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Abstract 

  

The aim of this paper is to present a set of closed form analytical equations in order to enable 

the computation of the three phase bridge rectifier steady state performance estimation.  The 

proposed method presented in this paper is a fast, accurate, and effective mathematical model 

for analysing 3-phase full-wave controlled rectifiers.  The steady state mathematical model is 

based on the derivation of an appropriate set of switching functions using the General Switching 

Matrix Circuit (GSMC) techniques.  Once the switching functions are derived, the output 

current, input current, and output dc voltage can all be easily derived and generated from the 

application of this technique.  The effect of overlap is accurately modelled and the distortion 

(notches), frequency content on the input (voltage and current), and output voltage distortion 

are derived.  The proposed mathematical model, unlike conventional analytical methods, can be 

integrated in the design of active filters.  Furthermore, the output voltage reduction, the rms, 

average and peak values of voltages and currents for the thyristors and any other semiconductor 

devices used are readily available for the designer by direct substitution into closed form 

equations without any need for the waste of time for worst case scenario simulations.  This 

method can also be applied to other types of converters, specifically to all voltage fed power 

converters. 

 

 

1. Introduction 

When analysing switching power converters, it is necessary to derive expressions for voltage and 

current waveforms in various parts of the circuit.  One method in achieving that is by using the 

circuit theory approach where differential equations of the system are solved either analytically 

or numerically with known initial conditions [1-3].  The second analysis method, using 

switching functions, started to develop at the early 80's and it fits well in the analysis of power 

converters [48ـ].  States of power devices are described with switching functions [9], which get 

the values of ones and zeros.  Furthermore, under steady state periodical operation, the switching 
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functions are presented by analytical expressions in the form of the sum of infinite number of 

sinusoids.  Although the second method could be very powerful, very little research work has 

taken place in this area; the time has come to reveal the true potential of the application of the 

switching function in power electronics.   

In this paper a General Switching Matrix Circuit (GSMC) [4] is first investigated together with 

two matrix expressions relating input/output voltage and output/input currents by using the 

switching function method [9] and the analysis is presented in section 2.  The 3ـphase full-wave 

controlled rectifier mathematical model is derived from the GSMC and the matrix expressions in 

section 3 of the paper.  In section 4 of the paper, the effect of overlap is easily modelled and 

these results may be used to design active filters for compensation of both line current and line 

voltage harmonics.  This paper emphasises on the modelling of the 3-phase full-wave controlled 

rectifier while the active filter design is outside the scope of this paper and would be considered 

in future publications.  Section 5 of the paper presents the comparison between the obtained 

results (using MathCAD) from the closed form mathematical model of sections 3 and 4 and the 

results from simulation (using PSPICE) and practical circuit implementations. 

Two sets of switching functions, one for the thyristors and one for the overlap periods are 

derived.  The effect of overlap on the input phase and line voltages is derived and analytical 

expressions for the distortion voltage are derived. These are useful in two ways: Assessing the 

problem of injecting voltage and current harmonics into the system and designing the PWM 

modulating signal for the accompanying active filters. 

This new approach gives analytical expressions for both the input voltage and the input line 

current that is necessary for building PWM operated active filters.  The output current is not 

approximated to a perfect dc and the effect of overlap on the input line current is neither ignored 

nor approximated to a trapezoidal shape as is the case of other analysis techniques [10].  These 

approximations lead to a more optimistic view of the extent of mains pollution due to a three 

phase ac to dc converter [10].  The analytical expression of the line current, in this paper, 

represents a waveform which is very close to the simulated and practical waveforms.  

The analysis steps presented in this paper can be summarised to take up the following main 

outline: 

 Development of the General Switching Matrix Circuit techniques for any general case 

circuit (performed in three steps) 

a. Development of the 1x1 matrix for single input single output circuits 

b. Development of the 3x1 matrix for the three input single output circuits 
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c. Development of the 1x3 matrix for the single input three output circuits 

 Application of the above techniques to the three phase AC to DC controlled rectifier 

circuit to generate the ideal circuit switching equations (Development of the voltage and 

current equations for input and output of the three phase AC to DC controlled rectifier 

without overlap consideration) 

 Development of the switching function with consideration of the overlap period 

(Extended Analysis) 

a. Derivation of the input voltage distortion equation with overlap considerations 

b. Derivation of the output voltage equation with overlap consideration 

c. Derivation of output current equation with overlap consideration 

d. Derivation of input current equation with overlap consideration 

 Generation (through simple substitution in the above equations) of the three phase AC to 

DC controlled rectifier circuit performance equations using MathCAD  

 Verification of the obtained performance waveforms 

a. By comparison to PSPICE simulation 

b. By comparison to Practical laboratory implementation 
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2. The General Switching Matrix Circuit 

In this section the two matrices connecting input-output-voltage and output-input-current are 

derived for the General Switching Matrix.  The General Switching Matrix will be used in the 

next section to derive the 3-phase rectifier circuit and the two connecting matrices will also be 

used to derive expressions for the output voltage and input current.  

 

All voltage fed power electronic circuits can be derived from a GSMC. This is shown as a row 

(r) by column (c) lines matrix; each vertical (input) line is connected to all horizontal (output) 

lines with r switches [4].  In Fig.1, c input voltage sources, V1(t), V2(t), …, Vc(t), are connected to 

c vertical lines and the r output voltages, U1(t), U2(t), …, Ur(t), are available at the r horizontal 

lines.  Every vertical line is connected to a horizontal line by an ideal switch.  The output 

voltages drive a certain load (not shown in Fig.1) forcing the output currents )(
1

tIOut , )(
2

tIOut , 

…, )(tI
rOut .  These currents are reflected to the input as )(

1
tI IN , )(

2
tI IN , …, )(tI

cIN  by the action 

of the switches.  A reference line, the neutral (N), connects the input to the output directly. 

Each of the rc switches can be controlled independently in order to create an output voltage of 

the required frequency and magnitude.  There are two restrictions [8]: 

1. In a row, only one switch may be closed at any one instant of time, otherwise the voltage 

sources are short-circuited; i.e., no two input lines may be connected at the same time to the 

same output line. 

2. At any times, each output line must be connected to an input line to avoid high dv/dt across 

the switches caused by interrupting the current flow in the case of inductive loads.  

 

The general matrix expressions relating input and output voltages, input and output currents are 

derived by considering 1×1, 3×1 and 1×3 switched circuits. 

 

 The 1×1 Switching Circuit 

Consider a single switch circuit, as shown in Fig.2-a, connecting a voltage source  (t)V1  to a 

load; the output voltage is )(1 tU . 

 

The simple switch circuit of Fig.2-a may also be realised by considering one vertical and one 

horizontal line from the GSMC as shown in Fig.2-b.  In this figure, Switch S11 connects 

between the input line (r=1) and the output line (c=1).  When S11 is closed, the output voltage, 

(t)VtU 11 )(  .  When the switch is open, the output voltage is zero.  It appears from Figs.2-c, 
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2-d and 2-e that the switching function is the signal which when multiplied by the input voltage 

gives the output voltage, therefore: 

 )()()( 1111 tFtVtU   (1) 

 

The switching function, )(11 tF , in Fig.2-c can also be represented mathematically by the 

following expression: 

 





1

11 )cos(2)(
n

no ntnKKtF   (2) 

where, n = is a positive integer number 

  = switching frequency, ( sf2 ) 

 Ko =  duty cycle of the switch 

 Kn = nn  )sin(  

 δ = half the ON period of the switch 

 θ = the phase angle of the switching function relative to a reference 

Where, )(11 tF  is the switching function operating the switch S11 and is defined in equation (2). 

This circuit represents a typical single phase ac controller circuit.  Furthermore, the same circuit 

of Fig. 2-a and Fig. 2-b may still represent a half wave single phase ac-dc converter circuit by 

simply varying the switching function from Fig. 2-c to Fig. 2-d without any need for different 

analysis.  One may go one step further and implement the same technique on the single switch 

dc-dc chopper circuit by simply changing the switching function into Fig. 2-e.  The technique so 

far proves versatile and unifies the analysis of different power electronic circuits. 

 

 The 3×1 Switching Circuit 

In Fig.3-a, the voltage at the single output line, )(1 tU , is made up from the contributions of 3 

input lines, )(1 tV , )(2 tV  and )(3 tV .  Therefore, this 3×1 circuit is developed to derive an 

expression of the output voltage in terms of the input voltages and the appropriate switching 

functions.  In Fig.3-a, three switches in a single row connect three input lines to a single output 

line.  Only one switch is connected to the output (horizontal line) at a time according to 

restriction 1.  Also the output line must be connected to an input line at any time according to 

restriction 2.  These two restrictions are demonstrated in Fig.3-b.  Every input voltage source, 

)(1 tV , )(2 tV  and )(3 tV , is connected to the output during the period that its switch is closed in 

the sequence shown in Fig.3-b.  Therefore every voltage source contributes to the output voltage, 

)(1 tU  according to equation (1) and the total output voltage is the sum of the three contributions.  

 )()()()()()()( 1331221111 tFtVtFtVtFtVtU   (3-a) 
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where, 11F , 12F  and 13F  are the switching functions describing the action of the witches 11S , 12S  

and 13S  as a function of time, satisfying the condition ( 1
3

1

1 
i

iF ) in order to conform to the 

two restrictions mentioned earlier. 

 

The circuit considered, represented by the diagram of Fig. 3-a, may represent a three-phase half-

wave ac-dc converter, as well as a single phase output cycloconverter with bidirectional switches 

by simply varying the switching functions ( 11F , 12F  and 13F
) 

 

The above result may be generalised in the case of multiple rows of switches (namely three in 

this case) connecting the same three inputs to second and third rows outputs, )(2 tU  and )(3 tU , 

as follows 

 )()()()()()()( 2332221212 tFtVtFtVtFtVtU   (3-b) 

and 

 )()()()()()()( 3333221313 tFtVtFtVtFtVtU   (3-c) 

Where the switching functions satisfy the generalised conditions  

 32,1;1
3

1

andjwhereF
i

ij 


 

Equations (3-a), (3-b) and (3-c) can be put into matrix format and the output voltage matrix can 

be expressed as: 

 





















































)(

)(

)(

)()()(

)()()(

)()()(

)(

)(

)(

3

2

1

333231

232221

131211

3

2

1

tV

tV

tV

tFtFtF

tFtFtF

tFtFtF

tU

tU

tU

 (4) 

The circuit herein represents a 3×3 matrix converter with bidirectional switches.  By eliminating 

the third row in the above matrix equation, and readjusting the switching function, the resulting 

equations would represent a three phase full wave ac-dc converter bridge . 

 

 The 1×3 Switching Circuit 

In this circuit (Fig. 4-a) the output currents are reflected to the input by the switching actions of 

the switches.  Therefore the current at a single input line is made up from the contributions of the 

3 output lines.  Therefore this 1×3 circuit is developed to derive an expression of the input 

current in terms of the output currents and the appropriate switching functions.  Consider the 

output lines 1 to 3 of the general circuit diagram (shown in Fig.1).  These are connected to the 

input line 1, for a period of time during which the appropriate switches are closed as shown in 

Fig.4-b.  The two restrictions mentioned earlier in this section still apply to this configuration.  
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The current in input line 1 takes the value of the current flowing in the particular output line for 

the period of time during which the corresponding switch is closed. 

)()(
11

tItI OutIN   if 1)(11 tF  

)()(
21

tItI OutIN   if 1)(21 tF       (5) 

)()(
31

tItI OutIN   if 1)(31 tF  

Hence the input line current is made up from the contributions of the output lines, 

 )()()()()()()( 312111
3211

tFtItFtItFtItI OutOutOutIN   (6-a) 

Condition 2 stated above for the number of switches turned ON in the switching functions ( 11F , 

21F  and 31F ) is also satisfied when these switching functions overlap implying that more than 

one output line is connected to single  input line.  In other words 1
3

1

1 
j

jF .  This is conformal 

with restriction 1 stated above. 

 

Similarly for the second and third columns of switches connecting the three output lines to the 

second and third input lines giving )(
2

tI IN  and )(
3

tI IN . 

 )()()()()()()( 322221
3212

tFtItFtItFtItI OutOutOutIN   (6-b) 

 )()()()()()()( 332331
3213

tFtItFtItFtItI OutOutOutIN   (6-c) 

Equations (6-a), (6-b) and (6-c) can be put into a matrix format and the input current matrix can 

be expressed as: 

 





















































)(

)(

)(

)()()(

)()()(

)()()(

)(

)(

)(

3

2

1

3

2

1

332313

322212

312111

tI

tI

tI

tFtFtF

tFtFtF

tFtFtF

tI

tI

tI

Out

Out

Out

IN

IN

IN

 (7) 

The new generalised condition applies in this case as above 

 32,1;1
3

1

andiwhereF
j

ij 


 

 

3. The 3-Phase AC to DC Controlled Rectifier 

All voltage fed power electronic circuits can be derived from the GSMC (Fig.1).  In this case, the 

three phase converter circuit is derived from the GSMC by considering three input lines and two 

output lines as shown in Fig.5-a.  Furthermore, the two connecting matrices of equations (4) and 

(7) are employed to derive the input-output-voltage and output-input-current expressions of the 

three phase converter.  
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 Input/Output Voltage and Current Equations 

The matrix expression for input and output voltages may be derived from Equation (4) and can 

be expressed as: 

 



































)(

)(

)(

)()()(

)()()(

)(

)(

3

2

1

232221

131211

2

1

tV

tV

tV

tFtFtF

tFtFtF

tU

tU
 (8) 

Expanding equation (8) results into 

 )()()()()()()( 1331221111 tFtVtFtVtFtVtU   (9-a) 

 )()()()()()()( 2332221212 tFtVtFtVtFtVtU   (9-b) 

According to Fig.5-a, 

 )()()( 21 tUtUtUOut   (10) 

Substituting equations (9-a and 9-b) into (10), yields 

     )()()()()()()()()()( 231332212221111 tFtFtVtFtFtVtFtFtVtUOut   

 (11) 

In the same way the input line currents in the 3-phase converter can be expressed from equation 

7 as: 

 











































)(

)(

)()(

)()(

)()(

)(

)(

)(

2

1

3

2

1

2313

2212

2111

tI

tI

tFtF

tFtF

tFtF

tI

tI

tI

Out

Out

IN

IN

IN

 (12) 

Expanding equation (12) results into 

 )()()()()( 2111
211

tFtItFtItI OutOutIN   (13-a) 

 )()()()()( 2221
212

tFtItFtItI OutOutIN   (13-b) 

 )()()()()( 2331
213

tFtItFtItI OutOutIN   (13-c) 

From the circuit diagram of Fig.5-a 

 )()()(
21

tItItI OutOutOut   (14) 

Substituting equation (14) into (13), yields 

 ])()([)()( 2111
1

tFtFtItI OutIN   (15-a) 

 ])()([)()( 2221
2

tFtFtItI OutIN   (15-b) 

 ])()([)()( 2331
3

tFtFtItI OutIN   (15-c) 

The three phase Full Wave Thyristor rectifier shown in Fig.5-b is realised by employing 

thyristors to replace the ideal switches of Fig.5-a.  The familiar circuit diagram of the three phase 

controlled rectifier circuit is shown in Fig.5-c.  Equation (11) can be used to derive the output 

voltage and hence the output current.  Equation (15) can be used to derive the input currents.  
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The displacement power factor, total harmonic distortion, distortion factor, and the frequency 

spectrum of the input current can be extracted from the input line current expressions. 

 

 

 The Associated Switching Functions 

It was stated in section 2 that the switching function describes the switching action of the switch 

and in the case of the three phase ac to dc thyristor converter it describes the switching action of 

the thyristors.  Therefore the conduction period of a thyristor defines the on period (2δ) of the 

switching function associated with the specific thyristor.  A thyristor is conducting when it is 

forward biased and the appropriate gate requirements are satisfied.  Hence the conduction period 

of a thyristor is a function of the triggering angle α, the voltage polarity of the input phase 

voltage connected to it and the type of the load (resistive or inductive), as well as the supply 

inductance.  It is worthwhile to note that for continuous-conduction the conduction period of the 

thyristors in this circuit is 120
o
; hence δmax = 60

o
.  The switching function expression given in (2) 

can be generalised to every switch in the matrix as: 

 


 

















1

)1(
3

2
)1(cos2)(

n

noij jintnKKtF 


  (16) 

Where, 

1

3
oK   





n

n

Kn











2

sin

 

r  = number of rows =  2 

c  = number of columns =  3 

i  = 1, 2, 3. 

j  = 1, 2. 

The term 







 )1(

3

2
)1( ji 


  is the phase angle  in equation (2) and is a function of 

the triggering angle ‘α’ and the position of the thyristor in the matrix circuit ‘i’ and ‘j’.  Hence 

the switching functions 11F , 12F , 13F , 21F , 22F  and 23F  in Fig.5-d, can be derived from equation 

(16) by substituting the appropriate ‘i’ and ‘j’ values.  

 

Equations (11) and (15) give the output voltage and input current respectively for the three phase 

controlled thyristor converter.  The general switching function equation in (16) is applied.  The 
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effect of overlap is not included in these equations.  This is going to be dealt with in the next 

section. 

 

4. Extended Analysis with Overlap Consideration 

The input phase voltage is distorted by the overlap.  This characteristic of the rectifier is not 

included in expressions for the output voltage (11) and input current (15). The distorted 

waveforms of the actual input voltages would be required in the design of any appropriate active 

filters.  New switching functions will be developed here to take account of the overlap.   

 

The first overlapping period takes place at 30 plus the triggering angle α.  Each overlapping 

period is phase displayed by 60
o
 after the first one, as marked by the letters "A" to "F" in Fig.6-a.  

The overlapped periods can be represented by relatively narrower switching functions (Fm(t)), 

where m indicates the order of the commutation and can take the number from 1 to 6 (Fig.6-b). 

Fm(t) can be expressed as: 

 


 

















1

1
3

cos2)(
n

snssom mntnKKtF


  (17) 

where, 





n

n

K ns











2

sin

 





2
osK      (duty cycle of Fm(t)) 

26





 s  

γ is the overlap angle (the ON period of Fm). 

ω = switching frequency, ( sf2 ). It is also the mains frequency. 

 

The overlap angle ‘γ’ is usually calculated by considering a perfect dc output current.  In this 

paper ‘γ’ is calculated, as it is shown in Appendix A, by considering a finite value of the load 

inductance and hence more realistic calculations of the overlap periods.  Fig.6-b is a display of 

the input phase voltages and the associated switching functions for the analysis of the three phase 

controlled rectifier.   

 

4.1 Input Voltage Distortions 

The input voltage of the 3-phase converter can be split into two sections: during the overlap 

period and during the period free from overlap. 
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During the first commutation, marked as ‘A’ in Fig.6-a, lines ‘3’ and ‘1’ are briefly short 

circuited and the phase voltage is reduced to   2)()( 13 tVtV  .  The associated switching 

function for overlap is given from equation (17) as F1(t).  During the second commutation period 

(‘B’), lines ‘3’ and ‘2’ are short circuited and the phase voltage is reduced to   2)()( 23 tVtV   

and the associated switching function is again given from equation (17) as F2(t).  During the third 

commutation period (‘C’), lines ‘1’ and ‘2’ are short circuited together and the phase voltage is 

reduced to   2)()( 21 tVtV   and the associated switching function is again given from equation 

(17) as F3(t).  In the same way the 4
th

, 5
th

 and 6
th

 commutation instances can be derived.  The 

overlap switching functions F1(t) to F6(t) can be used with the associated phase voltages under 

overlap to calculate the actual phase voltages at the input of the converter during overlap.   

 

Hence the phase voltage to neutral during overlap can be expressed with the superscript ‘O’ as: 

    






 








 


2

)()(
)()(

2

)()(
)()()( 21

63
31

411

tVtV
tFtF

tVtV
tFtFtV

O
 (18-a) 

    






 








 


2

)()(
)()(

2

)()(
)()()( 32

52
21

632

tVtV
tFtF

tVtV
tFtFtV

O
 (18-b) 

    






 








 


2

)()(
)()(

2

)()(
)()()( 31

41
32

523

tVtV
tFtF

tVtV
tFtFtV

O
 (18-c) 

During the periods in the mains cycle when there is no overlap the phase voltage to neutral 

appears undistorted at the input of the converter.  The input voltages without the overlap effect 

can be derived by considering a set of switching functions which are derived by subtracting the 

overlap switching functions (F1(t), F2(t),…, F6(t)) appropriate to each phase from ‘1’.  The 

voltages during the overlap-free periods are denoted by the superscript ‘NO’ as shown in the 

following equations: 

  )()()()()(1)( 164311 tVtFtFtFtFtV
NO

  (19-a) 

  )()()()()(1)( 265322 tVtFtFtFtFtV
NO

  (19-b) 

  )()()()()(1)( 354213 tVtFtFtFtFtV
NO

  (19-c) 

Hence the phase voltages at the input of the converter are derived by adding the corresponding 

equations in (18) and (19).  These computed voltages are denoted by the superscript ‘A’ as 

shown in equations (20) below and displayed, using MathCAD, in Fig.7-a.  The converter has 

been also simulated using PSpice actual electronic components and the simulated results (shown 

in Fig. 7-b) show a very close agreement to the MathCAD results. 
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 

    






 








 




2

)()(
)()(

2

)()(
)()(

)()()()()(1)(

21
63

31
41

164311

tVtV
tFtF

tVtV
tFtF

tVtFtFtFtFtV
A

 (20-a) 

 

    






 








 




2

)()(
)()(

2

)()(
)()(

)()()()()(1)(

32
52

21
63

265322

tVtV
tFtF

tVtV
tFtF

tVtFtFtFtFtV
A

 (20-b) 

 

    






 








 




2

)()(
)()(

2

)()(
)()(

)()()()()(1)(

31
41

32
52

354213

tVtV
tFtF

tVtV
tFtF

tVtFtFtFtFtV
A

 (20-c) 

The line voltages with distortion (notches) are given by: 

)()()( 2112 tVtVtV
OOripple

  (21-a) 

)()()( 3223 tVtVtV
OOripple

  (21-b) 

)()()( 1331 tVtVtV
OOripple

  (21-c) 

The distortion voltage is the difference between the voltages without distortion and the voltages 

with distortion.  This is derived from equations (20) which gives the phase voltages during 

overlap.  The voltages during overlap are subtracted from the phase voltages (V1(t), V2(t) and 

V3(t)), during the periods of the overlap.  This is performed in equation (22) below, which gives 

the distortion voltages of the input phase voltages. 

    






 








 


2

)()(
)()()(

2

)()(
)()()()( 21

163
31

1411

tVtV
tVtFtF

tVtV
tVtFtFtV D  (22-a) 

    






 








 


2

)()(
)()()(

2

)()(
)()()()( 32

252
21

2632

tVtV
tVtFtF

tVtV
tVtFtFtV D  (22-b) 

    






 








 


2

)()(
)()()(

2

)()(
)()()()( 31

341
32

3523

tVtV
tVtFtF

tVtV
tVtFtFtV D  (22-c) 

The line distortion voltage is found from (22) as the differences of phase voltages. 

 )()()( 2112 tVtVtV
DDD   

 )()()( 3223 tVtVtV
DDD   (23) 

 )()()( 1331 tVtVtV
DDD   

 

Fig.8 displays the computed phase and line distortion voltages due to overlap for the circuit of 

Fig.5-c.  Such information can be used in the design of series active filter [11].  The magnitude 

and phase of the phase-voltage harmonics for a supply inductance (Ls = 50µH) and a triggering 

angle (α = 15
o
), are displayed in Table 1.  The results are computed based on a load resistance 

(Rld) of 8 and a load inductance (Lld) of 1mH.  The triplen harmonics are missing in consistence 

with the three phase configuration.  Moreover, the magnitudes of the harmonics are slowly 
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falling in consistence to a narrow pulse as is the case of the phase voltage distortion (Fig.8).  It is 

worthwhile to note that a series compensator in the form of an active filter can make use of the 

data in Table 1 to derive its PWM modulating signal [11].  This is outside the scope of this 

paper. 

 

Table 1: Magnitudes and Phase angles of the Phase-Voltage Harmonics for Ls = 50µH  and 

α=15
o
, Lld=1mH and Rld=8 

  
Order 3 5 7 9 11 13 15 17 19 21 23 25 

Voltage (V) 0 1.343 1.342 0 1.342 1.341 0 1.340 1.339 0 1.338 1.337 

Phase () 0 -33o 23o 0 -7o -8.5o 0 0.5o -1o 0 5o 2.6o 

 

 

4.2 Output Voltage 

The output voltage without overlap of the converter was given in equation (11) as the product of 

the input voltage and the appropriate switching functions.  The output voltage with overlap can 

then be derived by replacing the undistorted input voltage in equation (11) with the distorted 

input voltage of equation (20).   

 

     )()()()()()()()()()( 231332212221111 tFtFtVtFtFtVtFtFtVtU
OOO

Out 

 

 (24) 

Equation (24) is expanded and the dc component is also derived from the expanded expression of 

the output voltage by setting n = 1 in (n-1) terms [9].  An equation of the output dc voltage under 

overlap is found in Appendix B. 

 

4.3 Output Current 

The output voltage, UOut (t) is driving a current IOut(t) through the load impedance (Lld, Rld).  This 

impedance is defined as the “harmonic impedance” [9]. 

])1[(])1[(

)(
)(

 


nnZ

tU
tI

ld

n

Outn

Out  (25) 

Where, ω = switching frequency, ( sf2 ). It is also the mains frequency. 

               
2 2 1 ( 1)

[( 1) ] [( 1) ] [( 1) ] tan ld
ld ld ld

ld

n L
Z n R n L and n

R


      

       
 

 

 
22

( 1)[ ] ( 1)ld ldnZ R n L             1 ( 1)
[( 1) ] tan ld

ld

ld

n L
n

R


    

   
 

 

n = 1, 2, 3, … 
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An expanded expression for the output current is found in Appendix C.     

 

4.4 Input Current 

The input current given by equation (15) assumes zero source impedance and hence no overlap.  

In order to include the effect of overlap, the line current is divided into two sets of time intervals:  

The first set of time intervals is the periods of time between commutations.  Hence thyristor 

switching functions (16) are modified in order to exclude the periods of the overlap.  This is 

performed by subtracting the appropriate overlap switching functions (17) from the thyristor 

switching functions.  With reference to Fig.6, the line current in the first line, which is unaffected 

by the overlap, is given by 

    )()()()()()( 4211111
tFtFtFtFtItI OutIN   (26) 

 

The second set of time intervals in the first line is the overlap periods which are four per phase, 

as shown in Fig.6-a points A, C, D and F.  The line current during the overlap is represented by a 

transient current component where a pulse of the line voltage is applied to the source impedances 

of the short circuited lines for a period equal to γ (the overlap period).  For the first commutation 

period (point A in Fig.6-a), the first and third lines are short circuited, allowing a transient 

component of a current, )(tI
SC

L  [Appendix A].  The part of the transient current which is of 

interest is during the overlap, giving the rising edge of the first line current as 

1 1( ) ( )transient rising SC

POS LI F t I t    (27) 

Equation 27 gives the rising edge of the first line current.  In order to derive the equation for the 

falling edge (which occurs 120° later) the third commutation, denoted by ‘C’ in Fig.6-a, must be 

considered.  During that commutation the first and the second lines are short circuited.  The 

current is falling in the first line and is rising in the second line in a manner indicated by equation 

(A3) because the parameters of the circuit are the same.  Equation (27) though has to be shifted 

in time by T3 seconds (or 120°) to the instant where the 3
rd

 commutation starts (point C) in order 

to give the rising edge in the second line.  The associated switching function is F3(t) as shown in 

Fig.6-b. 

 2 3 3( ) [ ( ) ]transient rising SC

POS LI F t I t T     (28) 

Equation (28) gives the transient of the rising edge of the current in the second line.  At the same 

time (during commutation at point C) the current in the first line is falling and in accordance with 

Kirchoff’s current law, this current is the difference between the output current and the current in 

the second line.  

1 3 3( ) ( ) { ( ) [ ( )]}transient falling SC

POS Out LI t F t I t I t T         (29) 
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Equation (29) gives the falling edge of the positive pulse of the line current in the first line. 

 

The negative pulse of the current in the first line starts at the 4
th

 commutation (point D in Fig.6-

b) and ends at the beginning of the 6
th

 commutation (point F).  Both the rising and falling edges 

of the positive pulse, equations (27) and (29) are shifted by 180
o
 or T4 seconds and 240

o
 or T6 

seconds, respectively.  For the rising edge of the negative pulse the transient of equation (27) is 

shifted by T4 seconds  

1 4 4( ) [ ( )]transient rising SC

NEC LI F t I t T          (30) 

For the falling edge of the negative pulse the transient of equation (27) is shifted by T6 seconds  

 

1 6 6( ) ( ) { ( ) [ ( )]}transient falling SC

NEC Out LI t F t I t I t T         (31) 

 

Finally, the current of the first line is given from Expressions 26, 27, 29, 30 and 31 as  

 

11 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )transient rising transient falling transient rising transient falling

N POS POS NEC NECI t I t I t I t I t I t              (32) 

 

The order, magnitude and phase of the individual line current harmonics including the 

fundamental can be directly derived from equation (32).  It is worthwhile to note that an active 

filter compensator can make use of this data to derive its PWM modulating signal. 

 

4.5 Summary  

By employing the switching function technique, outlined in this paper, a number of closed form 

analytical model equations are derived describing the steady state performance of the three phase 

controlled rectifier.  The input voltage distortion is expressed in equations (20) and (23), the 

output voltage in equation (24), output current in equation (25) and the input current in equation 

(32) by considering the effect of overlap.  MathCAD is used to display these voltage and current 

waveforms. 

 

5. Conformity to Simulation and Practical Results 

In order to ensure that the proposed technique of General Switching Matrix Circuit (GSMC) with 

the analytical expressions presented in this paper (refer to section 4.5) is valid and conforms to 

reality, these proposed equations are used in MathCAD and simple direct substitution (without 

recurrence to any integration used in simulation techniques) is used in the above equations (for 

input and output voltages and currents) to generate the steady state performance waveforms 

characteristic to the three phase controlled rectifier circuit.  The resulting computed waveforms 
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are plotted and compared to both ordinary simulation technique and practical implementation 

results for comparison and to prove the effectiveness of the proposed technique. 

 

5.1 Conformity to Simulation Results 

Fig.9-a displays the first line (phase a) input current computed from the above equations using 

MathCADd.  It is a more accurate representation of the line current with overlap than the 

conventionally used trapezoidal approximation normally employed in ordinary simulations [10].  

The test conditions for this case are as follows: 

Vpeak = 380V line to line, Rload dc side = 3, Lload dc side = 40mH, Lsupply ac side = 50H 

The thyristor converter circuit is triggered at a delay angle of  = 18°.   

 

These computed results of Fig.9-a are compared to ordinary simulation results (using differential 

equations solution) from PSPICE.  PSPICE results, based on actual electronic component 

simulation and shown in Fig.9-b, illustrate an exact simulated input line current waveform 

conformal to that of Fig.9-a. 

 

5.2 Conformity to Practical Results 

Furthermore, an experimental setup was implemented in order to compare the waveforms 

obtained from laboratory practical results of a three phase rectifier circuit (of Fig.5-c) with the 

waveforms obtained by direct substitution from the proposed analytical results.  The same 

conditions applied to the mathematical equations of the proposed computational technique are 

again applied to the practical circuit. 

 

The test results depicted in this section have the following parameters: 

Vrms = 380V line to line, Rload dc side = 32, Lload dc side = 180mH, Lsupply ac side = 1mH 

The thyristor converter circuit is triggered at a delay angle of  = 7°.   

 

Fig.10 shows a comparison of the practical results (Fig.10-a) and the theoretical results using 

MathCAD (Fig.10-b).  In both figures the phase voltage and line current are displayed for = 7° 

(note the 30° shift between the first line current and the beginning of the first phase voltage).  

Considering that in the proposed switching function technique the thyristors are considered as 

ideal switches, it is then clear that there exists a close agreement between the practical results 

and the theoretical results using MathCAD.   

 

The voltage and current measurements, of Fig.10-a, were performed using voltage and current 

Hall Effect Transducers with output amplifiers, respectively.  Their respective gains were 
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220Volts/Volt-Measured and 0.4Amp/Volt-Measured.  Please note that the datum of each of the 

two waveforms shown in Fig.10-a are located at the channel marker points (1 and 2) situated at 

the left side of the figure. 

 

An expansion of the first commutation period is illustrated in Fig.11-a (practical implementation) 

and in Fig.11-b (MathCAD computations).  Again a very close agreement is observed in these 

two figures.  In the full range of triggering angles the maximum error observed between the 

practical and simulated results was 2.5%.    

 

6. Conclusions 

This paper presents a fast, accurate, and effective steady state mathematical model for analysing 

3-phase full-wave controlled rectifiers.  Such an approach enables the assessment of the problem 

of injecting voltage and current harmonics into the power system and designing the PWM 

modulating signal for the accompanying active filters.  The proposed technique cancels the 

requirements for the solution of differential equations in order to assess the system performance 

under various control conditions.  This in effect will greatly reduce the requirement for 

simulation times since the problem reduces merely to substituting in analytical equations.  This is 

outside the scope of this paper and would be considered in future publications.   

 

The mathematical model is based on the derivation of an appropriate set of switching functions.  

Once the switching functions are derived, the output current, input current, input voltage 

distortion and output dc voltage can all be easily derived and generated from the application of 

this technique.  The effect of overlap is introduced and expressions showing the currents during 

this overlap have been incorporated in the expression of the line current.  Furthermore, the 

distortion (notches), frequency content of the input voltage, input and output currents and voltage 

distortion are derived in this paper.  The voltages and currents (rms, average and peak values) of 

the inputs and outputs as well as voltages and currents of the thyristors can also be derived.  The 

required mathematical expressions and derivations of the closed form analytical equations have 

been presented during the course of the paper and it is clear that the same technique may be 

applied to any type of voltage fed converters.  The resulting computations are shown to be in 

great accordance with the simulated results from PSPICE as well the practical results, which 

confirms the validity and viability of the proposed technique. 

 

References 
 

[1] Bose B.K.:"Modern Power Electronics and AC Drives", Prentice Hall PTR, 2002. 

[2] Skvarenina T.L.:"Power Electronics Handbook", CRC Press, 2002. 



 18 

[3] Shaffer, R.: “Fundamentals of Power Electronics with Matlab”, Charles River Media, 2007.  

[4] Wood P.: “Switching power converters”, Van Nostrand Reinhold Company, New York, 1981. 

[5] Marouchos C. PhD thesis: “Switched Capacitor circuits for reactive power generation”, Brunel 

University ,1982. 

[6] Byoung-Kuk Lee: “A simplified function simulation model for three-phase voltage-source 

inverter using switching function concept”, IEEE Transactions in Industrial Electronics, April 

2001, 48(2), pp. 309-317. 

[7] Marouchos, C., Darwish, M. K., and El-Habrouk, M.: “Variable VAR Compensator Circuits”, 

IEE Proc.-Electr. Power Appl., Vol. 153, No. 5, September 2006, pp. 682-690. 

[8] A. Alesina, M.G.B Venturi: "Solid-State Power Conversion: A Fourier Analysis Approach to 

Generalised Transformers Synthesis", IEEE Transactions on Circuits and system Analysis, , 

April 1981, Vol. 28, No.4, pp. 319-331. 

[9] Marouchos, CC : “The switching Function: Analysis of Power Electronic Circuits”, IEE, 

London,2006. 

[10] MOHAN, N., UNDERLAND, T.M   and ROBBINS, W.P“: “Power Electronics”, John Willey and 

Sons second edition.,1995 , ISBN-0-471-58408-8. 

[11] Ribeiro, E.R.; Barbi, I.: “Harmonic Voltage Reduction Using a Series Active Filter Under 

Different Load Conditions”, IEEE Transactions on Power Electronics, Volume 21,  Issue 5,  

Sept. 2006,  pp. 1394 – 1402. 



 19 

Appendix A 

Calculation of the overlap angle γ 

 

The overlap angle γ is usually calculated from an expression [10] which assumes a perfect dc 

output current and is usually larger than the real duration of the overlap. This paper deals with 

the general case of non-perfect dc current at the output.  A more accurate calculation of γ is 

derived here by considering the transient current (IL
SC

(t)) during overlap.  When this transient 

current reaches the magnitude of the output current (IOUT(t)) (Fig. A), the overlap ceases.  The 

duration of the transient current must be chosen to be larger than the expected value of γ in order 

for the above to be valid.  The duration of the transient current is dictated by the ON period of 

the switching function chosen to derive the transient current.   

 

Henceforth, a general equation of the transient current (IL
SC

(t))is derived in the next few lines 

using the switching function.  The time taken by this current to reach the output current (IOUT(t)) 

is the overlap period γ  (TE). 

 

The value of γ derived from the textbook formula [10] is pessimistically large and is a good 

candidate for a worst case scenario.  The switching functions describing the instances of overlaps 

at which line 1 is taking over from conducting line 3 are F1(t) and F4(t) as shown in Fig.6-b.  The 

new switching function, FOT(t), is derived as the summation of the two switching functions and 

is given by: 

 

 
1

( ) 2 cos 2 2

sin

OT OT Tn s

n

Tn

OT

F t K K n t n

n
K

n

K

 













  







                            (A1)                            

Where γ is a value of the overlap period derived assuming a perfect dc [10].  It is chosen because 

it yields a larger value than the true γ. 

 

During this overlap at the point denoted by ‘A’ (line 3 to line 1, Fig.6-a) a pulse of the line 

voltage V31(t) is applied to two source impedances [10]. 

 31

( )
( ) ( ) 2

SC

L
OT s

dI t
F t V t L

dt
                                                                                        (A2)           

Expanding and simplifying 
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p oT Tn Tn
o s s

n=1 n=1s

V 3 K K K
( )=I cos[ t- ]-  cos[(2n+1) t-2n - ]+  cos[2(n-1) t-2n ]

2 X (2 1) (2 1)

SC

L

s s

I t
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       
  

  
  

   

(A3) 

Where,   =
6


    

  )( inductancesourcetheisLLX sss   

 Io = Constant of integration 

 KTn, KTo and θs are defined as in equation (A1). 

 

The end of the period of the overlap is marked as T1E seconds (Fig.A).  The magnitude of the 

output current at that instant )( oI  is equal to the magnitude of the transient current )( SC

LI ; the 

transient will reach the value of the output current in TE seconds, Fig.A. Hence equating the 

transient current, (A3) to the output current from equation 25. 

    

( )SC

LI t = Iout(t) = I0                                                                          (A4) 

The period of the overlap, TE,   is calculated from (A4). The overlap angle γ is then derived as  

γ = 2π TE/ T                                                                            (A5) 

where, TE is the time duration of the overlap and T is the period of the mains
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Appendix B:  MathCAD Voltage Equations 

Expanded Expression for output v oltage
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