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Abstract

A numerical investigation of the performance of a multi paned smart window integrated with water-cooled high efficiency third
generation GaAsP/InGaAs QWSC (~32% efficiency) solar cells illuminated by two-axis tracking solar concentrators at 500x in the inter
pane space is presented. Optimising system parameters such as optical concentration ratio and coolant (water) flow rate is essential in
order to avoid degradation in system performance due to high cell temperatures and thermal stresses. Detailed modelling of the thermo-
fluid characteristics of the smart windows system was undertaken using a finite volume CFD package. Results of this analysis which
considered the conductive, convective and radiative heat exchange processes taking place in the interior of the smart window system
as well as the heat exchange to the internal and external ambient environment are presented.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/3.0/).
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1. Introduction

Solar energy is increasingly being recognised as one of
the main substitutes for fossil fuels due to its essentially
non-polluting inexhaustible nature. Photovoltaic/thermal
(PV/T) solar collectors, first proposed by (Kern and Rus-
sell, 1978), yield a higher utilisable energy output per unit
collector area (Tripanagnostopoulos et al., 2007; Vats
and Tiwari, 2012). The approach of combining a thermal
and PV component is considered more appropriate for
concentrating solar systems in which heat removal from
the PV cells will be a critical issue.
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Currently different types of double-skin facades are
employed in buildings to provide increased thermal com-
fort while lowering space heating and cooling energy con-
sumption (Safer et al., 2005a). Solar radiation is
comprised of both long and short wave radiation, i.e., heat
and light. When seeking to regulate the amount of solar
radiation entering into a building, the challenge is to
achieve desired levels of daylight intensity without excess
introduction of the concomitant heat. Excessive direct
solar insolation in the interior space, workplace or home,
can lead to discomfort due to high levels of glare when
the sun is directly in the field of view or is specularly
reflected from indoor surfaces (Kim et al., 2009; Piccolo
and Simone, 2009) and should be avoided. Blinds are
frequently used within such fagades to control the intensity
of the incident direct solar radiation component by
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Nomenclature

D, depth of horizontal window segment (m)

D, depth of vertical window segment (m)

D, depth of the differentially heated vertical cavity
(m)

d, external tube diameter (m)

d; internal tube diameter (m)

Hy, height of horizontal window segment (m)

H, height of vertical window segment (m)

H, height of the differentially heated vertical cavity
(m)

hepace  heat transfer coefficient of back window pane
(Wm 2K

hecen  heat transfer coefficient of solar cell
(Wm 2K

hefions  heat transfer coefficient of front window pane
(Wm 2K

heens heat transfer coefficient of Fresnel lens
(Wm 2K

hewpe  tube-air heat transfer coefficient (Wm > K_l)
hewarer  Water-tube heat transfer coefficient (Wm_2 K_l)
W, width of horizontal window segment (m)

W, width of vertical window segment (m)

X optical concentration ratio

Greek symbols
Neell solar cell electrical efficiency

Uz turbulent viscosity (Pa s)
Peell solar cell reflectivity
Pe reflectivity of window pane

Dlens reflectivity of Fresnel lens

pube  reflectivity of copper tube
Teell solar cell transmissivity
Ty transmissivity of window pane

Tlens transmissivity of Fresnel lens
Tiube transmissivity of copper tube

blocking the radiation from entering the building and thus
reducing the cooling loads. However, these do not use the
intercepted solar energy. A smart window, illustrated in
Fig. 1, aims to control and regulate solar energy influx
through such double skin fagades to the interior of build-
ings. Glass coated with thin films that can change their
optical properties reversibly from transparent to opaque
when heated and cooled (Bange, 1999), or when subject
to an applied electrical current are of great interest (DeFor-
est et al., 2013), again however they do not utilise the inci-
dent solar energy for electricity production.

Smart Windows

Window panes

Rotating Axis
Diffuse Sunlight

V 4

Fresnel Electricity

Lenses

Hot water

Fig. 1. A conceptual arrangement of a smart window showing its
operation.

We examine a new concept of smart windows whereby
water cooled concentrator-PV cell units are incorporated
inside the gap between two panes of a double glazed win-
dow. Two-axis tracking Fresnel lens concentrators coupled
to actively cooled high efficiency PV cells have been
simulated.

Optical concentration ratio is defined as the ratio
between the aperture area to the collector area, while the
effective concentration ratio is calculated taking into
account the reflection from both aperture and collector sur-
faces. PV cells considered in this study are the Quantum
Well (QW) square solar cells, having area of 16 mm? which
were reported to achieve efficiency of ~32% under an effec-
tive concentration ratio of 500x (Adams et al., 2011; Rohr
et al., 2006). The variation of the cell efficiency with con-
centration ratio is shown in Fig. 2.

When incorporated into a double skin building fagade, a
point focus or linear Fresnel lens will separate the direct
(beam) solar radiation from the diffuse component and
concentrate the former on the solar cell whilst facilitating
the passage of diffuse radiation into the interior of build-
ings. Such multifunctional smart windows are able to (i)
generate electricity, (ii) block direct sunlight with conse-
quent reduction in building energy cooling load, (iii) trans-
mit diffuse sunlight to provide natural daylight and (iv)
provide domestic hot water.

The following system parameters need to be optimised
to achieve maximum thermal, optical and electrical
performance:

e The optical concentration ratio that provides the best
solar to electrical conversion efficiency of the solar cell,
taking into account the reduction in performance that
results from increased operating temperature.
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Fig. 2. Electrical conversion efficiency variation of the QW solar cell with
optical concentration ratio.

e Heat removal and water flow rate that provides water at
a usable temperature while avoiding performance degra-
dation and cell damage that could result from
overheating.

e Distribution and spacing of the concentrator systems
with each unit comprising a lens and solar cell located
at its focus, and the gap between the window panes to
maximise the electrical output while maintaining
required levels of daylight in the building interiors.

2. Adopted numerical modelling approach

Detailed analysis of the conductive, convective and radi-
ative heat transfer processes occurring within the double
glazing that forms the envelope of the smart window has
been undertaken employing a finite volume algorithm
using STAR CCM, a commercially available CFD pack-
age. A double glazing measuring 1 m x I m was chosen
to closely imitate a commonly available commercial win-
dow size. A taller window might result in building up cavity
air temperature whereby the upper cell arrays will operate
at higher temperatures with lower electrical conversion effi-
ciency compared to the lower arrays as discussed in Section
3.2. Similarly, a wider window might result in heating up of
the solar cells near the cooling water exit reducing their
electrical conversion efficiency. Window panes were
assumed to be 6 mm thick to protect the smart windows
interior which contained solar cells measuring
4mm x 4mm and Fresnel lenses of dimensions
100 mm x 100 mm.

For accurate simulation of both air and water fluid flow
inside the window a relatively small finite volume base size
was required resulting in a very number of meshing vol-
umes. This prevented the full window system from being
modelled concurrently with the available computing
resource. Modelling was thus limited to certain sections
of the smart window system. In order to gain improved
understanding of internal heat transfer in a smart window
the following temperature fields have been studied:

(i) Horizontal temperature profile from water inlet to
exit cross-sections in a horizontal window section
(Hj, Wy and Dj, of 0.2 m, 1 m and 0.1 m respectively)
containing five equally spaced concentrator units
(each with a Fresnel lens and a PV cell) and the front
and back window panes as shown in Fig. 3(a)

(ii) Vertical temperature build-up and accumulation of
the top of the window cavity due to natural convec-
tive motion of air in a vertical window section (H,,
W, and D, of 1 m, 0.2 m and 0.1 m respectively) con-
taining five equally spaced copper tubes fitted in par-
allel, one with each concentrator unit in addition to
the front and back window panes as shown in
Fig. 3(b)

The specified arrangement was such that there were five
PV cells equidistantly located on each horizontal copper
tube through which cooling water flowed. This horizontal
segment allowed investigation of the increase in tempera-
ture of water flowing inside the tube and a prediction of
the final water outlet temperature and operating tempera-
tures of the five solar cells attached to the copper tube
enabling the water flow rate required to maintain the tem-
perature of the farthest downstream PV cell to be main-
tained at an acceptable value to be determined. The

(a) Dty Left and right adiabatic
H S edges
Front and back i
panes
%Fmsnel Lenses
Water out
N \ Copper tube
LL‘ Solar cell
4—-W—>{
(b) Front and back [ & EI
panes
\
b Right and left edges
4
Copper tubes T Water out
4‘ 2
W
Solar cells at the =< /
focus of Fresnel
lenses
LW
N
[ 2]

Fig. 3. Modeled window sections (a) horizontal and (b) vertical showing
the different components.
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vertical section enabled the likely thermal stratification
inside a real window to be evaluated and temperatures at
the various components in the window predicted.

All radiation incident on the cell, which has not been
converted into electricity (due to efficiency limitation) have
been assumed to have been converted into heat and
accounted for in the thermal radiative exchange calcula-
tions in the analysis.

The average temperature of water flowing inside the
tube in the horizontal window section was calculated at
six cross sectional planes normal to the tube’s long axis
located at 0.0 m (inlet), 0.2 m, 0.4 m, 0.6 m, 0.8 m and at
1.0 m (outlet). The water temperature was calculated based
on the area-weighted average of the water temperature dis-
tribution profile in each of the planes. Solar cells were
located at 0.1 m, 0.3 m 0.5m, 0.7m and 0.9 m along the
copper tube, the temperatures reported are the average of
the solar cell surface temperatures. In all of the following
graphs showing water and solar cell temperatures, the mea-
surement locations are referred to as the distance along the
horizontal x-axis rather than the cross sectional plane or
solar cell numbers. Water flow through copper tubes is
assumed to be steady, incompressible and laminar.

Pumping power has not been introduced in the model-
ling since the focus of the study presented in this paper is
onto the thermal modelling of the smart window and
reducing solar cells temperatures for optimal efficiency.

The sections under test were meshed using tetrahedral
cell shaped mesh elements. Fig. 4 shows a cross section
of one concentrator unit normal to the window panes illus-
trating the generated mesh and the different components.
The construction of the volume mesh influences the rate
of convergence and the accuracy of the final solution. Vol-
ume mesh are constructed to give adequate resolution in
regions where spatial gradients are high, namely, solar
cells, air and copper tube regions around them as shown
in Fig. 4. In order to make sure that simulation results
are independent of the mesh, a grid sensitivity study with
different base-size and growth-rate meshes has been per-
formed applying same boundary conditions listed, estab-
lishing the same solution features.

Air
Fresnel
Lens
Cu Tube
. Window
Flowing panes
water

Fig. 4. Cross section of meshed unit showing the different finite volumes.

2.1. Simulation of a differentially heated rectangular vertical
cavity

To establish the validity of the model of the smart win-
dow developed, it was first employed to simulate a differen-
tially heated air-filled rectangular vertical cavity typical of
a full-sized (1 m x 1 m) double glazed window (Fig. 5)
and the results were verified against those previously pub-
lished by Safer et al. (2005b), as shown in Fig. 6. Boundary
conditions assumed are such that the front window pane is
assumed to receive a uniform radiative flux with all four
side walls being adiabatic. Simulation of one horizontal
window segment, complete with PV cells, lenses, and heat
removal tubes was then undertaken with the boundary con-
ditions detailed in Table 1. Natural convective heat transfer
in a differentially heated air-filled vertical cavity formed by

Az
Direct radiation
Adiabatic 800W/m?
“—%
l Diffuse radiation
j' 200W/m?
Glass J

T, =25°C > <Tm —0°C
b, =83W/m K B, e =24 W/m* K

H —— air

i
D X
\ 4

Adiabatic

y

Fig. 5. A schematic of the simulated window and the assumed thermal
boundary conditions.
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Fig. 6. Comparison between simulation by Safer et al. and current
simulation of air velocity inside the differentially heated vertical cavity.
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Boundary conditions and material properties.

Boundary conditions and material

Physical value/boundary property

Window panes
Material
Reflectivity R,
Transmissivity T,
Wall specification

Front pane
Heat transfer coefficient /.,
Thermal specification

Back pane
Heat transfer coefficient /%,
Thermal specification

Window sides

Fresnel lenses

Heat transfer coefficient /.,
Material

Reflectivity R,

Thermal specification

Transmissivity 7
Wall specification

Tube

Heat transfer coefficient 4.,
Material

Reflectivity R,

Thermal specification

Transmissivity 7,
Wall specification

Water

Heat transfer coefficient 4.,

Thermal specification

Solar cells

Electrical efficiency

Heat transfer coefficient /4,
Material

Reflectivity R;.

Thermal specification

Transmissivity 7,

Glass

8%

9 1 9 0

Smooth, no-slip

24 W/m?> K
Uniform heat flux, convection,
Surface to surface heat transfer

8.3 W/m*> K

Convection, surface to surface
heat transfer

Adiabatic

In-field calculated

Acrylic

12%

Convection, surface to surface
heat transfer

85%

Smooth, no-slip

In-field calculated

Copper

8%

Convection, surface to surface
heat transfer

0

Smooth, no-slip

50 W/m?> K
Convection

~32%

In-field calculated
GaAsP/InGaAs QWSC

5%

Convection, conduction, surface
to surface heat transfer

0

two glass panes with an aspect ratio (H,./D,.) of 10, Fig. 5,
has been simulated assuming an intensity of 800 W/m? of
direct and 200 W/m? of diffuse solar radiation incident on
the outer window pane with an ambient external tempera-
ture of 0 °C, and a building interior temperature of 25 °C.
In these simulations the realizable two-layer — turbulence
model (Shih et al., 1994) was used. In this model, C,, a crit-
ical coefficient of the model is expressed as a function of
mean flow and turbulence properties, rather than assumed
to be constant as in the standard model. This allows the
model to satisfy certain mathematical constraints on the
normal stresses consistent with the physics of turbulence
(realizability). The concept of a variable is also consistent
with experimental observations in boundary layers. The
realizable — model is substantially better than the standard

— model and is implemented in STAR-CCM with a two-
layer approach, which enables it to be used with fine
meshes that resolve the viscous sub-layer. The turbulent
viscosity, p,, is expressed as:

s
B &

(1)

127

1

where C, is a coefficient given by C}, = —————
1 g Y Cu Ao+ ASU(*)%

2)
p is the density, U™ is a function of strain rate tensor and
vorticity tensor, A, is whose value is taken as 4.0.

A, is whose value is taken as 4, = (V/6) cos ¢ (3)

Contours obtained indicating internal air velocity (mag-
nitude and direction) and temperatures at planes parallel
and normal to the glass panes are shown in Fig. 7 with
Fig. 7(a) showing the velocity magnitude and direction
(—ve and +ve relative to the vertical axis of the cavity) in
the mid plane normal to the glass panes, Fig. 7(b) temper-
ature distribution at the plane in the middle of the cavity
parallel to the windows panes and Fig. 7(c) temperature
distribution at a plane half way up the cavity normal to
the panes.

The outer and inner window panes were predicted to be
about 7 °C and 20 °C respectively, with a difference in tem-
perature of about 6 to 8 °C between the bottom and top in
the mid-plane of the air enclosed in the double glazing.

2.2. The water-cooled solar cell system

Solar cell performance is sensitive to its operating tem-
perature. Active cooling using water as the coolant was
used to maintain a desired solar cell operating temperature
additionally delivering hot water to displace water heating
needs. The subsystem of a solar cell attached to the exterior
of a 0.2 m long copper tube (d; = 8 mm, d, = 12 mm) with
cooling water flowing inside was separately simulated and
optimised. The solar cell was assumed to be operating
under a concentration ratio of 500x, with a direct solar
radiation intensity of 800 W/m? prior to concentration.
Both cell temperature and the difference between average
water inlet and outlet temperatures were predicted for a
range of water flow rates (0.0025-0.03 kg/s) assuming fixed
convective heat transfer coefficients of 50 W/m? K inside
the tubes and an initial estimate of 1 W/m? K for the out-
side tube surface. As can be seen in Fig. § doubling the flow
rate from 0.01 to 0.02 kg/s decreased the predicted solar
cell temperature and the water outlet temperature respec-
tively by approximately 0.4 °C and 1.5 °C. To achieve the
best trade-off between high water outlet temperature, low
solar cell temperature and low pumping power required,
water flow rates of 0.01 kg/s and 0.02 kg/s with a convec-
tive heat transfer coefficient inside the tubes of 50 W/
m? K were adopted for full system simulations.

Fig. 9(a) illustrates the temperature distribution at a
cross section through the copper tube from the water inlet
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Fig. 7. Contours of (a) internal air velocity z component (m/s), and (b) temperature (K) parallel and (c) normal to the glass panes at mid planes.
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Fig. 8. Predicted absolute cell temperature and increase in
temperature for different water flow rates.

water

to the outlet with the illuminated solar cell located half way
along the tube. With the inlet temperature fixed at 10 °C,
the absolute cell temperature is about 27.6 °C as shown
in Fig. 9(b).

a
( ) Solarcell ~ CuTube

Flowing water

3. Thermal performance of the window
3.1. Predicted cavity air temperatures

It is important to predict the expected temperatures at
different sections within the cavity air as well as that on
the front and back surfaces of the window. A series of sim-
ulations were performed whilst dividing the window in five
equally sized and distinct vertical sections (H,, W, and D,
of 1 m, 0.2 m and 0.1 m respectively) employing the bound-
ary conditions listed in Table 1 and the physical conditions
listed in Table 2. To enable a full 1 m x 1 m window to be
simulated, the predictions obtained for the boundary of the
first section were used as the boundary conditions for the
second section with the process repeated for the remaining
three sections. Results from the five vertical window seg-
ments have been gathered to study the performance of
the complete window. Fig. 10(a) shows temperature pro-
files on a plane normal to the window panes and
Fig. 10(b) on a plane parallel to the window panes and
passing through the five solar cells located on five horizon-
tal tubes at the third segment as a sample. The temperature
profiles presented indicate thermally stratified air in the

Temperture (K): 283 284 285 286 287 Temperature (K): 297 298 299 300 301

Fig. 9. Temperature distribution (K) of: (a) cross section through the copper tube and (b) solar cell and the surrounding Cu tube surface for a water flow

rate of 0.01 kg/s.
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Table 2

Physical conditions applied on simulation of vertical window segment.
Property Value
Water flow rate 0.01 kg/s
Incident direct solar radiation 800 W/m?
Inside (building) temperature 297K
Outside (ambient) temperature 273K
Water inlet temperature 283 K

window. Fig. 10(c) shows the velocity (m/s) of air inside the
window caused by natural convection with close-up air
flow around the heated solar cell. It is shown that there
existed a temperature differential of nearly 20 °C between
the top and bottom air layers.

Designers must design smart windows to facilitate
higher natural convective motion of the cavity air allowing
the top half of the window to operate at a lower tempera-
ture to achieve a higher electrical conversion efficiency.

3.2. Predicted solar cell and water temperatures

Thermal performance of the smart window has been
predicted under different simulated parameters namely,
direct solar radiation intensity, ambient temperature, water
inlet temperature, and water flow rate. Fig. 11 shows a
sample of temperature distribution of all window compo-
nents at a plane passing through the horizontal window

Table 3
Physical conditions employed for the simulation of the horizontal window
section.

Property Value
Water flow rate 0.02 kg/s
Incident direct solar radiation 800 W/m?
Inside (building) temperature 293 K
Outside (ambient) temperature 273K
Water inlet temperature 283 K

segment based on simulation physical conditions listed on
Table 3. Simulation data has been collected from all succes-
sive simulations. The effect of increasing direct solar radia-
tion on both solar cells and water temperatures is shown in
Fig. 12. Three different simulations were performed assum-
ing direct solar radiation intensities of 400, 600, and
800 W/m? incident on the window’s front pane with set
ambient temperature, water inlet temperature and water
flow rate of respectively 273 K, 283 K and 0.01 kg/s. Water
temperature was found to increase by 5 °C as it passed
through the tube, carrying the solar cells, from left to right
for the bottom most units at 800 W/m? of direct incident
solar radiation.

The effect of increasing the external ambient tempera-
ture was also investigated by employing three different
ambient temperatures of 273 K, 293 K, and 323K as
boundary conditions at the front window pane external
surface for a water inlet temperature of 293 K, a direct

Temperature (K) [E

294
292
290
288
286
284
282
280
278
276
274

Fresnel
Lenses

Z Velocity (m/s)

0.14
0.1
0.06
0.02
-0.02
-0.06
-0.1
-0.14

Fig. 10. Vertical window segment across sectional planes (a) plane normal to the window panes, (b) plane parallel to the window panes both passing
through tubes and solar cells showing temperature (K) distribution, and (c) plane normal to the window panes and passing through the centre of the
segment width showing velocity (m/s) distribution or air inside smart window cavity.
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Temperature (K)

293
291
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287
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281
279
277

Fig. 11. Temperature (K) distribution inside the horizontal segment at a plane passing through the solar cells and the tube.
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Fig. 12. Solar cell and water temperatures predicted at different locations
over the tube axis for three different direct solar radiation intensities of
400, 600, and 800 W/m? with constant ambient and water inlet temper-
atures of 273 K, and 283 K respectively at a water flow rate of 0.01 kg/s.

radiation intensity of 800 W/m? and a water flow rate of
0.01 kg/s. Resulting water and cell temperatures are shown
in Fig. 13. A 50 °C increase in external ambient tempera-
ture, from 273 K to 323 K, resulted in a negligible rise,
0.3 °Cand 0.5 °C, in last solar cell and water outlet temper-
atures located at 0.9 m and 1 m respectively.

Increasing water inlet temperature had a significant
effect on the thermal performance of smart window shown

206 A Cell@Tamb=273 [] Cel@Tamb=293 O Cell@Tamb=323
|| A water@Tamb=273 [l Water@Tamb=293 @ Water@Tamb=323
<
> 295—
¢
=
o
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Fig. 13. Cell and water temperatures (K) predicted at different locations
over the tube axis for ambient external temperatures of 273 K, 293 K, and
323 K respectively assuming constant water inlet, incident direct radiation
and water flow rate are 293 K, 800 W/m? and 0.01 kg/s respectively.

in both cell and water temperatures. This effect was simu-
lated for two different ambient temperatures of 293 K
and 323 K. Fig. 14 gives cells and water exit temperatures
at three different water inlet temperature of 283 K, 293 K,
303 K keeping the ambient temperature, direct solar
radiation and flow rate at 293 K, 800 W/m?, and 0.01 kg/
s respectively. Fig. 15 shows the cell and water exit

309
306 —| | & Cel@Tinlet=283 [ Cell@Tinlet=293 O Cell@T inlet=303
A Water@T inlet=283 [l Water@T inlet=293 @ Water@T inlet=303
303 —o—%—o—e———»__ o
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e L FRL e I L
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Fig. 14. Cell and water temperatures predicted at different locations over
the tube axis for three different water inlet temperature of 283 K, 293 K,
and 303 K with constant external ambient temperature, direct solar
radiation and flow rate of 293 K, 800 W/m?, and 0.01 kg/s respectively.

/\ Cell@T inlet=293 [ Cel@T inlet=298 O Cell@T inlet=303
A Water@T inlet=293 [l Water@T inlet=298 @ Water@T inlet=303

Temperature (K)

- —M

292 — T ' T T T T T 1
0 0.2 0.4 0.6 0.8 1
Location over the tube axis (m)

Fig. 15. Cell and water temperatures predicted at different locations over
the tube axis for three different water inlet temperatures of 293 K, 298 K,
and 303 K with constant external ambient temperature, direct solar
radiation and flow rate at 323 K, 800 W/m?, and 0.01 kg/s respectively.
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temperatures predicted for a higher ambient temperature of
323 K and water inlet temperatures of 293 K, 298 K and
303 K with direct solar radiation and flow rate at 800
W/m?, and 0.01 kg/s respectively. It was found that a
higher water inlet temperature caused higher temperatures
of window components due to the greater amounts of radi-
ative and convective heat dissipated by the copper tubing.

4. Multiple windows interconnection

In smart window panes water may enter the different
units either in parallel or in series configuration. In the par-
allel configuration, each unit gets water from the main
source with the same initial water temperature with the
advantage that the solar cells embedded on the copper
tubes will operate at their lowest possible temperature,
which in turn maximizes its electrical output depending
on the intensity of the incident solar radiation and ambient
and water temperatures. A drawback of this configuration
is that thermal gain represented by the outlet temperatures
would be relatively low requiring higher auxiliary heating
energy to meet a specific domestic hot water demand.

In the series configuration several units are sequentially
connected with water coming out of one unit being input-
ted to the next unit and so on. The advantage of such
arrangement is a high water outlet temperature with a
downside being a higher PV cell temperature. The number
of units that could be sequentially connected is subject to
the limits imposed by the solar cell temperature achieved
in the farthest downstream stages and physical and electri-
cal properties of solar cells.

Fig. 16 shows predicted thermal behaviour of two win-
dow units connected sequentially for a system operating
with a direct solar radiation intensity of 800 W/m? with a
constant ambient temperature of 273 K, a water inlet tem-
perature of 283 K and a water flow rate, 0.01 kg/s. Solar
cell temperature increased from 283 K (the first cell in the
first unit) to 313 K (the last cell in the second unit) i.e. an
increase of 30 K for just two units connected in series. It

313 —| —ll— Water@!d=800 - il -
310 —||—@— Cell@ld=800 - @- -
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= 304 — » j ]
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Fig. 16. Solar cells and water temperatures predicted at different locations
along the tube axis for the first window unit (solid) and extrapolated to
predict the solar cells and water temperatures for the second window unit
in case of sequential connection (dotted).

is predicted that a sequential connection for a number of
window units, ten units for example, will lead to operating
temperatures for solar cells which are too high and accord-
ingly impair solar cells electrical output.

One option for sequential connection is to increase the
water flow rate; this will result in reduction in both water
outlet temperature and solar cells temperatures as indicated
in Fig. 8.

5. Conclusions

A validated CFD model has been developed to predict
the thermo-fluid performance of a novel Smart Window
configuration accounting for the convective, radiative and
conductive heat transfer processes occurring in the window
components. Two window segments have been modelled; a
horizontal window segment of dimensions 1 m by 0.2 m
and a vertical window segment of dimensions 0.2 m by
1 m; both containing five equally spaced concentrator units
with concentration ratio of 500x. Temperatures of coolant
water and solar cells have been predicted at different loca-
tions within the segments simulated. Temperatures have
been predicted for different environmental and physical
conditions including solar radiation intensity, ambient
and water inlet temperature, and water flow rate.

Smart Windows have been shown to be a promising and
effective way to control solar radiation transmitted through
windows to the building interiors whilst enabling gain of
both electrical and thermal energy from the unwanted
direct solar radiation rather than simple rejection of such
a radiation component obtained using traditional blinding.
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