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Abstract
Objective To evaluate current risk models and scores for type 2 diabetes
and inform selection and implementation of these in practice.

Design Systematic review using standard (quantitative) and realist
(mainly qualitative) methodology.

Inclusion criteria Papers in any language describing the development
or external validation, or both, of models and scores to predict the risk
of an adult developing type 2 diabetes.

Data sourcesMedline, PreMedline, Embase, and Cochrane databases
were searched. Included studies were citation tracked in Google Scholar
to identify follow-on studies of usability or impact.

Data extraction Data were extracted on statistical properties of models,
details of internal or external validation, and use of risk scores beyond
the studies that developed them. Quantitative data were tabulated to
compare model components and statistical properties. Qualitative data
were analysed thematically to identify mechanisms by which use of the
risk model or score might improve patient outcomes.

Results 8864 titles were scanned, 115 full text papers considered, and
43 papers included in the final sample. These described the prospective
development or validation, or both, of 145 risk prediction models and
scores, 94 of which were studied in detail here. They had been tested
on 6.88 million participants followed for up to 28 years. Heterogeneity
of primary studies precluded meta-analysis. Some but not all risk models
or scores had robust statistical properties (for example, good
discrimination and calibration) and had been externally validated on a
different population. Genetic markers added nothing to models over
clinical and sociodemographic factors. Most authors described their
score as “simple” or “easily implemented,” although few were specific
about the intended users and under what circumstances. Ten
mechanisms were identified by which measuring diabetes risk might
improve outcomes. Follow-on studies that applied a risk score as part
of an intervention aimed at reducing actual risk in people were sparse.

ConclusionMuch work has been done to develop diabetes risk models
and scores, but most are rarely used because they require tests not
routinely available or they were developed without a specific user or
clear use in mind. Encouragingly, recent research has begun to tackle
usability and the impact of diabetes risk scores. Two promising areas
for further research are interventions that prompt lay people to check
their own diabetes risk and use of risk scores on population datasets to
identify high risk “hotspots” for targeted public health interventions.

Introduction
The prevalence of diabetes is rising rapidly throughout the
world.1 By 2010 its prevalence in the adult populations of the
United Kingdom, the United States, mainland China, and the
United Arab Emirates had exceeded 7%,2 11%,3 15%,4 and 17%,5
respectively. Americans born in 2000 or later have a lifetime
risk of more than one in three of developing diabetes.6 Type 2
diabetes (which accounts for over 95% of diabetes worldwide)
results from a complex gene-environment interaction for which
several risk factors, such as age, sex, ethnicity, family history,
obesity, and hypertension, are well documented. The precise
interaction of these and other risk factors with one another is,
however, a complex process that varies both within and across
populations.7-11 Epidemiologists and statisticians are striving to
produce weighted models that can be presented as scores to
reflect this complexity but which at the same time are perceived
as sufficiently simple, plausible, affordable, and widely
implementable in clinical practice.12 13

Cohort studies have shown that early detection of established
diabetes improves outcome, although the evidence base for
screening the entire population is weak.14 15 The proportion of
cases of incident type 2 diabetes in people with impaired glucose
tolerance or impaired fasting glucose levels was reduced in
landmark trials from China,16 Finland,17 and the United States18
by up to 33%, 50%, and 58%, respectively, through lifestyle
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changes (increased exercise, weight loss) or pharmacotherapy,
or both, although changes may be more modest in a non-trial
population. Some have argued that because combining known
risk factors predicts incident diabetes at least as effectively as
impaired glucose metabolism, a diabetes risk score may be a
better and more practical means of identifying people for
preventive interventions than either a glucose tolerance test or
a fasting blood glucose level.19 Others favour targeting the
assessment of diabetes risk in those with established impaired
glucose metabolism on the basis that interventions in this group
are particularly effective.20

Riskmodels and scores first emerged for cardiovascular disease,
and these are widely used in clinical and public health practice.
In the United Kingdom, for example, all electronic patient record
systems in general practice offer the facility to calculate the
Framingham score, a patient’s risk of a cardiovascular event
within 10 years. This risk score features in many guidelines and
decision pathways (such as the cut-off for statin therapy21), and
general practitioners receive financial rewards for calculating
it.22 In contrast, although numerous models and scores have
been developed for diabetes risk, we found limited evidence for
use of these as part of a formal health policy, guideline, or
incentive scheme for practitioners in any country (one Australian
scheme incentivises general practitioners’ measurement of the
risk of diabetes in adults aged 40-4923). This is perhaps
surprising, given that morbidity and mortality from
cardiovascular disease has been decreasing in many countries
since the 1970s,24 whereas those from diabetes continue to
increase.3

A diabetes risk score is an example of a prognostic model.25
Such scores should ideally be developed by taking a large, age
defined population cohort of people without diabetes, measuring
baseline risk factors, and following the cohort for a sufficiently
long time to see who develops diabetes.26Although prospective
longitudinal designs in specially assembled cohorts are
expensive, difficult, and time consuming to execute, cross
sectional designs in which risk factors are measured in a
population including people both with and without diabetes are
methodologically inferior. They use prevalence as a proxy for
incidence and conflate characteristics of people with diabetes
with risk factors in those without diabetes, and thus are incapable
of showing that a putative risk factor predated the development
of diabetes. In practice, researchers tend to take one of two
approaches: they either study a cohort of people without
diabetes, which was assembled some years previously with
relevant baseline metrics for some other purpose (for example,
the British Regional Heart Study27), or they analyse routinely
available data, such as electronic patient records.8 Both
approaches are potentially susceptible to bias.
Some diabetes risk scores are intended to be self administered
using questions such as “have you ever been told you have high
blood pressure?” Scores that rely entirely on such questions
may be hosted on the internet (see for example www.diabetes.
org.uk/riskscore). Some researchers have used self completion
postal questionnaires as the first part of a stepwise detection
programme.28 To the extent that these instruments are valid,
they can identify two types of people: those who already have
diabetes whether or not they know it (hence the questionnaire
may serve as a self administered screening tool for undiagnosed
diabetes) and those at high risk of developing diabetes—that is,
it may also serve as a prediction tool for future diabetes.
Prevalence rates for diabetes derived from self assessment
studies thus cannot be compared directly with the rate of incident
diabetes in a prospective longitudinal sample from which those
testing positive for diabetes at baseline have been excluded.

A good risk score is usually defined as one that accurately
estimates individuals’ risk—that is, predictions based on the
score closely match what is observed (calibration); the score
distinguishes reliably between high risk people, who are likely
to go on to develop the condition, and low risk people, who are
less likely to develop the condition (discrimination); and it
performs well in new populations (generalisability). Validating
a risk model or score means testing its calibration and
discrimination either internally (by splitting the original sample,
developing the score on one part and testing it on another),
temporally (re-running the score on the same or a similar sample
after a time period), or, preferably, externally (running the score
on a new population with similar but not identical characteristics
from the one on which it was developed).26 29 Caution is needed
when extrapolating a risk model or score developed in one
population or setting to a different one—for example, secondary
to primary care, adults to children, or one ethnic group to
another.30

Risk scores and other prognostic models should be subject to
“impact studies”—that is, studies of the extent to which the
score is actually used and leads to improved outcomes. Although
most authors emphasise quantitative evaluation of impact such
as through cluster randomised controlled trials,30 much might
also be learnt from qualitative studies of the process of using
the score, either alone or as an adjunct to experimental trials.
One such methodology is realist evaluation, which considers
the interplay between context, mechanism (how the intervention
is perceived and taken up by practitioners), and outcome.31 In
practice, however, neither quantitative nor qualitative studies
of impact are common in the assessment of risk scores.30

We sought to identify, classify, and evaluate risk models and
scores for diabetes and inform their selection and
implementation in practice. We wanted to determine the key
statistical properties of published scores for predicting type 2
diabetes in adults and how they perform in practice. Hence we
were particularly interested in highlighting those characteristics
of a risk score that would make it fit for purpose in different
situations and settings. To that end we reviewed the literature
on development, validation, and use of such scores, using both
quantitative data on demographics of populations and statistical
properties of models and qualitative data on how risk scores
were perceived and used by practitioners, policy makers, and
others in a range of contexts and systems.

Methods
Theoretical and methodological approach
We followed standard methodology for systematic reviews,
summarised in guidance from a previous study and the York
Centre for Reviews and Dissemination.32 33 The process was
later extended by drawing on the principles of realist review,
an established form of systematic literature review that uses
mainly qualitative methods to produce insights into the
interaction between context, mechanism, and outcome, hence
explaining instances of both success and failure.34 Our team is
leading an international collaborative study, the Realist and
Meta-narrative Evidence Synthesis: Evolving Standards
(RAMESES) to develop methodological guidance and
publication standards for realist review.35

Search strategy
We identified all peer reviewed cohort studies in adults over
age 18 that had derived or validated, or both, a statistically
weighted risk model for type 2 diabetes in a population not
preselected for known risk factors or disease, and which could
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be applied to another population. Studies were included that
had developed a new risk model based on risk factors and that
used regression techniques to weight risk factors appropriately,
or validated an existing model on a new population, or did both.
Exclusion criteria were cross sectional designs, studies that had
not finished recruiting, studies on populations preselected for
risk factors or disease, studies that did not link multiple risk
factors to form a scoring system or weighted model, screening
or early detection studies, genetic studies, case series, studies
on under 18s, animal studies, and studies that applied a known
risk model or score to a population but did not evaluate its
statistical potential.
In January 2011we undertook a scoping search, beginning with
sources known to the research team and those recommended
by colleagues.We used the 29 papers from this search to develop
the definitive protocol, including search terms and inclusion
and exclusion criteria. In February 2011 a specialist librarian
designed a search strategy (see web extra) with assistance from
the research team. Key words were predict, screen, risk, score,
[type two] diabetes, model, regression, risk assessment, risk
factor, calculator, analysis, sensitivity and specificity, ROC and
odds ratio. Both MESH terms and text words were used. Titles
and abstracts were searched in Medline, PreMedline, Embase,
and relevant databases in the Cochrane Library from inception
to February 2011, with no language restrictions.
Search results from the different databases were combined in
an endnote file and duplicates removed electronically and
manually. In February and March 2011 two researchers
independently scanned titles and abstracts and flagged
potentially relevant papers for full text analysis.
Two researchers independently read the interim dataset of full
text papers and reduced this to a final dataset of studies,
resolving disagreements by discussion. Bilingual academic
colleagues translated non-English papers and extracted data in
collaboration with one of the research team. To identify recently
published papers two researchers independently citation tracked
the final dataset of studies in Google Scholar. Reference lists
of the final dataset and other key references were also scanned.

Quantitative data extraction and analysis
Properties of included studies were tabulated on an Excel
spreadsheet. A second researcher independently double checked
the extraction of primary data from every study. Discrepancies
were resolved by discussion. Where studies trialled multiple
models with minimal difference in the number of risk factors,
a judgment was made to extract data from the authors’ preferred
models or (if no preferences were stated in the paper) the ones
judged by two researchers to be the most complete in
presentation of data or statistical robustness. Data extraction
covered characteristics of the population (age, sex, ethnicity,
etc), size and duration of study, completeness of follow-up,
method of diagnosing diabetes, details of internal or external
validation, or both, and the components and metrics used by
authors of these studies to express the properties of the score,
especially their calibration and discrimination—for example,
observed to predicted ratios, sensitivity and specificity, area
under the receiver operating characteristic curve. We aimed to
use statistical meta-analysis where appropriate and presented
heterogeneous data in disaggregated form.

Qualitative data extraction and analysis
For the realist component of the review we extracted data and
entered these on a spreadsheet under seven headings (box 1).

One researcher extracted these data from our final sample of
papers and another checked a one third sample of these. Our
research team discussed context-mechanism-outcome
interactions hypothesised or implied by authors and reread the
full sample of papers with all emerging mechanisms in mind to
explore these further.

Impact analysis
We assessed the impact of each risk score in our final sample
using three criteria: any description in the paper of use of the
score beyond the population for whom it was developed and
validated; number of citations of the paper in Google Scholar
and number of these that described use of the score in an impact
study; and critical appraisal of any impact studies identified on
this citation track. In this phase we were guided by the question:
what is the evidence that this risk score has been used in an
intervention which improved (or sought to improve) outcomes
for individuals at high risk of diabetes?

Prioritising papers for reporting
Given the large number of papers, statistical models, and risk
scores in our final sample, we decided for clarity to highlight a
small number of scores that might be useful to practising
clinicians, public health specialists, or lay people. Adapting
previous quality criteria for risk scores,26we favoured those that
had external validation by a separate research team on a different
population (generalisability), statistically significant calibration,
a discrimination greater than 0.70, and 10 or fewer components
(usability).

Results
Figure 1⇓ shows the flow of studies through the review. One
hundred and fifteen papers were analysed in detail to produce
a final sample of 43. Of these 43 papers, 18 described the
development of one or more risk models or scores,8 27 36-51 17
described external validation of one or more models or scores
on new populations,9 10 19 52-65 and eight did both.7 66-72 In all, the
43 papers described 145 risk models and scores, of which 94
were selected for extraction of full data (the other 51 were
minimally different, were not the authors’ preferred model, or
lacked detail or statistical robustness). Of the final sample of
94 risk models, 55 were derivations of risk models on a base
population and 39 were external validations (of 14 different
models) on new populations. Studies were published between
1993 and 2011, but most appeared in 2008-11 (fig 2⇓). Indeed,
even given that weaker cross sectional designs had been
excluded, the findings suggest that new risk models and scores
for diabetes are currently being published at a rate of about one
every three weeks.
Table 1⇓ gives full details of the studies in the sample, including
the origin of the study, setting, population, methodological
approach, duration, and how diabetes was diagnosed. The studies
were highly heterogeneous. Models were developed and
validated in 17 countries representing six continents (30 in
Europe, 25 in North America, 21 in Asia, 8 in Australasia, 8 in
the Middle East, 1 in South America, and 1 in Africa).
Comparisons across studies were problematic owing to
heterogeneity of data and highly variable methodology,
presentation techniques, and missing data. Cohorts ranged in
size from 399 to 2.54 million. The same data and participants
were often included in several different models in the same
paper. Ten research populations were used more than once in
different papers.9 10 27 37 41 42 44 46-49 51-56 63-66 70 71 In total, risk models
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Box 1: Categories for data entry

Intended users
Authors’ assumptions (if any) about who would use the risk score, on which subgroups or populations

Proposed action based on the score result
Authors’ assumptions (if any) on what would be offered to people who score above the designated cut-off for high risk

Mechanism
Authors’ hypothesised (or implied) mechanism by which use of the score might improve outcomes for patients

Descriptor
Authors’ adjectives to describe their risk model or score

Relative advantage
Authors’ claims for how and in what circumstances their model or score outperforms previous ones

Concerns
Authors’ stated concerns about their model or score

Real world use, including citation tracking
Actual data in this paper or papers citing it on use of the score in the real world

were tested on 6.88 million participants, although this figure
includes duplicate tests on the same dataset. Participants aged
18 to 98 were studied for periods ranging from 3.15 to 28 years.
Completeness of follow-up ranged from 54% to 99% and
incidence of diabetes across the time periods studied ranged
from 1.3% to 20.9%.
None of the models in the sample was developed on a cohort
recruited prospectively for the express purpose of devising it.
Rather, all authors used the more pragmatic approach of
retrospectively studying a research dataset that had been
assembled some years previously for a different purpose. Forty
two studies excluded known diabetes in the inception cohort.
Diagnosis of diabetes in a cohort at inception and completion
of the study was done in different ways, including self report,
patient questionnaires, clinician diagnosis, electronic code,
codes from the International Classification of Diseases, disease
or drug registers, diabetes drugs, dietary treatment, fasting
plasma glucose levels, oral glucose tolerance test, and
measurement of haemoglobin A1c. In some studies the method
was not stated. Half the studies used different diagnostic tests
at inception and completion of the study.
One third of the papers focused almost exclusively on the
statistical properties of the models. Many of the remainder had
a clinician (diabetologist or general practitioner) as coauthor
and included an (often short and speculative) discussion on how
the findings might be applied in clinical practice. Three
described their score as a “clinical prediction rule.”45 51 59

Quantitative findings
Table 2⇓ gives details of the components of the 94 risk models
included in the final sample and their statistical
properties—including (where reported) their discrimination,
calibration, sensitivity, specificity, positive and negative
predictive value, and area under the receiver operating
characteristic curve. Many papers offered additional
sophisticated statistical analysis, although there was no
consistency in the approach used or statistical tests.
Heterogeneity of data (especially demographic and ethnic
diversity of validation cohorts and different score components)
in the primary studies precluded formal meta-analysis.
All 94 models presented a combination of risk factors as
significant in the final model, and different models weighted
different components differently. The number of components

in a single risk score varied from 3 to 14 (n=84, mean 7.8, SD
2.6). The seven risk scores that were classified as having high
potential for use in practice offered broadly similar components
and had similar discriminatory properties (area under receiver
operating characteristic curve 0.74-0.85, table 4). Overall, the
areas under the receiver operating characteristic curve ranged
from 0.60 to 0.91. Certain components used in some models
(for example, biomarkers) are rarely available in some pathology
laboratories and potentially too expensive for routine use. Some
models that exhibited good calibration and discrimination on
the internal validation cohort performed much less well when
tested on an external cohort,62 67 suggesting that the initial model
may have been over-fitted by inclusion of too many variables
that had only minor contributions to the total risk.73 Although
this study did not seek out genetic components, those studies
that had included genetic markers alongside sociodemographic
and clinical data all found that the genetic markers added little
or nothing to the overall model.9 10 36 50

Reporting of statistical data in some studies was incomplete—for
example, only 40 of the 94 models quantified any form of
calibration statistic. Forty three presented sensitivity and
specificity, 27 justified the rationale for cut-off points, 22
presented a positive predictive value, 19 presented a negative
predictive value, and 26 made some attempt to indicate the
percentage of the population that would need clinical follow-up
or testing if they scored as “high risk.” Somemodels performed
poorly—for example, there was a substantial gap between
expected and observed numbers of participants who developed
diabetes over the follow-up period. The false positive and false
negative rates in many risk scores raised questions about their
utility in clinical practice (for example, positive predictive values
ranged from 5% to 42%, negative predictive values from 88%
to 99%). However, some scores were designed as non-invasive
preliminary instruments, with a recommended second phase
involving a blood test.7 43 52 53 55 58 65

Risk models and scores tended to “morph” when they were
externally validated because research teams dropped components
from the original (for example, if data on these were not
available), added additional components (for example, to
compensate for missing categories), or modified what counted
in a particular category (for example, changing how ethnicity
was classified); in some cases these modifications were not
clarified. A key dimension of implementation is appropriate
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adaptation to a new context. It was considered that this did not
negate the external validation.

Qualitative findings
Table 3⇓ provides the qualitative findings from the risk scores.
Of the 43 papers in the full sample, three did not recommend
use of the model tested because the authors believed it had no
advantage over existing ones.50 56 60 Authors of the other 40
papers considered that at least one of their scores should be
adopted and used, and to justify this made various claims. The
commonest adjective used by authors to describe their score
was “simple” (26 of 43); others mentioned “low cost,” “easily
implemented,” “feasible,” and “convenient.”
Sixteen of the 43 studies that recommended use of a particular
risk model or score did not designate an intended user for it.
Some authors assigned agency to a risk score—that is, they
stated, perhaps inadvertently, that the score itself had the
potential to prevent diabetes, change behaviour, or reduce health
inequalities. Although most authors did state an intended target
group, this was usually given in vague terms, such as “the
general population” or “individuals who are likely to develop
diabetes.” Eleven of the 43 papers gave a clear statement of
what intervention might be offered, by whom, to people who
scored above the cut-off for high risk; the other papers made
no comment on this or used vague terms such as “preventive
measures,” without specifying by whom these would be
delivered.
In all, authors of the papers in the full sample either explicitly
identified or appeared to presume 10 mechanisms (box 2) by
which, singly or in combination, use of the diabetes risk score
might lead to improved patient outcomes (see table 3).
Risk models and scores had been developed in a range of health
systems. Differences in components could be explained partly
in terms of their intended context of use. For example, the
QDScore, intended for use by general practitioners, was
developed using a database of electronic records of a nationally
representative sample of the UK general practice population
comprising 2.5 million people. The QDScore is composed
entirely of data items that are routinely recorded on general
practice electronic records (including self assigned ethnicity, a
deprivation score derived from the patient’s postcode, and
clinical and laboratory values).8 Another score, also intended
to be derived from electronic records but in a US health
maintenance organisation (covering people of working age who
are in work), has similar components to the QDScore except
that ethnicity and socioeconomic deprivation are not included.
In contrast, the FINDRISC score was developed as a population
screening tool intended for use directly by lay people; it consists
of questions on sociodemographic factors and personal history
along with waist circumference but does not include clinical or
laboratory data; high scorers are prompted to seek further advice
from a clinician.52 Such a score makes sense in many parts of
Finland and also in the Netherlands where health and
information literacy rates are high, but would be less fit for
purpose in a setting where these were low.

Prioritising scores for practising clinicians
Table 4⇓ summarises the properties of seven validated diabetes
risk scores which we judged to be the most promising for use
in clinical or public health practice. The judgments on which
this selection was based were pragmatic; other scores not listed
in table 4 (also see tables 1 and 2) will prove more fit for purpose
in certain situations and settings. One score that has not yet been
externally validated was included in table 4 because it is the

only score already being incentivised in a national diabetes
prevention policy.23

Studies of impact of risk scores on patient
outcomes
None of the 43 papers that validated one or more risk scores
described the actual use of that score in an intervention phase.
Furthermore, although these papers had been cited by a total of
1883 (range 0-343, median 12) subsequent papers, only nine of
those 1883 papers (table 5⇓) described application and use of
the risk score as part of an impact study aimed at changing
patient outcomes. These covered seven studies, of which (to
date) three have reported definitive results. All three reported
positive changes in individual risk factors, but surprisingly none
recalculated participants’ risk scores after the intervention period
to see if they had changed. While one report on the ongoing
FIN-D2D study suggests that incident diabetes has been reduced
in “real world” (non-trial) participants whowere picked up using
a diabetes risk score and offered a package of preventive care,74
this is a preliminary and indirect finding based on drug
reimbursement claims, and no actual data are given in the paper.
With that exception, no published impact study on a diabetes
risk score has yet shown a reduction in incident diabetes.

Discussion
Numerous diabetes risk scores now exist based on readily
available data and provide a good but not perfect estimate of
the chance of an adult developing diabetes in the medium term
future. A few research teams have undertaken exemplary
development and validation of a robust model, reported its
statistical properties thoroughly, and followed through with
studies of impact in the real world.

Limitations of included studies
We excluded less robust designs (especially cross sectional
studies). Nevertheless, included studies were not entirely free
from bias and confounding. This is because the “pragmatic” use
of a previously assembled database or cohort brings an inherent
selection bias (for example, the British Regional Heart Study
cohort was selected to meet the inclusion criteria for age and
comorbidity defined by its original research team and oriented
to research questions around cardiovascular disease; the
population for the QDScore is drawn from general practice
records and hence excludes those not registered with a general
practitioner).
Most papers in our sample had one or more additional
limitations. They reported models or scores that required
collection of data not routinely available in the relevant health
system; omitted key statistical properties such as calibration
and positive and negative predictive values that would allow a
clinician or public health commissioner to judge the practical
value of the score; or omitted to consider who would use the
score, on whom, and in what circumstances. We identified a
mismatch between the common assumption of authors who
develop a risk model (that their “simple” model can now be
taken up and used) and the actual uptake and use of such models
(which seems to happen very rarely). However, there has
recently been an encouraging—if limited—shift in emphasis
from the exclusive pursuit of statistical elegance (for example,
maximising area under the receiver operating curve) to
undertaking applied research on the practicalities and outcomes
of using diabetes risk scores in real world prevention
programmes.
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Box 2: 10 suggested mechanisms by which diabetes risk scores could help improve patient outcomes

Clinical
Direct impact—clinicians will pick up high risk patients during consultations and offer advice that leads to change in patients’ behaviour
and lifestyle
Indirect impact—routine use of the score increases clinicians’ awareness of risk for diabetes and motivation to manage it

Self assessment
Direct impact—people are alerted by assessing their own risk (for example, using an online tool), directly leading to change in lifestyle
Indirect impact—people, having assessed their own risk, are prompted to consult a clinician to seek further tests or advice on prevention

Technological
Individual impact—a risk model programmed into the electronic patient record generates a point of care prompt in the clinical encounter
Population impact—a risk model programmed into the electronic patient record generates aggregated data on risk groups, which will
inform a public health intervention

Public health
Planners and commissioners use patterns of risk to direct resources into preventive healthcare for certain subgroups

Administrative
An administrator or healthcare assistant collects data on risk and enters these onto the patients’ records, which subsequently triggers
the technological, clinical, or public health mechanisms

Research into practice
Use of the risk score leads to improved understanding of risk for diabetes or its management by academics, leading indirectly to changes
in clinical practice and hence to benefits for patients

Future research
Use of the risk score identifies focused subpopulations for further research (with the possibility of benefit to patients in later years)

Strengths and limitations of the review
The strengths of this review are our use of mixed methodology,
orientation to patient relevant outcomes, extraction and double
checking of data by five researchers, and inclusion of a citation
track to identify recently published studies and studies of impact.
We applied both standard systematic review methods (to
undertake a systematic and comprehensive search, translate all
non-English texts, and extract and analyse quantitative data)
and realist methods (to consider the relation between the
components of the risk score, the context in which it was
intended to be used, and the mechanism by which it might
improve outcomes for patients).
The main limitation of this review is that data techniques and
presentation in the primary studies varied so much that it was
problematic to determine reasonable numerators and
denominators for many of the calculations. This required us to
make pragmatic decisions to collate and present data as fairly
and robustly as possible while also seeking to make sense of
the vast array of available risk scores to the general medical
reader. We recognise that the final judgment on which risk
scores are, in reality, easy to use will lie with the end user in
any particular setting. Secondly, authors of some of the primary
studies included in this review were developing a local tool for
local use and made few or no claims that their score should be
generalised elsewhere. Yet, the pioneers of early well known
risk scores49 68 have occasionally found their score being applied
to other populations (perhaps ethnically and demographically
different from the original validation cohort), their selection of
risk factors being altered to fit the available categories in other
datasets, and their models being recalibrated to provide better
goodness of fit. All this revision and recalibration to produce
“new” scores makes the systematic review of such scores at
best an inexact science.

Why did we not recommend a “best” risk
score?
We have deliberately not selected a single, preferred diabetes
risk score. There is no universal ideal risk score, as the utility
of any score depends not merely on its statistical properties but
also on its context of use, which will also determine which types
of data are available to be included.75 76 Even when a risk model
has excellent discrimination (and especially when it does not)
the trade-off between sensitivity and specificity plays out
differently depending on context. Box 3 provides some questions
to ask when selecting a diabetes risk score.

Risk scores as complex interventions
Our finding that diabetes risk scores seem to be used rarely can
be considered in the light of the theoretical literature on diffusion
of innovation. As well as being a statistical model, a risk score
can be thought of as a complex, technology based innovation,
the incorporation of which into business as usual (or not) is
influenced bymultiple contextual factors including the attributes
of the risk score in the eyes of potential adopters (relative
advantage, simplicity, and ease of use); adopters’ concerns
(including implications for personal workload and how to
manage a positive score); their skills (ability to use and interpret
the technology); communication and influence (for example,
whether key opinion leaders endorse it); system antecedents
(including a healthcare organisation’s capacity to embrace new
technologies, workflows, and ways of working); and external
influences (including policy drivers, incentive structures, and
competing priorities).77 78

Challenges associated with risk scores in use
While the developers of most diabetes risk scores are in little
doubt about their score’s positive attributes, this confidence
seems not to be shared by practitioners, who may doubt the
accuracy of the score or the efficacy of risk modification
strategies, or both. Measuring diabetes risk competes for
practitioners’ attention with a host of other tasks, some of which
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Box 3: Questions to ask when selecting a diabetes risk score, and examples of intended use

What is the intended use case for the score?
If intended for use:
In clinical consultations, score should be based on data on the medical record
For self assessment by lay people, score should be based on things a layperson would know or be able to measure
In prevention planning, score should be based on public health data

What is the target population?
If intended for use in high ethnic and social diversity, a score that includes these variables may be more discriminatory

What is expected of the user of the score?
If for opportunistic use in clinical encounters, the score must align with the structure and timeframe of such encounters and competencies
of the clinician, and (ideally) be linked to an appropriate point of care prompt. Work expected from the intended user of the score may
need to be incentivised or remunerated, or both

What is expected of the participants?
If to be completed by laypeople, the score must reflect the functional health literacy of the target population

What are the consequences of false positive and false negative classifications?
In self completion scores, low sensitivity may falsely reassure large numbers of people at risk and deter them from seeking further advice

What is the completeness and accuracy of the data from which the score will be derived?
A score based on automated analysis of electronic patient records may include multiple components but must be composed entirely of
data that are routinely and reliably entered on the record in coded form, and readily searchable (thus, such scores are only likely to be
useful in areas where data quality in general practice records is high)

What resource implications are there?
If the budget for implementing the score and analysing data is fixed, the cost of use must fall within this budget

Given the above, what would be the ideal statistical and other properties of the score in this context of use?
What trade-offs should be made (sensitivity v specificity, brevity v comprehensiveness, one stage v two stage process)?

bring financial and other rewards. At the time of writing, few
opinion leaders in diabetes seem to be promoting particular
scores or the estimation of diabetes risk generally—perhaps
because, cognisant of the limited impacts shown to date
(summarised in table 5), they are waiting for further evidence
of whether and how use of the risk score improves outcomes.
Indeed, the utility of measuring diabetes risk in addition to
cardiovascular risk is contested within the diabetes research
community.79 In the United Kingdom, the imminent inclusion
of an application for calculating QDScore on EMIS, the
country’s most widely used general practice computer system,
may encourage its use in the clinical encounter. But unless the
assessment of diabetes risk becomes part of the UKQuality and
Outcomes Framework, this task may continue to be perceived
as low priority by most general practitioners. Given current
evidence, perhaps this judgment is correct. Furthermore, the
low positive predictive values may spell trouble for
commissioners. Identifying someone as “[possibly] high risk”
will inevitably entail a significant cost in clinical review, blood
tests, and (possibly) intervention and follow-up. Pending the
results of ongoing impact studies, this may not be the best use
of scarce resources.
Delivering diabetes prevention in people without any disease
requires skills that traditionally trained clinicians may not
possess.80 We know almost nothing about the reach, uptake,
practical challenges, acceptability, and cost of preventive
interventions in high risk groups in different settings.12 The
relative benefit of detecting and targeting high risk people rather
than implementing population-wide diabetes prevention
strategies is unknown.13 Effective prevention and early detection
of diabetes are likely to require strengthening of health systems
and development of new partnerships among the clinicians,
community based lifestyle programmes, and healthcare funders.81

Mechanisms bywhich risk scoresmight have
impact
Although most authors of papers describing diabetes risk scores
have hypothesised (or seem to have assumed) a clinical
mechanism of action (that the score would be used by the
individual’s clinician to target individual assessment and advice),
the limited data available on impact studies (see table 5) suggest
that a particularly promising area for further research is
interventions that prompt self assessment—that is, laypeople
measuring their own risk of diabetes. The preliminary findings
from the impact studies covered in this review also suggest that
not everyone at high risk is interested in coming forward for
individual preventive input, nor will they necessarily stay the
course of such input. It follows that in areas where aggregated
data from electronic patient records are available, the diabetes
risk scores may be used as a population prediction tool—for
example, to produce small area statistics (perhaps as pictorial
maps) of diabetes risk across a population, thereby allowing
targeted design and implementation of community level public
health interventions.82 Small area mapping of diabetes risk may
be a way of operationalising the recently published guidance
on diabetes prevention from the National Institute for Health
and Clinical Excellence, which recommends the use of “local
and national tools . . . to identify local communities at high risk
of developing diabetes to assess their specific needs.”83

Towards an impact oriented research agenda
for risk scores
We recommend that funding bodies and journal editors help
take this agenda forward by viewing the risk score in use as a
complex intervention and encouraging more applied research
studies in which real people identified as at “high risk” using a
particular risk score are offered real interventions; success in
risk score development is measured in terms of patient relevant
intermediate outcomes (for example, change in risk score) and
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final outcomes (incident diabetes and related morbidity) rather
than in terms of the statistical properties of the tool; a qualitative
component (for example, process evaluation, organisational
case study, patient’s experience of lifestyle modification)
explores both facilitators and barriers of using the score in a
real world setting; and an economic component evaluates cost
and cost effectiveness.

Conclusion
Millions of participants across the world have already
participated in epidemiological studies aimed at developing a
diabetes risk score. An extensive menu of possible scores are
now available to those who seek to use them clinically or to
validate them in new populations, none of which is perfect but
all of which have strengths. Nevertheless, despite the growing
public health importance of type 2 diabetes and the enticing
possibility of prevention for those at high risk of developing it,
questions remain about how best to undertake risk prediction
and what to do with the results. Appropriately, the balance of
research effort is now shifting from devising new risk scores to
exploring how best to use those we already have.
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What is already known on this topic

The many known risk factors for type 2 diabetes can be combined in statistical models to produce risk scores

What this study adds

Dozens of risk models and scores for diabetes have been developed and validated in different settings
Sociodemographic and clinical data were much better predictors of diabetes risk than genetic markers
Research on this topic is beginning to shift from developing new statistical risk models to considering the use and impact of risk scores
in the real world
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Tables

Table 1| Summary of 43 papers from which 94 diabetes risk models or scores were identified for systematic review

How
incident

How
diabetes

Age: mean
(SD) or
range

Duration:
mean (SD),

range (years),
or as reported

Sample
size

Why inception
cohort was
assembled

Study design
and sampling

frame
Name of risk

scoreName of studyCountryStudy*

diabetes
was

diagnosed

was
excluded at
inception

Diagnosis of
diabetes,
fasting
plasma
glucose, oral
glucose

History of
diabetes,
fasting
plasma
glucose, oral
glucose

35-5412, 1985-97; 5,
1998-2003

3254;
2420

Study of vascular risk;
implicitly, study of
diabetes risk

Power plant
workers:
cohort
derivation
study; and
cohort external

NSElectric
Generating
Authority of
Thailand Study

ThailandAekplakorn 20067

(two of six models
reported)

tolerancetolerancevalidation
study test, diabetestest; and not

stated drugs; and
fasting
plasma
glucose

NSOral glucose
tolerance
test; fasting
plasma
glucose

≥45; 28-756.4 (0.5),
1989-98; 4.2
(0.4),
1997-2003

2439;
3345

Studies of glucose
tolerance;
cardiovascular
disease and renal
disease

Cohort
external
validation
study, sample
NS

Modified
FINDRISC for
Dutch population

Hoorn study,
PREVEND study

NetherlandsAlssema 200852

(two of three
models reported)

Oral glucose
tolerance test

Oral glucose
tolerance test

Ranged from
46.3 (7.8) to
60.3 (6.9) in
five studies

4.8-5,
1986-2001

18 301NSCohort
external
validation
study of
FINDRISC in
combined

Based on
FINDRISC

DETECT-2
(includes
Ausdiab, Hoorn,
Inter99,
MONICA,
Whitehall-II)

Netherlands,
Denmark,
Sweden, UK,
Australia,
Mauritius

Alssema 201153

(two of three
models reported)

samples from
five studies

Fasting
plasma
glucose,
diabetes
drugs

NS47 (10)9 (<1996)1863
and
1954

Study of insulin
resistance syndrome

Cohort
derivation
study in
volunteers for
free health
examinations

NSDESIRFranceBalkau 200836

(both models
reported)

Oral glucose
tolerance
test, fasting
plasma
glucose,
diabetes
drugs

Oral glucose
tolerance
test, fasting
plasma
glucose,
diabetes
drugs

Men 42.8
(14.8);
women 40.7
(12.5)

6, 1999-20085018Study of lipid and
glucose risk factors

Cohort
external
validation
study in
general
population

Modified ARIC
(Atherosclerosis
Risk In
Communities)

Tehran Lipid and
Glucose Study

IranBozorgmanesh
201054

Oral glucose
tolerance
test, fasting
plasma
glucose,
diabetes
drugs

Oral glucose
tolerance
test, fasting
plasma
glucose,
diabetes
drugs

41.6 (13.2)6, 1999-20085018Study of lipid and
glucose risk factors

Cohort
derivation
study, and
cohort external
validation
study, in
general
population

NSTehran Lipid and
Glucose Study

IranBozorgmanesh
201166 (all five
models reported)

Oral glucose
tolerance
test, fasting
plasma
glucose,
diabetes
drugs

Oral glucose
tolerance
test, fasting
plasma
glucose,
diabetes
drugs

Men 42.8
(14.8);
women 40.7
(12.5)

6.3, 1999-20085018Study of lipid and
glucose risk factors

Cohort
external
validation
study in
general
population

San Antonio
diabetes
prediction model

Tehran Lipid and
Glucose Study

IranBozorgmanesh
201055 (one of six
models reported)

WHO criteriaWHO criteria50.9
(50.6-51.2)

5, 200011 247Diabetes
incidence/prevalence
study

Cohort
external
validation
study in
general
population

Diabetes
prediction
model; and
Finnish diabetes
risk score

AusDiabAustraliaCameron 200856

(both models
reported)
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Table 1 (continued)

How
incident
diabetes
was

diagnosed

How
diabetes
was

excluded at
inception

Age: mean
(SD) or
range

Duration:
mean (SD),

range (years),
or as reported

Sample
size

Why inception
cohort was
assembled

Study design
and sampling

frame
Name of risk

scoreName of studyCountryStudy*

Fasting
plasma

NS≥255, 1999-200511 247Diabetes
incidence/prevalence
study

Cohort
derivation
study in

AusdriskAusdiabAustraliaChen 201037 (all
six models
reported) glucose, oral

general
population

glucose
tolerance
test, diabetes
drugs

Fasting
plasma
glucose,
diabetes
drugs

Fasting
plasma
glucose,
diabetes
drugs

5410, 19902960NSCohort
derivation
study in
general
population

Cambridge risk
score as well as
several
unnamed

Chin-Shan
Community
Cardiovascular
Cohort

TaiwanChien 200967

(seven of eight
models reported)

Fasting
plasma
glucose,
diabetes
drugs

Fasting
plasma
glucose,
diabetes
drugs

49.2 (10.4)5.61 (3.33),
1994-2006

19 919
(3
scores),
6111 (3
scores)

Data from routine
health checks

Cohort
derivation
study in private
health clinic
patients

NSMJ Health
Screen

TaiwanChuang 201138(all
six models
reported)

Read code
C10
(diagnosis of
diabetes)

Read code
C10
(diagnosis of
diabetes)

Median
(interquartile
range) men
44 (34-57),
women 43
(34-56)

15, 1993-20082 396
392

Data from primary
care database

Cohort
external
validation
study in UK
general
practice
population

QDScoreTHIN databaseUKCollins 201157

Diagnosis of
diabetes,
fasting
plasma
glucose, oral
glucose

History of
diabetes,
fasting
plasma
glucose, oral
glucose
tolerance test

<6511, 1987-981544Study of
non-communicable
diseases

Cohort
derivation
study in
random
sample of
entire island
population

NSNSMauritiusGao 200939(one of
three models
reported)

tolerance
test, diabetes
drugs

NSNS20-657 (range
4.5-10),
1996-2006

525NSCohort
external
validation
study, sample
NS

ITD (Instrumento
Para El
Tamizaje de la
diabetes tipo 2)

NSMexicoGuerrero-Romero
201058 (one of two
models reported)

Read code
C10
(diagnosis of
diabetes)
less those
receiving

Read code
C10
(diagnosis of
diabetes)
less those
receiving

25-79
(median 41)

15, 1993-20082
samples
2 540
753 and
1 232
832

Data from primary
care database

Cohort
derivation
study in
general
practice
electronic

QDScoreQResearch
database

UKHippisley-Cox
20098 (two of four
models reported)

insulin <age
35

insulin <age
35

record
database

“T2DM
event”

Self report,
haemoglobin
A1c, ICD-10,
plasma
glucose,
diabetes
drugs

25-9810.8 (median),
1994-2005

26 168NSCohort
derivation
study in single
academic
health centre
(Tromsø)

NSTromsø StudyNorwayJoseph 201040

Varied over
study period.
Fasting
plasma
glucose, oral
glucose

NS45-6414.9,
1987-2003

9587;
3142;
3142

Study of
atherosclerosis risk

Cohort
derivation
study in four
US
communities

NSARIC
(Atherosclerosis
Risk in
Communities)

USAKahn 200941 (all
three models
reported)

tolerance
test, self
report,
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Table 1 (continued)

How
incident
diabetes
was

diagnosed

How
diabetes
was

excluded at
inception

Age: mean
(SD) or
range

Duration:
mean (SD),

range (years),
or as reported

Sample
size

Why inception
cohort was
assembled

Study design
and sampling

frame
Name of risk

scoreName of studyCountryStudy*

record,
survey

Fasting
plasma
glucose

Self report,
diabetes
drugs, fasting
plasma
glucose

70-796, 1997-20032503NSCohort
external
validation
study in two
clinics
(Memphis and
Pittsburgh)

NSHealth, Aging,
and Body
Composition
Study
(Validation)

USAKanaya 200559

Fasting
plasma
glucose, oral
glucose
tolerance test

Fasting
plasma
glucose, oral
glucose
tolerance test

30-605, NS632Lifestyle intervention
trial for cardiovascular
disease

Cohort
derivation
study, sample
from Danish
civil register

NSInter99USAKolberg 200942

Fasting
plasma
glucose, oral
glucose
tolerance
test, diabetes
drugs

Fasting
plasma
glucose, oral
glucose
tolerance
test, diabetes
drugs

45-6410, 1987-97; 5,
1992-7

4746;
4615

NSCohort
derivation
study, national
population
register; and
cohort external
validation

Diabetes risk
score

FINRISK StudiesFinlandLindstrom 200368

(both models
reported)

study,
FINRISK

Self report,
fasting
plasma
glucose, oral
glucose
tolerance

Fasting
plasma
glucose, oral
glucose
tolerance test

48-8710, 1996-20061457Analysis of routine
data from health
checks

Cohort
derivation
study in
hospital
screening
centre for
military officers

Chinese
diabetes risk
score

NSChinaLiu 201143(all
three models
reported)

test, diabetes
drugs

Self report,
fasting
plasma
glucose

Self report,
fasting
plasma
glucose

18-3010, 1985-952543Study of coronary
heart disease risk

Cohort
external
validation
study in young
adults
recruited to
CARDIA study

NSCoronary Artery
Risk
Development in
Young Adults
(CARDIA)

USAMainous 200760

Fasting
plasma
glucose,
diabetes
drugs

Fasting
plasma
glucose,
diabetes
drugs

61.6 (45-84)4.75, 2000-65329Study of
atherosclerosis risk

Cohort
external
validation
study in adults
without
cardiovascular

NSMulti-ethnic
Study of
Atherosclerosis
(MESA)

USAMann 201019 (all
three models
reported)

disease in six
diverse US
communities

Oral glucose
tolerance test

Fasting
plasma
glucose, oral
glucose
tolerance
test, diabetes
drugs

52.1 (34-75)5-10, NS518Community diabetes
study

Cohort
external
validation
study, sample
NS

NSJapanese
American
Community
Diabetes Study

USAMcNeely 200361

(one of two
models reported)

NSFasting
plasma
glucose, oral
glucose
tolerance
test, diabetes
drugs

Men 43.4
(14.1),
women 40.4
(12.6)

9, 1998-20075114Study of lipid and
glucose risk factors

Cohort
derivation
study, sample
NS

NSTehran Lipid and
Glucose Study

IranMehrabi 201044

(one of four
models reported)
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Table 1 (continued)

How
incident
diabetes
was

diagnosed

How
diabetes
was

excluded at
inception

Age: mean
(SD) or
range

Duration:
mean (SD),

range (years),
or as reported

Sample
size

Why inception
cohort was
assembled

Study design
and sampling

frame
Name of risk

scoreName of studyCountryStudy*

Fasting
plasma

Fasting
plasma

28-6228, 1971-20012377Study of children of
Framingham Heart
Study participants

Cohort
external
validation

Genotype scoreFramingham
Offspring Study

USAMeigs 20089

glucose,glucose,
study, sample
NS

diabetes
drugs

diabetes
drugs

Diagnosis of
diabetes
(ICD-9
codes),
fasting
plasma

NS57.47, 1999-200720, 644Analysis of health
maintenance
organisation
electronic records

Cohort
external
validation
study in health
maintenance
organisation

Framingham
Offspring Study
score

Kaiser
Permanente
Northwest
electronic
records

USANichols 200862 (all
three models
reported)

glucose,registered
population diabetes

drugs

As inceptionSelf report,
diabetes
drugs, clinic
registers,
death
certificates

58.9 (40-79)4.8 (1.3),
1993-2000

24, 495Study of causes of
cancer

Cohort
external
validation
study in UK
general
practice

Cambridge risk
score

European
Prospective
Investigation of
Cancer
(EPIC)-Norfolk

UKRahman 200863

Diagnosis of
diabetes, oral
glucose
tolerance test

Oral glucose
tolerance test

55-74Implicitly, 7,
1999-2008

1202NSCohort
derivation
study, sample
NS

NSKORA S4/F4
study

GermanyRathmann 201085

(all three models
reported)

Hospital
diagnosis of
diabetes
(ICD code),
physician
claims

NSMen 44,
women 46;
men 44,
women 47;
men 44,
women 46

9, 1996-7; 9,
1996-2005; 5,
2000-5

19 795;
9899; 26
465

Health surveyCohort
derivation
study, sample
NS

Dport (Diabetes
population at
risk tool)

National
Population
Health
Survey—Ontario

CanadaRosella 201069 (all
three models
reported)

Diagnosis of
diabetes,
fasting
plasma
glucose, oral
glucose

Diagnosis of
diabetes
(including
self report),
fasting
plasma

Median 54
(45-64)

9, 1987-987915Study of
atherosclerosis risk

Cohort
derivation
study in four
US
communities

NSARIC
(Atherosclerosis
Risk in
Communities)

USASchmidt 200546

(all three models
reported)

toleranceglucose,
test, diabetes
drugs

diabetes
drugs

Self report,
verified by
ICD-10; self
report,
record, death
certificate

NSMen 40-65,
women
35-65; NS

7, NS; 5, NS27 548;
25 540

Study of causes of
cancer

Cohort
derivation
study
(Potsdam);
cohort external
validation

German
diabetes risk
score

EPIC-Potsdam;
and
EPIC-Heidelberg

GermanySchulze 200770

(both models
reported)

study
(Heidelberg)

Self report
verified by
physician

Self report
verified by
physician

35-657.1, 19941962Study of causes of
cancer

Cohort
derivation
study in
general
population
(Potsdam)

Adaptation of
German
diabetes risk
score

EPIC-PotsdamGermanySchulze 200947

Health
check, clinic
registers,
diabetes
drugs,
haemoglobin
A1C

Self report40-794.6, 1993-200012 591Study of causes of
cancer

Cohort
derivation
study; cohort
external
validation
study, sample
NS

NS; Cambridge
risk score

EPIC-NorfolkUKSimmons 200771

(both models
reported)
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Table 1 (continued)

How
incident
diabetes
was

diagnosed

How
diabetes
was

excluded at
inception

Age: mean
(SD) or
range

Duration:
mean (SD),

range (years),
or as reported

Sample
size

Why inception
cohort was
assembled

Study design
and sampling

frame
Name of risk

scoreName of studyCountryStudy*

Fasting
plasma

Fasting
plasma

25-648, 1979-872217Population based
study of diabetes and

Cohort
derivation

NSSan Antonio
Heart Study

USAStern 199348 (two
of six models
reported) glucose, oralglucose, oralcardiovascular

disease
study, sample
NS glucoseglucose

tolerancetolerance
test, diabetes
drugs

test, diabetes
drugs

Fasting
plasma
glucose, oral
glucose
tolerance
test, diabetes
drugs

Fasting
plasma
glucose, oral
glucose
tolerance
test, diabetes
drugs

25-647-8, 1979-885158Population based
study of diabetes and
cardiovascular
disease

Cohort
derivation
study, sample
NS

NSSan Antonio
Heart Study

USAStern 200286 (both
models reported)

NSFasting
plasma
glucose,
diabetes
drugs

47.5 (35-74)Median 3.15,
1997-2006

10 294NSCohort
derivation
study in private
patient sample

Atherosclerosis
Risk in
Communities
(ARIC) score

Taiwan
health-check-up
database
(MJLPD)

TaiwanSun 200972 (three
of six models
reported)

Oral glucose
tolerance
test, diabetes
drugs, self
report of
doctor
diagnosis

Oral glucose
tolerance test

49 (35-55)11.7 (median),
NS

8713Study of health in civil
servants

Cohort
external
validation
study in civil
servant
sample

Cambridge Risk
Score; and
Framingham
Offspring Study
score

Whitehall IIUKTalmud 201010

(two of three
models reported)

NSNS40-555, NS399; 400Primary prevention
study of
cardiovascular
disease

Cohort
external
validation
study, sample
not stated

PreDx diabetes
risk score
training set;
PreDx diabetes
risk score
validation set

Inter99DenmarkUrdea 200964 (one
score, two studies,
both reported)

Self report,
diabetes
drugs, fasting
plasma
glucose

Self report,
fasting
plasma
glucose,
diabetes
drugs

30-604-10, 1979-953737To examine
cardiovascular risk
factors, events, and
mortality

Cohort
derivation
study in
employees of
52 companies
and authorities
in Münster

Multiple logistic
function model

PROCAM
(Prospective
Cardiovascular
Münster Study)

GermanyVon Eckardstein
200050

Record
review, self
report

Doctor
diagnosis of
diabetes,
fasting
plasma
glucose

60-797, 1998-20076927Study of
cardiovascular risk

Cohort
derivation
study, sample
not stated

NSBritish Regional
Heart Study and
British Women’s
Heart and Health
Study

UKWannamethee
201127 (all three
models reported)

NSRecall of
doctor
diagnosis,
high blood
glucose

50.3 (5.7),
40-59

21.3,
1978-2000

5128Heart studyCohort
external
validation
study in
sample of
mostly manual
social class

Framingham risk
score

British Regional
Heart Study

UKWannamethee
200565

Fasting
plasma
glucose,
diabetes
drugs

History of
diabetes, oral
glucose
tolerance
test, fasting
plasma

547,
mid-1990-2001

3140Population based
study of health
outcomes

Cohort
derivation
study, sample
not stated

NSFramingham
Offspring Study

USAWilson 200751

(one of seven
models reported)

glucose,
diabetes
drugs

NS=not stated; WHO=World Health Organization; ICD-10=International Classification of Disease, 10th revision; ICD-9=International Classification of Diseases, ninth revision.
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Table 1 (continued)

How
incident
diabetes
was

diagnosed

How
diabetes
was

excluded at
inception

Age: mean
(SD) or
range

Duration:
mean (SD),

range (years),
or as reported

Sample
size

Why inception
cohort was
assembled

Study design
and sampling

frame
Name of risk

scoreName of studyCountryStudy*

Some studies tested multiple models, with minimal difference in number of risk factors; in such cases authors’ preferred models were selected or, if no preference stated, we
made our own judgment.
*Bracketed information shows how many scores tested by the original authors were included in this systematic review.
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Table 2| Key characteristics of 94 diabetes risk models or scores included in systematic review

%
needing

Calibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study
further
tests

NSHosmer-Lemeshow
P=0.8

NS/NS0.74 (0.71 to
0.78)

77/60Age, BMI, waist circumference,
hypertension, family history of
diabetes in first degree relative

11.1Aekplakorn 20067

NSNSNS/NS0.75 (0.71 to
0.80)

84.4/52.5Age, BMI, waist circumference,
hypertension, family history of
diabetes in first degree relative

5.2Aekplakorn 20067

28NS19/94 (cut-off ≥7);
26/91 (cut-off ≥10)

0.71 (0.68 to
0.75)

84/42 (cut-off ≥7); 52/76
(cut-off ≥10)

Age, BMI, waist circumference, use
of antihypertensive drugs, parental
history of diabetes, family history of
diabetes in first degree relative

22.3 per
1000
person
years

Alssema 200852

16NS9/98 (cut-off ≥7);
12/97 (cut-off ≥10)

0.77 (0.73 to
0.80)

78/64 (cut-off ≥7); 43/85
(cut-off ≥10)

Age, BMI, waist circumference, use
of antihypertensive drugs, parental
history of diabetes, family history of
diabetes in first degree relative

10.7 per
1000
person
years

Alssema 200852

NSNSNS/NS0.77 (0.75 to
0.78)

NS/NSAge, BMI, waist circumference, use
of antihypertensive drugs, history of
gestational diabetes

Range
2.3-9.9
across five
substudies

Alssema 201153

40Hosmer-Lemeshow
P=0.27

11/NS0.76 (0.75 to
0.78)

76/63Age, BMI, waist circumference, use
of antihypertensive drugs, history of
gestational diabetes, sex, smoking,
family history of diabetes

Range
2.3-9.9
across five
substudies

Alssema 201153

NSHosmer-Lemeshow
P=0.8

NS/NS0.71 (NS)NS/NSWaist circumference, smoking,
hypertension

7.5Balkau 200836

NSHosmer-Lemeshow
P=0.9

NS/NS0.83NS/NSWaist circumference, family history
of diabetes, hypertension

3.2Balkau 200836

NSHosmer-Lemeshow
P=0.129

NS/NSMen 0.79,
women0.829

Men 71.6/75.3, women
67.1/85.0

Age, family history of diabetes,
hypertension, waist circumference,
fasting plasma glucose level, height,
pulse, triglyceride-high density
lipoprotein ratio

4.6Bozorgmanesh
201154

NSNSNS/NS0.75 (0.72 to
0.78)

NS/NSAge, family history of diabetes,
systolic blood pressure, waist-hip
ratio, waist-height ratio

4.6Bozorgmanesh
201166

NSNSNS/NS0.85 (0.82 to
0.87)

NS/NSFamily history of diabetes, systolic
blood pressure, waist-height ratio,
triglyceride-high density lipoprotein
ratio, fasting plasma glucose level

4.6Bozorgmanesh
201166

NSNSNS/NS0.86 (0.83 to
0.89)

NS/NSFamily history of diabetes, systolic
blood pressure, waist-height ratio,
triglyceride-high density lipoprotein
ratio, fasting plasma glucose level,
two hour postprandial plasma glucose
level

4.6Bozorgmanesh
201166

NSHosmer-Lemeshow
P=0.631

NS/NS0.83 (0.80 to
0.86)

75/77Systolic blood pressure, waist-height
ratio, fasting plasma glucose level,
triglyceride-high density lipoprotein
ratio, family history of diabetes

4.6Bozorgmanesh
201166

NSHosmer-Lemeshow
P=0.264

NS/NS0.78 (0.75 to
0.81)

NS/NSNS4.6Bozorgmanesh
201166

NSHosmer-Lemeshow
P<0.001, when
recalibrated
P=0.131

NS/NS0.83 (0.80 to
0.86)

NS/NS“San Antonio diabetes prediction
model”

4.6Bozorgmanesh
201055

19.3NS11.9/98.3NS62.4/82.3Age, sex, ethnicity, fasting plasma
glucose level, systolic blood pressure,
high density lipoprotein cholesterol
level, BMI, family history of diabetes

2.0Cameron 200856

30.6NS6.8/98.2NS62.3/70.5NS2.0Cameron 200856
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Table 2 (continued)

%
needing
further
testsCalibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study

NSHosmer-Lemeshow
P=0.06

NS/NS0.79 (0.76 to
0.81)

NS/NSAge, sex, ethnicity, parental history
of diabetes, history of high blood

3.2Chen 201037

glucose levels, use of
antihypertensive drugs, lipid lowering
drugs, smoking, physical inactivity,
waist circumference, BMI, education,
occupation

NSHosmer-Lemeshow
P=0.02

NS/NS0.79 (0.76 to
0.81)

NS/NSAge, sex, ethnicity, parental history
of diabetes, history of high blood
glucose levels, use of
antihypertensive drugs, lipid lowering
drugs, smoking, physical inactivity,
waist circumference, BMI, education

3.2Chen 201037

NSHosmer-Lemeshow
P=0.06

NS/NS0.79 (0.76 to
0.81)

NS/NSAge, sex, ethnicity, parental history
of diabetes, history of high blood
glucose levels, use of
antihypertensive drugs, lipid lowering
drugs, smoking, physical inactivity,
waist circumference, BMI

3.2Chen 201037

NSHosmer-Lemeshow
P=0.02

NS/NS0.79 (0.76 to
0.81)

NS/NSAge, sex, ethnicity, parental history
of diabetes, history of high blood
glucose levels, antihypertensive
drugs, smoking, physical inactivity,
waist circumference, BMI

3.2Chen 201037

NSHosmer-Lemeshow
P=0.85

NS/NS0.78 (0.76 to
0.81)

NS/NSAge, sex, ethnicity, parental history
of diabetes, history of high blood
glucose levels, use of
antihypertensive drugs, smoking,
physical inactivity, waist
circumference

3.2Chen 201037

NSHosmer-Lemeshow
P=0.66

NS/NS0.78 (0.75 to
0.80)

NS/NSAge, sex, ethnicity, parental history
of diabetes, history of high blood
glucose levels, use of
antihypertensive drugs, smoking,
physical inactivity, BMI

3.2Chen 201037

NSHosmer-Lemeshow
P=0.874

NS/NS0.70 (0.68 to
0.73)

52/78Age, BMI, white blood cell count,
triglyceride level, high density
lipoprotein cholesterol level, fasting
plasma glucose level

18.5Chien 200967

NSNSNS/NS0.70 (0.68 to
0.73)

69/62Age, BMI, white blood cell count,
triglyceride level, high density
lipoprotein cholesterol level, fasting
plasma glucose level, family history
of diabetes, systolic blood pressure

18.5Chien 200967

NSNSNS/NS0.65 (0.62 to
0.67)

NS/NSAge, sex, BMI, family history of
diabetes, use of antihypertensive
drugs

18.5Chien 200967

NSHosmer-Lemeshow
P=0.008

NS/NSNS66/56NS18.5Chien 200967

NSHosmer-Lemeshow
P=0.001

NS/NSNS72/40NS18.5Chien 200967

NSHosmer-Lemeshow
P=0.002

NS/NSNS55/72NS18.5Chien 200967

NSHosmer-Lemeshow
P=0.032

NS/NSNS48/78NS18.5Chien 200967

NSNSNS/NS0.71 (0.70 to
0.73)

NS/NSAge, sex, education, alcohol, BMI,
waist circumference

6.4Chuang 201138

NSNSNS/NS0.720 (0.71
to 0.74)

NS/NSAge, sex, education, alcohol, BMI,
waist circumference, blood pressure,
hypertension

6.4Chuang 201138

No commercial reuse: See rights and reprints http://www.bmj.com/permissions Subscribe: http://www.bmj.com/subscribe

BMJ 2011;343:d7163 doi: 10.1136/bmj.d7163 (Published 28 November 2011) Page 18 of 31

RESEARCH

http://www.bmj.com/permissions
http://www.bmj.com/subscribe


Table 2 (continued)

%
needing
further
testsCalibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study

NSNSNS/NS0.82 (0.81 to
0.83)

NS/NSAge, sex, education, alcohol, BMI,
waist circumference, triglyceride level,

6.4Chuang 201138

blood pressure, hypertension, fasting
plasma glucose level

NSNSNS/NS0.75 (0.73 -
0.78)

NS/NSAge, sex, education, alcohol, BMI,
waist circumference, family history of
diabetes

6.4Chuang 201138

NSNSNS/NS0.76 (0.73 to
0.79)

NS/NSAge, sex, education, family history of
diabetes, alcohol, BMI, waist
circumference, blood pressure,
hypertension

6.4Chuang 201138

NSNSNS/NS0.84 (0.81 to
0.86)

NS/NSAge, sex, education, alcohol
consumption, BMI, waist
circumference, blood pressure,
hypertension, fasting plasma glucose
level, triglyceride level, family history
of diabetes

6.4Chuang 201138

NSBrier score: men
0.053 (0.051-0.054),
women 0.041
(0.040-0.043)

NS/NSWomen 0.81,
men 0.80

NS/NSAge, sex, ethnicity, BMI, smoking,
family history of diabetes,
cardiovascular disease, Townsend
score, treated high blood pressure,
current use of corticosteroids

3.0Collins 201157

NSNSNS/NSMen 0.62
(0.56 to
0.68),
women 0.64
(0.59 to 0.69)

Men 72 (71-74)/0.47
(0.45-0.49), women 77
(75-78)/0.50 (0.48-0.52)

BMI, waist circumference, family
history of diabetes

16.5Gao 200939

NSNS35/97.50.9192/71Age, sex, family history of diabetes,
family history of hypertension, family
history of obesity, history of
gestational diabetes or macrosomia,
fasting plasma glucose level, physical
inactivity, triglyceride level, systolic
or diastolic blood pressure, BMI

11.8Guerrero-Romero
201058

NSNSNS/NSNSNS/NSAge, sex, ethnicity, BMI, smoking,
family history of diabetes, Townsend
score, treated hypertension,
cardiovascular disease, current use
of corticosteroids

3.1Hippisley-Cox
20098

NSBrier score: men
0.078 (0.075-0.080),
women 0.058
(0.055-0.060)

NS/NSWomen 0.85
(0.85 to
0.86), men
0.83 (0.83 to
0.84)

NS/NSAge, sex, ethnicity, BMI, smoking,
family history of diabetes, Townsend
score, treated hypertension,
cardiovascular disease, current use
of corticosteroids

3.0Hippisley-Cox
20098

NSNSNS/NSMen 0.87,
women 0.88

NS/NSAge, BMI, total cholesterol,
triglyceride level, high density
lipoprotein cholesterol level,
hypertension, family history of
diabetes, education, physical
inactivity, smoking

Men 2.5,
women 1.5

Joseph 201040

NSNSNS/NSNSNS/NSSee next two rows for description of
both models

Men 19.4,
women
18.6

Kahn 200941

NSNSNS/NS0.71 (0.69 to
0.73)

69/64Waist circumference, parental history
of diabetes, hypertension, short
stature, black race, age >55, weight,
pulse, smoking

17.7 at 10
years

Kahn 200941
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Table 2 (continued)

%
needing
further
testsCalibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study

NSNSNS/NS0.79 (0.77 to
0.81)

74/71Glucose, waist circumference,
parental history of diabetes,

17.7 at 10
years

Kahn 200941

hypertension, triglyceride level, black
race, high density lipoprotein
cholesterol level, short stature, high
uric acid level, age >55, pulse,
alcohol consumption

NSNSNS/NS0.71 (NS)NS/NSAge, sex, triglyceride level, fasting
plasma glucose level

5.7Kanaya 200559

10%
classified
as high
risk

NSNS/NS0.78 (NS)NS/NSSix biomarkers: adiponectin, C
reactive protein, ferritin, glucose,
interleukin 2 receptor A, insulin

2.7Kolberg 200942

25% in
two
highest
risk
categories

NS0.13
(0.11-0.15)/0.99
(0.98-0.99)

0.85 (NS)78 (71-84)/77 (76-79)Age, BMI, waist circumference, use
of antihypertensive drugs, history of
hypertension, physical inactivity, diet
(vegetables, fruits or berries)

4.1Lindstrom 200368

26% of
men and
24% of
women in
two
highest

NS0.05
(0.04-0.06)/0.996
(0.993-0.998)

0.87 (NS)81 (69-89)/76 (74-77)Age, BMI, waist circumference, use
of antihypertensive drugs, history of
hypertension, physical inactivity, diet
(vegetables, fruit or berries)

1.5Lindstrom 200368

risk
categories

NSNSNS/NS0.68 (0.65 to
0.72)

NS/NSAge, hypertension, history of high
blood glucose level, BMI

20.9Liu 201143

NSNSNS/NS0.71 (0.68 to
0.74)

NS/NSAge, hypertension, history of high
blood glucose level, BMI, fasting
plasma glucose level

20.9Liu 201143

NSNS37.70/88.600.72 (0.69 to
0.76)

64.5/71.6Age, hypertension, history of high
blood glucose level, BMI, fasting
plasma glucose level, triglyceride
level, high density lipoprotein
cholesterol level

20.9Liu 201143

NSNSNS/NS0.7015/98Waist circumference, hypertension or
use of antihypertensive drugs, low
density lipoprotein cholesterol level,
triglyceride level, BMI,
hyperglycaemia

3.9Mainous 200760

27.7 in
highest
risk fifth

Hosmer-Lemeshow
P<0.001 before
calibration, P>0.10
after recalibration

NS/NS0.78 (0.74 to
0.82)

NS/NSOverweight or obese, impaired fasting
glucose, high density lipoprotein
cholesterol level, triglyceride level,
hypertension, parental history of
diabetes

8.4Mann 201019

27.6 in
highest
risk fifth

Hosmer-Lemeshow
P<0.001 before
calibration, P>0.10
after recalibration

NS/NS0.84 (0.82 to
0.86)

NS/NSHeight, waist circumference, black
ethnicity, systolic blood pressure,
fasting plasma glucose level, high
density lipoprotein cholesterol level,
triglyceride level, parental history of
diabetes, age

8.4Mann 201019

27.6 in
highest
risk fifth

Hosmer-Lemeshow
P<0.001 before
calibration, P>0.10
after recalibration

NS/NS0.83 (0.81 to
0.85)

NS/NSAge, sex, Mexican-American
ethnicity, fasting plasma glucose
level, systolic blood pressure, high
density lipoprotein cholesterol level,
BMI, family history of diabetes

8.4Mann 201019

NSNSNS/NS0.76 (0.70 to
0.81) at 5-6
years, 0.79
(0.74 to 0.85)
at 10 years

60 and 73.3 at 5-6
years/64.9 and 78.4 at
10 years

Age, sex, ethnicity, BMI, systolic
blood pressure, fasting plasma
glucose level, high density lipoprotein
cholesterol level, family history of
diabetes in first degree relative

9.7 at 5
years 14.3
at 10 years

McNeely 200361
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Table 2 (continued)

%
needing
further
testsCalibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study

NSNSNS/NS0.843 (0.813
to 0.874)

NS/NSImpaired fasting glucose, family
history of diabetes, impaired glucose

4.2Mehrabi 201044

tolerance, waist circumference,
triglyceride level

NSNSNS/NS0.90 (0.88 to
0.92)

NS/NSAge, sex, family history of diabetes,
BMI, triglyceride level, fasting plasma
glucose level, systolic blood pressure,
high density lipoprotein cholesterol
level (Framingham simple clinical
model)

9.2Meigs9

NSNSNS/NS0.68 (NS)NS/NSAge, sex, parental history of diabetes,
BMI

16.5Nichols 200862

NSHosmer-Lemeshow
P<0.001

NS/NS0.82 (NS)NS/NSAge, sex, parental history of diabetes,
BMI, hypertension or antihypertensive
drugs, high density lipoprotein
cholesterol level, triglyceride level,
fasting plasma glucose level

16.5Nichols 200862

NSNSNS/NS0.84 (NS)NS/NSAge, sex, parental history of diabetes,
BMI, systolic blood pressure, high
density lipoprotein cholesterol level,
triglyceride level, fasting plasma
glucose level, waist circumference

16.5Nichols 200862

20NSNS/NS0.74 (NS)54.5/80Age, sex, current use of
corticosteroids, use of
antihypertensive drugs, family history
of diabetes, BMI, smoking

1.3Rahman 200863

NSHosmer-Lemeshow
P=0.66, Brier score
0.0848

23.7/95.40.76 (0.71 to
0.81)

69.2/74Age, sex, BMI, parental history of
diabetes, smoking, hypertension

7.6Rathmann 201085

NSHosmer-Lemeshow
P=0.45, Brier score
0.0716

26.1/97.30.84 (0.80 to
0.89)

82.4/72.9Age, sex, BMI, parental history of
diabetes, smoking, hypertension,
fasting plasma glucose level,
haemoglobin A1c concentration, uric
acid level

7.6Rathmann 201085

NSHosmer-Lemeshow
P=0.70, Brier score
0.0652

37.4/97.50.89 (0.85 to
0.92)

81.3/84.1Age, sex, BMI, parental history of
diabetes, smoking, hypertension,
fasting plasma glucose level,
haemoglobin A1c concentration, uric
acid level, oral glucose tolerance test

7.6Rathmann 201085

NSHosmer-LemeshowNS/NSMen 0.77
(0.76 to
0.79),
women 0.78
(0.76 to 0.79)

NS/NSAge, ethnicity, BMI, hypertension,
immigrant status, smoking, education,
cardiovascular disease

7.1Rosella 201069

NSHosmer-LemeshowNS/NSMen 0.77
(0.76 to
0.79),
women 0.76
(0.74 to 0.77)

NS/NSAge, ethnicity, BMI, hypertension,
immigrant status, smoking, education,
cardiovascular disease

5.3Rosella 201069

NSHosmer-LemeshowNS/NSMen 0.79
(0.77 to
0.82),
women 0.80
(0.77 to 0.82)

NS/NSAge, ethnicity, BMI, hypertension,
immigrant status, smoking, education,
cardiovascular disease

4.2Rosella 201069

50NSRange
25-32/range 88-93
(at different
cut-offs)

0.71Range 40-77/55-84 (at
different cut-offs)

Age, waist circumference, height,
systolic blood pressure, family history
of diabetes, ethnicity

16.3Schmidt 200546

50NSRange
27-41/90-94 (at
different cut-offs)

0.78Range 51-83/56-86 (at
different cut-offs)

Age, waist circumference, height,
systolic blood pressure, family history
of diabetes, ethnicity, fasting plasma
glucose level

16.3Schmidt 200546
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Table 2 (continued)

%
needing
further
testsCalibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study

50NSRange
27-42/range 90-95

0.80Range 52-85/57-86 (at
different cut-offs)

Age, ethnicity, waist circumference,
height, systolic blood pressure, family

16.3Schmidt 200546

(at different
cut-offs)

history of diabetes, fasting plasma
glucose level, triglyceride level, high
density lipoprotein cholesterol level

23.20Observed to
predicted incidence

5.9, 7.7, 10.7 at
different
cut-offs/NS

0.8483.1, 67.5, 50.3/68.3,
80.6, 89.9 (at different
cut-offs)

Age, waist circumference, height,
history of hypertension, physical
inactivity, smoking, consumption of
red meat, whole grain bread, coffee,
and alcohol

3.1Schulze 2007 70

NSObserved to
predicted incidence

NS/NS0.8294.4 ≥500 points, 79.7
≥550 points/66.7 ≥500
points, 79.3 ≥550 points

Age, waist circumference, height,
history of hypertension, physical
inactivity, smoking, consumption of
red meat, whole grain bread, coffee,
and alcohol

2.6Schulze 200770

NSHosmer-Lemeshow
tests showed better
calibration with
haemoglobin A1c or
glucose included

NS/NS0.90 (0.89 to
0.91)

NS/NSDiabetes risk score plus haemoglobin
A1c concentration, glucose level,
triglyceride level, high density
lipoprotein cholesterol level,
γ-glutamyltransferase level, alanine
aminotransferase level

3Schulze 200947

NSNSNS/NS0.76 (0.73 to
0.79)

NS/NSAge, sex, use of antihypertensive
drugs, BMI, family history of diabetes,
physical inactivity, diet (green leafy
vegetables, fresh fruit, wholemeal
bread)

1.7Simmons 200771

NSNSNS/NS0.76 (0.73 to
0.79)

NS/NSAge, sex, current use of
corticosteroids, use of
antihypertensive drugs, family history
of diabetes, BMI, smoking

1.7Simmons 200771

12.8NS26.80/98.40NS75/88.5Fasting plasma glucose level, two
hour postprandial plasma glucose
level, BMI, high density lipoprotein
cholesterol level, pulse pressure

3.7Stern 199348

14.7NS25.20/98.10NS69.6/88.1Sex, fasting plasma glucose level,
BMI, high density lipoprotein
cholesterol level, pulse pressure

3.7Stern 199348

NSHosmer-Lemeshow
P>0.2

NS/NS0.86 (0.84 to
0.88)

NS/NSAge, sex, ethnicity, triglyceride level,
total cholesterol level, low and high
density lipoprotein cholesterol levels,
fasting plasma glucose level, family
history of diabetes in first degree
relative, two hour postprandial plasma

6.0Stern 200286

glucose level, systolic and diastolic
blood pressure, BMI

NSHosmer-Lemeshow
P>0.2

NS/NS0.84 (0.82 to
0.87)

NS/NSAge, sex, ethnicity, fasting plasma
glucose level, systolic blood pressure,
high density lipoprotein cholesterol
level, BMI, family history of diabetes
in first degree relative

6/0Stern 200286

31.2Observed to
predicted incidence
P=0.410

17.18/98.380.85 (0.83 to
0.87)

72.3/82.8Age, sex, education, family history of
diabetes, smoker, sport time, high
blood pressure, BMI, waist
circumference, fasting plasma
glucose level

4.7Sun 200972

23.5NS13.54/98.470.8475.2/79.0Age, ethnicity, waist circumference,
height, systolic blood pressure, family
history of diabetes, fasting plasma
glucose level

4.7Sun 200972
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Table 2 (continued)

%
needing
further
testsCalibration

Positive/negative
predictive value

(%)
AUROC
(95% CI)

Sensitivity/specificity†
%Components of score

Diabetes
incidence

(%)*Study

22.7NS15.39/98.470.8475.0/79.7Age, ethnicity, waist circumference,
height, systolic blood pressure, family

4.7Sun 200972

history of diabetes, fasting plasma
glucose level, triglyceride level, high
density lipoprotein cholesterol level

19.2Hosmer-Lemeshow
P=0.77

NS/NS0.72 (0.69 to
0.76)

NS/NSNS3.5Talmud 2010 10

26.6Hosmer-Lemeshow
P=0.42

NS/NS0.78 (0.75 to
0.82)

NS/NSNS3.5Talmud 201010

NSObserved to
predicted risk

NS/NS0.84 (NS)NS/NSLevels of adiponectin, C reactive
protein, ferritin, glucose, haemoglobin
A1c, interleukin 2, insulin

3.2Urdea 200964

NSObserved to
predicted risk

NS/NS0.84 (NS)NS/NSLevels of adiponectin, C reactive
protein, ferritin, glucose, haemoglobin
A1c, interleukin 2, insulin

3.2Urdea 200964

NSNS16.7 at 80%
specificity, 24.6 at
90% specificity/NS

0.79 (0.78 to
0.81)

69.5 (62.6-73.9) at 80%
specificity, 57.0
(49.8-64.0) at 90%
specificity/set at 80%
and 90%

Age, BMI, hypertension, glucose,
family history of diabetes, high
density lipoprotein cholesterol level

5.4Von Eckardstein
200050

47Hosmer-Lemeshow
P=0.006

NS/NS0.77 (0.74 to
0.79)

79.2 (top 40%) 50.3 (top
20%)/61.8 (top 40%)
81.4 (top 20%)

Age, sex, family history of diabetes,
smoking status, BMI, waist
circumference, hypertension, recall
of doctor diagnosed coronary heart
disease

4.3Wannamethee
201127

NSHosmer-Lemeshow
P=0.43

NS/NS0.82 (0.79 to
0.84)

84.2 (top 40%), 63.8 (top
20%)/62% (top 40%) 82
(top 20%)

Age, sex, family history of diabetes,
fasting plasma glucose level, smoking
status, BMI, waist circumference,
hypertension, recall of doctor
diagnosed coronary heart disease,
high density lipoprotein cholesterol
level, triglyceride level

4.3Wannamethee
201127

NSHosmer-Lemeshow
P=0.61

NS/NS0.81 (0.79 to
0.83)

85.1 (top 40%), 62% (top
20%)/62.1 (top 40%),
82% (top 20%)

Age, sex, family history of diabetes,
smoking, BMI, waist circumference,
hypertension, recall of doctor
diagnosed coronary heart disease,
high density lipoprotein cholesterol
level, γ-glutamyltransferase level,,
haemoglobin A1c concentration

4.3Wannamethee
201127

10.8NSNS/NS0.60 (0.56 to
0.64) at 20
years

35.6/75.7 (both at 20
years)

NS5.8Wannamethee
200565

15.6NSNS/NS0.85 (NS)NS/NSFasting plasma glucose level, BMI,
high density lipoprotein cholesterol
level, parental history of diabetes,
triglyceride level, blood pressure

5.1Wilson 200751

NS=not stated; BMI=body mass index.
*Incidence of diabetes was measured differently by different authors, such as annually, every five years, every 10 years, or per 1000 patient years.
†Sensitivity and specificity are based on authors’ preferred cut-off score.
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Table 3| Summary of authors’ assumptions and claims about their diabetes risk models or scores

Citation
tracking

Data in
paper on

Authors’ stated
concerns about
their risk score

Authors’ claims
for risk score
over others

Authors’
adjectives to
describe their
risk score

Mechanism
by which
use of risk
score may

Authors’ assumptions

Study

What will be
offered to
people who
score above
cut-off for
“caseness”

Who will use risk
score, on which
subgroups or
populations

(Google
Scholar)

for
studies
of real
world
use

use of
risk

score in
real
world

improve
outcome

64
citations,
not
relevant

Validated
on another
cohort in
same
factory

Generalisability has
not been shown
beyond Thai
population

“Almost as good as”
and less expensive
than models that
rely on blood tests

Simple, “a
practical tool,”
low tech, no lab
tests,
non-invasive

ClinicalFasting plasma
glucose test,
“health education
and the
opportunity to
engage in
healthy lifestyles”

“Primary health care”
will use score on
“individuals who are
likely to develop
diabetes”

Aekplakorn 20067

0NoneOnly predicts getting
diabetes, does not
predict complications

NS“Pretty good”Clinical, public
health

Blood test,
preventive
management
according to
protocol

General practitioners,
for use on high risk
patients. Public health
clinicians, for use on
high risk populations

Alssema 200852

1 citation,
not
relevant

NoneSome missing data in
dataset

Better discriminationUpdated,
refined, simple

Clinical, public
health

Blood test,
“integrated
strategies”
(addressing risk
of cardiovascular
disease as well)

Intended users not
stated. Refined
previous risk score

Alssema 201153

34
citations,
not
relevant

None2 hour glucose level
rarely used in practice

Better area under
receiver operating
characteristic curve,
simple (requires 3
variables for men, 4
for women)

SimpleNone
specifically
hypothesised

Focuses on
population level,
not clinical care
of high risk
people

Implicit target audience
epidemiologists and
population geneticists

Balkau 200836

1 citation,
not
relevant

NoneSample may not be
representative (too
“urban”)

Better discrimination
capacity, developed
on large cohort

Simple,
parsimonious

Clinical“Intensive
diabetes
prevention
interventions”

Clinical (“targeted
interventions”) and
public health (“efficient
allocation of
resources”)

Bozorgmanesh
201054

2 citations,
not
relevant

NoneNSBetter discrimination
capacity, developed
on large cohort

Simple,
superior,
pragmatic,
parsimonious,
comprehensive

ClinicalNSClinicians in Iran and
other Middle Eastern
countries; unselected
Middle Eastern
population

Bozorgmanesh
201166

0NAResponse 65%; short
follow-up, predictive
value reduces with
time

Likely to be
acceptable to
patients and doctors

Simple, clinical,
parsimonious

ClinicalFormal test for
diabetes, for
example, oral
glucose
tolerance test,
plus

Clinical practice (“to be
ordinarily available in a
routine clinical
setting”), Middle
Eastern countries

Bozorgmanesh
201055

“Individualised
primary
prevention”

22
citations,
not
relevant

NAAuthors unconvinced
that it adds value

NANo better at
predicting
diabetes than
random blood
glucose level

ClinicalImplicitly, general
population
(Australians).
“Lifestyle
measures”

Intended users not
stated. Does not
consider how scores
will be used

Cameron 200856

6 citations,
of which
one was
an impact
study

Validated
on second
population
as part of
this study

Developed on narrow
age band hence age
not very significant in
final model

Better
discrimination,
easier to measure
(for example, waist
circumferencemore
practicable than
BMI for lay people)

Simple,
non-invasive

Lay people“Interventions to
prevent or delay
[diabetes] onset”

Not stated but score
has been converted to
an online tool for self
assessment of risk by
lay people

Chen 201037

24
citations,
not
relevant

NoneAUROC only 70%,
diabetes not excluded
at baseline

First to be validated
in Chinese (but
others claim this
too)

SimpleClinical“Preventive and
treatment
strategies”

“Clinical practice”
(Chinese population)

Chien 200967
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Table 3 (continued)

Citation
tracking
(Google
Scholar)

for
studies
of real
world
use

Data in
paper on
use of
risk

score in
real
world

Authors’ stated
concerns about
their risk score

Authors’ claims
for risk score
over others

Authors’
adjectives to
describe their
risk score

Mechanism
by which
use of risk
score may
improve
outcome

Authors’ assumptions

Study

What will be
offered to
people who
score above
cut-off for
“caseness”

Who will use risk
score, on which
subgroups or
populations

0NoneNoneMenu of scores
(some simple, some

SimpleClinicalNS“Clinical professionals
and general subjects,”

Chuang 201138

more complex withfor use in “middle aged
betterChinese adults living in

Taiwan” discrimination);
large validation
cohort

0NA (not
their risk
score)

NoneValidated by an
independent team
on an independent
cohort (unlike most
others)

UsefulPublic healthNSImplicitly,
epidemiologists and
public health clinicians,
for use in UK
population

Collins 201157

0NoneOnly moderately good
predictive power
(AUROC 71%)

Simple, uses
absolute risk, based
on prospective
cohort

SimpleLay peopleNS“To be used by
laypersons” to detect
diabetes and raise
awareness,
“particularly in low-
income countries”

Gao 200939

0NoneNot shown to be cost
effective or to improve
quality of life, needs
external validation

Statistically better
than other scores
for use on a Latin
American
population

Quick and easy
to use, few
laboratory
investigations,
cheap

Implicitly,
clinical

Blood test,
monitoring of
risk, preventive
intervention
targeting
particular risk
factors

Intended users not
stated. For use on
unselected Latin
American population

Guerrero-Romero
201058

46
citations,
not
relevant

None, but
authors
emphasise
that it
could be
used easily

Missing values (for
example, smoking,
ethnicity); internal
validation on EMIS
only; better design
would be a

Includes deprivation
and ethnicity, based
on data from
general practice
record, good
statistical

Simple, good
discrimination,
well calibrated,
readily
implementable
in primary care,
cost effective

Clinical“To identify and
proactively
intervene”

General practice and
public health in areas
of high socioeconomic
and ethnic diversity;
use in “clinical settings”
and by lay public
through a “simple web
calculator”

Hippisley-Cox
20098

prospective study of
inception cohort

properties, well
validated, “likely to
reduce . . . health
inequalities”

0NoneNone mentionedMore
comprehensive,
AUROC 0.85,
longer follow-up,
less bias (for
example, in how

NSNone
specifically
hypothesised

“Lifestyle advice
advocating
physical activity,
healthy low fat
diet, and weight
reduction”

Implicitly,
epidemiologists (focus
of paper is
identification and
refinement of risk
factors in a population)

Joseph 201040

incident diabetes
was diagnosed)

29
citations,
not
relevant

NoneLimited to age 45-65
and to white or black
ethnic groups

Prospectively
validated, may
illuminate cause of
diabetes by
demonstrating new
associations

Low cost,
clinical, simple

Clinical, public
health

“Preventive
interventions”

“Insurers or public
health agencies . . . to
optimise allocation of
preventive medicine
resources”

Kahn 200941

0NoneNeeds validating in a
longitudinal study

Very simple,
validated in several
samples

SimpleClinical“Lifestyle
modification”

To identify “older
persons who should
receive intensive
lifestyle intervention”

Kanaya 200559
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Table 3 (continued)

Citation
tracking
(Google
Scholar)

for
studies
of real
world
use

Data in
paper on
use of
risk

score in
real
world

Authors’ stated
concerns about
their risk score

Authors’ claims
for risk score
over others

Authors’
adjectives to
describe their
risk score

Mechanism
by which
use of risk
score may
improve
outcome

Authors’ assumptions

Study

What will be
offered to
people who
score above
cut-off for
“caseness”

Who will use risk
score, on which
subgroups or
populations

29
citations,

NoneDeveloped in
overweight middle

Biologically
plausible

Objective,
quantitative

None
specifically
hypothesised

“for whom the
most
comprehensive

For use on “individuals
at highest risk of
developing type 2
diabetes”

Kolberg 200942

not
relevant

aged white people,
hence transferability
may be limited

(“multi-biomarker”),
convenient, fewer
logistical challenges

prevention
strategies should
be considered” to implementation,

better discrimination

343
citations,
of which
eight
described
impact
studies

Not in this
paper, but
see citation
track

Possible circular
argument—identifying
people based on same
risk factors that would
have prompted their
clinician to measure
random blood glucose
level in the first place

Prospective, large
cohort. “The public
health implications
of the Diabetes Risk
Score are
considerable”

Simple,
practical,
informative,
fast,
non-invasive,
inexpensive,
reliable, safe

Clinical, lay
people

“Direct attention
to modifiable risk
factors.” Also,
doing one’s own
risk score might
prompt people to
modify their
lifestyle and

Intended users not
stated. Implicitly, those
who (like the authors)
seek to undertake
intervention studies of
diabetes prevention.
For use with “the
general public”

Lindstrom 200368

prompt them to
get their blood
glucose level
checked

0NoneValidated in middle
aged to older cohort
so unproved benefit in
younger people. Did
not include family
history of diabetes, as
not on database

Validated on a
mainland Chinese
population, large
cohort, prospective,
stable prediction
model

Practical,
effective,
simple, easily
used in clinical
practice

ClinicalOral glucose
tolerance test,
education,
“opportunity to
engage in
healthy lifestyles
at an early stage”

Clinicians. “initial
instrument for
opportunistic screening
in general population”,
“could enhance
people’s awareness”

Liu 201143

8 citations,
not
relevant

NonePoor discriminatory
ability

NANA (they don’t
recommend it in
this group)

Clinical“Early
recognition and
treatment”

Implicitly, clinicians.
Paper describes
validation of a previous
risk score in a younger
cohort

Mainous 200760

3 citations,
not
relevant

NoneInability to isolate
Mexicans

Recalibration and
revalidation of
Framingham based
score in large
ethnically diverse
population

High
discriminative
ability

None
specifically
hypothesised

NS“Clinicians . . . to
stratify their patient
populations”

Mann 201019

29
citations,
not
relevant

None“Further refinements
that take into account
the differential effects
of age are needed”

Better in short term
than fasting blood
glucose test but not
in long term
(younger people).
Not as good as oral

None, all data
expressed in
numbers

None
specifically
hypothesised

NS“Clinical practice.” To
predict diabetes risk in
Japanese Americans

McNeely 200361

glucose tolerance
test (older people)

0NoneNew and relatively
untested, some
missing data

Higher predictability
rate than use of
single risk factors
alone

Useful, novelNot
specifically
hypothesised

NSNSMehrabi 201044

163
citations,
but not
relevant
as paper
cited for its

NADid not help to refine
the prediction of
diabetes risk

NALess useful
than data
collected at a
routine clinical
examination

NA (authors
suggest
further
research on
key
subgroups)

NANA—negative study
showing that genetic
factors add nothing to
clinical scores

Meigs 20089

negative
findings
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Table 3 (continued)

Citation
tracking
(Google
Scholar)

for
studies
of real
world
use

Data in
paper on
use of
risk

score in
real
world

Authors’ stated
concerns about
their risk score

Authors’ claims
for risk score
over others

Authors’
adjectives to
describe their
risk score

Mechanism
by which
use of risk
score may
improve
outcome

Authors’ assumptions

Study

What will be
offered to
people who
score above
cut-off for
“caseness”

Who will use risk
score, on which
subgroups or
populations

1 citation,
not
relevant

NoneIf health maintenance
organisation
population has

Better AUROC“Extremely
accurate,”
simple

Clinical, public
health,
technology

“Interventions”
and targeting of
healthcare
resources

Health maintenance
organisations. Based
on analysis of
electronic record data,

Nichols 200862

different incidence of
to identify members at type 2 diabetes from
high risk of developing
diabetes

validation cohort,
score will be
inaccurate

29
citations,
not
relevant

NoneWill need to be
validated in other
prospective cohorts

Based on data
routinely available
on general practice
records

Simple,
effective

Clinical, public
health

Not explicitly
stated but
authors suggest
potential
avenues for
impact studies

Primary care and
public health clinicians.
Use for “defining
individuals and
populations for testing,
treatment and
prevention”

Rahman 200863

1 citation,
not
relevant

NoneNo external validation
yet

Validated in older
population

SimplePublic health“Preventive
strategies”

Intended users not
stated. Use “to identify
high-risk populations
for preventive
strategies”

Rathmann 201085

1 citation,
not
relevant

NoneCould be further tested
on other populations.
Family history and
poor diet not collected,
relies on self reports

Uses data available
on population
registries

SimplePublic health,
clinical

“New
intervention
strategies”

Public health clinicians
and health planners “to
estimate diabetes
incidence, to stratify
the population by risk,
and quantify the effect
of interventions”

Rosella 201069

111
citations,
not
relevant

NoneHigh losses to
follow-up, oral glucose
tolerance test not done
at baseline

Good predictor for
white and
African-American
men and women;
may apply also to
other ethnic groups
in United States

Simple, based
on readily
available
clinical
information and
simple
laboratory tests

Clinical, public
health,
research

“Preventive
actions of
appropriate
intensity”

Use “in clinical
encounters,” “by
managed care
organizations . . . to
identify high-risk
individuals,” and to
enrol to clinical trials

Schmidt 200546

114
citations,
not
relevant

NoneSelf reports may have
been biased

Good AUROC
(0.84), used
absolute values for
age rather than
broad categories

Precise,
non-invasive,
accurate, useful

The publicNot explicitly
stated

Intended users not
stated. “Identifying
individuals at high risk
of developing T2D
[type 2 diabetes] in the
general population”

Schulze 200770

17
citations,
not
relevant

NonePredictive for onset of
diabetes in middle age
but not from birth,
since diabetes was
excluded from
inception cohort

“A comprehensive
basic model,”
significantly
improved by routine
blood tests but not
chemical or genetic
biomarkers

Improved
discrimination

None
specifically
hypothesised

NSNSSchulze 200947

21
citations,
not
relevant

Feasible to
collect

No better than
standard clinical
dataset routinely
collected in UK
general practice (but
may be feasible in
other health settings)

Relies only on
simple questions
about lifestyle,
which would be
asked in a routine
health check.
AUROC (0.76) is as

Simple, feasibleClinical,
administrative

“Could be
incorporated into
new patient
health checks
and may provide
a more feasible
means of

Primary care: “could
inform . . . health
behaviour information
. . . routinely collected
in GP consultations or
by administrative staff,”
identify groups for
targeted prevention

Simmons 200771

good as many
complex risk scores

identifying those
at risk than
OGTT [oral
glucose
tolerance test], or
select those
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Table 3 (continued)

Citation
tracking
(Google
Scholar)

for
studies
of real
world
use

Data in
paper on
use of
risk

score in
real
world

Authors’ stated
concerns about
their risk score

Authors’ claims
for risk score
over others

Authors’
adjectives to
describe their
risk score

Mechanism
by which
use of risk
score may
improve
outcome

Authors’ assumptions

Study

What will be
offered to
people who
score above
cut-off for
“caseness”

Who will use risk
score, on which
subgroups or
populations

suitable for
OGTT”

45
citations,
not
relevant

NoneNSUses commonly
measured clinical
variables

Predictive,
multivariate

Research,
clinical

“Identifying
high-risk cohorts
for prevention
trials”

Implicitly,
epidemiological
researchers

Stern 199348

245
citations,
not
relevant

NonePossible missing dataLess expensive and
more convenient
than oral glucose
tolerance testing

SimpleClinical, public
health,
technological,
research

Clinical: “patient
counselling.”
Public health: “to
identify target
populations for
preventive
interventions”

“Could be incorporated
as it stands into clinical
practice and public
health practice with the
aid of a calculator or
personal computer”

Stern 200286

3 citations,
not
relevant

NoneLosses to follow-up,
oral glucose tolerance
test not done at
baseline so some
cases detected,
especially early on,
may be prevalent ones

Simple, uses readily
available clinical
information

Simple,
effective,
accurate

Clinical,
technological,
research

Further researchUse in clinical
encounter, by
managed care
organisations to
identify high risk
people, and to enrol to
clinical trials

Sun 200972

21
citations,
not
relevant

NoneNASimple clinical risk
scores performed
much better than
assessment of
genetic risk from 40
polymorphisms

NA
(revalidation)

Not
specifically
hypothesised

NSIntended users not
stated (but study used
an existing risk score
as a “control” for
testing a genetic
profile)

Talmud 201010

6 citations,
not
relevant

NoneNS“Better than any
other clinical
measure”, not
over-fit, based on
multiple biomarkers
hence highly
plausible

Simple,
accurate,
convenient

Clinical“so that clinicians
can implement
an effective
diabetes
prevention
program”

“Current clinical
practice”; for
“identifying individuals
at highest risk of
developing T2DM [type
2 diabetes mellitus]”

Urdea 200964

56
citations,
not
relevant

NANegative studyNANA (negative
study)

NANA (negative
study)

NA (negative study, no
better than fasting
blood glucose test
alone in this cohort)

Von Eckardstein
200050

273
citations,
not
relevant

NoneNS“Useful predictor”
(but not as good as
Framingham score)

NA (less
effective than
Framingham
risk score)

Not
specifically
hypothesised

Not stated, unit
of analysis is the
population

Intended users not
stated

Wannamethee
201127

0NoneDiabetes diagnosed by
self reports

StepwiseSimple, routineNot
specifically
hypothesised

Blood testsIntended users not
stated

Wannamethee
200565

143
citations,
not
relevant

NoneNSVery good AUROC
(85%)

Simple,
effective, easy

ClinicalImplicitly, lifestyle
advice and
metformin

Implicitly, cliniciansWilson 200751

NS=not stated; NA=not applicable; BMI=body mass index; AUROC=area under receiver operating characteristic curve.
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Table 4| Components of seven diabetes risk models or scores with potential for adaptation for use in routine clinical practice

External validation

CalibrationAUROCRisk factors included in score
Score/study name,
country, reference CalibrationAUROCYear, country

Hosmer-Lemeshow
P<0.001, after
recalibration P>0.10

0.842010,19 USANS0.80Age, ethnicity, waist circumference, height,
systolic blood pressure, family history of
diabetes, fasting plasma glucose levels,
triglyceride levels, high density lipoprotein
cholesterol levels

ARIC (Atherosclerosis
Risk in Communities),
Germany, Schmidt
200546

Not externally validated but has been studied as part of an
intervention to improve outcomes87

Hosmer-Lemeshow
P=0.85

0.78Age, sex, ethnicity, parental history of
diabetes, history of high blood glucose,
use of antihypertensive drugs, smoking,
physical inactivity, waist circumference

Ausdrisk, Australia,
Chen 201037

Hosmer-Lemeshow
P=0.77

0.722010,10 UK*NS0.74 with
threshold of

0.38

Age, sex, use of current corticosteroids,
use of antihypertensive drugs, family
history of diabetes, body mass index,
smoking

Cambridge risk score,
UK, Rahman 200863

Hosmer-Lemeshow
P=0.27

0.762010,53 Holland,
Denmark,
Sweden, UK,
Australia*

NS0.85Age, body mass index, waist
circumference, use of antihypertensive
drugs, history of high blood glucose,
physical inactivity, daily consumption of
vegetables, fruits, and berries

FINDRISC, Finland,
Lindstrom 200368

Hosmer-Lemeshow
P<0.001, after
recalibration P>0.10

0.782010,19 USANS0.85Fasting plasma glucose levels, body mass
index, high density lipoprotein cholesterol
levels, parental history of diabetes,
triglyceride levels, blood pressure

Framingham Offspring
Study, USA, Wilson
200751

Hosmer-Lemeshow
P<0.001, after
recalibration P>0.10;
Hosmer-Lemeshow
P≤0.001, after
recalibration P=0.131;

0.83; 0.83;
0.78; 0.78

2010,19 USA;
2010,55 Iran*;
2010,10 UK*;
2010,66 Iran*

Hosmer-Lemeshow
P>0.2

0.84Age, sex, ethnicity, fasting plasma glucose
levels, systolic blood pressure, high
density lipoprotein cholesterol levels, body
mass index, family history of diabetes in
first degree relative

San Antonio risk score,
clinical model, USA,
Stern 200249

Hosmer-Lemeshow
P=0.42;
Hosmer-Lemeshow
P=0.264

Brier score: 0.053 men,
0.041 women

0.80 men,
0.81 women

2011,57 UKBrier score: 0.078
men, 0.058 women

0.83 men,
0.85

women

Age, sex, ethnicity, body mass index,
smoking, family history of diabetes,
Townsend deprivation score, treated
hypertension, cardiovascular disease,
current use of corticosteroids

QDScore, UK,
Hippisley-Cox 20098

AUROC=area under receiver operating characteristic curve; NS=not stated.
*Validation used more, less, or substituted risk factors from original risk score or did not state the exact factors it used. See table 2 for further details.
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Table 5| Results of impact citation search (studies using diabetes risk models or scores as part of an intervention to improve outcomes)

CommentMain findings or expected
reporting date

Study design,
intervention

Setting and
sample

Research questionScore usedStudy
(acronym)

Changes only reported on
“completers”; those lost to
follow-up were not included in
analysis. Absolute changes were
small and probably not clinically
significant—for example, mean 1

271/352 completed study.
Showed statistically
significant reduction in
weight, body mass index,
and total cholesterol level,
maintained at 36 months

Real world feasibility
study: eight lifestyle
counselling sessions

Australia, 352
high risk adults

Can diabetes risk be
reduced by lifestyle
counselling?

FINDRISC68Absetz 2009
(GOAL study)88

kg weight loss. Change in
FINDRISC score was not reported

Some but not all people
encouraged to change lifestyle will
achieve it, but most will struggle

Many found dietary change
difficult and stressful; some
who did not achieve weight
loss felt despondent

Focus groups with
weight losers and weight
gainers studied
separately

Australia, 30
weight losers
and 30 weight
gainers from
GOAL study

What is the
experience of lifestyle
change in people
recruited into diabetes
prevention studies?

FINDRISC68Jallinoja 2008
(GOAL study)89

Participants will be recruited in
primary care, but intervention will
be delivered as a public
health/community based
programme

Results expected 2013.
Main outcomes will be
change in weight, physical
activity, diet, fasting glucose
levels, blood pressure, lipid
levels, quality of life, and
health service utilisation

Real world feasibility
study: individual
assessment followed by
group sessions

Australia, 1550
high risk adults
(100 indigenous
people)

Can diabetes risk be
reduced by a
programme of
intensive behaviour
change?

AUSD-RISK37Colaguiri 2010
(Sydney DPP)87

Weight loss in intervention group
was clinically significant (3.8 kg);
fasting glucose in the control group
increased, whereas that in the
intervention group decreased.
However, follow-up was short

Statistically significant
changes in weight, physical
activity, diet, and fasting
glucose levels at 12 months
compared with controls

Randomised trial.
Intervention group
received 12 group
lessons in lifestyle
modification, controls
had leaflet

Germany, 182
high risk adults

Can diabetes risk be
reduced by lessons in
lifestyle modification?

FINDRISC68Kulzer 2009
(PREDIAS)90

Mean weight loss 2.52 kg. Authors
view findings as “convincing
evidence that a type 2 diabetes
prevention programme using
lifestyle intervention is feasible in
Australian primary health care with

Statistically significant
improvements in weight,
fasting and two hour
glucose levels, and lipid
levels at 12 months

Real world feasibility
study: six sessions of
nurse led group
education

Australia, 237
high risk adults

Can risk factor
reduction be achieved
in a high risk non-trial
population?

FINDRISC68Laatikainen
2007
(GGTDPP)91

reductions in risk factors
approaching those observed in
randomised controlled trials”

Authors report that “certain
problems and challenges were
encountered, especially in relation
to the limited resources allotted to
preventive health-care.”74A smaller
ongoing prevention programme

Preliminary results only.
Numbers and detailed
findings not given.
“Desirable changes” at 12
months in risk factors and
glucose tolerance in high

High scorers on
FINDRISC had oral
glucose tolerance and
lipid levels tested; those
without diabetes were
offered nurse led

Finland, high
risk adults (part
of a national
diabetes
prevention
programme that

Can a population
approach detect high
risk people, modify
their risk through
educational
intervention, and

FINDRISC68Saaristo 2007
(FIN-D2D)80 and
Lindstrom 2010
(FIN-D2D)74

using FINDRISC along withrisk cohort. Incidentcommunity basedalso includedthereby reduce the
occupational health screening ondiabetes reduced (asindividual or grouppopulation

component)
incidence of new
diabetes? an occupational cohort in an airlinemeasured by drugsessions, or both, based

company (FINNAIR diabetesreimbursement registrationon stages of change and
prevention study) is also briefly
outlined in Lindstrom paper74

data). Full results expected
2012-13

tailored to individual
profile

Authors recognise that prevention
on a large scale sits oddly within
the existing treatment oriented
health system. Key features of
TUMANI are prevention managers
working within the existing

Results expected 2012-13High scorers on
FINDRISC had oral
glucose tolerance test
before being assigned a
“preventionmanager” for
education, support, and
telephone counselling

Germany, high
risk adults (part
of a national
prevention
programme)

Can an intensive,
multifaceted public
health intervention
prevent incident
diabetes in high risk
people?

FINDRISC68Schwarz 2007
(TUMANI)59

infrastructure, a structured quality
control programme, and a
population component—for
example, website and links to
mass media

Findings to date suggest that half
of high risk patients were willing to
fill out the FINDRISC questionnaire
and follow-up with their general
practitioner. Response rates to
questionnaire varied significantly
among practices

16 032 people were mailed;
response rate to
questionnaire 54.6%, of
which 17.5%were classified
as high risk. Of these,
73.1% booked a
consultation with their

General practitioners
mailed questionnaires to
their adult patients. High
scorers were offered
oral glucose tolerance
test

Netherlands, 48
general
practices

Can a mailed
questionnaire from
general practice
identify high risk
people to participate
in a preventive
intervention?

FINDRISC68Vermunt 2010
(APHRODITE)92

general practitioner. Full
results expected 2014
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Figures

Fig 1 Flow of studies through review

Fig 2 Publication of diabetes risk models and scores 1990-2010. Eleven new risk models and scores had been published
in the first five months of 2011
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