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Abstract 
Hypereutectic Al-Si alloys are of increasing interest for applications that require a 

combination of light weight and high wear resistance, such as pistons, liner-less engine 

blocks and pumps. The wear resistance of this class of alloys is due to the presence of 

hard primary Si particles formed during casting. The objective of this work was to 

develop one or more methods of refining primary silicon in cast hypereutectic Al-Si 

alloys to compete with the conventional process of adding phosphorous and to achieve 

the simultaneous modification of silicon in the Al-Si eutectic.  

    A robust sampling/casting technique was developed to minimise macro-segregation 

of primary silicon during solidification of hypereutectic Al-Si alloys by using water 

cooled steel mould with cooling rate in excess of 15 K/s.  

    The morphology of silicon phases was found to change with increasing melt 

temperature and cooling rate. The high cooling rate and superheat temperature 

produces a good distribution of polyhedral primary silicon particles in a refined lamellar 

eutectic matrix in solidification of commercial purity Al-Si alloys.  

    Removing Ca by fluxing with K2SiF6 prior to casting can improve the refinement and 

modification effect of Mg and Sb respectively. Effects of various inoculants were 

studied. Microstructural analysis showed that Mg and ZnS refined primary Si whereas 

MgO, CaO and Na2S coarsened the primary Si together with a modification effect on 

the eutectic Si. Adding Zn had no effect on morphology of Si phases. Refinement of 

both primary and eutectic silicon phases was observed for the Al-15Si alloy with Mg 

content ≤ 0.3 wt%. 

    P-doped γ-Al2O3 was found to be a potent substrate to nucleate primary silicon whilst 

good modification of the eutectic matrix is retained during solidification of hypereutectic 

Al-Si alloys. On using P-doped γ-Al2O3 could be a perfect and clean source of P without 

additional impurities. 

    A new solid-liquid duplex casting process was devised to achieve simultaneous 

refinement and modification of Si phases in hypereutectic Al-Si alloys with 

improvement in mechanical properties. The static mechanical properties of Al-Si 

produced by the solid-liquid duplex casting process are significantly better than 

conventionally cast untreated Al-Si and slightly better than conventionally cast Al-Si 

treated with P and/or Sr.    

    A novel Al-ZnS master alloy was developed by in situ reaction of Zn and Na2S in the 

Al melt. The results from this study leave little doubt that this novel  Al-ZnS master alloy 

is a promising refiner in solidification of hypereutectic Al-Si alloys. It refines primary 

silicon to the same extent as that achieved by adding P via Cu-P following the same 

refinement mechanism.  
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Chapter 1 

Introduction  
 

1.1 Background 

Over a number of decades, considerable effort has been made towards the 

development of lightweight engineering materials. Among the aluminium alloys, Al-Si 

alloys are widely used in transportation and other industrial sectors due to their 

combination of adequate mechanical properties and excellent castability [1-3]. Al-Si 

alloys that contain more than 12wt%Si exhibit hypereutectic microstructures, normally 

consisting of primary silicon particles in an Al-Si eutectic matrix. Hypereutectic Al-Si 

alloys are of increasing interest for applications that require a combination of low 

density, thermal stability, good corrosion resistance, good thermal conductivity and 

high wear resistance such as pistons, liner-less engine blocks and pumps [4-6]. 

The wear resistance of this class of alloys is due to the presence of hard primary 

silicon particles formed during casting, but comes at the expense of poor machine tool 

life. Generally, the machinability of unrefined and unmodified hypereutectic Al-Si alloy 

is worse due to the presence of coarse primary silicon and long needle-like eutectic 

silicon in the matrix. To both minimise excessive machine tool wear and meet the strict 

operating targets of automotive engine applications, the load bearing primary silicon 

phase must be present as fine, well dispersed particles [7]. 

To increase the industrial applicability of hypereutectic Al-Si alloys, various methods 

have been used to refine primary silicon. It has been reported that the primary silicon 

particle size can be affected by the cooling rate during solidification [8-10], and on 

using a thermal rate treatment [11] or melt superheating [12-13], the primary silicon 

particles are refined substantially. The addition and refinement effects of phosphorus 

[9], boron [14], strontium [15], rare earth metals [16], scandium [17] and γ-Al2O3 

nanoparticles [18-19] on primary Si have also been studied. Melt treatments using a 

magnetic field [20], an electrical field [21], shear loading [22], the melt conditioned high 

pressure die casting (MC-HPDC) process [23], electromagnetic stirring [24] and 

ultrasonic vibrations [25] have all been found to be effective for refinement of primary 

silicon particles and their distribution. The effect of vibration on the solidifying melt has 

been investigated and shown to be successful in refining the microstructure [26-27]. Of 

all these methods, only the addition of phosphorous is widely applied. The remaining 

processes have achieved only limited refinement of primary silicon, are not thoroughly 
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investigated, and/or are impractical or not cost effective. In commercial practice 

refinement is currently achieved by the addition of ~50 ppm phosphorous in the form of 

Cu-P, Al-Cu-P or Al-Fe-P master alloys to the Al-Si melt before casting. The widely 

accepted explanation of the refining effect of phosphorus is the formation of aluminium 

phosphide (AlP) particles which act as potent substrates for heterogeneous nucleation 

of primary silicon. The crystal structure and lattice parameter of AlP are close to those 

of silicon with minimal mismatch between them, less than 1% [28]. 

It is a common practice in the casting of hypoeutectic and near eutectic Al-Si alloys 

to modify eutectic Si using certain elemental additions, typically Na, Sr or Sb. The 

modified morphology of the eutectic Si is of a fine fibrous or coral-like form rather than 

a course acicular form typical of unmodified Al-Si alloys. Modification leafs to enhanced 

fluidity during casting, and improved ductility and fracture toughness. 

Despite the capability of refining primary silicon in hypereutectic alloys and 

modifying eutectic silicon in hypoeutectic or near eutectic alloys, it is not possible to 

achieve both refinement of primary silicon and modification of eutectic silicon in 

hypereutectic alloys by the addition of phosphorous and a modifying element 

simultaneously. This is due to the mutual interaction between phosphorous and the 

modifying element. 

For hypereutectic Al-Si alloys, the final properties in the cast component are 

controlled by the size and distribution of the primary silicon phase in addition to the 

degree of modification of the eutectic silicon matrix. The microstructures and 

mechanical properties of Al-Si alloys are strongly affected by the casting process. A 

good casting process is to fill the mould cavity without any defects. In slowly cooled 

castings of Al-Si alloys with more than 15% silicon, it is reported that the primary silicon 

segregates to the upper parts of a casting. This phenomenon is assumed to be caused 

by gravity segregation, i.e. less dense silicon particles float in the aluminium melt 

during solidification [29]. Furthermore, segregation and depletion of silicon on the outer 

surface of cast components are common problems in high pressure die casting and 

squeeze casting [30]. 

Apart from conventional casting processes, such as die casting, squeeze casting, 

permanent mould casting, and sand casting; semi-solid processing and duplex 

processing are two relatively new casting techniques [7]. Currently the semi-solid metal 

(SSM) technique represents one of the commercially feasible technologies for 

production of high integrity, complex shaped metallic components with improved 

mechanical properties and tight dimensional control [31]. The attractive advantage of 

semi-solid processing is that it requires a lower temperature and less force, i.e. less 

energy consumption [30]. The disadvantage of semi-solid processing is less suitable 
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for alloys with small solidification ranges and strict temperature control is needed in 

most processes. Duplex casting involves the mixing of two alloys of different 

composition or temperature prior to solidification of the component [32]. A number of 

duplex casting techniques have been investigated to refine the primary silicon without 

the use of inoculants, but with limited success [33]. Aspects of the research in this 

thesis draw upon these two processes. 

 

1.2 Objectives and Scope  

The main aims of this study are: 

1. To develop one or more methods of refining primary silicon in cast 

hypereutectic Al-Si alloys to compete with the conventional process of adding 

phosphorous. 

2. To develop a technique which, in addition to refining primary Si, also achieves 

the secondary goal of simultaneous modification of silicon in the Al-Si eutectic. 

To achieve these two key objectives, a number of steps were taken during the course 

of the research for this thesis: 

(i) As noted above, in hypereutectic Al-Si alloys with more than 15% silicon, it has 

been reported that the primary silicon tends to segregate by flotation to the 

upper parts of the casting. Thus, for accurate microstructure analysis and 

evaluation of different solidification conditions and methods; a robust casting 

and sampling procedure was developed. 

(ii) The effect of cooling rate and melt superheat on the size and morphology of 

primary Si was carried out in a more systematic way than in previous 

investigations. 

(iii) The role of Ca, present at various levels as an impurity in commercial purity 

alloys, on the morphologies of primary and eutectic silicon was studied. 

(iv) The zincblende form of ZnS is isostructural with AlP, and has almost identical 

lattice parameter. The potential for the zincblende form of ZnS to act as a 

heterogeneous nucleant for primary Si, without the problem of interaction with 

modifier added for the purposes of eutectic modification from which AlP suffers, 

was investigated. 

(v) As stated above, there is some evidence that Al2O3 may be a suitable substrate 

for nucleation of primary silicon. An attempt was made to improve the suitability 

of alumina by doping α-Al2O3 and γ-Al2O3 powders with phosphorous and then 

adding them to hypereutectic Al-Si melts prior to casting. 



4 
 

(vi) As an alternative to chemical approaches, a physical approach to simultaneous 

refinement of primary Si and eutectic modification was developed through a 

new solid-liquid duplex casting process. In this process pre-refined primary 

silicon particles are retained when a solid highly hypereutectic alloy is added to 

a liquid eutectic alloy that contains an element to achieve eutectic modification. 

     

1.3 Outline of Thesis  

Following the introduction and objectives of this study, Chapter 2 of this thesis is a 

review of literature relevant to the scope of research. It will provide an introduction to 

Al-Si alloys and go on to describe aspects of their microstructure including the 

refinement of primary Si and modification of the Al-Si eutectic. It will also discuss the 

relevance of particular casting processes.  

The experimental work in Chapter 3 focuses on the development of a new inoculant 

or method of refining primary Si in cast hypereutectic Al-Si alloys to compete with the 

conventional casting process of adding phosphorous and then to achieve the 

simultaneous refinement of primary silicon and modification of eutectic Si. The 

procedure for the preparation of the Al-Si alloys and synthesised inoculants such as 

ZnS and P-doped Al2O3 for different casting conditions, and the characterisation with 

mechanical property measurement techniques will be presented. In Chapter 3 

experiments to observe the effect of solidification rate, chemical additions and casting 

techniques on morphologies of silicon during solidification of hypereutectic Al-Si alloys 

are described. 

In Chapter 4 the metallographic studies on the effect of solidification rate, melt 

purity, Ca level and various inoculants such as Mg, MgO, CaO, ZnS, Na2S, Zn and P-

doped Al2O3, on silicon morphologies are presented and quantitatively compared to the 

binary hypereutectic Al-Si base alloy. The results of a new solid-liquid duplex casting 

process for simultaneous refinement of primary Si and eutectic modification with its 

optimum operating conditions are investigated in detail.  

Chapter 5 offers discussions on the effect of all the above parameters, including 

melt superheat, cooling rate, chemical additions and casting techniques on the 

refinement of primary Si and modification of eutectic Si in solidification of hypereutectic 

Al-Si alloys. The main conclusions of the study and suggestions for future work are 

presented in Chapter 6 and Chapter 7, respectively. 
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Chapter 2 

Literature Review 

2.1 Introduction to Al-Si Alloys 

Alloys with silicon as the major alloying element are the most important of the 

aluminium casting alloys, primarily because of their excellent casting characteristics. 

Additions of silicon to pure aluminium report good feeding characteristics, high fluidity, 

low shrinkage and good hot cracking resistance [34]. The Al-Si casting alloys can be 

classified commercially into three groups: 

(a) Hypoeutectic alloys, with 5 to 11 wt% silicon, 

(b) Eutectic and near eutectic alloys with 11 to 13 wt% silicon, 

(c) Hypereutectic alloys, with 13 to 25 wt% silicon. 

The Al-Si binary system forms a simple eutectic at 577 °C and 12.6 wt% Si. Typical    

Al-Si binary alloy microstructures are also illustrated in Figure 2.1.  

 

 

Figure 2.1 Equilibrium Al-Si phase diagram with typical microstructures of hypoeutectic 
and hypereutectic Al-Si alloys [30]. 

The aluminium-silicon system is a simple binary eutectic with negligible solubility of 

aluminium in silicon and limited solubility of silicon in aluminium. The solubility of silicon 

in aluminium reaches a maximum of 1.5 at% at the eutectic temperature. Al-Si alloys 

differ from a "standard" eutectic phase diagram in that aluminium has virtually zero 

solid solubility in silicon at any temperature. This means that there is no β-Si solid 

solution phase and this phase is "replaced" by pure silicon. So, for Al-Si alloys, the 

eutectic is a structure of α-Al + Si rather than α-Al + β-Si [35]. 
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The hypoeutectic alloys consist of a soft, ductile primary α-Al phase and a very hard, 

brittle Si phase associated with the eutectic reaction [36-38]. The microstructure greatly 

depends on the solidification rate and the presence of modifying elements (the process 

of Al-Si eutectic modification is described in section 2.7). Large eutectic flakes of silicon 

and large α-Al dendrites with large dendrite arm spacing are produced at a low 

solidification rate or for unmodified hypoeutectic alloy, while at a high solidification rate 

or in a modified alloy, a fibrous morphology of the eutectic silicon and small dendrites 

of α-Al will be produced [39].   

The microstructure of hypereutectic Al-Si alloys consists of primary Si particles 

dispersed in a matrix of aluminium and silicon eutectic. These primary Si particles 

impart excellent wear resistance to the alloys. For a given silicon concentration, the 

morphology of silicon particles depends greatly on the solidification rate and on the 

alloying elements [9, 37, 39]. Typical micrographs of hypo- and hypereutectic alloys 

that conducted in this thesis are shown in Figure 2.2.  

 

  

Figure 2.2 Microstructure of Al-Si alloys etched by Weck’s Reagent; (a) Hypoeutectic    

(b) Hypereutectic.     

2.2 The Al-Si System and Properties 

The great effect of silicon in aluminium alloys is the improvement of casting 

characteristics. Additions of silicon to pure aluminium dramatically improve feeding 

characteristics, fluidity and hot tear resistance [40]. Adding silicon is also accompanied 

by a reduction in specific gravity and coefficient of thermal expansion.  

In general, an optimum range of silicon content can be assigned to casting 

processes. For slow cooling rate processes (such as sand casting), the range is 5 to 

7wt%, for permanent mould casting it is 7 to 9wt%, and for die casting it is 8wt% and 

higher. The bases for these recommendations are the relationship between cooling 

rate and fluidity and the effect of percentage of eutectic on feeding [41]. In addition to 

b 

 

 

 

a 
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silicon which is a eutectic-forming element, other elements are present in commercial 

Al-Si alloys. They are either added as minor alloying elements to strengthen the 

material or are present as impurities. Formation of second-phase precipitates, grain 

refinement, influence on porosity and phase modification are the major mechanisms 

responsible for the effects of alloying elements on the properties of Al-Si alloys. The 

most known alloying elements used in the Al-Si alloys include Mg, Fe, Cu, Mn, Zn, Ni 

and P and eutectic modifying elements such as Sb, Ca, Na, and Sr [7].  

 Magnesium is the basis for strength and hardness development in heat-treated     

Al-Si alloys and is commonly used in more complex Al-Si alloys containing nickel, 

copper, and other elements for the same purpose. Addition of Mg leads to formation of 

the Mg2Si phase, which contributes towards the properties of high silicon alloys as well 

as altering the nature and quantity of primary silicon formed [42-43]. The hardening 

phase Mg2Si displays a useful solubility limit corresponding to approximately 0.70 wt% 

Mg, beyond which either no further strengthening occurs or matrix softening takes 

place. The solution heat treatment concentrates Mg and some Si from the solid solution 

phase, which is retained by quenching. Subsequent aging, with both time and 

temperature being variables, allows controlled precipitation of Mg2Si in the α-Al matrix 

resulting in significant increased strength [44]. Further details on the effect of Mg on the 

microstructure of hypereutectic Al-Si alloys are discussed in sections 4.3.1 and 5.3.1. 

 Iron is the most common element in Al-Si alloys and it can be tolerated up to level of 

1.5 to 2.0 wt% Fe. The presence of Fe in Al-Si alloys introduces as many as six 

different Al-Fe-Si based intermetallic phases. Commercial Al-alloys always contain Fe, 

often as an undesirable impurity and occasionally as a useful minor alloying element 

[45-46]. The most common intermetallics are hexagonal α-AlFeSi (Al8Fe2Si) and 

monoclinic β-AlFeSi (Al5FeSi) phases. Other iron-bearing phases such as Al6Fe and 

Al3Fe can also be found in these alloys [46]. These insoluble phases, especially at 

elevated temperature, are responsible for improvements in strength but can also be 

responsible for poor ductility and fatigue resistance. As the fraction of insoluble phase 

increases with increased iron content, fluidity and feeding characteristics are negatively 

affected [36].  

 Copper is the most common alloying element for improved wear resistance Al-Si 

alloys. The maximum equilibrium solid solubility of Cu in Al is up to 6wt% at 546 °C 

[36]. Cu additions impart additional strengthening of the matrix through precipitation 

hardening process (Al2Cu phase) or through the modification of the hard, brittle          

Al-Fe-Si phases by substitution in these intermetallics phases [38]. As the strength of 

these alloys increase with the addition of Mg and Cu, some sacrifice in ductility and 

corrosion resistance occurs [36]. The Al2Cu precipitation is controlled by heat 
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treatment. To obtain optimum corrosion resistance in aluminium based HPDC alloy, Cu 

additions are limited to less than 0.1wt%. 

Manganese is commonly added to commercial Al-Si alloys, typically at a level of 

more than 1wt%. Mn is commonly used to reduce the tendency for die soldering and to 

neutralize the detrimental effect of iron impurity [47]. Mn addition favours the formation 

of intermetallics such as Al15(Fe,Mn)3Si2 rather than the Al9Fe2Si2 type. The 

Al15(Fe,Mn)3Si2 intermetallics is typically cubic in structure, and as a result gives 

improved mechanical properties [46].  

Nickel can enhance the strength and hardness of Al-Si Alloys at elevated 

temperature in the presence of copper [7] due to the formation of Al7Cu4Ni phase. This 

precipitated phase would make contribution to the microhardness of the Al-Si alloy as it 

has a higher microhardness values than that of Al matrix [48]. 

Phosphorus is added to hypereutectic Al-Si alloys and combines with molten 

aluminium to form tiny, insoluble AIP particles which act as effective heterogeneous 

nucleants for primary Si (AlP and Si both have diamond-like cubic crystal structures 

with similar lattice parameters) [28]. More details of the refinement mechanism of 

primary Si by Phosphorus are provided in section 2.8. 

Antimony at concentration levels equal to or greater than 0.05 wt% modifies 

eutectic silicon in the aluminium-silicon alloy in a lamellar form. The effectiveness of 

antimony in altering the eutectic structure depends on an absence of phosphorus and 

on an adequately rapid rate of solidification. Antimony also reacts with sodium, calcium 

or strontium to form coarse intermetallics with adverse effects on castability and 

eutectic structure. Antimony is classified as a heavy metal with potential toxicity and 

hygiene implications, especially if the melt contains hydrogen since SbH3 formation is 

possible. This gas is highly toxic and can pose an environmental problem [49]. 

Calcium is known as a weak aluminium-silicon eutectic modifier. Calcium, entering 

the Al-Si alloys along with the addition of silicon, is often responsible for casting 

porosity due to increased hydrogen solubility even at trace concentration levels [6].  

The effect of Ca is investigated in this thesis and further literature on the role of Ca in 

Al-Si alloys is discussed in section 2.5. 

Sodium is specified as an optional modifier for Al-Si eutectic. Sodium can 

successfully modify eutectic silicon morphology with significantly enhanced mechanical 

properties [50]. Sodium interacts with phosphorus to reduce their effectiveness in 

modifying the eutectic and in the refinement of the primary Si phase [51].  

Strontium is widely used to modify the Al-Si eutectic. Effective modification can be 

achieved at very low addition levels, but a range of recovered Sr of 0.008 to 0.04 wt% 

is commonly used. Higher levels of Sr are associated with casting porosity, especially 



9 
 

in processes in which solidification occurs more slowly. Degassing efficiency may also 

be negatively affected at higher strontium levels [15]. 

2.3 Hypereutectic Al-Si Alloys    

More than 50 years ago, hypereutectic Al-Si alloys were employed for casting heavy-

duty diesel engine pistons. Despite those many years of casting experience, 

understanding hypereutectic alloys and the special requirements for controlling their 

microstructure, casting soundness, cycle time and tool life continues to evade many 

foundries. In reality, hypereutectic Al-Si alloys can be considered as important 

aluminium metal matrix composite (MMC) systems; they are in situ composites of 

primary Si crystals distributed throughout an Al-Si eutectic matrix. Thus, hypereutectic 

Al-Si alloys share many of the properties of other aluminium MMC systems, for 

instance, systems that incorporate such hard second-phases as SiC, AI2O3 or B4C [30]. 

For a specific application, the selection of a hypereutectic Al-Si alloy depends on its 

castability, the casting process, the required mechanical and physical properties and 

the use of the casting. Therefore, parameters such as the percentage of Si, its shape 

and distribution play an important role on the mechanical properties. The higher the 

silicon content, the harder and stronger material, but at the expense of ductility.  

The major Al-Si alloy groups used commercially are [43]: 

 

 Al-Si-Cu alloys: provide good casting properties with moderate strength and 

hardness. 

 Al-Si-Mg alloys: offer good permanent mould casting properties and with heat 

treatment give improved strength and hardness. 

 Al-Si-Cu-Mg alloys: offers good wear resistance and are commonly used as 

engine parts. 

 The compositions of the most common Al-Si alloys with its application are given in 

Table 2.1 [30, 52-56]. 

 A good alloying example is the so-called 3HA alloy. The typical composition of 3HA 

is Al-14Si-2Cu-0.5Mg-0.5Mn-0.05Zr with 0.05% strontium used as the modifier. It has 

been reported to have a unique combination of improved high temperature strength, 

corrosion resistance, wear resistance, fluidity and good machinability, thus becoming 

an alternative Al-Si alloy that can be used to make linerless engine blocks [7]. 
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Table 2.1: Hypereutectic Al-Si Alloy Designations and Nominal Compositions [30, 52-56] 

Designation Owner Si Cu Mg Fe Ni Others  Applications Notes 

LM28 BS1490:1988 18 1.5 1  1  Nom. Pistons  

LM28 BS1490:1988 
17
-

20 

1.3-
1.8 

0.8-
1.5 

≤0.7 
0.8-
1.5 

≤0.6Mn, ≤0.2Zn, ≤0.1Pb, 
≤0.1Sn, ≤0.2Ti, ≤0.6Cr, 

≤0.5Co, ≤0.1Others 
(each), ≤0.3 Others 

(total) 

Spec.   

LM29 BS1490:1988 23 1 1  1  Nom. Pistons  

LM29 BS1490:1988 
22
-

25 

0.8-
1.3 

0.8-
1.3 

≤0.7 
0.8-
1.5 

≤0.6Mn, ≤0.2Zn, ≤0.1Pb, 
≤0.1Sn, ≤0.2Ti, ≤0.6Cr, 

≤0.5Co, ≤0.1Others 
(each), ≤0.3 Others 

(total) 

Spec.   

LM30 BS1490:1988 17 4.5 0.5    Nom. Linerless engine blocks  

LM30 BS1490:1988 
16
-

18 
4-5 

0.4-
0.7 

≤1.1 ≤0.1 

≤0.3Mn, ≤0.2Zn, ≤0.1Pb, 
≤0.1Sn, ≤0.2Ti, 

≤0.1Others (each), ≤0.3 
Others (total) 

Spec.   

Alusil 

KS 
Aluminium 

Technologie 
AG 

17 4 1    Nom. 
Linerless engine blocks 
(Porsche Cayenne, Audi 

V6 and V8, BMW) 
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Designation Owner Si Cu Mg Fe Ni Others  Applications Notes 

A390 Al Assoc. 17 4.5 0.6 <0.4  0.5Zn Nom. 

Primary sand and 
permanent mould alloy.  
For die castings 390 is 

used (higher Fe content to 
prevent die-soldering). 

 
 
 

B390 Al Assoc. 
16
-

18 
4-5 

0.45-
0.65 

<1.3 <0.1 
<0.5Mn, <1.5Zn, <0.2Ti, 
≤0.1Others (each), ≤0.2 

Others (total) 
 

Engine blocks, pistons, 
pumps, compressors. 

Secondary (scrap-based) 
alloy. Workhorse alloy 
99.5% of all 390 series 

applications) 

 

391 
(Mercasil) 

Mercury 
Marine 

18
-

20 
<0.2 

0.4-
0.7 

<1.2  <0.3Mn  

Die-casting.  Marine 
Engine Blocks (low Cu to 

improve corrosion 
resistance). 

A391 for permanent mould 
(<0.4Fe).  B391 for sand 

casting (<0.2Fe) 

 

393 
(Vanasil) 

 
21
-

23 

0.7-
1.1 

0.7-
1.3 

<1.3 
2.0-
2.5 

<0.1Mn, <0.1Zn, 0.1-
0.2Ti, 0.08-0.15V, ≤0.15 

Others (total) 
 

Diesel pistons. Very early 
hypereutectic alloy 

(introduced more than 50 
years ago), and continues 

to be used. 

 

DISPAL S250 Peak 20   5 2  Nom. Cylinder liners Spray formed 

DSIPAL S260 Peak 25 4 1    Nom. Cylinder liners Spray formed 

MSFC-398 NASA        Pistons  

M174+ MAHLE        Pistons  

Table 2.1 continued 
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Forged Pistons 

AA 4032 Al-12.2Si-0.9Cu-1.0Mg-0.9Ni 

AA 2618 Al, 0.1-0.25Si, 1.9-2.7Cu, 1.3-1.8Mg, 0.8-1.3Fe, 0.9-1.2Ni, ≤0.05Mn, ≤0.1Zn, ≤0.05Cr, 0.04-0.1Ti 

 

Other Al-Si Alloys for Engine Components 

A332 Al-12Si-1Cu-1Mg-2Ni (Pistons) 

3HA Al-14Si-2Cu-2Ni-0.5Mg-0.5Mn-0.05Zr-0.05Sr  

Australian experimental (fully eutectic) alloy 
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2.4 Inclusions and Oxides 

It is well established that a large variety of inclusions are present in small quantities in 

commercial aluminium and aluminium alloys. The common inclusions in commercial 

aluminium are oxides, carbides, borides, nitrides, chlorides, and fluorides. These 

inclusions play an important and crucial role in facilitating the crystal nucleation process 

of the matrix phase and other primary phases [57-58], since the high-energy 

crystal/liquid interface is partly replaced by an area of low-energy crystal/inclusion 

interface [59]. However, these inclusions differ in their nucleation catalytic activity. 

 Aluminium readily oxidizes in the presence of air or moisture forming a strong, thin 

film of protective oxide on the exposed metal surface. The detrimental effects of the 

oxides on the microstructure and properties have been extensively investigated in 

aluminium alloys. Studies have shown that oxide films, particularly formed at liquid 

state at high temperatures, are frequently associated with the casting porosity, hot 

tearing and cracks, resulting in decreased strength, ductility and corrosion resistance of 

the castings [60]. 

 Most of the lA and IIA elements also readily form very stable oxides. These oxides 

have lower densities than the corresponding parent metal and so tend to be broken 

and porous to both air and moisture (BeO is an exception). Elements with Pilling- 

Bedworth (PB) ratios (oxide density to metal density) less than one form discontinuous 

and non-protective oxides, while those with PB ratios > 1 form continuous and 

protective oxides. The PB ratios of BeO, ZrO2, γ-Al2O3, α-Al2O3, MgO and CaO, are 

1.70, 1.56, 1.31, 1.28, 0.80 and 0.64 respectively [61]. Thus, a melt containing Ca and 

Mg cannot maintain its continuous protective Al2O3 skin even when the melt is 

quiescent. Instead, it will be subjected to a rapid and continuous oxidation leading to 

formation of more oxides. Alumina Al2O3 is one of the most common oxides found in 

aluminium alloys. It exists in eight different polymorphs: seven metastable phases (γ, δ, 

κ, ρ, η, θ, and χ) as well as the thermodynamically stable α-phase. The metastable (also 

known as transition) phases of alumina are basically nano crystalline in nature and can 

be easily synthesized by a variety of methods. The usual way to synthesize the           

α-phase, however, is to heat the transition alumina phases at relatively high 

temperatures, e.g., 1000-1200 °C. The transformation sequence may be illustrated as 

follows [62]: 
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γ-Al2O3 is one of the metastable polytypes of Al2O3 that is used extensively as a 

catalytic support material because of its high porosity and large surface area. At 

temperatures in the range 1000-1200ºC γ-alumina transforms rapidly into the 

thermodynamically stable α-alumina phase (corundum), significantly reducing the 

surface area and thus suppressing the catalytic activity of the system. The phase 

transformation can be shifted to higher temperatures by doping γ-alumina with one of 

many elements such as La, Ba, P, or Si [63]. 

In the case of unalloyed aluminium, the oxide film is initially γ-Al2O3. It is a thin film 

that inhibits further oxidation through prolonged heating at higher temperatures     

(~800 °C). After an incubation period, this oxide transforms to α-Al2O3. The γ-Al2O3 has 

been found to have the highest occurrence level in the α-Al phase and is believed to be 

a very potent substrate for the crystallization of the matrix phase [57, 64].  

 There is much experimental evidence to conclude that some Si particles nucleate 

and grow on oxide particles or bifilms during solidification of hypereutectic Al-Si alloys. 

Observation by Campbell and Cao [65-66] showed that Si particles formed on long 

oxide films and they also interpreted cracks in eutectic Si to be due to short bifilms on 

which the Si nucleated. The bifilm concept is the enfolding of the liquid surface into the 

bulk melt. As the surface usually has a surface film, the film is entrained, being folded 

double; hence, the name ‘‘bifilm.’’ The dry film on surface of the liquid metal becomes 

folded together, the dry faces now opposed in the folding action, and without bond [67].           

Early work by Zhang et al. [68] show that Si particles formed on oxide particles on 

solidification of Al-15Si alloy. They believe that enhanced nucleation is likely to be due 

to the distribution of oxide films as well dispersed, discrete, nano scale oxide particles 

which act as potent/efficient heterogeneous substrates for primary Si.     

2.5 Calcium in Al-Si Alloys 

Attention has been given to the effect of Ca content on the microstructure of Al-Si 

alloys. Ca has been reported to cause modification of the Al-Si eutectic from a flake-

like to a fine fibrous silicon structure [69]. 

Calcium enters aluminium casting alloys as impurities with the addition of Si, 

appearing as calcium silicides, phosphides and nitrides, which are considered to be 

harmful, and requires removal of Ca to levels of 30 ppm, and preferably 10 ppm [70]. 
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Calcium is expected to affect the casting characteristics of aluminium casting alloys 

because of its significant influence on the viscosity and surface tension of the melt [71]. 

 P, Ca and Sb are among the various trace elements in aluminium alloys reported to 

react with Sr to neutralize its modifying effect on the eutectic Si. Suzuki and Oshir [72] 

have invented an efficient method of eliminating P and/or Sb from molten aluminium by 

addition of Ca at a temperature of 923 to 1123 K followed by blowing chlorine gas or a 

chloride flux to remove calcium phosphide or Ca-Sb compound with the forming dross 

to improve modification of hypoeutectic Al-Si alloys. 

 Nakae et al. [73] studied the influence of impurity elements such as Ca on 

modification of eutectic Si in Al-Si alloys treated with Sr.  They observed that in using 

commercial grade Al-Si alloys, a reduction in modification of eutectic Si is due to the 

reaction between Sr and Ca. Perfect modification could be obtained in high purity Al-Si 

alloy melted in a high purity alumina tube and treated with Sr. The mechanism 

proposed is that Ca forms CaSi2, which reacts with Sr forming strontium-calcium- 

silicide. 

 EI-Hadad et al. [74] have investigated the effect of Ca content on the microstructure  

of eutectic Si particles in Sr modified 319 alloy. They found that a Ca concentration of 

50 ppm and higher coarsened the primary Si particles due to the formation of Al-Si-Ca-

Sr compounds. 

 Kwon et al. [75] investigated the effects of increasing Ca content on the modification 

of Al-7Si-0.3Mg alloy with Sr. They observed weakening of the eutectic modification 

rate in 50 ppm Sr treated alloy and decreased UTS and elongation. Meanwhile, 

coexistence of Ca and P has been found to increase eutectic modification rate and to 

depress the eutectic temperature, due to the interaction between them. 

 Preliminary studies of the modification process in hypereutectic Al-Si alloys found 

that Ca content affects primary Si particle size in addition to modification of the eutectic 

[76]. A calcium level of less than 500 ppm in Al-Si alloys improves the mechanical 

properties through modification of the eutectic Si from an acicular or plate-like to a fine 

fibrous morphology. The formation of CaSi2 in Al-Si alloys with Ca concentrations of 

more than 500 ppm detrimentally influences the mechanical properties. Ca at very low 

levels may also tie up hydrogen present in the melt as hydride, so reducing porosity. 

However, above a critical Ca content, the protective Al2O3 film on the melt may become 

weakened and rupture, leading to more rapid pick-up of hydrogen [6].  

 Kim [77] studied the relationship between Ca content and primary Si particle size in 

B390 hypereutectic alloy through control of Ca content by the addition of Ti2Cl6 in the 

melts. Calcium was found to have a significant effect on the size of primary Si particles 
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of B390 aluminium casting alloy. Primary Si particles were refined as Ca content 

decreased. 

 Liu et al. [78] investigated the effect of Ca impurity on solidification structure of a 

near eutectic Al-Si piston alloy (ZL109). They found that Ca can lead to P refinement 

inefficiency and many kinds of Ca compounds exist in commercial purity silicon, which 

are the main source of the Ca impurity in ZL109 alloy. This inefficiency of primary Si 

refinement is due to the formation of CaxSiyPz compounds which are more stable than 

the AlP phase in the melt. The P refinement efficiency can be recovered after addition 

of C2Cl6 which removes Ca. Fluxing, remelting and holding the melt for a certain time 

are the most efficient methods to remove Ca. Chloride and fluoride compounds are 

used for fluxing aluminium alloy melts to remove alkali metals [77]. Most previous 

studies used chloride compounds such as C2Cl6 or Ti2Cl6 for melt treatment. 

2.6 Fluxing  

A flux is a material added to molten metal that reacts with impurities to form dross or 

slag, which floats to the surface of the metal and can be removed by skimming. The 

uses of salt fluxes fall into five categories: cover, cleaning, drossing, refining and    

wall-cleaning. Cover fluxes prevent oxidation of the molten bath and cause the 

agglomeration of metal droplets in the dross to form larger drops that then sink back 

into the bath. Cleaning fluxes facilitate keeping furnace or crucible walls above and 

below the melt line free of build-up. Drossing fluxes are used to reduce the rich metallic 

content of drosses that may contain up to 60-80% free metal. Refining fluxes contain 

compounds that break down and are thermodynamically favourable to react with 

certain metallic elements in the aluminium. For example, certain chlorine or       

fluorine-containing fluxes will react with Mg, Ca, Li, Na and K in the molten aluminium 

to form compounds that will partition to the dross phase, where they can be removed 

by skimming [5].  

Fluxing is a useful means of obtaining clean metal, preventing formation of too much 

oxide, removing non metallic inclusions from the melt and removing oxide build-up from 

furnace walls. Fluxes may be grouped into two classes: gaseous or solid. Gaseous 

fluxes may be a mixture of an inert gas with a chemically active gas that is injected into 

the molten bath. Solid fluxes are mixtures of salts, and seem to be the most favoured 

type of fluxes used in foundries [79]. In general fluxes can be broadly categorized as 

passive or active. Passive fluxes protect the surface of the molten bath from oxidation 

and prevent hydrogen pick up by the melt. Active fluxes react chemically with the 

aluminium oxide and clean the melt more effectively [80].  
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 According to Pacz in his patent for alkali fluorides [81], typically sodium fluoride can 

be added to the aluminium-silicon melt to modify the eutectic silicon. Jeffries [82] 

reported that addition of fluxes to Al-Si alloys affects the morphology and dispersion of 

the silicon in the eutectic. In 1922 Guillet and Search proposed that the change in the 

Al-Si eutectic structure with the addition of sodium fluoride and potassium fluoride is 

due to the removal of oxides and impurities, such as alumina and silica, by the fluxing 

effect of these compounds [39]. 

 Current technologies for alkali/alkaline earth removal involve treatment with reactive 

halides either in gaseous form (e.g. chlorine) or as salts (MgCl2, AlF3, K2SiF6 etc.). In 

addition to removing the targeted elements (Li, Na, Ca or Mg) these treatments also 

generally promote the removal of non-metallic inclusions by dewetting/ floatation [83]. 

The metal chlorides that have a standard Gibbs energy value more negative than AlCl3 

are more stable than AlCl3. This means that when Cl2 is injected into aluminium 

containing various metallic elements, the chlorine will preferentially react with these 

metallic impurities. The same also applies to fluorides. Li, Na, K, Ca, Mg, and Ba all 

form more stable chlorides and fluorides than aluminium and can, therefore, be 

removed by Cl2, F2, or SF6 injection or halide salts [6] as shown in Figure 2.3.  

 The equilibrium constant for reactions such as Al + 3MeX = 3Me +AlX3 (X = Cl or F, 

and Me = Li, Na, K) and Al + 1.5MeX2 = 1.5Me + AlX3 (X = Cl or F and Me = Ca, Mg, 

Ba, Sr) is shown in Figure 2.4 for different metals. An equilibrium constant much less 

than one indicates that at equilibrium the reaction is shifted to the left, while a value 

much greater than one implies that the reaction is shifted to the right. Therefore, 

according to Figure 2.4, to an alkali or alkali-earth chloride electrolyte has no tendency 

to react with aluminium. Corresponding metal-fluorides are slightly more reactive than 

metal-chlorides [5].  

 

  

Figure 2.4 Exchange equilibrium between 

aluminium and different metal chlorides 

and metal fluorides at 723 °C [5]. 

Figure 2.3 Standard Gibbs energy of 

formation of several sulphides, oxides, 

chlorides, and fluorides at 723 ºC [5]. 
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2.7 Eutectic Modification 

The term ‘modification’ describes the change in scale and morphology of the eutectic Si 

from a coarse flake-like structure to a fibrous or fine flake structure in Al-Si alloys. It is 

necessary to modify the eutectic Al-Si to improve strength, ductility, pressure tightness 

and machinability [84]. The growth form of the faceting Si phase is such as to produce 

a three-dimensional skeletal crystal pattern rather than thin sheets. The silicon plates 

appear to be separate crystals but they are in fact interconnected. In as-cast Al-Si 

foundry alloys eutectic Si often has a very coarse and plate-like morphology, leading to 

poor mechanical properties, particularly ductility [85]. In most foundry applications 

modification occurs by adding small concentrations of elements such as Sr, Na or Sb 

[86].  Modification of the Al-Si eutectic can be achieved by two processes [51, 84]: 

 Chemically induced modification by trace addition of specific elements. 

 Quench modification, which refers to rapid freezing. 

 Knuutinen et al. [87] investigated the modifying action of Ca, Ba, Y, and Yb in        

Al-7Si-0.3Mg alloy. They found that Ba and Ca produce a fibrous silicon structure, 

similar to the effects caused by additions of Na or Sr, while Y and Yb cause a plate-like 

structure.  

 Kumari et al. [70] studied the modification of Al-7Si-0.3Mg alloy by Ca and Sr. They 

found that the optimum level of Ca for achieving modification and best mechanical 

properties lies in the range of 0.0085-0.017 wt%. They also found that a higher amount 

of Ca leads to the formation of higher porosity and Al-Ca-Si intermetallics, and that Sr 

modification leads to more porosity than Ca at a fixed 0.018 wt% level in the alloy.  

Prasad [88] reported that for a given addition level of Sb, modification of eutectic 

silicon was more effective after longer melt holding than after short holding following 

inoculation. 

Ho and Cantor [89] studied the modification of Al-Si eutectic microstructure using 

the entrained droplet technique with different levels of P and Na. They found that 

modification from coarse-faceted silicon particles to clusters of fine-scale silicon 

particles was enhanced by increasing the purity of the alloy, increasing the cooling rate 

or adding Na; where increasing alloy purity removes P and prevents the formation of 

AlP; adding Na leads to the formation of Na3P in preference to AlP; and increasing 

cooling rate allows insufficient time for the precipitation of AlP from low levels of 

dissolved P. 

 For a given eutectic microstructure there is an optimum level of modifier. A higher 

level of modifier results in over-modification. For instant, Sr over-modification, 
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coarsening and reversion of the fine fibrous silicon structure to an interconnected plate 

form will take place [84].  

 Several studies have recently shown that widely different eutectic solidification 

modes can occur in hypoeutectic Al-Si alloys as a result of the addition of modifying 

elements. The three theoretically expected eutectic solidification modes suggested by 

Dahle et al. [90] are shown in Figure 2.5: 

(a)   nucleation and growth on the primary α-Al dendrites;  

(b)   independent nucleation of eutectic grains in interdendritic spaces; 

(c)   planar-front growth opposite to the thermal gradient.  

 

 

 

Figure 2.5  Eutectic growth modes suggested by Dahle et al. [90]. (a) nucleation and 

growth on primary α-Al dendrites; (b) independent nucleation of eutectic grains, and (c) 

planar-front growth.  

 

Basically two classes of theories have been suggested to explain the mechanism of 

modification [91]. These are: 

 restricted nucleation theory; and  

 restricted growth theory.  

According to the restricted nucleation theory, the modifier neutralizes the 

heterogeneous nuclei of AlP or it reduces the diffusion coefficient of Si in the melt. This 

suppresses the undercooling in the melt before eutectic solidification and modification 

takes place. For the restricted growth theories, the modifying element is adsorbed on 

twin re-entrant grooves or growing surfaces of the Si phase, thus the normal growth of 

c 

 

 

 

b 

 

 

 

a 
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Si is inhibited and twinning is promoted. For growth to proceed the modification 

process, the number of twins increases in comparison with the unmodified eutectic 

silicon which has few or no twins [84].  

Several elements are known to cause chemical modification. A growth twin is 

created at the interface when the atomic radius of the element relative to that of silicon 

exceeds a value of about 1.65 [87]. In the presence of a chemical modifier, the twinning 

frequency and the angle of branching increase with cooling rate. Na is the ideal 

modifier because it produces the greatest number of twins and also the finest modified 

structures at the lowest concentrations [51]. But the choice of modifier also depends on 

other factors such as ease of dissolution, vapour pressure, stability in the melt etc. 

Figure 2.6 shows the three morphologies of eutectic Si. Figure 2.6a shows unmodified 

eutectic Si. Some chemical modifiers: such as Na, K, Rb, Ca, Sr, Ba, La, Yb produce a 

fibrous structure as shown in Figure 2.6b. Elements such As, Sb, Se and Cd when 

used as a modifier, produce modified lamellar structure as shown in Figure 2.6c. 

 

 

 

Figure 2.6 Eutectic silicon morphology in Al-Si Alloys (a) unmodified, (b) modified 

fibrous structure  (c) modified lamellar structure [92]. 

     

    The modification rating concept (MR) is used to characterise the modified structure.  

  )( numberclassclassoffractionMR
 

The class number refers to the scale of rating from 1 to 6 for the range of structures 

observed in modified Al-Si alloys [84]. The various classes with their description are 

presented in the Table 2.2. 
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Table 2.2 Typical classification of Al-Si eutectic microstructures. 

 

Class number Structure Description 

1 Fully unmodified 
Silicon is present in the form of large plates 

as well as in acicular form. 

2 Lamellar 
A finer lamellar structure, though some 
acicular Si may be present (but no large 

plates). 

3 Partially modified 
The lamellar structure starts to break up 

into smaller pieces. 

4 Absence of lamellae 
Complete disappearance of lamellar Si. 
Some acicular Si may still be present. 

5 
Fibrous Si eutectic 

(Fully modified) 
Acicular Si is completely absent. 

6 
Very fine eutectic 
(Super modified) 

The fibrous Si becomes so small that 
individual particles cannot be resolved 

under an optical microscopy. 

 

2.8 Primary Si Refinement and Morphology 

Primary Si in hypereutectic Al-Si alloys is very hard, imparting wear resistance, but 

decreasing tool life during machining. Controlling the size, shape and distribution of the 

primary Si particles in hypereutectic Al-Si alloy castings is commonly known as 

refinement. It is based on maximizing the number of sites on which primary Si crystals 

can nucleate [30]. 

Primary Si in hypereutectic Al-Si alloys exhibits a variety of morphologies such as 

star-like, polygonal, coarser platelet, etc. Generally, the machinability of hypereutectic 

Al-Si alloys is worse due to the presence of coarser primary Si [93].  

Ullah et al. [94] studied the silicon crystal morphologies during solidification refining 

from Al-Si melts in the range of 17-38 wt% Si, they found that at lower silicon contents 

the silicon morphologies have a fish-bone or star-like shape but at the highest Si 

contents the growth habit changed to large plates that have a tendency to grow in 

layers and thus form Al inclusions in the Si crystals. Examples of these primary Si 

morphologies are shown in Figure 2.7.  
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Figure 2.7 Primary silicon crystal morphologies: (a) Fish-bone-like structure, (b) Large 

star shaped crystal and (c) Large plate structure [94]. 

The strong tendency of Si to grow in the (111) plane through the twin plane re-

entrant angle edge mechanism (TPRE) combined with different nucleation conditions is 

the reason for the formation of the different morphologies. However, at increasing 

super saturation a specific type of hopper crystal grows, where the edges and corners 

grow fast, which, together with the preferred growth in the (111) plane, results in the 

five-fold star. Figure 2.8 shows SEM micrographs of five-fold primary Si crystals. 

Xu and Jiang [13] conclude that the morphologies of primary Si are a strong function 

of the solidification conditions such as melt superheat and cooling rate. As the melt 

temperature increases, the morphologies of primary Si change from star-like and other 

irregular primary Si to octahedral primary Si and the size of primary Si will gradually 

decrease. Also they found that the cooling rate plays an important role in determining 

the morphologies of primary Si in the solid state. The size of primary Si will gradually 

decrease with increasing cooling rate. In general, the size of the primary Si increases 

with increasing Si content and with decreasing cooling rate. Larger superheating 

seems to promote the formation of the fish bone structure. 

 

 

Figure 2.8 SEM micrographs of star shaped crystals in Al-25wt%Si alloy: (a) fully 

developed star with five arms growing in length and thickness from a common nucleus; 

(b) a star crystal at an early stage of development [94]. 
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It has been reported that high melt superheating and quick cooling to a pouring 

temperature significantly refine the primary Si of Al-Si alloys without addition of 

refinement elements [12-13, 95] and the microstructure in the solid state is influenced 

by the liquid structure before solidification [96].  

Li et al. [12]  investigated the effect of cooling rate and superheat on Si morphology. 

Al-16wt%Si alloy was heated to 720, 880, 960 and 1050 °C then cooled back to 720°C 

in air (at 60-70 K/s) and cast into sand and metal moulds.  Also, the alloy was cooled 

back to 720 °C at 150-200 K/s (by adding solid samples to the melt) and cast into metal 

moulds. In each case the primary Si shaw greater refinement (and a more compact 

morphology) with increasing melt superheat. The effect was more dramatic in the sand 

castings than in the metal mould castings, the latter being more refined as a result of 

the higher solidification rate in the metal moulds, although the primary Si was always 

more refined in the metal mould castings than in the sand castings. Greater refinement 

was also achieved by cooling from the superheated temperature to the pouring 

temperature at a higher rate. Their explanation for the refinement process was little. 

The effect of superheat and cooling rate on the microstructure of hypereutectic Al-Si 

alloy is investigated in this thesis and further literature and discussion are illustrated in 

sections 4.1 and 5.1. 

Microstructure control using minor element additions has been the most popular 

method due to its simplicity. Phosphorus or phosphorus compounds are normally used 

for the refinement of primary Si in hypereutectic Al-Si alloys. Aluminium phosphide 

(AlP) particles are commonly accepted to be the nucleation site for primary silicon 

hypereutectic Al-Si alloys, since both have similar crystal structures as shown in  

Figure 2.9 and the lattice parameters of Si and AlP are very close with a lattice 

mismatch of less than 1% [28]. The primary Si nucleates and then grows by wrapping 

around the AlP nucleant to develop as a compact particle [65], examples of compact 

particles are shown in Figure 2.10b. The compound AlP may also be a common 

nucleus for eutectic Si in unmodified alloys, but becomes less active in the presence of 

the modifying element, e.g. Na, or Sr. The mechanism for this transition is unclear but 

may relate to the reaction of P with intermetallic formed between the modifying element 

and Al, Mg and Si [84]. Thus an excess of P will lead to refinement of primary Si and 

little or no eutectic modification, and an excess of Sr will lead to eutectic modification 

without substantial refinement of primary Si. 
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Figure 2.9 The crystal structures of AlP and Si [97].        

  

Figure 2.10 Optical micrographs of as-cast alloys that conducted in this thesis: (a)     

Al-30Si alloy, (b) Al-30Si with the addition of 400 ppm P. 

AlP has the zincblende crystal structure with a lattice constant of 5.4310 Å at 300 K. 

It is thermodynamically stable up to 1,000 °C. P is most effectively added in the form of 

Cu-P, Al-Cu-P or Al-Fe-P master alloys [68]. The eutectic Cu-8%P dissolves quickly 

and completely at 714 ºC, thus it is the preferred product for use in the foundry [30]. 

AlP particles have an affinity for each other and agglomerate into clusters that are 

no longer effective as nucleants. Agglomerates then rise to the melt surface, oxidize 

and are removed in the dross. Melt agitation (stirring, ladling) enhances agglomeration. 

Large melts (tonnes) lose effective refinement over many hours or even days. While, 

small melts (a few kg) can lose effective refinement within 4-5 h. Refinement can be 

reactivated by heating the melt to above ~900 °C to dissolve the AlP agglomerates and 

cool the melt back down to its working temperature to precipitate new dispersed 

particles. This practice can have the consequences of greater melt oxidation 

(especially Mg burn-out) and an increased amount of dissolved hydrogen [30]. 

a 

 

 

 

b 

 

 

 

http://en.wikipedia.org/wiki/Zincblende_(crystal_structure)
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Zhang et al. [98] have shown that reprecipitation can lead to AlP with varying 

morphologies which in turn affect the morphology of primary Si particles, e.g. 

reprecipitation during cooling from 1500 °C led to coarse flake AlP particles which led 

to coarse elongated primary Si particles. 

Significant refinement of primary Si in 390 alloy has been reported by the use of 

Germanium, Gallium, Selenium, Tellurium, Lithium, Cadmium, and Lithium Chloride 

[99] but the refinement efficiency was less than that of using phosphorus. 

 Xing et al. [100] have investigated the effect of rare earth RE elements on the 

hypereutectic Al-Si alloys. They found that the size of the primary Si is considerably 

decreased with suitable addition of the RE on solidification of the hypereutectic          

Al-17.5Si and Al-25Si alloys. The addition of RE the primary Si changed from a coarse 

shape to a fine facetted shape, changes the size distribution of the primary Si and 

improves the mechanical properties of the Al-Si alloys.      

 Youn et al. [101] studied the refinement of primary Si in A390 alloy by applying 

ultrasound. The ultrasound was injected through a horn inserted into the melt.  Primary 

Si size decreased from 80 µm to ~8 µm after 10 min ultrasound injection, but no further 

refinement with even longer ultrasound injection. They thought that both cavitation 

(formation and collapse of bubbles) and propagation of ultrasonic waves (causing melt 

streaming) contributed to vigorous mixing. In the ultrasonic technique, the compression 

and relaxation of high frequency ultrasonic waves have effect on melt. The transient 

cavitations could produce an impact strong enough to break up the clusters and 

disperse them to more uniformly through the entire matrix without forming any clusters. 

In addition, acoustic cavitations accelerate heat and mass transfer processes such as 

diffusion, dispersion, emulsification, etc., which helps local undercooling during 

solidification and further helps to refine primary Si particles [102]. 

Zhang et al. [25] studied the effect of ultrasonic melt treatment (UST) on the 

microstructure of Si phases in solidification of hypereutectic Al-Si alloys. A significant 

refinement of primary Si crystals was observed when UST was applied to the liquid 

phase close to the liquidus of the primary Si phase. 

Feng et al. [103] applied ultrasound to Al-23Si melt by making the crucible part of 

the horn, which should provide a more even distribution of the ultrasound. Ultrasound 

was applied at 500W for 10 min. They reported a degassing effect, and refined primary 

Si. 

Zhang et al. [68] investigated an alternative, physical means of refining primary Si by 

intensive melt shearing using the twin-screw device prior to casting. They found that 

intensive melt shearing led to greater refinement of the primary Si particles than the 

common practice of refining with P. This refinement of primary Si is likely to be due to 
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the distribution of oxide films as well dispersed, discrete, nano scale oxide particles 

which act as potent/efficient heterogeneous substrates. 

Physical refinement method with the application of intensive melt shearing during 

solidification was proposed and its effect on the microstructure of a hypereutectic 

aluminium-silicon alloy was studied by Zuo et al. [104]. The intensive melt shearing 

was achieved by the use of a rotor-stator unit. They found that intensive melt shearing 

has different effects on the microstructure of hypereutectic Al-Si alloy, depending on 

the treatment temperature. When shearing above the liquidus temperature, the primary 

Si particles were slightly refined. While, shearing below the liquidus, there was a 

significant refinement of the primary Si particles and the optimum shearing temperature 

for refining primary Si particles of Al-20wt%Si alloy was at 660 ºC. 

Spray forming is an alternative approach to refine the primary silicon particle size in 

hypereutectic alloys (see section 2.14.2). Which results in homogeneous, fine-scale 

microstructures, with low levels of segregation. Al-Si alloys manufactured by this 

process exhibit microstructures consist of equiaxed silicon particles approximately 1 to 

10 µm in size, dispersed in a matrix of α-Al solid solution [105]. 

2.9 Simultaneous Refinement of Primary Si and Modification of Eutectic Si 

Due to the interaction between P and the modification chemicals such as Sr, Na and 

Ca, it is not possible to achieve both refinement of primary Si and modification of 

eutectic Si simultaneously in hypereutectic alloys [18].  

Zarif et al. [106] found that, unlike P, Sr does not promote nucleation. Where, 

increasing Sr additions depressed the eutectic nucleation temperature and this could 

be a result of the formation of a Al2Si2Sr intermetallic phase that could consume or 

detrimentally affect potent AlP nucleation sites. 

Research on hypereutectic Al-Si alloys has shown that additions of rare earth 

elements RE are a potential chemical alternative to P in refinement of primary Si. 

However the refinement of primary Si appears to be only moderate but may have the 

advantage of producing modified Al-Si eutectic simultaneously [16, 107].  Furthermore 

it is not clear that the refinement evident in binary alloys will translate to commercial 

multi-component alloys. The modification of eutectic silicon in RE-treated hypereutectic 

Al-Si alloys is supposed to be due to the suppression of the nucleation temperature of 

eutectic silicon and limited growth due to the decrease in diffusion rate of Si with the 

decrease in growth temperature 

A group at Shanghai Jiao Tong University found that the addition of La to               

Al-17wt%Si and Al-25wt%Si resulted in both refinement of primary Si and eutectic 

modification [107], whereas similar addition to A390 alloy (containing 17.5% Si and 
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4.8% Cu) [108] resulted in no significant refinement of primary Si or modification of the 

eutectic Si. The La was present as a phase with the nominal composition Al7Si7Cu2La3.5 

which the authors asserted was formed late in solidification and was often associated 

with Al2Cu. The La-rich phase was coarse and acicular, and may be detrimental to 

properties especially ductility. Despite a lack of thorough research, and although the 

effects appear to be moderate, there does appear to be some evidence that RE 

elements do simultaneously refine primary Si and modify eutectic Si. 

 Refining agents like Ga, Ge, Se, Be, Te, Li, Cd, Zn, Mn, V, Cb, Bi, Mo, Hf and S 

either individually or in combination have also been studied. These agents along with 

Na would give simultaneous silicon refinement and eutectic modification [109]. 

Moderately refined primary Si particles dispersed in a partially modified Al-Si eutectic 

matrix was achieved. 

Melt treatments by a magnetic field [20], electrical field [21], shear loading [22], melt 

conditioning high pressure die casting (MC-HPDC) processing [23], electromagnetic 

stirring [24] ultrasonic vibrations [25] and vibration on the solidifying melt [26-27] have 

been found to be effective for simultaneous refinement and modification of the Si 

phases in hypereutectic Al-Si alloys, but either to only a limited extent or using a 

technique that requires significant further development.   

2.10 Mechanism of Nucleation of Primary Si  

2.10.1 Classical nucleation theory 

Homogenous nucleation can occur in pure metals. It can be realized only under special 

conditions (i.e. levitation cooling, ultra high purity materials, etc). In practice nucleation 

usually starts on solid nucleants or on oxide layers in the melt. Nucleation on a solid 

substrate is known as heterogeneous nucleation, Figure 2.11 [59].  

 

 

Figure 2.11 A schematic representation of (a) homogenous nucleation and                
(b) heterogeneous nucleation on a foreign substrate [59]. 
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The nucleation efficiency of a foreign solid substrate depends on the interaction 

between the solid surface and the melt, called wetting [110]. The wetting is 

characterized by the wetting angle θ as shown in Figure 2.12. For a cap-shaped 

embryo of radius r wetting the substrate with a wetting angle θ, the lateral area, the 

base area and the volume of the cap are: 2πr2(1-cos(θ)); πr2sin2(θ) and                         

(2+cos(θ)) (1-cos(θ))2 (πr3)/3 respectively.  

 

Figure 2.12 The formation of a spherical nucleus of solid phase on the surface of a 

foreign substrate.  

    The total free energy change for embryo formation, taking into account the net 

interfacial free energy terms and the volume free energy change, is  

 

      
    

 
     

 
                                           

                                                                                                                     ….(2.1) 

where    ,     and      are the interface energies of substrate-solid, solid-liquid and 

substrate-liquid interfaces respectively as shown in Figure 2.12 and     is the 

difference in Gibbs free energy per unit volume between the liquid and the solid. 

Applying the criterion for critical radius i.e. (dΔG/dr) r=r* = 0 and using the Young 

equation for the wetting angle θ, 

 

                                                                                                                        ... (2.2) 

 
then the relation for critical radius to be r* = (-2 γsl/    ). By substituting equation (2.2) 

into equation (2.1) and the value of r*, we can obtain:    
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where                                    is the catalytic efficiency which 

varies between 0 and 1 depending on the wetting angle [59, 111-113]. 

2.10.2 Nucleation on potent substrates by adsorption 

There are considerable problems with the classical heterogeneous nucleation theory, 

particularly when the catalytic efficiency is high, i.e. when θ, f(θ) and ΔG*  approach 

zero [114].  In 1954, Yang and co-workers [115] used the classical model to consider 

the formation of thin films by condensation of sodium vapour on different substrates. 

They found that the critical nucleus size (2r*) is just about the size of a unit cell of 

sodium. This gave an indication of just how small a nucleus could be. Walton [116] 

remarked that for nuclei of this low magnitude the uncertainties concerned with the 

classical  model and the concept of surface energy become serious, because the 

critical nucleus size approaches the atomic level or is actually planar under such 

conditions. He then considered the formation of thin metal films through using the 

partition function and kinetic theory on the basis of an adsorption mechanism, followed 

by atomic rearrangement to achieve a preferred configuration. Walton’s approach 

avoided the use of the spherical-cap assumption and the concept of surface energy. 

Sundquist [117] considered heterogeneous nucleation of the solidification of tin at 

low undercooling. He pointed out that the spherical-cap assumption is no longer 

applicable in such cases, thus he proposed that the nucleus formed at low 

supercooling should be considered as ‘‘a monolayer of atoms occupying the atomic 

sites on the catalyst surface’’. He derived an expression for the nucleation rate to 

explain the reported experimental observations. Accordingly, in 1964 Chalmers [118] 

made the following remarks about nucleation on potent substrates:  

‘’A monolayer of atoms on the surface of a substrate cannot be regarded as a group of 

atoms brought together by a fluctuation in the liquid; it is more reasonable to regard it 

as an adsorbed layer in which the atoms can be arranged in many ways. The 

groupings of the atoms in the adsorbed layer play the same part as the embryo in the 

liquid; some have the structure of the crystal and, if large enough, can provide the 

starting point for further growth’’. 

Recently, evidence of the adsorption mechanism has been revealed using high-

resolution transmission electron microscopy. This evidence includes Al nucleation by a 
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monolayer of catalytic TiAl3 on TiB2 substrates in Al-based glasses [119] and Si 

nucleation by a monolayer of catalytic AlP on Al crystals in Al-Si-P alloys [120]. It has 

been shown that substrates that preferentially adsorb the nucleating species are 

favourable for nucleation, and for sufficiently strong adsorption nucleation could 

become barrierless [121]. It has also been shown that if the sum of the substrate/solid 

and solid/liquid interfacial free energies were less than the substrate/liquid interfacial 

energy, then an adsorbed solid layer would be stable even above the liquidus [122]. 

Kim and Cantor [123] developed an adsorption model for the initial formation of solid 

phase, in which a monolayer of liquid at a substrate/melt interface was considered in a 

binary system. It was suggested that this monolayer could have a similar structure and 

composition to the solid phase at small undercooling. In general, adsorption has 

become an accepted mechanism for nucleation on potent/wettable substrates. Notable 

examples include Si nucleation by a monolayer of AlP on Al. 

 Ho and Cantor [124] measured undercooling for solidification of Si catalysed by Al 

doped with up to 2 ppm P and 850 ppm Na and they found that high-purity Al is a poor 

catalyst, and multiple nucleation at a high undercooling of 45-60 K leads to a fine-scale 

sub micrometre Si microstructure. Ho and Cantor [89] also found that catalysis is 

improved dramatically by doping with P at levels as low as 0.5-2 ppm. P is adsorbed 

onto the Al surface to form a catalytic AlP layer, and at high P levels AlP particles 

precipitate within the liquid, nucleating large twinned single crystals of Si at a few 

degrees of undercooling. Nucleation takes place with cube-cube orientation 

relationships between Al, AlP and Si. Na additions poison the catalytic effect, probably 

by a preferential reaction to form Na3P, and high liquid undercoolings are restored, 

together with a modified fine-scale Si microstructure.  

Cantor [125] concluded that when catalysis is efficient with contact angles below   

10-20º and undercooling below 10-20K, nucleation takes place by a microscopic atom-

by-atom adsorption process at the catalyst surface, rather than by the formation of a 

bulk spherical cap. 

Fan [126] has recently developed an epitaxial model for heterogeneous nucleation 

on potent substrates. In this model, the liquid atoms order on the substrate layer by 

layer then nucleation takes place forming a solid phase with a crystal structure 

resembling that of the substrate (the pseudomorphous phase) and a coherent interface 

with the substrate. He found that the epitaxial nucleation model can explain a number 

of nucleation related phenomena, such as solute effects, hyper-nucleation and edge-to-

edge matching. 
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2.11 Nucleation-Adsorption Model 

When catalysis is efficient, it seems more reasonable to regard heterogeneous 

nucleation as an adsorption process. Nucleation takes place by dynamic atom-by-atom 

adsorption at the catalyst surface, rather than by the formation of a bulk spherical cap. 

Coudurier et al. [127] and Cantor [125] have shown that the surface energy γ of a 

catalyst A adsorbing atoms from a solidifying liquid B is given by: 

 

      
     

            
      

           
    

                   
       

                                                                                                                  ….. (2.5) 

where the summation is over all i, k = A, B and j, l = S, L; S and L are solid and liquid 

phase; μ0 and μ are the standard state and equilibrium chemical potentials,      = 0 for  

i = k and j = l,       = 1 otherwise; and  

                               
 

 
          -                                                               .... (2.6) 

are interaction parameters;       are bond energies between ij and kl atoms;   is the 

gas constant;    is Avogadro’s number;   is the coordination number and m and n are 

fractional coordination numbers parallel and perpendicular to the surface, respectively. 

The first term on the right-hand side of equation (2.5) is the chemical energy of 

removing surface atoms from the liquid and catalyst phases; their entropy of mixing is 

in the second term; the third term is their internal bond energy; the bond energy 

between the surface atoms and the catalyst and liquid phases is in the fourth term; and 

the fifth term is the broken bond energy needed to create a surface within the catalyst 

and liquid phases. 

When the catalyst A and the solidifying liquid B are immiscible, equation (2.5) can 

be simplified to [125]:  

                               
 

 
          

 

 
      

                            )}                                                               ....... (2.7) 

where        
  is the fraction of a monolayer adsorbed on the surface,    and    are 

A-B interaction parameters in the solid and liquid, respectively,    is the melting point 

and     is the catalyst melting point. When a ternary element C is added, equation 

(2.5) for the surface energy must be summed over all i, k = A,B,C and j, l = S, L. When 

the catalyst and solidifying liquid are immiscible, and C dissolves only in the catalyst, 
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equation (2.7) remains valid, with the catalyst melting point replaced by its liquidus 

temperature. 

2.12 Segregation of Primary Si 

Some experimental studies have shown that there is a tendency for primary Si to 

segregate to the top of a cast samples [29]. Significant segregation has been observed 

earlier in slowly solidified castings with more than 15 wt% Si [29]. Buoyancy driven 

convection was generally considered to be the major cause of primary Si segregation 

in casting [128]. Hypereutectic Al-Si alloys suffer from macro-segregation, particularly 

under slow solidifications conditions such as in sand casting from a high pouring 

temperature. Additions of phosphorous as well as strontium to these alloys may reduce 

silicon segregation in casting by providing longer floatation time or short primary 

solidification temperature range. Adding P can refine the primary Si particles, i.e. 

reduce the undercooling, and adding Sr increases the melt viscosity [129] thus 

reducing the floatation rate. Cooling the casting at higher solidification rate in excess of 

15 K/s was found to reduce segregation of primary Si [130]. The microsegregation of 

primary Si was observed and overcome in this study and more details are in sections 

4.1 and 5.1.  

2.13 Mechanical Properties 

It is well known that, both the structure and properties of Al-Si alloys are extremely 

sensitive to the fabrication technique. The distribution and morphology of primary Si 

have an important bearing on the mechanical properties of Al-Si alloys [84]. Both hypo- 

and hypereutectic Al-Si alloys have shown promise as an engine blocks material due to 

their adequate wear resistance and higher strength to weight ratio [131]. Wear 

resistance in Al-Si alloys is primarily due to the presence of silicon in the aluminium 

matrix. Increasing the silicon content in Al-Si alloys not only increases the wear 

resistance of the alloy but also the strength [132]. However, the improvement in 

strength and wear resistance comes at the cost of machinability and castability. 

Silicon crystals in hypereutectic Al-Si alloys possess very high hardness and 

contribute to the abrasive wear resistance of cast parts. Wear resistance of the alloys 

depends highly on the scale and amount of primary Si. It was found that increasing 

silicon content in hypereutectic alloys can improve the wear resistance of the castings 

and small, spherical, uniformly distributed silicon particles enhance the strength 

properties of Al-Si alloys [7].  

Wislei et al. [40] studied the effect of microstructure on mechanical properties for   

Al-9wt% Si, he found that the mechanical properties of casting alloys depend not only 
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on their chemical composition but are also extensively dependent on microstructural 

features such as the morphologies of the Al-rich α-phase and of the eutectic Si 

particles. Al-Si alloys containing 2-20 wt% Si have been studied by Torabian [133] 

using a pin-on-disc type wear testing machine at room temperature. He found that the 

effect of composition on mechanical properties of Al-Si alloys is: as the amount of 

silicon in the alloy increases, the strength properties of Al-Si alloys also increase up to 

the eutectic composition, after which they show a decline with further increase in the 

silicon content. However, with increasing silicon content the hardness increases and 

the elongation decrease continuously. This may be largely attributed to the shape, size 

and distribution of silicon particles in the cast structures up to the eutectic composition. 

If silicon is present as fine particles and is uniformly distributed in the structure, the 

strength properties will increase. However, when the primary Si appears as coarse 

particles, the strength properties decrease with increasing silicon content, while the 

hardness goes on increasing because of the increase in the overall amount of silicon 

particles [133]. 

 The mechanical properties of hypereutectic Al-Si alloys are mainly determined by 

the primary and eutectic Si. Cracks are consistently initiated by brittle fracture within 

the primary Si particles or debonding of Si particles from the eutectic matrix, and then 

propagate through the matrix and along the grain boundaries during tensile loading. 

The refinement of primary Si can decrease the probability of crack initiation by 

premature fracture of primary Si particles, and thus improves the mechanical properties 

[134]. According to Hong and Suryanarayana [135], the cracks pass around the 

primary or eutectic Si particles in Al-Si alloys with finer particles, while in the case of 

larger particles, cracks can pass through the large Si particles. A reasonably high 

tensile strength, without the loss of elongation, can be achieved in Al-Si alloys by 

controlling the size of the microstructural features. 

 Kilicaslan [17] found that addition of Sc produced finer eutectic and primary Si 

particles along with higher strength and elongation. Therefore, improvement of 

mechanical properties for the Al-20Si-0.6Sc alloy over Al-20Si alloy can be attributed to 

the particle size strengthening via Si particle refinement.  

2.14 Casting Processes 

The microstructures and mechanical properties of Al-Si alloys are strongly affected by 

the casting process. A good casting process is to fill the mould cavity without any 

defects. Silicon has a high heat of fusion, ~1810 KJ/kg, compared with other commonly 

cast metals, e.g. ~395 KJ/kg for Al, ~275 KJ/kg for Fe which improves its fluidity i.e. the 

fluid life. Thus, melt can flow further into a die before it is too cool to flow any further.  
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This is a result of high release of heat of fusion during the formation of primary Si in the 

early stages of solidification. The disadvantage of this specification is harder to achieve 

directional solidification and hence shrinkage feeding can be difficult. This is because 

the high heat release associated with primary Si heats mould surfaces quickly and 

reduces the chilling effect of the mould.  Where necessary the problem may be 

overcome by introducing chills in sand moulds, or intense cooling or spraying of dies 

[30]. 

In addition to conventional casting processes such as die casting, squeeze casting, 

permanent mould casting, and sand casting, semi-solid processing and duplex 

processing are more recently developed casting techniques [7].  

Brief descriptions of some of the casting processes of hypereutectic Al-Si alloys are 

given below.  

2.14.1 Conventional casting 

Conventional casting such as high pressure die casting (HPDC), Squeeze casting and 

permanent mould casting have been successfully used for casting hypereutectic Al-Si 

alloys. Conventional HPDC is the most popular process for casting small to medium 

sized hypereutectic alloy components [30]. A schematic diagram of a cold chamber 

high pressure die-casting machine is shown in the Figure 2.13. High pressure          

die-casting (HPDC) is a process in which molten metal is injected into a precisely 

dimensioned steel mould through a shot sleeve, within which pressure is maintained 

until solidification has been completed. It offers good surface finishing of components 

with accurate dimensions [136]. 

HPDC is usually done in relatively cool dies to minimise cycle time and maximise 

productivity. This seems desirable as a cool die will produce a high cooling rate and 

lead to refined primary Si, but a die that is too cool at the start of the cycle may lead to 

premature chilling during flow through the die and an undesirable distribution of primary 

Si. An appropriate die temperature must be selected in combination with the cavity fill 

rate in order to achieve the optimum combination of primary Si size and distribution, 

and then select an appropriate melt temperature to avoid premature Si formation in the 

shot sleeve or runner. HPDC is a relatively inexpensive process and it is widely used 

for mass production of components different in size and complexity. Since the cooling 

rate during solidification plays an important role in the final size of primary Si, the high 

cooling rate of HPDC solves the problem of primary Si size for small parts but these 

particles are not necessarily uniformly distributed.      
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Figure 2.13 A schematic illustration of a cold chamber high pressure die-casting 

(HPDC) machine [136]. 

 

The surface of HPDC castings are always depleted in primary Si to some depth 

[137]. This is of most concern for surfaces that will be subject to wear, and such 

surfaces will require machining to reveal primary Si. The cause of surface depletion is 

not well understood: (i) some argue that deep undercooling and rapid solidification of 

melt in intimate contact with cool dies leads to extremely refined primary Si that is 

indistinct from eutectic Si; (ii) others argue that rapid solidification displaces the eutectic 

composition so that only eutectic forms at the surface. The depth of primary Si 

depletion can be controlled by using dies in the temperature range 230-260 °C and 

avoiding slow cavity fill. Cooling rate alone can be sufficient to refine primary Si in 

HPDC, although in practice refinement using P additions is frequently used for 

complete control (a too low melt T, too long a dwell in the shot sleeve, and/or too slow 

flow before the die cavity may result in the formation of coarse primary Si before the 

melt enters the die cavity). 

In addition to cooling rate, pressure on the melt during solidification is another 

processing parameter that can be controlled to improve cast microstructure. Feeding of 

casting by molten alloys can be improved by applying external pressure so that the 

porosity can be reduced during solidification.  

Squeeze casting is a development from HPDC. Although similar to HPDC, it 

requires melt treatment practices more akin to permanent mould casting. Squeeze 

casting is used to produce high-integrity parts demanding minimal turbulence during 

filling, and slow filling requires high melt and die temperatures to prevent premature 
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chilling during fill. As a result, and because thicker sections may be cast compared with 

HPDC, squeeze casting always requires primary Si refinement practice i.e. P addition 

[30]. In the open-die squeeze casting process the molten metal is poured directly into 

the bottom die, and then the top die is forced down to ‘’forge’’ the part. Closed-die 

squeeze casting is more akin to HPDC, but with slower filling to reduce turbulence. The 

metal solidifies rapidly under considerable pressure in the range of 27.5 to 82.6 MPa 

depending on the melt alloy. Squeeze-cast parts have no internal porosity and have a 

fine cast structure if the process parameters are well optimized [138]. Squeeze casting 

is most widely used to produce high integrity parts such as automobile chassis and 

suspension components [31]. The low melt velocity in squeeze casting offers a less 

turbulent flow of the melt into the die than that in HPDC. This lower metal fill rate leads 

to reduced air entrapment and shrinkage porosity with better dimensional control of the 

final product compared with HPDC [137]. 

Generally, HPDC and squeeze cast components exhibit high dimensional accuracy, 

low roughness as well as higher strength and hardness in comparison to permanent 

mould cast components [139].  

 2.14.2 Semi-solid processing  

Semi-solid processing is a promising technique for producing near-net shape 

components for high performance applications from aluminium alloys, as well as from 

metal matrix composites. The metal used in this process is a mixture of solid and liquid 

and the feed material has a consistency similar to butter at room temperature, so it can 

be injected into a die using relatively low pressures.  

Currently, the semi-solid metal (SSM) technique represents one of the commercially 

feasible technologies for production of complex shaped metallic components with high 

integrity, improved mechanical properties and tight dimensional control [31]. The 

parameters that control the processibility and mechanical properties of components 

produced by SSM process are [140]:  

 Temperature range for solidification (freezing range): too wide a solidification 

range could lead to poor resistance to hot tearing and poor fluidity of the liquid alloy. 

 Temperature sensitivity of solid fraction: solid volume fraction of SSM slurry is 

usually determined by the SSM processing temperature. 

 Potential for age hardening: alloys designed for SSM processing need to have 

large ΔC, which is defined as the solid solubility difference between SSM 

temperature and aging temperature. 
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 Morphology of the solid phase in semi-solid state: ideal slurry for SSM processing 

has a controlled volume fraction of fine and spherical solid particles distributed 

uniformly in a liquid matrix with good fluidity. Such SSM slurry can ensure smooth 

mould filling and fine and uniform microstructure after solidification. 

 Castability of the semi-solid slurry: good fluidity of the liquid phase needs to be 

ensured through composition selection during alloy design. 

When compared to conventional casting (liquid-state processing), the attractive 

advantages of semi-solid processing are [141]: 

 Less energy consumption, where, it requires lower temperature with less force. 

 With the use of controlled die filling conditions, the high viscosity of the       

semi-solid metal ensures that the semi-solid metal fills the die without harmful 

porosity or other defects.  

For the production of SSM slurry, there are two primary routes:  

 Rheo-route, which involves preparation of SSM slurry from liquid metal by 

shearing during solidification and feeding directly into the die cavity or mould for 

shaping. This route is also known as the Slurry-On-Demand route (SOD). 

 Thixo-route, which is basically two steps process, which involving preparation of 

a feedstock material with thixotropic characteristics, then reheating the 

feedstock billet to semisolid temperature to produce the SSM slurry and 

subsequently making a casting in the die cavity.  

The process of forming in the semi-solid state is known as ‘’Thixoforming’’, whereas the 

production of the feedstock billet (non-dendritic material) is known as ‘’Rheocasting’’.  

Although rheocasting was identified as the production technology at the very beginning 

of semi-solid processing research, it has not been commercialised to any great extent 

so far. This is possibly because of the quality of the semisolid slurry produced by such 

stirring processes, where, mechanical stirring results in the formation of very coarse 

rosettes with a diameter of a few hundred micrometres or approaching millimetre level. 

The slurries produced under such conditions do not have adequate thixotropic 

characteristics for successful direct shaping by either a casting or a forging route. Also, 

the rheocasting of hypereutectic Al-Si alloy has seldom attained success with 

acceptable microstructure in an economic and efficient way [142]. Semi-solid 

processing of hypereutectic Al-Si alloys is mainly limited to the thixocasting route   

[143-144].  

Fan [31] has developed a new rheocasting process. In this process, the 

overheated liquid metal is poured into a twin screw extruder for continuous shearing 

with cooling down to below the liquidus temperature as shown in Figure 2.14. The 
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resulting thixotropic feedstock is transferred to a mould or to a casting machine for 

shaping. The component produced by this process has a fine grain size, spherical 

morphology of primary particles and uniform microstructure. 

 

Figure 2.14 Schematic illustration of the MCAST (melt conditioning by advanced 
shearing technology) unit [136]. 

 

Spray casting is another non-agitation semi-solid process for feedstock production. 

The molten metal is directed through a nozzle to meet the high pressure inert gas 

(nitrogen or argon). The liquid metal stream is atomised by the high pressure gas into 

micrometre sized droplets that experience high cooling rate during their flight, the 

cooling rate being in the order of 103 K s−1. While the large droplets remain fully liquid 

and the small droplets solidify during atomisation, those of intermediate sizes become 

semisolid. The droplets are collected on a moving substrate and consolidated to form a 

coherent preform. It is generally believed that spray cast materials are suitable as 

feedstock for thixoforming, especially for high temperature alloys, such as steels and 

superalloys [31]. Spray forming has been developed for the manufacture of Al-Si alloys 

with Si concentrations up to 70 wt.%. Spray-formed hypereutectic Al-Si alloys have a 

microstructure consisting of fine (less than 10 µm), approximately uniformly sized 

silicon crystals in a matrix of α-aluminium solid solution [145]. 

Hogg et al. [146] studied the microstructure of a spray formed Si-30wt%Al alloy. 

They found that the microstructure consisted of ~5 µm equiaxed primary Si grains and 

a coarse grained Al-rich phase with occasional regions of ~10 µm equiaxed Al-rich 

grains interpenetrating the Si network with no evidence of a lamellar Al-Si eutectic. 

2.14.3 Duplex casting processes 

The principle of duplex processes is the mixing of two alloys, which are sequentially 

poured into a mould with a particular time interval between pouring. Careful control of 

the relative liquidus temperature of the two alloys and cooling conditions provides extra 
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nucleation sites for silicon and this can lead to significant refinement of primary Si of 

the resulting alloy [32].  

Ohmi et al. [147-148] refined the primary Si particles of hypereutectic Al-Si alloy 

using a duplex process. In this process a relatively low liquidus temperature alloy with a 

relatively high liquidus temperature alloy are cast in sequence at a given time interval. 

During the mixing of two alloys, the second alloy melt is rapidly cooled by the first alloy 

which acts as a coolant. The duplex casting process was used to refine the primary Si 

without the use of inoculants. The composition of the second liquid was kept constant 

at 32 wt% silicon and the final solute content after mixing was maintained at 22 wt% 

silicon by adjusting the volume of the second liquid. The time interval between pouring 

the first and second liquids was 7 s. Two kinds of mould were used; mould 1 was made 

of plain graphite and mould 2 was also made of graphite but with a bottom plate made 

of brick. Solidification in mould 1 was faster than that in mould 2. The primary Si 

particle size exhibited a minimum value for compositions of the first liquid in the range 

12-17 wt% silicon as shown in Figure 2.15. It is usually said that a primary Si particle 

size below 40 µm is useful in practical terms. In these experiments, the primary Si was 

refined to below this size. 

Alternatively, the composition of the first liquid was maintained at 12 wt% silicon 

and the composition of the second liquid was varied. The time interval between pouring 

the first and second liquids was 7s, and moulds 1 and 2 were used as described 

above. The results are shown in Figure 2.16. The size of primary Si particles 

decreased, but at a decreasing rate, with increasing second liquid Si content. 

        

 

 

Figure 2.15 Relationship between the 

content of the first liquid C1 and the Si 

particle size d of the primary Si in a 

stepwise duplex cast ingot [4]. 

 

Figure 2.16 Relationship between the 

content of the second liquid C2 and the 

Si particle size d of the primary Si in a 

stepwise duplex cast ingot [4]. 
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The disadvantages of this duplex process are the composition limitations and the 

technical difficulties [33] where using more complex moulds and thin sections could 

lead to poor mixing with thin sections that are very lean in solute (and thus low 

strength). Also, it is not clear how sequential filling could be applied to bottom filling 

casting processes. 

 Saha et al. [142] have introduced two novel methods using ‘’diffusion solidification’’ 

for achieving refined semi-solid cast parts for both hypoeutectic as well as 

hypereutectic Al-Si alloys. The two concepts are [149]:  

 mixing semi-solid hypoeutectic alloy with liquid hypereutectic alloy such that the 

cooler hypoeutectic alloy rapidly chills the liquid hypereutectic alloy leading to 

refined primary Si, 

 cooling the liquid hypereutectic alloy with the addition of solid particles of the 

same alloy.  

Alcan [150] has developed the “SEED” (swirl enthalpy equilibration device) process 

which is an effective route for the preparation of feedstock for semi-solid forming 

processes as shown in Figure 2.17.  

 

Figure 2.17 Diagram of the swirl enthalpy equilibration device (SEED process) [151]. 

 

The SEED process involves the application of swirling, which allows the extraction 

of a controlled amount of heat from the molten alloy to generate a modified semi-solid 

mixture. This method has been applied successfully to the production of A356/A357  

Al-Si semi-solid feedstocks. A combination of the SEED process, isothermal holding 

and addition of solid alloy during swirling was used by Tebib et al. [152] to rheoprocess 

semi-solid A390 alloy. A significant increase in the volume fraction of non-dendritic α-Al 

phases with refinement of primary Si was observed when using this process. 
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Chapter 3 

Experimental Techniques and Procedures 
 

In this chapter, the procedure for preparation of the Al-Si alloys and inoculants under 

different casting conditions and the characterisation and mechanical property 

measurement techniques applied will be presented. The experimental approach was as 

follows: 

1. A more systematic study of the effect of casting conditions (melt superheat and 

cooling rate) and alloy purity on scale and morphology of primary Si during 

solidification of hypereutectic Al-Si alloys.  

2. A better understanding of the role of Ca content on the refinement of primary 

and eutectic Si. This was achieved by both melt treated with K2SiF6 flux to 

remove Ca, and by adding Al-Ca master alloy to elevate the Ca content. 

3. Refinement of primary Si using different chemicals other than phosphorous. In 

particular, the addition of ZnS or P-doped Al2O3 were investigated as an 

alternative to AlP.  

4. Applying a new solid-liquid duplex casting process to achieve simultaneous 

primary Si refinement and eutectic modification in hypereutectic Al-Si alloys. 

3.1 Materials Preparation 

Initial batches of each Al-Si alloy used in this research were prepared in an electrical 

resistance furnace by melting and diluting an Al-50Si master alloy (supplied by Norton 

Aluminium Ltd, UK) with commercial purity aluminium LM0 (supplied by Coleshill 

Aluminium Ltd, UK) at 1100 °C for 3 h in a clay-graphite crucible. The compositions of 

the raw materials are listed in Table 3.1.  

 

Table 3.1 Composition of commercial purity Al (LM0) and Al-50Si master alloy raw 

materials (wt%)  

     

Alloy Cu Mg Si Fe Mn Ni Zn Pb Sn Ti Cr Al 

LM0 0.03 0.03 0.30 0.40 0.03 0.03 0.07 0.03 0.03 - - Bal. 

Al-50Si 0.08 0.28 51.0 0.32 0.02 0.01 0.02 0.02 0.01 0.09 0.03 Bal. 
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To ensure homogeneity, the molten alloys were manually stirred for few seconds 

and then cast. For each experiment, the Al-Si alloy was melted in a clay-graphite 

crucible and held for one hour in the furnace at the experiment temperature prior to any 

addition. All sampling and casting moulds were preheated at 200-350 °C. Different 

compositions were chosen (e.g. Al-15Si, Al-18Si, Al-19Si and Al-22Si) in  order to allow 

us investigating the effect of different parameters on a wide range of Al-Si alloys. After 

preparing the melt, different procedures were followed depending on factors to be 

studied. 

3.2 Effect of Cooling Rate on Primary and Eutectic Si   

To study the effect of cooling rate, castings were made using three different 

mould/cooling systems to give cooling rates between 1 and 15 K/s. For each 

experiment, the Al-15Si alloy was heated up to 1150 ºC and then cooled down to the 

experiment pouring temperature. After 30 minutes at the set pouring temperature, 

samples were taken either: by the American Association Standard TP-1 test mould 

preheated at 350 ºC, which corresponded to a cooling rate of 3.5 K/s at the central 

region of a cross-section, 38 mm from the base of the TP-1 sample [153]; or by a 

Boron Nitride coated steel mould (35mm in diameter and 40mm in height with long 

handle) preheated at 200 ºC. The steel mould was cooled either in a water bath with 

cooling rate of 15 K/s or air cooled with cooling rate of 1 K/s. The cooling rates were 

confirmed by monitoring the temperature at the centre of the casting during cooling, 

and typical cooling curves for the water cooled and air cooled moulds are provided in 

Figure 3.1a and Figure 3.1b, respectively.  

 

 

Figure 3.1 Cooling curve of Al-15Si alloy sampled using the boron nitride coated steel 

mould: (a) water cooled with cooling rate of 15 K/s, and (b) air cooled with cooling rate 

of 1 K/s. 

(a) (b) b 

 

 

 

a 
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Initial experiments to investigate the effect of cooling rate revealed significant or severe 

segregation of primary Si to the top of casting when the cooling rate was low (i.e.      

3.5 K/s in TP-1 samples and 1K/s using the air cooled mould), irrespective of melt 

superheat. For example Figure 3.2 shows the segregation of primary Si in the Al-15Si 

alloy TP-1 samples cast from different melt temperatures. The use of the TP-1 and air 

cooled moulds was subsequently abandoned and all other experiments in this study 

were carried out using the water cooled cylindrical steel mould to ensure a uniform 

distribution of primary Si. 

 

Figure 3.2 Scanning graphs showing the segregation of primary Si at the top of the  
TP-1 test casting in solidification of hypereutectic Al-15Si alloy from: (a) 1150 °C, (b) 
720 °C and (c) 620 °C. 

3.2.1 TP-1 test procedure  

In order to study the morphology of silicon in hypereutectic Al-Si alloy as a function of 

cooling rate, the American Association Standard TP-1 test was operated in conditions 

to provide a consistent cooling rate of 3.5 K/s at the central region of a cross-section, 

38 mm from the base of the TP-1 sample. The schematic diagram of  TP-1 test mould 

is shown in Figure 3.3 [153].  

 

Figure 3.3 Schematic diagram of the American Association Standard TP-1 test mould 

ladle [153]. 

(c) (b) (a) 

Segregation zone Segregation zone 
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The experimental steps of the TP-1 test are as follows: 

a) The alloy was melted in the electrical resistance furnace and held at the 

appropriate experiment temperature. 

b) The TP-1 mould ladle was placed in an oven for preheating to 350 °C. 

c) The prepared melt was stirred using a graphite rod for 30 s and poured into the 

TP-1 mould ladle at the desired temperature and the ladle placed on a quench 

tank until final solidification was complete. 

d) The water flow rate in the quench tank was set at 3.8 l/min. This flow rate resulted 

in 3.5 K/s cooling rate at 38 mm from the bottom of the ladle. 

3.3 Effect of Melt Superheat on Primary and Eutectic Si   

For the effect of superheat, different casting temperatures were selected ranging from 

650 °C to 1150 °C for the Al-15Si alloy. For each experiment, the Al-15Si alloy was 

heated up to 1150 °C and then cooled down to the experiment pouring temperature 

prior to casting. After 30 min at the set temperature, samples were taken by using the 

preheated steel mould which was then water cooled at approximately 15 K/s. 

3.4 Refinement and Modification in a High Purity Hypereutectic Al-Si Alloy 

Because of the potential interaction effect of some impurities such as P and Ca in the 

commercial purity hypereutectic Al-Si alloys, a series of high purity Al-15Si and          

Al-15Si-Ca alloys, with and without P additions, were manufactured by using 4N 

(99.99%) purity Al (supplied by Hydro Aluminium High Purity GmbH, Grevenbroich, 

Germany) as well as 5N (99.999%) purity Si (supplied by Aldrich). The P content in the 

4N Al was determined by glow discharge mass spectroscopy at Evans Analytical 

Group (Tournefeuille, France) and was 0.4 ± 0.08 ppm [106].  P was added in the form 

of Cu-P shot (Supplied by Aura Metals Ltd) and Ca was added as 99.9 wt% Ca powder 

(supplied by Riedel-de Haen). The aluminium was cleaned in NaOH solution followed 

by distilled water and the silicon cleaned in methanol [89]. The aluminium and silicon 

were melted under an Argon atmosphere in an electrical resistance furnace, and held 

at 800 ºC for 30 min to ensure a homogeneous melt. For Al-15Si-P and Al-15Si-Ca 

alloys, Ca powder and Cu-P were wrapped in aluminium foil and inserted into the        

Al-15Si melt. After 15-20 min following the addition, samples were taken by using the 

preheated steel mould which was then water cooled at approximately 15 K/s. The 

same experiments were repeated to prepare commercial purity Al-15Si, Al-15Si-P 

alloys by melting and diluting an  Al-50Si master alloy with commercial purity aluminium 

LM0 at 1100 °C for 3 h in a clay-graphite crucible. 
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3.5 Effect of Ca Level on Primary and Eutectic Si   

To study the effect of Ca content on scale and morphology of silicon, experiments were 

conducted by adding K2SiF6 (AP1) flux (supplied by Alpha Foundry Supplies, UK) to   

Al-Si alloys. AP1 is a pink powdered exothermic drossing-off flux providing a dry cover. 

It is a protective exothermic cover flux which when applied to the surface of the metal 

minimises oxidation and hydrogen pick-up thereby greatly reducing melting losses. The 

chemical composition of AP1 is K2SiF6 which decomposes at 500 ºC to produce the 

fluoride gases as stated in the specification sheet. AP1 is often chosen to be a fluoride 

salt flux to remove alkali elements such as Ca, Na and La. 

The initial Al-Si alloys were prepared as described in section 3.1. To ensure 

homogeneity, the molten alloy was manually stirred for a few seconds and then the 

furnace was set to 800 ºC for each experiment. AP1 flux (K2SiF6) was added to the 

melt (0.5 wt%) with gentle mixing and skimming off the dross. In the case of studying 

the effect of high Ca content, Ca was added in the form of Al-10Ca master alloy. After      

20 min, samples were taken with and without fluxing by using the preheated steel 

mould which was then water cooled at approximately 15 K/s. The Ca composition was 

analysed before and after changing the Ca content using optical emission 

spectroscopy (OES). Specification of OES is presented in detail in section 3.10.2.  

3.6 Effect of Chemical Additions on Primary and Eutectic Si   

A number of different elements and compounds were added to study their effect on 

solidification of hypereutectic Al-Si alloys and the reason for choosing these chemicals 

are stated in detail in Chapter Four. In studying the effect of alloying on the 

microstructure of Al-Si Alloys, the chemicals listed in Table 3.2 were wrapped in 

aluminium foil and added to the Al-Si melt with gentle mixing. 15-20 min after mixing in 

the added chemicals, samples were taken by using the preheated steel mould which 

was then water cooled at approximately 15 K/s.  
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Table 3.2 Properties and suppliers of chemicals used in alloying experiments. 

Material Properties Wt% added Supplier 

Mg Ingot, 99.95% 
0.1, 0.3, 0.4, 0.5, 0.75, 

1.0 
MEL. Manchester, 

UK 

Sb 99.50% 0.5 Aldrich 

Ca Powder, 99.95% 0.5 Riedel-deHaen 

Zn Shot, 99.9% - Alfa Aesar 

MgO Powder,99.90% (0.5 µm) 0.5 
Inframat advanced 

material 

CaO Powder, 99.99% 0.5 REacton 

α-Al2O3 Powder, 99.8% (0.5 µm) 0.5 
Inframat advanced 

material 

γ-Al2O3 Powder, 99.9% (3 µm) 0.5 Alfa Aesar 

ZnO Powder, 99.99% - Aldrich 

Na2S Powder, 99% 0.5 Alfa Aesar 

ZnS Powder, 99.99%  (≤44 µm) 0.5 Alfa Aesar 

 

3.7 Refinement of Primary Si Using Zincblende ZnS  

Aluminium phosphide (AlP) particles are often suggested to be the nucleation site for 

primary silicon in hypereutectic Al-Si alloys, as both the crystal structure and lattice 

parameter of AlP (crystal structure: cubic; lattice parameter: 5.431 Å) are close to that 

of silicon (crystal structure: cubic; lattice parameter: 5.421 Å), there is minimal 

mismatch between the AlP and the Si phases (<1%) [28].  

Due to the structural similarity of zincblende ZnS and AlP, use as an inoculant to 

refine primary Si was explored. ZnS occurs in two common polytypes, zincblende (also 

called sphalerite, cubic with lattice parameter 5.410 Å) and wurtzite (hexagonal with 

lattice parameters ao = 3.249 Å, co = 5.207 Å). ZnS has the cubic zincblende structure 

below 1020 °C and has the hexagonal wurtzite structure above this phase transition 

temperature [154].  

3.7.1 ZnS micron scale particles 

Experiments were conducted by adding 0.5 wt% of 99.99% purity ZnS powder 

(supplied by Alfa Aesar Ltd, UK) with -325 mesh size (less than 44 µm) to the 

hypereutectic Al-18Si melt with gentle mixing at 800 ºC. After 20 min, samples were 

taken by using the preheated steel mould which was then water cooled at 

approximately 15 K/s. 
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 3.7.2 Synthesis ZnS nanoparticles 

Because of the significant refinement of primary Si using micron scale zincblende ZnS 

particles (see section 4.4.3.2); nano scale particles were used in an attempt to increase 

the refinement efficiency. Since ZnS nanoparticles could not be secured from any 

supplier, they were synthesized in the laboratory. 

One synthesis method for zincblende ZnS nanoparticles is by the solid-liquid 

chemical reaction using ZnO and Na2S under ultrasonic treatment [155]. 2 g of ZnO 

powder (supplied by Aldrich) and 40 ml Na2S solution (2.0 mol/l) were mixed and 

irradiated in an ultrasonic bath for 20 min. The suspension produced was purged with 

Argon to remove oxygen and then stirred using a magnetic stirrer in a water bath at    

90 °C for 2 h. The reaction product was then quenched to room temperature 

immediately,  filtered and washed with distilled water and ethanol several times to 

remove any residual Na2S. The ZnS nanoparticles were finally obtained after drying 

and grinding. According to this procedure proposed by She et al. [155], the prepared 

ZnS nanoparticles should be crystalline cubic zincblende with a uniform distribution and 

an average size of 35 nm. The synthesized powder was analysed by X-ray 

diffractometry (XRD), which was performed using a Bruker D8 Advance X-ray 

diffractometer with Cu radiation at a voltage of 40 kV and a current of 40 mA. The XRD 

patterns for the produced ZnS show that it consists of mainly cubic zincblende structure 

as shown in Figure. 3.4. The synthesized powder was wrapped in aluminium foil and 

inserted into the Al-Si melt. After 20 min following the addition, samples were taken by 

using the preheated steel mould which was then water cooled at approximately 15 K/s. 

     

Figure 3.4 XRD pattern of ZnS prepared by the solid-liquid chemical reaction. The 

peaks associated with diffraction from crystallographic phases of zincblende ZnS are 

labelled. 
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3.7.3 In situ preparation of ZnS 

In order to overcome the low wettability of ZnS particles with the melt (as discussed  in 

section 4.4.3.2) and thus to improve the refinement of primary Si, experiments were 

conducted to prepare ZnS in situ by adding 0.5 g of the element of Zn to 270 g of       

Al-18Si melt with gentle stirring at 800 ºC, 10 min after which, 1.0 g of Na2S powder 

wrapped in aluminium foil was added to the melt. The formation of ZnS is according to 

the following chemical reaction [156]: 

 

                                 Na2S + Zn+2             ZnS + 2Na+                                    …..  (3.1) 

The molten alloy was manually stirred for a few seconds and after 20 min following 

the addition, samples were taken by using a preheated steel mould which was then 

water cooled at approximately 15 K/s. Optical emission spectroscopy (OES) analysis of 

Zn in the solidified Al-18Si+ZnS alloy suggested that the produced alloy contains 

0.27% ZnS. 

3.7.4 Preparation of an Al-ZnS master alloy 

Experiments were carried out to prepare an Al-ZnS master alloy by adding Na2S and 

Zn to a high purity Al melt. According to equation 3.1, one mole of Zn and one mole of 

Na2S are required to produce one mole of ZnS. The molecular weight of Zn, Na2S and 

ZnS are 65, 78 and 97.5 respectively. Hence, to produce Al-1.5wt%ZnS the 

stoichiometric amount of Zn metal (2 g) was added with the 50% excess of Na2S 

powder (3.6 g) to 200 g high purity aluminium melt with gentle mixing at 800 ºC for     

20 min. The use of an excess amount of Na2S was needed to ensure that the reaction 

was driven to completion. The produced master alloy was cast in cylindrical mould pre-

heated to 200 ºC, and cooling in air at a cooling rate of approximately 16 K/s.  

Another set of experiments were conducted to refine Al-22Si alloy by adding 

different amounts of the Al-1.5wt%ZnS master alloy and casting for two melt holding 

times of  20 min and 1.5 h. The amounts of Al-1.5wt%ZnS master alloy added to 200 g 

of Al-22Si alloy were 8, 16 and 24 g to produce alloys with 0.05, 0.1 and 0.16 wt% ZnS 

respectively.  

The chemical composition of Al-22Si alloy after adding the master alloy with          

0.1 wt% ZnS analysed using optical emission spectrometry (OES) showed that the Si 

composition reduced to around 20 wt% Si because of dilution. Hence, to compare with 

P refinement, an experiment was conducted by adding 200 ppm of P in the form of   

Cu-P shot to Al-20Si alloy. A sample was taken after 20 min. Samples for all above 
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experiments were taken using the preheated steel mould which was then water cooled 

at approximately 15 K/s.  

3.8 Nucleation and Growth of Primary Si on Al2O3  

In some experimental results it was noticed that primary Si particles were clearly 

associated with visible oxide bifilms, as shown for example in Figure 4.37. There is also 

some experimental evidence in the literature that concluded that some Si particles 

nucleate and grow on oxide bifilms during solidification of hypereutectic Al-Si alloys. 

Work by Pennors  et al. [157] presented clear microstructures in which AlP particles are 

seen aligning along oxide bifilms. 

Experiments were carried out to study the effect of adding α-Al2O3 and γ-Al2O3 

powder on the morphology of Si in hypereutectic Al-Si alloys. In order to use powder 

having the same impurities and particle size distribution, γ-Al2O3 was prepared from    

α-Al2O3 powder in the laboratory as follows [158]: 

50 gm of α-Al2O3 (Supplied by Inframat Advanced Material, 0.5 µm in size) was 

mulled for 3-5 min with 16 ml of distilled water. A further 10 ml of distilled water was 

added in 5 ml portions with mulling for 3-5 min after each addition. The powder was left 

to dry in air at room temperature for approximately 18 h before drying overnight at 

approximately 120 ºC. Finally, the powder was calcined by heating it at 4 ºC/min to   

500 ºC and then maintaining this temperature for 4 h.  

In order to enhance the potential of primary Si refinement by Al2O3, P-doped alumina 

was prepared by impregnation of (α or γ) Al2O3 powder with an aqueous solution of 

H3PO4 [159].  5 g of (α or γ) Al2O3 powder (0.5 µm in size) was mixed with 50 ml of 

aqueous solution of phosphoric acid (11 wt% H3PO4) for 72 h followed by filtration, 

drying at 120 °C for 12 h and finally calcining at 500 °C for 2 h. The produced dry 

powder was ground, wrapped in aluminium foil and preheated before use in refinement 

experiments. After 15-20 min following the addition, samples were taken by using the 

preheated steel mould which was then water cooled at approximately 15 K/s. The 

same procedures of preparing P-doped γ-Al2O3 and casting experiments were repeated 

by using γ-Al2O3 powder, 3 µm in size (supplied by Alfa Aesar Ltd, UK). 

3.9 A New Solid-Liquid Duplex Casting Process  

The primary Si crystals of hypereutectic Al-Si alloys are reported to be refined by the 

liquid-liquid duplex casting process [147]. This process, described in detail in section 

2.14.3, involves a two-step casting of two molten alloys with different composition; i.e., 

"the first alloy" with lower liquidus temperature and "the second alloy" with higher 

liquidus temperature [160]. Although this process has been shown to lead to refined 
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primary Si, it does not additionally lead to a modified eutectic Si. In order to achieve 

simultaneous refinement of primary Si and modification of eutectic silicon in the target 

alloy, a new solid-liquid duplex process is developed.  

In the solid-liquid duplex casting process, solid P-treated high silicon content alloy 

(i.e. pre-refined primary Si) is mixed with molten Sr-treated low silicon content alloy to 

produce an Al-Si alloy in the Liquid +Primary Si phase field which is then cast. Initial 

batches of the Al-Si alloys were prepared in an electrical resistance furnace as 

described in section 3.1. AP1 flux (K2SiF6) was added to the melt (0.5 wt %) with gentle 

mixing. The resulting dross was skimmed off prior to casting. AP1 was added to reduce 

Ca content thus to enhance the refinement of primary Si in the pre-solidified high Si 

alloy and to enhance the efficiency of Sr modification in the final microstructure. 

Figure 3.5 shows an example of the solid-liquid duplex casting process. Where,     

Al-19Si+P+Sr was prepared by mixing 1:1 (by mass) solid P-treated Al-30Si alloy and 

molten Sr-treated Al-8Si alloy.  

 

 

Figure 3.5 Preparation of Al-19Si (Target Alloy) by mixing the melt of Sr-treated Al-8Si 

(Alloy 1) with P-treated Al-30Si solid chips (Alloy 2) and casting from 610 °C. 

 

The Al-30Si was melted to 50 °C above its liquidus and then 400 ppm P was added 

in the form of Cu-P shot (Supplied by Aura Metals Ltd). After 20 min the melt was cast 

in a water-cooled mould and cut in small solid pieces 5 g in weight each (chips). The 

Al-8Si alloy was melted at 800 °C and then 400 ppm Sr was added in the form of       
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Al-10Sr master alloy (supplied by Roba Metals Ltd, UK). After 20 min, chips of the          

P-treated Al-30Si (preheated to 200 °C) were manually stirred into the Sr-treated Al-8Si 

alloy melt until the temperature reached 610 °C at which point the melt was sampled 

using the preheated steel mould which was then water cooled at approximately 15 K/s.    

Al-19Si alloys with a range of P and Sr content (as shown in Table 3.3) were produced 

using the solid-liquid duplex casting process in order to optimize the composition of 

both alloys to achieve simultaneous refinement of primary Si and modification of 

eutectic silicon in the target alloy. Each experiment was given a code consists from 

letters SLD and a number, e.g. SLD1.            

Experiments were also conducted to find the optimum Si content in Sr-treated Al-Si 

Alloy by mixing P-treated Al-30Si solid chips with Sr-treated low Si melt (0-15 wt% Si) 

to produce Al-19Si containing the optimum P and Sr content  (as shown in Table 3.4).  

Another set of experiments was conducted to study the effect of casting temperature 

on the morphology of Si phases using the optimum P and Sr content in Al-19Si alloy 

prepared using the solid-liquid duplex casting process. The castings were carried at 

610 °C, 710 °C and 750 °C (as shown in Table 3.4). 

For comparison of conventional casting with the solid-liquid duplex casting process, 

200 ppm P and 200 ppm Sr were added simultaneously to liquid Al-19Si alloy at 800 °C 

which was then cast conventionally. Samples were taken by using a preheated steel 

mould which was then water cooled at approximately 15 K/s. The above experiments 

(conventional and duplex casting process) were repeated for Al-18Si as the target 

alloy. 
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Table 3.3 Experimental parameters to produce Al-19Si alloy from solid Al-30Si alloy with varying P additions and liquid Al-8Si melt varying Sr 

additions. The mass ratio of the two alloys was fixed of 1:1 and the casting temperature was fixed at 610 °C.      

 

 

L: Liquid    S: Solid 

 

Exp. No. 

Starting Alloy 1 (L) at 800 °C Starting Alloy 2 (S) at 200 °C 

Cast 

Temp. 

°C 

Final content of P and Sr in target 
alloy Comp. 

Mass of 

Alloy (g) 

Mass 

of Sr 

(g) 

Sr 

(ppm) 
Comp. 

Mass of 

Alloy (g) 

Mass 

of P (g) 

 

p 

(ppm) 

 

SLD1 Al-8Si 
200 - - 

Al-30Si 
200 - - 610 Al-19Si 

SLD2 Al-8Si 
200 - - 

Al-30Si 
200 0.01 50 610 Al-19Si+25ppm P 

SLD3 Al-8Si 
200 - - 

Al-30Si 
200 0.02 100 610 Al-19Si+50ppm P 

SLD4 Al-8Si 
200 0.08 400 

Al-30Si 
200 - - 610 Al-19Si+200ppm Sr 

SLD5 Al-8Si 
200 0.08 400 

Al-30Si 
200 0.01 50 610 Al-19Si+25ppm P+200ppm Sr 

SLD6 Al-8Si 
200 0.08 400 

Al-30Si 
200 0.02 100 610 Al-19Si+50ppm P+200ppm Sr 
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Table 3.3 continued. 

 

 

L: Liquid    S: Solid 

 

Exp. 

No. 

Starting Alloy 1 (L)  at 800 °C Starting Alloy 2 (S)  at 200 °C 

Cast 

Temp. 

°C 

Final content of P and Sr in target 
alloy Comp. 

Mass of 

Alloy (g) 

Mass 

of Sr 

(g) 

Sr 

(ppm) 
Comp. 

Mass of 

Alloy (g) 

Mass 

of P (g) 

 

p 

(ppm) 

 

SLD7 Al-8Si 200 0.08 400 Al-30Si 200 0.04 200 610 Al-19Si+100ppm P+200ppm Sr 

SLD8 Al-8Si 200 0.08 400 Al-30Si 200 0.06 300 610 Al-19Si+150ppm P+200ppm Sr 

SLD9 Al-8Si 200 0.08 400 Al-30Si 200 0.08 400 610 Al-19Si+200ppm P+200ppm Sr 

SLD10 Al-8Si 200 0.06 300 Al-30Si 200 0.08 400 610 Al-19Si+200ppm P+150ppm Sr 

SLD11 Al-8Si 200 0.04 200 Al-30Si 200 0.08 400 610 Al-19Si+200ppm P+100ppm Sr 

SLD12 Al-8Si 200 0.06 300 Al-30Si 200 0.06 300 610 Al-19Si+150ppm P+150ppm Sr 
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Table 3.4 Experimental parameters to produce Al-19Si alloy from solid Al-30Si and liquid alloys of different Si content or varying 

casting temperature. 

 

L: Liquid    S: Solid 

Exp. 
No. 

Starting Alloy 1 (L)  at 800 °C Starting Alloy 2 (S)  at 200 °C 

Cast 
Temp. 

°C 

Final content of P and Sr in 
target alloy 

Comp. 

Mass 
of 

Alloy 
(g) 

Mass 
of Sr 
(g) 

Sr 
(ppm) 

Comp. 
Mass of 
Alloy (g) 

Mass 
of P (g) 

 
p 

(ppm) 
 

SLD13 CP Al 148 0.08 540 Al-30Si 252 0.10 400 610 Al-19Si+252ppm P+200ppm Sr 

SLD14 Al-12.6Si 252 0.08 317 Al-30Si 148 0.06 400 610 Al-19Si+148ppm P+200ppm Sr 

SLD15 Al-15Si 292 0.08 274 Al-30Si 108 0.04 400 610 Al-19Si+108ppm P+200ppm Sr 

SLD16 Al-12.6Si 252 0.08 317 Al-30Si 148 0.06 400 710 Al-19Si+148ppm P+200ppm Sr 

SLD17 Al-12.6Si 252 0.08 317 Al-30Si 148 0.06 400 750 Al-19Si+148ppm P+200ppm Sr 

SLD18 Al-12.6Si 252 0.08 317 Al-30Si 148 0.08 540 610 Al-19Si+200ppm P+200ppm Sr 
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3.10 Characterisation Methods 

3.10.1 Preparation of samples 

Each cylindrical cast sample was sectioned longitudinally into two halves. One half for 

each sample was chemically analysed using optical emission spectroscopy (OES) (see 

section 3.10.2). The other longitudinal section of each sample was prepared for 

metallographic analysis using the standard techniques of grinding with SiC abrasive 

papers with various grit sizes (120, 800, 1200, 2500 and 4000), and polishing with 1µm 

diamond suspension followed by silica suspension.  

3.10.2 Chemical composition analysis 

It was essential to measure the chemical composition of the prepared alloys to verify 

whether their composition was close to that of the target. In this work chemical 

composition for all alloys was analysed using a “Worldwide Analysis System (WAS) 

AG, Foundry Master” optical emission spectrometer (OES). A spark is produced on the 

surface of the sample to energise the surface and to emit photons with element specific 

wavelengths, which are detected by the optical spectrometer. A detailed explanation of 

“spark source spectrometry” is given in Gill (1997) [161]. The equipped WASLAB 

software compares the measured data with standard data and gives the final results in 

wt% of chemical compositions. To produce flat surfaces for this analysis, samples were 

polished with 120 grit SiC paper. Several tests were performed on a single sample and 

an average result was recorded as the final composition.  

3.10.3 Optical microscopy (OM) 

Microstructure characterization was accomplished using an optical microscope (Carl 

Zeiss Axioskop 2 MAT) equipped with image analysis software. For each sample, more 

than 30 micrographs were taken covering the whole section. The average particle size, 

shape factor and number density of primary Si particles were quantified for more than 

500 particles per sample. Primary Si particle size was measured as an equivalent 

circular diameter with standard error of mean. The shape of the primary Si particles 

was quantified in terms of a shape factor S: 

S=4πA/P2 

where A and P are the area and perimeter of each particle on the plane of the polished 

surface respectively. The shape factor S has a value of one for perfectly round 

particles, and increasingly less than one as the particles become more irregular in 

shape.  
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3.11 Scanning Electron Microscopy (SEM) 

The scanning electron microscopy (SEM) examination was carried out using a Zeiss 

Supra 35 FEG microscope. The microscope, equipped with an energy dispersive 

spectroscopy (EDS) facility, operated at an accelerating voltage of 5-20 kV. A scanning 

electron microscope (SEM) is a microscope with an electron beam scanning back and 

forth over a sample. Several different signals are produced due to the interaction 

between the beam and the sample. These signals provide the user with detailed 

information about the differences of atomic number within the sample, surface structure 

or information about the elemental content [162]. A signal is measured individually from 

each point, with the use of advanced detectors, which collects a range of X-rays and 

electrons from different depths of the surface. The SEM used in this study has primary 

electron imaging, secondary electron imaging or back scattered electron (BSE) 

imaging, and energy-dispersive X-ray spectroscopy (EDS) operational modes. The 

advantage of SEM over optical microscopy is the large depth of field and higher 

resolution, thus producing high resolution images at high magnification (up to 50,000 

times). 

3.12 Mechanical Property Tests 

Cylindrical bars (2.54 cm diameter x 20 cm length) were prepared by casting similarly 

prepared Al-Si alloys into a steel mould pre-heated to 200 °C, and cooling in air at a 

cooling rate of approximately 16 K/s in order to obtain microstructures similar to those 

obtained by the sampling process. The bars were then machined to produce tensile 

test samples of 6.4 mm in gauge diameter, 25 mm in gauge length and 12 mm 

diameter in the grip section. Static tensile tests were carried out using an Instron® 

5569 machine at a cross head speed of 2 mm/min (strain rate: 1.33×10-3 s-1). The 

‘Instron® 5569’ system was connected to a PC for automated testing and calculation of 

tensile test results such as yield stress, ultimate tensile strength and elongation to 

fracture. All samples were tested at room temperature. 
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Chapter 4 

Results  
 

Results gained from each series of experiments are introduced in this chapter. As 

mentioned in Chapter Three, all experiments were carried out to cover the thesis 

outlines which include the effect of solidification rate, chemical additions and casting 

techniques on a wide range of Al-Si alloys. The effects of all above parameters on the 

morphologies of primary and eutectic Si following solidification of hypereutectic Al-Si 

alloys were studied. In this chapter figures showing optical micrographs generally 

consist of pairs of micrographs, one at a lower magnification to illustrate the scale and 

morphology of primary Si and the other to reveal the nature of the eutectic structure at 

a higher magnification.   

4.1 Effect of Solidification Rate on Primary and Eutectic Si  

The effects of superheat temperature and cooling rate on the solidification of 

hypereutectic Al-15Si alloy were investigated. The microstructure evolution and 

quantitative analysis of primary Si particles were characterized by optical microscopy. 

A robust casting and sampling procedure was developed for consistent measurement 

and evaluation. 

4.1.1 Effect of cooling rate   

Standard TP-1 test samples for different melt temperatures illustrated in Figure 3.2 

showed that coarse primary Si concentrated in a thick zone at the top of the cast 

samples. This segregation band became denser and more sharply delineated with 

increasing superheat temperature. It was clear that primary Si in Al-15Si alloy suffers 

from macro-segregation to the top of the TP-1 test specimens. The silicon distributions/ 

segregation were studied by chemically analyzing the longitudinal sectioned castings 

using optical emission spectroscopy (Foundry Master). The silicon content was          

22 wt% Si in the segregation zone and about eutectic composition 12.6 wt% Si with 

only a low volume fraction of primary Si at the core region.  

Figure 4.1 shows optical micrographs of Al-15Si alloy cast at 750 °C for different 

cooling rate in using TP-1 test (with cooling rate of 3.5 K/s at the central region of a 

cross-section, 38 mm from the base), or by a Boron Nitride coated steel mould cooled 

either in a water bath with cooling rate of 15 K/s or air cooled with cooling rate of 1 K/s. 

There was a significant macro-segregation of primary Si to the top of TP-1 test sample 
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and to the top of air cooled steel mould while in the water cooled steel mould there was 

a homogenous distribution of primary Si in the whole section. It is clear that at low 

cooling rate the morphology of primary Si in the segregation zone was a mixture of 

branched plate-like and coarse polygonal particles dispersed in an acicular eutectic 

structure. With the increase of cooling rate, the primary Si became mostly polygonal or 

compact in morphology and dispersed in a refined lamella eutectic structure.  

From the above results, we can conclude that there is a tendency for primary Si to 

segregate to the top of sampling specimens particularly under slow solidifications 

conditions. High cooling rates produce refined lamellar eutectic structures with fine and 

compact particles of primary Si. Using the water cooled steel mould with cooling rate in 

excess of 15 K/s is very efficient at minimising the macro-segregation of primary Si 

even at high pouring temperature where the solidification time will be longer. All 

subsequent experiments were carried out using the water cooled steel mould to ensure 

repeatability.  

 

 

Figure 4.1 Optical micrographs of Al-15Si alloy to show the morphology of primary Si 
and the eutectic structure cast at 750 °C for different cooling rates: (a,b) air cooled 
steel mould (1K/s); (c,d) TP-1 test ( about 3.5 K/s); and (e,f) water cooled steel mould 
(15 K/s).  (a, c, e) low magnification and (b, d, f) high magnification. 
 

4.1.2 Effect of melt superheat   

Figures 4.2 and 4.3 show low and high magnification optical micrographs of the 

longitudinal section of Al-15Si specimens cooled from different melt temperatures. 

These samples were taken by using the preheated steel mould which was then water 

cooled at approximately 15 K/s. It is clear from the optical micrographs that the 
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morphology of primary and eutectic Si changed with increasing melt temperature i.e. 

the superheat. Figure 4.2 shows that the primary Si become more refined and 

compact, Figure 4.3 shows that higher superheat produces a finer lamellar eutectic 

structure.  

Figure 4.4 shows the particle size distributions of primary Si in Al-15Si alloy cast 

from melt temperature and Figure 4.5 presents the effect of superheat temperature on 

average primary Si particle size, shape factor, particle number density and primary Si 

volume fraction. It is clear that the average particle size and volume fraction of primary 

Si decreased approximately linearly up to a casting temperature of 845 °C and then 

decreased at a lower rate as melt temperature increased further. The shape factor 

mirrored this trend, where it increased linearly up to 845 °C and then increased at a 

lower rate. The particle number density of primary Si increased slightly for casting 

temperatures of less than 845 °C and then significantly increased for casting 

temperatures above 845 °C. 

 

 

 

Figure 4.2 Comparison of primary Si morphologies of Al-15Si alloy cast from different 
melt temperatures. 
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Figure 4.3 Comparison of eutectic silicon morphologies of Al-15Si alloy cast from 

different melt temperatures. 

  

According to results described above; the morphologies of  primary and eutectic Si 

change with increasing melt temperature. The high superheat produces refined 

lamellar eutectic structure with polygonal particles of primary Si having a narrower 

particle size range as shown in Figure 4.4. The optical micrographs across the whole 

section of casting specimens showed that the eutectic matrix seemed to become 

denser with the increase in the melt superheat, along with a decrease in the volume 

fraction of primary Si in the Al-Si matrix as shown in Figure 4.5d. Generally, the 

average particle size of primary Si decreases with the increasing melt superheat 

temperature while the particles became more compact in shape. The particle number 

density of primary Si in Al-15Si increases significantly in the temperature range from 

845 °C to 1150 °C. The combination of decreased particle size and increased number 

density of primary Si suggests that nucleation of these particles is enhanced at higher 

melt temperature. From these results, all other experiments in this thesis were carried 

out at temperature above 800 °C for complete homogenization and then to enhance 

the refinement and modification processes of the Si phases.  
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Figure 4.4 Particle size distribution of primary Si in Al-15Si alloy cast from: (a) 650 °C; 

(b) 700 °C; (c) 730 °C; (d) 750 °C; (e) 845 °C; and (f) 1150 °C.  

 

 (a) 

(e) 

(c) (d) 

(f) 

(b) 
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Figure 4.5 Effect of melt temperature on: (a) primary Si particle size; (b) shape factor, 
(c) particle number density and (d) primary Si volume fraction of Al-15Si alloy. 

4.2 Refinement and Modification of a High Purity Hypereutectic Al-Si Alloy 

Preliminary studies for this thesis (not included) showed that Ca content affects primary 

Si particle size for commercial purity Al-Si alloys in addition to modification of the 

eutectic. The optical emission spectroscopy showed that Ca content was not well 

controlled leading to unreliable results for the same alloy. The objective of these 

experiments was to investigate the effect of Ca and P content on solidification of high 

purity hypereutectic Al-15Si alloy. Experiments were conducted for high purity Al-15Si, 

Al-15Si with 20 ppm P and Al-15Si with 30 ppm Ca alloys.  

4.2.1 Unmodified/unrefined high purity Al-15Si alloy 

Figure 4.6 shows optical micrographs of unmodified/unrefined high purity and 

commercial purity Al-15Si alloy. The microstructure of the high purity alloy consisted of 

irregular coarse primary Si particles, 68 µm in size, and dispersed in a lamellar eutectic 

structure (Figure 4.6 (a,b)).  Figure 4.6 (c,d) shows typical micrographs of commercial 

purity Al-15Si alloy which consisted of coarse polygonal primary Si with average 

particle size of approximately 48 µm in a eutectic that had a mostly fibrous morphology. 
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Figure 4.6 Optical micrographs of Al-15Si alloys solidified from 800ºC: (a,b) high purity 

alloy; (c,d) commercial purity alloy. (a,c) low magnification and (b,d) high magnification.  

The chemical composition of the commercial purity Al-15Si alloy analysed by optical 

emission spectroscopy showed that the Ca content was more than 200 ppm and the P 

content was less than 20 ppm. Hence, the fibrous structure of eutectic Si in solidified 

commercial purity Al-15Si alloy is due to the presence of Ca in an amount sufficient to 

modify the eutectic matrix and restrict the growth of primary Si. It is well established 

that calcium and phosphorus are among the various trace elements reported to exist in 

commercial purity Al-Si alloys. The origin of Ca impurity in Al-Si alloys is mainly from 

the commercial purity Si [163]. The source of phosphorus in Al-Si alloy is its raw 

materials which include the phosphorus content of painted and inked aluminium scrap 

and the phosphorus content of metallic silicon [164]. The mechanism for nucleation of 

primary Si and growth of eutectic Si of unrefined/unmodified high purity Al-15Si alloy 

will be discussed in the next chapter.  

4.2.2 High purity Al-15Si alloy refined with P  

The effect of adding P on the morphology of silicon on solidification of high purity alloy 

was studied. Figure 4.7 shows optical micrographs of P-refined high purity and 

commercial purity Al-15Si alloys. It is clear from the optical micrographs that adding         

20 ppm P was quite enough to refine primary Si and to reduce the average particle size 
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from 68 µm to 20 µm as shown in Figure 4.7 (a,b). Similarly, adding 20ppm P to 

commercial purity Al-15Si alloy refined the primary Si and reduced the average particle 

size from 48 µm to 25 µm as shown in Figure 4.7 (c,d). The eutectic Si structure of the 

solidified high purity and commercial purity Al-15Si+20ppm P alloys was lamellar in 

structure.  

 

   

  
 

Figure 4.7 Optical micrographs of Al-15Si+20ppm P alloy solidified from 800 ºC: (a,b) 
high purity alloy; (c,d) commercial purity alloy. (a,c) low magnification and (b,d) high 
magnification.  

4.2.3 High purity Al-15Si alloy modified with Ca 

Figure 4.8 shows optical micrographs of high purity Al-15Si alloy modified with Ca. This 

figure shows that adding 30 ppm of Ca to the high purity Al-15Si has a significant 

modification effect on the eutectic Si. It is clear that the modified high purity Al-15Si 

alloy appears to contain no primary Si particles, i.e. there was a shift in the apparent 

eutectic position with the addition of Ca. The eutectic matrix in commercial purity       

Al-15Si alloy which contained more than 200ppm Ca, is already modified as shown in 

Figure 4.6 d.  
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Figure 4.8 Optical micrographs of high purity Al-15Si+30ppm Ca alloy solidified from 
800 ºC. (a) low magnification and (b) high magnification.  

 

The typical unmodified Al-Si eutectic is closer to a lamellar structure than to a 

fibrous one. Trace amounts of Ca can effectively modify the eutectic Si shape, similar 

to that with sodium or strontium under the same melting and casting conditions. In 

conclusion, due to the low level of P content in high purity Al-15Si (less than 1 ppm), 

the modification with 30 ppm Ca was very efficient. The optimum amount of Ca used to 

modify eutectic Si in commercial purity Al-Si alloy is normally more than 50 ppm [6]. 

4.3 Effect of Ca Level on Primary and Eutectic Si 

The effect of Ca level on the morphologies of primary and eutectic Si during 

solidification of commercial purity hypereutectic Al-Si alloys was investigated. The 

effect of Ca was studied either by reducing its content by the use of K2SiF6 (AP1) flux 

or increasing its content by adding 0.5 wt% Ca into the melt. Also, the effect of Ca 

content was studied in the presence of other alloying elements such as Mg and Sb. 

4.3.1 Removal of Ca by K2SiF6 flux 

Optical emission spectroscopy analysis of the solidified commercial purity Al-15Si alloy 

showed that use of the K2SiF6 flux reduced the Ca impurity content from approximately 

200 ppm to less than 20 ppm. Figure 4.9 shows typical microstructures of Al-15Si alloy 

without and with the addition of K2SiF6 flux cast from 800 °C. As shown in Figure 4.9 

(a,b) the untreated Al-15Si alloy contained coarse primary Si with an average particle 

size of approximately 48 μm and the eutectic Si had a mostly fibrous morphology. It is 

generally known that a small addition of Ca is effective in the modification of eutectic Si 

[77]. Hence, the amount of Ca (≈200 ppm) in the untreated Al-15Si alloy was sufficient 

to modify the eutectic Si. Figure 4.9c shows that the use of K2SiF6 flux, and the 

consequential reduction of Ca impurity content, led to refinement of the primary Si 
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particles which had an average size of 20 μm. The morphology of Si in the eutectic 

matrix changed from the fibrous structure of the untreated alloy to a short plate-like 

structure as shown in Figure 4.9d. 

 

   

  
 

Figure 4.9 Optical micrographs of Al-15Si alloy solidified from 800 ºC: (a,b) without 
K2SiF6 flux; (c,d) with 0.5 wt.% K2SiF6 flux. (a,c) low magnification; (b,d) high 
magnification.  
    

Figure 4.10 shows typical microstructures of Al-18Si alloy without and with the 

addition of K2SiF6 flux cast from 800 °C. This figure shows that the use of K2SiF6 flux 

and with the associated reduction of Ca impurity content to less than 20 ppm, the 

average particle size of primary Si reduced from 52 µm to 23 µm as shown in Figure 

4.10c compared with Figure 4.10a. The morphology of Si in the eutectic matrix 

changed from the fibrous structure of the untreated alloy to a short plate-like structure 

as shown in Figure 4.10d compared with Figure 4.10b.  

Figure 4.11 shows the particle size distribution of Al-15Si and Al-18Si alloys without 

and with the addition of K2SiF6 flux (AP1). It is clear from this figure that refinement of 

Al-15Si alloy is more efficient than that for Al-18Si alloy. The particle size range for    

Al-15Si became narrow with a high percentage of particles with size less than 20 μm. 

While for the Al-18Si alloy the range of particle sizes was the same as in the untreated 

alloy and the higher percentage of particles size was around 25 μm.  

d 

 

 

 

c 

 

 

 

b 

 

 

 

a 



67 
 

   

  
 

Figure 4.10 Optical micrographs of Al-18Si alloy solidified from 800 ºC: (a,b) without 
K2SiF6 flux; (c,d) with 0.5 wt.% K2SiF6 flux. (a,c) low magnification; (b,d) high 
magnification. 
 
 

 

Figure 4.11 Particle size distribution of primary Si in: (a) Al-15Si Alloy; (b) Al-15Si with 
0.5 wt% K2SiF6 flux; (c) Al-18Si alloy and (d) Al-18Si with 0.5 wt% K2SiF6 flux.  
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Figure 4.11 continued. 

4.3.2 High Ca content  

Figure 4.12 is a vertical section of the Al-Si-Ca phase diagram for Al-15Si-xCa 

calculated using the commercial PandaT software with PanAl8 database. It shows that 

when the Ca content is greater than approximately 400 ppm the first phase to form on 

solidification is expected to be Al2CaSi2. 

 

 

Figure 4.12 Vertical section of the Al-Si-Ca phase diagram for Al-15Si-xCa            

(x=0-1wt%). 
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Figure 4.13 comprises optical micrographs showing the typical morphologies of 

phases in the solidified Al-15Si alloy with 0.5 wt% Ca added. In this case the primary Si 

(dark phase) was coarse of more than 50 µm in size and had a much more irregular 

morphology compared with that in the alloy without added Ca or the K2SiF6 fluxed alloy 

as shown in Figure 4.13 (a,b). The eutectic Si was fully modified. In addition to α-Al and 

Si there was a third phase present in the form of dispersoids (mid-grey) that were 

intimately associated with primary Si. This third phase was expected to be an 

intermetallic containing Ca, and Figure 4.12 suggests that these dispersoids are likely 

to be Al2CaSi2. Both the primary Si and the dispersoids were associated with oxide 

particles (Figure 4.13a) and oxide bifilms (Figure 4.13b). 

 

 

  

 

Figure 4.13 Optical micrographs of the typical morphology of primary Si and an          
Al-Si-Ca phase, in the Al-15Si-0.5Ca alloy, formed in association with each other and 
with oxide particles (a) and bifilms (b).  

 

4.3.3 Effect of Ca in the presence of Mg or Sb   
  
Due to the interaction between Ca and the trace elements in commercial purity Al-Si 

alloys as described in section 2.5, experiments were conducted to study the effect of 

Ca content on the morphology of primary and eutectic Si in the presence of Mg or Sb in 

the Al-15Si alloy. These elements were chosen because Mg has a significant effect on 

the morphology of primary Si (as will be explained in detail in section 4.4.1) and Sb can 

modify the eutectic of Si in Al-Si alloys ( section 2.2). Figure 4.14 is a vertical section of 

the Al-Si-Mg phase diagram for Al-15Si-xMg calculated using the commercial PandaT 

software with PanAl8 database. It shows that when the Mg content is 0.5wt% the 

eutectic structure contains the Mg2Si phase. 
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Figure 4.14 Vertical section of the Al-Si-Mg phase diagram for Al-15Si-xMg            
(x=0-1wt%). 
 
     

Figure 4.15 comprises optical micrographs showing the effect of Ca content on the 

morphology of Al-15Si alloys without and with Mg addition. Figure 4.15 (c,d) show that 

commercial purity Al-15Si+0.5wt%Mg alloy, which contained more than 200 ppm Ca, 

consisted of coarse primary Si particles of 45 µm in size dispersed in Al+Si+Mg2Si 

eutectic as suggested in Figure 4.14. When the Al-15Si base alloy was fluxed with AP1 

prior to the Mg addition, there was a significant refinement in primary Si particles of    

30 µm in size dispersed in a coarse plate-like eutectic structure as shown in         

Figure 4.15 (e,f).  

Figure 4.16 comprises optical micrographs showing the effect of Ca content on the 

morphology of Al-15Si alloy without and with Sb addition. For the interaction between 

Sb and Ca, Figure 4.16 (c,d) compared with Figure 4.16 (a,b) show that adding         

0.5 wt% Sb to the commercial purity Al-15Si alloy, which contained more than          

200 ppm Ca, the eutectic Si refined in lamellar structure and the primary Si particles 

became more irregular in shape with particle size of 65 μm. With reducing Ca content 

by fluxing prior to adding 0.5wt% Sb to the Al-15Si alloy, irregular particles of primary 

Si of 70 µm in size dispersed in finer lamellar structure produced as shown in       

Figure 4.16 (e,f). Hence, removing Ca before adding Sb to Al-Si alloys can improve the 

modification process.  
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Figure 4.15 Optical micrographs of: (a,b) Al-15Si alloy; (c,d) Al-15Si alloy with 0.5 wt% 
Mg; and (e,f) Al-15Si alloy fluxed with 0.5 wt % AP1 then alloyed with 0.5 wt % Mg cast 
from 800 °C. (a,c & e) low magnification to show the size and distribution of primary Si 
and (b,d & f) high magnification to show the eutectic structure. 
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Figure 4.16 Optical micrographs of: (a,b) Al-15Si alloy; (c,d) with 0.5 wt% Sb; and (e,f) 
fluxed with 0.5 wt% AP1 then alloyed with 0.5 wt% Sb cast from 800 °C. (a,c & e) low 
magnification to show the size and distribution of primary Si and (b,d & f) high 
magnification to show the eutectic structure. 

4.4 Effect of Chemical Additions on Primary and Eutectic Si   

This section describes the effect on refining primary Si in Al-Si alloy of the addition a 

variety of inoculants. The various inoculants studied were Mg, oxides (Al2O3, MgO and 

CaO), ZnS, Na2S and Zn. The effect of adding the above inoculants on the Si 

morphology will be explained in this section. The effect of Al2O3 on the morphology of 

silicon will be discussed in detail in section 4.5.  
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4.4.1 Magnesium (Mg) 

Figure 4.17 shows the microstructure obtained during the solidification of a commercial 

purity Al-15Si alloy cast from 800 °C. The base Al-15Si alloy contains large polygonal 

primary Si particles 48 µm in size dispersed in a fibrous binary Al-Si eutectic matrix. 

The modification of the eutectic structure is because of a high Ca content in the 

commercial purity Al-Si alloy. The Ca level in the Al-15Si was more than 200 ppm.  

 

  

Figure 4.17 Optical micrographs of the Al-15Si alloy cast from 800 ºC. (a) low 
magnification and (b) high magnification. 

 

Figure 4.18 shows the microstructures of Al-15Si with Mg addition up to 1.0 wt% in 

the as-cast condition. With the addition of Mg up to 0.3 wt% to the binary alloy, the size 

of the primary Si decreased significantly as shown in a comparison of Figure 4.17 (a,b) 

with Figure 4.18(a,b) and Figure 4.18(c,d). On adding 0.4 wt% Mg, the size of the 

primary Si increased again, and continued to increase with Mg addition up to 0.75 wt%. 

The average primary Si particle size changed from 48 µm to 26, 22, 35, 45 and       

54.5 µm with the addition of 0.1, 0.3, 0.4, 0.5 and 0.75 wt% Mg respectively as shown 

in Figure 4.19, which is a plot of primary Si particle size against Mg addition.         

Figure 4.20 shows the particle size distribution of Al-15Si alloys with 0.1, 0.3, 0.4, 0.5, 

0.75 wt% Mg additions. It is clear from Figure 4.20 that there was a significant 

reduction in particle size range up to 0.3 wt% Mg addition, then the size range 

increased again with a higher percentage of larger sized primary Si particles. The 

optical micrographs show that the increase in the size of primary Si particles was 

associated with a reduced number of primary Si particles. There were no primary Si 

particles evident in the alloy containing 1.0 wt% Mg. The morphology and size of the 

eutectic Si particles changed with the addition of Mg to a fine and compact form with a 

Chinese script like morphology (as shown in Figure 4.18l). A refinement of both primary 

and eutectic Si particles was only observed for the alloy with Mg content ≤ 0.3% Mg if 

compared with the binary Al-15Si base alloy. This indicates that Mg can enhance 

refinement and modification of silicon at this level of Mg concentration. 
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Figure 4.18 Optical micrographs of Al-15Si alloy with the addition of (a,b) 0.1 wt% Mg, 

(c,d) 0.3 wt% Mg, (e,f) 0.4 wt% Mg. (g,h) 0.5 wt% Mg, (i,j) 0.75 wt% Mg and (k,l) 1% wt 

Mg. (a,c,e,g,I & k) low magnification to show the size and distribution of primary Si; 

(b,d,f,h,j & l) high magnification to show the eutectic structure. Continued overleaf. 
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Figure 4.18 Continued. 

 

 

 

 

Figure 4.19 Plot of primary Si particle size as a function of Mg addition (wt%) to 
commercial purity Al-15Si alloy.  
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Figure 4.20 Particle size distribution of primary Si in Al-15Si alloys with: (a) 0.0; (b) 0.1; 
(c) 0.3; (d) 0.4; (e) 0.5 and (f) 0.75 wt% Mg additions. 
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4.4.2 Mg and Ca oxides  

In order to study the effect of oxides, experiments were carried out by adding MgO and 

CaO to Al-15Si alloy (see section 3.6). Figure 4.21 shows optical micrographs of        

Al-15Si alloys without and with the addition of MgO and CaO. As shown in Figure 4.21 

(a,b), the commercial purity Al-15Si alloy consists of large polygonal primary Si 

particles (48 µm in size) dispersed in a fibrous eutectic Si matrix. Adding 0.5 wt% of 

MgO or CaO to the alloy resulted in polygonal coarse primary Si particles dispersed in 

a fibrous Si eutectic structure. The average particle size of primary Si increased from 

48 μm to 56 μm or 68 µm on adding 0.5 wt% of MgO or CaO respectively to 

commercial purity Al-15Si alloy.     

 

   

   

  

Figure 4.21 Optical micrographs of Al-15Si alloys cast from 800 ºC: (a,b) Al-15Si alloy; 
(c,d) Al-15Si with 0.5 wt% MgO and (e,f) Al-15Si with 0.5 wt% CaO. (a,c & e) low 
magnification to show the size and distribution of primary Si and (b,d & f) high 
magnification to show the eutectic structure. 

c 

 

 

 

d 

 

 

 

e 

 

 

 

f 

 

 

 

b 

 

 

 

a 

 

 

 



78 
 

4.4.3 Zincblende ZnS 

Due to the structural similarity of ZnS in its zincblende form, and its similar lattice 

parameter to those of Si and AlP, its use as an inoculant to refine the primary Si in 

solidification of hypereutectic Al-Si alloys was examined. Different sizes and sources of 

ZnS particles were used.  

4.4.3.1 ZnS micron scale particles 

Experiments were carried out by adding zincblende ZnS powder (≤44 µm in size) to   

Al-18Si alloy at 800 ºC. Figure 4.22 shows typical microstructures of conventionally 

cast Al-18Si alloy. The untreated Al-18Si (Figure 4.22) contained coarse primary Si 

with average particle size of approximately 52 µm and the eutectic Si had a mostly 

fibrous morphology. It is generally known that a small addition of Ca is effective in the 

modification of eutectic Si, as is sodium and strontium. Hence, the amount of Ca (≈200 

ppm) existing in the commercial purity Al-18Si alloy is sufficient to modify the eutectic 

Si. The origin of Ca impurity in Al-Si alloys is mainly from the commercial purity silicon 

[163]. 

 

  

Figure 4.22 Optical micrographs of Al-18Si alloy: (a) low magnification to show the size 
and distribution of primary Si and (b) high magnification to show the eutectic structure.  
 

On adding 0.5 wt% of ZnS powder, there was a significant refinement of the primary 

Si particles to 44 µm without any change in the modification level of the eutectic 

structure as shown in Figure 4.23 (a,b). Figure 4.23 (c,d) show optical micrographs of 

Al-18Si with 100 ppm P added. In this case the primary Si particle size was reduced to 

20 µm compared with its reduction to 44 µm with the addition of the ZnS powder. Thus, 

whilst primary Si refinement was evident for ZnS in this form it was less efficient than 

refinement with P. However the addition of P led to a more plate-like, and thus a loss of 

modification of eutectic Si. The latter suggest that ZnS does not interact with Ca in the 

melt unlike AlP. These results suggest that ZnS could be a potent substrate for 
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nucleation of primary Si, although inefficient in this as-purchased form, whilst allowing 

simultaneous modification of the eutectic unlike AlP.  

   

  
 

Figure 4.23 Optical micrographs of: (a, b) Al-18Si with the addition of 0.5 wt% ZnS  
(≤44 µm in size), (c, d) Al-18Si alloy with the addition of 100 ppm P. (a, c) low 
magnification and (b, d) high magnification. 

4.4.3.2 ZnS nanoparticles 

In response to the significant, but inefficient refinement of primary Si using ZnS <44 µm 

particles, experiments were carried out to raise the efficiency by the use of zincblende 

ZnS nanoparticles. As a cost effective/supplier of these nanoparticles could not be 

found, zincblende ZnS nanoparticles were prepared by solid-liquid chemical reaction 

[155] (see section 3.7.2). Figure 4.24 comprises optical micrographs showing the 

morphologies of Si phases in solidified Al-18Si alloy with 0.5 wt% ZnS nanoparticles 

added. As shown in Figure 4.24; there was some refinement in the primary Si without 

any change in eutectic structure if compared with commercial purity Al-18Si alloy (with 

Ca content more than 200 ppm). As shown in Figure 4.24 the efficiency of ZnS 

nanoparticles in refinement of primary Si in Al-18Si alloy was less than that of P. The 

average particle size of primary Si reduced from 52 µm to 41 µm on adding 0.5 wt% 

zincblende ZnS nanoparticles to the commercial purity Al-18Si alloy cast from 800 ºC, 

whereas the average particle size of primary Si of Al-18Si+100 ppm P alloy reduced to 

d 

 

 

 

c 

 

 

 

b 

 

 

 

a 

 

 

 



80 
 

20 µm. This could be due to agglomeration of the ZnS nanoparticles, low wettability of 

ZnS with the melt or instability of zincblende under the operating conditions. The 

modification of the eutectic Si was retained when using ZnS nanoparticles whereas it 

was lost when using P, as shown in Figure 4.24 (d,f).  

   

   

  

Figure 4.24 Optical micrographs of as-cast alloys: (a,b) Al-18Si alloy; (c,d) Al-18Si with 
the addition of 0.5 wt% ZnS nanoparticles, (e,f) Al-18Si alloy with the addition of        
100 ppm P. (a,c&e) low magnification to show the size and distribution of primary Si 
and (b,d&f) high magnification to show the eutectic structure. 
 

The point of this experiment was to improve the refinement efficiency of ZnS 

nanoparticles instead of <44 µm powder. Figure 4.25 shows the particle size 

distribution of primary Si in Al-18Si with no addition, with the addition of P and the two 

different forms of ZnS. It is clear from Figure 4.25 that the ZnS nanoparticles were no 

more efficient than the ZnS powder and adding ZnS in any form can refine the primary 

Si. But still the efficiency of adding ZnS is less than that with adding P. 
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Figure 4.25 Particle size distribution of primary Si in Al-18Si alloys: (a) with no 
additions; (b) with 100 ppm P; (c) with 0.5 wt% ZnS <44 µm and (d) with 0.5 wt% ZnS 
nanoparticles. 

4.4.3.3 In situ prepared ZnS 

As an alternative route to increase the refinement efficiency of ZnS, experiments were 

designed to create ZnS in situ by adding Zn and excess amount of Na2S to Al-18Si 

melt at 800 ºC (see section 3.7.3). In this case we may get fine and wettable particles 

of zincblende ZnS particles. Figure 4.26 comprises optical micrographs showing the 

morphologies of primary and eutectic Si in solidified Al-18Si alloy with ZnS formed in 

situ. As shown in Figure 4.26; there was a good refinement of the primary Si which was 

reduced from 52 µm to 22 μm in size. In comparison the average particle size of 

primary Si of Al-18Si+100 ppm P alloy reduced to 20 µm. The modification of the 

eutectic Si matrix by the Ca impurity in the alloy remained. Figure 4.27 shows the 

particle size distributions of primary Si in Al-18Si without and with ZnS prepared in situ 
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and that of Al-18Si with 100 ppm P. This figure shows the strong improvement of 

refinement efficiency in using in situ prepared ZnS zincblende and how narrow the 

particles size range is in comparison with the base alloy and with some similarity with 

the case of adding 100 ppm P to Al-18Si alloy. 

 

  

Figure 4.26 Optical micrographs of Al-18Si with nominally 0.27 wt% ZnS formed         
in situ. (a) low magnification, and (b) high magnification. 
 

 
 

 
 

Figure 4.27 Particle size distribution of primary Si in: (a) Al-18Si alloy; (b) Al-18Si with 
the addition of 0.27 wt% ZnS zincblende; and (c) Al-18Si with the addition of             
100 ppm P. 
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Optical emission spectroscopy (OES) analysis of Zn in the solidified Al-18Si+ZnS 

alloy showed that the produced alloy contains 0.27% ZnS (if we assume that all Zn was 

converted to ZnS). The results from these experiments leave no doubt that the 

zincblende ZnS particles prepared in situ are potent substrates to refine the primary Si 

crystals. Furthermore this refinement does not come at the expense of eutectic 

modification. 

4.4.3.4 Characterisation of an Al-ZnS master alloy  

Because of the exciting results described in the previous section, an Al-ZnS master 

alloy was prepared by adding Zn followed by adding an excess amount of Na2S to high 

purity aluminium at 800 ºC. Figure 4.28 illustrates SEM micrographs and an EDS 

spectrum showing the formation of precipitated ZnS particles in the prepared Al-ZnS 

master alloy. Figure 4.28 confirmed the formation of ZnS particles in the master alloy. 

The high Al content that appeared in analysis of ZnS particles can be attributed to the 

small size of the ZnS particle and the large beam size used for EDS measurement and 

the Ca content can be attributed to its presence in the Na2S and Zn. 

 

  

 

Figure 4.28 SEM micrographs and EDS spectrum showing the formation of 
precipitated ZnS particles. (a) low magnification to show the size and distribution of 
ZnS particles, and (b) high magnification to show the morphology of ZnS particles. 
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It is clear that ZnS particles can be precipitated in the melt, and their formation is 

according to the following chemical equation; 

Na2S + Zn+2               ZnS + 2Na+ 

The same principle is used to remove Zn from wastewater or etching solution in the 

form of ZnS by adding Na2S [156]. ZnS crystallizes with the cubic zincblende structure 

below 1020 °C and with the hexagonal wurtzite structure above this phase transition 

temperature [154]. Since, the master alloy was prepared at 800 ºC; the precipitated 

particles are zincblende ZnS. From the chemical analysis of the master alloy, and 

according to the chemical equation, the nominal composition of the master alloy is     

Al-1.5wt%ZnS. Separation of these ZnS particles for full characterisation and 

optimization of the master alloy composition will be the subject of further work. 

4.4.3.5 Effect of the Al-ZnS Master Alloy 

Initial results of the use of ZnS encouraged the use of this master alloy to examine its 

refinement performance in solidification of hypereutectic Al-Si alloys. Figure 4.29 

comprises optical micrographs showing the morphologies of primary and eutectic Si in 

solidified Al-22Si alloy with the addition of different amount of ZnS. The untreated 

Al-22Si alloy, shown in Figure 4.29 (a,b), contained coarse irregular primary Si with 

average particle size of approximately 74 µm and because of the high Ca content in 

commercial purity alloy (> 200 ppm) the eutectic Si had a mostly fibrous morphology.  

Refinement with Al-1.5ZnS master alloy resulted in primary Si particle size being 

reduced to 26, 22 and 24 μm with 0.05, 0.1 and 0.16 wt% addition of ZnS respectively 

and 20 min holding time prior to casting as shown in Figure 4.30, which is a plot of 

primary Si particle size against ZnS addition. The morphologies of primary Si crystals 

on solidification of Al-22Si alloy are changed from irregular morphologies to compact 

morphologies with some loss in the modification of the eutectic Si matrix. It was clear 

that with the increase of ZnS content up to 0.1wt% the average particle size of the 

primary Si decreased. Above 0.1wt% ZnS addition the size of primary Si no longer 

decreased. 

Figure 4.31 shows the particle size distributions of Al-22Si with addition of different 

amount of ZnS. This figure shows how efficient Al-ZnS master alloy is of refining the 

primary Si and how narrow the particle size range is when compared with the 

commercial  purity Al-22Si alloy.  
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Figure 4.29 Optical micrographs of (a, b) Al-22Si alloy; (c, d) Al-22Si with the addition 
of 0.05 wt% ZnS cast after 20 min; (e,f) Al-22Si with the addition of 0.1 wt% ZnS cast 
after 20 min; (g,h) Al-22Si with the addition of 0.16 wt% ZnS cast after 20 min; (a,c,e & 
g) low magnification and (b,d,f & h) high magnification. ZnS was added in the form of 
the Al-ZnS master alloy. 
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Figure 4.32 comprises optical micrographs showing the morphologies of primary 

and eutectic Si in solidified Al-22Si alloy with the addition of 0.1 wt% ZnS and 1.5 hr 

holding time prior to casting. With an increase in the holding time prior to casting up to 

1.5 hr, the average particle size of primary Si was 33 μm by adding 0.1 wt% of ZnS in 

solidification of Al-22Si, compared with 22 μm achieved with the shorter holding time of 

20 min. This reduction in the efficiency of the refinement of primary Si at high holding 

time could be due to the agglomeration of ZnS particles or could be due to its 

sedimentation to the bottom of the melt. Furthermore, the high holding time leads to 

continuous removal of the Ca by oxidation, and thus the eutectic Si matrix loses its 

modification. 

 
 
 

 
Figure 4.30 Plot of primary Si particle size as a function of ZnS addition (wt%), in the 
form of Al-ZnS master alloy, to commercial purity Al-22Si alloy.  
 
 

The chemical composition analysed by optical emission spectroscopy (OES) of      

Al-22Si alloy after adding the master alloy (0.1 wt% ZnS) showed that the Si 

composition had reduced to around 20%Si because of dilution. Hence, to compare with 

P refinement, an experiment was conducted by adding 200 ppm of P to Al-20Si alloy. 

The average particle size of primary Si was reduced to 20 µm, as shown in Figure 4.33. 
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Figure 4.31 Particle size distribution of primary Si in Al-22Si alloys: (a) with no addition, 
(b) with 0.05 wt% ZnS, (c) with 0.1 wt% ZnS and (d) 0.16 wt% ZnS addition. 

 
 
 

  

Figure 4.32 Optical micrographs of Al-22Si with the addition of 0.1 wt% ZnS cast after  
1.5 hr holding time prior to casting. (a) low magnification and (b) high magnification. 
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Figure 4.33 Optical micrographs of Al-20Si alloy with the addition of 200 ppm P.        
(a) low magnification and (b) high magnification. 

   

In using P for refinement of primary Si in hypereutectic Al-Si alloy, AIP particles will 

form in situ which has a zincblende crystal structure with a lattice constant of 5.431 Å. 

These particles are suspended in the melt and act as potent sites for epitaxial 

nucleation of primary Si [165]. And, due to the interaction between P and Ca the 

modification level of the eutectic Si will drop. Figure 4.34 shows the particle size 

distributions of primary Si in Al-22Si+0.1 wt% ZnS (20 min holding time prior to casting) 

and Al-20Si+200 ppm P alloys. It is very clear that the in situ prepared zincblende ZnS 

had a similar efficiency to that of P for the refinement of primary Si and is likely to follow 

the same refinement mechanism. 

 

  

Figure 4.34 Particle size distribution of primary Si in: (a) Al-22Si alloys with 0.1 wt% 
ZnS (20 min holding time prior to casting), (b) Al-20Si with 200 ppm P. 
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4.4.4 Sodium Sulphide (Na2S) 

Experiments were conducted to investigate the effect of Na2S on the size and 

morphology of primary Si in Al-Si alloys. Na2S was chosen because it was used in 

preparing ZnS and is likely to exist with ZnS as an impurity. These experiments were to 

check whether or not Na2S was behind or contributed to the refinement of primary Si by 

ZnS addition. Figure 4.35 illustrates optical micrographs of Al-18Si alloy with the 

addition of 0.5 wt% Na2S. As shown in Figure 4.35, Na2S had just a modification effect 

on the eutectic Si in Al-18Si. This action could be due to the decomposition of Na2S to 

produce Na that modifies the eutectic matrix and interacts with the existing P. It is clear 

that the eutectic Si is over modified and the primary Si became coarse and more 

irregular if compared with the base Al-18Si (Figure 4.24 (a,b)). The average particle 

size of primary Si increased from 52 to 65 µm. 

 

  

Figure 4.35 Optical micrographs of Al-18Si with the addition of 0.5 wt% Na2S. (a) low 
magnification to show the size and distribution of primary Si and (b) high magnification 
to show the eutectic structure.  

4.4.5 Zinc (Zn) 

Experiments were conducted to investigate the effect of Zn on primary Si in Al-Si 

alloys. Zn was chosen because it was used in preparing ZnS in situ and it could be 

exist with ZnS particles as an impurity. These experiments were to check whether Zn 

was behind or contributed to the refinement of primary Si by ZnS particle addition. 

Figure 4.36 illustrates the optical micrographs of Al-22Si alloy without and with the 

addition of 0.5 wt% Zn. As shown in Figure 4.36, Zn had no refinement effect on the 

primary Si in solidification of the Al-22Si alloy. Also, there was no effect on the 

modification level of the eutectic silicon matrix.  

The conclusions for the effect of chemical additions on the microstructure of 

hypereutectic Al-Si alloys are: Mg and ZnS refined primary Si whereas MgO, CaO, 

Na2S coarsened the primary Si together with a modification effect on the eutectic Si. 

Adding Zn had no effect on morphology of Si phases. 
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Figure 4.36 Optical micrographs of as-cast alloys: (a,b) Al-22Si alloy, (c,d) Al-22Si with 
the addition of 0.5 wt% Zn. (a,c) low magnification to show the size and distribution of 
primary Si and (b,d) high magnification to show the eutectic structure. 

 

4.5 Nucleation and Growth of Primary Si on Al2O3  

In some experimental results it was noticed that primary Si particles were intimately 

associated with invisible or visible oxide bifilm. Examples of which primary Si nucleated 

with visible oxide bifilm are shown in Figure 4.37. 

 

  

Figure 4.37 Optical micrographs showing example of the association of primary Si with 
oxide bifilms in Al-18Si alloy cast from 800 ºC. (a) low magnification and (b) high 
magnification. 
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In view of this, experiments were carried out by adding α-Al2O3, γ-Al2O3, P-doped    

α-Al2O3 and P-doped γ-Al2O3 to commercial purity Al-18Si alloys. The latter 

experiments were to examine the possibility of supporting P on aluminium oxide to 

refine the primary Si in solidification of hypereutectic Al-Si alloys. Figure 4.38 illustrates 

optical micrographs of Al-18Si alloy without and with the addition of 0.5 wt% of α-Al2O3 

and  0.5 wt% of γ-Al2O3. As shown in Figure 4.38, adding 0.5 wt% of α-Al2O3 (0.5 μm in 

size) there was no change in the size and morphology of primary Si but the eutectic Si 

lost its modification. While, in adding 0.5 wt% of γ-Al2O3 (0.5 μm in size) the average 

particle size of primary Si reduced slightly from 52 μm to 48 μm with no change in 

modification level of eutectic Si.  

Figure 4.39 shows optical micrographs of commercial purity Al-18Si alloys without 

and with the addition of 0.5 wt% of P-doped α-Al2O3 and 0.5wt% of P-doped γ-Al2O3 

(0.5 μm in size). The average particle size of primary Si decreased from 52 μm to 25 

μm and 22 μm in adding P-doped α-Al2O3 and P-doped γ-Al2O3 respectively. Although 

the addition of P-doped α-Al2O3 led to refinement of primary Si the eutectic did not 

retain its modified structure (Figure 4.39d). However, it is clear that P-doped γ-Al2O3 led 

to good refinement of primary Si and the modification effect on eutectic Si was retained 

in solidification of commercial purity Al-18Si alloy (Figure 4.39f). 

Another set of experiments were conducted by adding 0.5 wt% P-doped γ-Al2O3 with 

average particle size 3 µm, i.e. coarser particles, to the commercial purity Al-18Si alloy. 

Figure 4.40 shows optical micrographs of commercial purity Al-18Si alloy without and  

with the addition of 0.5wt % of P-doped γ-Al2O3 (3 μm in size) and 100 ppm P for 

comparison. In the case of the 0.5wt % of P-doped 3 μm particles the average particle 

size of primary Si was about 25 µm, compared with 52 µm for Al-18Si without addition 

and 22 µm for the addition of 0.5wt% of 0.5 µm P-doped γ-Al2O3 particles with good 

modification in eutectic matrix as shown in Figure 4.40 (c,d). These results compared 

well with the refinement of primary Si by adding 100 ppm P, as shown in Figure 4.40 

(e,f), for which the average particle size of primary Si was 20 µm and the eutectic Si 

morphology changed from a fibrous to a plate-like structure. Table 4.1 summarizes the 

effect of different form and size of Al2O3 particles without and with P on the average 

particles size of primary Si and compared with P addition. 

Figure 4.41 compares the particle size distributions of Al-18Si alloy with                        

Al-18Si with 0.5 wt% P-doped γ-Al2O3 (0.5 µm in size), Al-18Si with 0.5wt% P-doped   

γ- Al2O3 (3 µm in size), and Al-18Si+100ppm P additions. Adding P-doped γ- Al2O3 give 

a good primary Si refinement to Al-18Si alloy if compared with the addition of P and 

using finer γ- Al2O3 powder give narrower particle size range similar to that of adding P.  



92 
 

Further work should be done in the future to detect the presence of phosphorus at 

the interface between oxides, whether added or present as bifilms, and the nucleated 

primary Si particles.  

 

 

   

   

  

Figure 4.38 Optical micrographs of as-cast alloys: (a,b) Al-18Si alloy; (c,d) Al-18Si with 
the addition of 0.5wt% α-Al2O3 (0.5 µm); (e,f) Al-18Si with the addition of 0.5wt%         
γ-Al2O3 (0.5 µm). (a,c & e) low magnification to show the size and distribution of 
primary Si and (b,d & f) high magnification to show the eutectic structure. 
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Figure 4.39 Optical micrographs of as-cast alloys: (a,b) Al-18Si alloy; (c,d) Al-18Si with 
the addition of 0.5wt% P-doped α-Al2O3 (0.5 µm in size); (e,f) Al-18Si with the addition 
of 0.5wt% P-doped γ-Al2O3 (0.5 µm in size). (a,c & e) low magnification to show the size 

and distribution of primary Si and (b,d & f) high magnification to show the eutectic 
structure. 
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Figure 4.40 Optical micrographs of as-cast alloys: (a,b) Al-18Si alloy; (c,d) Al-18Si with 
the addition of 0.5wt% P-doped γ-Al2O3 (3 µm); (e,f) Al-18Si with the addition of        

100 ppm P. (a,c & e) low magnification to show the size and distribution of primary Si 
and (b,d & f) high magnification to show the eutectic structure. 
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Table 4.1 Effect of different form and size of Al2O3 without and with P on the average 
particles size of primary Si (µm) and compared with P addition. 
 
 

Alloy Al-18Si 

Al-18Si 
+α-Al2O3 

 
(0.5 µm) 

Al-18Si 
+γ- Al2O3 

 
(0.5 µm) 

Al-18Si 
+P-doped 
α- Al2O3 

(0.5 µm) 

Al-18Si 
+P-doped 
γ-Al2O3 

(0.5 µm) 

Al-18Si 
+P-doped 
γ- Al2O3 

(3 µm) 

Al-18Si 
+100 ppm 

P 

Size of 
primary 
Si (µm) 

52±4.3 52±2.5 48±5.6 25±2.9 22±1.7 25±2.8 20±2.2 

 
 

 

         

 

Figure 4.41 Particle size distribution of primary Si in: (a) Al-18Si alloys; (b) with 0.5wt% 
P-doped γ-Al2O3 (0.5 µm in size); (c) with 0.5wt% P-doped γ-Al2O3 (3 µm in size) 

addition; and (d) with 100ppm P.  
 

                     (b) 
(a) 

                            

       (d) (b) 

(c) (d) 
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4.6 The New Solid-Liquid Duplex Casting Process  

This section describes the results of a new solid-liquid duplex casting process to 

control morphology of both primary and eutectic Si on solidification of hypereutectic   

Al-Si alloys. For comparison and evaluation of the process, the same alloys were 

produced by conventional casting as well as by the new casting process. 

4.6.1 Conventional casting 

Figure 4.42 shows typical microstructures of conventionally cast untreated Al-19Si 

produced by using commercial purity aluminium and silicon. The untreated Al-19Si 

contained coarse primary Si with average particle size of approximately 74 µm    

(Figure 4.42a) and the eutectic Si had a mostly fibrous morphology due to an inherent 

Ca content of more than 200 ppm as shown in Figure 4.42b. Figure 4.43 comprises 

optical micrographs showing the morphologies of primary and eutectic Si in Al-19Si 

alloy with 200 ppm P and 200 ppm Sr conventionally cast from 800 °C. The 

conventionally cast Al-19Si treated with 200ppm P contained refined primary Si 

particles with average particle size of 26 µm dispersed in mixture of plate-like and 

fibrous Al-Si eutectic matrix, as shown in Figure 4.43 (a,b), while the conventionally 

cast Al-19Si alloy treated with 200ppm Sr contained large primary Si particles with 

average particle size of 65 µm dispersed in a fibrous structure typical of a fully modified 

eutectic as shown in Figure 4.43 (c,d).  

 

  

Figure 4.42 Optical micrographs of conventionally cast Al-19Si alloy without P or Sr 
addition at (a) low magnification to show the size and distribution of primary Si and (b) 
high magnification to show the eutectic structure. 
  

Figure 4.44 illustrates the optical micrographs showing typical morphologies of 

primary and eutectic Si in conventionally cast of Al-19Si alloy with simultaneous 

additions of P and Sr. The conventionally cast Al-19Si treated with both 200ppm P and 
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200ppm Sr contained refined polygonal primary Si particles with average particle size 

of 26 µm dispersed in a partially modified Al-Si eutectic matrix, as shown in Figure 

4.44. 

 

   

   

Figure 4.43 Optical micrographs of conventionally cast Al-19Si alloy: (a,b) Al-19Si+ 
200ppm P and (c,d) Al-19Si+200ppm Sr at (a,c) low magnification to show the size and 
distribution of primary Si and (b,d) high magnification to show the eutectic structure.  
 
 
 

  

Figure 4.44 Optical micrographs of conventionally cast Al-19Si+200ppm P+200ppm Sr 
at (a) low magnification and (b) high magnification. 
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4.6.2 The solid-liquid duplex casting process 

A solid-liquid duplex casting process was applied to achieve simultaneous refinement 

and modification of primary and eutectic Si respectively in hypereutectic Al-Si alloys. 

Experiments were conducted to find the optimum P and Sr content in the two alloys to 

be mixed to prepare the target Al-19Si alloy with simultaneous refinement of primary Si 

and modification of eutectic silicon. Also, experiments were carried out to optimize the 

Si content in Sr-treated Al-Si alloy and the casting temperature. Solid-liquid duplex 

casting process was tested to achieve simultaneous refinement of primary Si 

modification of eutectic silicon in hypereutectic Al-18Si alloy with checking the 

improvement in mechanical properties. 

4.6.2.1 Optimum P and Sr for P-treated and Sr-treated alloys  

For the solid-liquid duplex process, experiments were done to optimize the amount of P 

and Sr to be added to the Al-30Si (solid) and Al-8Si (liquid) starting alloys respectively, 

in order to get simultaneous refinement of primary Si and modification of eutectic Si in 

the target alloy. Figure 4.45 shows the microstructure of the untreated Al-8Si alloy 

prepared to carry out the initial set of experiments. The unmodified Al-8Si alloy consists 

of plate-like structure of eutectic Si. 

  

Figure 4.45 Optical micrographs of Al-8Si alloy cast from 800 °C, at: (a) low 
magnification and (b) high magnification.  
 

A range of P additions was made to Al-30Si alloy in order to prepare the P-treated 

solid starting alloy with very fine particles of primary Si. Figure 4.46 shows the size and 

morphology of primary Si in Al-30Si without and with P additions. As shown in        

Figure 4.46, the size and morphology of primary Si changed with the added amount of 

P. The primary Si particles became refined and more compact in shape with increasing 

addition of P. The alloy with no P addition and the alloy with 50ppm P (Figure 4.46 

(a,b)) had primary Si that was generally coarse and irregular in shape. The alloy with 

100 ppm P added P (Figure 4.46c) had a mixture of coarse irregular and finer compact 
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primary Si. The alloys with 200 ppm, 300 ppm and 400 ppm added P were generally 

refined. Figure 4.47 shows the particle size distributions of primary Si in Al-30Si alloy 

with different amount of P added. It is clear in this figure that with the increase of P 

content the particle size range decreases with a higher percentage of smaller particle 

size. The mean particle size of primary Si for the Al-30Si alloy without P addition was 

158 µm. On adding 50, 100, 200, 300 and 400 ppm P the mean particle size of primary 

Si decreased  to 56, 44, 40, 38 and 37 µm respectively as shown in Figure 4.48 which 

is a plot of average primary Si particle size against the amount of added P.  

 

 

   

   

  

Figure 4.46 Optical micrographs of Al-30Si: (a) without added P; (b) with 50 ppm 
added P; (c) with 100 ppm added P; (d) with 200 ppm added P; (e) with 300 ppm 
added P and (f) with 400 ppm added P. 
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Figure 4.47 Particle size distribution of primary Si in Al-30Si alloys: (a) with no addition; 
(b) with 50 ppm P; (c) with 100 ppm P; (d) with 200 ppm P; (e) 300 ppm P and                
(f) 400 ppm P addition. 

(d) 

(f) (e) 

(c) 

(b) (a) 
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Figure 4.48 Plot of particle size of primary Si against the amount of P added to 
commercial purity Al-30Si Alloy.  
 

The first set of solid-liquid duplex process experiments were conducted to produce 

Al-19Si alloy by mixing liquid Al-8Si alloy with solid Al-30Si alloy treated with different 

amount of P cast from 610 °C. Each solid-liquid duplex casting experiment with 

different alloy and process parameters was given a code consisting of the letters SLD 

and a number, e.g. SLD1. Micrographs in Figure 4.49 show the morphologies of 

primary Si (a,c & e) and eutectic Si (b,d & f) in the target Al-19Si alloy with no added P 

(SLD1) and with 50ppm (SLD2) and 100ppm (SLD3) added P, and no added Sr. It is 

clear that without any addition of P and Sr (SLD1) (Figure 4.49 (a,b)) there was some 

refinement of the primary Si without any modification of the eutectic. The mean particle 

size of primary Si was 78 µm, although there were some very coarse irregular particles, 

without any P addition in using solid-liquid duplex process, while the size of primary Si 

was 158 µm in the untreated Al-30Si alloy. As the amount of P increased             

(Figure 4.49 (c,e)) in the P-treated Al-30Si alloy there was a good improvement in 

refinement of primary Si in the target alloy. When mixing Al-8Si with Al-30Si+50 ppm P 

alloy (SLD2) and with Al-30Si+100ppm P alloy (SLD3), the mean particle size of 

primary Si in the target Al-19Si was 36 and 34 µm respectively. In comparison, the size 

of primary Si in Al-30Si+50ppm P and Al-30Si+100ppm P alloy was 56 and 44 µm 

respectively. Figure 4.50 shows the particle size distribution of primary Si in the Al-19Si 

target alloy produced by mixing liquid Al-8Si with Al-30Si (SLD1), Al-30Si+50ppm P 

(SLD2) and Al-30Si+100ppm P (SLD3) cast from 610 °C. This figure shows a 

significant reduction in the primary Si particle size range. Details of each experiment 

using a fixed liquid alloy:solid alloy ratio of 1:1 (by mass) are provided in Table 4.2. 

Although the solid-liquid duplex process for mixing untreated liquid Al-8Si with solid    

P-treated Al-30Si led to refined primary Si, the eutectic was unmodified.
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Figure 4.49 Optical micrographs of Al-19Si+P produced by mixing Al-8Si with: (a,b)   
Al-30Si alloy (SLD1), (c,d) Al-30Si+50ppm P alloy (SLD2) and (e,f) Al-30Si+100ppm P 
(SLD3). (a,c & e) low magnification and (b,d & f) high magnification. 
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Figure 4.50 Particle size distribution of primary Si in Al-19Si+P produced by mixing   
Al-8Si liquid alloy with solid (SLD1) Al-30Si alloy; (SLD2) Al-30Si+50ppm P alloy and 
(SLD3) Al-30Si+100ppm P. 

 

For the modification of eutectic Al-Si matrix, 400 ppm Sr was added to liquid Al-8Si 

starting alloy. Figure 4.51 shows optical micrographs of fully modified Al-8Si alloy by 

the addition of 400ppm Sr addition. Initially, liquid Al-8Si+400 ppm Sr alloy was mixed 

with solid Al-30Si alloy. Figure 4.52 shows the optical micrographs of Al-19Si+   

200ppm Sr cast from 610 °C by mixing 1:1 liquid Al-8Si+400ppm Sr and solid Al-30Si 

alloys (SLD4). There was good modification of the eutectic matrix: the eutectic Si 

morphology changed from a plate-like to a fibrous structure as shown in Figure 4.52. 

However, the primary Si was unrefined and with an irregular morphology, with an 

average particle size of 48.8 µm. 

 

    SLD1 

    SLD3 

    SLD2 
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Figure 4.51 Optical micrographs of Al-8Si+400ppm Sr alloy cast from 800 °C, at        
(a) low magnification and (b) high magnification.  
 

  

Figure 4.52 Optical micrographs of Al-19Si+200ppm Sr alloy produced by mixing liquid 
Al-8Si+400ppm Sr and solid Al-30Si alloys (SLD4), cast from 610 °C, at (a) low 
magnification and (b) high magnification.  
 

A set of experiments was conducted by mixing liquid Al-8Si+400ppm Sr alloy with 

solid Al-30Si treated with 50-400 ppm P (SLD5-SLD9). Figure 4.53 shows the optical 

micrographs of Al-19Si+200ppm Sr+P produced by mixing liquid Al-8Si+400ppm Sr 

and P-treated Al-30Si solid with different P addition and cast from 610 °C. As shown in 

Figure 4.53, there was a significant simultaneous refinement of primary Si and 

modification of eutectic Si. For the same Sr content in the liquid Al-8Si alloy, as the P 

content increased in the solid Al-30Si starting alloy the mean particle size of primary Si 

in the target alloy decreased. The average particle size of primary Si was 35, 33, 31, 30 

and 29 µm for the Al-30Si starting alloy with 50 (SLD5), 100 (SLD6), 200 (SLD7), 300 

(SLD8) and 400 ppm (SLD9) added P respectively, as shown in Figure 4.54. Figure 

4.55 shows the particle size distributions of primary Si in Al-19Si+200ppm Sr+P alloy 

produced by mixing liquid Al-8Si+400ppm Sr and P-treated Al-30Si solid with different 
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added P and cast from 610 °C (SLD5-SLD9). It is clear that mixing liquid                    

Al-8Si+400ppm Sr with Al-30Si+400ppm P solid (SLD9) using the solid-liquid duplex 

casting process gave the narrowest particle size range. It is very clear from 

micrographs in Figure 4.53 that mixing 1:1 (by mass) liquid Al-8Si+400ppm Sr with    

Al-30Si+400ppm P solid chips (SLD9) using the solid-liquid duplex casting process, 

allowed for the simultaneous action of P and Sr. The target alloy produced was          

Al-19Si+200ppm P+200ppm Sr with mean primary Si particle size of 29 µm dispersed 

in a fully modified Al-Si eutectic matrix, as shown in Figure 4.53 (i,j). 

   

   

  

Figure 4.53 Optical micrographs of Al-19Si+200ppm Sr+P produced by mixing liquid 
Al-8Si+400ppm Sr with solid  (a,b) Al-30Si+50ppm P (SLD5); (c,d) Al-30Si+100ppm P 
(SLD6); (e,f) Al-30Si+200ppm P (SLD7); (g,h) Al-30Si+300 ppm P (SLD8) and (I,j)     
Al-30Si+400ppm P (SLD9). (a,c,e,g&i) low magnification and (b,d,f,h&j) high 
magnification. Continued overleaf. 

b 

 

 

 

a 

 

 

 

e 

 

 

 

d 

 

 

 

c 

 

 

 

f 

 

 

 



106 
 

   

  
Figure 4.53 continued 

 

 

Figure 4.54 Plot of primary Si particle size in the target alloy against P content of the 
Al-30Si solid starting alloy when mixed with Al-8Si+400ppm Sr alloy and cast from   
610 °C (SLD5-SLD9).  

 

j 

 

 

 

h 

 

 

 

g 

 

 

 

i 

 

 

 



107 
 

 

 

 

Figure 4.55 Particle size distribution of primary Si in Al-19Si+200ppm Sr+P produced by 
mixing liquid Al-8Si+400ppm Sr with solid: (SLD4) Al-30Si; (SLD5)Al-30Si+50ppm P; 
(SLD6) Al-30Si+100ppm P; (SLD7) Al-30Si+200ppm P; (SLD8) Al-30Si+300ppm P and 
(SLD9) Al-30Si+400ppm P.   
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To study the effect of Sr content, another set of experiments was carried out. Figure 

4.56 shows optical micrographs of Al-19Si+Sr+200ppm P alloy produced by mixing 

solid Al-30Si+400ppm P with liquid Al-8Si+300ppm Sr (SLD10) and liquid                   

Al-8Si+200ppm Sr (SLD11) cast from 610 °C.  

 

   

  

Figure 4.56 Optical micrographs of Al-19Si+Sr+200ppm P alloy produced by mixing 
solid Al-30Si+400ppm P with liquid (a,b) Al-8Si+300ppm Sr (SLD10); (c,d)                  
Al-8Si+200ppm Sr (SLD11). (a,c) low magnification and (b,d) high magnification. 
 

As shown in Figure 4.56 with the decrease of Sr less than 400 ppm, there will be 

only partial modification of the eutectic matrix with an increase in particle size of 

primary Si. For mixing solid Al-30Si+400ppm P alloy and liquid Al-8Si treated with 300 

(SLD10) and 200 ppm Sr (SLD11), the average particle size of primary Si was 29 and 

34 µm respectively.  

Figure 4.57 shows the morphologies of primary and eutectic Si in the target alloy 

produced by mixing solid Al-30Si+300ppm P with liquid Al-8Si+300ppm Sr (SLD12) 

and cast from 610 °C. In the case of mixing solid Al-30Si+300ppm P with liquid          

Al-8Si+300ppm Sr (SLD12), the resulting alloy was Al-19Si+150ppm Sr+150ppm P and 

the average particle size of primary Si was 35 µm dispersed in a partially modified Al-Si 

eutectic as shown in Figure 4.57. Hence with the decrease of Sr and P content there 

will be an increase in particle size of primary Si and the particle size distribution plots 

illustrated in Figure 4.58 and Figure 4.59 support this finding.  
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Figure 4.57 Optical micrographs of Al-19Si+150ppm Sr+150ppm P alloy produced by 
mixing solid Al-30Si+300ppm P and liquid Al-8Si+300ppm Sr (SLD12) at (a) low 
magnification and (b) high magnification.  

 
Figure 4.58 Particle size distributions of primary Si in Al-19Si+Sr+200ppm P alloy 
produced by mixing solid Al-30Si+400ppm P with liquid: (SLD10) Al-8Si+300ppm Sr 
and (SLD11) Al-8Si+200ppm Sr. 
 

 

Figure 4.59 Particle size distribution of primary Si in Al-19Si+150ppm Sr+150ppm P 
alloy produced by mixing solid Al-30Si+300ppm P and liquid Al-8Si+300ppm Sr 
(SLD12) . 

b 
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A summary of all above results related to the solid-liquid duplex casting process are 

summarized in Table (4.2). From all of these results, the optimum amount of P in the 

solid Al-30Si alloy is 400 ppm and optimum amount of Sr in the target alloy is 200 ppm. 

These optimum values will allow for simultaneous refinement of primary Si and 

modification of eutectic Si in the Al-19Si alloy with a good distribution of primary Si 

particles. 
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L: Liquid           S: Solid       F: Fibrous    PL: Plate-Like    

 

Exp. 

No. 

Starting Alloy 1 (L) at 800 °C Starting Alloy 2 (S) at 200 °C 
Cast 

Temp. 

°C 

Primary Si 

size in 

target alloy 

(µm) 

Al-Si 

eutectic 

modification 

degree 
Comp. 

Mass  

(g) 

Mass 

of Sr 

(g) 

Sr 

(ppm) 
Comp. 

Mass 

(g) 

Mass 

of P 

(g) 

P 

(ppm) 

 

Primary 

Si size 

(µm) 

SLD1 Al-8Si 200 - - 

 

Al-30Si 

 

200 - 

 

- 

 

158±6.1 610 78±7.4 PL 

SLD2 Al-8Si 200 - - 

 

Al-30Si 

 

200 0.01 
50 

 
56±9.2 610 36±4.4 PL 

SLD3 Al-8Si 200 - - 

 

Al-30Si 

 

200 0.02 

 

100 

 

44±5.3 610 34±3.2 PL 

SLD4 Al-8Si 200 0.08 400 

 

Al-30Si 

 

200 - 

 

- 

 

158±6.1 610 48.8±1.3 F 

SLD5 Al-8Si 200 0.08 400 

 

Al-30Si 

 

200 0.01 

 

50 

 

56±9.2 610 35±1.4 F 

SLD6 Al-8Si 200 0.08 400 

 

Al-30Si 

 

200 0.02 

 

100 

 

44±5.3 610 33±1.1 F 

Table 4.2 Alloying parameters and key microstructural results for solid-liquid duplex casting of a target Al-19Si alloy cast from 610 °C 

using fixed solid : liquid alloy ratio of 1:1 (by mass). Continued overleaf.  
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Table 4.2 Continued 

Exp. 

No. 

Starting Alloy 1 (L) at 800 °C Starting Alloy 2 (S) at 200 °C 
Cast 

Temp. 

°C 

Primary Si 

size in 

target alloy 

(µm) 

Al-Si 

eutectic 

modification 

degree 
Comp. 

Mass 

(g) 

Mass 

of Sr 

(g) 

Sr 

(ppm) 
Comp. 

Mass 

(g) 

Mass 

of P 

(g) 

P 

(ppm) 

 

Primary 

Si size 

(µm) 

SLD7 Al-8Si 200 0.08 400 

 

Al-30Si 

 

200 0.04 

 

200 

 

40±8.2 610 31±0.9 F 

SLD8 Al-8Si 200 0.08 400 

 

Al-30Si 

 

200 0.06 

 

300 

 

38±7.1 610 30±0.5 F 

SLD9 Al-8Si 200 0.08 400 

 

Al-30Si 

 

200 0.08 

 

400 

 

37±5.4 610 29±1.1 F 

SLD10 Al-8Si 200 0.06 300 

 

Al-30Si 

 

200 0.08 

 

400 

 

37±5.4 610 29±1.2 F+PL 

SLD11 Al-8Si 200 0.04 200 

 

Al-30Si 

 

200 0.08 

 

400 

 

37±5.4 610 34±2.3 F+PL 

SLD12 Al-8Si 200 0.06 300 

 

Al-30Si 

 

200 0.06 

 

300 

 

38±7.1 610 35±1.8 F+PL 

 

L: Liquid           S: Solid       F: Fibrous    PL: Plate-Like    
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4.6.2.2 Optimum Si content in Sr-treated Al-Si alloy  

Experiments were carried out to optimize the Si content in the Sr-treated liquid Al-Si 

alloy to be mixed with the solid Al-30Si+400ppm P alloy, and the relative masses of the 

two starting alloys, cast at 610 ºC to produce Al-19Si+P+200ppm Sr alloy. The alloying 

parameters and experiments codes are provided in Table 4.3.  

Figures 4.60-4.63 show morphology of Si phases in the target alloy produced by 

mixing solid Al-30Si+400ppm P with liquid: commercial purity (CP) Al+540ppm Sr 

(SLD13), Al-8Si+400ppm Sr (SLD9), Al-12.6Si+317ppm Sr (SLD14) and                       

Al-15Si+274ppm Sr (SLD15) respectively. As shown in Figures 4.60-4.63, in using 

commercial purity aluminium alloy CPAl+540ppm Sr, Al-8Si+400ppm Sr,                    

Al-12.6Si+317ppm Sr and Al-15Si+274ppm Sr the mean particle size of primary Si in 

the resulting Al-19Si alloy were 36.2 µm (SLD13), 29 µm (SLD9), 21 µm (SLD14) and 

33.9 µm(SLD15) respectively. Furthermore, in the latter case (SLD15) there were 

occasional very coarse irregular primary Si particles. Accordingly the optimum Si 

content in Sr-treated melt for the solid-liquid duplex casting process is the eutectic 

composition i.e. Al-12.6Si, to produce Al-19Si+148ppm P+200ppm Sr as shown in 

Figure 4.64 which is a plot of average primary Si particle size against Si content of the 

liquid starting alloy. The particle size distribution of primary Si for this set of 

experiments is shown in Figure 4.65. It is clear that eutectic composition of the          

Sr-treated liquid alloy (SLD14) gave the narrowest range of primary Si particle size. A 

summary of all the above results related to optimum Si content in Sr-treated liquid Al-Si 

alloy for the solid-liquid duplex casting process is provided in Table 4.3. The optimum 

Si content in Sr-treated melt for the solid-liquid duplex casting process is the eutectic 

composition, i.e. Al-12.6Si. This optimum value will allow for simultaneous refinement 

of primary Si and modification of eutectic Si in the Al-19Si alloy. 

   

Figure 4.60 Optical micrographs of Al-19Si+252ppm P+200ppm Sr alloy produced by 
mixing solid Al-30Si+400ppm P alloy with liquid CP Al+540ppm Sr alloy cast from 610 ºC 
(SLD13) (a) low magnification and (b) high magnification. 

b 

 

 

 

a 
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Figure 4.61 Optical micrographs of Al-19Si+200ppm P+200ppm Sr alloy produced by 
mixing solid Al-30Si+400ppm P alloy with liquid Al-8Si+400ppm Sr alloy cast from 610 ºC 
(SLD9) (a) low magnification and (b) high magnification. 

 

  

Figure 4.62 Optical micrographs of Al-19Si+148ppm P+200ppm Sr alloy produced by 
mixing solid Al-30Si+400ppm P alloy with liquid Al-12.6Si+317ppm Sr alloy cast from 
610 ºC (SLD14) (a) low magnification and (b) high magnification. 

 

  

Figure 4.63 Optical micrographs of Al-19Si+108ppm P+200ppm Sr alloy produced  by 
mixing solid Al-30Si+400ppm P alloy with liquid Al-15Si+274ppm Sr alloy cast from 610 ºC 
(SLD15) (a) low magnification and (b) high magnification. 

a 

 

 

 

b 

 

 

 

b 
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b 

 

 

a 

 

 

 



115 
 

 

Figure 4.64 Plot of average primary Si particle size in the Al-19Si target alloy against 
Si content of the liquid Sr-treated Al-Si starting alloy (SLD13, 9, 14, 15). 

 

 

 

Figure 4.65 Particle size distribution of primary Si in Al-19Si+P+Sr alloy cast from 610 °C 
produced by mixing: (SLD13) solid Al-30Si+400ppm P alloy with liquid                    
CPAl+540ppm Sr alloy; (SLD9) solid Al-30Si+400ppm P alloy with liquid Al-8Si+400ppm Sr 
alloy; (SLD14) solid Al-30Si+400ppm P alloy with liquid Al-12.6Si+317ppm Sr alloy and 
(SLD15) solid Al-30Si+400ppm P alloy with liquid Al-15Si+274ppm Sr alloy. 

    SLD13     SLD9 

    SLD14 
   SLD15 
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    L: Liquid           S: Solid       

Exp. 
No. 

Starting Alloy 1 (L) at 800 °C Starting Alloy 2 (S) at 200 °C 
Cast 

Temp. 
°C 

Final content of P and 
Sr  

( Al-Si eutectic 
modification degree ) 

Primary 
Si size in 

target 
alloy 
(µm) 

Comp. 
Mass 

(g) 

Mass 
of Sr 
(g) 

Sr 
(ppm) 

Comp. 
Mass 

(g) 

Mass 
of P 
(g) 

 
p 

(ppm) 
 

SLD13 CP Al 148 0.08 540 
 

Al-30Si 
 

252 0.10 
 

400 
 

610 
252ppm P+200ppm Sr 

( Fibrous ) 
36.2±0.1 

SLD9 Al-8Si 200 0.08 400 
 

Al-30Si 
 

200 0.08 
 

400 
 

610 
200ppm P+200ppm Sr 

( Fibrous ) 
29±1.1 

SLD14 Al-12.6Si 252 0.08 317 
 

Al-30Si 
 

148 0.06 
 

400 
 

610 
148ppm P+200ppm Sr 

( Fibrous ) 
21±0.8 

SLD15 Al-15Si 292 0.08 274 
 

Al-30Si 
 

108 0.04 
 

400 
 

610 
108ppm P+200ppm Sr  

( Fibrous ) 
33.9±0.7 

Table 4.3 Alloying parameters and key microstructural results for solid-liquid duplex casting of a target Al-19Si alloy cast from 610 °C 
varying Si content of the low Si liquid alloy and the associated solid alloy : liquid alloy mass ratio. 
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4.6.2.3 Effect of casting temperature 

In the previously described experiments for solid-liquid duplex process, the casting 

temperature was 610 ºC i.e. in a semi-solid condition. In order to study the effect of 

casting temperature, experiments were conducted in the duplex process by mixing 

solid Al-30Si+400ppm P alloy with liquid Al-12.6Si+317ppm Sr melt to produce the 

target alloy Al-19Si+148ppm P+200ppm Sr. The casting temperatures were 610 ºC, 

710 ºC and 750 ºC. The experimental details and results are provided in Table 4.4.                                                                    

Figure 4.66 shows the morphologies of primary and eutectic Si of the Al-19Si target 

alloy produced by mixing solid Al-30Si+400ppm P with liquid Al-12.6Si+317ppm Sr cast 

from 610 ºC (SLD14), 710 ºC (SLD16) and 750 ºC (SLD17) .  

   

   

  

Figure 4.66 Optical micrographs of Al-19Si+148ppm P+200 ppm Sr alloy produced by 
mixing solid Al-30Si+400ppm P with liquid Al-12.6Si+317ppm Sr cast from: (a,b)      
610 ºC (SLD14); (c,d) 710 ºC (SLD16) and (e,f) 750 ºC (SLD17). (a,c & e) low 
magnification and (b,d & f) high magnification. 
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As shown in Figure 4.66 with the increase of casting temperature, the size of 

primary Si particles increased and they were uniformly distributed in a modified eutectic 

Si matrix. Figure 4.67 shows the particle size distributions of primary Si in Al-19Si                          

+148ppm P+200ppm Sr alloy produced by solid-liquid duplex casting process at 

different casting temperatures. The range of particle size of primary Si increased with 

the increase of casting temperature as shown in Figure 4.67. The measured average 

particle size of primary Si in the target alloy was 21, 25 and 29 µm for casting 

temperatures of 610 ºC (SLD14), 710 ºC (SLD16) and 750 ºC (SLD17) respectively as 

shown in Figure 4.68 which is a plot of average primary Si particle size against casting 

temperature of Al-19Si+148ppm P+200ppm Sr alloy produced by the solid-liquid duplex 

casting process. A summary of all above results related to the effect of casting 

temperature for the solid-liquid duplex casting process is provided in Table 4.4. 

 

 

Figure 4.67 Particle size distribution of primary Si in Al-19Si+148ppm P+200ppm Sr 
alloy produced by mixing solid Al-30Si+400ppm P with liquid Al-12.6Si+317ppm Sr cast 
from: (SLD14) 610 °C; (SLD16) 710 °C and (SLD17) 750 °C. 

    SLD17 

    SLD16     SLD14 
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L: Liquid           S: Solid       

Exp. 
No. 

Starting Alloy 1 (L) at 800 °C Starting Alloy 2 (S) at 200 °C 

Cast 
Temp. 

°C 

Final content of P and 
Sr  

( Al-Si eutectic 
modification degree ) 

Primary 
Si size in 

target 
alloy 
(µm) 

Comp. 
Mass 

(g) 

Mass 
of Sr 
(g) 

Sr 
(ppm) 

Comp. 
Mass 

(g) 

Mass 
of P 
(g) 

 
p 

(ppm) 
 

SLD14 Al-12.6Si 252 0.08 317 
 

Al-30Si 
 

148 0.06 
 

400 
 

610 
148ppm P+200ppm Sr 

( Fibrous ) 
21±0.8 

SLD16 Al-12.6Si 252 0.08 317 
 

Al-30Si 
 

148 0.06 
 

400 
 

710 
148ppm P+200ppm Sr 

( Fibrous ) 
26±0.3 

SLD17 Al-12.6Si 252 0.08 317 
 

Al-30Si 
 

148 0.06 
 

400 
 

750 
148ppm P+200ppm Sr 

( Fibrous ) 
29±0.6 

SLD18 Al-12.6Si 252 0.08 317 
 

Al-30Si 
 

148 0.08 
 

540 
 

610 
200ppm P+200ppm Sr 

( Fibrous ) 
21±1.1 

Table 4.4 Alloying parameters and key microstructural results for solid-liquid duplex casting of a target Al-19Si alloy produced by 

mixing solid Al-30Si+400ppm P with liquid Al-12.6Si+317ppm Sr cast from different casting temperatures. In addition to SLD18 in 

which Al-19Si+200ppm P+200ppm Sr alloy produced by solid-liquid duplex process, cast from 610 °C. 
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Figure 4.68 Plot of average primary Si particle size in Al-19Si+148ppm P+200ppm Sr 
alloy produced by solid-liquid duplex casting process against casting temperature 
(SLD14, 16, 17). 
 

Since in the case of SLD16 & SLD17 the casting was above the liquidus 

temperature, it is effectively no longer solid-liquid duplex casting and the pre-refined 

primary Si should have melted. The above results show that casting at higher 

temperature in the solid-liquid duplex process can give a refined primary Si with a good 

distribution in a modified Al-Si eutectic matrix. This indicates that the AlP particles are 

remain isolated from the Sr modifier in the Sr-treated Al-Si starting alloy so there was 

no loss in modification. To check this hypothesis, another experiment was conducted 

by adding 200 ppm P to Al-19Si alloy melted at 800 °C. After 20 min this alloy was 

cooled downed to about 700 °C and 200 ppm Sr was added to the melt with gentle 

stirring and cast from 610 °C. Figure 4.69 shows the morphologies of Si of the           

Al-19Si+200ppm P+200ppm Sr produced by adding 200ppm Sr to Al-19Si+200ppm P 

at 700 °C then cast from 610 °C after 20 min. As shown in Figure 4.69 (a,b) the mean 

particle size of primary Si was refined to 22 μm and the eutectic Si had a fibrous 

structure. Figure 4.70 shows the particle size distribution of primary Si in the Al-Si 

eutectic matrix. Figure 4.70 confirms the improved refinement of primary Si using the 

latter process. 
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Figure 4.69 Optical micrographs of Al-19Si+200ppm P+200ppm Sr alloy produced by: 
conventional casting process of Al-19Si+200ppm P cooled down from 800 °C to 700 °C 
then adding 200 ppm Sr, cast from 610 °C. (a) low magnification and (b) high 
magnification.  
 

 

 

Figure 4.70 Particle size distribution of primary Si in Al-19Si+200ppm P+200 ppm Sr 
produced by conventional casting process of Al-19Si+200ppm P cooled down from   
800 °C to 700 °C then adding 200ppm Sr, cast from 610 °C. 

4.6.2.4 Comparison between the solid-liquid duplex and conventional 
casting processes 

In order to evaluate the solid-liquid duplex casting process, Al-19Si+200ppm P 

+200ppm Sr alloy was produced by both conventional and duplex casting processes. 

The optical micrographs in Figure 4.71 show the morphologies of primary and eutectic 

Si in the Al-19Si+200ppm P+200ppm Sr target alloy produced by conventional casting 

process by adding 200ppm P and 200ppm Sr and casting from 800 ºC and by the 

solid-liquid duplex casting process by mixing solid Al-30Si+540ppm P with liquid        

b 

 

 

a 
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Al-12.6Si+317ppm Sr cast from 610 ºC (SLD18 in Table 4.4). As shown in Figure 4.71 

(c,d) the mean particle size of primary Si was refined to less than 21 μm and the 

eutectic Si had a fibrous structure. In using the conventional casting process as 

discussed in section 4.6.1, the mean particle size of primary Si was 26 µm dispersed in 

a partially modified Al-Si eutectic matrix, as shown in Figure 4.71 (a,b). Figure 4.72 

compares the primary Si particle size distribution of Al-19Si alloy treated with 200ppm 

P and 200ppm Sr cast conventionally and produced by using solid-liquid duplex casting 

approach. Figure 4.72 confirms the further refinement of primary Si using the solid-

liquid duplex casting process. 

 

 

   

  

Figure 4.71 Optical micrographs of Al-19Si+200ppm P+200ppm Sr alloy produced by: 
(a,b) conventional casting process at 800 ºC, (c,d) solid-liquid duplex casting process 
610 ºC (SLD18).  (a,c) low magnification and (b,d) high magnification.  
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Figure 4.72 Particle size distribution of primary Si in Al-19Si+200ppm P+200ppm Sr 
produced by the solid-liquid duplex (SLD18) and conventional casting processes. 

 

4.6.2.5 Application of the solid-liquid duplex process for producing         
Al-18Si alloy 

For the production of another target alloy such as Al-18Si with simultaneous refinement 

of primary Si and modification of eutectic Si, a further experiment was carried out by 

applying the solid-liquid duplex casting process. In this experiment P-treated Al-24Si 

with 100ppm P solid alloy was mixed with Sr-treated Al-12.6Si+400ppm Sr molten alloy 

to provide an Al-18Si alloy in the Liquid + Primary Si phase field and then cast from 

610 ºC. The resultant alloy was Al-18Si+50ppm P+200ppm Sr. 

Figure 4.73 shows typical microstructures of conventionally cast Al-18Si without and 

with addition of Sr and P. The untreated Al-18Si (Figure 4.73 (a,b)) contained coarse 

primary Si with average particle size of approximately 50 µm and the eutectic Si had a 

mostly plate-like morphology as shown in Figure 4.73b. The conventionally cast Al-18Si 

treated with both P and Sr contained refined primary Si particles with average particle 

size of  20 µm dispersed in a partially modified Al-Si eutectic matrix, as shown in Figure 

4.73 (c,d).  
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Figure 4.73 Optical micrographs of conventionally cast Al-18Si alloy: (a,b) Al-18Si 
without P and Sr and (c,d) Al-18Si+50ppm P+200ppm Sr. (a,c) low magnification to 
show the size and distribution of primary Si, (b,d) high magnification to show the 
eutectic structure. 
 

Typical microstructures of Al-18Si treated with P and Sr using the solid-liquid duplex 

casting process are provided in Figure 4.74. The mean particle size of primary Si was 

duly more refined than the conventionally cast alloy to less than 15 μm and the eutectic 

Si had a fibrous structure typical of a fully modified eutectic.  

     

Figure 4.74 Optical micrographs of Al-18Si+50ppm P+200ppm Sr produced by the 
solid-liquid duplex casting process cast at 610 ºC. (a) low magnification and (b) high 

magnification.  

d 

 

 

 

c 

 

 

 

b 

 

 

 

a 

 

 

 

a 

 

 

 

b 

 

 

 



125 
 

Figure 4.75 compares the primary Si particle size distribution of Al-18Si treated with 

50ppm P and 200ppm Sr cast conventionally and using the solid-liquid duplex casting 

approach. Figure 4.75 confirms the improved refinement of primary Si using the latter 

process. 

 

 

Figure 4.75 Particle size distribution of primary Si in Al-18Si+50ppm P+200ppm Sr 

produced by the solid-liquid duplex and conventional casting processes. 

4.6.3 Mechanical properties 

In order to evaluate the new solid-liquid duplex casting process in comparison with the 

conventional casting process, the mechanical properties (ultimate tensile stress and 

elongation) of Al-18Si alloy produced by each casting process such as solid-liquid 

duplex and conventional casting processes were measured. Figure 4.76 shows the 

ultimate tensile stress and elongation of Al-18Si alloy produced either by solid-liquid 

duplex casting process (SLD at 610 ºC) or by conventional casting process (at 800 ºC) 

without and with P and Sr additions. As shown in Figure 4.76, the ultimate tensile 

strength (UTS) of Al-18Si alloy increased by approximately 9.4, 10, 12 and 14% from 

153.5 MPa for the conventionally cast untreated alloy to 168, 169, 172 and 175.1 MPa 

for the Sr, P, P+Sr treated alloy and for the solid-liquid duplex casting process 

respectively. Similarly the elongation was more than doubled from 1.64% for untreated 

Al-Si alloy to 3.76% for Al-18Si alloy produced by solid-liquid duplex casting process. 
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There was also a small improvement in UTS and elongation in comparison to 

conventionally cast Al-18Si treated with P and/or Sr.  

 

  

 

Figure 4.76 Ultimate tensile strength and elongation of Al-18Si produced by the    
solid-liquid duplex (SLD) and conventional casting processes (without and with           
50 ppm P and 200 ppm Sr addition cast from 800 °C). 
 

In summary the solid-liquid duplex casting process is a promising technique for 

producing hypereutectic Al-Si alloys. It allows for simultaneous refinement of primary Si 

and modification of eutectic Si with significant improvement in the mechanical 

properties if compared with the conventional casting process.  

Further work is required to optimize this casting process for industrial application 

and check the improvement in mechanical properties if compared with the conventional 

casting process cast at 610 ºC. 
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Chapter 5 

Discussion  
 

In the previous  chapter a significant improvement in refinement of primary Si and 

modification of eutectic Si were shown to be achieved under different casting 

conditions. The most significant results were: 

 The tendency for primary Si to segregate to the top of a sampled specimen 

particularly under slow solidifications conditions and the direct effect of 

solidification rate (cooling rate and superheat) on the macro-segregation of 

primary Si and on the morphologies of primary and eutectic Si. 

 The significant effect of Ca content on the morphologies of primary and eutectic 

Si and thus on the refinement and modification processes. 

 Using a promising Al-ZnS master alloy shows that zincblende ZnS particles 

prepared in situ are potent substrates to refine the primary Si crystals without 

loss of eutectic modification. 

 P-doped γ-Al2O3 is a potent substrate to nucleate primary Si retaining good 

modification of the eutectic matrix in solidification of hypereutectic Al-Si alloys.  

 The morphologies of primary and eutectic Si can be controlled by using a new 

solid-liquid duplex casting process.  

The explanation and discussion of these results will be covered in detail in this chapter. 

5.1 Effect of Solidification Rate on Primary and Eutectic Si   

According to the literature, the morphologies of primary and eutectic Si in hypereutectic 

Al-Si alloys are a strong function of the solidification conditions such as cooling rate 

and melt temperature [13]. The effect of solidification rate on macro-segregation and 

morphologies of Si in solidification of Al-15Si alloy will be discussed in this section.  

5.1.1 Effect of cooling rate  

In slowly cooled castings of hypereutectic Al-Si alloys, it is reported that the primary Si 

segregates to the upper parts of the casting. This phenomenon is assumed to be 

caused by gravity segregation, i.e. less dense silicon particles float in the aluminium 

melt during solidification [29]. Thus, for accurate microstructure analysis and evaluation 

of different refinement solidification conditions and methods in this study; a robust 

casting and sampling procedure was developed.  
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It is clear from the results described in section 4.1.1 that primary Si in Al-15Si alloy 

suffers from macro-segregation to the top of the test specimens, particularly under slow 

directional solidifications conditions i.e. at low cooling rate or at high pouring 

temperature. This was particularly evident under the low cooling rate in a standard   

TP-1 test sample with cooling rate equal to 3.5 K/s at the central region of a cross-

section, 38 mm from the base of the TP-1 sample. This low cooling rate increases the 

solidification time which allows more time for the segregation and floatation of primary 

Si particles. Liang [128] has suggested that localized growth of primary Si (involving 

diffusive transport of silicon atoms in the melt) as well as floatation of primary Si 

particles (buoyancy driven convection) are operative at low cooling rates. Because time 

was available for both processes, the nucleation and growth as well as floatation of 

primary Si were to be expected under low cooling rate. The same phenomena were 

noticed for samples using the air cooled steel mould with cooling rate equal to 1K/s. 

Macro-segregation of primary Si was restricted in the case of using the water cooled 

steel mould even at high pouring temperature. Thus, the high cooling rate (in excess of 

15 K/s) decreases the solidification time and there will be less time for the segregation 

and floatation of primary Si. The results from the experiments leave no doubt that 

gravity segregation of the primary Si occurs at cooling rates below 15 K/s. 

It is clear that at low cooling rate the morphology of primary Si in the segregation 

zone was a mixture of branched plate-like and polyhedral particles dispersed in an 

acicular eutectic structure. With the increase of cooling rate, the primary Si became 

mostly polyhedral and dispersed in a refined lamellar eutectic structure.  

Generally, primary Si grows by attachment of Si atoms to the atomic planes of 

primary Si particles. Accordingly, the diffusion of Si atoms will play an important role 

during the growth of primary Si. With increasing cooling rate the diffusion of Si atoms in 

the liquid metal will become more difficult, and thus the growth of primary Si will be 

restricted. Therefore, the primary Si size is significantly decreased with the increasing 

cooling rate which is evident from the microstructures seen in Figure 4.1. 

From the above discussion, we can conclude that there is a tendency for primary Si 

to segregate to the top of sampled specimens particularly under slow solidifications 

conditions. High cooling rates produce refined lamellar eutectic structures with good 

distribution of fine and compact particles of primary Si. Using the water cooled steel 

mould with cooling rate in excess of 15 K/s is very efficient at minimising the        

macro-segregation of primary Si even at high pouring temperature.  
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5.1.2 Effect of melt superheat  

The optical micrographs illustrated in Figures 4.2 and 4.3 show that the morphology of 

primary and eutectic Si changed with increasing melt temperature. Higher superheat 

produces a refined lamellar eutectic structure with a good distribution of refined 

polyhedral particles of primary Si. With increasing melt superheat temperature, some 

Si-Si bonds in the Si-Si clusters are destroyed and silicon atoms diffuse from Si-Si 

clusters into the Al bulk melt. Therefore, the higher melt superheat, the smaller the size 

of Si-Si clusters due to the destruction of Si-Si bonds. Furthermore, structural studies 

have shown that superheat changes the melt structure [166-168]. Some researchers 

have suggested that the nucleation of  star-like primary Si results from the formation of 

tetrahedral groups of silicon atoms in the liquid melt. Generally, Si-Si clusters of larger 

size should generate more silicon tetrahedra than those of smaller size. Therefore, in 

the present study, it can be safe to deduce that Si-Si clusters of larger size should be 

beneficial for the formation of the nucleus of star-like and other irregular primary Si and 

Si-Si clusters of smaller size should be beneficial for the formation of the nuclei of 

octahedral or polygonal primary Si [13]. 

Inci et al. [22] suggested that breaking of the Si-Si bonds happens in the melt with 

increasing temperature and that Si atoms diffuse into the Al bulk melt. Where, during 

the diffusion process, some original Si-Si bonds are destroyed whilst at the same time 

some new Al-Si bonds are formed. From this fact, it can be deduced that the Si atoms 

occupied the positions of Al atoms in the bulk melt after leaving the Si-Si clusters. The 

melt structure seems to become more homogeneous with the increase in melt 

superheat, leading to a decrease in the volume fraction of primary Si in the Al-Si matrix 

as shown in Figure 4.5. Calvo-Dahlborg et al. [169] investigated the effect of superheat 

on the microstructure of Al-Si alloys of hyper, hypo and eutectic compositions by Small 

Angle Neutron Scattering (SANS) during thermal cycles above the liquidus 

temperature. They proved that for all compositions, the melt is more homogeneous at 

the maximum temperature after heating. 

Bian and  Wang [11] investigated the structures of the melt of Al-13Si alloy heated in 

the temperature range from 625 °C to 1250 °C. The high temperature X-ray 

diffractometer showed that with increasing the temperature up to 775 °C, the atomic 

density and the coordination number of the alloy increase slowly, then a sudden 

change in those parameters occurs in the temperature range from 775 °C to 875 °C. 

These results suggest that the liquid structure changed, which is caused by dissolving 

of Si-Si clusters into the Al bulk melt. This finding supports our results that there was a 

significant change in silicon morphology at melt temperature above  750 ºC as shown 

in Figure 4.5. 
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5.1.3 Summary 

From above results, we can conclude that:  

1. There is a tendency for primary Si to segregate to the top of sampled 

specimens particularly under slow solidifications conditions.  

2. With increasing cooling rate, the primary Si became mostly polyhedral and 

dispersed in a refined lamellar eutectic structure.   

3. Using the water cooled steel mould provided a cooling rate in excess of 15 K/s 

which is very efficient in preventing the macro-segregation of primary Si even at 

high pouring temperature. 

4. The morphologies of primary and eutectic Si change with increasing melt 

superheat. High superheat produces refined lamellar eutectic structure with a 

good distribution of polyhedral particles of primary Si.  

5. The melt structure becomes more homogeneous with increasing melt 

superheat. This leads to a decrease in the average particle size of primary Si 

with increasing melt superheat while the particles became more compact in 

shape. The particle number density of primary Si in Al-15Si significantly 

increased in the melt temperature range from 845 °C to 1150 °C suggesting 

enhanced nucleation.  

6. Any future experiments, e.g. in order to study the effect of parameters other 

than melt superheat, need to be carried at temperatures of around 800 °C for     

Al-15Si alloy and samples should be taken by using a technique with a cooling 

rate of no less than 15 K/s to overcome the macro-segregation of primary Si 

and eliminate the effect of superheat.  

5.2 Refinement and Modification in a High Purity Hypereutectic Al-Si Alloy 

5.2.1 Unmodified/unrefined high purity Al-15Si alloy 

The optical micrographs in Figure 4.6 show that unmodified/unrefined high purity       

Al-15Si alloy consists of irregular coarse primary Si particles with average particle size 

of 68 µm dispersed in a lamellar eutectic structure. However, typical micrographs of 

commercial purity Al-15Si alloy show that it consists of coarse polygonal primary Si 

with average particle size of approximately 48 µm with eutectic Si having a mostly 

fibrous morphology. In solidification of unrefined and unmodified Al-15Si alloy, the 

mechanism for nucleation and growth of primary and eutectic Si are as follows:  
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(1)  Homogeneous nucleation and growth mechanism of primary Si in 
unrefined hypereutectic Al-Si alloys 

Before solidification of unrefined hypereutectic Al-Si alloys, Si atoms will arrange 

themselves in the form of tetrahedra when close to their freezing point. Then, the Si 

nucleates on embryos that form by the coalescence of these tetrahedra. The optimum 

shape of these embryos is determined by surface energy considerations. An embryo 

bound by low energy facets of {111} planes is the most thermodynamically stable. 

Thus, the most stable Si nucleus is a decahedron bound by {111} facets. This formed 

nucleus grows at locations with multiple twins by the Twin Plane Re-entrant Edge 

(TPRE) mechanism. Hence, primary Si nucleates on equiaxed, twinned embryos and 

grows into different morphologies [170]. The most commonly observed primary Si 

morphologies are massive primary Si, which is also known as polygonal Si (compact 

surface), and star-like primary Si which is highly irregular in shape [39].  

Xu et al. [171] suggested different sequences of crystal growth of octahedral primary 

Si in inoculated hypereutectic Al-Si alloys as shown in Figure 5.1. According to the 

vector relationship for a Si crystal, illustrated in Figure 5.2, they suggested that at the 

initial stage, a primary Si crystal will grow rapidly along [100] directions to form stable 

initial branches (see the second step in Figure 5.1). As a result, growth is suppressed 

in all directions except the high-mobility [100] direction due to the strong faceting 

tendency of the growing primary Si crystal. They found that: 

 The primary Si crystal will grow as a perfect octahedron when V[100]/V[111]= 1.5 

as observed in most examples of solidification of commercial purity Al-Si alloys 

in this thesis and shown in Figure 4.6.  

 If V[100]/V[111] <1.5, the primary Si crystal will grow as other irregular 

morphologies which occurs in solidification of Al-Si alloys at low cooling rate or 

solidification of high Si content unrefined Al-Si alloy as illustrated in Figures 4.2 

& 4.46a.  

 

  

Figure 5.1 A schematic diagram illustrating the different growth sequences of 
octahedral primary Si in unmodified Al-Si alloys [171].   
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Figure 5.2 A schematic diagram illustrating the vector relationship between the growth 
rate V[100] normal to the [100] growth direction, growth rate V[E] normal to the edges and 
the growth rate V[111] normal to the {111} facets [171]. 

Some investigations have been made to study the octahedral morphologies of 

primary Si in unrefined hypereutectic Al-Si alloys. Wang et al. [172] have investigated 

the relationships between the morphologies and growth mechanisms of primary Si and 

believed that octahedral primary Si can be formed primarily by layer growth, which is 

the generation of repeated parallel {111} planes on {111} facets. At the same time, they 

derived a general equation for stable faceted growth of the Si, and indicated that no 

evidence of the Twin Plane Re-entrant Edge (TPRE) growth mechanism was found in 

the growth of the octahedral-type crystals. However, they also suggested that the 

dislocation mechanism provided a major source for layer growth of the primary Si 

crystal by the observation of dislocation spirals on {111} facets [173]. 

(2) Growth of unmodified eutectic Si in Al-Si alloy 

In the Al-Si system, Si is a non-metal with directional covalent bonds. It tends to grow 

anisotropically into faceted crystals and hence it requires more undercooling for its 

growth than the isotropic aluminium phase. Therefore, the coupled region in the Al-Si 

system is asymmetric [174]. Coupled regions represent fields within the phase diagram 

where the two phases of the eutectic are organized in the solid in such a way as to 

allow diffusion in the liquid to occur effectively at a duplex solid/liquid front as shown in 

Figure 5.3 [39]. The morphology of unmodified eutectic Si is typically coarse and flaky 

and is usually observed in slowly cooled foundry alloys and when no chemical 

modifiers are added. 
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Figure 5.3 Coupled zones in (a) symmetrical and (b) asymmetrical phase diagrams. The 

Al-Si system has a typical asymmetrical phase diagram [39]. 

Wagner [175] proposed a Twin Plane Re-entrant Edge (TPRE) growth mechanism 

of the eutectic Si in un-modified Al-Si alloys. The unmodified plate-like form of Si can 

grow easily only in the <112> crystallographic direction, and when the crystal structure 

of Si is taken into account, this implies that the large flat faces of the crystal are {111} 

planes. A very important feature of Si crystallization is that twins are easily formed and 

hence unmodified Si occurs basically in an unbranched, flat-plate morphology. 

Crosley and Mondolfo [176] suggested that the needle-like Si particles observed in 

unmodified alloys must be flakes or sheets. Now, with the availability of electron 

microscopy, it is confirmed that Si in unmodified Al-Si eutectics has the flake-like 

structure.  

5.2.2 High purity Al-15Si alloy refined with P  

Optical micrographs in Figure 4.7 for solidification of Al-Si alloys show that adding      

20 ppm P is quite enough to refine primary Si in the high purity alloy and to reduce the 

average particle size from 68 µm to 20 µm, while adding 20 ppm P to commercial purity 

Al-15Si alloy refine the primary Si and reduce the average particle size from 48 µm to 

25 µm. 

In heterogeneous nucleation of primary Si, the added phosphorus combines with 

molten aluminium to form tiny, insoluble AlP particles. These particles are suspended 

in the melt and act as potent sites for epitaxial nucleation and growth of primary Si. At 

the same time these AlP particles are responsible for the nucleation of Si in the eutectic 

matrix [65]. In using commercial purity Al-15Si alloy, the amount of P required to refine 

(b)
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primary Si to less 20 µm should be more than 50 ppm [68]. It has been proven that high 

Ca content can lead to P refinement inefficiency. This phenomenon is due to the 

formation of CaxPy compounds, which are more stable than AlP in the Al-Si melt [163] 

or the rapid and continuous oxidation of Ca leads to transformation of AlP to non potent 

AlPO4 particles. The estimated free enthalpy of formation of Ca3P2 (-506 kJ mol-1) is 

much less than that of the AlP phase (-111.66 kJ mol-1) [177]. Hence, in the presence 

of elements with more negative enthalpy of phosphide formation, the AlP will become 

depleted. It is important to point out that the lack of AlP phase results in an increased 

primary Si particle size. The eutectic Si structure in solidification of both high purity and 

commercial purity  Al-15Si+20ppm P alloys was lamellar. 

5.2.3 High purity Al-15Si alloy modified with Ca 

Optical micrographs in Figure 4.8 show that adding 30 ppm of Ca has a significant 

effect on modification of high purity Al-15Si alloy. The Ca modified high purity Al-15Si 

alloy contains no primary Si particles, i.e. there was a shift in the apparent eutectic 

position with the addition of Ca. 

It is well established in the literature that alloys within a few percent of the usual 

eutectic composition of 12.6 wt% Si are sensitive to the presence of a refiner such as 

phosphorus or a modifier such as sodium or strontium: Alloys containing 11 or 12 wt% 

Si easily develop numerous primary Si particles in the presence of phosphorus, and 

alloys containing 13 or 14 wt% Si will contain no primary Si in the presence of sufficient 

sodium or strontium [30] as shown in Figure 5.3. Jenkinson et al. [178] investigated the 

effect of adding Sr to high purity Al-Si alloys and they found that in the presence of 0.02 

wt% Sr no primary Si appears in any alloy containing up to 17 wt% Si. They concluded 

that the apparent shift of the eutectic point can be attributed to the shape of the 

coupled region boundary, and the suppression of primary Si. 

The typical unmodified Al-Si eutectic is closer to a lamellar structure than to a 

fibrous one. This structure is usually attributed to the strong anisotropy of growth of Si 

and to the relatively low interfacial energy between Si and aluminium [39]. Trace 

amounts of Ca can effectively modify the eutectic Si shape, similar to that with sodium 

or strontium under the same melting and casting conditions. Knuutinen et al. [87] 

reported that Ca can cause a depression of the eutectic arrest and result in fibrous 

eutectic Si. Due to the low level of P content in high purity Al-15Si (less than 1 ppm), 

the modification with 30 ppm Ca was very efficient. The optimum amount of Ca used to 

modify eutectic Si in commercial purity Al-Si alloy should be more than 40 ppm [6]. 
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5.2.4 Summary 

The conclusions from the above results are: 

1. High purity Al-15Si alloy, cast in the steel mould with a cooling rate of 15K/s, 

consists of irregular coarse primary Si particles, 68 µm in size, dispersed in a 

lamellar eutectic structure. On the other hand, commercial purity Al-15Si alloy 

consists of a coarse octahedral primary Si with average particle size of 

approximately  48 µm and the eutectic Si had a mostly fibrous morphology. 

2. Adding 20 ppm P was quite enough to refine primary Si in high purity Al-15Si 

alloy and to reduce the average particle size from 68 µm to 20 µm. The same 

amount of P also refined primary Si in commercial purity Al-15Si alloy and 

reduced the average particle size from 48 µm to 25 µm. 

3. Adding 30 ppm of Ca to the high purity Al-15Si can modify the eutectic matrix to 

a fibrous structure and suppress formation of primary Si, i.e. the apparent 

eutectic position is shifted. 

 

5.3 Effect of Ca Level on Primary and Eutectic Si   

The effect of Ca on the formation of primary and eutectic Si during solidification of 

commercial purity Al-15Si alloy was studied through both the reduction of Ca impurity 

level by the addition of K2SiF6 flux and by raising the Ca level by adding 0.5 wt % Ca. 

In addition, the effect of Ca level on Si morphologies in the presence of Mg and Sb will 

be discussed.  

5.3.1 Removal of Ca by K2SiF6 flux 

Results in section 4.3.1 show that the use of K2SiF6 flux, and the consequential 

reduction of Ca impurity content, led to refinement of the primary Si particles to an 

average size of 20 μm. The morphology of Si in the eutectic matrix changed from the 

fibrous structure of the untreated alloy to a plate-like structure. 

Liu et al. (2005) [78] studied the effect of Ca content in A390 alloy on the efficiency 

of P as a refiner of primary Si. They found that the efficiency of P could be recovered 

by adding C2Cl6 to remove Ca, and explained that the inefficiency of P as a refiner for 

primary Si in the presence of Ca is due to the formation of Ca-Si-P phases reducing the 

amount of potent AlP available for enhancing the nucleation of primary Si [177]. 

The free energies of formation of SiP, AlP and Ca3P2 are -50.85 kJmol-1,                     

-128.74 kJmol-1 and -522.48 kJmol-1 respectively [177, 179]. Hence Ca3P2 is 

significantly more stable than AlP. When an Al-Si alloy contains both Ca and P they will 

interact, and if there is an excess of Ca then the eutectic Si will be modified and the 



136 
 

primary Si unrefined, and if there is an excess of P then the primary Si will be refined 

and the eutectic Si unmodified. 

5.3.2 High Ca content  

The Al-15Si alloy with 0.5 wt% Ca added contained a far greater quantity of entrained 

oxide bifilms than the alloy with only impurity levels of Ca as shown in Figure 4.13 and 

Figure 5.4 suggesting the presence of a weak oxide film on the surface of the melt.  

 

   

Figure 5.4 back scattered SEM and optical micrographs of the typical morphology of 
primary Si and the Al-Si-Ca phase, in the Al-15Si-0.5Ca alloy. (a) Entrained oxide bifilm 
and (b) primary Si and Al-Si-Ca phase formed in association with each other and with 
oxide bifilms.  

 

Such a weak oxide film may break up in turbulent flow or even under the action of 

gentle mixing and become incorporated in the bulk of the casting in the form of 

entrained inclusions and bifilms [6]. Figure 5.5a is an SEM image showing an example 

of the high concentration of bifilms. Figure 5.5a also shows that the bifilms were 

decorated by dispersoids. Figure 5.5b is an EDS point analysis of the dispersoids 

attached to the oxide bifilms which confirmed that the dispersoids contained Al, Si and 

Ca. The vertical section of the Al-Si-Ca phase diagram shown in Figure 4.12 indicates 

that the first phase to form in solidification of Al-15Si-0.5Ca alloy should be Al2CaSi2. 

Together the EDS analysis and the phase diagram indicate that the dispersoids 

decorating the oxide bifilms were Al2CaSi2. 
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Figure 5.5 (a) Back scattered SEM micrograph showing the high level of entrained 
oxide in the Al-15Si-0.5Ca alloy, and the association of Al-Si-Ca dispersoids with the 
oxide bifilms; and (b) typical EDS point analysis spectrum from the Al-Si-Ca 
dispersoids. 

     

 Figure 4.13 & 5.4 show that primary Si and the Al2CaSi2 phase formed in intimate 

association with each other and in association with the oxide inclusions. There has 

been some previous experimental evidence to suggest that Si particles may nucleate 

and grow on oxide bifilms during solidification of hypereutectic Al-Si alloys [65]. The 

nucleation of primary Si on oxide bifilms may be due to one of the following 

hypotheses: 

1. AlP particles first nucleate on oxide films and serve as nucleation sites for Si. 

This is because of the high tendency for P to be adsorbed to the surface of 

Al2O3 [159]. Work by Pennors et al. [157] supports this hypothesis. They 

presented clear microstructures in which AlP particles are seen aligning along 

oxide bifilms. However, no evidence was found in the present study that 

revealed AlP particles on the entrained oxide bifilms. 

2. The oxide film contains a potent substrate for heterogeneous nucleation of 

primary Si. Table 5.1 provides crystallographic data, potential orientation 

relationships and associated calculated lattice misfits between Si and AlP, 

Al2CaSi2 and relevant oxides. The misfit between Si and AlP is very close to 

zero, leading to the extremely high potency for AlP to nucleate Si. The misfits 

between Si and the two common forms of Al2O3 are too high for the oxides to 

act as heterogeneous nucleants for Si. Choi et al. [18] investigated how γ-Al2O3 

nanoparticles can be used for simultaneous refinement and modification of Si in 

hypereutectic Al-Si-Cu alloy melts. In this case, the γ-Al2O3 nanoparticles were 

incorporated in the melt during ultrasonic processing. Zhang et al. [25] found 

ultrasonic vibrations to be effective for refinement and modification of the Si 

phases in hypereutectic Al-Si alloys, and so the refinement and modification of 
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Si in the results of Choi et al. [18] may have been due to their method of 

incorporating the γ-Al2O3 nanoparticles rather than the nanoparticles 

themselves. 

The evidence for the nucleation of primary Si on oxide inclusions is not strong. 

However, Table 5.1 shows that the misfit between Si and Al2CaSi2 is less than 8%, 

suggesting that Al2CaSi2 could be an effective heterogeneous nucleant for primary Si. 

 

Table 5.1 Calculated lattice misfit f between Si and some substrates.* 

Interface 
 

Crystal structure &  
lattice parameters 
{nm} [60, 177, 180] 

OR: (hkl)[uvw]
Si

 

//(hkl)[uvw]
S
 

d[uvw]Si 
{nm} 

d [uvw]S 
{nm} 

f 
{%} 

Si /AlP 

 
Si: cubic, a=0.5421, 
AlP: cubic, a=0.5431 

  

(111)[110]//(111)[110] 0.3833 0.3840 -0.18 

Si/ 
Al2CaSi2 

Si: cubic, a=0.5421, 
Al2CaSi2: hexagonal, 
a=0.4130, c=0.7145  

OR I:(111)[110]//(0001)[11-20], 
OR II:(111)[110]//(0001)[10-10] 

0.3833 
2×0.3833 

0.4130 
0.7153 

7.7 
6.7 

Si/ 
α-Al2O3 

 
Si: cubic, a=0.5421, 

α-Al2O3: rhomb. 
a=0.4782; c=1.3057 

 

(111)[110]//(0001)[11-20] 0.3833 0.4782 -24.8 

Si/ 
γ-Al2O3 

Si: cubic, a=0.5421, 
γ-Al2O3 : cubic, 

a=0.7963  
(111)[110]//(111)[110] 0.3833 0.5631 -46.9 

* Subscript S=substrate. OR=orientation relationship which is according to the match of most densely 

packed planes and directions. The misfit f is defined as (d[u v w]Si -d[uvw]S) / d[u v w]Si [126]. 

 

Table 5.2 provides crystallographic data, potential orientation relationships and 

associated calculated lattice misfits between Al2CaSi2 and relevant oxides. The data 

shows that neither of the oxides has a sufficiently small misfit with Al2CaSi2 for them to 

act as potent substrates for nucleation of this phase over a single lattice spacing. 

However Al2CaSi2 has an orientation relationship with α-Al2O3 (OR II) that has a misfit 

of only -0.28% over two lattice spacings of Al2CaSi2. Moreover Al2CaSi2 has an 

orientation relationship with γ-Al2O3 (OR II) over two lattice spacings of the 

intermetallic, with a misfit less than 5%. 

Taking into account the microstructural evidence and the crystallographic data 

provided in this section it is proposed that in the Al-15Si alloy with 0.5 wt% Ca added: 

(i) Al2CaSi2 is the first phase to form during solidification and it nucleates and grows on 

the entrained oxide inclusions and bifilms, then (ii) primary Si forms by nucleation and 

growth on the Al2CaSi2 particles [181].  
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Table 5.2 Calculated lattice misfit f between Al2CaSi2 and some substrates.* 

Interface 

Crystal structure 
& lattice 

parameters 
{nm} [60, 180] 

OR: (hkl)[uvw]
Al2CaSi2

 

//(hkl)[uvw]
S
 

d[uvw]Al2CaSi2 
{nm} 

d[uvw]S       
{nm} 

f    
{%} 

Al2CaSi2 
/ 

α-Al2O3 

Al2CaSi2:hexagon
al, a=0.4130, 

c=0.7145, 
α-Al2O3: rhomb. 

a=0.4782; 
c=1.3057 

OR I:(0001)[11-20]//(0001)[11-20] 
OR II:(0001)[11-20]//(0001)[10-10] 

0.4130 

20.4130 

0.4782 
0.8283 

-15.8 
-0.28 

Al2CaSi2 
/ 

γ-Al2O3 

Al2CaSi2:hexagon
al, a=0.4130, 

c=0.7145, 
γ-Al2O3 : cubic, 

a=0.7963 

OR I:(0001)[11-20]//(111)[110] 
OR II:(0001)[11-20]//(100)[001] 

0.4130 

20.4130 

0.5631 
0.7963 

-36.3 
3.59 

* Subscript S=substrate. OR=orientation relationship which is according to the match of most densely 

packed planes and directions. The misfit f is defined as (d[uvw]Al2CaSi2 -d[uvw]S)/d[uvw] Al2CaSi2 [126]. 

 

5.3.3 Effect of Ca in the presence of Mg or Sb   

Experiments were conducted to study the effect of Ca content on morphology of 

primary and eutectic silicon in the presence of Mg or Sb in Al-15Si alloy. These 

elements were chosen because Mg has a significant effect on the morphology of 

primary Si and Sb can modify the eutectic Si in Al-Si alloys (see section 2.2). The 

results of these experiments were shown in section 4.3.3.  

 On adding 0.5 wt% Mg to commercial purity Al-15Si alloy, which contained more 

than 200 ppm Ca, the primary Si particles were coarse of 45 µm in size dispersed in 

Al+Si+Mg2Si eutectic as illustrated in Figure 4.15 (c,d). When Al-15Si base alloy was 

fluxed with AP1 flux prior to the Mg addition, there was a significant refinement of the 

primary Si particles and they were dispersed in a plate-like eutectic structure. The 

chemical analysis using optical emission spectroscopy showed that the Mg content 

decreased as the initial nominal Ca content increased. This is because of the rapid and 

continuous oxidation of Ca and then Mg which is removed with the dross. Hence, as 

Ca content is reduced by AP1 flux the refining effect of Mg on primary Si will be more 

significant. In addition, with the removal of Ca the number of AlP particle will increase 

and the P refinement efficiency can be recovered. 

Usually, adding Sb to commercial purity Al-15Si alloy, with more than 200 ppm Ca, 

the eutectic Si is modified to a lamellar structure [92]. On reducing the Ca content by 

fluxing, a finer lamellar eutectic structure was produced when adding 0.5 wt% Sb to 

fluxed Al-15Si alloy. The chemical analysis using optical emission spectroscopy 

showed that the Sb content decreased as the initial Ca content increased. It is believed 
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that an insoluble intermetallic compound can form between Sb and Ca, which 

separates out and combines with the aluminium oxide surface dross. Hence, removing 

Ca before adding Sb to Al-Si alloys improves the modification process.  

Daniels and Bonsignore [182] have found that additions of either Ca or Sr could 

scavenge Sb from aluminium alloys. Sb content could be reduced from 2800 ppm to   

50 ppm by treating the melt with 1500 ppm Ca. The optimum amount of Sb used as a 

eutectic Si modifier in Al-Si alloy is 0.1-0.15 wt% [6]. 

5.3.4 Summary 

The conclusions for the effect of Ca content on solidification of hypereutectic Al-Si 

alloys in this study are: 

1. The commercial purity alloy contained 200 ppm Ca which was sufficient to lead 

to a modified Al-Si eutectic.  

2. After the addition of K2SiF6 flux the Ca impurity level was 20 ppm which was too 

little to modify the eutectic Si, but primary Si was refined. This suggests fluxing 

with K2SiF6 can remove Ca effectively such that the trace level of P (~20 ppm) 

in commercial purity hypereutectic Al-Si alloys is sufficient to refine the primary 

Si without any deliberate addition of P.  

3. In the case of adding 0.5 wt.% Ca to the Al-15Si alloy, the eutectic Si was highly 

modified and the primary Si was coarse and irregular in morphology (unrefined). 

The addition of such a high level of Ca led to enhanced quantities of entrained 

oxide inclusions/bifilms.  

4. For the Al-15Si-0.5Ca alloy, the first phase to solidify was Al2CaSi2 which 

nucleated and grew on the oxide bifilms. Primary Si then formed by nucleation 

and growth on the Al2CaSi2 particles. 

5. On fluxing with AP1 prior to a Mg addition, the refinement in primary Si particles 

was significant. The fine primary Si particles were dispersed in a plate-like 

eutectic structure. The reason is that the removal of Ca led to an increase in the 

amount of P available to form AlP particles for the nucleation of primary Si with 

an associated reduction in the modification of the eutectic. 

6. On reducing the Ca content by fluxing, a finer lamellar eutectic structure was 

produced when adding 0.5 wt% Sb to Al-15Si alloy when compared with the   

un-fluxed alloy. 
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5.4 Effect of Chemical Additions on Primary and Eutectic Si   

Various inoculants - Mg, oxides (MgO and CaO), ZnS, Na2S and Zn - were studied. 

Microstructural analysis in section 4.4 showed that Mg and ZnS refined primary Si 

whereas MgO, CaO and Na2S coarsened the primary Si together with a modification 

effect on the eutectic Si. Adding Zn had no effect on the morphology of either primary 

or eutectic Si. 

5.4.1 Magnesium (Mg) 

Microstructures of Al-15Si with different Mg concentrations in section 4.4.1 show that 

with increasing addition of Mg up to 0.3 wt% to the binary alloy, the size of the primary 

Si decreases significantly. On adding more than 0.3 wt% up to 0.75 wt% of Mg, the 

size of the primary Si increased again to a size larger than that in the base alloy. The 

increase in the size of primary Si particles was associated with a reduced number of 

primary Si particles. On adding 1.0 wt% Mg there was no primary Si at all. The 

morphology and size of the eutectic Si particles change with the addition of Mg to a fine 

and compact form with a Chinese script like morphology of the eutectic matrix as 

shown in  Figure 4.18l. 

Eutectic Mg2Si particles were observed in the eutectic network of the alloys with 

Chinese script morphology. This is due to the occurrence of the ternary eutectic 

reaction at non-equilibrium solidification. Owing to the change of the eutectic formation 

reaction from the binary (Liquid       Al+Si) to the ternary (Liquid        Al+Si+ Mg2Si) as 

calculated by using the commercial PandaT software with PanAl8 database and shown 

in Figure 4.14, the eutectic formation temperature of the matrix will reduce. This 

change affects the size and morphology of the eutectic Si phase in the matrix [183].  

Both refinement of primary Si and modification of eutectic Si was only observed for 

the alloys with Mg content ≤ 0.3% Mg when compared with the binary Al-15Si base 

alloy. This indicates that the presence of Mg can enhance refinement and modification 

of Si at this level of concentration. The refinement of primary Si could be due to the 

formation of MgAl2O4. Magnesium-alumina spinel (MgAl2O4) is one of the common 

compounds in a family of mixed oxide spinels having a cubic structure with a lattice 

parameter of 8.08 Å [184]. MgAl2O4 has an orientation relationship with                       

Si: (001)[100]Si//(111)[110] MgAl2O4 with a misfit less than 5%. 

The spinel’s lattice parameter depends on the stability of oxides, i.e. whether α-Al2O3 

or γ-Al2O3 is present in the spinel [185]. So, for this case up to 0.3 wt% Mg content 

might be sufficient to form the MgAl2O4 and then to act as a nucleation substrate to 

refine primary Si. 
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Such change in morphology of the eutectic matrix has been shown to result in the 

increase of the overall hardness of high Mg alloys even though the hardness of the 

primary Mg2Si particles is lower than that of the primary Si particles [183]. Mg has been 

found to be the most effective element to increase the hardness of Al-Si Alloys [186].  

5.4.2 Mg and Ca oxides 

As mentioned in section 2.4, elements with Pilling-Bedworth (PB) ratios (oxide density 

to metal density) less than one form discontinuous and non-protective oxides, while 

those with PB ratios > 1 form continuous and protective oxides. PB ratios of BeO, ZnO, 

ZrO2, γ-Al2O3, α-Al2O3, MgO and CaO, are 1.70, 1.58, 1.56, 1.31, 1.28, 0.80 and 0.64 

respectively [61]. The Ellingham diagram shown in Figure 5.6 shows also that CaO is 

more stable than MgO and Al2O3, thus, a melt containing Ca and Mg cannot maintain 

its continuous protective Al2O3 skin even when the melt is quiescent. Instead, it will be 

subjected to a rapid and continuous trapping of oxygen leading to formation of more 

oxide. Optical micrographs illustrated in Figure 4.21 show that there was significant 

coarsening of the primary Si with modification of the eutectic structure on adding MgO 

and CaO. The reason for the coarse size of primary Si could be due to the decrease of 

nucleation particles such as AlP. As shown in  Figure 5.7, Ca is more effectively 

oxidized than Mg for less than 20 hr operation [6]. Hence, the melt will be subjected to 

rapid and continuous oxidation leading to formation of greater quantities of oxides. 

Accordingly, AlP could oxidize to form AlPO4 which has a Hexagonal crystal structure 

with lattice parameter, ao = 0.439 nm, co = 1.094 nm and the mismatch between Si and 

AlPO4 is more than 20% and thus AlPO4 is not a potent substrate for nucleation of Si. 

Thus the depletion of AlP particles by oxidation cause the size of primary Si to be 

bigger and more irregular  [28].   

In conclusion, the reason behind the coarsening of primary Si is the depletion of P 

either by interaction with the inclusions or oxidation and conversion to non potent 

AlPO4 particles. Also, due to the high chemical affinity of Ca for oxidation in comparison 

to Mg [57], the probability of P depletion is higher and hence the primary Si particles 

are coarser. 
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Figure 5.6 Ellingham diagram plots showing the standard free energy of a reaction as 
a function of temperature. 

 

Figure 5.7 Comparative oxidation losses caused by the addition of various elements to 
aluminium melt [6]. 
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5.4.3 Refinement of primary Silicon crystals by zincblende ZnS  

ZnS occurs in two common polytypes, zincblende (also called sphalerite: cubic with 

lattice parameter ao =5.41 Å) and wurtzite ( hexagonal with lattice parameters              

ao = 3.2495 Å, co = 5.2069 Å). ZnS crystallizes with the cubic zincblende structure 

below 1020 °C and with the hexagonal wurtzite structure above this phase transition 

temperature [154]. On adding 0.5 wt% of zincblende ZnS powder to Al-18Si alloy, there 

was a significant refinement of the primary Si particles without any change in the 

modification level for the eutectic structure when compared with the commercial purity 

binary alloy. Micrographs in Figures 4.23 and 4.24 show that in using the prepared ZnS 

nanoparticles there was also good refinement of the primary Si without any change in 

eutectic. According to heterogeneous nucleation theory, ZnS particles can act as 

potent substrate for nucleation of primary Si. AlP has a similar cubic crystal structure 

and lattice parameter to those of Si and it is well known that AlP is a potent substrate 

for nucleation of primary Si. Zincblende ZnS is isostructural with AlP and has almost 

identical lattice parameter to those of AlP and Si, and so we might expect zincblende 

ZnS to also be a potent substrate for nucleation of primary Si. Optical micrographs and 

particle size distribution in Figures 4.23-4.25 show that in the present experiments the 

efficiency of ZnS which was added as micro or nano particles on refinement of primary 

Si in Al-18Si alloy is less than that of AlP by the addition of P.  

    Generally, a potent and efficient nucleus should provide the following [28];  

 Crystallographic similarities.  

 Less surface tension with the phase that is nucleating. 

 Present as a solid at the appropriate temperature and composition of the liquid. 

 Suitable size distribution. 

 Capable of being wetted by the liquid.  

 Should not be consumed or enveloped by reactions that have occurred earlier 

in solidification. 

The reason for the lower efficiency of ZnS nano size powder prepared in the present 

experiments could be due to agglomeration of the ZnS particles, low wettability of ZnS 

with the melt, inappropriate particle size distribution or instability of zincblende under 

the operating condition. Despite the relative inefficiency of ZnS added in this form, the 

microstructure had a more strongly modified eutectic Si than that with P added. Loss of 

modification in the addition of P is due to the interaction of the added P with Ca existing 

in the melt which is mainly responsible for eutectic modification. It seems that there is 

no interaction between ZnS and the Ca existing in the melt and hence there was no 

loss of modification of the eutectic Si in Al-18Si alloy.  
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A new Al-ZnS master alloy has been successfully formed by an in situ reaction of Zn 

and Na2S in high purity aluminium melt as illustrated in section 4.4.3.4. This master 

alloy was used to refine primary Si crystals in solidification of hypereutectic Al-Si alloys. 

The SEM work shown in Figure 4.28 confirmed that there are many pre-formed ZnS 

particles contained in the master alloy.  

The optical micrographs in section 4.4.3.5 show that the morphologies of primary Si 

crystals on solidification of Al-22Si alloy with the addition of the Al-ZnS master alloy are 

drastically changed from irregular coarse morphologies to fine regular particles. The 

primary Si crystals are refined from 74 μm to 26, 22, 24 μm by adding 0.05, 0.1,      

0.15 wt% ZnS respectively with holding time of 20 min as shown in Figure 4.30. In 

comparison the average particle size of primary Si refined by 200 ppm P was 20 µm. It 

was clear that with the increase of ZnS content up to 0.1 wt% the average particle size 

of the primary Si decreases. Above 0.1 wt% ZnS the size of primary Si increases again 

slightly, this could be due to the agglomeration of ZnS particles in the melt.  

With an increase of holding time after Al-ZnS master alloy addition up to 1.5 hr the 

primary Si size increased up to 33 μm for the addition of 0.1 wt% ZnS, which is larger 

than the primary Si particle size for the holding time of 20min. This inefficiency in the 

refinement of primary Si at higher holding time could be due to the agglomeration of 

ZnS particles or could be due to their sedimentation to the bottom of the crucible where 

the density of ZnS is 4.1 g/cm3. Also, the high holding time leads to continuous removal 

of the Ca by oxidation, and then the eutectic Si matrix loses its modification.  

To be sure that zincblende ZnS was behind the refinement of primary Si and not the 

reactant materials; we examined the refinement effect of adding Na2S and Zn on 

solidification of hypereutectic Al-Si alloys was examined. 

Sodium sulphide Na2S is an anhydrous crystalline solid with a density of 1.856 

g/cm3 at 20 °C. Its structure is a fluorite-type ionic cubic lattice with a lattice parameter 

of 6.504 Å [187]. Optical micrographs in Figure 4.35 show that adding Na2S had a 

strong modification effect on the eutectic Si in Al-15Si alloy. This action could be due to 

the decomposition of Na2S to produce Na that modifies the eutectic matrix. Na is 

specified as an optional modifier for Al-Si alloys. The optimum amount of Na used as 

modifier for eutectic Si in Al-Si alloys is 100 ppm [6]. It is clear from the micrographs 

that the eutectic Si is over modified and the primary Si became coarse and more 

irregular in shape when compared with the base Al-15Si alloy. The conclusion from 

these results is that Na2S cannot be behind the refinement of primary Si in the 

presence of ZnS particles produced from Zn and Na2S. 

On adding Zn there was no change in the microstructure of commercial purity Al-Si 

alloy. Since, Na2S and Zn have no refinement effect we can conclude that neither is 
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responsible for the refinement of primary Si in the presence of ZnS particles produced 

in situ from Zn and Na2S. Since neither of the reactants used to form ZnS lead to 

refinement of primary Si, it can be concluded that the refinement of primary Si in the 

presence of ZnS must be due to potent nucleation on the zincblende ZnS particles.   

5.4.4 Summary 

The conclusions from the above results are:  

1. Both refinement of primary Si and modification of eutectic Si were only 

observed for the Al-15Si alloys with Mg content ≤ 0.3 wt% Mg when 

compared to the binary Al-15Si base alloy. This indicates that up to 0.3 wt% 

Mg content, MgAl2O4 might form and then act as a nucleation substrate to 

refine primary Si. The average particle size of primary Si in Al-15Si alloy 

changed from 48 µm to 26, 22, 45 and 54.5 µm with the addition of 0.1, 0.3, 

0.5 and 0.75 wt% Mg respectively. On addition of 1 wt% Mg there was no 

primary Si at all owing to the change in the eutectic formation reaction from 

the binary (Liquid         Al + Si) to the ternary (Liquid        Al + Si+ Mg2Si) 

2. There was significant coarsening of the primary Si and modification of the 

eutectic structure on adding 0.5 wt% MgO or CaO to Al-15Si alloy. This 

could be because of a lack of nucleation sites such as AlP particles, which 

have been removed by continuous oxidation of the melt or interaction with 

the inclusion.  

3. On adding 0.5 wt% of ZnS powder of nanoparticles, there was a significant 

refinement of the primary Si particles without any loss of the modification 

level of the eutectic structure.  

4. According to heterogeneous nucleation theory, ZnS particles can act as 

potent substrate for nucleation of primary Si. AlP has a similar cubic crystal 

structure and lattice parameter to those of Si and it is well known that AlP is 

a potent substrate for nucleation of primary Si. Zincblende ZnS is 

isostructural with AlP and has almost identical lattice parameter to those of 

AlP and Si; so we might expect zincblende ZnS to be a potent substrate for 

nucleation of primary Si. 

5. The results from this study show that the novel Al-ZnS master alloy is a 

promising refiner in solidification of hypereutectic Al-Si alloys. It has the 

same efficiency as adding P in the form of Cu-P master alloy in the 

refinement of primary Si and follows the same refinement mechanism. It 

seems that there is no interaction between ZnS and Ca that exists in the 
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melt and hence there was no loss in modification of the eutectic Si in 

commercial purity Al-Si alloy. 

6. Adding Na2S has a modification effect on the eutectic Si in Al-15Si. This 

action could be due to the decomposition of Na2S to produce Na that 

modifies the eutectic matrix. Na2S also led to coarser primary Si. Adding Zn 

has no refinement effect on the primary Si in solidification of hypereutectic 

Al-Si alloys. The refinement of primary Si in the presence of ZnS produced 

in situ from Zn and Na2S must be due to the ZnS particles. 

5.5 Nucleation and Growth of Primary Silicon on Al2O3  

There is much experimental evidence to conclude that some primary Si particles 

nucleate and grow on aluminium oxide bifilms during the solidification of hypereutectic 

Al-Si alloys as mentioned in section 5.3.  

In the case of unalloyed aluminium, the oxide film is initially γ-Al2O3. As mentioned 

previously in section 2.4, γ-Al2O3 is one of a number of metastable polytypes of Al2O3 

and is used extensively as a catalytic support material because of its high porosity and 

large specific surface area. At temperatures in the range 1000-1200ºC, γ-Al2O3 

transforms rapidly into the thermodynamically stable α-Al2O3 phase (corundum), 

significantly reducing the surface area and thus suppressing the catalytic activity of the 

system. The phase transformation can be shifted to higher temperatures by doping     

γ-Al2O3 with one of many elements such as La, Ba, or P [63].   

It is well established that due to the high tendency of phosphorus to be adsorbed on 

the surface of Al2O3, a mono layer of phosphorus will form during the adsorption 

process [159]. According to the literature, the adsorption capacity of P on an Al2O3 

surface ranged between 15 and 30 mg/g for alumina having an average particle size 

between 1mm and 400nm respectively [188-189]. This may explain why P-doped        

γ-Al2O3 is more efficient than P-doped α-Al2O3 but this needs further characterisation to 

be done. 

Because of the high tendency of phosphorus to be adsorbed on the surface of Al2O3 

[159], AlP particles may first nucleate on γ-Al2O3 and serve as nucleation sites for Si. 

Work by Pennors et al. [157] supported this hypothesis, they presented clear 

microstructures in which AlP particles are seen aligning along oxide bifilms and serve 

as nucleation sites for Si and subsequently spread across the oxide substrate. 

The micrographs in Figure 4.39 show that P-doped γ-Al2O3 is a potent substrate for 

nucleation of primary Si in solidification of hypereutectic Al-Si alloys and it is more 

efficient than P-doped α- Al2O3 or undoped Al2O3.  
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The conclusion from the above results is that phosphorus could be supported on 

alumina particles to be used as a refiner for primary Si in the solidification of 

hypereutectic Al-Si alloys. P is currently most effectively added to melt in the form       

of Cu-P, Al-Cu-P or Al-Fe-P master alloys, potentially leading to incorporation of 

impurities. Hence, using P-doped γ-Al2O3 could be a perfect source of P without 

additional impurities. Also, the above result supports the hypothesis that nucleation of 

Si around oxide bifilms could be due to phosphorus adsorbed on the oxide film in 

aluminium alloys during processing cycles. 

For future work, we need to determine the adsorption isotherm to find out the exact 

adsorption capacity of P on γ-Al2O3 powder. Then, a deep study is required examining 

the stability of P-doped γ-Al2O3 at casting conditions.  

5.5.1 Summary 

From above results, we can conclude that:  

1. P-doped γ-Al2O3 is a potent substrate to nucleate primary Si with good 

modification in the eutectic matrix in solidification of hypereutectic Al-Si alloys.  

2. The high efficiency of γ-Al2O3 may be because of its high porosity and large 

surface area which increase the adsorption capacity of P on the surface.  

5.6 The New Solid-Liquid Duplex Casting  

It has long been considered that the best mechanical properties of hypereutectic Al-Si 

alloys would be obtained from a microstructure that is both refined and modified. Due 

to the interaction between P and the modification chemicals such as Sr, Na and Ca, it 

is not possible to achieve both refinement of primary Si and modification of eutectic Si 

simultaneously in hypereutectic alloys [18]. This has become a goal for researchers 

and practising foundrymen [29].  

The solid-liquid duplex casting process was devised to achieve simultaneous 

refinement and modification of Si phases in hypereutectic Al-Si alloys with 

improvement in mechanical properties. Unlike the existing liquid-liquid duplex casting 

process described in section 2.14.3, the solid-liquid duplex casting process offers the 

opportunity to retain pre-refined primary Si particles in a high Si P-treated solid alloy 

mixed with a Sr-treated melt to provide a modified eutectic matrix surrounding the pre-

refined primary Si particles. 

Optimizing the composition of the P-treated solid chips and Sr-treated melt with the 

casting temperature is very important for reasons of economics and efficient 

simultaneous refinement and modification of Si phases in the target alloy.  
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5.6.1 Optimum P and Sr content for P-treated and Sr-treated alloys  

The optical micrographs in Figure 4.46 show that with increasing P content in the       

P-treated high Si alloy, the particle size of primary Si decreased due to enhanced 

nucleation on potent AlP substrates to refine the primary Si. The primary Si size 

decreased sharply with 50ppm P then decreased more slowly with further additions. 

For the highest levels of P there was no further change in the size of primary Si as 

shown in Figure 4.48, but there was a good particle size distribution as shown in Figure 

5.47. The P level of the P-treated high Si solid chips was fixed at 400 ppm. 

Accordingly, with the increase of P content up to 400ppm P in the P-treated solid alloy 

there was a significant decrease of the primary Si size in the target alloy as shown in 

Figures 4.49 and 4.53 with a good particle size distribution as shown in Figure 4.55.  

With the increase of Sr in the target alloy, the eutectic Si matrix will be fully modified 

but there is a limitation to the amount of modifier addition to avoid porosity formation 

which then affects the mechanical properties of alloy obtained [84, 190]. The normal 

accepted limit of Sr is 200 ppm [6]. Thus this limit for the target alloy was set. With Sr              

over-modification, coarsening and reversion of fine fibrous Si structure to an 

interconnected plate form will take place [84], however, no over modification was 

observed throughout the present research confirming that the set limit was not too high.  

According to the restricted nucleation theory of modification, Sr neutralizes the 

heterogeneous nucleation on AlP. This neutralization suppresses the undercooling in 

the melt before eutectic solidification and modification of the eutectic takes place [106]. 

Since in the solid-liquid duplex casting process there is no or only limited interaction 

between P and Sr, this theory is not valid. Alternatively, according to the restricted 

growth theories of modification, Sr is adsorbed on twin re-entrant grooves or growing 

surfaces of the Si phase, thus the growth of eutectic Si is inhibited and modification 

takes place. Generally, in the modification process, the number of twins increases in 

comparison with the unmodified eutectic Si which has few or no twins [84].  

The results show that adding Sr to the low Si liquid starting alloy modifies the 

eutectic and restricts the growth of primary Si in the target alloy when compared with 

the case of mixing low Si liquid alloy without Sr with P-treated solid chips. It is well 

known that Sr is adsorbed onto growing surfaces of the Si phase, thus the growth of 

primary Si and eutectic Si is inhibited and modification takes place [84].  
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5.6.2 Optimum Si content in Sr-treated Al-Si alloy  

The results described in section 4.6.2.2 and Table 4.3 show that the optimum Si 

content in Sr-treated melt for solid-liquid duplex casting process is the eutectic 

composition i.e. Al-12.6Si alloy. This alloy gave the minimum average particle size of 

primary Si in the target alloy when mixed with P-treated high Si alloy with a good 

particle size distribution as shown in Figure 4.65. Jones et al. [191] have measured the 

viscosity of liquid Al-Si alloys as a function of Si content. They found that the eutectic 

alloy has the lowest viscosity among the binary Al-Si alloys as shown in Figure 5.8. 

Hence, the mobility of pre-existing refined primary Si particles in eutectic alloy will be 

very easy without agglomeration and the average particle size will be reduced if 

compared with other Si alloys. Also, there will be less excess unrefined primary Si in 

the eutectic matrix and no need for more refinement. 

 

 

Figure 5.8: Viscosity of Al-Si alloys as a function of Si content [191]. 

5.6.3 Effect of casting temperature 

With the increase of casting temperature the size of primary Si particles increases and 

they are uniformly distributed in mixed modified eutectic Si matrix. With the increase of 

casting temperature, the solidification time will increase. Hence, there will be enough 

time for the growth of Si on the pre-existing refined primary Si particles. It is well 

established that the viscosity of liquid metals is sensitive to temperature. Jones et al. 

[191] have measured the viscosity of liquid Al-Si alloys as a function of temperature. 

They found that viscosity increases by decreasing the temperature, as shown in   



151 
 

Figure 5.9. Accordingly, increasing casting temperature will enhance the distribution of 

primary Si particles within the matrix and there will be a long time for the growth of 

primary Si. Working around 600 ºC for Na-modified or unmodified eutectic alloy is quiet 

enough to reduce the viscosity as shown in Figure 5.9 which support our results. The 

only data available on the effect of modifiers on viscosity is for sodium as shown in 

Figure 5.9.  

As mentioned in section 4.6.2.3 the higher temperature castings in this set of 

experiment was from above liquidus temperature so it is effectively no longer solid-

liquid duplex casting and the pre-refined primary Si particles should be melted. The 

results gained from adding 200ppm P to Al-19Si alloy melted at  800 °C, cooled 

downed to about 700 °C and then adding 200 ppm Sr to be cast from 610 °C, 

illustrated in Figure 4.69 prove the following hypothesis: 

Most of the AlP particles in the P-treated hypereutectic Al-30Si alloy are tied up in the 

pre-existing primary Si particles and after melting to above the liquidus temperature 

there will be a thin layer of Si atoms adsorbed onto AlP surfaces, so there will be no 

direct contact between AlP and Sr. Accordingly the produced alloy consists of refined 

primary Si dispersed in a modified eutectic Al-Si matrix i.e. no loss in the modification.  

Dai et al. [192] investigated the interface between AlP and Si crystals using 

pseudopotential-based density functional theory (DFT). They predicted the atomic 

structure, bonding type and ideal work of adhesion of the interface formed between 

AlP(100)/Si(100), AlP(110)/Si(110) and AlP(111)/Si(111). The results show that the 

main bonding between AlP and Si is covalent P-Si or Al-Si bonds, accompanied by 

some ionic characteristic. In all, the zigzag shape interfaces have larger adhesion 

energies. Moreover, the P-Si interfacial energy is larger than the Al-Si interfacial energy 

on the same crystallographic plane interface. As a result, Si atoms are not on the top of 

Al or P atoms, but on the bridge sites between Al and P atoms. This study supports our 

above hypothesis and proves the potency of AlP particles to nucleate and refine 

primary Si in hypereutectic Al-Si alloys. In addition, the pre-refined primary Si particles 

are stable when melted again and can control the morphology of primary and eutectic 

Si and then to achieve simultaneous refinement of primary Si and modification of 

eutectic Si.  
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Figure 5.9: Viscosity of Al-Si alloys as a function of temperature [191]. 

5.6.4 The mechanism of refinement and modification in Solid-Liquid 
Duplex casting process 

In mixing the hypereutectic P-treated Al-30Si solid chips with Sr-treated eutectic        

Al-12.6Si liquid alloy, there is a large difference between their solute content, in 

addition to the difference in their temperatures. Hence, thermal diffusion will occur 

simultaneously with solute diffusion during the mixing and casting process. The 

following heat and mass transfer processes will occur during the casting process: 

 Absorption of the superheat of the eutectic Al-12.6Si liquid metal by the solid 

Al-30Si alloy. The driving force for thermal diffusion is the temperature 

difference between the two mixing alloys. 

 Dissolution of Al-Si eutectic and some primary Si from the solid Al-30Si alloy 

and diffusion into the liquid. 

 The dispersal of primary Si particles from the Al-30Si alloy within the liquid. 

 Diffusion of Sr within the liquid to allow modification throughout the alloy on final 

solidification. The driving force for diffusion is the concentration difference 

between the solute rich Sr-treated Al-12.6Si alloy and newly melted grains the 

solute (Sr) free P-treated Al-30Si alloy. 

 Nucleation and growth of the remaining primary Si on any available residual AlP 

particles. 

 Eutectic solidification. 
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Due to the low casting temperature and the short solidification time in the solid-liquid 

duplex process, the pre-existing refined primary Si particles will be supplemented by 

very fine primary Si particles. The particle size distribution of primary Si in the target 

alloy illustrated in Figures 4.72 and 4.75 support this finding.  

In the solid-liquid duplex casting process the pre-solidified Si-rich hypereutectic alloy 

(Al-30Si) contains refined primary Si particles due to enhanced nucleation of primary Si 

on AlP particles present because of the addition of 400 ppm P. This alloy partially 

remelts on its addition to the hotter liquid eutectic alloy, but a large proportion of the 

pre-refined primary Si particles are retained. Most of the P in the resulting intermediate 

hypereutectic alloy (Al-19Si) is tied up in the AlP particles within the pre-existing 

primary Si particles. As a result, interaction between Sr and P in the liquid is limited and 

there is an excess of Sr. Thus the Al-Si eutectic will be fully modified. 

In conclusion, in the conventional casting process, simultaneous addition of excess 

P and Sr tends to produce refined primary Si particles dispersed in an only partially 

modified eutectic Al-Si matrix due to the interaction between P and Sr. On the other 

hand, refined primary Si crystals dispersed in a fully modified eutectic are observed in 

the ingots obtained by combined use of the solid-liquid duplex casting process and 

additions of P and Sr. This finding is more practical and acceptable if compared with 

that obtained by combined use of liquid-liquid duplex process and addition of Na and P, 

where the average particle size of primary Si was 40 µm dispersed in a partial modified 

eutectic [148].  

In addition to the simultaneous refinement of primary and modification of eutectic Si 

phases, the solid-liquid duplex process shows that the tensile strength (UTS) increased 

by approximately 14% and the elongation more than doubled compared with 

conventionally cast process. The probability of crack initiation by premature fracture of 

Si decreases with the refinement and modification of Si phases [17, 134]. The 

improvement of mechanical properties is therefore attributed to the combination of 

refined primary Si and to the fibrous structure of the modified  Al-Si eutectic matrix.  

5.6.5 Summary 

The conclusions to Solid-Liquid Duplex casting process are: 

1. The solid-liquid duplex casting process is a promising technique for producing 

hypereutectic Al-Si alloys with refined primary Si distributed in a modified Al-Si 

eutectic matrix. The solid-liquid duplex casting process allows the simultaneous 

action of P and Sr that is not possible in conventional casting.  

2. P added to the high-Si hypereutectic component provides pre-refined primary Si 

particles. Since most of the P is tied up in AlP particles within the pre-existing 
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primary Si, the Sr added to the low Si liquid component cannot be neutralized 

and is available for effective modification during eutectic solidification.  

3. The optimum P content in the P-treated solid chips should be enough to 

produce fine pre-existing refined primary Si particles. The optimum Sr in the   

Sr-treated liquid alloy should be enough to produce a target alloy with 200 ppm 

Sr. 

4. The casting temperature should be low enough to provide the target alloy in the 

Liquid + Primary Si phase field before casting.  

5. The optimum Si content in the Sr-treated melt alloy is 12.6 wt% i.e. Sr-treated 

Al-12.6Si gives the minimum primary Si particle size in the target alloy. 

6. The static mechanical properties of Al-Si produced by the solid-liquid duplex 

casting process are significantly better than conventionally cast untreated Al-Si 

and slightly better than conventionally cast Al-Si treated with P and/or Sr.  
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Chapter 6 

Conclusions  
 

The overall goal of the thesis was to develop one or more methods of refining primary 

Si in cast hypereutectic Al-Si alloys to compete with the conventional process of adding 

phosphorous and to achieve the secondary goal of simultaneous modification of silicon 

in the Al-Si eutectic. The conclusions drawn from this investigation are summarised as 

follows:   

6.1 Effect of Solidification Rate on Primary and Eutectic Si  

The morphologies and homogeneity of distribution of primary and eutectic Si in 

solidified hypereutectic Al-Si alloys are a strong function of the solidification conditions 

such as cooling rate and melt superheat. The conclusions are: 

 At low cooling rate, i.e. less than 15 K/s, the morphology of primary Si was 

mixture of branched plate-like and polyhedral particles dispersed in an acicular 

eutectic structure. With the increase of cooling rate, the primary Si became 

mostly polyhedral and dispersed in a refined lamellar eutectic structure.  

 There is a tendency for primary Si to segregate to the top of sampled specimens 

particularly those solidified under slow cooling conditions. A water cooled steel 

mould with cooling rate in excess of 15 K/s was very efficient in preventing the 

macro-segregation of primary Si even at a high pouring temperature. The high 

cooling rate of the water cooled steel mould generally produced a good 

distribution of compact primary Si particles in a refined lamellar eutectic matrix.  

 The morphology of Si changes with increasing melt temperature. A high melt  

superheat produces a good distribution of polyhedral primary Si particles in a 

refined lamellar eutectic matrix.  

 The eutectic Al-Si structure seems to become more homogeneous with 

increasing in the melt superheat.  

 The average particle sizes and volume fraction of primary Si decrease 

approximately linearly up to a casting temperature of 845 °C and then decrease 

at a lower rate as temperature increases further. The shape factor increase 

linearly up to 845 °C and then increases at a lower rate. The particle number 

density of primary Si increases slightly with increasing casting temperature up to  
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845 °C and then significantly increased with further increasing casting 

temperature beyond 845 °C. 

6.2 Refinement and Modification in High Purity Hypereutectic Al-Si Alloy  

Due to the interaction between P and Ca the simultaneous refinement and modification 

of Si phases can not be achieved during conventional casting of hypereutectic Al-Si 

alloys. Experiments were conducted to investigate the refinement of primary Si and 

modification of eutectic Si during solidification of high purity hypereutectic Al-Si alloy. 

The conclusions from this study were: 

 High purity Al-15Si alloy, cast in the steel mould with cooling rate 15K/s, 

consists of irregular coarse primary Si particles, 68 µm in size, dispersed in a 

lamellar eutectic structure. On the other hand, commercial purity Al-15Si alloy 

consists of a compact polyhedral primary Si with an average particle size of 

approximately 48 µm in a mostly fibrous (modified) eutectic. 

 Adding 20 ppm P to high purity Al-15Si alloy was quite enough to refine primary 

Si from an average particle size of 68 µm to 20 µm. The same amount of P 

added to commercial purity Al-15Si refined the primary Si from an average 

particle size of 48 µm to 25 µm. 

 Adding 30 ppm of Ca to the high purity Al-15Si can transform the eutectic matrix 

to a modified fibrous structure, and no primary Si is evident, i.e. the apparent 

eutectic position is shifted. 

6.3 Effect of Ca Level on Primary and Eutectic Si   

The effect of Ca content on Si morphology and its interaction with other alloying 

elements were studied either by reducing its content by the use of K2SiF6 (AP1) flux or 

increasing its content by adding 0.5 wt% Ca into the melt. The conclusions from this 

study were: 

 The commercial purity Al-15Si alloy contained 200 ppm Ca which was sufficient 

to lead to a modified Al-Si eutectic.  

 After the addition of K2SiF6 flux the Ca impurity level was 20 ppm which was too 

little to modify the eutectic Si, but primary Si was refined. This suggests fluxing 

with K2SiF6 can remove Ca effectively such that the trace level of P  (~ 20 ppm) 

in commercial purity hypereutectic Al-Si alloys is sufficient to refine the primary 

Si without any deliberate addition of P.  

 In the case of adding 0.5 wt% Ca to the Al-15Si alloy, the eutectic Si was highly 

modified and the primary Si was coarse and irregular in morphology (unrefined). 



157 
 

 The addition of such a high level of Ca led to enhanced quantities of entrained 

oxide inclusions/bifilms. During the solidification of the Al-15Si-0.5Ca alloy, the 

first phase to solidify was Al2CaSi2 which nucleated on the oxide bifilms. 

Crystallographic misfit calculations showed that low order orientation 

relationships exist between Al2CaSi2 and α-Al2O3 or γ-Al2O3 with low misfit over 

two unit cells, indicating that either of these two oxides could be an effective 

substrate for nucleation of Al2CaSi2. Primary Si then formed by nucleation and 

growth on the Al2CaSi2 particles. 

 For hypereutectic Al-Si alloys, fluxing with K2SiF6 prior to making alloying 

additions of Mg led to significant refinement of primary Si particles. The fine 

primary Si particles were dispersed in a plate-like eutectic structure. The 

removal of Ca led to an increase in the number of available AlP particles for the 

nucleation of primary Si along with a reduction in the modification effect. 

 For the interaction between Sb and Ca, on adding 0.5 wt% Sb to the 

commercial purity Al-15Si alloy, which contained more than 200 ppm Ca, the 

eutectic Si was refined in lamellar structure and the primary Si particles became 

more irregular in shape with particle size of 65 μm. With reducing Ca content by 

fluxing, irregular particles of primary Si 70 μm in size dispersed in a finer 

lamellar eutectic structure produced in adding 0.5% Sb to Al-15Si alloy. Hence, 

removing Ca before adding Sb to Al-Si alloys can improve the modification 

process due to Sb. 

6.4 Effect of Chemical Additions on Primary and Eutectic Si   

The effect of adding various inoculants on the Si morphology can be concluded as 

follows: 

 Refinement of Si was observed for the Al-15Si alloy with Mg content ≤ 0.3 wt%. 

The refinement of primary Si could be due to the formation of MgAl2O4. So, for 

this case up to 0.3 wt% Mg content might be sufficient to form the MgAl2O4 

which  then acts as a nucleation substrate to refine primary Si. For an addition 

of 1 wt% Mg, primary Si was completely absent. This is owing to the change of 

the eutectic formation reaction from the binary to the ternary and associated 

shifts in eutectic composition and temperature. 

 There was significant coarsening of the primary Si with modification of the 

eutectic structure on adding 0.5% MgO or CaO. This could be because of a 

lack of nucleation sites such as AlP particles, which have been removed by 

continuous oxidation of the melt or interaction with the inclusions.  
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 On adding 0.5 wt% of ≤44 μm ZnS (zincblende) powder to Al-18Si, there was a 

significant refinement of the primary Si particles without any change in the 

modification level of the eutectic structure. However the refinement was not as 

effective as the conventional process of adding P via Cu-P. 

 Synthesised ZnS nanoparticles led to primary Si particles with slightly greater 

refinement than those produced by adding the micron scale ZnS powder, 

although the refinement was still less effective than the standard technique of 

adding P via Cu-P. 

 A novel Al-ZnS master alloy was developed by in situ reaction of Zn and Na2S 

in the Al melt. It refines primary Si to the same extent as that achieved by 

adding P via Cu-P following the same refinement mechanism. Furthermore, the 

use of ZnS retains a modified eutectic structure. It seems that there is no 

interaction between ZnS and the Ca that exists in the melt and hence there 

was no loss of modification of the eutectic Si in commercial purity Al-Si alloy. 

 Adding Na2S or Zn has no effect on the size of primary Si particles, but Na2S 

has a modification effect on the eutectic Si in  Al-15Si. This action could be due 

to the decomposition of Na2S to produce Na that modifies the eutectic matrix. 

These results confirm that the refinement effect of primary Si is due to ZnS and 

not to the residual reactants in the melt.  

6.5 Nucleation and Growth of Primary Si on Al2O3  

Given the presence of some evidence in the literature, experiments were conducted to 

examine the possibility of nucleation and growth of Si on Al2O3 or P-doped Al2O3 

particles. The results show that:  

 P-doped γ-Al2O3 is a potent substrate to nucleate primary Si whilst good 

modification of the eutectic matrix is retained during solidification of 

hypereutectic Al-Si alloys.  

 The high efficiency of γ-Al2O3 to refine primary Si is because of its high porosity 

and large surface area which increase the adsorption capacity of P on the 

surface. 

  Using P-doped γ-Al2O3 could be a perfect source of P without additional 

incorporation impurities associated with artificial Cu-P, Al-Cu-P or Al-Fe-P 

master alloys. 
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6.6 The New Solid-Liquid Duplex Casting Process  

Due to the interaction between P and the modifying elements such as Sr, Na and Ca, it 

is not normally possible to achieve both refinement of primary Si and modification of 

eutectic Si simultaneously in hypereutectic alloys. The new solid-liquid duplex casting 

process was devised to achieve simultaneous refinement of primary Si and 

modification of eutectic Si in hypereutectic Al-Si. The conclusions of applying this 

process are as follow:  

 P added to the high Si hypereutectic alloy provides pre-refined primary Si 

particles. Since most of the P is tied up in AlP particles within the pre-existing 

primary Si, the Sr added to the low Si liquid component cannot be neutralized 

and is available for effective modification during eutectic solidification. On 

combining the solid and liquid alloys the temperature should be within the 

appropriate window to provide the target alloy in the Liquid + Primary Si phase 

field before casting.  

 The optimum P content in the P-treated solid chips should be enough to 

produce fine pre-existing refined primary Si particles. The optimum Sr in the   

Sr-treated liquid alloy should be enough to produce a target alloy with           

200 ppm Sr. 

 The optimum Si content in the Sr-treated melt alloy is 12.6 wt% (eutectic 

composition) which gives the minimum primary Si particle size in the target 

alloy. 

 The static mechanical properties of Al-Si produced by the solid-liquid duplex 

casting process are significantly better than those of conventionally cast 

untreated Al-Si and slightly better than those of conventionally cast Al-Si treated 

with P and/or Sr.             
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Chapter 7 

Recommendations for further work 

7.1 Refinement of Primary Si Crystals by Zincblende ZnS  

 Further work is required to optimize the operating conditions such as casting 

temperature with different holding time prior to casting in order to increase the 

efficiency of the refinement process by using ZnS zincblende. 

 It could be useful to study the possibility of producing an Al-ZnS master alloy 

with higher concentration of ZnS particles to minimize the dilution of the treated 

alloy by the aluminium in the master alloy. 

 A deepest analysis of the morphology and particle size distribution of ZnS 

zincblende prepared in situ or in the Al-ZnS master alloy is required. 

7.2 Nucleation and Growth of Primary Si on Al2O3   

 Work is required to detect the phosphorus at the interface between oxide bifilm 

and the nucleated primary Si particle. This extra research is to support the 

hypothesis that P can be adsorbed on the oxide bifilm and then nucleate the 

primary Si particles.  

 Optimization of the doping conditions of γ-Al2O3 with P for the refinement of 

primary Si in hypereutectic Al-Si alloys is required to produce more stable and 

higher efficiency P-doped γ-Al2O3. 

7.3 The New Solid-Liquid Duplex Casting Process 

 Further work is required to optimize the solid-liquid duplex process. For instance 

the size of P-treated Al-Si alloy chips could be minimized in order to improve the 

distribution of primary Si particles in the target alloy and to make the process 

more practical by mixing fine shot of P-treated Al-Si alloy with liquid Sr-treated 

Al-Si. 

 Additional characterisation and investigation of application of the solid-liquid 

duplex process to commercial compositions is required. 
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