stretching. More frequently, alterations in stretch 

tolerance has been reported involving a change in the perception of stretch. However, 

given that our post measurements were made at least 48 hours after the last stretch 
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session, and the fact that some reductions in stiffness could still be observed four weeks 

after the intervention, suggests that at least some of the alterations seen here were a 

result of changes in the mechanical properties of the muscle and fascicles.  

 

We speculated that increased muscle and joint stiffness observed in children with 

spastic CP, may not solely be a result of neurological insult, but could act partly as a 

compensatory mechanism against excessive muscle weakness, particularly during 

movement such as gait. Thus, increased stiffness may not impair gait, but may aid 

aspects of gait, perhaps by helping to store and release elastic energy in the triceps 

surae muscles and Achilles tendon, in a spring-like fashion (Holt et al., 2000a). We 

speculated that if CP-related muscle and tendon alterations were, in part, a 

compensation to increased muscle weakness then any reductions in joint stiffness would 

potentially not improve function (Latash & Anson, 1996). 

 

To measure the effects of passive stretching on function and describe the corresponding 

alterations in movement kinematics, we measured spatiotemporal gait parameters, ankle 

angle during the stance phase, and inter-segmental coordination, pre- to post-

intervention. Stride length and time in double support did not change following six 

weeks of passive stretching. However, there was a decrease in stride velocity from pre- 

to post-intervention. This could have been caused by reductions in muscle and joint 

stiffness. For example, the association between stiffer calf muscles and greater stride 

velocity has previously been shown (Crosbie et al., 2012). A stiffer muscle may provide 

stability at the ankle (Duan, Allen & Sun, 1997), which facilitates a more rapid gait in 

children with spastic CP (Crosbie et al., 2012). Thus, these present findings of a 

reduced stride velocity with reduced stiffness are in agreement with previous findings.  
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In addition, stretching also altered the foot-shank inter-segmental coordination. 

Descriptively, rather than moving as fixed (constrained) segments, the foot and shank 

segments alternatively led in the phase space. This was demonstrated by larger absolute 

CRP values and the appearance of clear reversals (i.e., local minima and maxima) in the 

CRP configuration throughout the stance. For example, from approximately 50% of the 

stance period, foot segment velocity started to increase, and around approximately 63% 

of the stance phase the foot started to lead the shank in the stance phase. Overall, the 

coordination between the two segments appeared less stable (larger standard deviations) 

post-intervention supporting the notion of fewer constraints on the movement of the two 

segments after a reduction in muscle and joint stiffness (Figure 6.6). This further 

supports the speculation that reducing stiffness does not lead to improvement in gait 

parameters in CP. However, to fully understand the role of muscle stiffness in gait, 

future studies should include a physiological measure of gait efficiency, which would 

provide a better understanding of the changes in gait as a result of stretching.  

 

Finally, ankle angle was also significantly smaller (increased dorsiflexion) during 50 

and 100% of stance following the intervention, concurrent with improvements in joint 

ROM. Children with spastic CP display equinus gait where the toes provide initial 

contact with the ground, as opposed to the heel.  In clinical practice, it is often claimed 

that a plantarflexed foot is the direct result of the neurological insult. However, the 

results here show that despite achieving a greater maximum dorsiflexion angle during 

stance, ankle angle at initial contact did not change. A plantarflexed foot on ground 

contact could be an effective biomechanical adaptation, providing a mechanism for 

loading the body mass in a spring-like fashion, and thereby improving the ability to load 

the Achilles tendon and triceps surae muscles (Holt et al., 2000a).  It has been 

previously shown that younger children with CP often have enough passive ROM 
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needed for a normal gait pattern, but they still walk with plantarflexed foot on initial 

contact. Thus, the plantarflexed foot on initial contact may not be a direct result of the 

insult but an adaptation that facilitates aspects of gait (Fonseca et al., 2004). 

Collectively, these results demonstrate that there were no improvements in the 

spatiotemporal gait parameters following six weeks of passive stretching in CP. This 

refutes the clinical assumption that reducing stiffness improves function such as gait in 

children with spastic CP. 

 

Collectively, the results of this study confirm the clinical assumption that passive 

stretching can reduce joint stiffness for children with CP. Moreover, the present study 

shows for the first time that such reductions were associated with changes in the 

mechanical properties of muscle but not the tendon. The alterations in muscle and joint 

stiffness led to no improvements in gait parameters in children with spastic CP. This 

lends some support to the speculation that joint stiffness may aid some aspects of 

function, particularly during gait. However, future research is needed to support this 

speculation. Interventions that reduce muscle stiffness whilst increasing tendon 

stiffness, such as the study by Zhao et al. (2011), should be investigated more 

thoroughly to determine if concomitant changes in muscle and tendon stiffness would 

affect function. Further, the results add to the evidence that muscle weakness rather than 

stiffness affects function in children with spastic CP (Damiano, Dodd & Taylor, 2002) 

Thus, strength training could be a more effective intervention to target muscle 

weakness, and increase tendon stiffness, which may be the key to improving gait 

parameters in this population. 

 

In conclusion, we show for the first time that passive stretching as a clinical intervention 

in spastic CP can cause alterations in the mechanical properties of the muscle whilst 
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having no effect on the tendon. We suggest that future therapies might consider 

concurrent manipulation of muscle and tendon stiffness. Specifically, therapies should 

aim to reduce muscle stiffness and increase muscle strength, which may be the key to 

improving function in CP. 
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CHAPTER 7: GENERAL DISCUSSION 

Children with spastic CP experience both neurological and musculoskeletal adaptations 

as a result of damage to the developing brain. Among these adaptations is an increase in 

muscle and joint stiffness (Alhusani et al., 2010; Barber et al., 2011a; Smith et al., 

2011), which has previously been considered to be the main cause of movement 

dysfunction (Ward & Bandi, 2010, pp. 370). However, it has also been suggested that 

these CP-related muscle and tendon abnormalities may represent an energy-saving 

mechanism during movements such as gait, in the absence of adequate muscle force 

(Fonseca et al., 2004; Holt et al., 2000a; Latash & Anson, 1996). These conflicting 

views demonstrate the existing disconnect of clinical rationale and research evidence, 

and they highlight several areas warranting further investigation. For example, the 

adaptations of the spastic muscle are often the target of therapeutic interventions, whilst 

the role of the tendon is largely overlooked. From research in adults, we know that the 

mechanical properties of the tendon, in particular its stiffness, are important factors 

influencing force production (Lichtwark & Wilson, 2008). More specifically, tendon 

length and stiffness will affect the force-generating capacity of the spastic muscles, 

which has important implications for understanding atypical movement patterns and 

inefficiencies in children with spastic CP. The lack of understanding with regards to 

CP-related muscle and tendon adaptations makes it difficult to determine appropriate 

clinical interventions.  

 

Passive stretching has been commonly and routinely prescribed in children with spastic 

CP for a number of years (Damiano, 2009; National Institute for Health and Care 

Excellence, 2012). Implicit in this practice is the clinical assumption that reducing joint 

stiffness, through reductions in muscle stiffness, improves function. However, previous 

research evidence is lacking, which can support or refute the use of passive stretching in 
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CP to improve function. Therefore, the main purpose of this research was to investigate 

muscle and tendon adaptations in children with spastic CP, and the response to passive 

stretching, with a view to informing evidence-based clinical practice.  

 

7.1 Summary of main findings 

Experimental Chapter 3 sought to identify an appropriate method for deriving muscle 

and tendon stiffness in children with spastic CP. Commonly, tendon stiffness is 

estimated by dividing changes in force by Achilles tendon elongation, measured during 

a maximum voluntary contraction (“active method”). Due to excessive muscle 

weakness and co-contraction (Rose & McGill, 2005; Stackhouse et al., 2005), children 

with spastic CP encounter problems performing maximal voluntary contraction 

manoeuvres (Tedroff et al., 2008). Therefore, the agreement between the “passive 

method” of deriving stiffness and the commonly used “active method” was investigated. 

The results showed good agreement between tendon stiffness measured using the 

“active method” compared to the “passive method”. Specifically, there were strong 

correlations between methods at all strain rates (R
2
 > 0.98). In addition, 95% of all data 

points across strain rates fell within 95% confidence intervals for limits of agreement. In 

the context of this research, this agreement was considered acceptable. The results of 

Chapter 3 also show a clear strain-rate dependence of tendon stiffness. More 

specifically, higher strain rates resulted in higher stiffness values, which has important 

implications for the measurement of tendon stiffness. Different protocols such as 

maximal voluntary contractions (e.g., Kay & Blazevich., 2009), ramped manoeuvres 

(e.g., Kubo et al., 2002a) or passive rotations (e.g., Morse et al., 2008) are likely to 

assess tendon stiffness under different strain rates. Thus the strain-rate dependence of 

tendon stiffness needs to be taken into consideration when comparing tendon stiffness 

values across studies.  
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Experimental Chapter 4 investigated the mechanical properties of the muscle and 

tendon in CP compared to TD children, with a particular focus on the adaptations of the 

Achilles tendon. Following the close agreement between methods in experiment 1, the 

passive method was chosen for the subsequent calculation of Achilles tendon stiffness 

and a measure of “global” muscle stiffness. This measure incorporated all triceps surae 

muscles (soleus as well as medial and lateral heads of the gasctrocnemius) and all 

surrounding tissues in the calculation of stiffness. CP-related abnormalities in the 

spastic muscle have been previously reported in CP (Barber et al., 2011a; 2011b; Wren 

et al., 2010), but it was of interest to determine the mechanical properties of both 

muscle and tendon in individuals, due to the close interaction of the muscle and tendon 

to the production of movement. Despite children with CP having a smaller tendon 

cross-sectional area compared to TD children, tendon stiffness and Young’s modulus 

were not different between groups. These results let us speculate that the tendon’s 

material properties do not necessarily adapt atypically in children with CP compared to 

their TD peers. A possible explanation for this could be that the spastic muscle provides 

a mechanical loading stimulus to the tendon, similar to the stimulus arising from an 

increase in muscle size and force in TD children (Kubo et al., 2001b). The results of a 

smaller cross-sectional area may imply that the dimensional properties of the tendon 

respond to a different stimuli. For example, a slower rate of bone growth has been 

reported in CP, due to a lack of weight-bearing activity (Samson-Fang & Stevenson, 

2008), which may prevent dimensional alterations in the tendon in CP compared to TD 

children. The results of this study also showed that the spastic muscle was significantly 

stiffer than the tendon, which may partly explain movement inefficiencies in this 

population (Rose et al., 1990). The study also expanded the results from Chapter 3, by 

documenting the strain-rate response of the Achilles tendon in children with spastic CP, 
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compared to TD children. The results showed that at angular velocities up to 30 deg·s
-1

, 

there was a velocity-dependent increase in tendon stiffness, the slope of which was 

steeper in the CP group. This has important implications for the current clinical test of 

spasticity. For example, the results demonstrate that at angular velocities below 30 

deg·s
-1

, there is a clear velocity-dependent increase in tendon stiffness, independent of a 

neural response. Thus, the tendon’s response to increasing strain-rate needs to be taken 

into consideration when conducting clinical tests of spasticity The assumption that a 

velocity-dependent increase in joint stiffness is reflective of spasticity may not be 

correct.  

 

The final two experimental Chapters (5 and 6), were conducted with the goal of 

understanding how these CP-related changes in muscle and tendon mechanics influence 

the degree to which clinical interventions are effective. Based on the discussion from 

Chapter 4 that muscles are significantly stiffer than tendons in children with CP, it was 

hypothesised that any acute stretch applied to the ankle may be taken up solely by the 

tendon, and may not reach the muscle. Despite these CP-related changes in muscle and 

tendon, the results of Chapter 5 showed that elongation of the muscle-tendon unit was 

equally attributable to elongation of the muscle and elongation of the tendon. In 

particular, it was shown that tendon, muscle belly and muscle fascicles increased by 1.0 

cm, 0.8 cm and 0.6 cm respectively. These results are of major significance as these are 

the first data to demonstrate that muscles elongate in response to stretch in children with 

spastic CP, which is an assumption that is commonly used by clinicians. The results 

were consistent across two different commonly used (“ecologically valid”) stretch 

techniques, which are also of practical implications. Finally the results are an important 

prerequisite to test the hypothesis that long-term stretching may cause adaptations in the 
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muscle. If the muscle does not respond to acute stretch then long-term adaptations in the 

properties of the muscle would not be expected.  

 

In the final study, the effects of six weeks passive stretching on the properties of the 

Achilles tendon and triceps surae muscles, as well as gait parameters were investigated. 

Following the results of Chapter 5, the PT-led technique was chosen to implement the 

six week stretching intervention. The reason for this choice was that the self-stretch is 

motivation-dependent, and it was important to ensure a consistent stretch during each 

session. The results of Chapter 6 confirmed the clinical assumption that passive 

stretching reduces muscle and joint stiffness in children with spastic CP. These results 

appear to be related to alterations in intra- and extra-muscular connective tissue. An 

increase in muscle stiffness towards baseline was observed four weeks after the 

cessation of the intervention. Interestingly, six weeks of passive stretching did not alter 

the stiffness of the Achilles tendon. Despite these alterations and reductions in muscle 

and joint stiffness, spatiotemporal gait parameters were largely unchanged, with the 

exception of stride velocity, which became slower in the experimental group. The 

results confirm the clinical assumption that muscle and joint stiffness are reduced with 

long-term stretching. However, this did not result in improved gait, which suggests the 

clinical assumption that increased muscle and joint stiffness impairs function, may not 

be correct. The result of a slower stride velocity after stretching may even suggest some 

aspects of increased joint stiffness are beneficial for certain aspects of gait in this 

population.     

 

7.2 Implications 

Results of this thesis have vast implications both on a basic science, as well as an 

applied level. Regarding the former, the results presented here extend our fundamental 



 

 
154 

 

knowledge of muscle and tendon properties in children with spastic CP. Specifically, 

the result that triceps surae muscles are stiffer than the Achilles tendon, and that the 

strain-rate dependence of tendon stiffness is different in children with spastic CP is an 

important clinical finding. In addition, in contrast to the spastic muscle, the mechanical 

properties of the tendon have not received much attention by the scientific community. 

Thus, the results from this thesis relating to the mechanical properties of the Achilles 

tendon, add a significant contribution towards fully understanding muscle and tendon 

properties in children with spastic CP.  

 

Regarding the latter, the results presented here have important implications for clinical 

practice. Specifically, the spastic muscle does elongate in response to both acute and 

long-term stretching, which confirms the clinical assumption in this regard. In addition, 

both joint stiffness and triceps surae stiffness decreased in response to long-term 

stretching. However, this decrease in stiffness did not improve any aspects of gait, 

which does not support the clinical assumption that increased stiffness causes 

movement dysfunction in children with spastic CP. This may imply that clinical 

interventions should aim to maintain a certain level of joint stiffness, whilst aiming to 

alter the relative stiffness’s of the muscle and tendon. In addition, there is an 

exaggerated strain-rate dependence of tendon stiffness in children with spastic CP. This 

has important clinical implications for the test of spasticity. If the joint is rotated at 

angular velocities up to 30 deg∙s
-1

, there will be an appreciable increase in stiffness as a 

result of changes in the tendon, which makes the diagnosis of a neural velocity-

dependent increase in tone, invalid.  

 

Collectively, results from this thesis provide an example of how fundamental 

knowledge of muscle and tendon mechanics can be implemented in clinical practice. In 
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order to provide the most appropriate and effective treatments to patients, clinicians are 

required to implement evidence-based practice. The results such as those found in this 

thesis will play a role in helping clinicians to make decisions about the best ways to 

treat children with CP in the future, and provides future direction for the establishment 

of other effective interventions. 

 

These results provide us with some directions for future research. For example, several 

secondary CP-related musculoskeletal adaptations occur in response to CP, the most 

dominant being muscle weakness and stiffness. The results demonstrate that reducing 

muscle stiffness did not improve function. This supports the use of interventions such as 

strength training, which target muscle weakness. It could be the case that an increase in 

joint stiffness aids some aspects of gait (Fonseca et al., 2001; 2004; Holt et al., 2000a), 

and interventions should therefore aim to optimise the musculoskeletal system in CP 

(Latash & Anson, 1996). One way to do this may be to maintain a certain level of joint 

stiffness, whilst altering the relative stiffness’s of the muscle and tendon. This 

speculation may be achieved through a combination of resistance training to increase 

tendon stiffness, with stretching to reduce muscle stiffness. This combination of stretch 

and resistance training has previously been reported to cause concomitant changes in 

muscle and tendon stiffness (Zhao et al., 2011). The effect of these muscle and tendon 

changes on gait parameters and other functional outcomes will be important 

considerations for future research. Additionally, the results showed that the tendon’s 

dimensions adapt atypically in children with spastic CP, whilst the tendon’s material 

properties were not necessarily different to TD children. This suggests different 

mechanical stimuli may be responsible for the respective dimensional and material 

alterations in the tendon. The adaptations of the tendon to various training stimuli is still 

a relatively new field of research. As such, there is still much to be done to quantify the 
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exact stimuli, which cause dimensional and material alterations towards increasing 

tendon stiffness in children, and those with spastic CP.  

 

7.3 Limitations 

The main limitation to this series of investigations was in regards to the “passive 

method” to derive stiffness. Regarding tendon stiffness, the passive method uses a force 

range that is significantly lower than the more commonly used active method, in which 

stiffness is usually assessed in the toe region. In spite of this, it was demonstrated that 

the two methods correlate well with each other. The passive method was also 

considered to be more appropriate for use in children with spastic CP, due to co-

contraction and excessive muscle weakness (Rose & McGill, 2005; Stackhouse et al., 

2005). It was observed that children with CP had problems voluntarily activating the 

correct muscle group to produce torque. Although a maximal force-elongation curve is 

not entirely necessary for the calculation of stiffness, a force level that is too low will 

incorporate the toe-region of the curve, underestimating stiffness. Finally, we have 

shown the velocity-dependence of tendon stiffness to be an important consideration in 

the measurement of tendon stiffness. Due to reduced activation and firing rates 

(Macefield et al., 1996; Rose & McGill, 2005), it was considered children with CP may 

have problems controlling the rate at which force was developed, thus confounding the 

results.   

 

With regards to muscle stiffness measured in the present series of studies; its estimation 

is likely to contain an appreciable contribution from ligaments, skin, epimysium, 

perimysium and endomysium, contractile and non-contractile components (Morse et al., 

2008). As such, we currently cannot specifically measure muscle stiffness, because the 

contributions of these other structures to force are unknown. The reason for the decision 
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to use this method was due to the fact that children with spastic CP have an abundance 

of intra- and extra-muscular connective tissue, which is thought to substantially 

contribute to increased stiffness. All structures, which contribute to passive stiffness, 

could theoretically be affected by an intervention such as stretching. Therefore, 

although this measure of “muscle” stiffness is somewhat conceptual, it provides 

important information on the changes to all passive elastic structures in CP compared to 

TD children, and the changes that occurred following six weeks of stretching. Thus, in 

the present context, it was not necessary to know the stiffness of just the muscle 

component, but of all other structures, which contribute to passive stiffness. Finally, to 

measure the length of the muscle and tendon in these studies, we combined coordinates 

of the muscle-tendon junction from the ultrasound image, with motion analysis 

coordinates of the epicondyles, calcanei and ultrasound probe. As such, muscle and 

tendon lengths were modelled as straight lines, which would have likely underestimated 

the elongation of the tendon. However, since this method was used in all participants, a 

systematic underestimation of tendon length would not have changed the overall results 

of these studies.  

 

7.4 Conclusions 

The main findings from the four experimental studies (Chapters 3-6) provide an 

example of how fundamental knowledge of muscle tendon mechanics can be 

implemented in clinical practice. The findings conclude that the properties of the 

Achilles tendon in children with CP are different to that of TD children. These 

alterations may also have contributed to the greater strain-dependence of Achilles 

tendon stiffness, than in TD children. These results may help to explain atypical 

movement patterns observed in CP. The findings also showed that muscle and joint 

stiffness were reduced with passive stretching, but there were no changes in the 
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mechanical properties of the tendon. Despite reductions in stiffness, there were also no 

improvements in spatiotemporal gait parameters following the stretching intervention. 

Collectively these results suggest that interventions should focus on optimising the 

properties of both the muscle and tendon. The properties of the tendon should not be 

overlooked as a factor contributing to movement and effective interventions in children 

with spastic CP. The results from this research provide a useful basis for future 

research, which should look at the optimising the mechanical properties of the muscle 

and tendon to improve movement efficiency in children with spastic CP, and second, to 

investigate the functional outcomes of a combination of resistance and stretching 

exercises, to alter the mechanical properties of the muscle and tendon, whilst 

maintaining a certain level of joint stiffness.   
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APPENDICES 

Appendix I: Peer-reviewed publication 1 
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Appendix II: Peer-reviewed publication 2 
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Appendix III: Power analyses 

 

Prior to the calculation of the effect size, pooled standard deviation was calculated, as 

depicted in the following equation below. 

 

Pooled standard deviation =  

 
 
 

SD pooled =  

 

 

(Equation AIII 1) 

SD = standard deviation 

 

Effect size was determined using the equation below and power calculations were then 

used to determine the appropriate sample size required to reach statistical power.  

 

 

Effect size =   

                         

(Equation AIII 2) 
 

M = mean 

 

For Chapter 3, effect size was calculated based on data collected from the first 5 

participants. Specifically, differences in tendon stiffness between strain rates 1 deg∙s
-1

 

and 30 deg∙s
-1

 were calculated. No differences were expected between stretch 

techniques; hence, effect size was not calculated for this data. For Chapter 4, effect size 

was based on data collected from the first four CP participants and the first four CP 

participants. Data for muscle and tendon stiffness was compared between groups. For 

Chapter 5, effect size was calculated based on data collected from the first four 
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participants. Changes in muscle and tendon length were measured from rest to post 

stretch in the PT-led stretch technique. Finally, for Chapter 6, effect size for fascicle 

stiffness was calculated based on data from a previously published study (Zhao et al., 

2011).  
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Sample size calculations 

 

Chapter 3 

Tendon stiffness from 1 deg∙s
-1

 and 30 deg∙s
-1

: 

Effect size = 0.65  

SAMPLE SIZE = 21 

 

Chapter 4 

Muscle stiffness:     Tendon stiffness:  

Effect size = 1.57     Effect size = 0.58 

SAMPLE SIZE = 6     SAMPLE SIZE = 26 

 

Chapter 5 

Muscle length:     Tendon length: 

Effect size = 0.97     Effect size = 1.09 

SAMPLE SIZE = 9     SAMPLE SIZE = 7 

 

Chapter 6 

Fascicle stiffness (Zhao et al., 2011): 

Effect size = 0.7 

SAMPLE SIZE = 15  
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Appendix IV: Residual analysis 

The cut-off frequencies for each of the digital filters used in this thesis were determined 

using the residual analysis technique as described by Winter (2009). The residual 

between the filtered and unfiltered signal was calculated according to the following 

equation (A1). Residuals were summed, and plotted as a function of the filter cut-off 

frequency. 

 

 

 

(Equation AIV 1) 

 

The residuals were calculated from 1 Hz to half of the sampling frequency (500 Hz in 

the following example). When the data consisted of random noise, the residual 

represented a straight line. The cut-off frequency was visually selected from the residual 

plot. A straight line from the “random noise line” was extrapolated to the y-axis to find 

its intercept (A). A horizontal line from this point was plotted to the point at which it 

intercepted (B) the signal curve. The x-coordinate of the point of intercept on the signal 

curve (C) provided the suggested cut-off frequency.  
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Figure AIV 1. A Plot of residual amplitude vs. 4
th

 order low pass Butterworth filter 

frequency. Line A represents a straight line through the “random noise line” to the 

intercept of the y-axis. Line B represents the horizontal extension from Line A’s point 

of intercept, to the signal curve. Finally, the coordinate of point C on the x-axis 

represents the recommended cut-off frequency, in this case 14 Hz.  
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Appendix V: Protocol for measuring muscle and tendon lengths 

 

%Calculating muscle and tendon length 
%Nicola Theis and Tom Korff 
%Dec 2011 
  

 
start=1; 
finish=10000; 

  
clear all; close all 

  
    % Load motion analysis file 
 

filename='.........' % Motion analysis file  
data=dlmread(filename); 
    % Filter the coordinate data 
 

for j=1:41 
 

[B,A] = butter(../100);  
datafilt(:,j) = filtfilt(B,A,data(:,j)); 

  
end 

  
down=(1:2:length(data)); 
datafiltdown=datafilt(down,:); 

  
for i=1:length(datafiltdown(:,9)); %start:finish 

     
     % Mid points between Malleoli, Metatarsals, Epicondyles (x) 

  
Epicondyles_x(i)=datafiltdown(i,12)+((datafiltdown(i,9)-

datafiltdown(i,9))/2); 
Metatarsals_x(i)=datafiltdown(i,39)+((datafiltdown(i,36)-

datafiltdown(i,36))/2); 
Malleoli_x(i)=datafiltdown(i,33)+((datafiltdown(i,30)-

datafiltdown(i,30))/2); 

  
     % Mid points between Malleoli, Metatarsals, Epicondyles (y) 

  
Epicondyles_y(i)=datafiltdown(i,13)+((datafiltdown(i,10)-

datafiltdown(i,10))/2); 
Metatarsals_y(i)=datafiltdown(i,40)+((datafiltdown(i,37)-

datafiltdown(i,37))/2); 
Malleoli_y(i)=datafiltdown(i,34)+((datafiltdown(i,31)-

datafiltdown(i,31))/2); 

  
 % Mid points between Malleoli, Metatarsals, Epicondyles (z) 

  
Epicondyles_z(i)=datafiltdown(i,14)+((datafiltdown(i,11)-

datafiltdown(i,11))/2); 
Metatarsals_z(i)=datafiltdown(i,41)+((datafiltdown(i,38)-

datafiltdown(i,38))/2); 
Malleoli_z(i)=datafiltdown(i,35)+((datafiltdown(i,32)-

datafiltdown(i,32))/2); 
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% Law of cosines: a^2=b^2+c^2-2bccos(angle) 
    % To work out distance 'c' 

  
Met_Mal(i)=sqrt((Metatarsals_x(i)-Malleoli_x(i))^2+(Metatarsals_y(i)-

Malleoli_y(i))^2+(Metatarsals_z(i)-Malleoli_z(i))^2); 

  
     % To work out distance 'b' 

      
Epi_Mal(i)=sqrt((Epicondyles_x(i)-Malleoli_x(i))^2+(Epicondyles_y(i)-

Malleoli_y(i))^2+(Epicondyles_z(i)-Malleoli_z(i))^2); 

  
    % To work out distance 'a' 

     
Met_Epi(i)=sqrt((Metatarsals_x(i)-

Epicondyles_x(i))^2+(Metatarsals_y(i)-

Epicondyles_y(i))^2+(Metatarsals_z(i)-Epicondyles_z(i))^2); 

  

     
    % To calculate ankle angle 
    % Angle = cos (b^2+c^2-a^2)/(2bc) 

  
Ankle_angle (i) = acos(Met_Mal(i)/Met_Epi(i)); 
Ankle_angle_deg (i)=Ankle_angle(i)*180/pi; 

  
end 

  

  
plot (Ankle_angle_deg) 

  

  

  
%Next section is for calculating muscle and tendon lengths 

     

  
xp1=datafiltdown(:,18); % x coordinate of distal ultrasound marker 
yp1=datafiltdown(:,19); % y coordinate of distal ultrasound marker 
zp1=datafiltdown(:,20); % z coordinate of distal ultrasound marker 
xp2=datafiltdown(:,15); % x coordinate of proximal ultrasound marker 
yp2=datafiltdown(:,16); % y coordinate of proximal ultrasound marker 
zp2=datafiltdown(:,17); % z coordinate of proximal ultrasound marker 

  

  
for i=1:length(datafiltdown(:,2)) 

     
US_length(i)=sqrt((xp2(i)-xp1(i))^2+(yp2(i)-yp1(i))^2+(zp2(i)-

zp1(i))^2); 

   

  
% ultrasound angle1 is the angle defining the ultrasound handle with 
%respect to the global horizontal line - needed for expressing 

ultrasound 
% origin in global coordinate system 

  
ultrasoundangle1(i)=(acos((datafiltdown(i,20)-

datafiltdown(i,17))/US_length(i))); 
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% ultrasound angle 2 is the angle defining the orientation of the 

probe 
% with respect to the horizontal line - needed for  

  
ultrasoundangle2(i)=(pi/2)-(acos((datafiltdown(i,20)-

datafiltdown(i,17))/US_length(i))); 

  

  
end 

  
% Load ultrasound data to get absolute coordinate of MTJ 

  
US_data=load('.....'); 
answer='y'; start=0 

  

  
for j=1:3 
[B,A] = butter(../50);  
US_datafilt(start:finish,j) = filtfilt(B,A,US_data(start:finish,j)); 

  
end 

  

  
% Converting US data from cm into mm 

    
x_US1 =US_datafilt(:,1)*10; 
z_US1 =40-(US_datafilt(:,2)*10); %  

   
for  i=start:finish 

      
     xs(i)=xp1(i)+(50+z_US1(i))*(xp2(i)-xp1(i))/US_length(i);   
     zs(i)=zp1(i)+(50+z_US1(i))*(zp2(i)-zp1(i))/US_length(i); 
     ys(i)=yp1(i)+(50+z_US1(i))*(yp2(i)-yp1(i))/US_length(i); 

    

  
end 

      
close all 

  
for i=start:finish 
 

 

US_origin_z(i)=zs(i)-23.33*cos(ultrasoundangle2(i)); 
US_origin_x(i)=xs(i)+23.33*sin(ultrasoundangle2(i)); 

  

   
  ultrasoundangle3(i)=3*pi/2-ultrasoundangle2(i); % 270 deg -  

   
% then rotate according to the angular position of ultrasound 

coordinate system with respect to inertial reference system 

        
MTJ_global_x(i)=US_origin_x(i)+cos(ultrasoundangle3(i))*x_US1(i)+sin 

(ultrasoundangle3(i))*z_US1(i); 

MTJ_global_z(i)=US_origin_z(i)-sin(ultrasoundangle3(i))*x_US1(i)+cos 

(ultrasoundangle3(i))*z_US1(i); 
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Tendon_length(i)=sqrt((MTJ_global_x(i)-datafiltdown(i,27))^2+ 

(MTJ_global_z(i)-datafiltdown(i,29))^2+(ys(i)-datafiltdown(i,28))^2); 

  
Muscle_length(i)=sqrt((MTJ_global_x(i)-

datafiltdown(i,9))^2+(MTJ_global_z(i)-datafiltdown(i,11))^2+(ys(i)-

datafiltdown(i,10))^2); 

    

  
    MTU(i)=tendon_length(i)+Muscle_length(i); % MTU length 

     
MTU_verified (i) = sqrt((datafiltdown(i,27)-

datafiltdown(i,9))^2+(datafiltdown(i,29)-datafiltdown(i,11))^2+ 

(datafiltdown(i,28)-datafiltdown(i,10))^2); 
     

% Verify MTU length 
 

end 
 

   
plot(Tendon_length(start:finish));hold on 
plot(Muscle_length(start:finish),'r');hold on 

  

  
stopstop 
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Figure AV 1: A diagram showing the rotational matrix applied to the ultrasound probe in the calculation of muscle and tendon length
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