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Abstract— This paper proposes a new algorithm for estimating voltage security margin. The algorithm is 

based on the perturbation method and has significant computational efficiency. The proposed algorithm can 

be used for on-line voltage security evaluation. It has been validated using IEEE-14, IEEE-30 and IEEE-57 

bus systems. Results from the tests show higher efficiency and smaller error margins compared to 

Continuation Power Flow (CPF) method.   

Voltage Collapse is a serious threat to the security of stressed power systems; therefore, voltage security 

(VS) has become a major challenge for management of power systems. The motivation for this research is a 

direct consequence of the deregulation of electricity industries and markets worldwide 

Index Terms— Voltage security, voltage stability, P-V curve, nose curve, saddle-node bifurcation, 

perturbation parameter 

I. INTRODUCTION 

 

In order to secure loading margins one needs to take notice of the voltage instability phenomenon (VIP). Power 

system stabilizers (PSS) are widely used close to the rotor angle stability boundaries to secure the performance of 

stressed power systems [1]. The rotor-angle and voltage stability can be defined as a subset of  the stability space of the 

power systems [2]. Moreover, voltage stability can be described as a synchronous generator supplying a static load via 

a line with XL. In the event of a gradual load increase, the operating point of the system changes accordingly. Any 

partial increase of the load reaching the boundary of voltage stability (BoVS) point, also referred to as the saddle-

node bifurcation (SNB) point, will significantly alter system characteristics. The Saddle Node Bifurcation (SNB) is 

by nature a nonlinear phenomenon and does not occur in a linear model. However, SNB can be as simple as a 

quadratic equation. Suppose the quadratic equation has two real roots (equilibrium solutions), as the parameters of a 

quadratic equation gradually change, the two real roots move and it is possible for the real roots to coalesce and 

disappear. The bifurcation occurs when a double root that separates the two incidents of two real roots from the 

instance has no real root (i.e. critical instances). 

For example, consider the quadratic equation 02  px , x represents the system state and the p represents a 

system parameter. When p is negative, then there are two equilibrium solutions px 0  and px 1 . If p 
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increases to zero, then both equilibria are at the double root x = 0.  If p increases further and becomes positive, there 

are no equilibrium solutions. The saddle node bifurcation occurs at 0p , and that is when the critical instance 

separates the case of two solutions from no real solutions. At the SNB point, the Jacobian matrix of power flow 

equations becomes singular with the eigenvalue of zero [3]. The phenomenon of voltage instability has been 

observed in large power systems. For example, the voltage collapse in west of France in 1987 due to the outage of 

9000MW generation [4]; or the Tokyo incident in 1987 due to an extraordinary load growth rate of 400 MW per 

minute at noon time in a hot day [5]; or of the incident that took place at the Northern California network in 1983, 

where it resulted into a 2 minute blackout due to the outage of HVDC lines [6].  

In order to determine voltage stability margin or the SNB point [7], two sets of methods have been proposed, the 

direct [8], [9] and the indirect methods [10], [11]. In the direct method, voltage security margin is derived from an 

optimization problem. In the indirect method power flow equations are continuously solved with respect to increases 

in load. The solution is based on reaching the power system voltage stability margin. For example, continuation 

power flow (CPF) is known as an indirect method. 

Previous literature dealt with voltage collapse detection by using localised measurements [12–16]. For example, 

Verbic et al (2003, 2004) deploy phasors measured at the relaying point to compute the value of the apparent power 

difference criterion (SDC) [12], [13]. When the SDC becomes less than 0.2, the relay initiates a mitigation 

procedure. The method proposed by Vu et al (1999) is based on a comparison between Thevenin equivalent from the 

load bus and the apparent impedance of the load. The assessment of the distance to voltage instability is based on the 

fact that these two impedances are equal at the point of voltage collapse [14]. To accurately estimate the Thevenin 

equivalent, it is necessary to acquire two different load measurements at different times. This approach is the main 

disadvantage of this method. It seems that these methods fall short of providing the benefits of offering a measure of 

the distance from voltage collapse in terms of MW/MVA/Mvar. For example, a minimum SDC of 0.2 on lines 

carrying 2 MVA and 200 MVA results in largely varying values [12],[13]. Using localised measurements it is 

necessary to produce a method that helps to quantify the distance of the current operating point to voltage collapse in 

terms of real or estimated power increase.  

Balamourougan et al (2004) propose a voltage collapse indicator [15]. Using this technique the system becomes 

increasingly stressed and the line losses start to grow rapidly near the voltage collapse point. At the collapse point, 

the loss-increasing ratios dPdPLOSS / , dQdPLOSS /  , dPdQLOSS / , and dQdQLOSS /  tend towards infinity. This fact 

provides the theoretical background for the power-loss-sensitivity method [16]. It is proven that that the voltage-

collapse condition using the power-loss-sensitivity method is identical to that of the Jacobian method. 

This paper proposes a new method for evaluation of power system voltage security using perturbation technique. 

The proposed algorithm maintains the flexibility to determine the distance of the operating point with the voltage 

stability margin that support high convergence speed. A comparison with the CPF method [11] was made and 

validated through IEEE-14, 30 and 57 bus power systems. 
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II. VOLTAGE STABILITY ASSESSMENT 

The possibility of voltage instability encourages the continuous real time monitoring and evaluation of voltage 

stability in power systems. Voltage stability phenomena can be evaluated using static and dynamic methods. The 

static voltage stability method adopts non-linear algebraic equations. The dynamic voltage stability method utilises 

the combination of non-linear differential and algebraic equations. Due to the importance of voltage stability in 

power systems, the energy management systems deploy voltage stability assessment (VSA) procedures [7]. The 

VSA process consists of five steps (Figure 1). These steps are: 

Step1: Evaluate the voltage stability at current operating point. Sensitivity analysis is conducted on the 

eigenvalues of Jacobian Matrix. The system will reside in the voltage stability boundary provided that one 

of the values equal to zero.   

Step 2: Select the contingency critical contingencies will be selected with respect to the current operating point 

which in turn is inferred from the VSA information. 

Step 3: Rank and sort the contingencies based on their severity. 

Step 4: Evaluate contingencies using the ranked contingencies from Step 3. 

Step 5: Apply corrective/preventive strategy based on the optimal reactive power flow after contingency. Here, 

preventive strategy can be described as load shedding before any damage could occur. 

 

 

 

Figure 1: VSA procedure. 
 

 

 

 

III. MATHEMATICAL MODELLING 

In its general form power flow equations can be described as: 

 

( , ) 0F V             (1) 

 

Equation (1) includes 2(n1+n2) variables where n1 is the number of PV buses and n2 is the number of PQ buses, 

and and V are, respectively, the angle and magnitude of bus voltages. In voltage stability studies, power flow 

equations should be generalised [2]. To establish a generalised form of power flow equations,  is introduced as a 

parameter representing load variations: 

critical
VF   0;0),,(      (2) 

Equation (2) includes 2(n1+n2) equations and 2(n1+n2) +1 variables, =0 represents the base case, and =critical 

indicates a critical load or the SNB point conditions. A generalised power flow equation for the i
th

 bus can be 
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formulated by combining the following expressions with respect to a rectangular form of power flow equations 

associated with : 

0 TiPDiPGiP            (3) 

0 TiQDiQGiQ                  (4) 

where: 
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And: 

KGi: a factor indicating variations in generated power at i-th bus 

PGi0: real power generated at i-th bus in base case 

QDi0: imaginary power load at i-th bus in base case 

PDi0: real power load at i-th bus in base case 

KDi: a factor indicating variations in load at i-th bus 

i: angle of power factor indicating variations in load at i-th bus 

Vi: voltage at i-th bus       

Sbase: base apparent power due to  

yik: (i,k)-th element of ybus matrix 

Gik = real part (yik) 

Bik = imaginary part (yik) 

ei = real part (Vi) 

fi = imaginary part (Vi) 

 

IV. CONTINUATION POWER FLOW 

The first step to evaluate the static voltage stability of a power system is to solve the power flow equations. The 

power flow equations adjacent to the SNB point diverge. This is due to the singularity of the Jacobian matrix at the 

SNB point. CPF method was proposed instead of the conventional power flow techniques to solve this problem.   

The following section briefly discusses the generalised form of power flow equations using CPF method. 
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A. Continuation Load Flow Algorithm 

A locally parameterised continuation (LPC) technique was proposed by Rheinbolds (1986) [17]. In order to 

evaluate stability margin, CPF utilises LPC to solve generalised power flow equations. This can be achieved through 

generation of continuous solutions in the form of (V1,1,1), (V2,2,2), … . In addition to the base case solution 

((V0,0,0), (0<1<2) ) in conventional power flow, Figure 2 provides a schematic view of CPF predictive (1) and 

parameterised and corrective (2) stages.  Note that V represents voltage and λ represents load variation. 

 

Figure 2: Continuation Power Flow Schematic: Predictive (1), Parameterised and Corrective (2) stages 

 

 

B. Predictive Stage 

At this stage, an approximate solution is derived from the generalised power flow equations starting from the base 

case and in the direction of tangent vector to the V- curve. Therefore, the first task is to calculate the tangential 

vector, which can be derived by differentiating both sides of the equation (2): 

  dFdVVFdFFd             (5) 

 

It yields: 

 [ , , ]VdF F F F t                     (6) 

 

with 

 

[ , , ]Tt d dV d                       (7) 

 

Where: [F,FV,F] is a 2(n1+ n2) x 2(n1+ n2)+1 matrix and t is a (2(n1+ n2)+1) x 1 vector. The tangential vector t 

yields: 

 [ , , ] 0VF F F t                     (8) 

Thereafter, solutions for the predictive stage can be estimated by solving (8):  

 
 d

*                   (9-a) 

dVVV 
*

               (9-b) 
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 d
*

                   (9-c) 

  

In Equations 9(a-c), “” is used for the predictive stage solutions and  is the step size. The step size is selected in 

such a way that the predictive stage solutions can be located within the convergence radius of the corrective stage 

[18]. 

 

C. Parameterisation and the Corrective Stage 

The calculated values from the predictive stage that do not reach the V- curve need to be corrected. The 

corrective action is to transfer the values on to the V- curve (e.g. V1,1,1). At this stage the number of variables is 

more than the number of equations by one. The variable vector for this stage can be presented as: 

 T
VX ],,[                (10) 

Where X is a ((2n1+ n2)+1) x 1 vector. The solutions for the corrective stage can be deducted from ascertaining one 

variable from vector X, (e.g., Xk = ) and then solving the following equations using Newton-Raphson method: 

 0)( XF                    (11-a) 

0 
k

X                 (11-b) 

At each stage of the corrector in LPC technique, only one variable of X can be certain, which is defined as the 

continuation parameter. This parameter corresponds to the maximum possible value in vector t. Therefore, 

continuation parameter will be the same variable as in the predicting stage and can be determined by:  

 

}12122,||:{  nnkMAX
k

t
k

X (12) 

 

The continuation parameter "" in the initial step is but for the next steps it can be chosen as a voltage 

magnitude or a voltage angle. By approaching the voltage stability margin (=0),  reaches its critical value. 

Beyond the critical point,  tends to decrease and variations of  become negative.  can therefore be taken as an 

index to discriminate voltage stability margin.  

V. PERTURBATION METHOD  

In order to address the voltage security problem it is necessary to solve the generalised power flow equations by 

increasing from the base case load parameter (0) to cr (load parameter critical value). The value of (cr - 0) is 

considered as an index that represents marginal voltage security. The generalised power flow model consists of 
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2(n1+ n2 ) equations and 2(n1+ n2)+1 variables, in which the number of equations are less than the number of 

variables by 1. 

  In the proposed model discussed in this paper one of the variables acts as the perturbation parameter. This is 

within the context of perturbation technique [19]. The perturbed algebraic equation (13) with perturbation parameter 

 which <1 is represented: 

 0),( xf                   (13) 

Let perturbation parameter be zero, then (13) can be rewritten as: 

 0)( xf                        (14) 

If the solution for equation (14) equals to x0, then the solution for equation (13) with respect to  can be: 

 

0 1

q

qq
x x x 




                   (15) 

By combining (13) and (15), xq is calculated. Since  is much lesser than one, x can be written as: 

 

0 1

p q

qq
x x x 


                       (16) 

All terms with powers greater than p can be considered as negligible with the error of orders 
p+1

. 

A. The Results 

THEOREM 1: 

Consider a rectangular form of generalised power flow equations, provided that = is the perturbation 

parameter, then the real part and the imaginary part of the voltage is derived from the following equations: 

 
1

1
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p
pieieieie       (17) 
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i n

     

 
                     (18) 

Where ei,0 and fi,0 are real and imaginary part of the i
th
 voltage in the base case, and ei,1 to ei,p1 and fi,1 to fi,p1 can be 

derived as follows: 
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Where 









DC

BA
J0                 (20) 

 TqneqeqE ,,,,2 L                (21) 

 TqnfqfqF ,,,,2 L                   (22) 

 Tqnqq ,,,,2  L             (23) 

 Tqnqq ,,,,2  L              (24) 

Proof: The proof is achieved by substituting variables described in (17) and (18) into the rectangular form of 

generalised power flow equations (3) and (4) [21].  Summary of the proof is given in the Appendix. 

THEOREM 2: 

Provided that the perturbation parameter is considered to be a rectangular form of generalised power flow and as 

the variation of real part of the voltage at the critical bus is defined as  eindx = e
*
- eindx, then the real and imaginary 

parts of bus voltages, and load parameter "" can be derived as: 
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Where e = eindx0 is the base load, ei,0 and fi,0 are real and imaginary part of the i
th
 bus voltage in the base case, 

and ei,1 to ei,p2 and fi,1 to fi,p2 and  1 to  p2 are derived from: 
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Where Ek is the vector obtained by eliminating eindx variable from Ek. Similarly, by discarding a row and/or a 

column corresponding to the index in matrices A, B, C and D the respective results will be matrices A. B, C,
 
and

 

D.  

 

Proof: The proof can be simply achieved by substituting variables described in (25) - (27), into the rectangular 

form of generalised power flow equations [21].  Summary of the proof is given in the Appendix. 

 

 

 

 

Figure 3:  Proposed Method Flowchart 

 

B. The Perturbation Algorithm 

Based on Theorem I the voltage stability of a power system can be calculated using the proposed algorithm. 

Calculations start from the base case by increasing the load as a perturbation parameter . At voltage stability 

margin proximity, matrix J0 is singular. Therefore, to accurately estimate the voltage stability margin, perturbation 

parameter should be changed from  to eindx. By considering the results of Theorem II, voltage stability margin can 

be calculated by subtracting the real part of voltage at the critical bus. The flowchart of the proposed method is 

shown in Fig. 3. Following the proposed algorithm two issues need to be clarified. The first issue is the definition of 

critical bus, and the second is to realise the condition that perturbation parameter change from  to eindx. 

Any bus with the highest ratio of voltage drop with respect to load variations is recognized as a critical bus. Hence 

the critical bus is represented by: 

 

1 2

{ : ,

2 2( ) 1}

iV
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i n n
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         (30) 

 

In the proposed method, perturbation parameter is changed from  to eindx according to the slope of the V- curve 
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(vindx/). As it can be seen from Fig. 3, z
*
 is the slope of V- curve, in which the perturbation parameter is 

changed from  to eindx. Zcr is the slope (infinity) of V- curve where the highest value of the load parameter (cr) 

resides.  

VI. CASE STUDIES 

The proposed method is applied to IEEE test systems (IEEE 14, 30 and 57 bus) [20]. Reactive power generation 

constraints for buses are used as voltage control factors in simulation process. Table I shows the results of two 

different simulations of an IEEE 14-bus system considering one per-unit increase in load with respect to the base 

case. Perturbation parameter (is considered to be 0.25for the first simulation and 0.1for the second 

simulation. The results of the simulations for three values of p1 (i.e., 5, 6 and 7) are available in Table I. The results 

of the CPF method for 0.2 are also given for comparison purposes. 

 

 

 

TABLE 1: BUS VOLTAGES OF IEEE-14 BUS  FOR DUE TO 1 PER-UNIT INCREASE IN LOAD WITH RESPECT TO THE 

BASE LOAD PATTERN 
 

 

 

In order to compare the proposed method with the CPF method a simulation of 4 iterations for  = 0.25and 10 

iterations for  = 0.1was conducted. The results show that using the CPF method the results are achieved after 4 

iterations, where each iteration requires 4 to 8 matrix inversions. In contrast in the proposed method one matrix 

inversion is required to achieve results for each iteration.   

 

TABLE 2: A comparison between the computational time between the proposed method and that of CPF 

method 

 

The test reveals that the proposed method: 

1. Is more efficient due to lesser computing overhead.  

2. Has smaller error margin compared to the CPF method
1
 (Table I).  

In addition, compared to the CPF method that depends on a predefined step size for the prediction stage, the 

proposed method does not require the convergence condition at the correction stage. The reason for this 

effectiveness is that the proposed algorithm requires only one-stage to solve the problem , where the only condition 

for convergence is the perturbation parameter to be less than one (<1). This implies that for higher  higher powers 

of p1 is required.  Results of an IEEE 4-bus at saddle-node-bifurcation point are presented in Table 2.  

Three different simulations are conducted based on the proposed method, where perturbation parameter (is 

 
1 By increasing p1 the relative error will decrease significantly. 
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assumed to be 0.1for the first stage. After 1 per-unit increase in load the perturbation parameter is lowered to 

0.05After the growing load up to 1.3 per-unit, perturbation parameter is changed from  to e14 and the new value 

of e14 would be 0.05. According to Table 3, the relative error percentage (REP) for three different simulations is 

calculated as follows: 

 

0%04.0
5187.1

5187.15181.1
1003

%3.0
5187.1

5187.15141.1
1002

%25.1
5187.1

5187.14997.1
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














SimREP

SimREP

SimREP

 

 

The results show that the estimated error tends towards zero in Sim3. Consequently, through proper selection of 

perturbation parameter eindx it is possible to achieve more accurate solutions using the proposed method.  

 

 

 

TABLE 3: BUS VOLTAGES OF IEEE-14 BUS FOR DUE INCREASE IN LOAD AT SADDLE-SNB POINT RELATED TO THE BASE 

LOAD PATTERN 

 

 

 

 

Voltage security margin derived by the proposed method is compared with the CPF for three different IEEE test 

systems. 

 

 

 

TABLE 4: SNB POINT PROPERTY (CR) IN IEEE-BUS STANDARDS 
 

 

 

 

The V- curve inferred by the proposed method for critical bus and two voltage control buses in IEEE-57 bus, 

IEEE-30 bus and IEEE-14 bus systems are shown in Figures 4 to 9. The 10 cardinal points of the lower part of V- 

curve in IEEE-57 bus, IEEE-30 bus and IEEE-14 bus systems are indicated in Tables 5 to 7. 

 

 

 

Figure 4: V- Curve for critical Bus (31
st
) in network complying IEEE- 57 BUS system 

 

 

 

 

 

 



 12 

Figure 5: V- Curve for critical Bus (30
th

) in network complying IEEE- 30 BUS system 

 
 

Figure 6: V- Curve for critical Bus (14
th

) in network complying IEEE- 14 BUS system 
 

 

 

Figure 7: V- Curve for Voltage Control Buses (2
nd

, 3
rd

) of IEEE- 57 BUS System. 
 

 

Figure 8: V- Curve for Voltage Control Buses of IEEE- 30 BUS System. 
 

 

Figure 9: V- Curve for Voltage Control Buses of IEEE- 14 BUS System. 
 

 
 

TABLE 5: TEN POINTS OF LOWER PART OF V-CURVE IN IEEE- 57 BUS SYSTEM 

 (* SNB POINT) 
 

 

 

 

TABLE 6: TEN POINTS OF LOWER PART OF V-CURVE IN IEEE- 30 BUS SYSTEM 

 (* SNB POINT) 
 

 

TABLE 7: TEN POINTS OF LOWER PART OF V-CURVE IN IEEE- 14 BUS SYSTEM 

 (* SNB POINT) 
 

The Estimation of VSM for contingency state has been conducted for 5 buses for three IEEE 14, 30 and 57 test 

system results are listed in Table 8. 

 

 

TABLE 8: Estimation of VSM for Contingency state using the proposed method 

 

VII. CONCLUSION 

In this paper, a new method for evaluation of voltage stability phenomena in power systems and the determination 

of voltage stability boundaries is developed. It demonstrates that the proposed method has significant advantages to 

CPF method. This is achieved by proposing a single stage matrix inversion operation for every iteration, resulting 

into savings in computing overheads and more accurate results when compared to continuation power flow method. 

The proposed method can also be used to plot V- curves. Similarly, using the proposed method the saddle-node-

bifurcation point of the power system could accurately be determined. Provided the perturbation parameters are 

selected appropriately, the results can be obtained at higher computing speed. 
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 Theorem II: 

 

The entries in (280 and (29) are given as follows: 
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For q =1, the values of ' ', ,q q q    are expressed by: 
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And for q>1 (q=2, 3, …, p) the values of ' ', ,q q q    are given through: 
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Finally, 
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TABLE 1: BUS VOLTAGES OF IEEE-14 BUS  FOR DUE TO 1 PER-UNIT INCREASE IN LOAD WITH RESPECT TO THE BASE LOAD PATTERN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2: A COMPARISON BETWEEN THE COMPUTATIONAL TIME BETWEEN THE PROPOSED METHOD AND THAT OF CPF METHOD 

 

 

Test System Proposed Method CPF 

IEEE 14-Bus 0.11 Sec. 0.31 Sec. 

IEEE 30-Bus 0.27 Sec. 0.78 Sec. 

IEEE 57-Bus 0.93 Sec. 2.18 Sec. 

Computer : DEL, INSPIRON 640m, Dual Core  , 2*2 GB 

 

 

 

 

 

 

 Proposed Method ( Proposed Method ( CPF 

BU

S 

# 

p1=5 p1=6 p1=7 p1=5 p1=6 p1=7  

1 1.06<0 1.06<0 1.06<0 1.06<0 1.06<0 1.06<0 1.06<0 

2 0.9823<-06.691 0.9823<-06.691 0.9823<-06.691 0.9823<-06.691 0.9823<-06.691 0.9823<-06.691 0.9823<-06.691 

3 0.8635<-19.146 0.8635<-19.146 0.8635<-19.146 0.8635<-19.146 0.8635<-19.146 0.8635<-19.146 0.8635<-19.146 

4 0.9010<-15.126 0.9010<-15.126 09010<-15.126 0.9011<-15.126 0.9010<-15.126 0.9010<-15.126 0.9010<-15.126 

5 0.9224<-12.669 0.9224<-12.669 0.9224<-12.669 0.9224<-12.669 0.9224<-12.669 0.9224<-12.669 0.9224<-12.669 

6 0.8372<-24.286 0.8372<-24.286 0.8372<-24.286 0.8372<-24.286 0.8372<-24.286 0.8372<-24.286 0.8372<-24.286 

7 0.8663<-21.769 0.8663<-21.769 0.8663<21.769 0.8663<-21.769 0.8663<-21.769 0.8663<-21.769 0.8663<-21.769 

8 0.9127<-21.769 0.9127<-21.769 0.9127<-21.769 0.9127<-21.769 0.9127<-21.769 0.9127<-21.769 0.9217<-21.769 

9 0.8344<-25.454 0.8344<-25.454 0.8344<-25.454 0.8344<-25.453 0.8344<-25.454 0.8344<-25.454 0.8344<-25.454 

10 0.8218<-25.905 0.8218<-25.905 0.8218<-25.905 0.8218<-25.905 0.8218<-25.905 0.8218<-25.905 0.8218<-25.905 

11 0.8234<-25.405 0.8234<-25.405 0.8234<-25.405 0.8234<-25.404 0.8234<-25.405 0.8234<-25.405 0.8234<-25.405 

12 0.8114<-26.200 0.8114<-26.201 0.8114<-26.200 0.8114<-26.200 0.8114<-26.200 0.8114<-26.201 0.8114<-26.201 

13 0.8042<-26.368 0.8042<-26.368 0.8042<-26.368 0.8042<-26.368 0.8042<-26.368 0.8042<-26.368 0.8042<-26.368 

14 0.7865<-28.139 0.7865<-28.139 0.7865<-28.139 0.7865<-28.138 0.7865<-28.139 0.7865<-28.139 0.7865<-28.139 
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TABLE 3: BUS VOLTAGES OF IEEE-14 BUS  FOR DUE INCREASE IN LOAD AT SADDLE-SNB POINT RELATED TO THE BASE LOAD PATTERN 

 

 
Proposed Method (e14

cr

Proposed Method (e14 

cr

Proposed Method 

* cr

CPF

cr

 

BUS 

# 
Base Case p2=3 p2=5 p2=3 P2=5 p2=3  

1 1.06<0 1.06<0 1.06<0 1.06<0 1.06<0 1.06<0 1.06<0 

2 
1.0389<-

04.910 

0.8906<-

07.876 

0.8906<-

07.876 
0.8817<-07.950 0.8817<-07.950 0.8819<-07.960 0.8816<-07.961 

3 
0.9768<-

12.497 

0.6802<-

27.837 

0.6802<-

28.836 
0.6616<-28.788 0.6616<-28.788 0.6619<-28.805 0.6613<-28.835 

4 
1.0041<-

10.297 

0.7250<-

20.383 

0.725<-

20.379 
0.7081<-20.896 0.7081<-20.896 0.7086<-20.912 0.7081<-20.927 

5 
1.0145<-

08.783 

0.7641<-

16.400 

0.7641<-

16.400 
0.7489<-16.732 0.7489<-16.732 0.7495<-16.750 0.7490<-16.759 

6 
0.9657<-

15.215 

0.5985<-

40.070 

0.5985<-

40.069 
0.5780<-41.958 0.5780<-41.958 0.5793<-41.909 0.5786<-41.971 

7 
0.9934<-

14.061 

0.6344<-

33.497 

0.6344<-

33.497 
0.6138<-34.846 0.6138<-34.846 0.6150<-34.834 0.6144<-34.877 

8 
1.0343<-

14.061 

0.6952<-

33.497 

0.6952<-

33.497 
0.6763<-34.846 0.6763<-34.846 0.6774<-34.834 0.6768<-34.877 

9 
0.9756<-

16.054 

0.5732<-

41.990 

0.5732<-

41.989 
0.5512<-44.015 0.5512<-44.015 0.5528<-43.966 0.5520<-44.032 

10 
0.9658<-

16.261 

0.5556<-

43.217 

0.5556<-

43.216 
0.5328<-45.354 0.5328<-45.354 0.5344<-45.298 0.5336<-45.368 

11 
0.9621<-

15.914 

0.5667<-

42.310 

0.5667<-

42.313 
0.5445<-44.375 0.5445<-44.357 0.5460<-44.319 0.5453<-44.387 

12 
0.9509<-

16.241 

0.5521<-

44.589 

0.5521<-

44.588 
0.5304<-46.870 0.5304<-46.870 0.5319<-46.801 0.5312<-46.876 

13 
0.9474<-

16.357 

0.5378<-

44.952 

0.5378<-

44.951 
0.5164<-47.335 0.5164<-47.335 0.5180<-47.268 0.5173<-47.347 

14*** 0.9426<-

17.364 

0.4970<-

49.520 

0.4969<-

49.519 
0.4815<-52.578 0.4815<-52.578 0.4839<-52.494 0.4833<-52.594 
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TABLE 4: SNB POINT PROPERTY (CR) IN IEEE-BUS STANDARDS 

 

cr 

(CPF Method) 

cr 

(Proposed Method) 

 IEEE Case Study 

1.5787 1.5181 14 BUS 

1.2870 1.2879 30 BUS 

3.4814 3.4836 57 BUS 

 

 
 

 

TABLE 5: TEN POINTS OF LOWER PART OF V-CURVE IN IEEE- 57 BUS SYSTEM 

 (* SNB POINT) 

 
 

Load Parameter 

)( 31V  Point 

3.4814 
0.4589 <-

47.270 
1

* 

3.2530 0.4356 2 

2.8344 0.4145 3 

2.6443 0.3963 4 

2.4542 0.3017 5 

1.8839 0.2564 6 

1.5037 0.1418 7 

0.9335 0.1011 8 

0.3632 0.0848 9 

0.0780 0.0768 10 
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TABLE 6: TEN POINTS OF LOWER PART OF V-CURVE IN IEEE- 30 BUS SYSTEM 

 (* SNB POINT) 
 

Load Parameter  ) ( 
30V  Point 

1.2879 
0.5843 < -

42.807 
1

* 

1.2710 0.5548 <-45.291 2 

1.2661 0.5324<-45.821 3 

1.2442 0.5043<-47.458 4 

1.1925 0.4638<-49.741 5 

1.1525 0.4413<-52.112 6 

1.0977 0.4166<-53.316 7 

0.8993 0.3525<-54.532 8 

0.3415 0.2369<-57.799 9 

0.0915 0.2025<-58.190 10 

 

 

TABLE 7: TEN POINTS OF LOWER PART OF V-CURVE IN IEEE- 14 BUS SYSTEM 

 (* SNB POINT) 
 

Load Parameter  ) ( 
14V  Point 

1.5181 0.4290<-58.428 1
* 

1.5160 0.4127<-60.697 2 

1.4898 0.3716<-66.672 3 

1.4375 0.3347<-71.972 4 

1.4092 
0.319574.01

4 
5 

0.9688 0.1638<-86430 6 

0.5819 0.0937<-81.881 7 

0.2529 0.0730<-77.640 8 

0.1949 0.0701<-76.989 9 

0.0401 0.0634<-75.320 10 
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TABLE 8: ESTIMATION OF VSM FOR CONTINGENCY STATE USING THE PROPOSED METHOD 

 
Line Number Bus2-Bus3 Bus4-Bus5 Bus6-Bus11 Bus9-Bus10 Bus12-Bus13 

IEEE 14-BUS 1.354 1.157 1.503 1.397 1.509 
 

Line Number Bus2-Bus5 Bus4-Bus6 Bus10-Bus21 Bus12-Bus14 Bus18-Bus19 

IEEE 30-BUS 0.408 0.993 1.249 1.168 1.056 
 

Line Number Bus3-Bus4 Bus6-Bus8 Bus12-Bus16 Bus19-Bus20 Bus28-Bus29 

IEEE 57-BUS 1.558 1.547 2.850 1.574 0.508 

 

 

 

 

 

 

 

 

 

 

 


