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We consider the complexity of the two-variable rank generating function, S , of a graphic

2-polymatroid. For a graph G, S is the generating function for the number of subsets of

edges of G having a particular size and incident with a particular number of vertices of G.

We show that for any x, y ∈ Q with xy �= 1, it is #P-hard to evaluate S at (x, y). We also

consider the k-thickening of a graph and computing S for the k-thickening of a graph.

1. Introduction

We consider the complexity of a two-variable graph polynomial S(G; x, y) that is closely

related to the Tutte polynomial and was introduced in [11]. Like the Tutte polynomial, S

contains a large variety of well-studied specializations, for instance the number of perfect

matchings of a graph. A less well-studied specialization is the probability that deleting

the edges of a graph independently with probability 1 − p does not introduce any isolated

vertices.

The Tutte polynomial can be viewed as a generating function for the number of subsets

of edges with a particular rank and cardinality. S can be viewed in a similar way as a

generating function for the number of subsets of edges incident with a particular number

of vertices and a particular cardinality.

Following [3] we define the complexity class #P to consist of those enumeration

problems, π, for which there is a nondeterministic algorithm A and a polynomial p

such that:

(1) for any instance I of π, the number of distinct accepting computations of A with

input I is equal to the solution of π on input I;

(2) the length of the longest accepting computation is bounded by p(|I |).
Given two enumeration problems π1 and π2, we say that π1 is Turing-reducible to π2,

which we denote by π1 ∝ π2, if there is a Turing machine which can solve π1 in polynomial
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time given an oracle for π2. We now define an enumeration problem π to be #P-hard if

for every π′ ∈ #P, π ∝ π′. For background information on complexity see [3, 15].

In [5] the Tutte polynomial is shown to be #P-hard to evaluate at every rational point,

except for those lying on one special curve and for 5 additional special points.

We show that the complexity of S is very similar to that of the Tutte polynomial in

that it is #P-hard to evaluate at every rational point except for those lying on one special

curve.

To ensure that the definitions that we make seem natural and that the ideas behind the

proof are as transparent as possible, we make use of the language and terminology of

polymatroids. The reader does not need any previous knowledge of polymatroids, and if

desired may skip much of the sections on polymatroids, since all the important ideas are

explained in purely graph-theoretic terms.

We begin with the definition of an integer polymatroid and move on to describe

the particular class of polymatroids in which we will be interested, namely graphic 2-

polymatroids. Section 3 describes the rank generating function S , originally introduced by

Oxley and Whittle in [11], and gives some of the invariants that appear as specializations

of S . In Section 4 we introduce the thickening operation, which plays a crucial role in the

proof of the main result. The k-thickening, Gk , of a graph, G, is obtained by replacing

each edge by k parallel edges. We give a formula relating S(Gk) and S(G). Finally, in

Section 5 we formally state and prove the main result concerning the complexity of S .

Our graph-theoretical notation is fairly standard. Note, however, that all our graphs

are allowed to have loops and multiple edges and, for reasons made clear later, do not

have isolated vertices. We use G \ A and G/A to denote, respectively, the graphs obtained

from G by deleting the edges in A and contracting the edges in A. Given a graph G with

edge set E, the graph G|A is G \ (E \ A). For a graph G and a set A of edges of G, G : A

denotes the graph formed from G|A by deleting all isolated vertices.

2. Integer polymatroids

An integer polymatroid (E, f) consists of a finite edge set E and an integer-valued rank

function f, defined on all subsets of E and satisfying

(1) f(∅) = 0,

(2) if X ⊆ Y then f(X) � f(Y ),

(3) if X,Y ⊆ E then f(X) + f(Y ) � f(X ∪ Y ) + f(X ∩ Y ).

A k-polymatroid is a polymatroid (E, f) such that for all e ∈ E, f(e) � k. Polymatroids

are a natural generalization of the well-studied class of matroids, which correspond to

1-polymatroids; see, for instance, [14] for an introduction to polymatroids or [10] for

information on matroids. In this paper we will only be concerned with 2-polymatroids.

Any graph gives rise to a 2-polymatroid (E, fG) by taking E = E(G) and for any

A ⊆ E setting fG(A) = |V (G : A)|. It is easy to check that this satisfies the definition of

a 2-polymatroid. Moreover it is noted in [11] that such a 2-polymatroid (E, fG) uniquely

determines G up to the addition of isolated vertices. From now on we will assume that all

our graphs do not have isolated vertices. We say (E, f) is induced by G if it is isomorphic
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to (E, fG). This type of polymatroid derived from graphs is the one that will interest us

in the rest of this paper. Although we only need to deal with 2-polymatroids derived

from graphs in this way, many of the concepts that we introduce can be defined much

more generally and we do this whenever it seems natural. The reader who wishes to avoid

becoming involved with the theory of polymatroids will lose very little by just thinking

of a graph G and the pair (E, fG) defined above.

We need to consider two operations on a 2-polymatroid (E, f) which are defined in

[11]. The deletion of a set A of edges, denoted by (E, f)\A, is the 2-polymatroid (E\A, f′
A)

where, for any X ⊆ E\A,

f′
A(X) = f(X).

The contraction of a set A of edges, denoted by (E, f)/A is the 2-polymatroid (E\A, f′′
A)

where, for any X ⊆ E\A,

f′′
A(X) = f(X ∪ A) − f(A). (2.1)

It is straightforward to check that, with these definitions, the two operations do actually

produce 2-polymatroids. We will often just write f\A and f/A instead of (E, f)\A and

(E, f)/A respectively.

We consider the effect of deletion and contraction on graphic 2-polymatroids later, but

for the moment note that contracting an edge in a polymatroid may create an edge with

rank zero. Consequently it is convenient to consider a slightly larger class of polymatroids

than just the ones that are induced by graphs, because later we will need to work with

a class of polymatroids that contains those induced by graphs and which is also closed

under both deletion and contraction. Clearly edges with rank zero do not occur in graphs

because they would correspond to edges with no endpoints. We call such an edge a circle,

and say that a polymatroid is graphic if it is of the form M = (E1 ∪ E2, f), where M\E2

is induced by some graph G and for any e ∈ E2, f(e) = 0, in other words M is induced

by G except for the addition of some circles, that is, special edges with no endpoints. In

some places we go a little further and abuse our notation by allowing graphs, rather than

just graphic polymatroids, to have circles.

A set X of edges is a separator for a 2-polymatroid (E, f) if f(X) + f(E\X) = f(E). In

terms of graphs, a set X of edges is a separator in a graph G if and only if the set of

endpoints of edges in X and the set of endpoints of edges in E\X are disjoint.

Single-element separators can have rank zero, one or two, and for a graphic polymatroid

these correspond to circles, a loop on a vertex that is incident with no other edges and an

edge joining two vertices that are incident with no other edges. The 2-polymatroids U0,1,

U1,1 and U2,1 are the graphic polymatroids with precisely one edge e, which is respectively

a circle, loop or edge between two vertices.

If e is not a separator of f then it is noted in [11] that one of the following must occur:

(1) f(E\e) = f(E) and f(e) = 1,

(2) f(E\e) = f(E) − 1 and f(e) = 2,

(3) f(E\e) = f(E) and f(e) = 2.

For graphic 2-polymatroids the first case corresponds to e being a loop on a vertex that

is an endpoint of some other edge, the second to e being a non-loop edge with precisely
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one of its endpoints having degree one, that is a pendant edge, and the third to any

non-loop edge for which both endpoints have degree at least two.

It is worthwhile noting the effect of the operations of deletion and contraction on a

graphic 2-polymatroid. Deletion is easy,

(E, fG)\e = (E\e, fG\e),

where fG\e denotes the restriction of the rank function to E\e and so it just corresponds

to normal deletion in the graph (including the deletion of any isolated vertices that are

formed). Equation (2.1) shows that contracting a separator is equivalent to deleting it, but

generally contraction is more difficult. Suppose we contract the non-separating edge uv

where we allow v = u. Then

(E, fG)/uv = (E\e, fG∼e),

where G ∼ e is formed from G by deleting uv, replacing any loop attached at u or v or

edge parallel to uv by a circle and replacing any edge uw (vw) for w �= u (v) by a loop at

w and fG∼e is the graphic 2-polymatroid induced by G ∼ e. The definition of contraction

is the main point that seems much more natural when phrased in terms of polymatroids

rather than graphs.

3. Rank generating function

The 2-polymatroid rank generating function was introduced in [11] and is the two-variable

polynomial associated with any polymatroid f, defined by

S(f; x, y) =
∑
A⊆E

xf(E)−f(A)y2|A|−f(A).

The reader may just regard S as being a polynomial defined only on graphs. When we

consider the rank generating function of the 2-polymatroid derived from a graph G, we

will usually write S(G; x, y). It is easy to see that adding isolated vertices to G will not

affect S .

The following specializations of S are stated in [11].

• S(G; 1, 0) is the number of matchings of G.

• If G has no isolated vertices then S(G; 0, 0) is the number of perfect matchings of G

and S(G; 0, 1) is the number of subsets of E spanning every vertex of G.

• If x �= 0 then xfG(E)/2S(G; x−1/2, 0) is the polynomial
∑

k�0 mkx
k where mk is the number

of matchings of size k in G.

• S(f; −x,−y) = (−1)f(E)S(f; x, y).

• S(f; 1
x
, x) = (1 + x2)|E|x−f(E) for x �= 0.

• For a graph G with no isolated vertices and 0 � p < 1,

(1 − p)(|E|−fG(E)/2) p(fG(E)/2) S(G; 0, p1/2(1 − p)−1/2)

is the probability that Gp has no isolated vertices; where Gp is the random graph

formed by deleting all the edges of G independently with probability 1 − p.
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• Providing x �= 0, xf(E)S(G; 1/x, 1) =
∑

k�0 rkx
k where rk is the number of subsets of

E spanning k vertices. This polynomial can be thought of as a one-variable rank

generating function.

Note that none of the specializations discussed above can be obtained from the Tutte

polynomial.

4. Thickenings

The proof of the hardness result for the Tutte polynomial makes use of the tensor product

construction of Brylawski [1]. The tensor product of a matroid M with a pointed matroid

N, that is, a matroid with a distinguished element e, is formed by taking the 2-sum of

M and N about each point of M. In [5] the matroid U1,k+1 which is the graphic matroid

induced by the graph consisting of k parallel edges was used in the role of N in order to

prove the complexity results. This particular tensor product is known as a k-thickening

because each edge of the graph is replaced by k parallel edges. We have not constructed a

general 2-sum for a polymatroid but we define the k-thickening of a graphic 2-polymatroid

induced by G with l circles to be the 2-polymatroid induced by Gk together with kl circles

where Gk is formed by replacing each edge in G, including loops, by k parallel edges.

Following [11], if M denotes the class of all graphic 2-polymatroids, then φ : M → C is

said to be a generalized Tutte invariant (for graphic 2-polymatroids) if there exist constants

a, b, c, d, m, n, r, s and t ∈ C such that

φ(U2,1) = r,

φ(U0,1) = s,

φ(U1,1) = t,

and for any graphic 2-polymatroid (E, f),

φ(f) = φ(f\(E\e))φ(f\e) if e is a separator of f;

and if e is not a separator,

aφ(f\e) + bφ(f/e) if f(E\e) = f(E) and f(e) = 1,

φ(f) = cφ(f\e) + dφ(f/e) if f(E\e) = f(E) − 1 and f(e) = 2,

mφ(f\e) + nφ(f/e) if f(E\e) = f(E) and f(e) = 2.

The following theorem is from [11].

Theorem 4.1. Let φ be a generalized Tutte invariant on graphic 2-polymatroids and suppose

that at most two of r, s, t, a, b, c, m and n are zero. Then one of the following occurs:

(1) a = m; d = n; mr = mn + c2; ns = mn + b2; t = b + c; m �= 0; n �= 0; and for all 2-

polymatroids f,

φ(f) = m|E|−f(E)/2nf(E)/2S

(
f;

c

(mn)1/2
,

b

(mn)1/2

)
;
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(2) t2 = rs = ar + bt = ct + ds = mr + ns; st = at + bs; rt = cr + dt; and, for all 2-

polymatroids f, φ(f) = Q(f) where

Q(f) =

{
s(|E|−f(E))tf(E) if f(E) � |E|;

r(f(E)−|E|)t(2|E|−f(E)) otherwise.

It is easy to show that S is a generalized Tutte invariant on 2-polymatroids with

r = 1 + x2, s = 1 + y2, t = x + y, m = n = 1, (4.1)

a = d = 1, b = y and c = x.

Our first result relates the rank generating function of a graphic polymatroid with that

of its k-thickening.

Proposition 4.2. If y �= 0 then

S
(
Gk; x, y

)
=

(
(1 + y2)k − 1

y2

)f(E)/2

· S
(
G;

xy√
(1 + y2)k − 1

,
√

(1 + y2)k − 1

)
.

If y = 0 then

S
(
Gk; x, 0

)
= kf(E)/2S

(
G;

x√
k
, 0

)
.

To shorten the proof of this proposition we first prove the following lemma. We let Rk

be the graph consisting of just k circles, Lk be the graph with just one vertex and k loops

and Mk be the graph with 2 vertices and k edges between them.

Lemma 4.3. If k � 2,

S(Rk; x, y) = (1 + y2)k,

S(Lk; x, y) = y(1 + y2)k−1 + · · · + y(1 + y2) + x + y,

S(Mk; u, v) = (1 + y2)k−1 + · · · + (1 + y2) + 1 + x2.

Proof. The first equation is simple to check because each circle is a separator and

S(R1; x, y) = 1 + y2. We prove the second by induction. If k = 2 then S(Lk; x, y) = y(1 +

y2) + x + y. Otherwise, using induction,

S(Lk; x, y) = S(Lk−1; x, y) + yS(Rk−1; x, y)

= y(1 + y2)k−2 + · · · + y(1 + y2) + x + y + y(1 + y2)k−1.

The third is also proved using induction. If k = 1 then S(Mk; x, y) = 1 + x2. Otherwise,

using induction,

S(Mk; x, y) = S(Mk−1; x, y) + S(Rk−1; x, y)

= (1 + y2)k−2 + · · · + (1 + y2) + 1 + x2 + (1 + y2)k−1. �
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Proof of Proposition 4.2. We let φ(G; x, y) = S(Gk; x, y). To prove this result it is just

necessary to show that for each value of x and y, φ is a generalized Tutte invariant on

2-polymatroids satisfying the conditions from the first part of Theorem 4.1. Let e be an

edge of G. There are three cases to consider where e is a separator and three cases where

e is not. In the following we make repeated use of equation (4.1).

In each of the cases when e is a separator, e will be replaced by k edges in Gk which

together form a separator of Gk . Consequently

φ(G; x, y) = φ(G\e; x, y)φ(G|e; x, y).

So when e is a circle

φ(G; x, y) = (1 + y2)kφ(G\e; x, y),

when e is an isolated loop

φ(G; x, y) =
(
y(1 + y2)k−1 + · · · + y(1 + y2) + x + y

)
φ(G\e; u, v),

and when e is an isolated (non-loop) edge

φ(G; x, y) =
(
(1 + y2)k−1 + · · · + (1 + y2) + 1 + x2

)
φ(G\e; x, y).

We now consider the cases where e is not a separator in G. All three cases are quite

similar. We use equation (4.1), and contract and delete one of the edges replacing e in Gk ,

to leave respectively (G ∼ e)k with k − 1 circles and the k-thickening of G but with only

k − 1 edges replacing e. We leave the first graph and repeat the procedure with one of

the k − 1 remaining edges which replace e. We keep doing this until we have deleted or

contracted all the edges which replace e. First suppose that e is a non-isolated loop of G.

Then

φ(G; x, y) = yS(Rk−1; x, y)S
(
(G ∼ e)k; x, y)

)
+ · · · + yS(R1; x, y)S

(
(G ∼ e)k; x, y

)
+ yS

(
(G ∼ e)k; x, y

)
+ S

(
(G\e)k; x, y

)
= (y(1 + y2)k−1 + · · · + y(1 + y2) + y)S

(
(G ∼ e)k; x, y

)
+ S

(
(G\e)k; x, y

)
.

Secondly, if e is a pendant edge of G then

φ(G; x, y) = S(Rk−1; x, y)S
(
(G ∼ e)k; x, y

)
+ · · · + S(R1; x, y)S

(
(G ∼ e)k; x, y

)
+ S

(
(G ∼ e)k; x, y

)
+ xS

(
(G\e)k; x, y

)
= ((1 + y2)k−1 + · · · + (1 + y2) + 1)S

(
(G ∼ e)k; x, y

)
+ xS

(
(G\e)k; x, y

)
.

Finally, if e is an edge with both endpoints having degree at least two then

φ(G; x, y) = S(Rk−1; x, y)S
(
(G ∼ e)k; x, y

)
+ · · · + S(R1; x, y)S

(
(G ∼ e)k; x, y

)
+ S

(
(G ∼ e)k; x, y

)
+ S

(
(G\e)k; x, y

)
= ((1 + y2)k−1 + · · · + (1 + y2) + 1)S

(
(G ∼ e)k; x, y

)
+ S

(
(G\e)k; x, y

)
.
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If x, y are not both zero then it is easy to check that the first case of Theorem 4.1 applies,

and so

φ(G; x, y) = S(Gk; x, y)

=
(
(1 + y2)k−1 + · · · + (1 + y2) + 1

)f(E)/2

· S
(
G;

x√
(1 + y2)k−1 + · · · + (1 + y2) + 1

,

y(1 + y2)k−1 + · · · + y(1 + y2) + y√
(1 + y2)k−1 + · · · + (1 + y2) + 1

)
.

If y = 0 this simplifies to

φ(G; x, 0) = kf(E)/2S

(
G;

x√
k
, 0

)
,

and otherwise we have

φ(G; x, y) =

(
(1 + y2)k − 1

y2

)f(E)/2

· S
(
G;

xy√
(1 + y2)k − 1

,
√

(1 + y2)k − 1

)
.

The case when x = y = 0 is straightforward, since φ(G; x, y) is the number of perfect

matchings of Gk . Thus

φ(G; 0, 0) = kf(E)/2S(G; 0, 0). �

5. Main result

We begin with a formal statement of the problem which we are considering.

Problem. π1(x, y): rank generating function evaluation at (x, y)

Input: A graph G.

Output: The evaluation at (x, y) of the rank generating function of the 2-polymatroid,

induced by G.

Our main result is as follows.

Theorem 5.1. For x, y ∈ Q satisfying xy �= 1, the problem π1(x, y) is #P-hard to compute;

when x, y ∈ Q and xy = 1, there is a polynomial time algorithm.

The theorem shows that π1(x, y) is #P-hard for all rational values of (x, y) except for

those lying on one special curve. This behaviour is very similar to the complexity of the

Tutte polynomial, which is #P-hard to evaluate at almost all points in the plane [5], a

result which also remains true if we restrict the input to bipartite planar graphs [13].

The rest of this section is devoted to a proof of Theorem 5.1. The case when xy = 1 is

easy because if x �= 0 then

S

(
f;

1

x
, x

)
= (1 + x2)|E|x−f(E),

and obviously this can be evaluated very quickly.
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All the hardness proofs rely on the following, which is a restatement of a result of

Valiant [12].

Theorem 5.2. Computing π1(0, 0) is #P-hard.

Proof. If G has no isolated vertices then S(G; 0, 0) is the number of perfect matchings

of G, a quantity that is #P-hard to compute, [12].

The family of hyperbolae Hα defined by

Hα = {(x, y) : xy = α}

seems to play an important role in the theory. If α �= 0, then along the hyperbola Hα we

can write

S(G; x, y) = Sα(G; y) =

|E|∑
i=0

ciy
2i−f(E)

for certain coefficients ci depending on α. It is convenient to consider H0 in two separate

parts corresponding to the x and y axes, which we denote respectively by Hx
0 and H

y
0 ,

but in either case it is obvious that the restriction of S to either part is a one-variable

polynomial. All this motivates the following problem, which has a crucial part in the

proof of hardness of π1.

Problem. π2(α): Hα rank generating function

Input: A graph G.

Output: The coefficients of Sα(G; y).

We use π2(0
x) and π2(0

y) in the obvious way, to denote the problem of computing the

coefficients of the restriction of S to Hx
0 and H

y
0 respectively.

It is clear that for any x and y,

π1(x, y) ∝ π2(xy).

We now give a result that is halfway to the main theorem of this section.

Theorem 5.3. If α �∈ {0, 1} then π2(α) ∝ π1(x, y) for any x, y ∈ Q such that xy = α. Fur-

thermore π2(0
x) ∝ π1(x, 0) for any x ∈ Q\{0} and π2(0

y) ∝ π1(0, y) for any y ∈ Q\{0}.

Proof. We begin by proving the result in the case when α �= 0. The idea is as follows.

Assume we have an oracle to compute S(G; x, y) for any graph G. Hence for a given graph

G and for any positive integer k, we can find S(Gk; x, y), and so using Proposition 4.2 we

can compute

S

(
G;

xy√
(1 + y2)k − 1

,
√

(1 + y2)k − 1

)
.

All these points lie on Hα so if we do this for enough values of k we can compute the

polynomial Sα(G; y) using Lagrange interpolation.
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More precisely, suppose we input a graph G and that for some x, y ∈ Q with xy =

α �= 0 we have an oracle to compute S(H; x, y) for every graph H . We write Sα(G; y) =∑|E|
i=0 ciy

2i−f(E). For each k such that 1 � k � |E| + 1, we compute S(Gk; x, y), and then

|E|∑
i=0

ci

(√
(1 + y2)k − 1

)2i−f(E)

= S

(
G;

xy√
(1 + y2)k − 1

,
√

(1 + y2)k − 1

)

=

(
y√

(1 + y2)k − 1

)f(E)

S(Gk; x, y).

Rearranging all this gives

|E|∑
i=0

ci
(
(1 + y2)k − 1

)i
= yf(E)S(Gk; x, y).

The square roots have been eliminated so this is an expression containing only rationals.

To compute ci for 0 � i � |E| we solve the |E| + 1 equations resulting from substituting

k = 1, 2 . . . , |E| + 1, using Gaussian elimination. To see that this gives a polynomial time

algorithm to compute each ci we need to note two facts. Firstly the |E| + 1 equations are

linearly independent. This is because the determinant of the coefficients of the equations

is a Vandermonde determinant, which is well known to be nonzero. Secondly each of

the coefficients is polynomially bounded in terms of the input size, that is, the length of

the description of G. Gaussian elimination on an n × n matrix requires O(n3) arithmetical

operations and can be done in such a way that the length of the description of the

entries of the matrix remains polynomially bounded in terms of the original length of

the description of the entries. See [2, 4] for a discussion of this. Thus we can recover the

coefficients ci in polynomial time.

Along H
y
0 we have

S(G; x, y) =
∑

A⊆E:f(A)=f(E)

y2|A|−f(E) =

|E|∑
i=0

ciy
2i−f(E),

and so we can use exactly the same procedure as above to show that π2(0
y) ∝ π1(0, y) for

any y ∈ Q\{0}.
The final case is slightly different, just because the form of the tensor product is different

when y = 0. Suppose we have an oracle to evaluate S(G; x, 0) for any x ∈ Q\{0}. We write

S(G; x, 0) =
∑f(E)

i=0 cix
f(E)−i. Since

S(G; x, 0) =
∑

A⊆E:f(A)=2|A|

xf(E)−f(A)

we have that ci is zero unless i is even.

Using Proposition 4.2, we have for k � 1

S

(
G;

x√
k
, 0

)
=

(
1√
k

)f(E)

S(Gk; x, 0),
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and so

f(E)∑
i=0

cik
i/2x−i =

(
1

x

)f(E)

S(Gk; x, 0).

This is a rational expression because ci is zero unless i is even. Hence we can solve

for c0, . . . , cf(E) by computing the values S(G1; x, 0), . . . , S(Gf(E)+1; x, 0) and solving for

c0, . . . , cf(E) which is possible because the determinant of the matrix of coefficients is

nonzero since it has the form of a Vandermonde determinant.

We now move on to consider another specialization of S which plays an important role

in the proof of hardness. Let s(G; x) be the one-variable polynomial given by

s(G; x) = S(G; x, 1) =
∑
A⊆E

xf(E)−f(A).

This polynomial seems to be a fairly natural object to consider as it is just a one-variable

rank generating function. The second half of the proof of our main result is contained in

the following theorem.

Theorem 5.4. For any x ∈ Q\{1}, π1(0, 1) ∝ π1(x, 1).

Proof. We can obviously assume that x �= 0. We write

s(G; x) =

f(E)∑
i=0

rix
f(E)−i,

where ri is the number of subsets of E(G) which are incident with i vertices. Let Gk be

the graph formed from G by adding k loops at each non-isolated vertex. We have

ri(Gk) =

i∑
j=0

rj

(
f(E) − j

i − j

)
2jk(2k − 1)i−j . (5.1)

This follows because each set A of edges that is incident with j vertices in G can be

extended to give a set incident with i vertices by adding any number of loops at i − j

vertices which were isolated in G|A and possibly adding loops at the vertices of G : A.

The idea is to use an oracle for π1(x, 1) to calculate s(G; x), s(G1; x), . . . , s(Gf(E); x) and

then solve for the ri. Using equation (5.1) gives for k � 1

s(Gk; x) =

f(E)∑
i=0

i∑
j=0

rj

(
f(E) − j

i − j

)
2jk(2k − 1)i−jxf(E)−i

=

f(E)∑
j=0

f(E)∑
i=j

rj

(
f(E) − j

i − j

)
2jk(2k − 1)i−jxf(E)−i
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=

f(E)∑
j=0

f(E)−j∑
i=0

rj

(
f(E) − j

i

)
2jk(2k − 1)ixf(E)−i−j

=

f(E)∑
j=0

rj2
jk

(
x + (2k − 1)

)f(E)−j
.

This means that we can solve for r0, . . . , rf(E) using the values s(G; x), s(G1; x), . . . , s(Gf(E); x)

because the determinant of the matrix of coefficients has the form of a Vandermonde

determinant and is nonzero. The sizes of the entries of the matrix are polynomially

bounded in terms of the size of the input graph G and so solving for r0, . . . , rf(E) can be

done in polynomial time, as shown in [2, 4].

We can now prove the main theorem.

Proof of Theorem 5.1. We deal first with the case where xy = 0. We may clearly assume

that one of x and y is nonzero. We noted that S(G; 0, 0) is #P-hard in Theorem 5.2, and

since π1(0, 0) ∝ π2(0
x) and π1(0, 0) ∝ π2(0

y), we see that both π2(0
x) and π2(0

y) are #P-

hard. Using Theorem 5.3, if x �= 0 then π2(0
x) ∝ π1(x, y) and if y �= 0 then π2(0

y) ∝ π1(x, y).

The result follows.

The second case is when x, y ∈ Q are such that that xy �= 0 and xy �= 1. The #P-hardness

of π1(x, y) follows because

π1(0, 0) ∝ π2(0
y) ∝ π1(0, 1) ∝ π1(xy, 1) ∝ π2(xy) ∝ π1(x, y),

and we noted that S(G; 0, 0) is #P-hard in Theorem 5.2.

6. Conclusion

We have shown that the rank generating function of a graphic polymatroid is #P-hard

to evaluate at any point xy for which xy �= 1. Thus the complexity of the polynomial is

quite similar to the Tutte polynomial.

The most interesting graph invariant which is an evaluation of S and has not been

studied before is S(G; 0, 1), which is the number of subsets of edges that are incident with

every vertex. Our result implies that this is #P-complete.

For the Tutte polynomial, the hardness results remain true when the input graph is

restricted to being bipartite and planar [13], although there is one additional curve along

which evaluation only requires polynomial time. Similar results may hold for S but we

have not made any attempt to investigate them. Since one of the reductions in the main

proof involves adding loops, showing that the input may be restricted to bipartite graphs

with the problem remaining #P-hard may not be straightforward.

The alternative problem to consider is to find large classes of graphs for which S may

be evaluated in polynomial time. It is easy to see that using dynamic programming S may

be evaluated in polynomial time for trees. In [6] it is shown that the Tutte polynomial

can be evaluated at any point in polynomial time for graphs of bounded tree-width. The

same method can easily be modified to show a corresponding result for S [7].
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Both S and the Tutte polynomial are specializations of a very general graph polynomial

U introduced in [9]. For a graph on n vertices, U is a polynomial in n + 1 variables.

Evaluating U is known to be #P-hard since the Tutte polynomial is a specialization;

however, a more precise description of the points where evaluating U is #P-hard is not

known. In [8], it is shown that U may be evaluated at any point in polynomial time when

the input graph is restricted to having bounded tree-width, albeit much more slowly than

using the method of [6].
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