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1. Introduction 

2.3% of the world’s electric power supply is provided by wind farms. Rapid increases in the construction of 

wind power farms are taking place worldwide, in the highest proposed growth scenario it is estimated that by 

2020 wind power could supply 2.600TWh, about 11.5-12.3% of global electricity supply, rising to 21.8% by 

2030 [1, 2 and 3]. It is expected that with this new technology structural problems will arise in wind turbine 

operation that will require vigilance in maintenance activities, especially with the introduction of increasingly 

large turbines. There is naturally much current interest in the CM of wind turbines and the CM approaches [4, 5, 

6 and 7]. 

 

A useful perspective on the importance of effective wind turbine CM is provided from a concise life cycle wind 

energy costing in a report by the National Wind Coordinating Committee (NWCC) [8 and 9]. Amortisation of 

the capital cost over 20-30 years results in a cost per annum of 70% and of the total annual costs with operation 

and maintenance (O&M) accounting for 30%. The O&M costs divide into unscheduled maintenance costs 

caused by unexpected component failure (16%), scheduled maintenance (4.1%) major scheduled overhaul 

(0.92%) and other operating costs (8.9%). The maintenance costs thus account for 21% of the total power 

annum costs and the unscheduled maintenance accounts account for 75% of these costs. This result should be 

interpreted as a life cycle average and there will be lower than average unscheduled costs in some years and 

higher in others. It is estimated the replacement of components in planned repairs during scheduled maintenance 

downtime costs only 43% of the cost of repairs on failure [10].  

 

The approach taken in this work is to combine Accelerometers and AE sensors data, a method that has never 

been reported before for wind turbine [11, 12 and 13]. Jointly these sensors can detect the entire spectrum of 

vibrational frequencies that are likely to be generated in the operation of a wind turbine gearbox and the 

generator slip ring. 

2. Monitoring of wind turbine gearboxes: case histories 

For the numerous components in a wind turbine Figure 1 shows the malfunction rate as a percentage of the total 

number of malfunctions [15, 16] and the corresponding down time as a percentage of the total downtime [13]. 

This data shows that whilst the turbine gearbox, generator and main shaft/bearing and gearbox account for only 

10% of the malfunctions they result in 53% of the total downtime.  

3. Data Acquisition 

The CM system developed in this work is required to be capable of distinguishing different deterioration modes 

and of providing data from which estimation of the time to failure can be evaluated. The 300 kW wind turbine 

dedicated to the testing was provided by Sinclair Knight Merz (SKM) for the BearInspect project [7]. As 

reported by SKM the rotational speed range of shafts in the 300 kW windmaster (Figure 1) provided for the test 

is up to 1500 rpm. 

3.1. Accelerometer and AE sensors 

The location of the sensors and the data acquisition equipment on the wind turbine are shown in Figures 2, 3a 

and b. Accelerometer No 1 and AE sensor No 1 located on the gearbox casing whilst accelerometer No 2 and 

AE sensor No 2 are located on the generator casing near the high-speed shaft, which transmits mechanical 

power into electrical power. The accelerometers (Sensonics Model P293-48H002) had output sensitivities of  

100Mv/g over 0.4Hz -11kHz to better than 3dB, and the AE Sensors (Vallen Model VS900-RIC) had 

sensitivities exceeding 100V/bar over the range 100kHz-950kHz, with a peak 22dB higher at 350kHz. 

http://ees.elsevier.com/rene/viewRCResults.aspx?pdf=1&docID=6832&rev=1&fileID=187548&msid={97D7A9B8-EFA1-4A17-B3A1-F506DBD1C8D2}


 

 

3.2. Wind speed and power measurements 

The principal operation is based on the timeline shown in Figure 4. A wind speed/power measuring Logger is 

given a trigger to start collecting data. Therefore, the wind speed data was initially separated and according to 

the modulated wave signal, the wind speed was determined. The current wind speed was compared against a 

table representing the bins and the number of data per bins collected from a minimum of 5m/s to a maximum of 

29.9 m/s.  

4. Overview of the current data acquisition  

4.1. The power versus wind speed  

The operation of the CM process has resulted in 813 files (32Gbytes). The files were acquired during an overall 

measurement period of 5 days. The 813 files were distributed into 61 5kW wide power bins according to the 

power output in the range 0-300kW i.e. the data processing precision for the power measurements is effectively 

+/- 2.5kW. In Figure 5, power output as a function of wind speed is shown. 

4.2. Data processing and filtering 

A means of reducing the large amount of measurement data was necessary and the following steps were thus 

taken: 

 A 10kHz to 250kHz band pass filter was applied to the AE signals which were then re-sampled from 5MSa/s 

to 1MSa/s. The band pass range was chosen because most of the energy in the spectrum lies within this range, as 

shown in Figure 6. So restricting the filter to this range avoids unnecessary signal processing and minimises the 

input noise without loss of significant information.  

 The flat response bandwidth of the accelerometers was limited to 0.4Hz - 11kHz within the 3db standard. 

Therefore, a low pass was applied to the signals, which minimised the signal processing without losing 

significant information. 

5. Discussion of results     

5.1. The sensor signatures for the healthy turbine 

For all 4 sensors it can be seen that the variation of VRMS(average) with  power is approximately as systematic as 

the power output dependence on wind speed, considered in terms of the spread of data along the signal axis at 

each power level (Figure 7). 

5.2. Explanation of the overall curve shapes  

 On the gearbox casing 

There are rotating components that transform the input power from the hub to the shaft between the gearbox and 

the generator. As the wind speed varied by a factor of 5, between 5-25mph in the reported measurements and the 

rotation speed of the generator shaft was almost constant, a range of rotational frequencies were involved with 

the gearbox components. Assuming a constant ratio of hub speed to wind speed, the rotational frequencies of 

some of the gearbox components could have varied by a factor over the considered power range. Following the 

frequency square law, sensor responses from any rotating circumferential defects in the gear could thus vary 

over the power range by a factor of 25. As the swing in sensor responses across the power range from 50kW-

300kW is only a factor of 2 there are clearly no significant frequency dependent effects in the sensor signals. To 

this extent, the gearbox signature can be considered consistent with a healthy gearbox. 

 On the generator casing 

As the power is increased from 0 to 300kW the rotation frequency of the transmission shaft between the gearbox 

and generator slightly varies from 1500 from to 1530rpm. Thus, the change in frequency squared is only 4%. 

Taking the very approximately linear portion of the curves between 50 - 300kW the swings in sensor signals are 

far higher, i.e. a factor of 2 when averaged over the 4 data sets. So, the variation cannot be caused by the 

‘frequency squared’ effect. Therefore, there is no evidence of the presence of defects in the rotating components, 

the structure being monitored can thus be declared healthy. 

6. Standard deviations and the relationship with the probability of defect detection 

(POD) 

The probability of detecting a defect in 1second measurement times during operation is defined by the error 

function assuming that Gaussian statistics apply i.e.  

 

POD = erf (VRMS(average)/{VRMS})    (1)  



 

 

 

As an example, for erf (3) i.e. a defect voltage three times the healthy turbine signature voltages, the detection 

probability is 0.99998. i.e a false alarm would arise only 1 time in 50000 1second measurements. Therefore, 

there would be just one false alarm per year if 137 independent 1second measurements were made daily. 

It is useful to ascribe standard deviations to the healthy signatures, as these quantities will ultimately determine 

the minimum detectable defect size and their POD. For this purpose, the region between 0-50kW and between 

50-300kW will be discussed separately. The region between 0-50kW has curves steep gradient for which the 

error bars are indeterminate. For the remaining power region from 50-300kW, the PODs form the better basis 

for minimising false calls in defect detection. These are shown in figure 8 for all sensors and for all bins.  

 

From the figures data it can be seen that {VRMS} appears to be useful for both AE and vibrational monitoring; 

in fact the POD is high for the power region from 50-300kW (POD>erf (3)). However, for the region between 

0-50kW, the minimum POD seems to drop down to 84% which is equivalent to erf(1.01). 

7. Signatures identification     

From the above analysis and the conclusions developed from section 5.2, the data acquired so far on the wind 

turbine is valid for the determination of a signature that will be used as a reference for future similarity analysis. 

Figure 9 shows the signature that was defined - for each sensor - taking into account a safety operation range 

offset of ±{VRMS}.  

The POD is found to be high especially at high power/wind speed, which implies high discrimination of defects 

-in case they appear- which will be unlikely to generate false alarms. 

8. Conclusions 

First measurements on the in service acquisition of the vibration and AE signature of a healthy wind turbine 

generator and gearbox have been presented. The standard deviations for the averaging of the time dependent 

sensor signals, namely {VRMS} and the PODs, has been calculated. These quantities represent the uncertainty 

in the healthy turbine and they determine the minimum detectible defect size.  

This result forms an excellent basis for the development of an Alarm based CM process for wind turbines usable 

over the entire power operational range.  

Future work is required to develop similarity analysis based on the Euclidian distance in order to evaluate 

similarities between the signature and future monitoring data (figure 10). 
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Figure 1. Wind turbines malfunction incidents and downtime 
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Figure 2. Sketch of the entire wind turbine. 

 

Figure2



 
Figure 3a. The position of the accelerometers and the AE sensors for: a. the 

gearbox and b. the generator. 
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Figure 4. The CM operation timeline. 
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Figure 5. The power output versus wind speed. 
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Figure 6. Typical PSD of the AE vs normalised frequencies. 
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Figure 7. Dependence of RMS voltage versus power  

 

Figure7



 
Figure 8. POD based on the Gaussian Error function erf (VRMS(average)/(VRMS)) 
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Figure 9. The signatures for safety range offset of ±{VRMS}.  
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Figure 10: Variation of the operational state of a machine judged in terms of the variation of failure rate 

during the machine design life. 
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