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Abstract

The basic underlying problem in reverse engineering of gene regu-
latory networks from gene expression data is that the expression of a
gene encoding the regulator provides only limited information about
its protein activity. The proteins, which result from translation, are
subject to stringent post-transcriptional control and modification. Of-
ten, it is only the modified version of the protein that is capable of
activating or repressing its regulatory targets. At present there exists
no reliable high-throughput technology to measure the protein activity
levels in real-time, and therefore they are, so-to-say, lost in transla-
tion. However, these activity levels can be recovered by studying the
gene expression of their targets. This paper describes a computational
approach to predict temporal regulator activity levels from the gene
expression of its transcriptional targets in a network motif with one
regulator and many targets. We consider an example of a SOS repair
system, and computationally infer the regulator activity of its master
repressor, LexA. The reconstructed activity profile of LexA exhibits
a behaviour that is similar to the experimentally measured profile of
this repressor: after UV irradiation, the amount of LexA substantially
decreases within a few minutes, followed by a recovery to its normal
level. Our approach can easily be applied to known single input motifs
in other organisms. Supplementary information and R code is available
on www.stats.gla.ac.uk/~raya/Ecoli/Suppl.html.

1 Introduction

The changes in expression of E.coli genes as a result of DNA damage, col-
lectively named the SOS response, have been the subject of numerous ex-
perimental and theoretical studies (1; 2; 3; 4; 5). The general picture of the
SOS response has slowly started to crystallize but the precise kinetics and
complex regulation of the processes involved can still generate surprises after
30 years of intensive study (6).

The SOS system includes more than 30 genes controlled at the tran-
scriptional level by the transcriptional repressor protein LexA (2). Under
normal conditions, the level of LexA is high and the SOS genes are sup-
pressed. Upon DNA damage one of the SOS proteins, RecA, binds to regions
of single-stranded DNA that are produced as a consequence of this damage
and becomes conformationally active. The active form of RecA facilitates the



inactivation of the LexA repressor. As a result, the level of LexA diminishes,
thereby causing the upregulation of the genes that are suppressed by LexA
under normal conditions. As the damage has been repaired, the level of the
activated RecA drops, LexA accumulates and a decrease in the activation of
SOS genes is observed.

It has recently been reported that the SOS response is “digital” (5): the
number of pulses but not their amplitude increases with the level of DNA
damage. This indicates an additional level of regulation of the master repres-
sor, LexA, possibly executed by a product of another target gene umuD (5).
In fact, it has been suggested earlier that the proteins and regulatory systems
involved in sensing the damage, transducing the signal and implementing and
relieving the checkpoint are heavily intertwined (7).

An interesting feature of the LexA/RecA regulatory module is that the
timing, duration and the level of activation varies for each of the LexA-
regulated genes (2; 3; 5). Ronen et al (3) developed a combined experi-
mental and theoretical approach based on accurate high temporal-resolution
measurements of promoter activities using Green Fluorescent Protein (GFP)
technology. They applied this approach to several of the SOS genes and found
a strikingly detailed temporal program of expression. Based on the accurate
measurements of the promoter activities of several SOS genes, these authors
computed the temporal profile of relative levels of the transcriptional regu-
lator, LexA.

In this work we reconstruct the activity level of the transcriptional repres-
sor, LexA, from the expression time-profiles of its target genes. The LexA
profile, reconstructed by our method from microarray data, shows good cor-
respondence with the LexA profiles measured by immunoblots technology (8)
and computed from the measurements of promoter activities (3).

2 Results

2.1 Model description

In this work we aim to reconstruct the activity of the master regulator in
a Single Input Motif (SIM) from gene expression data of its targets. The
computational approach involves embedding a set of differential equations,
that describe kinetics of gene regulation, within a statistical noise model and
to recover the kinetic parameters by a maximum likelihood approach. The



model equations used in the present paper are given in the Methods section.
Here we describe the main assumptions of our modelling approach.

A SIM is a simple network architecture that frequently occurs in gene
regulatory networks of different organisms (9). In a SIM, there is one tran-
scription factor, either an activator or repressor, that regulates (either ac-
tivates or represses) the transcription of several target genes. The targets
are not controlled by other regulators. Therefore, the transcription of each
target gene depends on the regulator profile that is common to all genes and
on the kinetic parameters of regulation, that are presumably gene specific.
The SOS repair system regulated by the repressor LexA is an example of a
SIM (Figure 1).

The dynamics of changes in expression of a target gene are determined by
the gene’s transcription rate, which depends on the promoter activity, and
by the mRNA degradation. Previous approaches to infer the activity of a
transcription factor assumed that the kinetics of gene transcription is ade-
quately described by linear or log-linear models (10; 11; 12; 13; 14). It has
been noted (15), however, that gene transcription regulated by a transcrip-
tion factor resembles the process of enzyme-mediated reactions. The latter
process has been intensively studied and is known to exhibit saturation ef-
fects, which are captured by a so-called Michaelis-Menten (MM) ordinary
differential equation (ODE).

Based on the analogy between enzymatic mediated reactions and regula-
tor mediated transcription, gene regulation has been modelled previously by
a MM kinetics model (15; 16; 3). Qualitatively, the MM model implies that
in the case of the activator, higher levels of transcription factor yield a higher
transcription rate of a regulated gene, until the transcription rate saturates.
Raising level of transcription factor beyond a certain threshold value will
no longer result in a higher production of mRNA. For the repressor, higher
levels of transcription factor result in a lower transcription rate, until the
gene is completely suppressed, i.e. mRNA production is at its basal level.
Linear models of regulation cannot account for such saturation effects. Nor
can linear models account for the case of repressor regulator.

It is well known that microarray data are noisy. To account for the noise
in the observed gene expression data, we embed the Michaelis-Menten model
in a statistical framework. Because the terms of the MM model can be traced
back to the actual biological processes of protein binding and mRNA degra-
dation, we choose to use the expression data on its original scale, rather than
the log-scale that is commonly used in microarray analysis. We expect the
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noise to be dependent on the amount of transcription. This means that low
levels of gene expression have less noise and higher levels of gene expression
have more noise. A log-normal distribution accommodates variance inflation
at higher expression levels.

The profile of the master regulator that is common to all genes in the SIM
regulatory module, and the gene-specific kinetic parameters of regulation, are
inferred from the gene expression data by a maximum likelihood approach.
The maximum likelihood estimates of the model parameters are computed
by a conjugate gradient method. The method has been implemented in
R programming language and the code is available for download from the
Supplementary webpage www.stats.gla.ac.uk/~raya/Ecoli/Suppl.html.

2.2 Data

In the E.coli SOS repair system, the master repressor LexA regulates a SIM,
which consists of several targets shown in Figure 1. The temporal changes in
expression of F.coli genes, caused by irradiation on a genome-wide level, have
been studied in (2). These authors examined the changes in gene expression
following UltraViolet (UV) exposure (40J/m?) in both wild-type cells and
lexA 1 mutants, which are unable to induce genes under LexA control. Their
data are publicly available at

http://genome-www.stanford.edu/UVirradiation.

The data contain two times-series at six time-points (0, 5, 10, 20, 40, 60 min),
one for wild-type and one for mutant. For the use in further analysis, raw
data have been normalized to account for spatial, dye and across-array effects
using the allnorm function from the smida R package (17), which is available
for download at www.stats.gla.ac.uk/~microarray/book/smida.html. The
data was normalized on the log-scale (see Supplementary page).

2.3 LexA Single Input Motif module

Among more than 30 genes that are known to contain the LexA binding
boxes ((2); full list of genes that we used is available on Supplementary
page), 20 genes are present on all arrays in the current dataset. To find which
genes out of those 20 constitute the targets of LexA repressor, we looked for
differentially expressed genes between wild and mutant types. We used an



additive factorial model for estimating the time and UV exposure effects. The
model has 4 degrees of freedom (2 x 6 observations minus 1+1+5 main effect
parameters) to test for a significant UV exposure effect. The R-code for the
ANOVA analysis can be found on the Supplementary webpage. The number
of differentially expressed genes identified depends on the stringency of the
comparisons. We select a cut-off p-value of 0.01, which results in discovering
14 genes as potential SIM targets. This cut-off corresponds to a kink in the
p-value plot (Supplementary page) and to a corresponding False Discovery
Rate of 1.4%, which on average would almost certainly result at most 1 false
discovery. Since it is not known which of the genes might have been falsely
discovered, we have performed a sensitivity analysis by iteratively leaving
one of the putative targets out. The LexA profiles reconstructed using each
of the subsets of 13 genes shows a very good agreement with the profile
reconstructed using all 14 targets (Figure 2b).

Further computations are performed with 14 target genes. Their ex-
pression profiles have now been returned to original scale for further kinetic
modelling and optimization.

Our analysis confirms the conclusion of (2) that the expressions of some
of the genes that are documented to be LexA-regulated genes do not rise sig-
nificantly following UV irradiation. These genes include dinG, molR, uvrD,
uvrA, hokE, and ssb. For at least two of these genes, uvrA and uwvrD, a
rise in the promoter activities following lower levels of UV irradiation has
been recorded (3). Possible reasons for this discrepancy between known be-
haviour of some genes confirmed by promoter activity measurements and
gene expression data can be due to differences in the experimental set-ups,
as discussed in (2). Alternative reasons may include the fact that the mea-
surements performed over a population of cells might be limited in their
ability to accurately describe the network responses in the case of a nonho-
mogenous population or an unsynchronized response (5). Genes that were
not differentially expressed following UV irradiation were not included in the
LexA SIM (Figure 1) for the present study.

Most of the differentially expressed genes (e.g. dinF, dinl, lexA, ruvA,
ruvB, yeb@) in the LexA regulatory module show significant upregulation
following UV radiation and subsequent decline in the gene expression levels.
This is very much in line with the measured promoter activities of the target
genes (3). The expression profiles of other differentially expressed genes
exhibit a different behaviour pattern: some genes (recN, uvrB, yijW) do not
decline after reaching their respective peaks following UV radiation, while



others (umuC) reach their maximum levels rather slowly (Figure 3).

It has recently been reported that the promoter activities of three genes
(lezA, recA, and umuD) exhibit more than one peak, following irradiation
of 20J/m? and 50J/m? (5). At 20.J/m?, the second peak of recA promoter
activity occurs at 57 & 3min. Observations on single cells for lower levels of
irradiation show that 60% of cells show a single peak at a UV dose of 10.J/m?
(5). These authors concluded that the number of peaks increases with irra-
diation. As the microarray studies of (2) were conducted at a UV dose of
40J/m? and the last measurement was taken at 60 min, the observations
that some of the gene profiles stayed constant or went up at about 60 min
after 40J/m? are consistent with the appearance of the second peak. The
fact that only some genes show a build-up to the second peak might indicate
an additional level of regulation of these genes (3; 5) as well as different ki-
netic constants of regulation. Different decay constants could also be partly
responsible for the fact that some genes reach their normal level after the
first peak, while others stay activated for longer times.

2.4 Reconstructed LexA activity profile

The reconstruction procedure is based on finding the maximum likelihood for
the whole SIM (Figure 1) using the kinetic model (equations 1-4 in Methods)
and gene expression data of the 14 targets (taken on original scale). Recon-
struction yields the profile of the master regulator (LexA) that is common
to all target genes and maximum likelihood estimates for the gene specific
kinetic parameters of regulation. The 14 targets are the genes that have been
identified as differentially expressed SOS genes between the wild and mutant
types. Reconstruction is based on R function optim() that performs the
maximization of the likelihood with constraints, using a conjugate gradient
method. Our search procedure uses multiple starts for locating the maximum
with respect to all unknown parameters of interest, that is TFA profile and
gene-specific kinetic parameters. R code is available on Supplementary page.

Figure 2 shows the maximum likelihood reconstructed profile of the LexA
repressor, approximated by the piece-wise constant function on each sam-
pling interval that is determined by available microarray measurements as
discussed in Methods (equation 2). The LexA profile reconstructed for the
SIM with 14 targets is shown on Figure 2a (bold solid line) with 95% confi-
dence bounds (dashed lines; computed via a classical Wilks procedure). The
activity of LexA, here referred to as TFA (transcription factor activity), is
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expressed in arbitrary units and can be interpreted as relative “levels” . The
activity of a protein is generally determined by its relative level and the ap-
propriate kinetic rate-constant. The figure also shows the smoothed LexA
profile obtained by a cubic spline interpolation (R function spline) of the
reconstructed piece-wise constant function.

Crucially, the reconstructed profile of LexA exhibits behaviour that is
similar to the experimentally observed profiles in both (8) and (3). After UV
irradiation, the amount of LexA substantially decreases (more than 10-fold)
within a few minutes (5 — 10 min) (6). This is followed by a recovery phase,
wherein LexA goes back to its levels under normal conditions. The recon-
structed LexA profile in Figure 2 exhibits a faster recovery phase compared
to the experimentally predicted rise from measurements of promoter activ-
ities (3). The reconstructed LexA profile recovers in 40 min compared to
about 60 min predicted from experiments (8; 3). In addition, reconstructed
LexA profile goes to the level that is higher than its initial level. This is,
perhaps, a reflection of the experimental data, wherein the expression lev-
els of some target genes (e.g. recN and umuC, see Figure 3) do not show
any sign of a decline of their expressions 60 min after UV irradiation. It
might also suggest that a standard assumption of linear degradation has to
be re-evaluated.

Given the limitations of the current microarray dataset (2), which include
(i) averaging gene expressions from nonhomogenous cells, (ii) using poten-
tially different experimental conditions and protocols from promoter activity
measurements in (3) and (iii) the limited available data (only 6 time-points
available), the LexA profile reconstructed by our method exhibits a very
good similarity with the profile computed from precise measurements of the
promoter activities.

2.5 Interpretation of kinetic parameters

A very structured temporal order of activation of SOS genes has been re-
ported both in microarray studies (2) and promoter activity measurements
(3). Based on available microarray data, we have reconstructed the kinetic
profiles of all target genes in the SIM regulatory module in Figure 1. The
kinetic profiles of four representative genes (lexA, ruvB, recN and umuC) are
shown on Figure 3. The reconstructed profiles (solid lines) of these four genes
show excellent fit with the data (points). It is interesting to note that the
noise tends to be higher at higher levels of expression: compare profiles of



recN and umuC genes with the profiles of lezA and ruvB genes in Figure 3.
This is in good agreement with the log-normal assumption (equation 3 in
Methods). Kinetic profiles of other target genes in the LexA module can be
found on the supplementary web-page.

Four genes, represented in Figure 3, exhibit very different behaviour.
Genes lexA and ruvB show upregulation at about 10 minutes followed by
a subsequent decline, while profiles of two other genes (recN and umuC)
do not decline during 60 minutes after UV radiation. Estimated kinetic
rate-constants for the latter two genes show that this type of behaviour can
actually be achieved by linear degradation alone: i ~ a + du. This clearly
indicates that within the first 60 minutes after radiation the basal transcrip-
tion rate, o, and decay play important roles in the mRNA levels of the recN
and umuC genes.

From the Michaelis-Menten kinetic reconstruction it is possible to eval-
uate qualitatively the relative numerical values of the gene specific kinetic
parameters. Ranking the other 12 genes by their effective production rate,
r = /(v + 1), results in recA being the fastest gene (r ~ 18.2) and wvrB
being the slowest one (r &~ 1.4). The other 10 genes can be ranked in the
following order (from the fastest to the slowest): sbmC, umuD, yebG, ruvB,
sulA, ruvA, yjiW, lexA, dinl, dinF.

For three genes (dinF, uvrB, ruvA) the estimates of 7 are very small,
resulting in a transcription rate inversely proportional to the LexA protein
levels. For four genes (recA, lezA, sbmC, dinl, yebG) estimates of 7 are
comparable with the 7 indicating that saturation in production rate occurs
for already moderate levels of LexA. Degradations rates, §, for target genes
vary by two orders of magnitude with umuC having the slowest rate and ruvA
being the fastest one to degrade. It is also interesting to note, that estimates
for basal level of production, a, were found to be negligible for many genes
with an exception of recN, uvrB and umuC.

Reconstructed profiles of most of the target-genes show excellent fit with
the data (see Figures 3 and Supplementary Information). However, the fit
for four genes (dinl, sulA, umuD, yjiW) is not particularly good, indicating
that either the data is too noisy or that there might be nonlinear degradation
and cooperativity in the production term. Although it might be tempting to
try to interpret the absolute values of the kinetic parameters directly, this is
typically not possible as there are no explicit units in the microarray measure-
ments on which all the estimates are based. However, relative comparisons
of such values, as we have done above, are meaningful.



3 Conclusions

In this paper we have demonstrated that the protein level of a regulator can
also be inferred from microarray data measured on its target genes. Using
a microarray time-course experiment on wild and mutant types of FE.col: fol-
lowing UV irradiation, we have successfully reconstructed the activity of the
repressor LexA from its target genes. The reconstructed profile is a piece-wise
constant function on each time-interval, determined by available microarray
measurements. The piece-wise nature of the reconstructed profile might seem
highly approximative, however, our method is highly flexible as it does not
make any parametric assumptions and it permits a closed-form solution of
the integration of the kinetic equations (see equation 2 in Methods). At the
same time it is a parsimonious way to deal with the limited amount of data.
The reconstructed profile and its confidence bands can be smoothed with an
interpolation spline, yielding a profile without discontinuities at the sampling
time-points.

Our method enables the reconstruction of the temporal profile of a regula-
tory protein given the gene expressions of its targets. It has wide applicability
as Single Input Motifs frequently occur in many organisms. Once all or a
subset of the target genes in the SIM are known — and such information is
rapidly becoming available from ChIP-Chip experiments (18)— the activity
profile of the master regulator can be reconstructed. This approach can be
used to reconstruct the activity of an activator, as demonstrated in an ex-
ample of the cdaR activator in Streptomyces (19), or of a repressor, as in the
present paper.

4 Materials and Methods

The SOS regulatory module is an example of a Single Input Motif (SIM)
(9), where one regulator — a repressor in our case — controls several target
genes. The activity profile of the regulator, LexA, is denoted by n(¢). The
expression of a target gene k, yx(t), changes due to mRNA production, which
depends on the level of the regulator n(t), and on mRNA degradation. The
rate of the transcription production of a gene k is modelled by the Michaelis-
Menten kinetics, Bx/(vx + n(t)), where [ and 7, are gene-specific kinetic
parameters for gene k. This equation is widely used for modelling processes
in enzyme mediated kinetics. The kinetics of expression of gene k is described
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by

. 1
P (t) = ag + 5km — O pe(t), (1)

where ¢y, is the rate of linear mRNA degradation. The additive constant oy
accounts for the basal level of transcription as well as for nuisance effects
from microarrays.

Given measurements of gene expression at N time-points (to, t1,--.,tn_1),
the temporal profile of a gene k, p(t), that solves the ODE in equation (1)
can be approximated by

N-2

1 1
+ ﬂ eiékt § : Optit1 e(sktj —, 2
5 6/9 =0 ( )’Yk: + nj ( )

p(t) = et 4 =E
where 7; = (n(t;)+n(t;j+1))/2 on each sub-interval (¢;,t;11),5 =0,..., N—2.
This is under the simplifying assumption that 7(t) is a piece-wise constant
function on each subinterval (¢;,%;41). One can come up with linear (or
higher order) 7(t) approximations on each subinterval. This will introduce
additional parameters, which will impossible to infer with any certainty given
limited amount of data.
The observed gene expression of a target gene k, taken on its original
scale, is assumed to be log-normally distributed:

9r(t) ~ lognorm(m(t), o), E(gi(t)) = (t), (3)

where the location parameter is my(t) = log[ux(t)] — 307.

The kinetic parameters 6y = {ax, B, Vk, O, 4k} and the variance of the
log-normal distribution, o7, are assumed to be gene-specific. The activity
profilen = {n; ...nx} of the repressor LexA, and the parameters of regulation
for each target-gene are sought by maximizing the overall likelihood of the
SIM:

o'uerall @ E 577 H Lk gk gkao-ka 77) (4)

Here © represents all the gene-spemﬁc kinetic parameters of the kinetic
model, 0, for all targets k = 1... K in the regulatory module; ¥? stands for
all the scale-parameters of the log-normal distribution, o7; and L (gx (t); 0k, 02, 7)
is the gene-specific likelihood of a gene k given the observed data g (t) and
the transcription factor activity 1. The computational method that maxi-
mizes the log-likelihood with respect to n, © and X for all genes in the SIM is
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based on a conjugate gradient method. For a SIM we have 6 kinetic param-
eters per gene to estimate and additional N — 1 parameters for the regulator
profile 7.

Confidence intervals for the maximum likelihood estimate of n (7) are
calculated via a classical Wilks method. Each component of 7 is perturbed,
while keeping all other parameters fixed, such that the marginal confidence
decreases by 95%, which corresponds approximately to a decrease in the
likelihood by 2x73 3 ¢5- The smoothed 7-profile (bold solid line on Figure 2b)
is obtained by the cubic spline interpolation method (R function spline).

All the code for estimating the parameters, calculating the confidence
intervals and plotting the figures has been implemented in the statistical
language R (www.r-project.org) and is available on Supplementary page
www.stats.gla.ac.uk/~raya/Ecoli/Suppl.html.
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Figures

Figure 1: Schematic drawing of the SOS Single Input Motif, regulated by the
LexA repressor protein. 14 genes are differentially expressed between wild type
and mutant samples at a p-value cut-off 0.01. These genes are therefore targets of
LexA repressor, and together they constitute Single Input Motif.
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LexA inferred activity:
piece-wise constant and smoothed profiles

LexA inferred activity: sensitivity analysis
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Figure 2: Reconstructed activity level of master repressor LexA, following a UV
dose of 40J/m?. (a) The activity profile of LexA approximated by piece-wise con-
stant function (bold solid line), is reconstructed from the Michaelis-Menten kinetic
model (equations 1-4, Methods) using microarray data of 14 target genes in the
LexA SIM (Figure 1). The LexA profile is estimated by the Maximum Likelihood
method. 95% confidence bounds (dashed lines) are computed independently for
each component of the LexA profile, while keeping all other parameters fixed. LexA
profile is re-scaled between 0 and 1. Confidence bounds are re-scaled accordingly.
Time is given in minutes as in the experiment. The smoothed LexA profile (solid)
is obtained by cubic spline interpolation from the reconstructed piece-wise con-
stant profile and its 95% confidence bounds, using the R function spline. TFA
stands for Transcription Factor Activity. (b) LexA approximated by piece-wise
constant function (solid line) is the same as on Figure 2a. LexA profiles estimated
by the Maximum likelihood method by iteratively leaving each one of the putative
targets out (dashed lines). The mean correlation between the LexA profile recon-
structed from expression of 14 genes and profiles reconstructed from each subset
of 13 target genes is 0.84.
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Figure 3: Reconstructed profiles for four genes in the LexA SIM. Points stand
for the data values. Data and reconstructed profiles are presented on the original
scale. Time is given in minutes as in the experiment. Profiles of other target genes
in the SIM are available on the Supplementary page.
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