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ABSTRACT 

Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG 

associated with a specialized set of proteins, known collectively as Shelterin. These 

telosomal proteins protect the ends of chromosomes against end-to-end fusion and 

degradation. The objective of this project was to investigate whether expression of Shelterin 

and Shelterin-associated proteins are altered, and influence the protection and 

maintenance of telomeres, in breast cancer cells. Initial findings showed that most of the 

Shelterin and Shelterin-associated genes were significantly down-regulated (at the mRNA 

expression level) in a panel of ten breast cancer cell lines. Epigenetic alterations to DNA 

(methylation at CpG Islands) and histones can result in altered expression of genes. Further 

investigations showed that the promoter region of POT1 was partially methylated in the 

breast cancer cell line, 21NT. To support these observations, a DNA methylation inhibitor, 5-

aza-CdR, and a histone deacetylation inhibitor, TSA, were used in an attempt to reactivate 

the expression of silenced genes. This work generated novel findings. Treatment with 5-aza-

CdR and TSA resulted in the highest recovery of TIN2 and POT1 mRNA levels at both short-

term (48 and 72 hours) and long-term (3 weeks) treatment of the breast cancer cell line, 

21NT cells. In addition, POT1 promoter methylation was analysed before and after 

treatment of 21NT cells. Bisulphite sequencing data were consistent with the mRNA 

expression results, showing up-regulation of POT1, as all methylation sites were 

demethylated after the treatment of 21NT cells with 5-aza-CdR. These studies also showed 

for the first time that both the short-term (72 hours) and 3 weeks treatment of 21NT cells 

with 5-aza-CdR was able to increase telomere lengths (using four measurement methods, 

i.e. TRF, q-PCR, flow-FISH and iQFISH).  
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Breast cancer cell lines expressed low levels of several telosomal mRNAs and that 

this down-regulation was found to be due in part to promoter methylation. Methylation was 

shown to be relieved through treatment of the cells with 5-aza-CdR and TSA; specifically, 

POT1 was shown to be up-regulated to a higher extent compared with other Shelterin 

genes. Given that previous studies involved over-expression of POT1 in telomerase-positive 

cells to demonstrate telomere length elongation, we addressed the possibility that over-

expression of POT1 may affect telomere length in 21NT breast cancer cells. The results 

showed that the average telomere length of the POT1 over-expressing clones was increased 

by 2 to 3 kb compared with 21NT non-transfected and empty vector controls. The study also 

demonstrated that increased telomere length (by ectopic over-expression of POT1) is not 

due to a direct effect of telomerase enzyme activity. One explanation for this could be that 

POT1 may induce a negative regulator of telomerase activity to maintain telomere length. 

Taken together, the results generated in this project suggest that POT1 may control a 

localised activation of telomerase enzyme at the telomere end, and regulate stability of the 

Shelterin complex. 
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1.1-Structure and function of the breast 

The female breast is an assemblage of mammary glands and fatty tissue in 

conjunction with nerves, veins, arteries and connective tissues known as the fascia 

(American cancer Society 2013, Cancer research UK). The glands are placed on the 

subcutaneous layer of the anterior and a portion of the lateral thoracic wall. The breast is 

made up of the secretory glandular tissue which is located in the upper portion of the breast 

and surrounding adipose tissues (Figure 1.1). The glandular tissues are separated by septa of 

connective tissues and organized into 15 to 20 sections which are called lobules. Each lobule 

contains its own duct systems and interacts with a lactiferous duct to course via the breast 

towards the nipple/areolar part. Additionally, during lactation, lobules produce milk which is 

transported to the nipple by the ducts (Rakha, El-Sayed et al. 2008) (Figure 1.1). Before 

puberty, functional and structural differences between the male and female breast cannot 

be distinguished. In women, however the production of hormones such as estrogen and 

progesterone results in the proliferation of ductal cells and the development of a network of 

lobes and lobules in preparation for lactation. In male, there are a small number of ducts 

just behind the nipple. However because men do not produce any milk there is no lobule 

development (Rakha, El-Sayed et al. 2008) (Figure 1.1).  
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Figure 1.1-Schematic diagram showing the anatomy and physiology of the male (A) and female (B) 

breast (Image obtained from http://cnx.org/content/m46392/latest/ website).  

 

1.2-Breast cancer 

1.2.1-Epidemiology, incidence and mortality rates 

Breast cancer is the most common type of cancer in women in developed countries 

(Cancer Research UK, 2008) (Figure 1.2). It is estimated that in the 1990s, breast cancer 

accounted for approximately 1 in 3 of all female cancers in the UK and Ireland. Indeed, 

current trends have shown a rise in incidence such that 1 in 8 women will develop breast 

cancer in the UK at some time in their lives (Cancer Research UK, 2010). Based on current 

estimated data in 2010, 49,564 females and 397 males were diagnosed with breast cancer, 

which also caused 11,556 women and 77 male deaths in the UK (Cancer research UK 2010). 

Universally, the incidence and mortality rates of breast cancer vary around the 

world. As shown in Figure 1.2, in less-developed countries, the incidence and mortality rates 

A B 
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were lower in 2008 in comparison with those in Europe (Cancer Research UK, 2008). In the 

USA, newly estimated data obtained in 2013 showed that over 232,340 females and 2,240 

males were diagnosed with breast cancer and it caused 39,620 female and 410 male deaths 

(National Statistics, 2013). In contrast, the mortality rates in the US have decreased since 

1980, due to earlier detection methods and improved treatments (Chu, Tarone et al. 1996). 

 

Figure 1.2-Standardized mortality for breast cancer in different countries. The estimated data show 

that female breast cancer incidence is highest in Western European countries with the lowest rate 

observed in Middle and Eastern Africa (Cancer Research UK, 2008 

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/breast/incidence/).  

 



5 

 

The International Agency for Research on Cancer (IARC) revealed that the highest 

male breast cancer incidence rates occurred in Israel with an age-adjusted rate of 1.24 per 

100,000. Interestingly, the lowest incidence rates for both males (0.16/100,000) and 

females (18.0/100,000) were reported in Thailand. In 2013, so far, breast cancer caused 

88,886 deaths in females in European countries representing a 7% decrease since 2009. In 

Southern and Eastern European countries, the highest incidence rates (among women and 

men) have been reported in Italy (Ly, Forman et al. 2013). However, the lowest breast 

cancer incidence rates were reported in the Russian Federation and Ukraine in comparison 

with the rest of European countries (Ly, Forman et al. 2013).  

Like most epithelial cancers, breast cancer is strongly related to age. As shown in 

Figure 1.3, breast cancer accounted for approximately 17% of cancer-related deaths in 

females in European countries (Ferlay, Steliarova-Foucher et al. 2013). The variation of 

incidence and mortality rate in industrial countries indicated that many factors such as 

ethnic and life style risk factors (diet, alcohol, smoking, and obesity), use of hormone 

replacement therapy (HRT) in post-menopausal women, and socio-economic status are 

implicated in increasing breast cancer development (Li, Weiss et al. 2000; Chen, Weiss et al. 

2002; Rosenberg, Magnusson et al. 2006).  

According to Cancer Research UK, in 1989, 15,625 women died from breast cancer in 

comparison with 12,417 in 2005. The estimated 5-year survival rates of women diagnosed 

with breast cancer was 50% in the UK and Wales in the 1970s, but since that time the 

survival rates have increased to more than 80% (National Statistics, 2007). This reduction in 

the number of deaths is thought to be attributed to various factors such as earlier detection 

of the disease due to raised awareness among females, widespread mammography 
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screening programs and development of more effective treatments (e.g. mastectomy or 

removal of lymph nodes, lumpectomy, radiotherapy, chemotherapy and hormone therapy) 

(Botha, Bray et al. 2003; Weigelt, Horlings et al. 2008). 

 

Figure 1.3-Incidences (A) and mortalities (B) of female cancers in Europe. The area of the pie chart 

indicates the proportion of incidence and death. Breast cancer in comparison with other cancers had 

the highest incidence and mortality rates (Ly, Forman et al. 2013). 

 

1.2.2-Development of breast cancer  

 Breast cancer is characterized by uncontrolled growth of mammary epithelial cells 

(e.g. luminal or ductal) when they are in proliferative state. Breast cancer is classified into 

different stages based on the tumour phenotype i.e.; normal to hyperplasia, carcinoma in 

situ, invasive carcinoma and metastatic cancer. Many breast cancers most commonly start 

A B 
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to develop within the ducts or lobules and are known in the early stages as ductal or lobular 

carcinoma in situ (DCIS/LCIS) or, subsequently, as an invasive carcinoma that infiltrates 

connective and fatty tissues (Weidner, Semple et al. 1991; Simpson, Gale et al. 2003). 

Cancer Research UK reported that DCIS accounts for approximately 25% of all breast 

cancers. In contrast, lobular carcinoma in situ is a rare form of cancer which is not classified 

as breast cancer (Table 1.1). Ductal carcinoma in situ (DCIS) or intraductal carcinoma of the 

breast is the most common type of non-invasive breast cancer as the abnormal epithelial 

cells have not grown beyond adjacent fatty and connective tissues and grow slowly (Figure 

1.1) (Allred 2010). Such cancers would initially not overtly affect the woman’s health but can 

be detected by mammography. A positive mammogram would be normally confirmed by 

biopsy to identify the presence of malignant cells (American Cancer Society, 2013), which 

can then also be classified as low, intermediate or high grade. The estimated incidence rate 

indicates that DCIS is more common in females at age 60 and over. However, it is 

uncommon under the age of 35 years. The risk factors for DCIS include high body mass index 

(BMI), increased breast density and nullparity (Virnig, Tuttle et al. 2010). Lobular carcinoma 

in situ, also known as lobular neoplasia (LCIS) is a rare pre-cancerous type of cancer and is 

implicated as a risk factor in increasing the development of invasive breast cancer (Table 

1.1) (Simpson, Gale et al. 2003; Arpino, Bardou et al. 2004). The predominant form of 

invasive ductal breast carcinoma is known as infiltrating ductal carcinoma (IDC) and is 

responsible for approximately 85% of cases. IDC originates in the milk ducts, invades into 

the fatty tissues and, from there, may metastasize to other parts of the body (Wiechmann 

and Kuerer 2008). A high Body Mass Index (BMI), nullparity or having late first child, 

increased breast density, early menstruation and drinking more than three alcoholic drinks 
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per day are all risk factors correlated with the development of IDC (Virnig, Tuttle et al. 

2010). The lowest incidence rate of IDC is observed in females under 30 and the highest 

rates occur at age 75 and over (Virnig, Tuttle et al. 2010). Yet another form of invasive 

breast cancer is infiltrating lobular carcinoma (ILC) and, in comparison with LCIS, is more 

aggressive and accounts for 8-14% of breast cancer diagnosis (Table 1.1). ILC expands in the 

milk-producing glands (lobules) and often spreads to other regions of the body (Arpino, 

Bardou et al. 2004; Wiechmann and Kuerer 2008). 

Table 1.1-Different stages and classification of breast cancer. The T classification of the primary 

tumour is based on clinical or pathological criteria or both. Tis = in situ disease (not fully invasive). 

Table obtained from National Cancer Institute, 2013: 

(http://www.cancer.gov/cancertopics/pdq/treatment/breast/healthprofessional/Table1)  

Stages Tumour size Characteristic 

Stage 0 

Tx Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ 

Tis (DCIS) Ductal Carcinoma in situ (DCIS) 

Tis (LCIS) Lobular Carcinoma in situ (LCIS) 

Tis (Paget) Paget’s disease of the nipple with no associated tumour mass 

Stage 1 T1, Tumour size ≤20mm Node status; clear or negative nodes 

Stage 2 

T1, Tumour size ≤ 1mm Node status; clear or negative nodes, Cancerous, No spread of tumour 

T1a, Tumour size> 1mm Node status; clear or negative nodes, Cancerous, No spread of tumour 

T1b, Tumour size> 5mm Node status; clear or negative nodes, Cancerous, No spread of tumour 

T1c, Tumour size> 10mm Node status; clear or negative nodes, Cancerous, No spread of tumour 

T2, Tumour size> 20mm Node status; clear or negative nodes, Cancerous, No spread of tumour 

T3, Tumour size> 50mm Node status; clear or negative nodes, Cancerous, No spread of tumour 

Stage 4 

T4, any size Spread to chest wall or to the skin 

T4a, any size Spread to chest wall, not includes only pectorallis muscle 

T4b, any size Tumour has spread 

T4c, Both T4a and T4b Both T4a and T4b 

T4d Inflammatory carcinoma 
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1.2.3-Breast cancer diagnosis and treatment 

Breast cancer is diagnosed by a variety of different methods, including self- 

examination, clinical examination, mammography, ultrasound and Magnetic Resonance 

Imaging (MRI) (Saslow, Boetes et al. 2007; Yu, Liang et al. 2010). The clinical examination 

typically reveals a lump within the breast tissue and in some cases involves the nipple or 

skin around the affected region (College of American Pathologists-CAP, 'Breast Cancer' 

2011). Mammography, as a non-invasive method, is the most common imaging tool which is 

used to detect suspected breast tumours, premalignant or begin lesions, with a good degree 

of accuracy. In addition, mammograms are able to increase significantly the efficacy of 

diagnosis by detecting the detailed abnormalities of an early stage tumour including 

irregular densities, micro-calcification and architectural distortion progression, even before 

they can be recognized by clinical examination (Gotzsche and Nielsen 2011). MRI and 

ultrasound techniques are often used to refine diagnosis providing additional imaging 

information (Schmitz, Gianfelice et al. 2008).  

The treatment of breast cancer depends on the accurate determination of the stage 

of the disease. For instance, tumour cells at stage IV (metastatic cancer, IDC) are more likely 

to have spread into surrounding stromal tissue. Therefore, initial visualisation of the tumour 

mass by mammography is essential for a better prognosis and survival chances. 

Lumpectomy which involves removal of the tumour lesion together with a margin of 

surrounding normal tissue is the most common treatment of DCIS (Weigelt, Horlings et al. 

2008). However, patients at this stage of disease can decide to have removed a wide area 

or, alternatively, a relatively small amount of surrounding tissue. Mastectomy, involving 

removal of all breast tissue including skin and nipple, may be required in order to prevent 
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reoccurrence of the invasive ductal carcinoma (Cancer Research UK, 2013). In the case of to 

LCIS and ILC, malignant cells rarely form a palpable mass, and are therefore not easily 

detectable with mammography or by breast examination (Biglia, Mariani et al. 2007). 

1.2.4-Molecular genetics of breast cancer 

Two classical models of breast cancer exist; (i) sporadic cancer, which is caused by a 

combination of somatic genetic and environmental factors and (ii) familial cancer, which is a 

result of a predisposing mechanism of genetic alteration (Table 1.2) (Kenemans, Verstraeten 

et al. 2004). Epidemiological studies have classified familial breast cancer genes susceptible 

to germline mutations into high-risk and low-to moderate-risk classes (Mangia, Malfettone 

et al. 2011). BRCA1, BRCA2, PTEN, TP53, LKB1/STK1 and CDH1 are categorized as high risk 

genes, whereas CHEK2, TGFβ1, CASP8 and ATM are classified as those with low-to 

moderate-risk (Mangia, Malfettone et al. 2011). 

Table 1.2-Represents familial and sporadic breast cancer genes (Eisenhauer, Chaturvedi et al. 2001; 
Murata, Khattar et al. 2002; Mangia, Malfettone et al. 2011; Deb, Do et al. 2013). 

Gene Familial breast 
cancer 

Sporadic breast 
cancer 

Function 

BRCA1 *  DNA damage response 

BRCA2 *  DNA damage response 

PALB2 *  DNA damage response 

BRIP1 *  DNA damage response 

ATM *  DNA damage response 

NBS1 *  DNA damage response 

RAD50 *  DNA damage response 

CHEK2 *  DNA damage response 

P53 *  Tumor suppressor 

PTEN *  Tumor suppressor 

PIK3CA *  Coordinate a diverse range of cell functions 

hMSH2  * Tumor suppressor 

hMLH1  * DNA repair pathway 

COMT  * Enzymatic interaction in the metabolism of estrogen 

YP1A1  * Enzymatic interaction in the metabolism of estrogen 

CYP1B1  * Enzymatic interaction in the metabolism of estrogen 

GSTM1  * Enzymatic interaction in the metabolism of estrogen 

GSTT1  * Enzymatic interaction in the metabolism of estrogen 
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It is estimated that approximately 5% of breast cancer cases are hereditary and 

linked to germ-line alterations in BRCA1 and BRCA2 tumor suppressor genes. These genes 

are known to be mutated in breast cancer (Couch, Farid et al. 1996; Brohet, Velthuizen et al. 

2013). In addition, it has been shown that BRCA1 is sometimes hypermethylated at its 

promoter region in breast cancer (Catteau, Harris et al. 1999; Jacot, Thezenas et al. 2013). 

Human epidermal growth factor receptor 2 (HER2) is another tumor suppressor gene that 

plays a fundamental role in cell growth. Martin (2006) reported that over-expression of 

HER2 (primarily via gene amplification) in 20% of breast cancer cases could lead to excessive 

cell growth and result in aggressive tumor cells (Lacey, Devesa et al. 2002; Martin 2006). 

TP53 is a key tumor suppressor gene (TSG) that is found to be mutated in approximately 

40% of sporadic breast cancers (Miller, Smeds et al. 2005). A high frequency of loss of 

heterozygosity (LOH) involving the BRCA and p53 genes has been identified in many 

sporadic breast cancers (Johnson, Shaw et al. 2002). A study by Byrnes et al. (2008) showed 

that there are other genes apart from the ‘key driver’ genes involved in breast cancer 

(Byrnes, Southey et al. 2008). For instance, BRCA1 interacting protein C-terminal helicase 1 

(BRIP1) plays a role in BRCA1-dependent DNA repair and cell cycle checkpoint function, and 

encodes a helicase that interacts with the BRCA1 C-terminal domain. Mutation of this gene 

is also linked with an increased risk of breast cancer (Levitus, Waisfisz et al. 2005; Litman, 

Peng et al. 2005). A partner of BRCA2, the PALB2 gene is involved in the double-strand DNA 

repair pathway, and interacts with the BRCA2 protein which plays a role in homologous 

recombination (HR). In multiple populations, this gene has been screened for the presence 

of mutations in multiple small studies of familial and early-onset of breast cancer (Reid, 

Schindler et al. 2007; Tischkowitz, Capanu et al. 2012). Previous findings by Byrnes et al. 
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(2008) showed that mutations in the BRCA2 are correlated with a high risk of breast cancer. 

RAD51 paralogs or RAD51 and the family of RAD51-related genes are associated with 

repairing DNA damage through cooperation with various DNA repair proteins such as BRCA1 

and BRCA2. The RAD51 protein has a central role in single-strand annealing and is involved 

in responding to DNA damage (Suwaki, Klare et al. 2011). Six monoallelic mutations of 

RAD51C, one of the subfamily of RAD51-related genes, were found in breast cancer (Meindl, 

Hellebrand et al. 2010). In addition, RAD51D and RAD51L1 genes were reported as having a 

possible association with ovarian and breast cancer risk (Loveday, Turnbull et al. 2011; 

Pelttari, Kiiski et al. 2012). 

1.3-Telomeres 

Telomeres are made up of G-rich nucleotide repeats of the sequence (TTAGGG)n  

bound by associated proteins at the ends of the chromosomes of eukaryotic and all 

mammalian cells (Griffith, Comeau et al. 1999; Smogorzewska and de Lange 2004). 

Telomeric DNA together with the associated telosomal proteins, collectively known as the 

Shelterin complex, are essential for the overall maintenance of genome integrity and 

prevent DNA degradation and chromosome end-to-end fusions (Palm and de Lange 2008). 

In normal mammalian chromosomes, telomeric DNA contains 5 to 15 kilobases of  tandem 

TTAGGG repeat sequences that get critically shorter in telomerase-negative cells after each 

cell cycle division, due to the end replication problem (Harley, Futcher et al. 1990). When 

the terminal primer is degraded through the process of lagging strand synthesis, the 5' gap 

appears at both ends of linear chromosome (Levy, Allsopp et al. 1992). The ends of 

chromosomes are synthesized in a 5' to 3' direction which degrades about 130 to 210 
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nucleotides during each cell cycle, resulting ultimately in the telomere reaching a critically 

short length. The end replication problem was first suggested by Nobel prize winner, James 

Watson (Watson 1972). At about the same time it was proposed that short telomere length 

is linked to the end replication problem at the 3´ end (Olovnikov 1973) (Figure 1.4). 

 

Figure 1.4-Shematic representation of the “end replication problem” during DNA replication. a) A 

parental DNA strands. b) In each cycle of DNA replication, the leading strand is synthesized. c) 

However, in the lagging strand formation of an Okazaki fragment requires an RNA primer (d) which 

leaves a gap of about 8 to 12 base pair in the 5´ end of lagging strand. e) Thus, the end of the lagging 

strand cannot be replicated and is lost after several rounds of cell division; hence results in the 

shortening of 5´ end and 3´ overhang. This model described by Makarov et al. (1997) (Makarov, 

Hirose et al. 1997). 
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During the process of DNA replication, telomeric DNA does not replicate properly 

due to the inefficiency of DNA polymerase to complete replication of the 5´ end of a linear 

chromosome. To prevent incomplete replication of the 5´end of a linear telomeric DNA, 

chromosomes are “capped” as hypothesized by McClintock and Muller (Muller 1938; 

McClintock 1941; Elizabeth H Blackburn 2006). Thus, the terminal nucleotides of 

chromosomal DNA are capped by telomeres which have evolved to protect them from 

enzymatic degradation and thus add stability to the chromosomes (Shampay, Szostak et al. 

1984). 

1.3.1-Telomere structure and function 

The ends of telomeres contain a single-stranded 3'-guanine-rich extension (the G-

strand) called the 3’ overhang that is located between 50-500 nucleotide from the end of 

the telomere; the complementary strand is known as the cytosine-rich strand (the C-strand). 

The telomerase enzyme is responsible for maintaining the 3’ overhang by extending its 

length by 100-300 base pairs beyond the C-rich strand, per division (Palm and de Lange 

2008). It has been previously shown by electron microscopy that telomeres consist of two 

loops (Griffith, Comeau et al. 1999) (Figure 1.5). The telomere loop (T-loop) is a large duplex 

lariat structure in mammalian telomeres. The telomeric DNA folds back into itself to form T-

loop and the 3' overhang binds to the 5' end of duplex strand of telomeric repeats to form a 

displacement loop (known as the D-loop) (Griffith, Comeau et al. 1999; Wright and Shay 

2005) (Figure1.5).  

The six-protein Shelterin complex packages telomeric DNA and helps to hide the 

chromosome ends from being detected as a double stranded break during the DNA 
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replication process. The proteins belonging to the Shelterin complex are: Telomeric Repeat 

binding Factor 1 (TRF1), Telomeric Repeat binding Factor 2 (TRF2), Protection of Telomeres 

1 (POT1), TRF1-interacting nuclear protein 2 (TIN2), TPP1 (known as ACD, adrenocortical 

dysplasia homolog) and Repressor activator protein 1 (RAP1) (Figure 1.5). TRF1 and TRF2 

bind to the double stranded T-loop of telomeric DNA and are implicated in maintaining the 

formation of the T-loop structure, while POT1 interacts with single-stranded TTAGGG 

repeats at the 3' overhang, as well as in the D-loop of the T-loop configuration. TRF1 and 

TRF2 recruit TIN2, RAP1, TPP1, and POT1 to telomeric DNA (van Leth, Andrews et al. 2005). 

 

 

Figure 1.5-T-loop structure of the mammalian telomeric ‘cap’. A) T-loop structure of human telomere 

imaged by electron microscopy (Griffith, Comeau et al. 1999). B) The single-stranded portion of the 

3´overhang of telomeric DNA folds into the double stranded DNA and forms a larger T-loop and a 

smaller D-loop (de Lange T. 2006). C) Schematic of the Shelterin complex on telomeric DNA. POT1 is 

shown only at the binding site closest to the duplex telomeric DNA and binds directly to the 3´ single 

stranded over hang. TRF1 and TRF2 are the only Shelterin proteins that bind to double-stranded 

telomeric DNA (de Lange 2005). 

A B 
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Another vital function of telomeres is to prevent the loss of genetic information at 

the 5' end of a newly synthesized chromosome, by allowing the terminal ends to be 

replicated completely. This process can be accomplished in the presence of the telomerase 

enzyme. However, in the absence of telomerase, telomeres are gradually lost due to the 

“end replication problem” with each consecutive cell cycle (Figure 1.4). In normal cells, 

when the length of a telomere becomes critically short, the cells stop dividing and, having 

reached their Hayflick limit, undergo replicative senescence or apoptosis (Hayflick and 

Moorhead 1961; Makarov, Hirose et al. 1997). At the point when telomeres become 

dysfunctional, chromosomal end-to-end fusions can occur (Levy, Allsopp et al. 1992). 

Conversely, in the presence of telomerase enzyme activity (in unicellular organisms, in 

germline mammalian cells and in cancers) the shortening of telomeres that leads to 

senescence is  avoided (Shippen-Lentz and Blackburn 1989). 

1.3.2-Telomere shortening in breast cancer 

Telomere dysfunction through telomere shortening and/or dysregulation of 

telomeric DNA-binding proteins (Shelterin), occurs in both the in situ and invasive stages of 

many cancers, such as breast cancer (Butler, Hines et al. 2012). Clinical observations have 

indicated that short telomere length increases a risk of developing epithelial cancers (Plentz, 

Wiemann et al. 2003).  

Butler et al. (2012) showed that Shelterin genes play a fundamental role in regulating 

telomere length in breast tumours. They reported that the mRNA levels of TRF1, TRF2 and 

POT1 were inversely correlated with telomere length. Telomere shortening was observed in 

breast cancer tissues whereas the mRNA levels of aforementioned genes were up-regulated 
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(Butler, Hines et al. 2012). In addition, a recent study by Ramsay et al. (2013) showed that 

mutation of POT1 in many carcinomas such as lung, ovarian and breast causes telomere 

dysfunction (Ramsay, Quesada et al. 2013). Therefore, dysregulation of telomere length 

through telomere-binding proteins suggests a common molecular mechanism that underlies 

clinical abnormalities. Hence, a better understanding the role of telomeres and telomere 

binding proteins may have a fundamental impact on breast cancer diagnosis and treatment.  

1.3.3-Telomere dysfunction and senescence 

Numerous recent advances in molecular and cell biology have shown that telomere 

dysregulation is involved in cellular senescence and cell death. Telomere dysfunction 

appears through diverse mechanisms such as Shelterin dysfunction and telomere shortening 

(Sfeir and de Lange 2012). Mutations within telomere-associated (telosomal) proteins (such 

as POT1) can alter the expression or function of these proteins, leading to telomere 

dysfunction (Ramsay, Quesada et al. 2013). Several studies have shown that the DNA 

damage response (DDR) is induced by telomere shortening via the activation of tumor 

suppressor proteins namely p53 and Rb proteins, and consequently p53-p21 and p16-pRb 

growth arrest pathways (Campisi 2005; Kuilman, Michaloglou et al. 2010; Rodier and 

Campisi 2011). Two significant blockades have been postulated to inhibit normal cells 

transforming into cancerous cells: Mortality stage 1 (M1) and Mortality stage 2 (M2) (Shay, 

Pereira-Smith et al. 1991). At the M1 stage, cells stop dividing via the DDR which leads to 

senescence. However, some cells are able to bypass the M1 stage via inactivation of p53 

and pRB pathways and hence, they can continue to divide with further decreasing telomere 

length. When the lengths of telomeres are reduced to critical levels, cells enter into the M2 

stage. At this stage, genetic abnormalities such as end-to-end chromosomal fusions, 
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anaphase bridges and uncapped chromosome ends occur (Newbold 2005). Chromosomal 

instability is triggered through increased telomeric end-to-end fusions, resulting in dicentric 

chromosomes via breakage-fusion-bridge (BFB) cycles. It is important to note that, during 

mitosis, chromosome instability can continue when the two centromeres of a dicentric 

chromosome are pulled to the opposite poles by spindles (so the called breakage-fusion-

bridge cycle). Genomic instability is correlated with the frequency of cell death or 

senescence making M2 difficult to distinguish from M1 (Stewart and Weinberg 2006). 

However, some rare cells are able to escape from M2 through reactivation of telomerase 

expression and become immortal (Wright, Pereira-Smith et al. 1989).  

It is known that the telomerase enzyme is active in germ line and stem cells, but 

inactive in most normal diploid somatic human cells, and it is thought that the latter has 

evolved as a protection against cancer. Approximately 85 to 90% of cancer cells display high 

telomerase activity (Kim, Piatyszek et al. 1994; Cong, Wright et al. 2002). However, a 

minority of cancers (~15%) and some immortalized cells can maintain telomere length via 

Alternative Lengthening of Telomere mechanism (ALT) (Feldser, Hackett et al. 2003; 

Newbold 2005; Shay and Wright 2005; Stewart and Weinberg 2006). ALT cell lines are 

characterised by several unique features including heterogeneous telomere length, 

presence of extra-chromosomal linear and circular telomeric DNA (ECTR), high frequency of 

telomere-sister chromatid exchanges (T-SCE) and ALT associated promyelocytic leukemia 

bodies (APBs) (Royle, Foxon et al. 2008; Conomos, Pickett et al. 2013). 
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1.4-Telomerase  

Telomerase is a unique cellular ribonucleoprotein (RNP) complex that synthesizes 

TTAGGG sequence repeats onto the 3' end of chromosome terminals (Griffith, Comeau et al. 

1999; Wyatt, West et al. 2010). The core enzyme contains two subunits: telomerase reverse 

transcriptase (TERT) and telomerase RNA (TERC) (Figure 1.6) (Meyerson, Counter et al. 

1997). The TR molecule, complementary to the telomeric repeats, is an important element 

 

Figure 1.6-Diagram of telomere extension cycle by the telomerase enzyme. The diagram shows the 

telomerase enzyme in action which extends telomeric DNA during the elongation process. The 

illustration was obtained from Blackburn 2006 (Blackburn 2006). 
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of the telomerase enzyme; it consists of an RNA template region that facilitates adding 

telomeric repeats through the action of the reverse transcriptase catalytic subunit of 

telomerase (TERT) (Autexier and Lue 2006). These two subunits can bind with additional 

proteins that together expedite synthesis and elongation of telomeric DNA (Wyatt, West et 

al. 2010). 

1.5-Shelterin genes structures and functions 

1.5.1-Telomeric Repeat binding Factor 1 (TRF1) 

TRF1, the first member of the Shelterin complex, was discovered in HeLa cells and is 

a ubiquitously expressed protein of 439 amino acids (Zhong, Shiue et al. 1992; Chong, van 

Steensel et al. 1995; van Steensel and de Lange 1997) (Figure 1.7). TRF1 contains a 50 amino 

acid C-terminal Myb DNA-binding domain that directly binds to the double stranded 

telomeric DNA and is localized to the nucleus. The Myb domain is one of the three helical 

domains that are involved in specific-protein-DNA or protein-RNA interactions (Chong, van 

Steensel et al. 1995; Bianchi, Smith et al. 1997). TRF1 contains a dimerisation domain which 

has a ~ 200 amino acid TRF-specific domain. This mediates homodimerisation which is 

essential for binding to TTAGGG repeat sequences. The acidic N-terminus domain of TRF1 

binds to the Shelterin-associated proteins tankyrase 1 and tankyrase 2 (Palm and de Lange 

2008). These two proteins are able to modify TRF1 to hinder its DNA-binding activity or 

remove TRF1 from telomeres and promote its degradation. The C-terminal Myb domain of 

TRF1 is able to induce bending, looping, and pairing of telomeric DNA, binds to the 

hetronucleotide repeats of DNA on both the parallel and antiparallel strands. TRF1 may be 

able to facilitate the folding back of the telomeric DNA in T-loop formation via other 
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telomeric binding protein such as TIN2, TPP1, and POT1 (Bianchi, Smith et al. 1997; Broccoli, 

Smogorzewska et al. 1997; Griffith, Bianchi et al. 1998). Therefore, TRF1 acts as a tether 

through which other Shelterin components interact with the 3' overhang and facilitate the 

protection of telomeric DNA from degradation and end-to-end fusion (Ye, Hockemeyer et al. 

2004). The TRFH domain of TRF1 consists of a versatile peptide docking site to recruit other 

Shelterin proteins to telomeres. Chen et al. (2008) showed that TRF1 recruits TIN2 via its 

TRFH domain which interacts with PinX1 (Chen, Yang et al. 2008). PinX1 (PIN2/TRF1-

interacting, telomerase inhibitor 1) is a telomerase inhibitor which maps to human 

chromosome 8p23 and exhibits heterozygosity in different cancers. However, whether 

PinX1 is inactivated in tumorigenesis is yet to be defined  (Soohoo, Shi et al. 2011).  

It has been suggested previously that TRF1 can interact with DNA-dependent RNA 

polymerase II to transcribe the C-strand of telomeric DNA (Schoeftner and Blasco 2008). 

Hence, it is important to note that the phosphorylation of threonine 122 position of TRF1 by 

CK2 plays a fundamental role for TRF1 binding to the telomere, thus regulating telomere 

length (Kim, Davalos et al. 2008). Preliminary observations in telomerase-positive human 

cells showed that TRF1 is a negative regulator of telomere length. It is believed that long 

term over-expression of TRF1 even in the presence of telomerase, leads to a gradual 

decrease in the process of telomere shortening. However, the expression of a dominant 

negative TRF1 mutant result in the inhibition of binding of endogenous TRF1 to double 

stranded telomeric DNA and induces abnormal telomere length elongation (van Steensel 

and de Lange 1997; Smogorzewska, van Steensel et al. 2000). All these findings support the 

role of TRF1 as a negative regulator of telomere length (in cis) to maintain the access of 
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telomerase to the end of telomeres (van Steensel and de Lange 1997; Ancelin, Brunori et al. 

2002). 

 

Figure 1.7- Interaction between human telomere binding proteins (Shelterin) and telomeric DNA. 

Binding of individual Shelterin proteins through interaction with specific sequences. TRF1 and TRF2 

bind double stranded DNA, whereas POT1 and TPP1 bind single stranded telomeric DNA, therefore 

aiding in formation of the T-loop. TIN2 binds TPP1 and TRF1, TRF2 and RAP1. The image was 

obtained from Palm et al. (2008) (Palm and de Lange 2008). 

 

1.5.2-Telomeric Repeat binding Factor 2 (TRF2) 

Similar to TRF1, TRF2 has a TRF homology (TRFH) domain close to its amino-terminus 

and a C-terminal Myb DNA-binding domain which are bound via a flexible hinge domain 

(Bianchi A 1997; Bilaud, Brun et al. 1997; Fairall L 2001; Hanaoka 2005). However, unlike 

TRF1, the amino terminus in TRF2 contains the Gly/Arg-rich domain (GAR domain) on its N-

terminus. The TRFH domain function acts as a docking site for target proteins that consists 

of FXLXP motifs (binding for TRF1) and YXLXP motifs (binding for TRF2) (Figure 1.7) (Bhanot 

and Smith 2012). Moreover, TRF2 is twice as abundant as TRF1 and the two proteins do not 

interact directly with each other (Diotti and Loayza 2011). TRF1 and TRF2, are closely related 

within their carboxyl-terminal Myb domains and both proteins bind to the double stranded 
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telomeric DNA as homodimers / or oligomers via homotypic interactions in the TRFH 

domain. Additionally, TRF2 can bind to the interstitial telomeric DNA repeated-related 

sequences (Smogorzewska, van Steensel et al. 2000). The T-loop-like structures are shaped 

through TRF2 when provided with a model telomere substrate and within this structure, 

TRF2 preferentially localizes to the junction between the single stranded and double 

TTAGGG repeats and prevent the ends of telomeric DNA from being detected as DNA 

damage (Stansel, de Lange et al. 2001). Over-expression of TRF2 in HeLa and HT1080 tumor 

cells causes telomeres to become uncapped, which leads to the formation of chromosomal 

end-to-end fusions (Karlseder, Broccoli et al. 1999). Moreover, TRF2 can protect 

chromosome ends and inhibit activation of DNA damage response pathways in tumors and 

normal epithelial cells (Assmus, Urbich et al. 2003; Spyridopoulos, Haendeler et al. 2004; 

Gensch, Clever et al. 2007). It is important to note that TRF1 and TRF2 are required to form 

a T-loop-based mechanism to maintain and protect telomere length. TRF2, like TRF1, may 

be a negative regulator of telomere length homeostasis. It was previously reported that 

over-expression of TRF2 triggers cells to lose their 3' overhang (Smogorzewska, van Steensel 

et al. 2000). Celli and de Lange (2005) showed that conditional deletion of Trf2 in p53 null 

mouse embryonic fibroblasts induces telomeric DNA damage (Celli and de Lange 2005). 

Therefore, in human cells, TRF1 and TRF2 seem to play an important role in the protection 

and maintenance of telomeres.   

1.5.3-Human Protection of telomeres 1 (POT1) 

Human POT1 was originally discovered through its homology to the alpha subunit of 

the TEBPα/β telomeric end-binding complex in Oxytricha nova (Smogorzewska and de Lange 

2004). POT1 was also identified in mammals, Aspergillus, Arabidopsis, and Caenorhabditis 
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elegans and appears to play a critical role in telomere maintenance in eukaryotes (Baumann 

and Cech 2001; Wei and Price 2003; Raices, Verdun et al. 2008). Similar to TEBPα, POT1 

contains an N-terminal oligonucleotide/oligosaccharide DNA-binding domain (DBD) and a C-

terminal protein-protein interaction domain. The hPOT1-DBD has 340 residues and has been 

co-crystallized with single strand DNA. POT1 also has two OB folds which are able to 

recognise the single strand DNA decamer telomeric sequence 5'-TTAGGGTTAG-3' in vitro 

and may possibly have one OB fold at its C-terminus (Figure 1.7) (Diotti and Loayza 2011). 

The OB-fold is an oligonucleotide/oligosaccharide binding domain (about 110 residues) 

consists of a five-strand β-sheet, coiled to shape a blocked β-barrel and capped through an 

α helix located between the third and fourth β strands (Theobald, Mitton-Fry et al. 2003; 

Bochkarev and Bochkareva 2004). The OB2 of POT1 binds to and protects the 3' overhang of 

single stranded telomeric DNA, whereas the first N-terminal OB folds connects to the first 

six nucleotides (Lewis and Wuttke 2012). The interaction between the carboxyl-terminal of 

POT1 with TPP1 plays a key role for POT1 loading onto telomeres, while the OB fold of POT1 

is essential for telomere localization (Wang, Podell et al. 2007). The POT1/TPP1 complex is 

able to interact with single stranded DNA (ssDNA) at many positions along the 3' overhang 

(Lei, Podell et al. 2004). In addition, the POT1/TPP1 3' end can bind to the displaced G-

strand in the D-loop (Loayza, Parsons et al. 2004). It has been reported that POT1 protects 

telomere termini via inhibition of the ATR-mediated DNA damage response that is induced 

by telomere dysregulation. Co-immunoprecipitation experiments have revealed that POT1 

protein interacts with TRF1, TRF2 and RAP1 along the double stranded of telomeric DNA via 

POT1/TPP1/ TIN2 protein bridges (Kelleher, Kurth et al. 2005). Extensive evidence indicates 

that POT1 appears to modulate telomere length through inhibiting telomerase enzyme 
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activity (Lei, Zaug et al. 2005). On the other hand, the POT1/TPP1 complex has been 

implicated in the recovery of telomerase activity acting as part of a telomerase processivity 

factor via reducing the rate of primer dissociation (Wang, Podell et al. 2007; Latrick and 

Cech 2010; Zhong, Batista et al. 2012). Previous studies by Kelleher et al. (2005) showed 

that binding of POT1 to the 3' overhang is essential to negatively regulate telomerase 

activity in vivo. They reported that POT1 is implicated in modulating telomerase activity 

through the access of telomerase to the telomere but not during the extension process. It 

appears that POT1 protein inhibits telomerase via steric hindrance by preventing base 

pairing between the telomerase RNA and the DNA primer (Kelleher, Kurth et al. 2005). 

Previous work showed that the deletion of the DNA-binding domain of POT1 with over-

expression of N-terminally truncated POT1 induces telomere length (Loayza 2003; Liu, Safari 

et al. 2004; Ye, Hockemeyer et al. 2004). Moreover, partial deletion of POT1 affects 

telomere length at the 3' and 5' ends of chromosomes (Hockemeyer, Sfeir et al. 2005; Yang, 

Zheng et al. 2005). Furthermore, POT1/TPP1 complex covers the 3' overhang of single-

stranded of telomeric DNA and inhibits binding of the telomere to telomerase (Wojtyla, 

Gladych et al. 2011). All these findings support an emerging view that POT1 can both 

positively and negatively regulating telomerase enzyme activities via interacting with TPP1. 

1.5.4-TRF1-interacting nuclear protein 2 (TIN2) 

TIN2 acts as the central component in the Shelterin protein complex. This protein is 

able to interact directly with the double stranded TTAGGG sequences via binding TRF1 and 

TRF2, thus providing a bridge between the single strand 3' overhang through connecting 

TPP1 and POT1 and double stranded telomeric DNA (Kim, Kaminker et al. 1999; Houghtaling 

BR 2004; Kim, Beausejour et al. 2004; Ye, Donigian et al. 2004; Ye, Hockemeyer et al. 2004). 
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The C-terminal TRF-binding motif (FXLXP) of TIN2 binds to the TRFH domain of TRF1, while 

TIN2 interacts with its specific site in the hinge domain in TRF2 through its N-terminal 

domain (Figure 1.7) (Misra, Mahajan et al. 2008; Bhanot and Smith 2012). TIN2 occupies a 

central position to form a bridge between TRF1 and TRF2. However, TIN2 does not associate 

with TRF2 within its TRFH domain but stabilises TRF2 at the telomere end (Houghtaling, 

Cuttonaro et al. 2004; Chen, Yang et al. 2008). In addition, TIN2 also binds TPP1 and POT1, 

using a third protein interaction site situated on its N terminus. The interaction between 

TIN2 and TRF2 is enhanced by TPP1 (O'Connor, Safari et al. 2006). Takai et al. (2011) showed 

that TIN2 disruption leads to a considerable decrease in localization of Shelterin complex at 

telomeres; this induces replication protein A (RPA) binding to telomere ends and increases 

the ATR-mediated DNA damage responses which can also affect the phenotypes in Pot1a 

and Pot1b in double knockout mice (Takai, Kibe et al. 2011). Additionally, TIN2 depletion by 

RNA interference (RNAi) results in telomere elongation, indicating that TIN2 is a negative 

regulator of telomere length (Ye and de Lange 2004). Previous studies investigating the role 

of TIN2 and TRF showed that these two components play a role in telomere cohesion 

(Canudas, Houghtaling et al. 2007). In mice, deletion of Tin2 results in embryonic lethality; 

this finding further supports the role of TIN2 in telomerase recruitment and telomere length 

regulation and maintenance via facilitating TRF2-dependent prevention of the ATM-

mediated DDR pathway (Takai, Kibe et al. 2011). 

1.5.5-Repressor activator protein 1 (RAP1) 

RAP1 is a 399 amino-acid protein which is highly conserved with a carboxyl-terminal 

RCT domain homologous to the carboxyl-terminus of budding yeast Rap1 protein. RAP1 has 

an amino-terminal BRCT domain, a central Myb domain-(s), followed by a predicted coiled 
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domain, and carboxyl-terminus localization signal (Figure 1.7) (Zhu, Kuster et al. 2000; Celli 

and de Lange 2005). RAP1 binds TRF2 through its C-terminal domain and its association with 

telomeres depends on its interaction with TRF2. Furthermore, TRF2 maintains the 

localization and stability of RAP1 and deletion of TRF2 causes RAP1 to be released from the 

telomere component (Martinez, Thanasoula et al. 2010). O’Connor et al. (2004) discovered 

that DNA repair proteins such as; Rad50, Mre11, PARP1, BTBD12 and Ku86/Ku70 are found 

in the RAP1-TRF2 complex (O'Connor, Safari et al. 2004). BTBD12 complexes with RAP1-TRF2 

to facilitate Holliday junction processing and the DNA damage response indicating that 

these complexes play a fundamental role at inhibiting homologous recombination (HR) at 

telomere (O'Connor, Safari et al. 2004). 

1.5.6-TPP1 (ACD, adrenocortical dysplasia homolog) 

TPP1 emerged as the last member of the Shelterin complex and was originally known 

as TIN2-interacting factor. This protein was found to interact with both POT1 and TIN2 

(Houghtaling, Cuttonaro et al. 2004; Liu, Safari et al. 2004; Ye, Hockemeyer et al. 2004). As 

within POT1, TPP1 contains an N-terminal OB fold and is structurally similar to the homolog 

of Oxytricha nova TEBPβ. This finding suggested that the TPP1/POT1 heterodimer is the 

homolog of TEBPα-β heterodimer (Figure 1.7) (Wang, Podell et al. 2007; Xin, Liu et al. 2007). 

TPP1 binds POT1 through its interaction domain and TIN2 via its C-terminal interaction 

domain (Ye, Hockemeyer et al. 2004). The N terminus of TPP1 in the OB-fold domain can 

interact with telomerase. Therefore, there is a possibility that telomerase may be regulated 

by TPP1 (Ye, Donigian et al. 2004; Xin H 2007). Telomere length may be maintained by 

recruiting POT1 via its interaction with TPP1 and TIN2. Moreover, the complex of TPP1/ 

TIN2/POT1 binds to TRF1 and TRF2 and is probably the main way in which POT1 is recruited 
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to telomeres (Hockemeyer, Palm et al. 2007; Loayza D 2003). Evidence has been obtained 

that over-expression of TPP1 defective in interacting with POT1, results in telomere de-

protection (Houghtaling, Cuttonaro et al. 2004; Xin, Liu et al. 2007). POT1 deficient in TPP1 

binding can localize to telomeres as well as form a weak interaction between POT1 and 

TRF2 causing telomere dysfunction (Colgin, Baran et al. 2003; Yang, Zheng et al. 2005; He, 

Multani et al. 2006; O'Connor, Safari et al. 2006). Additionally, the TPP1/TIN2 complex plays 

a fundamental role in sub-cellular localization of TPP1 and POT1. It has been reported that 

deletion of the Tpp1 gene in mouse embryo fibroblasts results in chromosome end-to-end 

fusion and telomere dysregulation (Kibe, Osawa et al. 2010). Taken all of this information 

together, it is speculated that TPP1 plays an important role in regulating and protecting 

telomere length.  

1.6-Shelterin-associated genes structures and functions 

1.6.1-Tankyrase 1 and Tankyrase 2 (TNKS1/2) 

Tankyrases are human telomere-associated poly (ADP-ribose) polymerases. 

Tankyrase 1 (TRF1-interacting ankyrin-related ADP-ribose polymerase 1) was first identified 

as a TRF1-associated factor via a yeast two-hybrid screen (Smith, Giriat et al. 1998). 

Tankyrase 1 consists of several domains such as: the N-terminal HPS domain, which 

comprises multiple runs of histidine, proline and serine (HPS) repeats. The large ankyrin 

(ANK) domain near to the N-terminus of TNKS1, contains 24 repeated ANK, and includes five 

functional sub-domains including the sterile α module (SAM) domain which is implicated in 

takyrase multimerization, and a poly (ADP-ribose) polymerase (PARP) domain which is 

located in the C-terminal region of tankyrase 1 (Figure 1.8) (Seimiya, Muramatsu et al. 
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2004). The PARP domain of TNKS1 belongs to the super family of PARPs proteins that are 

involved in numerous cellular processing, particularly DNA repair and programmed cell 

death (Isabelle, Moreel et al. 2010). In vitro, TNKS1 is similar to other PARPs that utilize 

NAD+ as a cofactor to synthesize long linear or branched poly ADP-ribose onto protein 

acceptors (Kaminker, Kim et al. 2001; Sbodio, Lodish et al. 2002; Gelmini, Quattrone et al. 

2007; Hsiao and Smith 2008). Polymers of ADP-ribose can be added to protein by post-

translational modification which then changes protein function. Tankyrase 1 is a homolog of 

tankyrase 2 and these two homologues have similar structures and domains (ankyrin, SAM 

and PARP). The only structural difference between these two molecules is that TNKS2 lacks 

the N-terminal His-Pro-Ser rich domain (Lehtio, Collins et al. 2008).  

TRF1 interacts with the N-terminal acidic domain of TNKS1 and TNKS2 proteins. It 

has been reported that poly ADP-ribosylation of TRF1, in vitro, inhibits its binding to 

telomeric DNA via tankyrase 1. Poly ADP-ribosylation is a process by which multiple groups 

of ADP-ribose moieties can also transferred to proteins to form long branched chains. This 

protein modification is carried out by PARPs. The structure of PARPs is involved in the 

regulation of several cellular events such as maintenance of genomic instability, DNA repair 

and telomere maintenance (Diefenbach and Burkle 2005). Over-expression of TNKS1 and 

TNKS2 in human cells results to release TRF1 from telomeres and TNKS1 acts as a positive 

regulator of telomere length (Chiang, Nguyen et al. 2006). Tankyrases may be involved in 

the removal of telomerase-inhibiting complexes from telomeric DNA to maintain telomeric 

ends. Therefore, it has been suggested that TNKS1 presumably regulates access of 

telomerase to the telomeric end (Ha, Kim et al. 2012). Additionally, knockdown of TNKS1 by 
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interfering RNA (RNAi) in human cells showed misaligned chromosomes and aberrant 

spindle structure (Kim and Smith 2013). 

Figure 1.8-A Schematic of Tankyrase 1 and Tankyrase 2. These Shelterin-associated genes are 

positioned at the telomere. The ankyrin domain of tankyrase 1 and tankyrase 2 interact with TRF1 

(Cook, Dynek et al. 2002). However, the sequences associated with binding of EST1A and TEP1 have 

not been elucidated thus far. 

 

1.6.2-Ever shorter telomere 1 (EST1A)  

EST1A (sometimes known as SMG6) is also considered to be a Shelterin-associated 

protein. Telomerase is activated by EST1A at the 3' end of the telomere. Therefore, EST1A is 

a positive regulator of telomerase (Salhab, Jiang et al. 2008). Over-expression of EST1A 

induces anaphase bridges due to chromosomal end-to-end fusion, and may  affect telomere 

capping (Reichenbach, Hoss et al. 2003). It has been reported that TEP1 associates with 

telomerase components but the role of TEP1 in telomerase function is poorly understood 

(Liu, Snow et al. 2000). 

1.7-DNA methylation status and cancer 

Aberrant DNA methylation in various malignancies has become the subject of 

intense investigation. Malignant cells in comparison with their normal counterparts undergo 

major disruptions in their DNA methylation patterns. In particular, methylation of DNA 
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within promoter regions serves to suppress the expression of genes that could play a critical 

role in inhibiting tumorigenesis (Das and Singal 2004). Several tumour suppressor genes, 

such as the MLH1 mismatch-repair gene are implicated in colorectal and other cancers as 

well as the p16/CDKN2A cell-cycle control gene involved in various malignancies, and BRCA1 

in early breast cancer, are all found to be hypermethylated (Esteller, Corn et al. 2001). In 

addition, Ottaviano et al. (1994) and Graff et al. (1995) showed that a variety of genes, 

including cell adhesion and steroid receptor genes play a fundamental role in the 

development of breast cancer, and are hypermethylated in these tumours (Ottaviano, Issa 

et al. 1994; Graff, Herman et al. 1995). Furthermore, Zinn et al. (2007) reported that the 

promoter region of hTERT was hypermethylated in lung, colon and breast cancer cell lines 

(Zinn, Pruitt et al. 2007). Since the expression of hypermethylated genes (e.g. those 

mentioned above) can be actively restored after treatment with DNA methylation inhibitors, 

such as 5-aza-2'-deoxycytidine (5-aza-CdR), therapeutic strategies have been developed to 

reverse critical methylation regions of DNA in breast cancer and other malignancies. 

1.8-DNA Methylation and gene expression 

DNA methylation patterns in normal cellular process and abnormal events 

associated with disease are becoming a very interesting and important field of research 

(Sharma, Kelly et al. 2010). Many studies now recognize alterations to the epigenome lie at 

the heart of many complex diseases such as cancer, autoimmune disease, psychiatric and 

behavioral disorders (Jirtle and Skinner 2007; Jones and Baylin 2007; Ballestar 2011). 

In vertebrates, epigenetic alterations such as DNA methylation and histone 

modifications by specific enzymes play a fundamental role in regulating gene expression of 
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normal and disease cellular processes (Kim, Samaranayake et al. 2009). It has been known 

for many years that chromatin packages DNA in a condensed state to preserve its integrity. 

Epigenetic mechanisms change chromatin structure to produce different categories of 

epigenetic modifications such as: incorporation of histone variants, histone modifications 

and in mammals, cytosine-5 DNA methylation at CpG dinucleotides (Sharma, Kelly et al. 

2010). In eukaryotic and prokaryotic cells, one of the most important epigenomic 

phenomena is defined by DNA methylation that plays a significant role in regulating gene 

expression and chromatin architecture, in cooperation with histone alterations and other 

chromatin associated proteins (Singal and Ginder 1999; Jurkowski and Jeltsch 2011). DNA 

methylation is carried out by DNA (cytosine-5) methyltransferases (DNMT). The transfer of a 

covalent methyl group from a donor S-adenosylmethionine (SAM) to the the fifth carbon 

(C5) of cytosine, mainly within the CpG dinucleotide, is catalysed by methyltransferases 

enzymes (Girault, Tozlu et al. 2003; Turek-Plewa and Jagodzinski 2005). Research has 

demonstrated that the resulting precise DNA methylation patterns can be inherited when 

DNA replicates by the cooperative activity of DNMTs (Holliday 1991; Kim, Samaranayake et 

al. 2009).  

1.8.1-DNA methyltransferases (DNMTs) 

The eukaryotic DNMT family includes five members: DNMT2, DNMT3A, DNMT3B, 

DNMT3L and DNMT1. The most abundant enzyme is DNA (cytosine-5) methyltransferase 1 

(DNMT1) which preferentially methylates hemi-methylated DNA during replication for 

maintenance of the DNA methylation patterns (Bestor 2000; Robertson 2001; Turek-Plewa 

and Jagodzinski 2005). This enzyme has an important function in imprinting and in X-

chromosome inactivation during embryogenesis (Sado, Fenner et al. 2000). TRDMT1 
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(formally known as DNMT2) is the smallest mammalian DNA methyltransferase and does 

not show major de novo or maintenance methyltransferase activity in embryonic stem cells 

(ES) or adult somatic tissue (Okano, Xie et al. 1998; Yoder and Bestor 1998). However, the 

structure of TRDMT1 has shown that this enzyme methylates at position 38 in aspartic acid 

tRNA (tRNA aspartic acid methyltransferase 1) (Squires, Patel et al. 2012). DNMT2 is 

involved in recognition of DNA damage, DNA recombination and mutation repair (Turek-

Plewa and Jagodzinski 2005). Other known functional methyltransferases are DNMT3A and 

DNMT3B, which mainly methylate CpG dinucleotides without preference for 

hemimethylated DNA, and so have been classified as de novo methyltransferases 

predominantly during embryogenesis (Okano, Xie et al. 1998; Turek-Plewa and Jagodzinski 

2005). The DNA cytosine-like 5-methyltransferase (DNMT3L) protein does not have 

methyltransferase active site motifs and must assist other de novo DNMTs (Aapola, 

Kawasaki et al. 2000). It has been considered that it may antagonize functional 

methyltransferase activity (Robertson 2001). 

1.8.2-How does DNA methylation repress transcription? 

Gene expression can be prevented by DNA methylation through multiple 

mechanisms. DNA methylation can significantly inhibit transcription factors for some genes. 

However, it does not account for the general repression of gene expression usually 

associated with DNA methylation (Kass, Pruss et al. 1997). The methyl group of 5-methyl-

cytosine protrudes out into the major groove of the DNA helix and it is here that the main 

contacts are formed with various DNA binding proteins. Consequently, the most direct 

mechanism of transcriptional inhibition by DNA methylation is by direct interference with 

transcription factor binding (Maldonado, Hampsey et al. 1999). Alternatively, the presence 
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of a methylation-specific binding protein may possibly act as a repressor (Mossman, Kim et 

al. 2010). 

1.8.3-DNA demethylating agents 

DNA methylation inhibitors are a class of substances that can demethylate DNA, 

resulting in re-expression of silenced genes. DNA demethylating agents can be used for 

cancer therapy. The CpG-rich regions of normal mammalian genomes are usually non-

methylated, with the exception of imprinted genes. These regions, within which genes 

activity are transcribed, become heavily methylated and inactivated or silenced in the 

genome of tumour cells (Ghoshal, Datta et al. 2005). Among many agents with DNA 

methylation-modifying capability, 5-azacytidine (5-aza-CR) or its analogue 5-aza-2’-

deoxycytidine (5-aza-CdR) are DNA methyltransferase inhibitors (Figure 1.9). 

Figure 1.9-Mechanism of action of nucleoside analogue inhibitors. Deoxynucleoside analogues, 5-

aza-CdR (indicated by Z) is converted into the triphosphate inside S-phase cells and is incorporated in 

place of cytosine into DNA (Egger, Liang et al. 2004). 
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These inhibitors were initially shown to have significant cytotoxic and antineoplastic 

activities in many experimental tumors. However, it was subsequently discovered that they 

are strong inducers of DNA demethylation (Lin, Shaw et al. 2011). 5-aza-CdR is an analogue 

of cytosine that has more potent therapeutic effects than 5-aza-CR in human leukaemia, 

myelodysplastic syndromes and hemoglobolinopathies. Following cellular uptake and 

sequential phosphorylation, 5-aza-CdR is incorporated into DNA but not RNA or protein 

whereas 5-aza-CR is incorporated into both RNA and DNA (Zhu, Hileman et al. 2004). Once 

incorporated into DNA, both compounds as are would expect, have related mechanisms of 

action; they irreversibly bind the methyltransferase enzymes (DNMTs) while they attempt to 

methylate the cytosine analogue. This depletion of DNMTs in the cells results in 

hypomethylation of DNA, and induction of DNA damage (Zhu, Hileman et al. 2004; 

Stresemann, Brueckner et al. 2006; Flotho, Claus et al. 2009). In addition, other potential 

compounds have been recently developed that are able to reduce the level of DNA 

methylation, such as zebularine (Zhou, Cheng et al. 2002), hydralazine, procaine (Rubin 

2005; Sarzi-Puttini, Atzeni et al. 2005), an anti-sense oligonucleotide MG98 (Goffin and 

Eisenhauer 2002) and procainamide (Lin, Shaw et al. 2011). However, the detailed 

mechanisms of these compounds need to be assessed where hypermethylation-induced 

gene silencing plays an important role in disease pathology, especially in breast cancer. 

1.9-Mechanism of Histone modifications and gene expression 

Many post-transcriptional modifications of histones, such as phosphorylation, 

ubiquitinations, acetylation, deacetylation and methylation, have been revealed as 

epigenetic tags (Kouzarides 2007).  
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Histone deacetylase (HDACs) enzymes are responsible for removing the acetyl 

groups from N-terminal lysine/arginine residues in the amino-terminal tails of core histones, 

specifically the core histones of H2A, H2B, H3 and H4. Histone acetylation is catalysed by 

histone acetyl transferases (HATs) enzymes (Bannister and Kouzarides 2011). Deacetylation 

of histones is carried out to maintain the balance between silent and transcriptionally active 

chromatin. Removal of acetyl groups by HDACs leads to chromosome compaction and 

prevents transcription (Zhang 2008). HDACs classified as Class I HDACs include 1, 2, 3, and 8. 

Class IIa HDACs include 4, 5, 7 and 9 and Class IIb consists of HDAC6 and 10. HDACs Class I 

and II are zinc-dependent enzymes whereas Class III, sirtuins (sir 1-7) need NAD+ for their 

enzyme activity. Class IV HDAC is exemplified by HDAC11 (Blander and Guarente 2004). 

Histone acetyl transferase (HATs) enzymes are classified into two types including A HATs 

and B HATs. The class A HATs enzymes are located in nucleus and are involved in regulating 

gene expression via acetylation of nucleosomal histones (Roth, Denu et al. 2001). Type B 

HATs are positioned in the cytoplasm and are required for acetylating new synthesized 

histones before their aggregation into nucleosomes (Roth, Denu et al. 2001). In addition, the 

transcriptional co-activators such as CRB-binding protein (CBP) are involved to catalyse 

acetylation of core histones, which activate the HAT enzyme. Therefore, the acetylation of 

histones functions to modulate gene expression. Importantly, transcription is regulated by 

the interaction of HATs with a large number of transcription factors (Abel and Zukin 2008).  

Of all known histone modifications, it has been shown that disruption of HATs or 

HDACs activity can contribute several cancers (Zhang 2008). For example several studies 

have been reported that inhibition of HDACs by Trichostatin A (TSA) results in the 

expression of key tumour suppressor  genes such as p53, RB1, EGFR in HeLa cells (Zhang 
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2008). Trichostatin A, a microbial metabolite, is a potent inhibitor of mammalian HDAC Class 

I and II enzymes. This drug can be utilized to modify gene expression by preventing histone 

deacetylases and the access of DNA transcription factors to DNA molecules inside 

chromatin. For this reason inhibition of histone acetylation by TSA has been used 

successfully as an anticancer drug for cancer treatment (Drummond, Noble et al. 2005; 

Meng, Dai et al. 2008). 
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1.10-Aims of the Project 

In the last few years, several studies have indicated that maintenance of telomere 

length can be influenced by the regulation of Shelterin proteins. Therefore, the first aim of 

this project (Chapter III) was to determine if there are any changes in the expression 

patterns of Shelterin and Shelterin-associated genes in breast cancer cells. Ten 

independently derived breast cancer cell lines were investigated and Shelterin gene 

expression compared with that in normal diploid breast epithelial cell strains (HMECs). The 

underlying mechanisms behind any changes in expression patterns were then studied by 

means of epigenetic analysis and mutational studies (Chapter IV). Because it has been 

demonstrated that the expression of Shelterin and Shelterin-associated genes is correlated 

with reduced telomere lengths, the effect of up-regulation of Shelterin gene expression, 

using 5-aza-CdR and TSA, on telomere length was investigated (Chapter V). For this purpose, 

21NT, a breast ductal carcinoma cell line was studied (using four telomere measurement 

methods, i.e. TRF, q-PCR, flow-FISH and iQFISH). The aforementioned techniques were 

compared in terms of reliability and accuracy. Finally, (Chapter VI) based on previous studies 

demonstrating that over-expression of one of the Shelterin component, POT1, induces 

telomere lengthening, the final aim of the project was to examine whether over-expression 

of POT1 could affect telomere length elongation in the 21NT breast cancer cell line.  
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2.1-Cell lines and cell culture methodology 

2.1.1-Cell culture complete growth media  

 Modified Eagle’s medium alpha (MEM): 1x MEM stock, 1µl/ml hydrocortisone 

(1:1000), 1µl/ml insulin (1:1000), 10% fetal calf serum (FCS), 1% glutamax, 1% HEPES 

and 1% NEAA and 1µl/ml Epithelial Growth Factor (EGF) 

 DMEM/F12:  1x DMEM/F12, 10% FCS and 1% glutamax, 0.5 µg/ml hydrocortisone 

  RPMI-1640: 1x RPMI/1640, 1% glutamax, 10% FCS, 0.1mM Na Pyruvate, 1% HEPES.  

  F12: 1x F12, 1% glutamax, 7% FCS  

 RPMI 1640: 1x RPMI/1640, 10% FCS 

Table 2.1 shows a summary of the cell lines that were used during the project, along with 

details of growth media. 
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Table 2.1-Description of different cell lines and normal mammary cell strains (HMECs) 

Cell lines Patient 
Age 

Histopathological 
Diagnosis 

Tumour 
Stage 

Primary 
Site 

Growth 
Media 

References 

21NT 36 
*PDC 

Primary Breast MEM 
(Band, Zajchowski et 
al. 1990; Cuthbert, 
Bond et al. 1999) 

21MT-2 36 
PDC 

Metastatic Breast MEM 
(Band, Zajchowski et 
al. 1990; Cuthbert, 
Bond et al. 1999) 

GI101 57 
*IDC 

III Breast 
DMEM/F12 

without 
hydrocortisone 

--- 

BT-20 74 
IDC 

--- Breast 
DMEM/F12 

without 
hydrocortisone 

(Lasfargues and 
Ozzello 1958) 

HS578-T 74 
IDC 

--- Breast 
DMEM/F12 

without 
hydrocortisone 

(Hackett, Smith et al. 
1977) 

BT474 60 
IDC 

--- Breast 
DMEM/F12 

without 
hydrocortisone 

(Lasfargues, 
Coutinho et al. 1978) 

MCF-7 69 
IDC 

IV Pleural 
effusion 

DMEM/F12 
without 

hydrocortisone 

(Soule, Vazguez et al. 
1973) 

HCC1143 52 PDC II Breast RPMI/1640 (Gazdar, Kurvari et 
al. 1998) 

MTSV1-7 --- 
Normal immortalized 

mammary gland 
--- Breast 

DMEM/F12 
With 

hydrocortisone 

(D'Souza, 
Berdichevsky et al. 

1993) 

PB1 36 PDC Primary Breast MEM 
(Band, Zajchowski et 
al. 1990; Cuthbert, 
Bond et al. 1999) 

PC3 62 Prostatic 
adenocarcinoma 

IV Prostate F12 (Kaighn, Narayan et 
al. 1979) 

LY-R --- 
Mouse Lymphoma, 

Radiosensitive 
--- Lymphoma RPMI/1640 

Dr Andrzeg Wojcik 
University of 

Warszawa,Poland 

LY-S --- 
Mouse Lymphoma, 

Normal 
Radiosensitive 

--- Lymphoma RPMI/1640 
Dr Andrzeg Wojcik 

University of 
Warszawa,Poland 

HMEC1 --- 
Normal human 

mammary epithelial 
cell strain 

--- Breast Grown by Dr. 
H. Yasaei 

(Labarge, Garbe et 
al. 2013) 

HMEC2 19 
Normal human 

mammary epithelial 
cell strain 

--- Breast Grown by Dr. 
H. Yasaei 

(Garbe, Bhattacharya 
et al. 2009) 

*Normal 
commercial 

Tissue 

78 FirstChoice® Human 
breast total RNA  

--- Breast 
--- 

AM6952 (Applied 
Biosystems) 

PC3/hTERT 
62 Prostatic 

adenocarcinoma 
--- 

Derived 
from PC-3 

telomerised 
F12 

Professor Newbold 
group (Brunel 

University) 

*Infiltrating ductal carcinoma (IDC),*Primary ductal carcinoma (PDC), *Normal mammary epithelial tissue. 
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2.1.2- Cell culture procedure 

All cell culture was carried out in a LaminAirHB2448 (Heraeus Instrument) cabinet 

(hood). The culture medium was pre-warmed at 37oC in a water-bath for 10 minutes. Then 

the cell lines were taken out of liquid nitrogen and thawed in a water-bath for 3 minutes. 

Cells were transferred into a p100 tissue culture dish containing 15ml of warm culture 

medium and transferred to fully humidified incubators (HeraCell, Heraeus) set at 5% CO2 

and 37°C. After 24 hours, the medium in p100 dish was aspirated to wash away residual 

DMSO and fresh media added. Healthy cells were fed with fresh culture medium every 2 

days. An inverted phase contrast microscope (Olympus CK40) was utilized for visualizing the 

cells. Digital images of cells were captured using an Olympus IX71 microscope attached to a 

coolSNAP cf camera (Photometrics). Cells were monitored every day and deemed suitable 

for cryostorage once 80-90% confluence was reached. All cell lines were sub-cultured with 

trypsin-EDTA (Gibco/Invitrogen) 1:3 at 80 % confluence. 15 minutes prior to trypsinization, 

the required culture medium, versene (0.04% EDTA in 1XPBS) and trypsin-EDTA were all pre-

warmed to 37oC in a water-bath. The external container surfaces, cabinet hood and all 

equipments were sterilized using 70% IMS to avoid any fungus or bacterial infection. Cell 

culture medium was aspirated from plates and the adherent cell monolayer washed once 

with 10ml of versene. After gentle swirling and aspiration of versene, 3ml of warm trypsin-

EDTA was added to p100 dish and incubated for 5 minutes. Next, the detached cells in 

trypsin-EDTA were neutralized with 10ml complete cultured medium and the cells spun 

down at 15000rcf for 5 minutes in a Sorvall Legend T bench centrifuge. Supernatants were 

aspirated and the cell pellets re-suspended by gentle flicking to disperse the cells before re-
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suspending them into appropriate volume of complete medium. Finally, 1ml of suspended 

cells was then put in a new p100 dish with the fresh medium.  

 

2.1.3-Cryopreservation of cells 

Before freezing, the cells were monitored for growth state and contamination. All 

healthy cell lines growing in log-phase in p100 tissue culture dish were fed with fresh 

medium 24 hours before freezing. The culture medium was removed and the cells were 

trypsinized as described above. The cell suspension was then transferred to a falcon tube 

and the pellet centrifuged at 15000rcf for 5 minutes. The supernatant was aspirated off and 

the pellet gently flicked and re-suspended in 1ml freezing mixture containing 90% FCS and 

10% DMSO (dimethylsulfoxide, Sigma). Cell suspensions were aliquoted into 1.5 or 2ml 

ampoules for storage in liquid nitrogen. Prior to transfer to liquid nitrogen, the vials were 

kept in Nalgene Nunc cooler at -80oC for 24 hours. This allows a controlled rate of cooling to 

prevent the formation of intra-cellular ice crystals that may rupture cell membranes. The 

plastic holder was filled with Isopropyl alcohol (IPA). The ampoules were finally transferred 

into liquid nitrogen for long-term storage. Cells were routinely frozen down at 3-5x106 per 

ml from P-100 tissue culture dishes and 1-2x106 from p60. 

2.2-RNA extraction 

2.2.1-RNA extraction using RNeasy Mini Kit (50) 

RNA extraction was carried out utilizing an RNeasy Mini kit (QIAGEN), which 

provided fast processing and effective purification of RNA from cells. The procedure was 

performed according to the manufacturer’s instructions. Before starting RNA extraction, β-

Mercaptoethanol (β-ME) must be added to Buffer RLT. The number of pelleted cells was 
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approximately 5x106 so 6µl β-ME was added to 600µl of Buffer RLT. The cells were washed 

with 10ml of sterile PBS (Phosphate Buffer Solution) twice. PBS was then removed and the 

appropriate amount of Buffer RLT and β-ME (600µl for a 10cm plate) was added to the 

plate. The surface of the plate was scraped using a scraper (Sarstedt). After transferring the 

cells to a tube, passed the lysate at least 5 times through 20-gauge needle (0.9mm 

diameter) fitted to an RNase-free syringe. Next, 600µl of 70% ethanol (1 volume) was added 

to the homogenized lysate, and mixed well by pipetting. 700µl of the samples were 

transferred to an RNeasy mini column placed in a 2ml collection tube. Samples were 

centrifuged for 60 seconds at ≥ 13,000rcf. After this, 700µl of Buffer RW1 was added to the 

RNeasy column. Tubes were centrifuged for 60 seconds at ≥ 13,000rcf to wash the column. 

The RNeasy column was transferred into a new 2ml collection tube and 500µl Buffer RPE 

added. Tubes were centrifuged for 2 minutes at ≥ 13,000rcf to dry the RNeasy silica-gel 

membrane. This step was repeated to eliminate any chance of possible Buffer RPE 

carryover. The RNeasy column was placed in a new 2ml collection tube, centrifuged at full 

speed for 1 minute, and the column then transferred to a new 1.5ml collection tube. Finally, 

50µl RNase-free water was added directly onto the RNeasy silica-gel membrane. Samples 

were then centrifuged for 1 minute at ≥ 13,000rcf. RNA concentrations were measured at 

260/280 nm to ensure a ratio of > 1.7, indicating the RNA is free of contaminants. The 

samples were stored at -80°C for further analysis. 

2.2.2-RNA extraction using TRIZOL reagent 

Briefly, cells at approximately 80% confluence, was trypsinized and washed twice 

with 5ml of cold PBS. 1ml of Trizol reagent (Sigma) was added to the cells and left for at 

least 2 minutes at room temperature. The cell lysate was gently pipetted two or three times 
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and immediately stored at -80oC for long-term storage. All collected samples were 

incubated at room temperature for 5 minutes. 200µl of molecular biology grade chloroform 

(Sigma) was added per 1ml of Trizol. Then the tubes were shaken vigorously by hand for at 

least 15 seconds and centrifuged at 13000rcf for 30 minutes at 4oC in a bench centrifuge 

(Eppendorf centrifuge 5415R). The clear upper-aqueous phase containing RNA was carefully 

pippetted into a fresh microcentrifuge tube. 750µl of isopropyl alcohol per ml of Trizol was 

added to each sample and mixed gently prior to incubation for 10 minutes at room 

temperature. The tubes were centrifuged at 12000rcf for 15 minutes at 4oC. RNA precipitate 

forms a gel-like pellet normally on the side of the tube. The isopropyl alcohol was poured off 

and the RNA pellets were washed once with 75% ethanol. The pellets were washed 

thoroushly by vortexing about 10 seconds and centrifuged at 75000rcf for 5 minutes at 4oC. 

The 75% ethanol was carefully removed and the RNA pellets left to air dry at room 

temperature for 10 to 15 minutes. The RNA pellets were dissolved in 20µl of DEPC-treated 

water and retropipetted several times. The samples were left on ice for at least one hour. 

The absorbance of RNA was read at 260 and 280 nm. 

2.3-cDNA synthesis 

2.3.1-DNAse treatment of RNA 

  1µl of 10x DNase I Reaction Buffer and 1µl DNase I (Amp Grade) were added to 1µg 

of RNA and DEPC-treated water to make a total volume of 10µl. Tubes were incubated for 

15 minutes at room temperature. Then DNase I was inactivated by the addition of 1µl of 25 

mM EDTA solution to the reaction mixture. The samples were heated 10 minutes at 65oC.  
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2.3.2-Reverse transcriptase 

250ng/µl random primers and 1µl 10mM dNTP Mix (10 mM each dATP, dGTP, dCTP, 

and dTTP at neutral pH) were added to the DNAse-treated RNA. Samples were incubated at 

65oC for 5 minutes and cooled on ice for at least 1 minute. 4µl 5x First-Strand Buffer, 1µl 0.1 

M DTT, 1µl RNaseOUT Recombinant RNase Inhibitor, and 1µl of SuperScript III were added 

to the tubes. The samples were mixed by pipetting gently up and down. The tubes were 

incubated at 25oC for 5 minutes, 50oC for 60 minutes, and 70oC for 15 minutes. The cDNA 

was ready to use as a template for amplification in PCR. 

2.4-Primer design 

Primers were designed for PCR and RT-qPCR using three different primer design 

program. These were the primer-BLAST (primer3) at: www.ncbi.nlm.nih.gov, CLC main 

workbench 6.1 (CLC bio) and primer express version 2.0 (Applied Biosystems).  Some genes 

had different isoforms, for instance: TRF1, TIN2 genes had two isoforms, POT1 had 5 

isoforms and SMG6 had 4 isoforms. Therefore, CLC main workbench was used to design 

primers to these splice variants as you can download each individual splice variant and 

design primers form specific defined regions of the gene. Primer parameters were set as 

follows: 

- Primer Tm (melting temperature): min (57°C) – max (63°C), optimum (60°C) 

- Primer length: min (18bp) – max (22) bp, optimum (20) 

- Primer GC% content: min (45%) – max (55%) 

- Amplicon product size: min (50bp) – max (200bp) 

http://www.ncbi.nlm.nih.gov/
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2.4.1-Primer optimization study 

The Shelterin and Shelterin-associated primers were designed using NCBI primer 

blast software to check for specificity of each primer (Table 2.2). 

Table 2.2-This table below shows Shelterin and Shelterin-associated primer sequences for use in 
Real-Time PCR 

Primer name Primer Sequence (5’            3’) Product length (bp) Accession Number 

TIN2, SV1-F CAAGACTGAGAAATCCACATGC 
52 NM_001099247 

TIN2, SV1-R AACCATTCCCTGAACCCTCT 
TIN2, SV2-F TTCTGGCTGCCATGGAAAAG 

108 NM_012461 
TIN2, SV2-R GCTGCATCCAACTCAGCACAT 
TPP1, F TTAGCGCTGTGTGTGTGCTCTT 

101 NM_001082486 
TPP1, R CCGAACGGTTCAGCACATATTT 

POT1, SV2-F GAGAACAAGCGACTATGCCCA 
104 NR_003102 

POT1, SV2-R ACCCTAGGAAGAGTTTAGGCGG 

POT1, SV1-F TTGTTCGCTTTCACAGGCTG 
101 NM_015450 

POT1, SV1-R TCCCAAAGTTCCCTCAAACG 

TRF1, SV2-F ATGCTCGATTTCCTCTGCCTC 
101 NM_003218 

TRF1, SV2-R CCATGAATAATAGCCTCTGCGC 

TRF1, SV1-F ATGGAACCCAGCAACAAGACC 
215 NM_017489 

TRF1, SV1-R CGGCTGACTCTTTGAAACAGGT 

TRF2, F AAAACGAAAGTTCAGCCCCG 
101 NM_005652 

TRF2, R GCTGTCCTCCTCCAAGACCAAT 

RAP1, F ACCCTGCTCTTTGGCTGTTCT 
101 NM_018975 

RAP1, R TGTGTGCGCGTTTTAAGGAA 

TNKS1, F TCAGTGTCTCTCCCAATGGCAC 
103 NM_003747 

TNKS1, R TGTTTGCAAGGCCATTTACAGG 

TNKS2, F CCCAACACTGCTCAATTGTCAC 
101 NM_025235 

TNKS2, R GCAACGAGTGGCCTTTAAATTC 

TEP1, F TGCCAGGCCGCACTGTCTTG 
136 NM_7110 

TEP1, R ACCTGCTCCGCCCTCGTGAT 

SMG6, SV1-F TCCCAGCAACCCCTTACATCT 
115 NM_173156 

SMG6, SV1-R AAGCCGGCACAGCTTTTGTAG 
GAPDH-F GAAGGTGAAGGTCGGAGT 

226 N/A 
GAPDH-R GAAGATGGTGATGGGATTTC 

F: Forward, R: Reverse 
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2.5-Real Time Polymerase Chain Reaction (RT-PCR) 

2.5.1-Optimizing primer concentration 

Before carrying out qPCR, primers were tested using conventional PCR to make sure 

they gave the correct PCR product size. Primer concentrations were also optimised so that 

no primer dimmers or secondary products would be produced that could interfere with 

qPCR data. Three different concentrations (10μM, 5μM and 2.5μM) of forward and reverse 

primers were tested to find the optimized primer concentration. 10µl of 1.1x Reddy Mix 

(Thermofisher) (containing tracking dyes) was added to 1µl Forward primer, 1µl Reverse 

primer, 7µl sterile water, and 1µl cDNA. The reaction mixture volume was 20µl and was 

incubated in a thermo cycler at 94°C for 5 minutes, followed by 35 cycles of 94°C for 45 

seconds, 60°C for 45 seconds, and 72°C for 10 minutes. After that, PCR products were ready 

for agarose gel electrophoresis. 

2.5.2-Agarose gel electrophoresis 

A 2% agarose gel was made in 1x TBE buffer solution (Sigma-Aldrich) (1.0M Tris, 

0.9M Boric Acid, and 0.01M EDTA). 5μl ethidium bromide (10mg/ml) was added to the 

100ml of molten gel and the gel poured into a tray (final concentration, 0.5µg/ml). Once the 

agarose gel was set, the gel was covered with 300ml of 1x TBE buffer and 20µl of PCR 

products were loaded into the wells. 7µl of 1kb ladder (Invitrogen) was used as a marker to 

estimate the size of PCR products. The gel was run at 70 V for approximately 1.5 hours. To 

visualise the PCR products, an Alphaimager under U.V. light was used. A single band should 

be seen in a positive lane, and no band should be seen in a negative control lane. The size of 

the PCR product must match the expected product size. 
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2.6-Real-Time quantitative RT-PCR (qRT-PCR) 

SYBR® green master mix and the ABI Prism 7900HT (Applied Biosystems) was used to 

perform quantitative real-time reverse transcriptase PCR (qRT-PCR). qRT-PCR reactions were 

carried out in 96-well plates (Microamp, Applied Biosystems) and each sample was run in 

triplicate. A final volume of 10μl pre-mix was prepared containing 5μl of 2x SYBR® green 

master mix, 1μl of 5μM of forward and reverse primers (See Table 2.2 for primers used), 1μl 

of cDNA, and distilled water to make the final volume up to 10μl. Target and endogenous 

pre-mixes were prepared separately and 9µl of reaction pre-mix was aliquoted into each of 

96-well plate; 1µl of cDNA was immediately added and the plate was sealed utilizing an 

optical adhesive film (MicroAmp® Optical Adhesive Film, Applied Biosystems). Samples were 

minimized to light exposure. After that, 96-well plate was centrifuged at 13000rcf for 1 

minute at room temperature. All samples were analysed in triplicate and control reactions 

(where no cDNA was added in the 96-wells, only dH2O) were included in the study design. 

The default PCR conditions are as listed below: 

50°C ...............................................2 min 1 cycle 

95°C ..............................................10 min 1 cycle 

95°C............................................ 15 sec 40 cycles 

60°C ........................................1 min 40 cycles 

Finally the dissociation curve was constructed immediately after the PCR run to 

check and verify results. Relative quantification values were determined by the 2-ΔΔCt 

method using SDS 2.3 software (Applied Biosystems). Dissociation curves were useful to 

detect nonspecific amplification, and primer dimmers that may affect the quality of the 

data.  
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In this way, the mRNA expression level of each gene was detected by using qRT-PCR 

normalized to GAPDH. Both β-actin and GAPDH was evaluated as endogenous controls and 

GAPDH was found to be more reliable endogenous control.  

2.7- Genomic DNA extraction using Wizard ™Genomic DNA Kit protocol 

Genomic DNA (gDNA) was extracted from cancer cell lines and normal mammary 

epithelial cell strains (See Table 2.1) using the Wizard ™Genomic DNA Kit protocol 

(Promega). Briefly, plates containing approximately 3x106 cells were trypsinized and 

transferred to a labelled 1.5ml Eppendorf tubes. The cell pellets were centrifuged at 

13,000rcf for 20 seconds. The supernatant was removed and cells were lysed by adding 

600µl Nuclei Lysis solution. After removing all clumps by pipetting up and down, 3µl RNase 

A solution was added to the nuclear lysate. The samples were incubated for 30 minutes at 

37°C. After adding 200μl of Protein Precipitating Solution, the tubes were shaken vigorously 

for 20 seconds. After that, proteins were precipitated by centrifugation for 5 minutes at 

13,000rcf. The supernatant was transferred to a 1.5ml clean Eppendorf tube containing 

600µl of (room temperature) isopropanol (2-Propanol) and gently mixed by inverting tubes. 

Following the precipitation of genomic DNA (gDNA), the samples were centrifuged at 

13,000rcf for 5 minutes. After removing the supernatant, the resulting pellet was washed 

with 600µl of ice cold 70% ethanol and centrifuged for 1 minute at 13,000rcf. The pellets 

were dried for 10-15 minutes at room temperature. Pellets were re-suspended in 50μl of 

Rehydration Solution by incubating at overnight at 4°C. The isolated gDNAs were stored at -

20°C until required. The concentration purity of DNA was read at 260 and 280 nm. 
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2.8-Western blotting 

2.8.1-Protein isolation 

After culturing cell lines to 80% confluence, the medium was removed and the plate 

was rinsed six times with 5ml of sterile ice-cold PBS and trypsinized as described above. The 

cell suspension was then transferred to a Falcon tube and centrifuged at 15000rcf for 5 

minutes. The supernatant was aspirated off and the pellet washed three times with sterile 

ice-cold PBS. All the excess liquid was removed and 500μl of RIPA buffer 

(Radioimmunoprecipitation assay buffer, Sigma) and 10μl of 25x protease inhibitor 

(Thermo) was added to the tube and left for 5 minutes. After transferring cells to the fresh 

tube, samples were sheared by passing it through a 1ml syringe and a 23g needle 10 times 

(0.9 mm diameter). Samples were then collected into fresh Eppendorf tubes and centrifuged 

at 16,000rcf for 15 minutes at 4°C. The supernatant was aliquoted and transferred to clean 

Eppendorf tubes and stored at -80°C. 

2.8.2-Determination of protein concentration 

 

The protein concentration of samples was determined using the Pierce™ BCA Protein 

Assay Kit (Thermo Scientific). Pierce BCA Protein Assay is a detergent-compatible 

formulation based on bicinchoninic acid (BCA) for the colorimetric detection and 

quantitation of total protein. The assay was performed according to manufacturer's 

guidelines. A standard calibration curve was set up using bovine serum albumin (BSA) 

diluted in RIPA buffer, ranging from concentrations 0-5µg/ml (Figure 2.1). All unknown 

sample protein concentrations were measured against the standard curve (Table 2.3).  
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Table 2.3-Preparation of diluted BSA standards for BCA analysis 

Tube Volume of dH2O Volume of BSA Final BSA concentration (µg/ml) 

A 100 0 0 

B 90 10 0.25 

C 80 20 0.5 

D 60 40 1 

E 40 60 1.5 

F 25 75 3 

G 0 100 5 

 

200µl of working reagent (BCA protein assay reagent A/B diluted 50:1) was prepared 

for each aliquot of protein extract and BSA protein standard concentration. To each 5µl of 

protein lysate, 200µl of the Working Reagent was added and the samples were vortexed 

thoroughly on a shaker for 30 second. The tube was incubated at 37°C for 30 minutes in a 

water bath and then allowed to cool at room temperature. Subsequently, 100µl of each 

sample was added to the 96-well plate. The A562 of the standards and protein lysates was 

then measured using a plate reader (BP800, BioHit). A standard curve was prepared by 

plotting the blank-corrected measurement for each BSA standard against its concentration. 

The standard curve was then used to determine the protein concentration of each study 

sample. 
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Figure 2.1-Standard curve used in protein quantification. 

 

 
2.8.3-Protein gel electrophoresis  

Protein lysates were prepared from breast cancer cell lines and a normal human 

mammary epithelial cell strain. The protein concentration was determined utilizing the BCA 

assay as previously described. For each sample, approximately 30μg of protein was 

prepared in 4x Laemmle buffer (1.5M Tris-Cl pH 6.8, glycerol, β-mercaptoethanol, SDS, 1% 

bromophenol blue) to a total volume of 30μl. The lid of the Eppendurf tube was pierced and 

samples were placed at 95°C for 10 minutes to denature the globular structure of the 

proteins and then centrifuged at high speed for 30 seconds and the tubes were left on ice 

until used. 30µl of samples were loaded carefully onto each well of a ready-made 12% 

precast acrylamide gel (Bio-Rad). The protein marker (Sigma) was loaded in the first and last 

wells of the gel. The interior and exterior of the tank was filled with 1x ready-made running 
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the gel and the power was switched to 250 volts for approximately 45 minutes. The samples 

were checked regularly to prevent running off of the protein samples. 

 

2.8.4-Blotting and transfer 

Acrylamide gels were blotted onto Mini PVDF Transfer ready-made membrane (Bio-

Rad) using the Trans-Blot® Turbo™ apparatus (Bio-Rad) according to the manufacturer’s 

protocol. 

2.8.5-Blocking and antibody incubation 

Once the transfer of protein from gel onto the ready-membrane was completed the 

membranes were blocked with 5% blocking solution. The blocking reagent contains 5g (w/v) 

of semi-skimmed milk (Marvel) in 100ml of Tris buffer saline-Tween (TBST) made with 16g 

(w/v) of NaCl, 0.2g (w/v) KCl, 3g (w/v) of Tris base, 0.1% (v/v) Tween-20 added to 800ml of 

distilled water adjusted pH to 7.6, and distilled water added to 1 litre. The membrane was 

incubated in 20ml of blocking solution for one hour on a shaker at room temperature. The 

milk mixture blocks the non-specific binding of an antibody to the membrane. Following one 

hour of blocking, the membrane was rinsed with TSBT and the primary antibody was added. 

The primary antibody was diluted down according to the manufacturer’s recommendation 

and was further optimized by the user. Table 2.4 below shows all antibodies used in this 

experiment with optimized dilution ranges. 
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Table 2.4-Primary and secondary antibodies used in western blot experiments 

Antibody Manufacturer Source Clonality Dilution 

POT1 Primary Abcam Rabbit Monoclonal 1:5000 

POT1 Secondary Abcam Rabbit Polyclonal 1:10000 

TPP1 Primary Abcam Rabbit Polyclonal 1:7500 

TPP1 Secondary Abcam Rabbit Monoclonal 1:10000 

β-actin Primary Sigma Rabbit Polyclonal 1:10000 

β-actin Secondary Abcam Goat Anti-rabbit Polyclonal 1:20000 

 

Primary antibodies were diluted in 5% blocking buffer in 1x TBST and added to the 

membrane overnight on a shaker set at medium pace (100rpm/minute) at 4°C. The 

following day the membrane was washed four times with 1x TBST for 15 minutes each and 

incubated with a secondary antibody diluted in 5% blocking buffer on a shaker at room 

temperature for one hour. 

2.8.6-Protein detection with chemiluminescence 

 

After 1 hour incubation with a secondary antibody the membrane was washed four 

times in 1x TBST for 15 minutes. The amount of ECL plus (Enhanced chemiluminescence) kit 

(GE Healthcare) required for detection was based on the size of the membrane and was 

recommended by the manufacturer. 1ml of reagent A was mixed with 1ml of reagent B. The 

ECL mixture was pipetted onto the membrane, ensuring that whole surface of the 

membrane was saturated with the reagent, and covered with Saran wrap and left for 5 

minutes in a dark room. The excess of the ECL was tipped off onto a paper towel, wrapped 

with the protein containing side of the membrane facing down onto a piece of clean Saran 

wrap and placed in an x-ray cassette. Exposure to ECL plus hyperfilm (Amersham) was done 



56 

 

for between 30 seconds and 20 minutes. The x-ray films were developed using an automatic 

machine (CURIX 60, AGFA). The ECL chemiluminescence was active for at least one hour 

allowing multiple exposures.  

 

2.9-Statistical Analysis 

 

All statistical analysis was performed using Student’s t test and the level of significance used 

throughout was P≤0.05.



 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER III 

 

ANALYSIS OF EXPRESSION OF SHELTERIN AND SHELTERIN-

ASSOCIATED GENES IN BREAST CANCER CELL LINES 
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3.1- Introduction 

 

Telomeres are made up of G-rich nucleotide repeats (TTAGGG)n that protect 

chromosome ends in mammalian cells. A six-protein complex called Shelterin or the 

telosome, comprised of TRF1, TRF2, POT1, TIN2, TPP1 and RAP1, packages telomeric DNA 

and helps to hide the chromosome ends from being recognized as sites of DNA damage 

during DNA replication (Martinez and Blasco 2010). Shelterin proteins interact with a 

number of other factors known as Shelterin-associated proteins that can influence 

chromosome-end integrity and dynamics. These Shelterin-associated genes are Tankyrase 1, 

Tankyrase 2, SMG6 and TEP1 (Smith, Giriat et al. 1998; Liu, Snow et al. 2000; Salhab, Jiang et 

al. 2008). 

In the absence of telomerase, i.e., in most normal adult somatic cells, the 

hexanucleotide repeats decrease after each cell division; therefore cells undergo 

senescence or apoptosis when the lengths of telomeres are reduced to a critical level. In 

addition, telomere loss causes genome instability, resulting in destruction of cell-cycle 

control, one of the hallmarks of cancer (Lu, Zhang et al. 2011). The telomerase enzyme 

regulates telomere length elongation (Greider 1996). In most cancer cells, telomerase has 

been reactivated and prevents cancer cells from entering senescence or apoptosis (Lu, 

Zhang et al. 2011). Consequently, the activation of telomerase is an important step in 

development of human cancers (Salhab, Jiang et al. 2008). Previous studies reported that 

Shelterin genes (TRF1, TRF2, and POT1) were up-regulated in gastric, breast, cervix and brain 

cancer cell lines (Matsutani, Yokozaki et al. 2001; Lee, Rha et al. 2008) whereas another 

group (Yamada, Tsuji et al. 2002) demonstrated that the expression of Shelterin genes (TRF1, 

TRF2 and TIN2) was decreased in gastric cancer cell lines. Moreover, Salhab et al. (2008) 
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quantified comprehensively the levels of mRNA expression of hTERT, hTR, Shelterin and 

Shelterin-associated genes in breast cancer tissue samples by real-time polymerase chain 

reaction. Their results showed that the expression levels of TNKS2, POT1 and TRF2 were 

significantly lower in malignant tissues compared with normal matched tissue samples. 

However, TEP1, TNKS1, and EST1 were up-regulated (Salhab, Jiang et al. 2008). 

Furthermore, subsequent studies have confirmed that POT1 is over-expressed in gastric 

cancer tissues (Gao, Zhang et al. 2011). Also, the transcriptional level of TRF2 was found to 

be correlated with tumour size; i.e, large tumours expressed higher levels of TRF2 (Gao, 

Zhang et al. 2011). 

In order to obtain a better and clearer understanding of the exact role and function 

of Shelterin and Shelterin-associated proteins in protection and maintenance of telomeres 

in human breast cancer, the mRNA expression levels of Shelterin and Shelterin-associated 

genes in a panel of ten breast cancer cell lines and one prostate cancer cell line were 

compared with commercially (Applied Biosystems) available normal human mammary tissue 

(cDNA) and that from normal primary human mammary epithelial strains (controls). 
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3.2-Materials and methods 

3.2.1- Analysis of cDNA quality 

Total RNA from about 1x106 human epithelial cells was isolated using RNeasy Mini 

Kit (50) (QIAGEN Company). Total RNA (1µg) was reverse-transcribed into cDNA using 

superscript III (Invitrogen). The forward and reverse primer sequences used for all Shelterin 

and Shelterin-associated genes are detailed in Table 2.2. Analysis of the standard Shelterin 

and Shelterin-associated RT-PCR products on agarose gels showed a correct size for all 

human breast cancer cell lines, normal mammary epithelial cell strain (HMEC) and a 

prostate cancer cell line (PC-3). In all cases, observation of a specific fragment in the 

absence of primer-dimmer band was sufficient to confirm the quality and quantity of cDNA 

samples to utilize subsequently for qRT-PCR. 

 

3.3-Quantification of Shelterin and Shelterin-associated mRNA in breast and prostate 

cancer cell lines 

To determine the level of Shelterin and Shelterin-associated mRNA transcription in 

breast cancer cell lines, qRT-PCR was performed. To quantify Shelterin and Shelterin-

associated expression levels, the Ct values obtained for each mRNA were normalised to 

those for human GAPDH mRNA (endogenous control). Each sample was run in triplicate 

(Figure 3.1) and each experiment was performed at least three times to ensure the 

reproducibility and accuracy of the results. The mean value of each individual triplicate 

sample was used in further calculations utilizing the 2-ΔΔCt method to determine relative 

quantification (RQ) values using the SDS 2.3 software (Applied Biosystems). Relative 

transcription levels of all Shelterin and Shelterin-associated genes from the panel of cancer 

cell lines were calibrated by calculating the RQ mean values and human breast total RNA 
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(Normal) was used as a calibrator. Applying the qRT-PCR amplification program, the quality 

of the target and endogenous (Shelterin, Shelterin-associated and GAPDH) cDNA products, 

with no primer-dimmer formation, was confirmed by constructing the dissociation curve 

analysis (Figure 3.1).  

 

Figure 3.1-qRT-PCR analyses. The images show schematic example of (A) Ct of each individual 

triplicate sample for target gene and GAPDH cDNAs, (B) dissociation curve for RT-GAPDH and RT-

POT1 primers. 

 

 

 

 

 

 

 

 

 

 

 

A B 



62 

 

3.4-Results 

3.4.1-Determination of Shelterin, Shelterin-associated and GAPDH mRNA expression 

levels using real-time quantitative RT-PCR 

Expression levels of Shelterin and Shelterin-associated genes were quantified in 

normal breast tissue, a large panel of breast cancer epithelial cell lines (MCF-7, GI101, 

BT474, 21MT-2, MTSV1-7, HCC1143, BT20, PB1, HS578-T, and 21NT) and a prostate cancer 

cell line (P-C3) by quantitative RT-PCR to compare the expression level of each gene in 

normal commercial tissue and cancerous cells. Some of the Shelterin genes have different 

splice variants; for example, there are five splice variants (SV) of POT1 whereas TNKS1 and 

TNKS2 do not have splice variants (Table 3.1). To investigate whether there is a difference in 

mRNA expression level between POT1 isoforms in cancer cell lines, two sets of primers were 

designed for SV1 and SV2 (Table 3.1). In addition, TIN2 and TRF1 genes have two splice 

variants which were quantified by qRT-PCR while four isoforms have been observed in 

SMG6 (EST1) from which only one isoform was assessed (Table 3.1). 
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       Table 3.1-Shelterin and Shelterin-associated genes that encode splice variants 

Gene No of splice variants Size of variants (bp) Accession Number 

POT1 5 

V1: 4095  
 

NM_015450 

 V2: 4215  

 
NR_003102 

 V3: 4006  NR_003103 

 V4: 3964  

 
NM_001042594 

 V5: 4192  

 
NR_003104 

 

SMG6 4 

V1: 5936  

 
NM_173156 

 V2: 5798  

 
NM_201568 

 V4: 4789  

 
NM_201569 

 V5: 6054  

 
NM_001174061 

 TNKS1 ----       9599  

 
NM_003747 

 TNKS2 ----      6274  

 
NM_025235 

 TIN2 2 V1: 1869  

 
NM_001099274 

 V2: 2196  

 
NM_012461 

 TRF1 2 V1: 2960  

 
NM_017489 

 V2: 2900  

 
NM_003218 

 TRF2 ----      2996  

 
NM_005652 

 RAP1 ----     2196  

 
NM_018975 

 TEP1 ----     10694  

 
NM_007110 

 

 
TPP1 ---- 3540 NM_000391 

  

As shown in Figure 3.2, the expression of POT1, SV1, was lower in breast cancer cell 

lines than in normal breast tissue. This difference was statistically significant when 

comparing the levels in normal tissue with those in primary and advanced tumours (P<0.5). 

Figure 3.2-B shows that POT1 SV2 was also down-regulated in tumour cell lines (P<0.05 and 

P<0.01 respectively). However, no substantial differences in expression between POT1 SV1 

and POT1 SV2 were observed (See also Figure 3.9). 
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Figure 3.2-Expression of POT1 variants 1 and 2 in tumour cell lines. The level of POT1 normalised 

against GAPDH mRNA in breast cancer cell lines compared with prostate cancer and normal breast 

tissue, determined by a quantitative reverse transcription polymerase chain reaction. A) POT1, SV1 

and B) POT1, SV2 expression in breast cancer samples, a normal breast tissue and a prostate cancer 

cell line (PC-3). The PC-3 cell line was included for comparison. Normal breast tissue (cDNA) was 

used as the calibrator. Error bars represent SEM,* P<0.05 and ** P<0.01. 
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The mRNA expression of RAP1, TNKS1 and TNKS2 were substantially decreased in all 

cancer cell lines compared with normal breast tissue (P<0.05, P<0.01, and P<0.001 

respectively) (Figures 3.3 and 3.4). However, expression of RAP1 was at least 2-fold higher in 

MCF-7 and PC-3 compared with other cancer cell lines (Figure 3.3). 

 

 

 

 
Figure 3.3-Expression of RAP1 in tumour cell lines. Quantification of RAP1, mRNA levels determined 

by qRT-PCR in PC-3 and breast cancer cell lines. Normal breast tissue (cDNA) was used as the 

calibrator. Error bars represent SEM, * P<0.05, **P<0.01, ***P<0.001.  
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Figure 3.4-Expression of TNKS1 and TNKS2 in tumour cell lines. The histograms in (A) and (B) 

represent qRT-PCR analysis of TNKS1 and TNKS2 mRNA isolated from cancer cell lines. A) TNKS1 and 

B) TNKS2 expression in breast cancer, prostate cancer, and normal tissue. Normal breast tissue 

(cDNA) was used as the calibrator. Error bars represent SEM, *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.5 shows that with TIN2 (SV1 and SV2) levels in all breast tumour cell lines 

and the prostate cancer cell line (PC-3) were also considerably lower than that of normal 

breast tissue; the most significant reductions were observed in GI101, MTSV1-7, BT20, and 

HS578-T cells (P<0.05 and P<0.01 correspondingly). However, no major differences have 

been observed between the two TIN2 splice variants (P<0.05, and P<0.01 respectively). 

 

 

Figure 3.5-Expression pattern of TIN2, SV1 and SV2. The graphs (A and B) represent analysis of 

mRNA from the indicated human cell lines by qRT-PCR to detect the TIN2 SV1 and TIN2 SV2. Error 

bars represent SEM, * P<0.05, **P<0.01. 
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As shown in Figure 3.6-A, all the breast cancer cell lines examined expressed 

substantially lower levels of SMG6 (P<0.05, P<0.01, and P<0.001 respectively) in comparison 

with normal breast tissue control. In marked contrast to the other Shelterin genes, with 

TPP1, MCF-7, MTSV1-7, PB1, BT20, and PC-3 cell lines expressed high levels of TPP1 mRNA 

compared with normal tissue, whereas the remainder of the breast cancer cell lines 

expressed low levels of TPP1 (Figure 3.6-B) (P<0.05 and P<0.01 correspondingly).  

Results are presented for TRF1 SV1 and SV2, and TRF2 in Figures 3.7-A, 3.7-B and 

3.8-A. The mRNA expression of TRF1 SV1, its splice variant 2 and TRF2 was significantly 

lower (P<0.05 and P<0.01 correspondingly) in comparison with expression of TRF1 and TRF2 

from normal breast tissue. However, the mRNA levels of TRF1 SV1 and SV2 were higher in 

the prostate cancer cell line (PC-3) in comparison with breast cancer cell lines. TRF2 and 

TEP1 showed a trend similar to that of TRF1 in all tumour cell lines (Figures 3.7 and 3.8). In 

this section, all the results indicated that, with the notable exception of TPP1, all Shelterin 

and Shelterin-associated genes were down-regulated in tumour cell lines. 

 

 

 

 

 

 

 



69 

 

 

 
 

 
 

Figure 3.6-Expression patterns of SMG6 (or EST1) and TPP1. A) Represents analysis of mRNA from 

the indicated human cell lines by qRT-PCR to detect SMG6 mRNA levels. B) The mRNA levels of TPP1 

determined by qRT-PCR in breast, prostate cancer cell lines and normal breast tissue. Normal breast 

tissue (cDNA) was used as the calibrator. Error bars represent SEM, *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.7-The level of TRF1 V2 and V1 in breast and prostate cancer cell lines, determined by qRT-

PCR. A) TRF1, SV2 and B) TRF1, SV1 expression in breast cancer, prostate cancer, and normal tissue. 

Normal breast tissue (cDNA) was used as the calibrator. Error bars represent SEM, *P<0.05, 

**P<0.01, ***P<0.001. 
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Figure 3.8-TRF2 and TEP1 mRNA transcription levels in tumour cell lines and normal tissue. The 

image (A) and (B) illustrate qRT-PCR analysis of TRF2 and TEP1 mRNA isolated from cancer cell lines. 

A) TRF2 and B) TEP1 expression in breast cancer, prostate cancer, and normal tissue. Normal breast 

tissue (cDNA) was used as the calibrator. Error bars represent SEM, *P<0.05, **P<0.01, ***P<0.001. 

 

 

 

 

0

20

40

60

80

100

120

R
e

la
ti

ve
 E

xp
re

ss
io

n
 (

%
) 

Cell lines 

TRF2 Normal

21NT

GI101

MCF-7

BT474

21MT-2

MTSV1-7

HCC1143

BT20

PB1

HS578T

PC3

0

20

40

60

80

100

120

R
e

la
ti

ve
 E

xp
re

ss
io

n
 (

%
) 

Cell lines 

TEP1 Normal

21NT

GI101

MCF-7

BT474

21MT-2

MTSV1-7

HCC1143

BT20

PB1

HS578T

PC3

*

* 

* * 
*

* 

*

* 

*

* 
*

* 

*

* 

** *

* 

* 

A 

B 

* *

* 

* 
*

* 

* 
*

* 

*** * *

* 
*

* 

*

* 



72 

 

3.4.2-POT1 and TPP1 mRNA and protein expression in normal breast epithelial 

(HMEC) cells and cancer cell lines in culture 

3.4.2.1-Gene expression of POT1 and TPP1 in breast cancers and the human mammary 

epithelial strain (HMEC1) 

As shown in previous section (3.4.1), all Shelterin and Shelterin-associated genes, 

except TPP1, were down-regulated in breast cancer cell lines in comparison with a normal 

breast tissue control. Previous work by Salhab et al. (2008), showed that levels of POT1 

mRNA were significantly lower in malignant breast tissues in comparison with normal 

tissues (P=0.0008 and P=0.038 respectively). Moreover, with regard to the hypothesis of a 

critical role of POT1 and TPP1 in telomere length maintenance (Wang F 2007), reanalysis of 

these genes with a normal mammary epithelial culture cell strain (HMEC1) was warranted. 

Human tissues are organized communities of several different cell types that work 

together to control the function of individual organs. Therefore, these cells may vary at the 

mRNA and/or protein level in order to carry out their specific functions. In this way, 

cellularly heterogeneous tissue samples taken for analysis may perhaps exhibit highly varied 

gene expression or protein levels, compared with individual pure cell strains (Bryant and 

Mostov 2008). In order to further validate the obtained results, a normal breast mammary 

epithelial cell strain (HMEC1) was analysed for mRNA levels of POT1 and TPP1.  

Based on the results depicted in Figure 3.9-A, it is evident that, the transcription 

levels of POT1 in malignant cell lines was substantially lower (P<0.05 and P<0.01 

respectively) compared with non-malignant breast tissue. In addition, the mRNA levels of 

POT1 in normal mammary cell strains were approximately 20-fold lower than normal breast 
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tissue control. Therefore, in order to validate obtained results, the graph was re-plotted. As 

shown in Figure 3.9-B, it is evident that all malignant cell lines expressed substantially lower 

levels of POT1 in comparison with HMEC1 (P<0.05 and P<0.01 respectively). 

 

 

Figure 3.9-Expression patterns of POT1 SV2 in normal and cancer cell lines. The level of POT1 mRNA 

determined by qRT-PCR in breast, prostate cancer cell lines, and normal human epithelial cell 

(HMEC1) and normal tissue. A) Normal breast tissue (cDNA) was used as the calibrator. B) Normal 

mammary epithelial cell strain (HMEC1) was used as the calibrator. Error bars represent SEM, 

*P<0.05, **P<0.01. 
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As shown in Figure 3.10-A, the mRNA expression of TPP1 in PC-3, MTSV1-7, MCF-7, BT-20 

and PB1 was over-expressed compared with normal control tissue (P<0.05 and P<0.01 

respectively). In fact, all tumour samples except HS578-T expressed high levels of TPP1 in 

comparison with HMEC1 (P<0.05 and P<0.01 respectively) (Figure 3.10-B).  

 

 

Figure 3.10-Expression patterns of TPP1 in all normal and cancer cell lines. The mRNA levels of 

TPP1 determined by qRT-PCR in breast, prostate cancer cell lines, HMEC1 and normal breast tissue 

(cDNA). A) Normal tissue (cDNA) was used as a calibrator. B) HMEC1 was used as the calibrator. 

Error bars represent SEM, * P<0.05, **P<0.01. 
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3.4.2.2-Protein analysis of POT1 and TPP1 in breast cancer cell lines and HMECs control   
 

An attempt was made to corroborate qRT-PCR results with western blot analysis on a 

panel of eight human breast cancer cell lines and a normal primary mammary epithelial cell 

strains at different passage numbers. The western blot analysis was carried out using POT1 

rabbit monoclonal antibody (Abcam) and TPP1 rabbit polyclonal antibody (Abcam) and the 

values were normalised using β-Actin rabbit antibody (Sigma). The imageQuant 5.0 

densitometry was used for densitometry analysis. The protein expression of POT1 and TPP1 

was normalised to total β-Actin as a housekeeping gene expression and optical density 

values are presented in all figures. A 71-KD band (Abcam) was evident in each samples 

corresponding to POT1 (Figure 3.11-A). Figure 3.11 indicates that the POT1 protein levels 

were similar in BT20, GI101, HCC1143, BT-474 and MCF-7 breast cancer cell lines in 

comparison with HMEC1. This data was not completely consistent with the qRT-PCR results. 

However, 21NT, 21MT-2 and HS578-T expressed considerably high levels of POT1 protein 

compared with HMEC1 which was not in line with the gene expression data (Figures 3.9-B 

and 3.11). 
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Figure 3.11-Western blot analysis of POT1 protein levels in normal mammary epithelial (HMEC1) 

and breast cancer cell lines. A) A 12% SDS-PAGE gel indicating POT1 protein expression and β-Actin 

ratio levels in western blots of all 8 breast cancers and normal mammary epithelial cell strain 

(HMEC1). B) Densitometric analysis of POT1 protein normalised to total β-Actin protein and reported 

as optical densitometry (OD) unites. Error bars represent SEM, **P<0.01. 

 

 In order to determine effect of passage number of normal mammary epithelial cell 

strains on protein level of POT1, different passage numbers of HMECs from two disease-free 

patients were analysed by western blot. As the protein expression level of 21NT cells was 

higher than expected, several passages of HMECs was used to compare with 21NT cells. In 

addition, all passage numbers were different due to the availability of the cell lines. 
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Western blot analysis showed higher levels of POT1 in patient 1 (HMEC1) at passage 

6 in comparison with the other passages (HMEC1-p8 and HMEC1-p10). However, POT1 

levels reduced significantly in all patients compared with 21NT cells (P<0.05, P<0.01, 

P<0.001 and correspondingly). Moreover, no substantial differences of POT1 protein levels 

have been observed between each passage numbers in patient two (HMEC 2) (Figure 3.12).  

 

 
 

  
 

Figure 3.12-Western blot analysis of POT1 protein levels in normal mammary epithelial cell strain 

(HMECs) at different passage numbers and 21NT breast cancer cells. A) A 12% SDS-PAGE gel 

showing POT1 protein expression and β-Actin ratio levels of two different patients of normal 

mammary cell strains and 21NT. B) Densitometric analysis of POT1 protein was performed, 

normalised to total β-Actin protein and reported as optical densitometry (OD) unites. Error bars 

represent SEM, *P<0.05, **P<0.01 and ***P<0.001, compared with 21NT control.  
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Western blot analysis revealed a 58-KD band (Abcam) of TPP1 protein levels in 

normal and breast cancer cell lines (Figure 3.13-A). After imageQuant 5.0 densitometry 

analysis, the highest expression of TPP1 protein was detected in BT-474 in comparison with 

HMEC1 (P<0.05). The level of TPP1 protein was lower in 21NT and 21MT-2 cells than the 

HMEC1 strain control, which was not in line with the gene expression (mRNA) data (Figures 

3.10-B and 3.13).  

 

 

Figure 3.13-Western blot analysis of TPP1 expression in normal mammary epithelial cell strain and 

breast cancer cell lines. A) A 12% SDS-PAGE gel indicating TPP1 protein expression and β-Actin ratio 

levels in western blots of all 8 breast cancers and normal mammary epithelial cell strain (HMEC1). B) 

Densitometric analysis of TPP1 protein normalised to total β-Actin protein and reported as optical 

densitometry (OD) unites. Error bars represent SEM, *P<0.05, **P<0.01. 
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However, surprisingly, the TPP1 protein levels in HS578T cells were approximately 3-fold 

higher than HMEC1 (P<0.01) which was not consistent with the qRT-PCR results. 

Furthermore, BT20, GI101, HCC1143 and MCF-7 expressed high levels of TPP1 protein 

compared with HMEC1 which were also observed by qRT-PCR results (P<0.05) (Figures 3.10-

B and 3.13). 

As with POT1, to address increasing passage numbers possibly causing changes in 

the protein levels of TPP1, HMECs at different passage numbers from two patients were 

examined by western blot. The 21NT breast cancer cell line was also utilized as a control to 

compare with each different passage of HMECs. The results (Figure 3.14) showed little 

difference in TPP1 protein expression in HMEC1 from p10, to HMEC2 p13, p15 and p17 in 

comparison with 21NT cells. However, the protein levels of TPP1 in patient 1 (HMEC1) at 

passage 8 was approximately 2-fold higher than that 21NT cells (P<0.01) (Figure 3.14). 

Moreover, no substantial differences of TPP1 protein levels have been observed between 

HMEC1 at passage 6 and 21NT cells. 
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Figure 3.14-Western blot analysis of TPP1 expression in normal mammary epithelial cell strains 

(HMECs) at different passage numbers and 21NT breast cancer cell line. A) A 12% SDS-PAGE gel 

showing TPP1 protein expression and β-Actin ratio levels of two different patients of normal 

mammary epithelial cell strains and 21NT. B) For quantitative representation, densitometric analysis 

of TPP1 protein was performed, normalised to total β-Actin protein and reported as optical 

densitometry (OD) unites. Error bars represent SEM, **P<0.01, compared with 21NT control.  
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3.5-Discussion 

 

Previous work carried out by Salhab et al. (2008), Cookson et al. (2009) and Lu et al. 

(2011), reported different expression levels of Shelterin and Shelterin-associated genes in 

different human cancers (Salhab, Jiang et al. 2008; Cookson and Laughton 2009; Lu, Zhang 

et al. 2011). Salhab et al. (2008) indicated over-expression of TNKS1, hTERT, EST1, and TEP1 

and down-regulation of TNKS2 and POT1 mRNA levels in breast cancer tissues compared 

with normal breast tissues. Moreover, the lower expression of TRF1 and TRF2 was found to 

be associated with the development and progression of breast cancer. However, findings by 

Hu et al. (2010) in other cancers appeared to be contradictory to this. They demonstrated 

significant over-expression of TRF1, TRF2, and TIN2 in precancerous lesions, gastric cancer 

tissues, and lymph node metastase in comparison with normal gastric mucosa tissues (Hu, 

Zhang et al. 2010). In addition, recently published data  by Lu  et al. (2011), showed over-

expression of POT1 mRNA levels in gastric cancer tissues.  

The aim of the work described in this chapter in relation to the published data was to 

determine the expression level of each Shelterin and Shelterin-associated genes in ten 

breast cancer cell lines, commercially available normal human breast tissue (cDNA), 

together with two different passage number of normal mammary epithelial cell strains 

(HMEC1 and 2) and the prostate cancer (PC-3) cell line by qRT-PCR. Additionally, based on 

the potential role of TPP1 and POT1 on telomere length maintenance (Hwang, Buncher et 

al. 2012) re-analysis of these genes using HMECs, as an additional normal controls, was 

further quantified at both gene expression (mRNA) and protein levels.  
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Human tissues are made up of several different cell types that work together to 

control the function of individual organs. Therefore, these cells may vary at the 

transcriptomic and/or proteomic level in order to carry out their specific functions (Bryant 

and Mostov 2008). In this way, cellularly heterogeneous tissue samples taken for analysis 

may exhibit highly varied gene expression or protein levels, in comparison with individual 

normal cell strains. In order to validate results obtained when using commercial breast 

tissue samples as a normal control, a normal mammary epithelial cell strain (HMECs) was 

therefore used. 

As described in the Results section, in Figures 3.2 and 3.9, it was evident that POT1 

SV1 and SV2 were significantly down-regulated at the mRNA level in breast cancer cell lines 

compared with normal breast tissue and the pure HMEC1 cell strains (P<0.5 and P<0.01 

respectively). Among the other Shelterin and Shelterin-associated genes implicated in 

telomere maintenance, the expression of TRF1 (SV1 and SV2) and TRF2, along with SMG6, 

TIN2 (SV1 and SV2), TEP1, TNKS1, TNKS2, and RAP1 in normal tissue and breast cancer cell 

lines were quantified. The results indicated that these genes were down-regulated in breast 

tumor cell lines compared with breast normal tissue (Figures 3.3, 3.4, 3.5 3.6, 3.7 and 3.8). 

The marked contrast, the findings revealed that TPP1 mRNA levels were higher in most 

breast cancer cell lines compared with HMEC1 and normal tissue controls. The exception 

was, HS578-T which expressed low levels of TPP1 compared with HMEC1 and normal tissue 

controls (Figure 3.10).  

Alterations in the expression of telomere binding proteins (TBPs) in cancers may 

disrupt the capping complex, resulting in telomere degradation and shortening 

independently of the telomerase status (Yamada, Tsuji et al. 2002). The fact that short 
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telomeres are observed in the vast majority of breast and other epithelial cancers may at 

least in part be attributable to this. 

In order to confirm the results obtained from qRT-PCR, western blot analysis was 

performed. The POT1 protein levels did not positively associate with mRNA levels in BT20, 

GI101, HCC1143, BT-474 and MCF-7 breast cancer cell lines in comparison with HMEC1. 

These tumour cells showed that the POT1 protein levels were similar in comparison with 

HMEC1 which were not observed by qRT-PCR results. However, 21NT, 21MT-2 and HS578-T 

expressed considerably high levels of POT1 protein compared with HMEC1 which was not 

also in line with the gene expression data (P<0. 01) (Figures 3.9-B and 3.11). 

The TPP1 protein levels showed a positive correlation with mRNA expression levels 

in BT-20, GI101, MCF7 and BT474 breast cancer cells. These tumour cell lines showed up-

regulation of mRNA levels of TPP1 in comparison with the normal HMEC1 which was 

consistent with protein level (Figures 3.10-B and 3.13). As shown in Figure 3.13, the highest 

TPP1 protein level was detected in BT-474 in comparison with HMEC1. However, the protein 

level of TPP1 was lower in 21NT and 21MT-2 cells compared with HMEC1. In addition, high 

TPP1 protein levels and low mRNA expression were observed in HS578-T in comparison with 

HMEC1 which was not consistent with qRT-PCR (Figures 3.10-B and 3.13). 

To determine whether different passage culture of the HMECs may impact on TPP1 

and POT1 protein levels, different passage numbers of HMECs (HMEC1 and 2) from two 

patients were examined at low (p6) and high (p17) passage by western blot. The result 

showed a slight difference in TPP1 expression at different passages. The difference was 

relatively small. However, approximately 2-fold increase of TPP1 was observed in HMEC1 p8 

compared with 21NT cells (Figure 3.14). Moreover, the effect of different passage numbers 
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on POT1 expression was also studied. As the protein expression level of 21NT cells was 

higher than expected, several passages of HMECs was used to compare with 21NT. Western 

blot analysis showed substantially lower levels of POT1 in all patients in comparison with 

21NT cells (P<0. 05, P<0. 01 and P<0. 001 respectively). As shown in Figure 3.12, HMEC1, 

cells from sixth passage had higher protein level of POT1 than cells of the tenth and eighth 

passage. Furthermore, no substantial difference in POT1 level was detected in HMEC2 p13, 

p15, and p17 (Figure 3.12).  

The lack of correlation between protein and mRNA levels could be due to 

transcriptional splicing, post-transcriptional splicing, translational modifications, 

translational regulation, and protein complex formation, which might have an effect on the 

relative quantities of mRNA and protein (Hartwell, Hopfield et al. 1999; Brett, Pospisil et al. 

2002; Brockmann, Beyer et al. 2007; Glisovic, Bachorik et al. 2008). Most research assumes 

that protein concentrations are generally proportional to mRNA concentration. However, 

since publication of the complete human genome sequence in 2004, many papers have 

proved this hypothesis wrong. For instance, Tian et al. (2004) mapped the abundance ratio 

of 425 proteins to their corresponding mRNA expression levels in multipotent mouse EML 

cells and their differentiated progeny, MPRO cells. Over all they identified 150 signature 

genes which showed significant alterations at their protein and/or mRNA level between the 

two cell types. In total 19% of genes showed reasonable correlation between mRNA and 

protein levels; 45% showed significant difference at the mRNA level but not at the protein 

level, 35% represented significant changes at the protein but not at the mRNA level. 

Surprisingly, the mRNA and protein levels were inversely correlated in two genes. 

Furthermore, the expression of the c-kit receptor kinase protein and its mRNA varied seven-
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fold and nine-fold respectively between the two cell lines, while the c-kit ligand protein 

showed a five-fold higher expression level in the EML cell line with no change in the mRNA 

level. The expression levels of nine mitochondrial proteins were significantly lower in MPRO 

cell lines compared to EML cells, while the expression of their corresponding mRNA was 

higher or similar (Tian, Stepaniants et al. 2004). Going further, Schwanhausser et al. (2011) 

used NIH3T3 mouse fibroblast to analyse the correlation between expression levels of 

protein and mRNA (Schwanhausser, Busse et al. 2011). They quantified 5279 unique 

proteins and measured their half-lives along with their mRNAs. Consequently, they reported 

a median half-life of 46 hours for proteins and 9 hours for mRNA, hence showing proteins to 

be on average five times more stable than their mRNAs. Furthermore, they divided genes 

and proteins into three different groups based on their function and looked at their protein-

mRNA stability. Looking at their results, the housekeeping genes (i.e., genes coding for 

ribosomal and glycolytic proteins) showed stable mRNA and protein. The chromatin 

modifying enzymes, cell-cycle associated genes, and transcription factors have unstable 

mRNA and proteins. The last group showed stable mRNA and unstable protein, comprising 

of RNA-processing proteins, genes encoding kinsases, proteases and integrin mediated 

pathways (Schwanhausser, Busse et al. 2011). Looking at these two papers and other 

published data, it is evident that only 40% of protein levels in cultured mammalian cells are 

correlated with mRNA levels. Also there is further evidence suggesting that the mRNA levels 

may be correlated with protein levels only in housekeeping genes with both stable mRNA 

and protein. On the other hand, the mRNA level may be a poor surrogate for protein levels 

in genes with stable mRNA and unstable protein e.g. transcription factors and genes 
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encoding proteases and kinases (Tian, Stepaniants et al. 2004; Lundberg, Fagerberg et al. 

2010; Vogel, Abreu Rde et al. 2010; Schwanhausser, Busse et al. 2011).  

The relationship described between mRNA and protein in these 4 papers is also 

evident in our results; the Shelterin protein encoding gene TPP1 had high mRNA levels and 

low protein levels in 21NT cells, suggesting more stable mRNA compared to protein. 

However, there is an expression pattern observed in our results which has not been 

observed and/or explained previously. Based on our results, the Shelterin protein encoding 

gene POT1 has low mRNA and high protein levels in 21NT cells (Figures 3.9 and 3.11). 

Looking at the control cell lines HMECs, the POT1 encoded protein level is less than that of 

the 21NT breast cancer cells. This suggests that POT1 encoded protein is more stable than 

its mRNA. 

Previous work by Marks et al. (1991) found that a mutation in the p53 gene lead to 

high expression of the p53 protein  in ovarian cancer cells (Marks, Davidoff et al. 1991). 

Therefore, it may be possible that the POT1 protein within 21NT cells is mutated and non-

functional. This may explain the higher protein levels observed within 21NT breast cancer 

cells in comparison with HMECs. To test this hypothesis, further investigation were carried 

out to look at mutational and epigenetic changes involving the POT1 gene as described in 

the following chapter (V). 
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4.1-Introduction 

Down-regulation of some Shelterin genes and up-regulation of TPP1 in breast cancer 

cell lines could be due to a number of factors including mutation, DNA methylation, single 

allele deletions, chromatin remodelling, and haploinsufficiency of the genes. To address the 

question of whether mutations in Shelterin genes may cause down-regulation of their 

expression, the literature was consulted. Salhab et al. (2008) reported that POT1 was 

significantly down-regulated in malignant breast tissues in comparison with normal tissues. 

Moreover, according to our findings presented in the previous chapter (III), POT1 was one of 

the most down-regulated of the Shelterin genes in breast cancer cell lines. Therefore, this 

gene was selected for further investigation. Previous results demonstrated that human 

POT1 is most commonly mutated in a wide range of cancers, such as: papillary thyroid 

(Cantara, Capuano et al. 2012), breast (Shen, Gammon et al. 2010) and leukaemia (Poncet, 

Belleville et al. 2008). Further studies revealed single nucleotide polymorphisms (SNPs) of 

POT1 in breast cancer (Savage, Chanock et al. 2007). Moreover, mutation of POT1 was 

observed in approximately 5% chronic lymphocytic Leukaemia (CLL) (Ramsay, Quesada et al. 

2013). In addition, mutations in POT1 exon12 were detected in human carcinoma cell strains 

(HeLa and HO8910-PM) (Hou, Huang et al. 2006). However, in 2009, according to the 

COSMIC database (Catalogue of Somatic Mutations in Cancer, Sanger centre UK 

http://www.sanger.ac.uk); no mutation was identified in the genomic sequence of the 

Shelterin genes, including the POT1 gene, in cancer. Therefore, based on the published data 

(Hou, Huang et al. 2006). It was important to screen the POT1 gene for existence of exon12 

mutation in breast cancer cells. 

http://www.sanger.ac.uk/
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Epigenetic modifications such as abnormal DNA methylation play an important role 

in cancer development, for example, by facilitating carcinogenesis and tumour apoptosis 

(Lund and van Lohuizen 2004). DNA hypermethylation is mediated by DNA 

methyltransferase enzymes (DNMTs) on cytosine residues in the 5'-CG-3' sequence. DNA 

hypermethylation within these regions inhibits gene expression via recruitment of 

repressive proteins such as: methyl-CpG binding protein 1 (MeCP1), MeCP2, and Methyl-

binding domain proteins 1, 2, 3, and 4. Transcription is hindered by these proteins via the 

recruitment of the nucleosome remodelling complex (Mossman, Kim et al. 2010).  

In chapter III we presented data that demonstrated Shelterin and Shelterin-

associated genes were down-regulated in breast cancer cell lines compared with normal 

breast tissue and HMEC1 strain controls. A DNA methyltransferase inhibitor, 5-aza-2'-

deoxycytidine (5-aza-CdR), and a histone deacetylation inhibitor, Trichostatin A (TSA), were 

used to demethylate DNA and deacetylate histones, respectively, and to induce the 

expression of silenced genes. It is well established that 5-aza-CdR can repress the growth of 

numerous tumours in vitro, including lung cancer, melanoma, and breast cancer (Mirza, 

Sharma et al. 2010) cells. Therefore, the effect of these drugs on Shelterin and Shelterin-

associated genes was investigated in 21NT breast cancer cell line. Moreover, the effect of 

these drugs on cytosine methylation in the promoter region of POT1 was investigated. 
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4.2 -Materials and methods 

4.2.1- Mutation at exon12 of POT1 

DNA was isolated from breast cancer cell lines as previously described in Section 2.7. 

50ng of double stranded DNA was utilised in experiments and a pair of primers was 

synthesized covering exon12 of POT1 gene (Table 4.1).  

 

Table 4.1-Primer sequences of POT exon12 

Primers Sequence (5´         3´) Product size (bp) Reference 

POT1 Ex12 Forward GCAAAAGGAGTATTCTAACAAAACAG 
300 

(Hou, Huang et 

al. 2006) POT1 Ex12 Reveres TCACGCTTACACCAAAATCG 

 

PCR was performed using 1.1x Reddy Mix and 10μM of the Forward and Reverse primer, 

respectively. The reaction mixture volume was 25µl and was incubated in a thermo cycler at 

94°C for 5 minutes, followed by 35 cycles of 94°C for 45s, 60°C for 45s, and 72°C for 45s and 

then a final extension at 72°C for 5 min.  

 

4.2.1.1-PCR product purification using QIAquickTM PCR Purification Kit 

Five volumes of PB buffer were added to one volume of PCR reaction and mixed 

thoroughly. The entire mixture was transferred to a QIAquick spin column placed in a 2ml 

collection tube and centrifuged for 1 minute at 16,000rcf. The flow-through was discarded 

and the QIAquick spin column was placed back in the same collection tube. About 750µl of 

PE wash buffer was added to the QIAquick column and centrifuged for 1 minute at 

16,000rcf. The flow-through was also discarded and QIAquick column was placed back in the 

same collection tube. The column was centrifuged once more to remove residual ethanol. 

The QIAquick column was placed in a clean 1.5ml micro-centrifuge tube and 15μl of elution 

buffer EB (pH 7.0-8.5) was added to the centre of QIAquick column membrane and 
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centrifuged for 1 minute at 16,000rcf. All DNA sequencing reactions were carried out using 

8µl DTCS Quick Start Master Mix (Beckman Coulter Kit), approximately 3µl of purified DNA, 

and 10μM of the Forward primer (Table 4.1). Amplification was carried out using a thermal 

cycler with the following conditions: 

 

 96°C – 20 seconds 

 50°C – 20secs                            30 cycles                

 60°C – 4minutes 

 

4.2.1.2-Precipitation of DNA from sequencing reactions 

DNA was precipitated by adding, 2μl of Sodium Acetate (pH5.2), 2µl of 100mM Na2-

EDTA (pH 8.0) and 1μl of 20mg/ml of glycogen to the sequencing reaction mix. Then 60µl of 

cold 95% ethanol was added to the samples. Samples were immediately centrifuged at 

16000rcf for 15 minutes at 4°C. Then the DNA pellet was washed twice with 200µl of cold 

70% ethanol. For each rinse, samples were centrifuged immediately at 16000rcf for 2 

minutes at 4°C. After centrifugation, all of the supernatant was carefully removed and then 

allowed to completely evaporate at room temperature for 10 minutes. Samples were re-

suspended in 40µl of sample loading solution (Beckman Coulter). The re-suspended samples 

were transferred to a 96-well plate and one drop of mineral oil (provided in the Kit) was 

added to each sample. The samples were loaded to the instrument to start sequencing. 
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4.2.2-Promoter methylation analysis of the POT1 

In this technique, DNA is denatured and treated with sodium bisulphite. This causes 

unmethylated CpG dinucleotides in the promoter region of the genome to convert to uracils 

whereas methylated cytosines remain unchanged (Figure 4.1). 

 

 

Figure 4.1-Chemical schemes for the conversion of cytosine to uracil. Unmethylated cytosine 

residues converted to uracil after treatment with sodium bisulphite. After bisulphite PCR 

amplification, uracil residues converted to thymidine. Image obtained from 

http://www.methods.info/Methods/DNA_methylation/Bisulphite_sequencing.html website. 

 

4.2.2.1-Bisulphite treatment of DNA samples 

Genomic DNA was isolated from breast cancer cell lines, using the WizardTM Genomic 

DNA Kit protocol (Promega) (see Section 2.7). MethylcodeTM Bisulphite conversion Kit 

http://www.methods.info/Methods/DNA_methylation/Bisulphite_sequencing.html
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(Invitrogen) was used for bisulphite treatment of DNA-samples. According to the 

manufacturer’s instructions, CT conversion reagent was prepared by adding 900µl of sterile 

water, 50µl of Resuspension Buffer, and 300µl of Dilution Buffer directly to one tube of CT 

Conversion Reagent. Then, the tube was mixed by vortexing for 10 minutes. A mixture of 

2µg of genomic DNA samples (total volume 20µl) and CT conversion reagent mix (130µl) was 

added to the PCR tube. After thorough mixing, the bisulphite treatment was performed 

using a thermal cycler with the following conditions:  

 98°C for 10 minutes (DNA denaturing step) 

 64°C for 2 hours and 30 minutes (Bisulphite conversion step) 

 4°C storage for up to 20 hours 

After completion of bisulphite treatment, the samples were cleaned up by placing them in 

collection tube and 600µl of Binding Buffer was added to each column. The mixture was 

inverted several times and centrifuged at full speed (≥9,000rcf) for 30 seconds. The flow-

through was discarded and 100µl of wash buffer (prepared with ethanol) was added to the 

column followed by centrifugation at full speed for 30 seconds. After discarding the flow-

through, desulphonation was performed by adding 200µl of desulphonation buffer and 

incubating columns for 15 minutes at room temperature. When the incubation was 

completed, the columns were centrifuged at full speed for 30 seconds. The flow-through 

was again discarded and the columns were washed twice with 200µl of wash buffer 

prepared with ethanol. To remove residual liquid, the columns were placed in new 2ml 

collection tubes after the second wash, and centrifuged at full speed for 30 seconds. The 

elution of bisulphite-treated DNA was performed by placing the columns in clean 1.5ml 

micro-centrifuge tubes and adding 16µl of Elution Buffer to the centre of the membrane. 
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The bisulphite-treated DNA was eluted by centrifugation at full speed for 30 seconds. The 

samples containing bisulphite-treated DNA were stored in -20°C until further processing.  

4.2.2.2-Primer design for bisulphite sequencing  

The bisulphite-treated DNA was amplified by PCR in which the primers were 

specifically designed for methylated and unmethylated DNA products. MethPrimer program 

was used to identify CpG islands within a given sequence and assist in designing methylated 

and unmethylated primers (Figures 4.2-A and 4.2-B). 

 

Figure 4.2-A) MethPrimer program for POT1 CpG Island. Thick horizontal “blue shaded area” 

indicates CpG Island with individual CpG dinucleotides (seventeen vertical red lines). To assist 

designing methylated and unmethylated primers, CpG Island Searcher program was used. Image 

obtained from http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi website. 

 

 

A 

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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Figure 4.2.B) MethPrimer program for TIN2 CpG Island. Thick horizontal “blue shaded area” 

indicates CpG Islands with individual CpG dinucleotides (twenty vertical red lines). To assist designing 

methylated and unmethylated primers, CpG Island Searcher program was used for this purpose. 

Image obtained from http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi website. 

 

The methPrimer program was used to identify 5' promoter regions of all six Shelterin 

genes. This website recognised the promoter regions of POT1, TIN2 and RAP1. To define the 

position of POT1 and TIN2 promoter region, approximately 700 base pair upstream of the 

first exon from http://www.ncbi.nlm.nih.gov/genome/ website was pasted into the 

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi website. PCR-primers 

selected for each gene and its promoter region are presented in Table 4.2 below. The 

regions chosen for each gene were based upon the density of CpG-sites. 

 

B 

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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Table 4.2-MSP primer sequences for PCR-products 

Gene / Assay 
 

Forward primer (5´         3´) 
 

 
Reverse primer (5´         3´) 

 
Product size 

(bp) 

POT1-M* AGAAAGGTTTTGTTTATAGGAGT CCAATAACTTTCCAACTTTCGTA 118 

POT1-U* AAGGTTTTGTTTATAGGAGTTTT CCCAATAACTTTCCAACTTTCAT 116 

TIN2-M* AAAGTAAGGTTGGGAGGATTTAG ACAAAAAAAACCGTAACGATACG 161 

TIN2-U* AAAGTAAGGTTGGGAGGATTTAG ACCACAAAAAAAACCATAACAAT 164 

*Methylated, *Unmethylated 

 

4.2.2.3-Detection of DNA methylation in POT1 promoter region 

In order to generate the 118 base pair and a 116 base pair methylated and 

unmethylated product, PCR was performed using 1.1x Reddy Mix, 1µg (2µl) of DNA (see 

Section 4.2.2.1), 25μM of the Forward and Reverse primer, respectively. A negative control 

was included in every PCR performed. The reaction mixture volume was 25µl and was  

incubated in a thermo cycler  at 94°C for 5 min, followed by 50 cycles of 94°C (denaturation) 

for 45s, 56°C for 45s (annealing), and 72°C for 45s (extension) and then a final extension at 

72°C for 5 min. Then, the PCR products were purified as mentioned in Section 4.2.1.1. 

4.2.2.4-Sequencing and analysis of POT1 data 

The concentration of DNA was adjusted and the methylated and unmethylated PCR 

products were sent for sequencing (Beckman Coulter Company). 
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4.2.3-Effects of 5-aza-CdR and TSA on 21NT breast cancer cell line 

4.2.3.1-Drug optimization and cell viability assay (Trypan Blue Assay)   

Careful preliminary experiments were performed to determine the optimal drug 

doses. Briefly, 3x105 cells were seeded into 6-well plate to a total volume of 3ml media per 

well. Each experiment was carried out in duplicate with different drug concentrations. 

Twenty-four hours after cell plating, the cells were randomly assigned into control, TSA 

(Sigma biochemical), 5-aza-CdR (Sigma, St. Louis, MO) and mixed 5-aza-CdR/TSA treatment 

groups. TSA and 5-aza-CdR were dissolved in dimethylsulphoxide (DMSO). Aliquot of stock 

solution of 5-aza-CdR (5µM) and TSA (5, 15, 25, 50, and 100ng/ml) were prepared and 

stored at -20°C. The culture medium was replaced with culture medium containing 5, 15, 25, 

50, and 100ng/ml of TSA. Following optimization, cells were treated with the same 

concentrations of TSA, followed by the addition of 5µM of 5-aza-CdR (was optimized by Dr H 

Yasaei, personal communication). Cells that were treated with 5-aza-CdR and TSA at 

different concentrations were cultured and trypsinized with trypsin/EDTA and a cell 

suspension was made with Alpha modification MEM medium. Then the cell suspension was 

taken into a fresh Eppendorf tube and stained with Trypan blue (Invitrogen). Stained blue 

cells were scored as dead cells and unstained bright cells as viable cells. The stained cells 

were then counted immediately under a microscope by using a haemocytometer and their 

viability was determined by the following formula: 

 

                                     



98 

 

 

 

4.2.3.2-Cell culture, maintenance and treatment 

The 21NT cell line was cultured at 37 °C, 5 % CO2 as previously described. Cells were 

plated at a density of 1x105 in p100 dish. Twenty-four hours after cell plating, the cells were 

randomly assigned into treatment and control groups. In treatment groups, the culture 

medium was replaced with fresh medium containing TSA (50ng/ml) or 5-aza-CdR (5µM) 

separately. Cells were also treated with both drugs concomitantly. Thereafter, 5µM 5-aza-

CdR was added for 48 hours, TSA (50ng/ml) added only during the last 16 hours of 

treatment. For control groups, two plates were treated with and without 0.02% DMSO. The 

purpose of these treatments was based on the published data (Pryzbylkowski, Obajimi et al. 

2008). Moreover, the short-term and long-term effects of the drugs on the mRNA levels of 

Shelterin and Shelterin associated genes were examined in order to compare the difference 

between each time points of the treatment. At the end of the experiment, four groups of 

cells were treated for: 24hrs, 48hrs, 72hrs, 96hrs, 120hrs, 144hrs, 7 days, 3 weeks, 6 weeks 

and 2 month plus 72 hours retreatment period. At each time point, samples were taken for 

further experiments. Twenty-four hours later, the medium containing drugs or DMSO-

treated was removed and replaced with fresh media. After 2 months of treatment, the cells 

were retreated again with the same concentrations of 5-aza-CdR and TSA for 72 hours in 
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order to examine the effects of a double-dose treatment on 21NT cells. Then cells were 

harvested for RNA, DNA and protein extraction.  

     

4.2.4-RNA isolation and quantitative RT-PCR analysis 

RNA was extracted by Trizol reagent (Invitrogen) as described in Section 2.2.2 after 

different time point treatment of the 21NT cells. Invitrogen SuperScript III Reverse 

Transcriptase was used to synthesize cDNA. The forward and reverse primers sequences of 

all Shelterin genes and amplification length are detailed in Table 2.2. qRT-PCR was 

performed using SYBR green PCR Master Mix (Applied Biosystems). All of the PCR reactions 

were performed in triplicate and independently repeated three times depending on the 

experiment. Results are shown as SEM and significance was calculated by using paired t-

test. A p value of less than 0.05 was considered significant. 

 

 

 

 

 

 

 

 

 

 

 

D B 
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4.3-Results 

4.3.1-Mutation analysis of POT1 in breast cancer cell lines 

Previous work by Hou, Huang et al. (2006) showed that POT1 gene within the exon12 

region was mutated in human carcinoma cell lines. Therefore, mutation in the POT1 exon12 

gene was screened in ten breast cancer cell lines. The PCR products on 2% agarose gel 

showed an intense band between 200bp and 300bp for all human breast cancer cell lines 

which was consistent with the product size. After checking the product size (Figure 4.3), the 

exon12 PCR product of POT1 was sequenced in Beckman Coulter (CEQ™8000 Genetic 

Analysis System) machine to detect the presence of mutations in all the lines. The results 

revealed no evidence of mutations in any of the breast cancer cell lines within the exon12 

(data not shown, see also Figure S1). 

 

 
Figure 4.3-The PCR Results of POT1 Exon12 in cancer and normal (HMEC1) cell lines. 

Representative agarose electrophoresis image of POT1 exon12 PCR. Each lane indicates breast 

cancer cell lines and HMEC1 strain. 
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4.3.2-Detection of DNA methylation of POT1 and TIN2 promoter regions in breast 

cancer cell lines 

Based on the results presented in Chapter III showing down-regulation of Shelterin 

genes in certain breast cancer cell lines, it is possible that the expression of these genes has 

been modulated by DNA methylation. To confirm this hypothesis we set out to identify 

evidence of DNA methylation in the promoter of POT1 and TIN2 (in the normal mammary 

epithelial cell strains (HMEC1) and the breast tumour cell lines, 21NT, BT474, BT-20, MCF-7, 

GI101, 21MT2, PB1 and HS578-T). To this end the methPrimer 

(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) program was used to 

identify the 5' promoter regions of all six Shelterin genes. This website recognised the 

promoter regions of POT1, TIN2, and RAP1.  

In this section, we only analysed the promoter region of POT1 and TIN2 as these two 

genes demonstrated a significant up-regulation of gene expression following 5-aza-CdR and 

5-aza-CdR/TSA treatment in comparison with the other Shelterin genes (Section 4.3.5). The 

promoter regions of POT1 and TIN2 genes were analysed in all untreated (i.e., not exposed 

to 5-aza-CdR and TSA) breast cancer cell lines. As shown in Figure 4.4, partial methylation 

was present in POT1 and TIN2 promoter regions in breast cancer cell lines. The results 

indicated that the POT1 promoter contains more methylated DNA in breast cancer cells 

21NT, BT474, 21MT-2 and PB1. These cell lines also have unmethylated DNA. This is based 

on the level of intensity of the PCR band on the agarose gel. Moreover, BT20, GI101, and 

HS578-T have more unmethylated DNA which is consistent with the control (HMEC1). More 

evidence of POT1 methylation in 21NT, BT474, 21MT-2, and PB1 cells in comparison with 

http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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HMEC1 was observed. However, no significant differences of TIN2 were observed in 

methylated and unmethylated lanes (Figure 4.4). 

 

 

 

 

 

 

Figure 4.4-Methylation Specific PCR (MSP) analysis of POT1 (A) and TIN2 (B) genes in breast cancer 

cell lines and normal mammary epithelial cell strain (HMEC1). A) POT1 panel viewed from left to 

right in breast cancer cell lines. Lane 1 is the ladder, M specifies the presence of methylated DNA, 

and U demonstrates unmethylated. B) TIN2 panel viewed from left to right shows a ladder, the 

presence of methylated and unmethylated DNA in breast cancer cell lines. 

 

 

 

 

 

 

A 

B 
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4.3.3-Sequence analysis of POT1 promoter region in breast cancer cell lines 

As described in the previous section (4.3.2), POT1 appeared to be more methylated 

in 21NT and 21MT-2 cell lines in comparison with HMEC1 control. In contrast, the GI101 

showed a stronger unmethylated signal in the same promoter region of POT1. Therefore, 

these cell lines were examined more in detailed for POT1 promoter methylation. To identify 

precisely where in the promoter region of POT1 methylation occurs in breast cancer cell 

lines and normal epithelial cell strains. Genomic DNA from 21NT, 21MT-2, GI101, and 

HMEC1 were prepared for bisulphite sequencing.  

A fragment with a length of 118 base pairs from the POT1 gene promoter region was 

utilized for the bisulphite direct sequencing. For this purpose, breast cancer cell lines (21NT, 

21MT-2, and GI101) and the normal epithelial cell strains (HMEC1) were sequenced. Figure 

4.5 indicates that 21MT-2 and GI101 breast cancer cell lines were unmethylated in the 

upstream promoter region of the POT1 CpG Island. Bisulphite sequencing also showed that 

the methylation ratio in 21NT was about 30%, which showed frequent methylation in the 

amplified region. However, no methylation in this region was observed in HMEC1 control 

(Figure 4.5). The sequencing chromatograms also showed that all of the CpG Island in 21MT-

2 and GI101 was unmethylated, as about all cytosine was converted to thymidine (Figure 

4.5) (Figure S2). As shown in Figure 4.6, 11 possible CpG sites upstream of POT1 exon1 were 

analysed. The degree of hypermethylation varied from 3/11 CpG sites in 21NT to 0/11 CpG 

sites in 21MT-2, GI101, and the HMEC1 control.  
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Figure 4.5-POT1 methylation analysis of the normal mammary epithelial cell strain (HMEC1), 21NT, 21MT-2 and GI101. A) The top panel is upstream 

promoter region in 21NT cells. B) The second panel is 5’ CpG Island in HMEC1. C) The third panel is upstream promoter region in GI101 and D) is 5’ CpG 

Island in 21MT-2 using bisulphite sequencing directly from PCR products. The comparison is based on the percentage of CpG Islands. The chromatogram 

shows the location of CpG Islands which appears to be partially methylated in 21NT cell line whereas no CpG is methylated in the POT1 promoter region of 

HMEC1 cell strain, 21MT-2 and GI101 breast cancer cells. Each colour represents nucleotides T: thimidine, C: cytosine, G: guanine. Arrows indicate CpG 

dinucleotide which is methylated and the rest remained unmethylated. 

A 

B 

C 

D 
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Figure 4.6-CpG methylation status of the POT1 promoter. About 118 base pair upstream of exon1 

was analysed by bisulphite sequencing. The POT1 promoter region was identified and the 

rectangular area represents CpG regions. Three breast cancer cell lines and HMEC1 cell strains 

control were analysed. The black symbols show methylated CpGs and white symbols sites of 

unmethylated CpGs. 
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4.3.4-Attempts to reactivate full POT1 expression by treatment of 21NT breast cancer cells 

with TSA and 5-aza-CdR 

4.3.4.1-Optimization of TSA and 5-aza-CdR concentrations on 21NT cells  

The effect of 5-aza-CdR and TSA concentrations on POT1 expression in 21NT cells 

was investigated as it was found to be down-regulated in 21NT cancer cells (Chapter III). In 

this way, the optimization of 5-aza-CdR and TSA was carried out. Figure 4.7-B shows that 

there is seemingly a very gradual dose dependent increase up to a threshold of 50ng/ml 

followed by an abrupt step-change between 50 and 100ng/ml. Significantly increased 

expression levels of POT1 were observed at the highest concentration of TSA (100ng/ml). 

However, cell viability was reduced to 61% with single-agent treatment (TSA) at the highest 

dose (100ng/ml) when compared with untreated control (Figure 4.7-A). As shown in Figure 

4.8-A, treatment with TSA at 50 and 100ng/ml with 5µM 5-aza-CdR increased the 

percentage of cell survival compared with TSA alone (Figure 4.7-A). The highest up-

regulation levels of POT1 were observed at the concentration of 50 and 100ng/ml of TSA 

with 5µM 5-aza-CdR (Figure 4.8-B). Reduced cell survival after treatment with the highest 

concentration of TSA indicates cytotoxioty (an inhibition of cell growth /division and all 

death). The results showed an average cell viability and maximum expression of POT1 at TSA 

concentration of 50ng/ml along with 5µM 5-aza-CdR in 21NT cells. Therefore, this suggests 

that 50ng/ml was the best concentration of TSA to be used.  
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Figure 4.7-The changes in cell viability (A) and expression level of POT1 (B) after treatment with 

TSA. The 21NT cell line was treated with TSA for 48 hours at different concentrations. A) The cell 

viability assay was performed to determine cell survival. B) qRT-PCR results show changes in POT1 

expression levels in 21NT cell after treatment with TSA at different concentrations. Untreated 21NT 

was used as the calibrator.  
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Figure 4.8-The changes in breast cancer cell viability (A) and expression level of POT1 (B) after 

treatment with TSA and 5-aza-CdR. 21NT cells was treated with TSA at different concentration and 

with a single concentration (5µM) of 5-aza-CdR. A) The cell viability assay was performed to 

determine cell survival. B) qRT-PCR results show changes in POT1 expression levels in 21NT cells 

after treatment with TSA at different concentrations and 5-aza-CdR. 
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4.3.4.2- Effect of TSA and 5-aza-CdR in 21NT cells at different time points 

To determine the effect of TSA and 5-aza-CdR on the 21NT cell lines, cells were 

treated with both drugs individually or together at different time points (Table 4.3). Since 

the first replication takes 24 hours, it was decided to compare POT1 gene expression at 24 

and 48 hours to examine the effect of each drug. Cells were treated with two different 

concentrations of TSA (50 and 100ng/ml) whereas the concentration of 5-aza-CdR was kept 

constant at 5µM throughout the experiment. In treatments 1-4 (Table 4.3), 21NT cells were 

treated twice with TSA and 5-aza-CdR with 8 hours gap between each treatment (Ghoshal, 

Datta et al. 2005). The cells were collected either at 24 (1 and 2) or 48 hours post treatment 

(3 and 4) for further analysis. In treatments 5-8, 21NT cells were treated twice with TSA and 

5-aza-CdR with 4 hours gap between each treatment (Ghoshal, Datta et al. 2005). The cells 

were collected either at 24 (5 and 6) or 48 hours post treatment (7 and 8) for further 

analysis. In treatments 9 and 10 21NT cells were treated with 5µM 5-aza-CdR for 48 hours. 

TSA at concentrations of 50ng/ml and 100ng/ml, were added to the cell cultures (9 and 10 

respectively) for the last 16 hours of treatment (Pryzbylkowski, Obajimi et al. 2008; Mirza, 

Sharma et al. 2010). As depicted in Figure 4.9, treatment 9 consisting of 5µM 5-aza-CdR and 

50ng/ml of TSA (for the last 16 hours of treatment) had the highest effects on mRNA 

expression levels of POT1. Therefore, 21NT cells were treated with the same regimen for 

further analysis of effect on other Shelterin and Shelterin-associated genes.  
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Table 4.3-Regimens for treating 21NT cells with different concentration of TSA (50 or 100ng/ml) and 

5µM of 5-aza-CdR at different time points 

No of Experiment 
TSA Concentration 

(ng/ml) 

5-aza-CdR 

Concentration(µM) 

 

Time in Culture  

treated with 

TSA/5-aza-CdR 

Total Time in 

Culture 

1 50 5 8h twice 24h 

2 100 5 8h twice 24h 

3 50 5 8h twice 48h 

4 100 5 8h twice 48h 

5 50 5 4h twice 24h 

6 100 5 4h twice 24h 

7 50 5 4h twice 48h 

8 100 5 4h twice 48h 

9 50 5 48h with AZA* 
16h with TSA 

48h 

10 100 5 48h with AZA 
16h with TSA 

48h 

*AZA: 5-aza-CdR 

 

Figure 4.9-Effect of 5-aza-CdR and TSA on expression levels of POT1. The qRT-PCR results show 

changes in POT1 expression levels in 21NT cells after treatment with 50 and 100ng/ml of TSA with 5-

aza-CdR at different time points. Untreated 21NT cells were used as the calibrator. 
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4.3.5-Up-regulation of Shelterin and Shelterin-associated genes by 5-aza-2'-deoxycytidine 

(5-aza-CdR) and Trichostatin A (TSA) 

To further understand the mechanisms controlling epigenetic regulation of Shelterin 

genes in breast cancer cells, the effects of 5-aza-CdR and TSA individually and 5-aza-CdR/TSA 

together on all Shelterin and Shelterin-associated gene expression were investigated in 

21NT cells after 48 hours treatment (Figure 4.10). These cells were chosen for analysis 

because they were available at an earlier passage compared to the other breast cancer cell 

lines included in this study. 

  

  

Figure 4.10-Representative images showing an example of individual treatment of 21NT 

cells with 5-aza-CdR and TSA at x5 magnification. A) 21NT cells containing 0.02% DMSO-

treated control and cultured for 48 hours, B) 21NT cells containing 5µM 5-aza-CdR and 

cultured for 48 hours, C) 21NT cells containing 5µM 5-aza-CdR and 50ng/ml TSA cultured for 

48 hours, D) 21NT cells containing 50ng/ml TSA cultured for 48 hours. Each treatment of 

21NT cells appears to have rounded cell shape and no difference between each treated cells 

shape have been observed. 

A B 

C D 
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To explore whether the down-regulation of genes encoding members of the 

Shelterin and Shelterin-associated genes observed in this study, is due to DNA or histone 

modifications, the 21NT cells was treated with 5-aza-CdR and TSA. Therefore, demethylation 

of a gene by exposure to 5-aza-CdR and or suppression of the activity of HDAC by TSA 

should result in removal of a mechanism which should in theory lead to restoration of 

normal expression the relevant Shelterin and Shelterin-associated genes.  

The expression of Shelterin and Shelterin-associated genes was detected using 

qRT-PCR normalised with endogenous GAPDH. Treatment of 21NT cells in combination with 

5-aza-CdR and TSA, lead to increased expression of POT1 and TIN2 (Figures 4.11-A and 4.13-

A) as compared with the DMSO sample (p<0.05). In contrast, the up-regulation of TNKS2, 

TRF1, TRF2, and RAP1 did not reach the statistical significance (Figures 4.11-B, 4.12-A, 4.12-

B, and 4.13-B). However, 21NT cells treated solely by TSA, did not show up-regulation of 

TNKS2, TRF2 and RAP1 (Figures 4.11-B, 4.12-A, 4.13-B). Treatment with 5-aza-CdR alone 

resulted in up-regulation of all the above genes (except TRF1) and there was a significant 

up-regulation of POT1, TIN2 and TPP1 mRNA in 5-aza-CdR/TSA and 5-aza-CdR treated 

samples (p<0.05) (Figures 4.11-A and 4.13-A, 4.14-A). In addition, in the previous results 

Chapter (III), it was evident that TPP1 was over-expressed in 21NT cells in comparison with 

the HMEC1 (Figure 3.10). However, these trends were not statistically significant. The result 

in this chapter showed that the expression of TPP1 after 48 hours of treatment with 5-aza-

CdR increased by 4-fold when compared with DMSO and untreated controls (p<0.05) (Figure 

4.14-A). 
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Figure 4.11-Effects of 5-aza-CdR and TSA on the expression of POT1 and TNKS2 in the 21NT breast 

cancer cell line. qRT-PCR analysis of POT1 (A) and TNKS2 (B) mRNA levels following 5-aza-CdR and 

TSA treatments in 21NT cells for 48 hours. Expression of each gene values were normalised to 

GAPDH mRNA level. DMSO control was used as the calibrator. RQ and error bars indicate relative 

quantification and SEM. Asterisk indicates significant difference between 21NT treated cells and 

DMSO-control (*P<0.05). 
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Figure 4.12-Effects of 5-aza-CdR and TSA on the expression of TRF1 and TRF2 in the 21NT breast 

cancer cell line. The image (A) and (B) represent qRT-PCR analysis of TRF1 and TRF2 mRNA isolated 

from 21NT treated with 5-aza-CdR and TSA for 48 hours. TRF1 and TRF2 expression were normalised 

to the expression of the GAPDH. DMSO control was used as the calibrator. RQ and error bars 

indicate relative quantification and SEM. 
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Figure 4.13-Effects of 5-aza-CdR and TSA on the expression of TIN2 and RAP1 in the 21NT breast 

cancer cell line. The graphs (A and B) represent analysis of mRNA from the 21NT treated cells with 

qRT-PCR to detect the TIN2, RAP1 and GAPDH mRNAs. DMSO control was used as the calibrator. 

Error bars represent SEM. Asterisk indicates significant difference between 21NT treated cells and 

DMSO-control (*P<0.05). 
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Previous results demonstrated a significant increase in the mRNA levels of TPP1 in 5-

aza-CdR treated samples (p<0.05) after 48 hours (Figure 4.14-A). Therefore, 21NT cells were 

also treated by 5-aza-CdR and TSA individually and in combination with 5-aza-CdR and TSA, 

for 72 hours or 3 weeks. The long-term (3 weeks) and short-term (72 hours) effect of drugs 

on levels of TPP1 protein in cultured cells were analysed by western blot. In all samples TPP1 

was detectable as a 58 KDa (rabbit polyclonal antibody Abcam) protein (Figures 4.15-A and 

4.15-B). The amount of TPP1 protein in 21NT cells treated with 5-aza-CdR/TSA for 72 hours 

was increased in comparison with the DMSO-control (Figures 4.15 A-B). Thus the protein 

level of TPP1 was consistent with the qRT-PCR results (Figures 4.14-A and 4.15 A-B). 

However, the protein level of TPP1 in 21NT cells treated with 5-aza-CdR alone (short-term) 

 

 

Figure 4.14-Expression of TPP1 in 21NT treated cell line determined by qRT-PCR. A) The graph 

represents analysis of transcription level of TPP1 from the indicated 21NT treated cells with 5-aza-

CdR and TSA for 48 hours. All mRNA levels were normalized to the level of GAPDH mRNA. Error bars 

represents SEM. DMSO control was used as the calibrator. Asterisk indicates significant difference 

between 21NT treated cells and DMSO-control (*P<0.05). 
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was inconsistent with mRNA results. Also, no considerable difference in TPP1 protein level 

was observed in long-term treated sample compared with short-term treatment (Figure 

4.15 B-C). 

 

 

 

 

 

 

 

Figure 4.15-Western blot analysis of TPP1 in 21NT treated cells with 5-aza-CdR and TSA. B) A 12% 

SDS-PAGE gel indicating TPP1 protein expression and β-Actin ratio levels as a lane loading control in 

DMSO, 5-aza-CdR and 5-aza-CdR/TSA treatment of 21NT cells for 72 hours and 3 weeks. C) 

Densitometric analysis of TPP1 protein normalised to total β-Actin protein and reported as optical 

densitometry (OD) unites.  
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4.3.6-Effects of prolonged treatment of 21NT cells with 5-aza-2'-deoxycytidine and 

Trichostatin A on transcription level of Shelterin genes 

As discussed in Section 4.3.5, 5-aza-CdR, TSA and 5-aza-CdR/TSA treatment after 48 

hours had differential effects on Shelterin and Shelterin-associated gene expression levels. 

The preliminary results showed significantly increased expression of POT1 and TIN2 mRNA 

(p<0.05) following 5-aza-CdR and 5-aza-CdR/TSA treatment in the absence of consistent 

promoter DNA demethylation and histone deacetylation (Figures 4.11-A and 4.13-A). 

Therefore, we sought to investigate long-term treatment of 21NT cells to identify whether 

the expression of these genes may possibly change after longer period of exposure. We 

  

Figure 4.16.A-Expression of POT1 in 21NT treated cells at different time points. The graph represents 

analysis of mRNA from the indicated 21NT treated cells by qRT-PCR. 0.02% of DMSO-treated (control) 

was used as the calibrator. Error bars represent SEM. Asterisk indicates significant differences between 

21NT treated cell lines and DMSO-control (*P<0.05, **P<0.01, ***P<0.001). 
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examined the expression of POT1 and TIN2 by 50ng/ml TSA and 5µM 5-aza-CdR treatments 

for 48h, 72h, 96h, 120h, 144h, 7 days, 3 weeks, 6 weeks and 2 months plus retreatment for 

72 hours in 21NT cells. Analysis of each of these genes employed gene-specific primers see 

Table 2.2. The expression levels of the genes were assessed by qRT-PCR. qRT-PCR was 

performed in triplicate for each of the cDNA pools. The data showed that treatment of 21NT 

cells significantly increased transcription levels of POT1 and TIN2 upon on treatment with 

TSA, 5-aza-CdR, and 5-aza-CdR/TSA after different time points. Figure 4.16 shows the 

expression of POT1 after 72 hours of treatment with TSA and 5-aza-CdR/TSA was over four- 

fold higher in the 21NT cells treated than in 21NT untreated  cells  (P<0.05, P<0.01 and 

  

Figure 4.16.B-Expression of POT1 in 21NT treated cells determined by qRT-PCR. B) The graph 

represents analysis of transcription levels of POT1 from the indicated 21NT treated cells with 5-aza-

CdR and TSA at different time points. All mRNA levels were normalized to the level of GAPDH mRNA.  

Error bars represent SEM.  
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P<0.001 correspondingly). In addition, treatment of 21NT cells with 5-aza-CdR and TSA 

alone, and in combination with 5-aza-CdR and TSA for 48 hours resulted in significant up-

regulation of POT1 (P<0.01 and P<0.001 correspondingly). Nevertheless, no substantial 

differences in expression of POT1 has been observed in 96, 120, 144 hours and 7 days of 

treatment (Figures 4.16-A and 4.16-B). In addition, the biphasic response of POT1 and TIN2 

gene expression was seen with an optimal peak at 72 hours, which then declined and the 

expression was increased significantly again at 3 weeks treatment (correlated with telomere 

length see Chapter V).  

To observe the effects of 5-aza-CdR and TSA on protein levels of POT1 in cultured 

cells, POT1 protein expression in control (DMSO-treated) and treated cells (5-aza-CdR and 

TSA) were analysed by western blotting. In all samples, POT1 was detectable as a 71 KDa 

(rabbit polyclonal antibody, Abcam) protein (Figure 4.16-C). Interestingly, combined 

treatment with 5-aza-CdR and TSA for 72 hours increased the levels of POT1 protein 

compared with the single treatment with 5-aza-CdR which was consistent with the qRT-PCR 

results (Figure 4.16-D). Moreover, less POT1 protein was also expressed in 21NT cells after 3 

weeks treatment relative to the DMSO control. The combined use of 5-aza-CdR and TSA for 

72 hours treatment had more effect on POT1 protein expression than with 3 weeks of 

treatment.  
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Figure 4.16 C and D-Western blot analysis of POT1 in 21NT treated cell line with 5-aza-CdR and TSA 

for 7 days and 3 weeks. C) 5-aza-CdR and 5-aza-CdR/TSA treatment increased POT1 protein levels in 

21NT cells. High levels of POT1 (71 KD) protein was detected by western blotting following 5-aza-CdR 

and 5-aza-CdR/TSA treatment of 21NT cells for 72 hours. β-Actin utilized as a lane loading control. D) 

Densitometric analysis of POT1 protein normalised to total β-Actin protein and reported as optical 

densitometry (OD) unites. 
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treatment of 5-aza-CdR and TSA induced up-regulation of Shelterin genes. Therefore, it is 

assumed that Shelterin genes are at least in part down-regulated by DNA methylation.  

Treatment of 21NT cells also increased mRNA levels of TIN2 after different time 

points of treatment. As shown in Figures 4.17-A and 4.17-B, the use of 5-aza-CdR for 120, 

144 hours and combined treatment with 5-aza-CdR and TSA for 48, 72, 120, and 144 hours, 

significantly activated re-expression of TIN2 in 21NT cells (P<0.05 and P<0.01 respectively). 

 

  

Figure 4.17.A-Expression of TIN2 in 21NT treated cells at different time points. The graph indicates 

analysis of mRNA from the indicated 21NT treated cell line by qRT-PCR to detect the TIN2 and GAPDH 

mRNAs. DMSO control was used as the calibrator. Error bars represent SEM. Asterisk indicates significant 

differences between 21NT treated cell lines and DMSO-control (*P<0.05, **P<0.01). 
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Similar findings were also detected with combined treatment of the drugs after 3 

weeks (correlated with telomere length see Chapter V). As evident in Figures 4.17-A and 

4.17-B, TIN2 mRNA levels were significantly up-regulated in 5-aza-CdR/TSA treated samples 

(P<0.05). Nevertheless, no considerable difference in expression of TIN2 has been observed 

in 6 weeks and 2 month retreated samples (Figures 4.17-A and 4.17-B). 

 

 

 

Figure 4.17.B-Expression of TIN2 in 21NT treated cells at different time points. The graph indicates 

analysis of mRNA from the indicated 21NT treated cell line by qRT-PCR to detect the TIN2 and GAPDH 

mRNAs. DMSO control was used as the calibrator. Error bars represent SEM.  
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4.3.7-POT1 methylation analysis on genomic DNA of 21NT treated cells  

In an effort to investigate whether 5-aza-CdR effects on cytosine methylation levels 

in the promoter region of POT1, the genomic DNA of 21NT treated with DMSO and 5-aza-

CdR for 72 hours was examined. As before, a 118 base pair fragment with the length of from 

the POT1 promoter region was utilized for the bisulphite direct sequencing method. The 12 

possible CpG regions in the promoter region of POT1 were identified. The results showed 

that the POT1 CpG Island in DMSO control was partially methylated whereas 5-aza-CdR 

treatment had reduced CpG Island methylation at the promoter region (Figure 4.18) (Figure 

S3). In three of the 12 CpG sites, there was methylation in the DMSO control whereas no 

methylation was observed after treatment with 5-aza-CdR treatment (Figure 4.19). These 

data again strongly suggest that POT1 promoter region at least partly under the control of 

DNA methylation in 21NT cells. 

  

 
 
Figure 4.18-Interpretation of methylation sequencing of POT1 promoter region. A) The upstream 

promoter region of 21NT cells treated with DMSO B) 21NT cells treated with 5-aza-CdR for 72 hours using 

bisulphite sequencing directly from PCR products. Chromatograms show methylation regions of 21NT 

treated at different time points. Arrows indicate a CpG methylated dinucleotide and the rest remained 

unmethylated. The C-picks indicate cytosine which is unmethylated in 21NT treated cells, the T-peaks show 

thymidine, the A-picks show adenine and the G-picks show guanine.  
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Figure 4.19-CpG methylation status of POT1 promoter in 21NT breast cancer cells before and after 

treatment with 5-aza-CdR. About 118 bp upstream of exon1 was analysed by bisulphite sequencing. One 

CpG promoter region was identified and the rectangular area represents CpG regions. 21NT cells treated 

with 5-aza-CdR and DMSO control for 72 hours. The black symbols show methylated CpGs and white 

symbol sites of unmethylated CpGs. 
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4.4-Discussion 

 The previous chapter (III) described results from this project providing evidence for 

altered expression of certain Shelterin genes in breast cancer cell lines. Two main ways in 

which gene expression can be altered is through mutation or epigenetic modifications. 

According to the 2009 COSMIC database (Catalogue of Somatic Mutations in Cancer, Sanger 

Centre UK http://www.sanger.ac.uk) no mutation was identified in the genomic sequence of 

any Shelterin genes, including POT1 in breast cancer cell lines. However, currently (2013), 

the COSMIC database shows over 127 somatic mutations in the POT1 gene in different 

cancers, such as breast, skin, and cervix. In addition, Ramsay et al. (2013) showed that POT1 

is commonly mutated in multiple myeloma, breast, lung, squamous cells, and hepatocellular 

carcinomas. However, at the time this project started, only one somatic mutation in exon12 

of POT1 had been discovered in HeLa and HO8910-PM cells (Hou, Huang et al. 2006). Based 

on these findings, genomic DNAs were isolated from the breast cancer cell lines and DNA 

sequencing of exon12 was carried out to identify a possible genetic mechanism that might 

lead to reduction of POT1 expression in these cell lines. Sequence analysis of exon12 

showed that no mutation was present in the panel of 10 breast cancer cell lines studied in 

this project. However, it remains possible that mutations exist in other exons of POT1. It was 

not possible to sequence all exons of the POT1 gene in all breast cancer cell lines due to lack 

of time and resources.  

Gene expression can be regulated both by DNA methylation and by histone 

modifications (such as acetylation, methylation, phosphorylation, and ubiquitination) 

through specific chromatin modifying enzymes (Jaenisch and Bird 2003; Bannister and 

Kouzarides 2011). In order to account for the observed reduction in Shelterin gene 

http://www.sanger.ac.uk/
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expression, these genes may possibly be silenced by DNA methylation in some breast cancer 

cells. Abnormal DNA methylation and histone modification are thought to play an essential 

role in carcinogenesis and apoptosis (Kondo, Shen et al. 2003). It has been previously 

reported that the combined treatment of breast cancer cell lines with 5-aza-CdR and TSA 

resulted in alteration of the expression level of estrogen receptor alpha (ER) (Pryzbylkowski, 

Obajimi et al. 2008). In addition, findings by Meng et al. (2008) showed that treatment of an 

ovarian cancer cell line with 5-aza-CdR and TSA resulted in DNA demethylation of hMLH1 

gene (Meng, Dai et al. 2008).  

The work described in this chapter, a powerful DNA methylation inhibitor, 5-aza-CdR, 

and a histone deacetylase inhibitor, TSA, used to address the possible mechanism for down-

regulation of Shelterin and Shelterin-associated genes in 21NT breast cancer cells. The qRT-

PCR results revealed that Shelterin genes were transcriptionally repressed through 

methylation and/or deacetylation as their mRNA expression was up-regulated in 21NT cell 

lines after 48 hours treatment with the drugs (Figures 4.11, 4.12, 4.13 and 4.14-A). The 

mRNA expression of POT1, TIN2, and TPP1 was significantly increased in treated 21NT cells 

compared with untreated and DMSO-treated controls (P<0.05). The transcription levels of 

TNKS2, TRF1, TRF2 and RAP1 appeared higher in 21NT cells after treatment (compared with 

untreated and DMSO controls). However, these trends did not reach a statistical 

significance. With TSA as a single agent approximately a 2-fold up-regulation in TRF1, RAP1 

and TPP1 was observed in comparison with untreated and DMSO-treated controls. 

Nevertheless, no substantial up-regulation of TNKS2 and TRF2 were observed after TSA 

treatment. This suggests that TRF2 and TNKS2 genes are marginally up-regulated by 

promoter demethylation rather than histone modifications (Figures 4.11, 4.12, 4.13 and 
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4.14-A). With the other Shelterin genes taken together, the results in this section indicated 

that Shelterin and Shelterin-associated genes were up-regulated due to the synergistic 

effects of 5-aza-CdR in combination with TSA treatment at 48 hours in 21NT cells. Based on 

the preliminary results, a significant increase in the expression of POT1 and TIN2 (p<0.05) 

could be observed following 5-aza-CdR and 5-aza-CdR/TSA treatment in 21NT cells. The 

effect of drugs at different time points was examined in order to investigate the expression 

of POT1 and TIN2 genes affected by 5-aza-CdR and 5-aza-CdR/TSA treatment of 21NT cells. 

To evaluate changes in these genes, the expression levels of POT1 and TIN2 were compared 

at each different time points ranging from 48 hours to 2 month treatment. The results 

showed that 5-aza-CdR and TSA only affected TIN2 and POT1 mRNA levels at short-term (48 

and 72 hour) and 3 weeks exposure. In addition, the biphasic response of POT1 and TIN2 

gene expression was seen with an optimal peak at 72 hours, which then declined and the 

expression was increased significantly again at 3 weeks treatment (correlated with telomere 

length see Chapter V). Nonetheless, no considerable differences in the expression of these 

genes were observed in 2 months cells retreated for 72 hours. Collectively the results 

indicated that 5-aza-CdR and TSA lose their effectiveness at the longest time points of 

treatment (6 weeks and 2 month retreatment) (Figures 4.16 and 4.17). Therefore, treatment 

is not permanent and reversible. 

The effects of 5-aza-CdR and TSA treatment on 21NT cells at different time points on 

POT1 and TIN2 mRNA levels, had not been studied in the project to date. Enzymes known as 

DNA methyltransferases (DNMTs) carry out DNA methylation at the 5 position of CpG 

dinucleotides. These enzymes regulate DNA methylation by catalysing the transfer of a 

methyl group from S-adenosyl-L-methionin (SAM) to a cytosine (Bestor 2000). DNMT1 is the 
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main methylation maintenance enzyme that methylates hemi-methylated DNA during the 

process of DNA replication (Pradhan, Bacolla et al. 1999; Kim, Samaranayake et al. 2009). 

Since many tumour suppressor genes are known to be inhibited through the DNA 

methylation process during carcinogenesis, 5-aza-CdR has been used to reactive these genes 

through inhibiting DNMTs. 5-aza-CdR which is incorporated into gDNA during replication, 

and thereby inhibits DNA methylation via irreversible covalent binding to DNMT1 (Maslov, 

Lee et al. 2012). By this mechanism, it could be argued that the lowest mRNA levels of POT1 

and TIN2 between 72 hours and 3 weeks may perhaps resulted from an increase in the 

expression of the DNA methyltransferase 1 enzyme, leading to hypermethylation of POT1 

and TIN2 after several replications. 

Recent work by Kang et al. (2013) demonstrated that Runt-related transcription 

factor 3 (RUNX3), a tumour suppressor gene, was hypermethylated in MCF-7, breast cancer 

cell line. They showed that 5-aza-CdR induces apoptosis and inhibits cell proliferation by 

demethylating the promoter region of RUNX3 and reactivating its expression (Kang, Dai et 

al. 2013). Therefore, based on previous investigations, it should be noted that 5-aza-CdR is a 

chemotherapeutic drug, which causes cell death via induction of apoptosis pathways. 

Consistent with this observation, approximately 72 hours after treatment with 5-aza-CdR, a 

significant reduction in 21NT cell number was observed. Therefore, by 7 days of treatment, 

cells which have become resistance to the treatment but retained the unmethylated status 

will start to grow and continue to grow up to 3 weeks accompanied by an increase in gene 

expression.  

POT1 appears to bind directly to the 3' overhang of single stranded telomeric DNA. 

This protein interacts with TIN2 via TPP1 protein to become part of the Shelterin complex 
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(Takai, Kibe et al. 2011). Hence, TPP1 is the only protein that is directly bound to POT1 and 

TIN2. qRT-PCR results showed significant up-regulation of TPP1 after 48 hours treatment of 

21NT cells with 5-aza-CdR treatment (p<0.05). We then investigated the protein levels of 

TPP1 and POT1 on short-term (72 hours) and long-term (3 weeks) treatment of the 21NT 

cells to examine whether the expression of these genes at the protein level might perhaps 

change after longer period of treatment. Western blot analysis was performed using POT1 

rabbit monoclonal antibody (Abcam) and TPP1 rabbit polyclonal antibody (Abcam) and the 

values was normalised using β-Actin rabbit antibody (Sigma). These confirmed previous 

results obtained with qRT-PCR and revealed that 5-aza-CdR and the combined treatment of 

5-aza-CdR and TSA induced the protein levels of POT1 after 72 hours treatment in 

comparison with DMSO-treated control. However, no significant increase was detected in 

long-term treatment (Figures 4.16-C and 4.16-D). Furthermore, no substantial difference in 

TPP1 protein level was observed in long-term treated sample compared to the short-term 

treatment (Figure 4.15). As shown in section 4.3.6, POT1 and TIN2 were significantly up-

regulated in 21NT cells after being treated with 5-aza-CdR and TSA at different time points 

in comparison with DMSO and untreated controls. Therefore, our data indicated that 

promoter regions of POT1 and TIN2 genes may possibly be under the control of DNA 

methylation. Consequently, Methylation specific PCR (MSP) was used to examine the 

promoter regions of POT1 and TIN2 genes. Methylation specific PCR indicated that the 

promoter region of POT1 was partially methylated in untreated (i.e., not exposed to 5-aza-

CdR and TSA) breast cancer cell lines (21NT, 21MT-2 and GI101). However, no significant 

differences in the promoter region of TIN2 were observed in methylated and unmethylated 

lanes compared with the control (HMEC1) (Figure 4.4).  
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The upstream promoter region of POT1 was analysed for methylation in 21N, 21MT-

2 and GI101 breast cancer cell lines, using bisulphite sequencing. Contrary to expectation, 

bisulphite sequencing data showed that no CpG region was methylated in 21MT-2 and 

GI101 breast cancer cell lines (Figure 4.5). However, 21NT cells was about 30% methylated 

in the upstream promoter region of POT1 in comparison with HMEC1 (Figure 4.6). The 

product obtained from bisulphite PCR was sequenced and 100bp of error-free sequence was 

obtained. This was not enough to get an accurate estimation of the methylation pattern 

within the promoter region of POT1. Therefore, further sequence analysis should be carried 

out encompassing a larger region of the POT1 promoter region.  

In the current study, we determined the effects of these drugs on cytosine 

methylation levels in the promoter regions of POT1. The 21NT cells were treated with these 

drugs for 72 hours to investigate the reduction of cytosine methylation at POT1 promoter 

region. Bisulphite sequencing data showed that 5-aza-CdR treatment removed all 

methylation sites of CpG dinucleotide in comparison with DMSO-treated as all cytosine 

residues were converted to thymidine (Figures 4.18 and 4.19). This finding is consistent with 

the earlier results showing up-regulation of Shelterin genes. In light of the new data 

discussed above, both DNA methylation and histone deacetylation appear to be implicated 

in the silencing of Shelterin and Shelterin-associated genes in breast cancer cell lines. The 

results presented here suggest that the synergistic effect of 5-aza-CdR may perhaps reduce 

DNA methylation in association with gene reactivation. It has been hypothesized that 5-aza-

CdR and TSA treatments enhance gene transcription by opening promoter region to 

increased accessibility of assembling transcription factor complexes (Yang, Phillips et al. 

2001; Margueron, Duong et al. 2004). Since these two agents have individually been able to 
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induce gene expression, they might be expected synergistically have a more potent effect 

on the gene expression than either alone.  



 

 

 

 

 

 

 

Chapter V 

ANALYSIS OF TELOMERE LENGTHS IN THE BREAST CANCER 

CELL LINE 21NT FOLLOWING EPIGENETIC CHANGES TO THE 
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5.1-Introduction 

As has been mentioned in early chapters, telomeres consist of repetitive TTAGGG 

sequences found at the end of mammalian chromosomes, and play an important role in 

maintaining genomic integrity (Jacobs 2013). Telomeres are maintained by two main 

processes: (i) a telomere-specific DNA polymerase called telomerase (the primary 

mechanism), and (ii) the secondary alternative lengthening of telomeres mechanism known 

as ALT (a rare mechanism found in some tumours) (Conomos, Pickett et al. 2013). The 

telosomal proteins encoded by Shelterin genes play a part in protecting the ends of 

telomeres (de Lange 2002). The reverse transcriptase enzyme telomerase is responsible for 

the addition of hexanucleotide repeats TTAGGG, onto the 3’-end of a telomere, and 

consequently counter the process of replication-associated telomere shortening (Bryan 

1995). The six protein complex Shelterin packages (caps) the ends of chromosomes 

preventing them from being recognised as a site of DNA damage during DNA replication 

(Liu, O'Connor et al. 2004; de Lange 2005). In view of the fact that a capacity for limitless 

replication is a sign of cancer, telomerase or ALT must be activated to overcome the process 

of telomere erosion (Hanahan and Weinberg 2000). Contrary to normal somatic cells, 85-

90% of tumour cells express high levels of telomerase which is responsible for maintaining 

the 2-3kb telomere length of most cancer epithelial cells (carcinomas) (Kim, Piatyszek et al. 

1994).  

The role of telomerase activation in human cancer development has been widely 

studied (Donate and Blasco 2011) and it is important to understand how telomerase 

activation occurs in breast cancer. It has been reported that the up-regulation of telomerase 
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is associated with cell immortalization and malignancy (Salhab, Jiang et al. 2008). There is a 

strong body of evidence suggesting that short telomeres in breast cancer cells precipitate 

telomere dysfunction and this may be in part related to Shelterin proteins and their level of 

expression in breast cancer cells (Butler, Hines et al. 2012).  

In the previous chapter (IV), we have shown that treatment of the 21NT cells with 

the DNA demethylating agent 5-aza-CdR and the histone deacetylase inhibitor TSA at 

different time point results in up-regulation of Shelterin genes mRNA expression. The 

transcription levels of POT1, TIN2, and TPP1 were significantly increased in treated 21NT 

cells compared with untreated and DMSO controls (P<0.05). The resulting effect of the two 

agents on telomere length was a question of a considerable interest. The primary aim of this 

section of the work was to investigate if the up-regulation of Shelterin gene expression had 

an effect on telomere length. Therefore, changes in telomere length in short-term (72 

hours) and long-term (3 weeks, 6 weeks, and 2 months plus retreat for 72 hours) treatment 

of 21NT cells was examined (Table 5.1). 

The assessment of telomere dynamics is critically dependent on the telomere length 

measurement techniques used. Several techniques are available to measure telomere 

length; these include Southern blot analysis (Terminal restriction fragment (TRF)), 

quantitative fluorescence in situ hybridisation (Q-FISH), flow-FISH, the hybridisation 

protection assay (HPA), quantitative PCR, and single telomere length analysis (STELA). Each 

method has its benefits and disadvantages. For instance, Southern blot and flow-FISH can 

determine the average telomere length, while Q-FISH provides information about telomere 

lengths of individual chromosomes. Quantitative polymerase chain reaction (q-PCR) is 

another technique to measure telomere length. However, the lack of an appropriate primer 
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binding site can hamper this method (Forstemann, Hoss et al. 2000; Cawthon 2002). 

Therefore, an important subsidiary aim of this section of the project was to compare the 

aforementioned techniques in terms of reliability and accuracy.  

5.2-Materials and methods 

5.2.1-Interphase Quantitative Fluorescent in situ hybridization (i-QFISH) 

For interphase analysis, samples were produced according to standard cytogenetic 

methods, with exception of colcemid treatment. 

5.2.1.1-Prehybridization washes 

Cells that were treated with 5-aza-CdR and TSA at different time points (see Section 

4.2.3 and Table 5.1) were trypsinized with Trypsin/EDTA. The cell suspension was 

centrifuged at 12000rcf for 5 minutes. Cells were then treated with 10ml of hypotonic buffer 

(75mM of KCl) for 30 minutes in a 37°C water bath (this causes cells to swell with water and 

to burst to release DNA content). The samples were then centrifuged at 1000rcf for 5 

minutes. The process of fixation was carried out by removing KCl and adding methanol and 

glacial acidic acid (3:1) solution. Cell suspensions were dropped onto clean glass slides and 

aged at 55°C overnight. After 24 hours, microscope slides containing samples were washed 

with phosphate-buffered saline (PBS) for 5 minutes on the shaker. Subsequently, the 

samples were treated with 4% formaldehyde for 2 minutes and washed in PBS for 3 times 

for 5 minutes each. In order to remove unwanted proteins, the cells were treated with 

1mg/ml pepsin solution (50ml of water acidified with 0.5ml of 1M HCl, pH 2.0, containing 

10% pepsin (Sigma)) for 10 minutes at 37°C in water bath. The slides were then washed 2 

times with PBS for 2 minutes each on a shaker platform and then fixed with 4% 
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formaldehyde for 2 minutes. Afterwards, the samples were washed three times with PBS for 

5 minutes each then dehydrated in the 70%, 90%, 100% ethanol for 5 minutes each. Slides 

were left to dry at room temperature. 

 

Table 5.1-Represents different time point of 21NT treated cells with 5-aza-CdR, TSA or DMSO 

Cell type 

Period of time under treatment 
with 

 
Period of time after treatment 

 
5µM of   

5-aza-CdR 
50ng/ml 
of   TSA 

0.02 % of 
DMSO 

Treated 21NT 
 

 
48hrs 

 

 
16hrs 

 

 
48hrs 

 
72hrs 7 days 3 weeks 6 weeks 2 months 

 

5.2.1.2-Hybridization 

20μl of the synthetic oligonucleotide PNA (Peptide Nucleic Acid) specific for the 

telomeric DNA sequence (CCCTAA)3, labelled with FITC, was added to the slides. Slides were 

then placed on the heating block for 2 minutes at 70-75°C and left in a dark humidified 

chamber for 2 hours at room temperature. Stock hybridization mixture (1ml) for the 

telomeric probe was made up of 700µl deionised formamide, 5µl blocking reagent (10% in 

maleic acid), 50µl MgCl2 buffer (2.5M MgCl2, 9 mM Na2HPO4, pH 7.0), 10µl Tris (1M, pH 7.2), 

152µl ddH2O and 83µl of PNA solution (6 µl/ml FITC or Cy3-conjugated PNA) (peptide 

nucleic acid, Applied Biosystems, MA, USA). 

5.2.1.3-Post hybridization washes  

After hybridization, the samples were washed twice in 70% formamide solution for 

15 minutes each. Then the slides were washed 3 times with PBS for 5 minutes in the dark on 

a shaker. Slides were then dehydrated in 70%, 90%, and 100% ethanol for 5 minutes each. 

15μl of Vectra-shield with fluorescence DAPI mounting medium (Vector, Vectashield) was 
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added to each slide and covered with a 22x50mm coverslip before sealing with a clear nail 

varnish. 

5.2.1.4-Image capture and telomere length analysis 

Images of interphase cells was acquired on a digital fluorescence microscope (Zeiss 

Axioskop 2) equipped with CCD camera (Photometrics) and Smart Capture software (Digital 

Scientific, Cambridge, UK) using fixed time exposure of 0.5 sec and magnification of 63x. IP 

lab software (Digital Scientific), (Figure 5.1) was used to analyse telomere fluorescence 

intensity per cell. The average signal was calculated as the total intensity of the telomeric 

signal utilizing the area under curve minus the background signal. The experiment was 

repeated at least twice and each time 100 cells were quantified for each sample. 

 

Figure 5.1-Representative images of A) LY-R (radio-resistant) and B) LY-S (radio-sensitive) interphase 

cells after hybridization with telomeric PNA oligonucleotides.  

 

 

 

A B 
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5.2.2-Telomere length determination by flow-FISH 

The in vitro measurement of telomere length can be done via different high 

throughput techniques. One such technique is called flow-FISH, and is based on flow-

cytometry. It works by utilizing a fluorescence tag hybridized to the telomeric repetitive 

sequence of (C3TAA)3. A modified version of this method first described by Cabuy et al. 

(2004) was utilized in this work (Cabuy, Newton et al. 2004). 

Cells were grown as described previously. Pellets containing 5x105 cells were re-

suspended and fixed in 1ml of 70% ethanol. To avoid cellular aggregation, fixative was 

added drop by drop under continuous shaking. Thereafter, the cells were incubated at 4°C 

overnight. All the centrifugations between the washing steps were performed at 0.8rcf for 5 

minutes. The cell pellets were washed by adding 1ml of PBS, centrifuged, and then the 

supernatant was discarded carefully. 500µl of hybridization mixture containing 70% 

formamide, 10mM Tris-HCl pH 7.0, 1% BSA made in PBS, and 0.3μg/ml of fluorescein 

isothiocyanate (FITC) conjugated peptide nucleic acid (PNA) probe (C3TAA)3 was added to 

the cell pellet and the mixture was heated at 80°C for 10 minutes in the dark to denature 

the DNA. The cells were left to hybridise for two hours in the dark at room temperature. 

Samples without the PNA telomeric probe were used as negative controls. After the 

hybridization step, pellets were spun down and supernatant was discarded carefully. Post-

hybridization washes were carried out to ensure that excess and unbound probe was 

washed away, therefore reducing the background fluorescence. This was done by adding 

500µl of wash solution containing 70% formamide, 10mM Tris buffer (pH 7), 0.1 % BSA and 

PBS to the cells. The pellet was suspended in the wash solution and the samples were 

centrifuged at 0.8rcf to collect cells and supernatants were discarded. A second wash was 
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done again twice using a 500μl of a solution containing PBS and 0.1% BSA; the cells were 

then centrifuged at 0.8rcf. A second incubation was done with propidium iodide (PI) (Sigma) 

to quantitatively assess the DNA content of cells. PI is a widely used fluorescence dye that 

binds directly to DNA by intercalating between the bases. In addition, PI binds to RNA 

therefore it is important to digest all RNA in the sample by treating it with RNaseA 

(Invitrogen). The cell pellet obtained above was re-suspended in a solution contained PBS, 

0.1% BSA, 10μg/ml of RNase A, and 0.1μg/ml of PI. The tubes were then stored in the dark 

for one hour at 4°C. After incubation, the samples were centrifuged and supernatant was 

discarded. The tubes were kept on ice all prior to the measurement with the flow 

cytometer.  

FACSCoulter EPICS XL (Becton Dickinson) was calibrated using flow-check 

fluorospheres (Beckman Coulter) to check laser alignment on all four channels; this step was 

performed before each measurement. The instrument was calibrated to measure the FITC 

telomeric signal on the FL1 channel, and the PI signal on FL3 channel. After calibration, cells 

were electronically gated for the G0/G1 phase of the cell cycle form the FL3 histogram 

window. The telomeric fluorescence intensity (TFI) of cells in the G0/G1 stage was recorded. 

In order to remove the background reading, TFI from the negative control cells was also 

measured and subtracted from the main sample reading. The experiment was carried out at 

least three times, and each time TFI readings from a minimum of 5,000 cells and a maximum 

of 20,000 cells were recorded (Figure 5.2).  
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C D 

E 
Figure 5.2-Examples of a typical profile of flow 

cytometry of HMEC1 cells. A) Side scatter versus 

forward scatter dot plot distinguishes each 

population of cells based on size and complexity of 

cells. B) Plot of PI/FITC with 3 regions showing the 

intensity of fluorescence. Positive samples are 

expected to be in grids C1 and C2 and negative 

samples in grids C3 and C4. C) Dot plot with a gate 

encompassing single cells. D) Histogram of a cell 

cycle was then plotted and only cells in the G0/G1 

phase were gated for telomere measurement. E) TFI 

(Telomere Fluorescence Intensity) units were 

measured within the middle part of the histogram 

on the FL1 channel. Twenty thousand cells were 

detected in five minutes and an average of 1,000 

cells was used to measure TFI units. 
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5.2.3-Terminal restriction fragment (TRF) telomere length analysis 

5.2.3.1-Overview 

Mammalian telomeric hexanucleotide repeats (T2AG3) and some sub-telomeric DNA 

sequences do not include restriction sites. Therefore, genomic DNA can be digested with 

restriction enzymes such as Hinf l and Rsa I to cut genomic DNA into small fragments, while 

the terminal chromosome fragment remains intact. Digested DNA fragments, including an 

undisclosed length of sub-telomeric DNA and the terminal section of TTAGGG repeats is 

called the terminal restriction fragment (TRF). Agarose gel electrophoresis separates the 

average size of the TRF which can be measured by Southern blotting. It includes 

hybridisation to a digoxigenin (DIG)-labelled probe precise for hexameric repeats and 

incubation with a specific DIG-antibody covalently linked to alkaline phosphate (Roche). 

Alkaline phosphate (AP) is used to visualize the immobilized telomere probe metabolising 

CDP-Star, a highly sensitive chemiluminescence substrate. During DNA replication, telomeric 

DNA is eroded which appears as a smear when analysed, showing the characteristically 

heterogeneous telomere population. This method is commonly used to determine 

difference in telomere length.  
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5.2.3.2-TRF Telomere Length Assay 

5x105 cells were harvested and washed with sterile PBS, pelleted and re-suspended 

in fresh PBS. Genomic DNA from treated 21NT cell was extracted as described in Section 2.7. 

TRF length measurement was performed utilizing the Telomere Length Assay (Roche 

Diagnosis). Approximately 3µg of DNA was digested for 2 hours at 37°C using a mixture of 

restriction enzymes Hinf I and Rsa I in a concentration of 20U/µl for each enzyme. The 

reaction was stopped by adding 5µl of gel electrophoresis loading buffer. The digested 

genomic DNA was loaded on to 0.8% 1x TAE buffer agarose gel. The same amount of DNA 

from each sample was carefully loaded in every lane. A DIG labelled molecular weight 

marker was loaded on either side of the respective samples. The gel was run at 5V/cm in 1x 

TAE buffer until the bromophenol blue tracking marker reached about 10 centimetres from 

the starting wells (total run 2-4 hours depending on tank size) (Figure 5.3). The gel was then 

left for 10 minutes in 0.25M HCI until the bromophenol blue stain changed colour to yellow. 

Then the gel was rinsed twice with sterile water and was denatured for 30 minutes in 0.5M 

NaOH, 1.5M NaCl followed by two more rinses. The gel was then neutralized for 30 minutes 

in 0.5M Tris-HCI, 3M NaCl (pH 7.5). All incubation steps were performed at room 

temperature with gentle agitation. Southern blotting of the digested DNA was done by 

capillary transfer using 20x Saline-Sodium Citrate (SSC) onto Hybond N+ membranes 

(Amersham) overnight. 
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Figure 5.3-Image of a typical agarose gel after electrophoresis showing smears of gDNA following 

digestion with restriction enzymes. The gel was then southern blotted and hybridised to the telo-

TTAGGG probe. Representative result of TRF analysis for telomere length measurement in 21NT treated 

with 5-aza-CdR and TSA at different time points and control (HMEC1) cells using telomere length Assay. 

The lanes on the left and right sides show the molecular size marker. Lane1) Untreated, Lane2) DMSO 

72hrs, Lane3) 5-aza-CdR 72hrs, Lane4) 5-aza-CdR/TSA 72hrs, Lane5) 5-aza-CdR 3weeks, Lane6) 5-aza-

CdR/TSA 3weeks, Lane7) 5-aza-CdR 6weeks, Lane8) 5-aza-CdR/TSA 6weeks, Lane9) DMSO, Lane10) 5-

aza-CdR 2 months, Lane11) 5-aza-CdR/TSA 2 months, Lane 12) HMEC1 p5, Lane13) HMEC1 P20, Lane14) 

The positive control DNA from immortal cell line (Telomere length Assay) respectively. The genomic DNA 

was digested with Hinf I and Rsa I enzymes and hybridized with a telomere-specific, digoxigenin (DIG)-

labelled hybridization probe. The size markers are indicated on the right. 
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5.2.3.3-Southern hybridization 

After Southern transfer, the membrane was washed in 2x SSC. Pre-hybridization was 

carried out by adding 18ml of pre-warmed DIG Easy Hyb Granules solution to the membrane 

for 30 minutes at 42°C with gentle agitation. Before hybridization, the telomere probe was 

added to the pre-warmed DIG-Easy Hyb Granules solution. The membrane was then 

hybridized for 3 hours at 42°C in a mixture of DIG-Easy Hyb and Telomere probe (Roche) 

with gentle agitation. Low stringency washes were carried out by discarding the 

hybridization solution and washing the membrane two times for 5 minutes in 2x SSC, 0.1% 

SDS at room temperature. High stringency washes were done twice for 20 minutes at 50°C 

in pre-warmed 0.2x SSC, 0.1% SDS with gentle agitation. Then, the membrane was washed 

with 100ml of washing buffer (provided by the kit). In order to pre-block the membrane, 

100ml 1x blocking solution was added to the membrane and incubated for 30 minutes at 

room temperature with gentle agitation. The membrane was then incubated in anti-DIG-AP 

solution (Roche) for 30 minutes at room temperature with gentle agitation and 

subsequently washed twice in 100ml of washing buffer. The membrane was then incubated 

for 5 minutes at room temperature with a detection buffer (Roche), followed by the 

addition of the substrate solution (CDP-Star) for 5 minutes before exposure to an X-ray film 

(Amersham Hyperfilm™ ECL) for 5 minutes at room temperature.  

5.2.3.4-Densitometry 

The average TRF value was calculated by evaluating the telomeric signal (smear) 

relative to molecular weight standard supplied with the Roche Kit. The exposed X-ray film 

was scanned with densitometer (a desk scanner G2710, HP) and using ImageQuant software 

5.2 (Amersham Biosciences, USA). It showed telomere lengths as smears ranging from 2 to 
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more than 21 kb. Each sample lane of the scanned image was overlaid with a grid. Then, the 

telomeric signal in each lane was quantified as a grid object, described as a single column 

with 30 rows (Figure 5.5). The resolution of the TRF length calculation was determined by 

the highest of the individual squares of the grid. This grid was placed over the lanes 

corresponding to the molecular size markers and telomere lane. Afterwards, the data was 

transferred to a spread-sheet (Microsoft) to quantitate integrate volume. Interpolating 

molecular sizes for each row were determined by plotting the row number 1-30 against the 

molecular size ladder and fitting a best (least squares) line. The average labelled TRF length 

in each lane was calculated in Excel as the mean of the optical density above background 

(Figure 5.4).  

 

 
 

 

Figure 5.4-Southern blot analysis of telomere length in 21NT treated cells and controls (HMECs). A) 

Standard curve used to calculate absolute telomere length measured by Southern blots of TRFs. Y-

axis represents log2 of DNA ladder and X-axis represents distance travelled in gel. Correlation 

coefficient calculated is 0.991. B) Numbers showing converted log2 values of DNA ladder size in kb 

used in the analysis.  
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The mean TRF length was defined according to the following formula: TRF = Ʃ (ODi)/Ʃ 

(ODi/Li). For each square lane that contains DNA, ODi is the chemiluminescent signal and Li is 

the lengths of the TRF at position i on the gel image. Then the mean TRF length was 

calculated using the above formula. 

 
Figure 5.5-Chemiluminescent detection of TRFs. The lane on the both sides shows the molecular 

size marker. Lane 1) Untreated, Lane 2) DMSO-treated 72hrs, Lane 3) 5-aza-CdR 72hrs, Lane 4) 5-aza-

CdR/TSA 72hrs, Lane 5) 5-aza-CdR 3weeks, Lane 6) 5-aza-CdR/TSA 3weeks, Lane 7) 5-aza-CdR 

6weeks, Lane 8) 5-aza-CdR/TSA 6weeks, Lane 9) DMSO-treated, Lane 10) 5-aza-CdR 2 months, Lane 

11) 5-aza-CdR/TSA 2 month, Lane 12) HMEC1 p5, Lane 13) HMEC1 P20, Lane 14) The positive control 

DNA from immortal cell line (Telomere length Assay) respectively. Gel profiles were read in a 

densitometer and gained in a grid and data were analysed in Excel spread sheet. Telomeric sizes are 

then calculated as explained. 
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5.2.4-Telomere length measurement by quantitative real time PCR 

 In order to determine telomere length, a real-time PCR technique was used. The 

relative telomere length was compared with that of a single copy gene. A single copy gene 

(SCG) control was used for amplification of each sample, and to determine genome copies 

per sample. We used 36B4 as a single copy gene which encodes the acidic ribosomal 

phosphoprotein PO (O'Callaghan and Fenech 2011). Genomic DNA was extracted from 21NT 

treated cells (see Section 4.2.3) and the normal human mammary epithelial cell strain 

(HMEC1) using the WizardTM Genomic DNA Kit as described in Section 2.7 (Chapter II). 

Telomere and single copy gene master mixes were prepared separately. Briefly, two q-PCR 

master mixes were prepared, one with the telomere primer pair and the other with the 

single copy gene primer pair (36B4). 10µl of 2x Power SYBER® Green PCR Master Mix 

(Applied Biosystems); 2µM forward primer (Telomere-F or 36B4-F) (Sigma, Table 5.2); 2µM 

reverse primer (Telomere-R or 36B4-R) (Sigma, Table 5.2), 4µl of 5ng/µl DNA sample; and 

nuclease free water up to 20µl were added to the templates. 

Telomere and single copy gene q-PCRs were performed in separate 96-well plates. 

20µl of telomere master mix was added to each sample well containing 5ng/µl DNA 

samples, standard well (2µl of the telomere standard) and no template control (NTC) of the 

first plate. The second plate was 20µl of single copy gene master mix containing 5ng/µl DNA 

samples, standard well (2µl of the single copy gene standard) and no template control 

(NTC). A telomere standard curve was established by serial dilutions of the telomere 

standard (1018400 kb through to 10184 kb dilution) and was used to measure the content 

of telomeric sequence per sample in kb (Figure 5.6).  
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A single copy gene (36B4) was used as a control for amplification of every sample 

performed and to determine genome copies per sample. A single copy gene standard curve 

was generated by performing serial dilutions of the 36B4 standard (6125000 kb through to 

6.125 kb dilution). Plasmid DNA (pBR322) was also added to each standard to maintain a 

constant 20ng of total DNA per reaction tube. After setting up the reactions, the plate was 

sealed with a real time plate sealer (MicroAmp, Applied Biosystems) and then centrifuged 

for one minute at 1000rcf to bring all the contents to the bottom of the well. Real-time PCR 

runs were performed in triplicate for each of the DNA pools. Each experiment was 

performed at least three times ensuring the reproducibility and accuracy of the results. The 

real time PCR reactions were run using the following reaction conditions for both telomere 

and 36B4 amplifications followed by the construction of a dissociation (or melt) curve:  

 

 95.0°C for 10 minutes (DNA denaturing step)      

 95.0°C for 15 seconds (DNA denaturing step)               40 Cycles 

 60.0°C for 1 minute (DNA Annealing step) 

 95.0°C for 15 seconds 

 60.0°C for 15 seconds                   Dissociation Step  

 95.0°C for 15 seconds 

 

The values (kb/reaction for telomere and genome copies for single copy gene) were 

exported to an Excel file and used to calculate total telomere length in kb per human diploid 

genome. The telomere kb length per reaction value was then divided by diploid genome 

copy number to give a total telomeric length in kb per human diploid genome.   
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Table 5.2-Oligomers used for telomere length assay in 21NT treated and normal cells (O'Callaghan 

and Fenech 2011) 

Oligomer Name 
Oligomere Sequence ( 5´            3´) 

Amplicon 
size (bP) 

Telomere Standard 

(Human/Rodent) 

(TTAGGG)14 84 

36B4 Standard 

(Human) 

CAGCAAGTGGGAAGGTGTAATCCGTCTCCACAGACAAGGCCA

GGACTCGTTTGTACCCGTTGATGATAGAATGGG 
75 

Telo-F 

(Human/Rodent) 

CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT 
>76 

Telo-R 

(Human/Rodent) 

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT 
>76 

36B4-F (Human) CAGCAAGTGGGAAGGTGTAATCC 
75 

36B4-R(Human) CCCATTCTATCATCAACGGGTACAA 
75 

 

 

Figure 5.6-Standard curve used to calculate absolute telomere length. A) Standard curve for 

calculating length of telomere sequence per sample: X-axis demonstrates amount of telomere 

sequence in kb per reaction with correlation coefficient of 0.997. B) Standard curve for calculating 

genome copies using 36B4 copy number: correlation coefficient was 0.999. 
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5.3-Results 

5.3.1-Telomere length analysis by Interphase Quantitative Fluorescent in situ 

Hybridization in 21NT breast cancer cells 

The breast cancer epithelial cell line, 21NT, treated with the demethylating agent, 5-

aza-CdR and the histone deacetylation inhibitor, TSA, showed up-regulation of expression of 

Shelterin genes (described in Chapter IV). The aim of the work described in this chapter was 

to analyse telomere lengths in 21NT cells before and after treatment with demethylating 

agents. The reasoning behind this was to analyse if up-regulation of some of the Shelterin 

genes such as POT1 and TPP1 has an effect on average telomere length. As the first method 

of telomere length measurement we used iQ-FISH. The average length of the telomeres in 

interphase stage was measured by Smart Capture software. 

The average telomere fluorescence intensities (TFI) of 21NT cells treated with 5-aza-

CdR and a combination treatment with 5-aza-CdR and TSA at short-term (72 hours) and 

long-term (3 weeks, 6 weeks and 2 months plus retreated for 72 hours) was measured and 

compared with those of normal human epithelial cell strain (HMEC1), untreated 21NT and 

DMSO-treated (the term DMSO treated control refers to 21NT cells that received the 

solvent DMSO-treated at final concentration of 0.02%) controls. Two mouse lymphoma LY-R 

(radio-resistant) and LY-S (radio-sensitive) cells were also used as calibration standards with 

known telomere lengths of 49kb and 7kb respectively (McIlrath, Bouffler et al. 2001). A total 

100 interphase cells per cell line were analysed by iQ-FISH to examine the telomere 

fluorescence intensity for each cell line. Figure 5.7 shows different telomere fluorescence 

intensity signals in DMSO-treated control, treated 21NT cells and HMEC1 cell strains. 



152 

 

 DMSO 5-aza-CdR 72hrs 5-aza-CdR+TSA 72hrs HMEC1 

FI
TC

 

    

D
A

P
P

I 

    

M
e

rg
e

d
 

    

Figure 5.7-Digital image of iQ-FISH. A) DMSO-treated, B and C) 21NT treated with 5-aza-CdR and TSA for 72 hours, D) Normal mammary epithelial cell 

strain (HMEC1). Telomeres were labelled by PNA-FITC (green) and nuclei were labelled by DAPI (blue). As shown, different samples give different signals 

and clear signals have been observed in 5-aza-CdR and TSA treatment compared with DMSO-treated control. Magnifications of the images are x65. 
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Following treatment of the 21NT cells with demethylating agents significantly higher total 

telomere fluorescence intensity was observed in treated 21NT cells compared with DMSO-

treated control (P<0.001) (Figure 5.8). The analysis revealed that 21NT treated cells with 5-

aza-CdR and a combination treatment with 5-aza-CdR and TSA at different time points, 

showed approximately a 2-fold increase in telomere fluorescence intensity compared with 

DMSO-treated and untreated 21NT cells (P<0.001) (Figure 5.8). However, 3 weeks treatment 

showed shorter TFI than the 72 hours, 6 weeks and two month treatment.  

 

Figure 5.8-Telomere length measurement by iQ-FISH. Comparison of the mean TFI in 21NT treated and 

control cell lines. The telomere fluorescence intensity is shown in normal human epithelial cell strain 

(HMEC), LY-R, LY-S, un-treated 21NT, DMSO-treated and 21NT treated with 5-aza-CdR and a 

combination treatment with 5-aza-CdR and TSA at 72 hrs, 3 weeks, 6 weeks and 2 months + retreatment 

for 72 hours. The analysis was performed using untreated 21NT with the lowest TFI compared to 21NT 

treated at different time points and controls; HMEC1 p6, LY-R, and LY-S. The experiment was repeated 

at least twice and each time 100 cells were quantified for each sample. Error bars represent SEM. 

Asterisk indicates difference between DMSO-treated cells and the 21NT treated cell lines (***P<0.001). 
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5.3.2-Telomere length analysis by flow-FISH in 21NT treated and control cell lines 

Results obtained from iQ-FISH showed a significant increase in telomere 

fluorescence intensity when the human breast cancer cell line 21NT was treated with 5-aza-

CdR and TSA at different time points. To confirm these results, we set out to measure the 

observed telomere elongation using a high-throuput flow cytometry method. We have 

therefore measured the telomere length intensity by flow-FISH in all of 21NT treated, 

untreated, DMSO-treated and HMEC1 cells. Telomere fluorescence intensity was measured 

in the G0/G1 phase of the cell cycle to make sure data were consistent with those obtained 

using iQ-FISH. Flow cytometry provides the flexibility to gate cells in different cell cycle 

(Figure 5.9). Since DNA content is doubled in S-phase, the telomere length measurement is 

gated in G0/G1. In comparing both methods we sought to confirm that the increase in 

telomere length observed when cells were treated with 5-aza-CdR and TSA was a reliable 

result. 
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Figure 5.9-Example of cell cycle and actual TFI in different cell lines. A and B) represent the 

histogram window of  the cell cycle of DMSO-treated control and TFI, C and D) represent the cell 

cycle of 21NT treated with 5-aza-CdR for 72 hours and TFI. 
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Data generated from flow-FISH experiments are shown in Figure 5.10. Interestingly, 

telomere fluorescence intensity of 21NT treated cells significantly increased after 72 hours, 

and 3 weeks when compared with DMSO-treated control (**P<0.01,***P<0.001 
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G 
H 

I 
Figure 5.9-Countinued example of cell cycle and 

actual TFI in different cell lines. E and F) 

represent the histogram window of the cell 

cycle of LY-S control and TFI, G and H) represent 

the cell cycle of HMEC1 and TFI. I) Demonstrates 

the actual average of TFI; Pale blue is LY-S, Blue 

is HMEC, Red is DMSO-treated control and 

Purple is 21NT treated with 5-aza-CdR for 72 

hrs. As indicates 5-aza-CdR treatment has the 

highest TFI compare with controls. 
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respectively). However, these trends did not reach statistical significance after 6 weeks 

treatment. No higher impact was observed after 2 months post treatment of 21NT cells 

compared with DMSO-treated control (Figure 5.10).  

 

 
Figure 5.10-Telomere length measurement by flow-FISH. Comparison of the mean Telomere 

Fluorescence Intensity (TFI) in 21NT treated and control cell lines. The telomere fluorescence 

intensity is shown in HMEC1, LY-R, LY-S, untreated 21NT (controls), DMSO-treated and 21NT treated 

with 5-aza-CdR and a combination treatment with 5-aza-CdR and TSA at 72 hrs, 7 days, 3 weeks and 

2 months plus retreatment for 72 hours. Error bars represent SEM. Asterisk indicates difference 

between DMSO-treated cells and the 21NT treated cell lines (**P<0.01, ***P<0.001). 

 

Based on the results obtained from iQ-FISH and flow-FISH methods used for 

telomere length estimation, flow-FISH proved to be least accurate in comparison with iQ-
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methods, this increase was not expected from untreated samples. Therefore, there are 

some advantages and disadvantages with each of the two methods that may influence the 

results. For instance, in the flow-FISH technique, cell clumping, crude experimental 

processor and fixation method might affect the results (Derradji, Bekaert et al. 2005). 

Furthermore, with this method, it seems that the probe cannot bind properly to the samples 

with pellet clumping which can influence the accuracy of the telomere fluorescence 

intensity. Flow-FISH and iQ-FISH provide the values of fluorescence intensity per cells. 

However, with both techniques it is not possible to measure the telomere fluorescence 

intensity signals corresponding to each individual chromosome end.  

Table 5.3-Comparison of flow-FISH and iQ-FISH results. TFI values represent the telomere 

fluorescence intensity; *P values indicate the difference between all the treated and untreated 

samples. HMEC1, LY-R and LY-S cells were used as a positive control. 

Samples 
TFI 

(flow-FISH) 
T-test 

(flow-FISH) 
TFI 

(iQ-FISH) 
T-test 

(iQ-FISH) 
 

Untreated 3.25  0.81  
DMSO-treated 12.75  1.44  

HMEC1 p6 9.15  4.7  
LY-R 31.5  3.9  
LY-S 5.85  2.0  

5-aza-CdR 72hrs **38.12 0.017 3.24 ***1.8E-15 

5-aza-CdR/TSA 72hrs 35.62 0.269744 3.57 ***1.2E-15 

5-aza-CdR  3weeks ***41.45 0.001801 2.0 ***0.001 

5-aza-CdR/TSA 3weeks 43.85 0.216611 2.59 ***7.6E-11 

5-aza-CdR  6weeks 31.75 0.174331 3.34 ***9.5E-18 

5-aza-CdR/TSA 6weeks 20.7 0.363277 3.11 ***8.6E-16 

5-aza-CdR 2months 12.85 0.61155 3.22 ***3.1E-16 

5-aza-CdR/TSA 2months 9.8 0.025613 3.27 ***1.4E-15 
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5.3.3-Telomere length analysis by terminal restriction fragment (TRF) in 21NT treated and 

control cell lines 

The initial observation of increased telomere length in treated 21NT cells was 

unexpected but in the line with our hypothesis. Could up-regulation of some of the Shelterin 

genes stabilise telomere lengths and even elongate them in the presence of telomerase 

enzyme. In order to be more confident of the initial data, we set out to confirm the above 

findings using other methods of telomere length measurement (Terminal Restriction 

Fragment, TRF).  

The result from the analysis of the 13 samples in Figure 5.11 is shown in Table 5.4. 

LY-R and LY-S samples were not considered as the enzymes used in the assay do not cut the 

mouse DNA samples. The data showed that there was the most increase in telomere length 

for 21NT cells treated with 5-aza-CdR at 3 weeks and the combination with 5-aza-CdR and 

TSA treatment for 72 hours (as compared with their respective DMSO-treated and 

untreated 21NT controls). Samples from short-term (72 hours) treatment with 5-aza-CdR 

yielded telomere length approximately the same size as those with long-term treatment 

with combination of 5-aza-CdR and TSA (3 weeks) treatment. However, only minimal 

differences were observed in 6 weeks and 2 months treatment groups. Therefore, it seems 

that the drugs lose their effectiveness over long term treatment period (2 months) (Figure 

5.11). The telomere length in the positive DNA control from an immortal cell line was 10.18 

kb which was consistent with the size recommended in the kit (Roche). A 1.13 kb difference 

in telomere size was observed in HMEC1 controls at different passages. It could be 

hypothesized that telomere shortening is correlated with increasing the passage number. 
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Table 5.4-Changes in telomere length (kb) determined by TRF analysis in control and treated 
samples 

Samples Telomere length (kb) 

HMEC1 p5 8.95 

HMEC1 p20 7.82 

Positive control DNA 10.18 

untreated 21NT 1.45 

DMSO-treated  1.35 

5-aza-CdR 72hrs 2.33 

5-aza-CdR/TSA 72hrs 3.30 

5-aza-CdR 3 weeks 4.56 

5-aza-CdR/TSA 3 weeks 2.45 

5-aza-CdR 6 weeks 2.36 

5-aza-CdR/TSA 6 weeks 2.32 

5-aza-CdR 2 months / retreat 1.94 

5-aza-CdR +TSA 2 months /retreat 1.55 
 

 

 
Figure 5.11-Telomere length measurement by telomere restriction fragment length (TRF). 

Comparison of the telomere length in 21NT treated and control cell lines. The telomere length is 

shown in normal human epithelial cell strain (HMEC1 p5 and P20), the positive control DNA from 

immortal cell line (Roche), untreated 21NT cells , DMSO-treated, and 21NT treated with 5-aza-CdR 

and a combination treatment with 5-aza-CdR and TSA at 72hrs, 3 weeks, 6 weeks and 2 months plus 

retreatment for 72 hours. The analysis was performed with untreated 21NT cells with the lowest 

telomere length (kb) compared with 21NT treated cells at different time points and to the adjacent 

controls; HMEC1 p5, HMEC1 p20, and positive control DNA. 
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5.3.4-Telomere length analysis by quantitative real time PCR in 21NT treated and control 

cells  

In order to confirm results obtained from TRF, iQ-FISH, and flow-FISH, the q-PCR 

technique was also performed. The average telomere length was measured by q-PCR in 

treated 21NT cells at different time points, untreated 21NT cells, DMSO-treated and HMEC1 

controls. As shown in Figure 5.12, HMEC1 showed a mean telomere lengths of around 7.3 

kb. In comparison with untreated and DMSO-treated controls, the short-term (72 hrs) and 3 

weeks treatment of 21NT cells with 5-aza-CdR showed increase telomere lengths ranging 

from 4.5 kb to 4.7 kb. The average telomere length in untreated 21NT cells was 

approximately 2.5 kb which was consistent with published results (Cuthbert, Bond et al. 

1999). The mean telomere length of the combination treatment of 21NT cells with 5-aza-

CdR and TSA for 72 hours and 3 weeks had a significant telomere length increase of about 

3.4 kb and 3.7 kb, respectively (P<0.05). However, no higher impact was observed with 6 

weeks and 2 month treatment of 21NT cells with 5-aza-CdR and 5-aza-CdR/TSA in 

comparison with 72 hours and 3 weeks treatment (Figure 5.12).  

Comparing the results obtained using TRF showed that 21NT treated cells had the 

highest increase in telomere length at 3 weeks of treatment with 5-aza-CdR (~4.56 kb) 

which was similar to the q-PCR result (~4.61kb) described earlier in this chapter (Figures 

5.11 and 5.12).   
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Figure 5.12-Telomere length measurement by q-PCR. Comparison of the telomere length in 21NT 

treated and control cell lines. The telomere length is shown in the normal human epithelial cell line 

(HMEC1 p5 ), untreated 21NT , DMSO-treated, and 21NT treated with 5-aza-CdR and a combination 

treatment with 5-aza-CdR and TSA at 72 hrs, 3 weeks, 6 weeks and 2 months plus retreatment for 72 

hours. The analysis was performed with untreated 21NT and DMSO-treated with the lowest 

telomere length (kb) compared with 21NT treated at different time points and to the adjacent 

controls; HMEC p5, untreated 21NT and DMSO-treated controls. Error bars represent SEM. Asterisk 

indicates difference between DMSO-treated cells and 21NT treated cell lines (*P<0.05).  

 

Results from using the q-PCR and TRF techniques for telomere length measurement 

were approximately similar and showing an increase in telomere length (Table 5.5). 

However, there are some differences between two methods. Like q-PCR, the TRF method 

was performed using genomic DNA to measure telomere length. However, unlike with q-

PCR, the TRF assay requires larger amounts of DNA. A significant drawback of the TRF 
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sequences that also contain subtelomeric repeats. These can vary in length based on the last 

restriction site at a given chromosome arm. Therefore increasing the TRFs heterogeneity 

influences the length of subtelomeric repeats and this prevents detection of the true length 

of telomere repeats (Vera and Blasco 2012). Previous findings by Steinert et al. (2004) 

showed that the mean length of subtelomeric portions is about 2 to 4 kb of sequence that is 

resistant to enzymatic digestion (Steinert, Shay et al. 2004). Unlike q-PCR and TRF methods, 

there was a considerable discrepancy between flow-FISH and iQFISH. Consequently, these 

two methods seem to be not as reliable and accurate as q-PCR and TRF. However, it appears 

that TRF and q-PCR techniques have both their benefits and disadvantages; it seems that 

molecular analyses in comparison with cytogenetic techniques are more quantitative and 

can measure changes in telomere length with better accuracy. The q-PCR method, in 

comparison with all the other methods used here, appears to be most accurate and reliable 

technique. 

Table 5.5-Comparison of TRF and q-PCR results. This table represents the differences in telomere 

length measurements by TRF and q-PCR methods.  

Samples TRF (kb) q-PCR (kb) 

Untreated 1.45 2.44 

DMSO-treated 1.35 2.64 

HMEC1 p5 8.95 7.32 

5-aza-CdR 72hrs 2.33 4.64 

5-aza-CdR/TSA 72hrs 3.30 3.67 

5-aza-CdR  3 weeks 4.56 4.61 

5-aza-CdR/TSA 3 weeks 2.43 3.98 

5-aza-CdR  6 weeks 2.36 2.81 

5-aza-CdR/TSA 6 weeks 2.32 2.45 

5-aza-CdR 2 months 1.94 3.04 

5-aza-CdR/TSA 2 months 1.55 3.55 
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5.4-Discussion 

Telomere length dysregulation plays a major role in cancer development (Butler, 

Hines et al. 2012). Telomeric attrition is involved in genomic instability and in early events in 

tumorigenesis. Maintaining telomere structure and function relies on the interaction 

between telomere length and the Shelterin complex (Hu, Zhang et al. 2010). It has been 

shown in several independent studies that regulating the expression of telomere proteins 

can be implicated in telomere length regulation in cancer (Gao, Zhang et al. 2011; Butler, 

Hines et al. 2012). For instance, one previous study in gastric cancer (and precancerous 

gastric lesions) reported that over-expression of TRF1, TRF2, TIN2, and TERT was associated 

with the reduction of telomere length (Hu, Zhang et al. 2010). Additionally, recent findings 

by Butler et al. (2012) observed that the over-expression of POT1, TIN2, TRF1, and TRF2 in 

breast cancers was associated with a decrease in mean telomere length. 

Since the 21NT cells has shorter telomeres (~ 3kb) (Cuthbert, Bond et al. 1999) than 

normal HMECs (~ 8kb) (Sputova, Garbe et al. 2013), we asked the question whether the 

increase in telomere length in 21NT cells treated with 5-aza-CdR and TSA could be due to 

demethylation and/or chromatin remodelling leading to an increase in Shelterin gene 

expression. This might suggest a mechanism linking telomere shortening and down-

regulation of Shelterin genes in breast cancer cell lines. 

The assessment of telomere dynamics is critically dependent on the telomere length 

measurement techniques chosen. In this study four different methods: TRF, iQ-FISH, flow-

FISH and q-PCR were used to measure telomere length.  
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Two main lines of investigations were covered in the work described this chapter. 

First, the telomere length measurements were obtained from 21NT cells treated over a time 

course ranging from 72 hours to 2 months using the four different methodologies; all four 

methods were compared in terms of reliability and accuracy.  

The telomere fluorescence intensity (TFI) of 21NT cells treated with 5-aza-CdR and 

TSA at different time points were measured by iQ-FISH and flow-FISH. The iQ-FISH results 

showed the TFI of 21NT treated cells was significantly higher in comparison with control 

(DMSO-treated) cells (P<0.001). No substantial difference in telomere lengths observed 

between 72 hours, 6 weeks and 2 month of treatment (Figure 5.8). We have also measured 

the telomere fluorescence intensity of 21NT treated, untreated, control (DMSO-treated) and 

HMEC1 cells in G0/G1 phase of cell cycle by flow-FISH. During the G0/G1 phase the cells 

stopped dividing; hence, before telomeres replication in late S phase, the average telomere 

fluorescence intensity in G0/G1 was examined. The average TFI of 21NT treated cells 

increased after 72 hours, 3 weeks and 6 weeks in comparison with the DMSO-treated 

control (P<0.01 and P<0.001 respectively). Nonetheless, it was observed that at 2 months 

following initial treatment of the 21NT cells, no difference in TFI was observed compared 

with the DMSO-treated control (Figure 5.10). The average telomere length determined by 

TRF showed that the telomere length in 21NT cells treated with 5-aza-CdR for 3 weeks had a 

higher increase in comparison with 72 hours, 6 weeks and 2 months treatment. However, 

the telomere length after short-term treatment (72hrs) increased compared with the 

DMSO-treated and untreated controls (Figure 5.11). Results of q-PCR showed approximately 

a two-fold increase in telomere length of 21NT cells for 72 hours and 3 weeks which were 

similar in comparison with TRF technique (Figure 5.12). No substantial differences in 
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telomere length have been observed in 6 weeks and 2 months retreated samples in 

comparison with 72 hours and 3 weeks treatment. The same trend held true when we 

looked at the expression levels of POT1 and TIN2 at different time points (previously 

discussed in Chapter IV). These results indicated that 5-aza-CdR and TSA lose their 

effectiveness in the longest time point of treatment (6 weeks and 2 months retreatment) 

(Figure 5.12). In other words, 5-aza-CdR treatment is reversible and not permanent. 

All these findings support an emerging view that Shelterin genes POT1, TIN2 and 

TPP1 positively and negatively regulate telomere length elongation by telomerase. The 

TPP1-POT1 complex is presumably activating telomerase processivity under the certain 

circumstances. This complex covers the 3' overhang of single stranded telomeric DNA and 

inhibits binding of the telomere to telomerase (Wang, Podell et al. 2007). Moreover, 

disruption of this complex (TPP1-POT1) results in inhibition of POT1 to localize to telomeric 

DNA (Liu, Safari et al. 2004). It is moreover likely that the association of POT1-TPP1-TIN2 is 

important for recruitment of telomerase to the telomere. The data in this chapter have 

demonstrated that up-regulation of Shelterin genes through demethylation of their 

promoters co-operate with an effect on telomere length.  

mRNA expression of Shelterin genes was silenced in breast cancer cell lines by DNA 

methylation and histone deacetylation. As discussed earlier, (Chapter IV), POT1, TIN2 and 

TPP1 were significantly induced in 21NT cells treated with DNA methylation inhibitor 5-aza-

CdR and the histone deacetylation inhibitor, TSA (P<0.05). This further supports the 

hypothesis that these genes were silenced by DNA methylation and histone deacetylation. 

The results suggest that after treatment with 5-aza-CdR and TSA, Shelterin gene expression 

was increased. Correlation between 5-aza-CdR and TSA induced Shelterin gene expression 
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and increased telomere length. However, it is recognised that 5-aza-CdR and TSA will affect 

expression of many genes. Nonetheless, the possible association shown here is of interest. 
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6.1-Introduction 

Earlier in this project (Chapter IV), when the 21NT breast cancer cell line was treated 

with 5-aza-CdR and TSA, evidence for up-regulation of Shelterin genes was observed. 

Significant re-expression of POT1 and TIN2 was seen after short-term and long-term 

treatment of 21NT cells. Moreover, previous results showed that up-regulation of Shelterin 

genes was positively correlated with increased telomere length.  

The telomere binding proteins (TBPs) have been proposed to regulate telomerase 

enzyme activity at the chromosome level. POT1 is the only protein that is able to bind 

directly to the 3’ single strand of telomeric DNA via its oligonucleotide/oligosaccharide-

binding (OB) fold domain (Baumann and Cech 2001; Lei, Podell et al. 2004; Loayza, Parsons 

et al. 2004; Gao, Zhang et al. 2011). It has been found that TPP1 recruits POT1 to telomeres. 

Moreover, the amino terminus of TPP1 has a telomerase-interacting domain, signifying that 

TPP1 plays a role in the recruitment of telomerase to chromosome ends (Tejera, Stagno 

d'Alcontres et al. 2010). Additionally, in the present of POT1, the Shelterin components 

RAP1, TRF1, and TRF2 localise to the telomere. Therefore, the Shelterin complex may 

require POT1 in order to maintain telomere length (Ramsay, Quesada et al. 2013) and it 

seems that POT1 is implicated in telomere length maintenance. Therefore, this gene was 

chosen for further analysis to investigate the effect of POT1 in telomere length elongation. 

In this connection, our working hypothesis was that ectopic over-expression of POT1 in 

21NT breast cancer cells may regulate telomere length.   
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6.2-Materials and methods 

6.2.1-Transformation of POT1 cDNA into bacterial cells 

The full length of human POT1 gene (2kb, variation 1) was cloned into the plasmid 

vector pcDNA/FRT/V5-His-TOPO (a kind gift from Roger Reddel (Colgin, Baran et al. 2003)). 

This vector contains hygromycin for selection in mammalian cells. For amplification, 100ng 

of plasmid pcDNA5-POT1 was added into a vial of One Shot® TOP10 Chemically Component 

E. coli and incubated on ice for 30 minutes. The sample was heat-shocked at 42oC for 30 

seconds and then incubated on ice for 2 minutes. After that, 250µl of SOC medium was 

added to the tube. The tube was capped tightly and shakes horizontally in a Gallenkamp 

orbital shaker at 200rpm at 37oC for one hour. Afterwards, 200µl of SOC medium was 

spread on pre-warmed LB-agar (Sigma) plate containing 50µg/ml ampicillin. Plates were 

incubated at 37oC overnight. Then, 6 single ampicillin resistant bacteria clones were picked 

and used to inoculate 5ml of LB-Broth (Sigma) media containing 50µg/ml ampicillin. The 

cultures were grown overnight in an orbital shaker at 200rpm at 37oC. 

6.2.1.1-Isolation of plasmid DNA with Alkaline Protease Solution 

Samples were purified from cultured transformed bacteria using Wizard® Plus SV 

Minipreps DNA purification Kit (Promega). The bacterial cells were collected by 

centrifugation at 16000rcf for 5 minutes. The supernatant was removed and the pellet was 

re-suspended by adding 250µl of Cell Re-suspension Solution. Then 250µl of Cell Lysis 

Solution was added to each sample and mixed by inverting it 4 times. Afterwards, 10µl of 

Alkaline Protease Solution was added to the tubes, mixed by inversion, incubated at room 

temperature for 5 minutes. 350µl of Neutralization Solution was then added and mixed. 



171 

 

Subsequently, the tubes were spun at 16000rcf at room temperature for 10 minutes. The 

entire mixture was transferred into Spin Column and centrifuged at top speed for 1 minute 

at room temperature. The flow-through was discarded and spin column was placed back in 

the same collection tube. The columns were washed twice with 750µl of Wash Solution 

prepared with ethanol and centrifuged at 16000rcf for 1 minute. The elution of plasmid DNA 

was performed by placing the columns in clean 1.5ml micro-centrifuge tubes and adding 

100µl of Nuclease-Free Water to the centre of the membrane. The sample was eluted by 

centrifugation at full speed for 1 minute. Then, the tubes containing plasmid DNA were 

stored at -20°C until further processing. The concentration of plasmid DNA was adjusted. 

Then, for plasmid confirmation by restriction enzyme analysis, 1µg of extracted plasmid 

DNA were cut in a 20µl of reaction volume containing 2µl of BamH1, 2µl of Buffer, 0.1 µl of 

Bovine serum albumin (BSA) and made up to 20µl with sterile distilled water. The reaction 

mixture was incubated at 37°C for 2 hours. After digestion, DNA samples were run on 0.8% 

agarose gel for 2 hours (Figure 6.1). 

 

Figure 6.1-Image of a typical 0.8% of agarose gel electrophoresis with digested plasmid DNA to 

check the size of plasmid. The lane on the left side shows the molecular size marker. The 7kb band 

seen on the gel represents of POT1 gene attached to the 5kb plasmid vector. 
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6.2.1.2-QIAGEN® plasmid purification Maxi-prep Kit 

The Maxiprep purification was carried out to obtain the most pure form of DNA and 

was used according to the manufacturer’s instructions. Briefly, a single transformed 

bacterial colony, which was confirmed as having the POT1 insert, was grown in 5ml of LB-

Broth media containing 50µg/ml ampicillin on an orbital shaker at 200rpm overnight at 

37°C. Then, 2ml of cultured media was added to 100ml of LB-Broth media containing 

50µg/ml ampicillin and was placed in an orbital shaker at 200rpm overnight at 37°C. The 

bacterial cell pellets were collected by centrifugation at 16000rcf for 15 minutes at 4°C. The 

cell pellet was re-suspended in 10ml of Buffer PI (50mM Tris-HCl pH 8, 10mM EDTA, and 

100µg/ml RNase A). 10ml of Buffer P2 (200 mM NaOH, 1% SDS) was added to the samples 

and mixed thoroughly by inversion 4 to 6 times, and incubated at room temperature for 5 

minutes. After that, 10ml of chilled Buffer P3 (3M potassium acetate pH 5.0) was added to 

the tubes and mixed by vigorously inverting 6 times. The lysate was poured into the barrel 

of a QIAfilter Cartridge and then were incubated at room temperature for 10 minutes. The 

cap was removed from the QIAfilter Cartridge outlet nozzle and the plunger was gently 

inserted into the QIAfilter Cartridge. Afterwards, the cell lysate was filtered into the 

equilibrated QIAGEN-tip. The supernatant was loaded into a QIAGEN-tip column previously 

equilibrated with 10ml of Buffer QBT (750mM NaCl, 50mM MOPS pH 7.0, 15% iso-propanol, 

0.15% TritonX-100) and allowed to empty by gravity flow. The columns were washed twice 

with 10ml of Buffer QC (1.0M NaCl, 50mM MOPS pH 7.0, 15% iso-propanol) and the plasmid 

DNA was eluted with 5ml of Buffer QF (1.25M NaCl, 50mM Tris-HCl pH 8.5, 15% iso-

propanol). Plasmid DNA was precipitated by adding 3.5ml of iso-propanol and centrifuged at 

16.1rcf for 30 minutes at 4°C. The supernatant was carefully decanted DNA pellet was 
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washed with 2ml of room-temperature 70% ethanol and spun down at 16.000rcf for 10 

minutes. The DNA was dried and re-suspended in 200µl of DNase-free water. The samples 

were kept on ice for 30 minutes and the concentration of plasmid DNA was measured. 

6.2.1.3-Transfection procedure using GeneJuice® 

One day prior to transfection, 15x105 21NT cells still in the exponential phase of 

growth were seeded into p100 tissue culture dish. The cells grew overnight to reach about 

80% confluency. For each 100-mm dish to be transfected, 800µl of serum free modified 

Eagle medium was placed into a sterile 1.5ml tube. 18µl of GeneJuice®Transfection Reagent 

(Novagen) was dropped directly to the serum-free medium. The tube was mixed thoroughly 

by vortexing and incubated at room temperature for 5 minutes. Three tubes were prepared; 

one was a transfection reagent control (GeneJuice reagent/serum-free medium), another 

was POT1 plasmid and the final tube was an empty vector control (pcDNA3.1/hygro 5.6kb 

plasmid kindly provided by Dr Evgeny Makarov). After that, 10µg of POT1 plasmid and 10µg 

of pcDNA (control) were added to each tube of GeneJuice reagent/serum-free medium 

mixture by gentle pipetting and incubated at room temperature for 15 minutes. The cells 

were washed with PBS and 10ml of fresh culture medium was added. Then, prepared 

precipitates were added to each plate and incubated for 24 hours. After incubation for 

overnight, the culture medium was aspirated and divided in 10 plates. For the purposes of 

this study, we wanted to isolate stable clones that over-expressed POT1. To do this, 21NT 

transfected cells were routinely cultured in modified Eagle’s medium with 400U/ml 

Hygromycin B as a selection marker. This selection marked that only clones which have 

picked up the vector carrying the selectable marker will grow. Cells that do not contain the 
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vector will die after several weeks in culture. Subsequently the incubation was continued for 

3 to 4 weeks, allowing for growth and selection of 21NT-transfected colonies. 

6.2.1.4-Picking of cell colonies 

In preparation for picking cell colonies, cloning cylinders of varying sizes were 

cleaned and sterilised by submersing them in 100% pure ethanol (Hayman) for one day prior 

to use. The position of colonies was identified under a microscope and colonies well 

separated from one other were chosen for isolation. Each clone was marked by a 

permanent marker on the bottom of the plate. The media was removed and washed with 

pre-warmed PBS. After gentle swirling and aspiration of PBS, an appropriately sized cloning 

cylinder was removed from 100% pure ethanol solution with sterile forceps and firmly 

pressed into pre-autoclaved Vaseline to create a thick layer on the bottom of the cylinder. 

The cloning cylinder was placed carefully over the colony based on the circle drawn on the 

bottom of the dish and presses down firmly to form a tight seal. Then 100-250µl of TrypLE 

Express (depending on the cylinder size) was pipetted into the cylinder. This process was 

repeated if several colonies were to be isolated from the same plate, and the cells were 

incubated at 37oC for 3 minutes. After incubation, the cells were checked under the 

microscope to make sure that they were detached. Subsequently, the cells were retro-

pipetted several times and transferred to a 12 well-plate containing 1ml of pre-warmed 

complete medium. This step was repeated several times until all colonies had been picked 

and transferred to the 12 well-plates. Each clone was cultured until the cells reached 90% 

confluence; they were then harvested and transferred to a P60 plate. Once the cells had 

reached 90% confluence on a P100 dish they were used for further analysis. 
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6.2.2-Quantification of telomerase activity using RQ-TRAP assay 

6.2.2.1-Protein isolation 

Cell lines to be analysed were grown to 80-90% confluence on a P100 dish. At this 

point cells were harvested and total cell number was determined. The cell pellet was 

obtained by centrifuging at 15,000rcf for 5 minutes. The supernatant was aspirated and the 

pellet was washed once with pre-warmed PBS. Sample pellets were left on wet ice and 

200µl CHAPS lysis buffer (TRAPEZE®1x CHAPS MILLIPORE Company) per 105-106 cells was 

used to re-suspend the pellets. All samples were retro-pipetted several times and the cell 

suspension was transferred to a fresh tube. The suspension was incubated on wet ice for 30 

minutes before centrifugation at 12,000rcf for 20 minutes at 4oC. 150µl of the supernatant 

was transferred into a fresh tube and determined the protein concentration for all the 

samples including the one was going to be used as the standard curve. The remaining 

extract was aliquoted and immediately stored at -80oC until required.  

6.2.2.2-Determination of protein concentration 

The protein concentration of samples was determined using the Pierce™ BCA Protein 

Assay Kit (Thermo Scientific). Pierce BCA Protein Assay is a detergent-compatible 

formulation based on bicinchoninic acid (BCA) for the colorimetric detection and 

quantitation of total protein. The assay was performed according to manufacturer's 

guidelines. A standard calibration curve was set up using bovine serum albumin (BSA) 

diluted in CHAPS lysis buffer, ranging from concentrations 0-2µg/ml (Figure 6.2). All 

unknown sample protein concentrations were measured against the standard curve (Table 

6.1).  
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Table 6.1-Preparation of diluted BSA standards for BCA analysis 

Tube Volume of dH2O Volume of BSA Final BSA concentration (µg/ml) 

A 100 0 0 

B 90 10 0.2 

C 80 20 0.4 

D 70 30 0.6 

E 60 40 0.8 

F 50 50 1 

G 25 75 1.5 

H 0 100 2 

 

200µl of Working Reagent (BCA protein assay reagent A/B diluted 50:1) was 

prepared for each aliquot of protein extract and BSA protein standard concentration. To 

each 5µl of protein lysate, 200µl of the Working Reagent was added and the samples were 

vortexed thoroughly on a shaker for 30 second. The tube was incubated at 37°C for 30 

minutes in water bath and then allowed to cool at room temperature. Subsequently, 100µl 

of each sample was added to 96-well plate. The A562 of the standards and protein lysates 

was then measured using a plate reader (BP800, BioHit). A standard curve was prepared by 

plotting the blank-corrected measurement for each BSA standard against its concentration. 

The standard curve was then used to determine the protein concentration of each study 

sample. 
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Figure 6.2-Standard curve used in protein quantification. 

 

6.2.2.3-Quantitative telomere-repeat amplification (TRAP) Assay 

Telomerase activity was measured using a quantitative TRAP assay (Paraskeva, 

Atzberger et al. 1998). Bench-top surfaces and pipettes were cleaned with RNAse Zap 

(Ambion) in preparation for the assay. Samples to be analysed were thawed on wet ice and 

diluted to a final concentration of 250ng/µl in CHAPS lysis buffer. Stock solutions were 

immediately quick-frozen and stored at -80oC to prevent protein degradation. Reaction 

mixtures for each of the samples to be analysed were made up using the following 

components and volumes: 

-12.5µl of standard iTaq™ Universal Syber®-green (BIO-RAD) 

-1µl telomerase primer (ACX primer) (0.05µg/µl) (5’-GCGCGG (CTTACC) 3CTAACC-3’) 

-1µl telomerase primer (TS Primer) (0.1µg/µl) (5’-AATCCGTCGAGCAGAGTT-3’) 
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-1µl protein samples 

-15.5µl nuclease free water 

-Total volume = 25µl 

Reaction mixtures were thawed on ice to prevent protein degradation, vortexed and 

centrifuged briefly. Samples were assayed in triplicate and each assay run included a 

telomerase positive, negative and non-template control. As an additional negative control, 

10µl of each target sample was heat-treated to inactivate the enzyme by incubating at 85oC 

for 10 minutes. The microtitre plate was then loaded into the thermocycler block and PCR 

amplification parameters were carried out with the following reaction conditions. The 

reaction mixture was first incubated at 25°C for 20 minutes to allow the telomerase in the 

protein extracts to elongate to TS primer by adding TTAGGG repeat sequence. PCR was then 

started at 95°C for 10 minutes to activate Taq polymerase followed by a two-step PCR 

amplification of 35 cycles at 95°C for 30s and 60°C for 90s. Telomerase activity is reported 

as standard cell equivalents. To quantify telomerase activity, a standard curve was 

generated from serially diluted telomerase positive prostate cell line; PC-3/hTERT extracts 

(106-102). The threshold cycle values (Ct) of the unknown samples were read off against the 

standard curve, which gives the level of telomerase activity compared with PC-3/hTERT 

cells. All RQ-TRAP reactions were analyzed in triplicate and error bars created using 

standard error.  
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6.3-Results 

6.3.1-POT1 over-expression facilitates telomere length elongation on 21NT cells 

POT1 is one of a six proteins which makes up the Shelterin complex that specifically 

binds to the G-rich single strand tail of mammalian chromosomes. POT1 function in cancer 

cells has been extensively studied in order to understand how this protein maintains 

telomere function and regulates the telomerase enzyme activity in disease states. Previous 

work by Colgin et al. (2003) showed that the over-expression of full length POT1 in 

telomerase positive HT1080 cells increased telomere length in over-expressed cloned cells. 

Therefore, based on these findings we hypothesized that over-expression of POT1 in 21NT 

cells might positively regulate telomere length. 

6.3.2-Determination of relative POT1 mRNA levels in 21NT transfected clones 

 In order to evaluate the effects of POT1 (variation 1) over-expression in 21NT cancer 

cells, these cells were transfected with human POT1. cDNA from two stable clones plus non-

transfected 21NT cells, and ten vector control clones were synthesized from total RNA 

(Figure 6.3).  
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Figure 6.3-Images of 21NT transfected clones at 10x magnification. Representative images of 21NT 

transfected clones growing after 3-4 weeks in selection before being picked and cultured as a 

separate cell line. A) Image of POT1-1/pcDNA5, B) POT1-3/pcDNA5, C) POT1-4/pcDNA5, D) empty 

vector control clone (pcDNA3.1-1). POT1 transfected cells appeared to grow more slowly in 

comparison with empty vector control clone. 

 

 

The expression levels of POT1, in 21NT transfected cells were quantified using qRT-

PCR and normalized against endogenous GAPDH. As shown in Figure 6.4, POT1 mRNA levels 

were elevated 3-4 fold in the POT1-1/pcDNA5 and POT1-3/pcDNA5 compared with non-

transfected 21NT cells. This difference was statistically significance when compared with the 

level in non-transfected 21NT cells (P<0.5). There were no substantial differences in 

expression of POT1 in vector control clones (pcDNA3.1-1) in comparison with 21NT control 

cells (Figure 6.4). 

A B 

C D 
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Figure 6.4-Over-expression of POT1 (variation 1) after transfection of 21NT cells. Data shows the 

average expression level of POT1 in 21NT non-transfected control, 5 vector control clones and two 

clones after POT1 transfection, relative to GAPDH. The non-transfected 21NT cells were used as the 

calibrator. RQ indicates relative quantification and Error bars represent SEM. Asterisk indicates 

significant difference between 21NT cells and transfected cells (*P<0.05). 

 

6.3.3-Western blot analysis 

In order to confirm over-expression of POT1 in transfected 21NT cells at the protein 

level, western blot analysis was performed. The western blot analysis was carried out using 

POT1 rabbit monoclonal antibody (Abcam) and the values were normalised using β-Actin 

rabbit antibody. A 71-KD band which corresponds to the size of the POT1 protein was 

evident in non-transfected 21NT cells, two vector control clones, PC-3 included for 

comparison, and normal mammary epithelial cell strain (Figure 6.5-A). After imageQuant 5.0 

densitometry analysis, the POT1 protein levels were found to be elevated more than 30% in 

the 21NT cells over-expressing POT1 compared with vector controls, 21NT cells, PC-3 cells, 
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and normal mammary epithelial cell strain (HMEC1) controls which was broadly in line with 

the qRT-PCR results (Figures 6.4 and 6.5-B).  

 

 

 

 

  

Figure 6.5-Western blot analysis of POT1 expression in 21NT transfected and control cell lines. A) A 

12% SDS-PAGE gel indicating POT1 protein expression and β-Actin ratio levels in western blots of 

transfected 21NT cells, two vector controls, PC-3, non-transfected 21NT and normal mammary 

epithelial cell strain (HMEC-p10). B) Densitometric analysis of POT1 protein normalised to total β-Actin 

protein and reported as optical densitometry (OD) unites. 
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In order to investigate the interaction between TPP1 and POT1, the mRNA levels of 

TPP1 in POT1 over-expressing 21NT cloned was quantified. The mRNA expression of TPP1 

was increased in the POT1-1/pcDNA5 and POT1-3/pcDNA5 in comparison with vector 

controls and non-transfected 21NT. However, these increased did not reach a statistical 

significance (Figure 6.6). 

  

 

Figure 6.6-Represents comprehensive expression levels of TPP1 after over-expression of POT1 in 

transfection of 21NT cells. Data shows the average expression of TPP1 in 21NT un-transfected 

control, two vector control clones and two clones of POT1 transfection relative to GAPDH. The un-

transfected 21NT cells were used as the calibrator. RQ indicates relative quantification and error 

bars represent SEM. 
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6.3.4-Telomere length analysis of 21NT transfected cells 

Previous studies by Colgin et al. (2003) showed that over-expression of POT1 in 

telomerase-positive HT1080 cells results in increased telomere length. In addition, 

subsequent studies have confirmed that reduction of POT1 by RNA interference (RNAi) 

causes loss of telomeric single-stranded overhangs and induces chromosomal instability and 

apoptosis (Yang, Zheng et al. 2005).  

 In order to obtain a better and clear understanding of the exact role and function of 

POT1 in protection and maintenance of telomeres in human breast cancer, we needed to 

determine whether over-expression POT1 may play a role in telomere length maintenance. 

For this analysis the q-PCR technique was used as it was the most accurate and quickest 

(Chapter V) to measure telomere length. After about 4 weeks, genomic DNA was extracted 

from two stable clones, non-transfected 21NT cells, two vector control clones, PC-3 was 

included for comparison and a normal mammary epithelial cell strain (HMEC1) using 

WizardTM Genomic DNA Kit as described in Section 2 (Chapter II). As shown in Figure 6.7, PC-

3 and HMEC1 controls showed telomere length ranging from 4.5 to 7.2 kb respectively. The 

average telomere length of 21NT non-transfected and empty vector control clones ranged 

from 2.5 to 3 kb, while the POT1 over-expressing clones were between 4 to 5 kb. This 

represents an increase in telomere length of approximately 2kb around 4 weeks after 

transfection. Overall, the results showed that telomeres were elongated in two clones 

whereas no elongation was observed in the two vector control clones (Figure 6.7). 

Therefore, it seems that POT1 is a positive regulator of telomere length. 
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Figure 6.7-Telomere length measurement by q-PCR. Comparison of the telomere length in 21NT 

transfected and control cell lines. The telomere length is shown in normal human epithelial cell line 

(HMEC p5), non-trasnfected 21NT, and two vectors control clones, PC-3 and two stable colons. The 

analysis was performed with non-transfected 21NT and two vector control clones with the lowest 

telomere length (kb) compared with two stable clones to the adjacent controls; HMEC1 p5 and PC-3 

controls. Error bars represent SEM.  

 

6.3.5-Analysis of telomerase enzyme activity 

Telomerase activity within stable clones was measured in order to search for a link 

between telomerase activity and increased telomere elongation. The quantitative TRAP 

assay was carried out using PC-3/hTERT as a positive control (provided by Dr Terry Roberts). 

This cell line expressed high levels of exogenous hTERT and as a result has high telomerase 

enzyme activity, telomerase positive non-transfected 21NT cells, and the telomerase 

negative HMEC1 cell strain; all were used as control samples. To quantify telomerase 

activity, PC-3/hTERT control was serially diluted and the relevant standard curve plotted. 
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Based on the equation obtained, the mean Ct values for unknown samples calculated and 

telomerase activity was calculated relative to the telomerase positive control (Figure 6.8). 

Negative controls for each individual sample to determine heat-sensitivity, were also 

included by heat-treating (HT) an extract of each sample.   

The results, presented in Figure 6.8, show that approximately two-fold reduction in 

telomerase enzyme activity was observed in two stable clones compared with 21NT cells, 

non-transfected, and PC-3/hTERT controls. Our data suggested that telomere elongation by 

POT1 is not mediated by increased telomerase activity. 

 

Figure 6.8-Quantitative telomerase activity. All values were acquired based on Ct values. Relative 

telomerase enzyme activity was obtained utilizing a standard curve generated by the serial dilution 

of PC-3/hTERT. The telomerase enzyme activity is shown in normal human epithelial cell line (HMEC1 

p5) as a negative control, non-transfected 21NT, PC-3/hTERT as a positive control, two vector control 

clones and 21NT POT1 expressing clones. The analysis was performed with the highest telomerase 

enzyme activity assigned to the PC-3/hTERT sample and the activity in the unknown worked out as a 

percentage PC-3/hTERT sample. Error bars represent SEM. Asterisk indicates significant difference 

between 21NT cells and transfected cells (* P<0.05). 
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6.4-Discussion  

 Based on the results obtained from work described in Chapter V, which showed a 

significant increase in telomere length after 72 hours and 3 weeks treatment of 21NT cells 

with 5-aza-CdR and TSA, it was of interest to explain whether any one of the Shelterin 

proteins may play a role in this phenomenon. In other words could forced over-expression 

of any of the Shelterin genes stabilise telomere length in breast cancer cells? Or conversely 

could reduced expression of Shelterin genes lead to telomere lengthening (Yang, Zheng et 

al. 2005). It was previously reported that after each cell division, the 3' single stranded 

telomeric DNA becomes approximately 50 to 100bp shorter in the absence of telomerase 

activity (Stewart, Ben-Porath et al. 2003). Therefore, it has been suggested shortening of 

telomeric DNA occurs at the 3' overhang. It has been shown that POT1 is the only Shelterin 

protein that binds directly to the G-rich tail of telomeric DNA (Martinez and Blasco 2010). 

Therefore, it can be considered that POT1 is possibly one of the most important candidates 

within the Shelterin complex to participate in telomere elongation in breast cancer cells. The 

role of POT1 in telomere length regulation has been the subject of intense investigation. For 

instance, Kendellen et al. (2009) showed that deletion of the OB fold of the POT1 domain 

induces telomere elongation (Kendellen, Barrientos et al. 2009). However, findings by Colgin 

et al. (2003) appeared to be contradictory to this. They observed that over-expression of 

POT1 in telomerase-positive cells resulted in telomere length elongation.  

Based on the relevant publications highlighted above, and the work described in the 

Chapter V, showing that significant re-expression of POT1 in 21NT cells was observed after 

treatment with 5-aza-CdR and TSA (see Chapter IV), we set out to find what effect over-

expression of POT1 has on telomere length. To test whether over-expression of POT1 
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induces telomere lengthening, 21NT cells were stably transfected with human POT1 

(variation 1) cDNA. The mRNA levels of POT1 increased more than three-fold compared with 

the empty vectors and non-transfected 21NT controls. The over-expression of POT1 at the 

protein levels was confirmed by western blotting. POT1 protein levels were elevated 

approximately 40% in the 21NT stable transfectants in comparison with controls which were 

broadly consistent with the qRT-PCR.  

In order to determine the effect of over-expression of POT1 on the function of TPP1, 

the mRNA levels of TPP1 was quantified. The expression levels of TPP1 were increased in 

the POT1-1/pcDNA5 and POT1-3/pcDNA5 compared with empty vector controls and non-

transfected 21NT cells. However, these increases did not reach a statistical significance. 

TPP1 has been previously identified as a partner of POT1 and binds directly to TIN2 and 

form a part of Shelterin protein complex (Takai, Kibe et al. 2011). Consistent with these 

observations, over-expression of POT1 may perhaps play an important role to elevate the 

expression of TPP1 in 21NT transfected cells. Therefore, it seems that the interaction of 

POT1 and TPP1 regulates telomere lengthening and enhance POT1 affinity for 3' single 

stranded telomeric DNA. 

To investigate the effect over-expression of POT1 has on telomere length elongation; 

the average telomere length was examined by q-PCR. The results showed that the average 

telomere length of the POT1 over-expressing clones was about 2 to 3 kb longer in 

comparison with 21NT non-transfected and empty vector control clones. The same trend 

held true when we looked at telomere length at different time point treatments (previously 

discussed in Chapter V). 



189 

 

Based on these results we asked the question whether the increased telomere 

length was the results of telomerase activity? Therefore, telomerase enzyme activity was 

assessed by a quantitative TRAP assay. Surprisingly, there was about a 2-fold reduction in 

telomerase activity in the POT1 transfected clones which had increased telomere length 

when compared with non-transfected 21NT cells and empty vector controls. As expected, 

telomerase activity in normal diploid HMEC1 cells was extremely low. 

The result showed that telomere elongation by over-expressing POT1 (variation 1) is 

not due to a direct effect of the telomerase enzyme. These results are interesting in light of 

and consistent with the previous finding by Colgin et al. (2003) showing that telomere 

elongation by over-expression of POT1 was not accompanied by an increase in telomerase 

activity. In addition, Yang et al. (2007) observed a significant increase in telomere length 

following over-expression of POT1 (variation 1) in the HT1080 human fibrosarcoma cell line. 

They reported that this telomere lengthening was likely to be telomerase dependent as they 

did not observe an increase telomere length in telomerase negative human fibroblasts 

(Yang, Zhang et al. 2007). 

It has been found that POT1 inhibits telomerase activity presumably by obstructing 

access to the 3' overhang (Colgin, Baran et al. 2003). However, this does not mean that 

POT1 completely inhibits activation of telomerase at the 3' telomeric overhang. Hence, it 

seems likely that POT1 negatively regulates telomerase access to the telomere (Colgin, 

Baran et al. 2003; Yang, Zhang et al. 2007). It is conceivable that telomere length may be 

regulated by the interaction of POT1 with TPP1 complex. Moreover, it is possible that the 

interaction of POT1-TPP1 complex with telomeric single-stranded DNA regulates telomere 

elongation, suggesting this association appears to play a fundamental role in the capping 
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function of POT1. In addition, the interaction of POT1 with TPP1 is necessary for telomerase 

dependent telomere lengthening as TPP1 can directly correlate with one of the catalytic 

subunit of telomerase enzyme, i.e. hTERT (Yang, Zhang et al. 2007). 

Two theories about the function of telomere regulation have been described; “open” 

and “closed” states. It is argued that the “closed” conformation protects telomeric DNA 

from end-to-end fusion, implying that this condition is possibly implicated in the T-loop 

model. However, in the “open” state the telomere allows telomerase to access to the 

chromosome end (Colgin, Baran et al. 2003). This hypothesis leads to speculation that one 

possible prominent role for POT1 is to bind directly the 3' overhang of telomeric DNA and 

stabilize telomeres in the “open” state. Therefore, it is conceivable that over-expression of 

POT1 displaces the T-loop formation and helps telomeres remaining in the “open” 

conformation (Colgin, Baran et al. 2003). Thus, according to this theory, we can assume that 

POT1 may allow telomerase access to telomere which results in increased telomere length. 

Collectively, according to our finding, it could be hypothesized that POT1 may perhaps be a 

negative regulator of telomerase activity to regulate telomere length (Colgin, Baran et al. 

2003). It seems that POT1 may possibly regulate a localized activation of telomerase at the 

telomere end in telomerase-positive cancer cell lines. Taken together, it is interesting to 

speculate that POT1 may be a useful target for developing anti-cancer therapeutic agents 

against cancer. 
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Maintenance and regulation of chromosome ends, at the telomere is fundamental 

for genome stability. Telomeres are made up of hexameric repeats to which Shelterin 

proteins bind in order to protect chromosome ends from end-to-end fusion, thus preventing 

them from being recognised as sites of DNA double strand breaks (Butler, Hines et al. 2012). 

Telomere dysfunctions have been implicated in most epithelial carcinomas. For instance, in 

150 cases of breast tumours, more than 50% had significantly altered (mainly shorter) 

telomere lengths in comparison with normal breast tissues (Meeker, Hicks et al. 2004). The 

relationship between telosomal DNA-binding proteins and telomere length maintenance has 

become a popular area of interest recently. Butler et al. (2012) demonstrated that the 

mRNA levels of TRF1, TRF2, TIN2 and POT1 were correlated with telomere length in breast 

tumours. Furthermore, earlier investigations had shown that down-regulation of POT1 

correlates with telomere length dysfunction in gastric carcinoma (Kondo, Oue et al. 2004). 

Based on the advances highlighted above, this project aimed to examine whether the 

expression of Shelterin and Shelterin-associated genes is altered in breast cancer cell lines 

and if so whether telomere length maintenance is affected. Answers to distinct questions 

relating to the evaluation of changes in telomere length in breast cancer cell lines were 

sought. First, we asked whether there is up-regulation or down-regulation of Shelterin and 

Shelterin-associated genes in breast cancer cell lines. To answer this, the mRNA and protein 

levels of these genes in a panel of ten breast cancer cell lines were quantified (Chapter III). 

Second, in an attempt to understand the causes and consequences of any observed 

alteration in the regulation of Shelterin and Shelterin-associated genes in breast cancer cell 

lines, the epigenetic regulation of these genes were assessed (Chapter IV). Third, changes in 

telomere length in breast cancer cell lines following epigenetic changes were measured with 
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different techniques (Chapter V). Finally, and most importantly, the aim was to identify a 

single Shelterin gene (POT1) to study in greater detail. Ectopic over-expression of POT1 in 

the 21NT breast cancer cell lines was performed in order to understand more about the 

molecular mechanisms that may possibly contribute to alterations in telomere length 

regulation (Chapter VI).   

Previous work done by Salhab et al. (2008) demonstrated an increase in the mRNA 

levels of TNKS1, hTERT, EST1, and TEP1 in breast cancer tissues whereas TNKS2 and POT1 

were down-regulated in comparison with normal breast tissue. More recently, Gao et al. 

(2011) reported over-expressed levels of POT1 in gastric cancer tissues. Furthermore, TRF1, 

TRF2 and TIN2 were significantly over-expressed in precancerous lesions, gastric cancer 

tissues, and lymph node metastases in comparison with normal gastric mucosa tissues (Hu, 

Zhang et al. 2010; Gao, Zhang et al. 2011). Different patterns of mRNA expression of 

Shelterin and Shelterin-associated genes may result in telomere length dysfunction in breast 

cancer cell lines. Therefore, the focus of the first set of experiment (Chapter III) in this study 

was to quantify mRNA and protein levels of these genes in different breast and prostate 

cancer cell lines. Some of the Shelterin genes have different splice variants. Therefore, in 

order to investigate a difference between each splice varient, their mRNA levels were 

quantified by qRT-PCR (Chapter III).  

Results showed that POT1 splice variant (SV) 1 and 2, TRF1 (SV1 and SV 2) and TRF2, 

SMG6 (SV1), TIN2 (SV1 and SV2), TEP1, TNKS2, and RAP1 were significantly down-regulated 

at the mRNA level in breast cancer cell lines in comparison with RNA extracted from normal 

mammary breast tissue. However, interestingly, TPP1 mRNA levels were higher in most 

breast cancer cell lines compared with normal breast tissue. Tissues are mixed populations 
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of tightly connected cells. Gene expression can vary from one cell to another dependent on 

their distinct function. Therefore, differences in the expression of Shelterin and Shelterin-

associated genes between individual tissues and cells may be observed. Hence, in order to 

validate telosomal gene expression results further, a normal breast mammary epithelial cell 

strain (HMEC1) was analysed for mRNA levels of POT1 and TPP1. The mRNA levels of POT1 

were considerably lower in all cancer cell lines in comparison with HMEC1. The protein 

levels of Shelterin genes were next examined and it was found that 21NT, 21MT2 and 

HS578-T expressed considerably higher levels of POT1 protein compared with HMEC1 which 

was not in agreement with the mRNA expression data. As expected, TPP1 protein was over-

expressed in most breast cancer cell lines compared with HMEC1 (Chapter III). However, the 

level of TPP1 protein was lower in 21NT and 21MT-2 than HMEC1 control, which again did 

not correlate with the mRNA expression data.  

It is commonly believed that mRNA expression levels correlate with protein levels 

within cells but clearly this is not always the case. For instance, Schwanhausser et al. (2011) 

quantified protein and mRNA levels of 5279 unique proteins in NIH3T3 mouse fibroblast to 

analyse the correlation between expression levels of protein and mRNA. These 

investigations found proteins to be on average five times more stable than their mRNAs. 

Moreover, Tian et al. (2004) used multipotent mouse EML cells and their differentiated 

progeny MPOR cells to map the abundance ratios of 425 proteins and compared them to 

the amount of their corresponding mRNAs. They showed that 150 genes have alterations at 

their protein and/or mRNA levels between the two cell types. In addition, the EML cells 

showed a 5-fold higher level of c-kit ligand protein (aka stem cell factor) but no change in 

mRNA levels. Thus, based on these two papers and other published data from independent 
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researchers, it could be concluded that the concentration of proteins and their mRNA is not 

always proportional to each other and concentration of one cannot be used universally to 

estimate the concentration of the other. In contrast to the findings of the above cited 

studies is that mRNA and protein levels of housekeeping genes are generally stable. 

The observed relationship between the mRNA and protein levels of TPP1 may be 

explained by the above reasoning. TPP1 was expressed at high mRNA and low protein levels. 

However, there is also an unexpected relationship observed in these results; POT1 had a 

high level of protein and low level of mRNA in most breast cancer cell lines compared with 

HMEC1. Furthermore, the POT1-encoded protein had lower expression levels in the normal 

control HMECs compared with 21NT cancer cell line. Previous work by Marks et al. (1991) 

showed that high p53 protein levels were associated with inactivating mutations in ovarian 

cancer cells (Marks, Davidoff et al. 1991). In addition, the results from a recent study 

indicated recurrent somatic mutations in the POT1 gene in cancer cells (Ramsay, Quesada et 

al. 2013). Therefore, the observed discrepancy in our results may be explained by stable 

mutant forms of the POT1 protein within 21NT cells. Furthermore, despite the higher 

protein content of POT1 in 21NT cells, this mutated POT1 protein may not be capable of 

binding to the other Shelterin components properly which leads to telomere dysfunction. 

This may explain the higher protein levels observed within 21NT breast cancer cells in 

comparison with HMECs.  

Several cellular factors (i.e., mutation, DNA methylation, histone acetylation, 

chromatin remodelling, etc.) in theory could affect the expression of Shelterin and Shelterin-

associated genes in breast cancer cell lines. Based on previous published data and our 
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results presented in Chapter III, POT1 mRNA was found to be significantly down-regulated in 

malignant breast tissues and cancer cell lines (Salhab, Jiang et al. 2008). Moreover, it had 

been previously reported that POT1 was the most mutated Shelterin gene in a wide range of 

cancers such as; gastric, papillary thyroid, breast and leukaemia cancer cell lines (Poncet, 

Belleville et al. 2008; Shen, Gammon et al. 2010; Wan, Tie et al. 2011; Cantara, Capuano et 

al. 2012). Prior studies have shown that POT1 is the only Shelterin protein which is able to 

bind directly to the G-strand telomeric single strand DNA sequence overhang via its OB fold 

and plays a critical role in regulating telomere length (Lei, Podell et al. 2004; Yang, Zhang et 

al. 2007). Additionally, in the presence of POT1, the Shelterin components TIN2, TRF1, and 

TRF2 localises to the telomeres. As a result of that, Shelterin proteins may require the POT1 

component to maintain telomere length (Ye, Hockemeyer et al. 2004; Wang, Podell et al. 

2007).  

Currently, the catalogue of somatic mutations in cancer (COSMIC) database shows 

over 127 somatic mutations in POT1, 41 in TPP1, and 249 in RAP1. However, at the time part 

of this study was carried out in 2009, the COSMIC database did not report any mutations 

within POT1 and any other Shelterin genes. Hou et al. (2006) reported a single mutation 

within exon12 of POT1 in HeLa and HO8910-PM cells. Therefore, the first focus of the work 

described in Chapter IV was to screen for exon12 mutations within breast cancer cell lines. 

The results revealed that no mutations within exon12 of the POT1 gene were present in any 

of 10 breast cancer cell lines. This finding does not of course exclude mutations which may 

be present in other exons of POT1. A more comprehensive study to look for mutations 

within all Shelterin genes within the breast cancer cell lines would have been useful. 



197 

 

However, the scale of such a study would have been too large to accommodate in this 

project.  

Epigenetic alterations to DNA and histones can results in silencing of genes (Kondo, 

Shen et al. 2003). The down-regulation of Shelterin genes in breast cancer cell lines (Chapter 

III) could be due to epigenetic modification (methylation) of the promoter of these genes or 

histone acetylation/deacetylation of chromatin at this locus. To study this, the promoter 

regions of POT1 and TIN2 genes in breast cancer cell lines were analysed. Methylation 

Specific PCR (MSP) showed that POT1 was partially methylated in untreated breast cancer 

(i.e., not exposed to 5-aza-CdR and TSA) cell lines. However, in TIN2 no significant 

differences were observed in methylated and unmethylated lanes in all breast cancer cell 

lines. These results provided insight into a plausible mechanism to explain the observed 

expression data based on DNA hypermethylation in the breast cancer cell lines.  

A previous study by Zemliakova et al. (2003) looked at promoter methylation of five 

genes which were methylated in breast cancer tissues. They found that the promoter region 

of p16 (56%), RB1 (17%), CDH1 (79%), P15 (2%) and MGMT (8%) were methylated in breast 

cancer tissues (Zemliakova, Zhevlova et al. 2003). In addition, it was reported that BRCA1 

was hypermethylated in breast and ovarian cancers (Esteller, Silva et al. 2000). Furthermore, 

a previous study showed that the RECK gene was hypermethylated in hepatocellular 

carcinoma (HCC) in comparison with non-tumour tissues. It has been also reported that 

hypermethylation of the RECK promoter may be associated with silencing of RECK mRNA 

expression. Indeed, it was implied that the expression of RECK was likely regulated by DNA 
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methylation in the promoter region of the gene in hepatocellular carcinoma tissues (Zhang, 

Ling et al. 2012). 

Based on published studies highlighted above, the 21NT cell line was then used as a 

model system for treatment with 5-aza-CdR and TSA, two epigenetic modifying agents. If 

Shelterin genes expression were silenced through promoter methylation/histone 

modification, the treatments should reactivate them.  

The National Cancer Institute database reported that these epigenetic modification 

agents have been used as anti-cancer drugs in about 100 clinical trials (Ghoshal, Datta et al. 

2005). The drugs have been used to treat different types of leuckemia, sickle cell anemia 

and β-thalassemia (Saunthararajah, Hillery et al. 2003). Work by Mirza et al. (2010) showed 

that p53 and p21 were up-regulated in MCF-7 breast cancer cells treated with 5-aza-CdR. 

Demethylation of p53 and p21 promoters in MCF-7 cells after treatment with 5-aza-CdR 

resulted in an up-regulation of these genes. It was found that the mRNA levels of POT1, 

TIN2, and TPP1 were significantly increased in 21NT cells treated with both agents in 

comparison with DMSO-treated control.  

The novel findings described in this project showed that 5-aza-CdR and TSA were 

most effective on modulating TIN2 and POT1 mRNA levels after relatively short term (48 and 

72 hour) treatment and again after 3 weeks treatment of 21NT cells. In addition, the 

biphasic response of POT1 and TIN2 gene expression was seen with an optimal peak at 72 

hours, which then declined and the expression was increased significantly again at 3 weeks 

treatment (correlated with telomere length see Chapter V). However, these agents together 

were found to lose their effectiveness during long term treatment (6 weeks and 2 month 
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retreatment) as no substantial difference was observed at these time points. Thus, the 

treatment was not permanent and is reversible. It is well established that the process of 

DNA methylation is carried out by DNA methyltransferases (DNMTs) enzymes. These 

enzymes catalyse the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the 

5 position of cytosine (Robertson 2001). DNMT1, the main methylation maintenance 

enzyme, preferentially methylates hemi-methylated DNA during the process of DNA 

replication. In this scenario, 5-aza-CdR is incorporated exclusively into DNA as a cytidine 

analogue, and thereby inhibits DNA methylation via irreversible covalent binding to DNMT1 

(Maslov, Lee et al. 2012). By this mechanism, it could be argued that the lowest expression 

of POT1 and TIN2 between 72 hours and 3 weeks may have resulted from an increase in the 

expression of DNA methyltransferases 1 enzyme, leading to hypermethylation of POT1 and 

TIN2 after several replications. Further investigations will be required to examine which 

factors are involved to decrease the transcription levels of POT1 and TIN2 in the interval 

between 72 hours and 3 weeks treatment. For instance, if this assay were to be repeated in 

the future, the expression of DNMT1 could be analysed along with POT1 and TIN2. 

It has been reported in several independent studies that 5-aza-CdR has therapeutic 

value for cancer treatment (Venturelli, Armeanu et al. 2007; Cai, Kohler et al. 2011; Liu, 

Zhang et al. 2012). Recent work by Kang et al. (2013) reported that Runt-related 

transcription factor 3 (RUNX3), a tumour suppressor gene, was hypermethylated in MCF-7 

(breast cancer cell line). The work reported that 5-aza-CdR induces apoptosis and inhibits 

cell proliferation by demethylating the promoter region of RUNX3 and reactivating its 

expression (Kang, Dai et al. 2013). Therefore, based on previous investigations, it should be 

noted that, used as a chemotherapeutic drug, 5-aza-CdR causes cell death via induction of 
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apoptosis pathways. Consistent with these observations, approximately 72 hours after 

treatment with 5-aza-CdR, a significant reduction in 21NT cell number was observed. 

Therefore, theoretically by 7 days of treatment, cells which have become resistant to 

apoptosis but retained the unmethylated status will start to grow out of the population and 

continue to grow up to 3 weeks accompanied by an increase in gene expression. Further 

studies in vitro will be required to determine which factors are involved in the modulation of 

gene expression. For instance, the Terminal deoxynucleotidyl transferase dUTP Nick End 

Labeling (TUNEL) assay may be a useful method to detect apoptotic programmed cell death.  

In order to support the results described in this thesis, the promoter region of POT1 

was analysed for CpG demethylation in DNA samples from 5-aza-CdR treated 21NT cells. The 

bisulphite sequencing data obtained was entirely consistent with the results showing up-

regulation of POT1, as all potential methylation sites within the CpG Island were 

demethylated after the treatment of 21NT cells with 5-aza-CdR. These data confirmed that 

5-aza-CdR inhibits epigenetic mechanisms including DNA methylation. This appears to have 

the effect of reversing the silencing of Shelterin and Shelterin-associated genes in breast 

cancer cell lines. It is suggested that 5-aza-CdR and TSA enhance gene transcription by 

opening promoter regions to increase accessibility of assembling transcription factor 

complexes (Yang, Phillips et al. 2001; Margueron, Duong et al. 2004). It should be stressed 

that 5-aza-CdR in combination with TSA reactivated expression of Shelterin and Shelterin-

associated genes, while TSA alone mostly had little effect on the expression of 

aforementioned genes. However, prior studies by others showed that TSA reactivates the 

expression of estrogen receptor (ER) in breast cancer cell lines (Yang, Ferguson et al. 2000). 

It is therefore, likely that the combined effect of 5-aza-CdR with TSA on gene expression has 

http://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
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dual activity on DNA demethylation and histone acetylation respectively. Since these two 

agents were individually shown to enhance gene expression, they seem to act 

synergistically. We can speculate that silencing of these genes is controlled by epigenetic 

modifications. The findings described in Chapter IV open up interesting avenues for future 

work. In the first instance, the promoter regions of other Shelterin and Shelterin-associated 

genes should be examined in all breast cancer cell lines. A second experimental approach 

should focus on delineating histone modifications such as acetylation of lysine residues on 

histone H3 and H4, together with the methylation of lysine 9 on histone H3, H9, H27 and 

H3K36 as well as the role of histone methylation (Wozniak, Klimecki et al. 2007). The 

application of chromatin immunoprecipitation (ChIP) technology followed by real-time PCR 

to quantify the degree of histone methylation in 21NT cells and other breast cancer cell lines 

would be central to such work.  

Results obtained thus far demonstrated an up-regulation of some Shelterin genes 

when breast cancer cells were treated with epigenetic modulators. How does this affect 

telomere length maintenance? Previous studies indicated that dysregulation of Shelterin 

genes expression can result in telomere length dysfunction in a variety of cancers, including 

breast cancer (Butler, Hines et al. 2012). For instance, Hu et al. (2010) showed that over-

expression of TRF1, TRF2 and TIN2 in gastric cancer tissues were correlated with a reduction 

in telomere length. Moreover, deficiencies in Shelterin regulation have recently been 

implicated in telomere length dysfunction during liver carcinogenesis (El Idrissi, Hervieu et 

al. 2013). However, the majority of studies have shown only that altered expression of 

Shelterin proteins affects telomere length, but they have not pinpointed a mechanism. To 

date, no previous investigations have reported effects of 5-aza-CdR and TSA treatment on 
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telomere length maintenance in cancer cells. Hence, following telomere length 

measurement by several reliable methods, it was clear that short-term (72 hrs) and 3 weeks 

treatment of 21NT cells with 5-aza-CdR resulted in an increase telomere lengths around of 

4.7 kb. Therefore, it would seem that, in cancer, Shelterin expression is down-regulated 

through epigenetic modification of DNA and histone proteins. Up-regulation of Shelterin 

genes, through the use of epigenetic modifying agents, are directed towards the telomeres 

where they influence telomere length elongation. Indeed, our data may suggest that the 

regulation of the Shelterin protein complex is needed to maintain telomere length 

regulation in breast cancer cell lines. 

The POT1-TPP1 complex covers the single strand 3' overhang and prevents binding 

of the telomere to telomerase (Wang, Podell et al. 2007). It remains likely that the 

association of POT1-TPP1-TIN2 plays a key role in recruiting telomerase to the telomere. 

Therefore, our results clearly showed that Shelterin genes particularly POT1, TIN2 and TPP1, 

were significantly induced in 21NT cells following treatment with the DNA methylation 

inhibitor, 5-aza-CdR and the histone deacetylation inhibitor, TSA. This further supports the 

hypothesis in this thesis that demethylation of the Shelterin genes TIN2, POT1 and TPP1, 

stabilises the Shelterin complex that functions to regulate and maintain telomere length 

elongation.  

Based on results discussed above, three of the Shelterin proteins were significantly 

up-regulated after treatment with 5-aza-CdR and TSA; this ultimately led to telomere 

elongation. In the final Chapter of the thesis, it was attempted to identify the most 

important gene of the three. In this respect it was previously reported that the single-

stranded 3' in the absence of telomerase DNA becomes approximately 50 to 100 bases 
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shorter after each cell division (Stewart, Ben-Porath et al. 2003). This may well be linked 

with POT1 as it is the only Shelterin protein that directly binds to the 3' ends of telomere 

(Baumann and Price 2010).  

Previous noteworthy studies showed that reduction of POT1 by RNAi results the loss 

of the 3' overhangs (Yang, Zheng et al. 2005). Furthermore, it had also been observed that 

over-expression of POT1 in telomerase-positive cells resulted in telomere length elongation 

(Colgin, Baran et al. 2003; Yang, Zhang et al. 2007). Therefore, based on the results from 

previous Chapters, it was concluded that over-expression of POT1 in 21NT cells may provide 

an improved understanding of telomere regulation in cancer cell lines. Thus, the full length 

of human POT1 (variation 1) gene was over-expressed in 21NT cells to determine the effect 

on telomere length elongation. The results revealed that the average telomere length of the 

POT1 over-expressing clones was 2 to 3 kb longer in comparison with 21NT non-transfected 

and empty vector control clones. However, increased telomere length by ectopic over-

expression of POT1 is not likely to be due to a direct effect on telomerase enzyme activity 

since the latter was not increased.  

Based on a previous finding by Colgin et al. (2003) telomere length elongation by 

over-expressing POT1 did not show an increase in telomerase activity. Such a result may 

validate our hypothesis and could support the finding that telomere elongation by POT1 is 

not accompanied by an increase in telomerase activity. However, this does not exclude the 

possibility that POT1 completely inhibits activation of telomerase at the chromosome ends. 

Furthermore, our results showed approximately a 2-fold decrease in telomerase activity in 

transfected 21NT cells. Therefore, it is likely that POT1 initially allows telomerase to 

synthesise telomeres and leads to telomere length elongation up to 2kb, after a certain 
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length is reached, subsequently inhibits telomerase access and prevents further elongation. 

Therefore, it could be argued that POT1 negatively regulates the access of telomerase to the 

telomeres (Colgin, Baran et al. 2003). In order to further examine the role of telomerase 

activity and POT1-mediated telomere lengthening, POT1 over-expression should be carried 

out within a telomerase-negative HMEC cell strain. 

Two models of telomere length regulation have been described. The “open” state 

permits the access of telomere to telomerase and the “closed” conformation shields 

telomere DNA from end-to-end fusion (Colgin, Baran et al. 2003). With an “open” 

conformation, POT1 may possibly stabilise the telomere, via binding to the 3' overhang of 

the telomere end. Therefore, POT1 could be a negative regulator of telomerase activity in 

order to maintain telomere length. However, it is also possible that POT1 controls a 

localised activation of the telomerase enzyme at the telomere end. Our data highlights the 

importance of a potential fundamental role for POT1 in regulating Shelterin genes stability. 

It is likely that the interaction of POT1 with TPP1 form a part of the Shelterin complex via by 

binding TIN2. This develops the concept that, by virtue of these interactions, such a complex 

appears to form a stable sub-complex to interact with other Shelterin genes to protect and 

maintain telomere length.  

In the past, several studies used genetically modified mice and cultured human cell 

lines to investigate the role of Shelterin genes in telomere length maintenance in aging and 

cancer (Martinez and Blasco 2010; Lu, Wei et al. 2013). For instance, inhibition of the 

expression of Shelterin genes, or over-expression of dominant negative forms of these 

proteins, (in cultured human cell lines) or knockout of Shelterin component (in mouse 

embryonic fibroblasts (MEFs)) results in telomere loss, T-loop recombination and telomere 
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fusion (Lu, Wei et al. 2013). In addition, conditional knockout of Rap1, Tpp1, and Trf1 in 

mice showed high incidence of oncogenesis and deletion of Pot1 induces mouse 

dyskeratosis congenita (DKC) (Hockemeyer, Palm et al. 2008; Martinez and Blasco 2010). 

Depletion of Shelterin components in mice pinpointed telomere dysfunction as the major 

driving force which leads to a more rapid pathological aging phenotype in comparison with 

those induced by telomerase deficiency. Moreover, genetic variation in the Shelterin 

complex has been observed in human pathological aging and cancer (Lu, Wei et al. 2013). 

Taken together, these observations indicated that, Shelterin proteins in telomere biology 

and disease play fundamental role in the context of the mammalian organism.  

Results obtained in this thesis have shown that the use of chemotherapeutic 

epigenetic modifying drugs, such as 5-aza-CdR and TSA, induce and increase the expression 

of several Shelterin and Shelterin-associated genes in breast cancer cell lines. Up-regulation 

of these genes ultimately leads to an increase in telomere length. The effect of 5-aza-CdR 

and TSA on mammalian telomeres has not been widely reported in the literature to-date 

making the results presented here novel. We can now speculate on how the use of 

therapeutic agents such as 5-aza-CdR and TSA to increase telomere lengths of cancer cells 

may benefit clinical outcome. Research into the role of Shelterin and telomerase in cancer 

has found that telomerase re-activation functions to maintain telomeres at a critically short 

length (Low and Tergaonkar 2013). Telomeres in this unstable state are still prone to genetic 

damage via end-to-end fusions and translocations. This will have the effect of damaging the 

genome of the cancer cell further giving rise to further clonal evolution and a more 

advanced disease. If drugs such as 5-aza-CdR and TSA are used to treat cancer, they could 

induce telomere lengthening. This may have the effect of stabilizing the telomere and 
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reducing the amount of genetic damage the cell will undergo thereby stopping the clonal 

evolution of the cancer cell population. These tumours may be more susceptible to further 

treatment as a result. Drugs such as 5-aza-CdR and TSA are non-specific and cause global 

cellular demethylation/deacetylation which in the context of this work can be considered 

off-target effects. In order to specifically target telomere maintenance, it may be better to 

concentrate one or more Shelterin components rather than telomerase itself. 

It is conceivable that targeting telomere length and telomerase will be an effective 

pharmaceutical strategy for cancer treatment. Manipulating telomere length (e.g. by 

controlling expression of telomerase components such as hTERT) might be expected to be 

beneficial for treating aging related diseases and cancer (Holysz, Lipinska et al. 2013; Lu, Wei 

et al. 2013). In addition, targeting Shelterin protein components may possibly more 

effective that targeting telomerase, especially POT1 which is implicated to regulate 

telomere length and capping (Martinez and Blasco 2010; Lu, Wei et al. 2013). 

We observed that the over-expression of POT1 negatively affected telomerase 

activity and resulted telomere lengthening. Increases in telomere length may stabilize 

cancer cells and render them less prone to telomeric fusion. As a result the clonal evolution 

of cancer cell populations may be reduced and making them more susceptible to further 

drug treatment. Therefore, targeting POT1 in breast cancer cells allows for simultaneous 

investigation of telomere length and regulates the access of telomerase to telomere. 

Gene therapy is the use of DNA as a drug to treat disease by delivering therapeutic 

DNA into a patient's cells. The most common form of gene therapy involves using DNA that 

encodes a functional, therapeutic gene to replace a mutated gene potentially in cancers. 

This relies on the efficient transfer of a nucleic acids which encodes a therapeutic protein, 
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into cells by a number of methods using viral vectors. Viruses such as retrovirus, lentivirus 

and adenovirus can be used in vivo to introduce genetic material into their host cell as a part 

of their replication process (Roth and Cristiano 1997; Cross and Burmester 2006). For 

instance, in clinical trials, the in vivo strategy involves the direct delivery of DNA (usually via 

a viral vector) to resident cells of the target tissue. There are two requirements for such a 

strategy: firstly, that target cells be easily accessible for infusion or injection of virus, and 

secondly, that the transfer vector readily and specifically infects, integrates, and then 

expresses the therapeutic gene in target cells and not surrounding cells at effective levels 

for extended time periods (Selkirk 2004). Thus, gene therapy can be used to 

deliver POT1 into cells may be considered as a potential mechanism to treat breast cancer. 
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Appendix 1: 

 
All sequences of POT1 exon12: 

GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 

HMEC1 

GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT

AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT

GATGTGGATCAACTGAAAAA 

 

21NT 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
21MT-2 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
BT20 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
BT474 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
HCC1143 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
GI101 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 

Figure S1-POT1 exon12 in cancer and control cell lines. 
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MCF-7 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
HS578-T 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
PB1 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
PC3 
GTTGGAAGCTTTCTTAGAATCTATAGCCTTCATACCAAACTTCAATCAATGAATTCAGAGAATCAGACAATGTT
AAGTTTAGAGTTTCATCTTCATGGAGGTACCAGTTACGGTCGGGGAATCAGGGTCTTGCCAGAAAGTAACTCT
GATGTGGATCAACTGAAAAA 
 
Figure S1-POT1 exon12 in cancer cell lines. 

 

 
Appendix 2:  

HMEC1: TAGTTAATTTTGTTTAGTGG 

21MT-2: TAGTTAATTTTGTTTAGTGG 

GI101: TAGTTAATTTTGTTTAGTGG 

21NT: CGTTTAATTTCCGTTTCGTGG 

Figure S2-Sequence of POT1 promoter region in untreated cancer and control cell lines. 

 

Appendix 3:  

DMSO: CGTTTAATTTCCGTTTCGTGG 
 

5-aza-CdR: TAGTTAATTTTGTTTAGTGG 

Figure S3-Sequence of POT1 promoter region in 21NT treated with 5-aza-CdR and DMSO for 72 

hours.  

 


