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Abstract

Vaccination with Bacille Calmette-Guérin (BCG) has traditionally been used for protection against disease caused by the
bacterium Mycobacterium tuberculosis (M.tb). The efficacy of BCG, especially against pulmonary tuberculosis (TB) is variable.
The best protection is conferred in temperate climates and there is close to zero protection in many tropical areas with a
high prevalence of both tuberculous and non-tuberculous mycobacterial species. Although interferon (IFN)-c is known to
be important in protection against TB disease, data is emerging on a possible role for interleukin (IL)-17 as a key cytokine in
both murine and bovine TB vaccine studies, as well as in humans. Modified Vaccinia virus Ankara expressing Antigen 85A
(MVA85A) is a novel TB vaccine designed to enhance responses induced by BCG. Antigen-specific IFN-c production has
already been shown to peak one week post-MVA85A vaccination, and an inverse relationship between IL-17-producing cells
and regulatory T cells expressing the ectonucleosidease CD39, which metabolises pro-inflammatory extracellular ATP has
previously been described. This paper explores this relationship and finds that consumption of extracellular ATP by
peripheral blood mononuclear cells from MVA85A-vaccinated subjects drops two weeks post-vaccination, corresponding to
a drop in the percentage of a regulatory T cell subset expressing the ectonucleosidase CD39. Also at this time point, we
report a peak in co-production of IL-17 and IFN-c by CD4+ T cells. These results suggest a relationship between extracellular
ATP and effector responses and unveil a possible pathway that could be targeted during vaccine design.
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Introduction

Mycobacterium tuberculosis (M.tb), the causative agent of tubercu-

losis (TB), infects ,30% of the World’s population and is endemic

in Asia and sub-Saharan Africa. M.tb is transmitted by aerosol and

infects macrophages in the lung. Infection with M.tb can result in

acute (primary) disease, or, more commonly, remain latent. In

10% of cases, this latent infection reactivates later in life causing

disease, which is usually pulmonary but can occur in other organs

including spleen, stomach, bowel or brain. Co-infection with HIV,

also endemic in TB-endemic areas, results in a significant increase

in the risk of reactivation of this latent infection [1,2,3]. Bacille

Calmette-Guérin (BCG), the current TB vaccine, is an attenuated

form of M.bovis and offers varying degrees of protection. Notably,

the level of protection is lowest in areas endemic for M.tb and the

development of a novel, more effective vaccine against TB is

urgently needed.

Modified Vaccinia virus Ankara expressing antigen 85A

(MVA85A), a secreted and highly immunogenic protein common

to both BCG and M.tb, is a vaccine designed to enhance the low

level of T cell responses induced by BCG through expansion of

antigen 85A-specific T cells [4,5]. The MVA85A-induced

interferon (IFN)-c response has been well-characterised across

several groups of vaccinated individuals and peaks 1–2 weeks

post-vaccination [4,5,6,7,8]. Recently, however, other immuno-

logical parameters have been investigated, in particular those

pertaining to immune regulation. MVA85A has been shown to

induce a reduction in transforming growth factor (TGF)-b in

the serum [9] as well as a reduction in percentages of

CD25+Foxp3+CD39+ Treg in peripheral blood monocytes

(PBMC) from vaccinated subjects [10]. CD39, an ectonucleosi-

dase triphosphate diphosphohydrolase (eNDTPase; apyrase)

hydrolysing extracellular adenosine triphosphate (ATP) to

adenosine monophosphate (AMP) [11], is expressed on leuko-

cytes, including neutrophils and T cells. In humans, CD4+ T cells

can be divided according to their expression of CD25, CD39 and

Foxp3, with CD4+CD25+CD39+Foxp3+ cells representing a

regulatory population [12]. ATP is released into the extracellular
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environment as a natural process during inflammation [13] as

well as being released by dead cells. It has been identified as a

proinflammatory agent and is known to activate the NALP3

inflammasome through binding to the P2X7 receptor and

inducing a K+ efflux, as well as activating the Pannexin-1

channel [14,15]. The combination of these events drives the

cleavage of pro-IL-1, induced by Toll-like receptor (TLR)

activation, to IL-1b by Caspase-1 [16]. IL-1b, in synergy with

IL-6, has in turn been shown to induce IL-17 production by

Th17 cells [17]. Reduced percentages of Foxp3+CD39+ Treg

have been described in PBMC of patients with multiple sclerosis

compared to healthy donors [18,19], and the CD39+ cells that

were present had impaired ATP-hydrolysing capacity [19],

providing evidence for a link between CD39 expression on Treg

cells and a function in regulating inflammation through

controlling extracellular ATP levels.

Here we show that CD39+ Treg percentages drop 2 weeks post-

MVA85A vaccination, coincident with a drop in ATP consump-

tion by PBMC from MVA85A-vaccinated subjects. This also

coincides with an increase in percentages IFN-c and IL-17 double-

producing CD4+ T cells.

Clearance and control of M.tb infection is at least partly

dependent upon interferon (IFN)-c production by CD4+ T

helper 1 (Th1) cells [20], however IL-17 has recently been

identified as being induced by M.tb in murine lungs following

vaccination with adjuvanted peptides derived from ESAT-6, an

immunodominant secreted protein specific to M.tb [21].

Vaccination of mice lacking IL-23 subunits, the cytokine

essential for Th17 expansion, resulted in the loss of accelerated

vaccine-induced recruitment of Th1 cells to the lungs following

M.tb infection, suggesting that IL-17-producing cells (Th17)

contribute to vaccine-induced protection against M.tb challenge

through recruitment of Th1 cells to the lung. These hypotheses

are supported by a different study in which mice were

vaccinated with either BCG or BCG followed by a construct

designed to produce anti-IL-12 antibodies within the animal, or

with the anti-IL-12-inducing construct alone [22]. Following an

M.tb challenge, results showed higher bacterial load (cfu) in

lungs and spleen from mice with anti-IL-12 antibodies

compared to no treatment, but no difference in cfu between

BCG or BCG+anti-IL-12 groups, which both had significantly

lower cfu than unvaccinated mice. Interestingly, higher IL-17

and IL-6 levels were detected in the vaccinated compared to the

unvaccinated groups, suggesting that control during primary

intravenous infection depends on a Th1 response, but on an IL-

17-driven response following vaccination.

Further support for the involvement of IL-17 in control of M.tb

infection comes from a recent study comparing cytokine levels in

tuberculin skin test (TST) negative and TST positive (considered

latently infected) individuals in a TB endemic area. These results

showed that IL-17, IL-23 and RORct, the transcription factor

implicated in Th17 development, were downregulated in TST+

individuals [23] suggesting that higher IL-17 production favours

clearance or control of M.tb.

MVA85A has previously been shown to increase interleukin

(IL)-17 production in both humans and cattle [10,24]. Further-

more, in cattle, vaccine-induced IL-17 production both pre- and

post- M.bovis challenge has been correlated with vaccine-induced

protection against TB disease [24]. IL-17 has also been detected in

whole blood of MVA85A-vaccinated adolescents and children,

where the IL-17+ cells were also found to produce IFN-c, tumour

necrosis factor (TNF)-a and IL-2 [25]. Here we suggest a possible

link between CD39+ Treg cells and potentially protective

MVA85A-induced IFN-c and IL-17 production.

Results

ATP consumption following MVA85A vaccination follows
a distinct pattern and can be inhibited using an apyrase
inhibitor

Consumption of extracellular ATP was measured in PBMC

from vaccinated subjects at 0, 1, 2, 4 and 24 weeks post-

vaccination using the CellTiter-Glo cell viability assay and plotting

against a standard curve. There was a significant difference in

ATP consumption 2 weeks post-vaccination compared to baseline

(p = 0.008) (Fig. 1A). Paired analysis between 0 and 2 weeks is

shown in figure 2B. In order to verify that ATP consumption was

attributable to the action of an apyrase, cells were treated with

ARL67156 at the time of ATP addition, which reduced ATP

consumption (Fig. 1C).

Regulatory T cells, defined here as CD4+CD25+CD39hi, have

previously been shown to decrease in number post-vaccination

with MVA85A [10]. Since CD39 is an eNDTPase metabolising

ATP, percentages of these cells in PBMC of vaccinated subjects

were compared to levels of ATP consumption. There was a small

dip in percentages of CD39+ Treg cells between 1 and 2 weeks

post-vaccination and followed the pattern of ATP consumption

(Fig. 1D).

IFN-c and IL-17 double positive cells peak 2 weeks post-
vaccination

In PBMC from healthy MVA85A-vaccinated subjects, T cells

producing only IL-17 were not detectable by intracellular cytokine

staining, using a peptide pool of 66 Ag85A peptides as the

stimulant (data not shown). In contrast, CD4+ T cells producing

both IFN-c and IL-17 simultaneously in response to stimulation

with Ag85A peptides were readily detected in response to the same

stimulant. IFN-c+IL-17+ cells (gating shown in Fig. 2A) peaked 2

weeks post-vaccination (Fig. 2B). Since there appeared to be CD39

activity in the PBMC samples (Fig. 1C), the effect of ARL67156

treatment on antigen-specific cytokine production was examined.

Addition of ARL67156 enhanced production of both cytokines

both 1 and 2 weeks post-vaccination and the change in cytokine

production compared to baseline in this experiment was significant

(p = 0.047 at 1 week and 0.02 at 2 weeks post-vaccination)

(Fig. 2C).

IL-17+ and IFN-c+IL-17+ cells are present at a higher
frequency in whole blood compared to PBMC of
vaccinated subjects

Other trials involving vaccination with MVA85A have

investigated cytokine responses in whole blood as opposed to

PBMC. One marked difference between these two compartments

is that IFN-c-producing CD8+ T cells are readily detectable in

whole blood but not in PBMC following vaccination ([5,26] and

Satti, I. unpublished data). To directly compare CD4+ T cell

cytokine production in these two compartments, we investigated

IL-17 and IFN-c production following stimulation with Ag85A

peptides in whole blood and PBMC from the same BCG-

vaccinated healthy subjects. Whole blood was stimulated with

peptide pools of 85A. Both IL-17+ and IFN-c+IL-17+ cells peaked

1 week post-vaccination (Figs. 3A & B), in contrast to the

undetectable IL-17 response and the peak of IFN-c+IL-17+ cells

observed 2 weeks post-vaccination in PBMC. The magnitude of

response was also significantly higher one week post-vaccination in

whole blood, with a mean of 0.0548% (60.0355) compared to

0.0065% (60.0063) for PBMC, p = 0.002 following stimulation

with the Ag85A peptide pool. Furthermore, there was a significant

MVA85A-Induced Th1/Th17 Cells and ATP Consumption
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difference in peak response comparing whole blood and PBMC

following Ag85A peptide pool stimulation (Fig. 3C) (mean 6 SD

for WB (1 week post-vaccination): 0.0548% (60.0355); PBMC (2

weeks post-vaccination): 0.0096% (60.0083), p,0.001).

Discussion

M.tb is a resilient intracellular pathogen that has evolved to

survive successfully inside human macrophages in a delicate

Figure 1. ATP consumption by PBMC and CD39+ Treg percentages dip 2 weeks post-vaccination. PBMC from MVA85A-vaccinated
subjects were plated out at 56104 cells/well in 50 mL. Cells were incubated with either 50 mM ATP or 50 mM+100 mM ARL67156 before addition of the
luciferase reagent. A standard curve starting at 50 mM ATP was set up and negative controls were cells with no ATP added. (A) Shows change in ATP
consumption over time post-vaccination. (B) Paired representation of change in ATP consumption between 0 and 2 weeks post-MVA85A. Effect of
addition of ARL67156 is show in (C). (n = 10–12). Note that the observation of a greater effect of the inhibitor is potentially due to saturation of
binding sites for ATP by the inhibitor at this timepoint, whereas the greater percentage of CD39+ cells present at other timepoints meant the
concentration of ARL67156 was not high enough to completely block all available binding sites. Percentages of CD25+CD39+ Treg in MVA85A-
vaccinated subjects were calculated as a percentage of CD4+ T cells and shown in (D), plotted over ATP consumption.
doi:10.1371/journal.pone.0023463.g001
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balance with the host’s immune system. Should this balance be

tipped in favour of the pathogen, the result is potentially fatal

active disease. Vaccination is therefore essential in order to either

prevent initial infection or, failing that, to prevent development of

active TB disease. Consequently, it is important to understand the

types of immune cells that should optimally be induced by

vaccination and the mechanisms through which these cells can be

induced. As well as measuring effector responses in terms of Th1

immunity, it is also important to measure other types of effector

responses as well as the corresponding regulatory response induced

by vaccination as protection induced by any vaccine will be the

outcome of the balance of all these responses.

Here we show that there is a relationship between ATP

consumption, and IFN-c and IL-17 expression by CD4+ T cells

following vaccination with MVA85A, which also relates to

percentages of CD39+ Treg in the PBMC. In healthy BCG and

MVA85A-vaccinated subjects, CD39+ Treg numbers decrease post-

vaccination, with a maximum decrease 2 weeks post-vaccination.

This is associated with a decrease in ATP consumption, suggesting

that ATP consumption is driven at least in part by CD39+ Treg.

Strikingly, at 2 weeks post-vaccination, we also show an increase in

the percentage of IFN-c+IL-17+ cells. IFN-c+IL-17+ cells have been

previously been described in autoimmune diseases [19] and

ulcerative colitis [27] as well as in response to mycobacterial

antigens [28]. Our data support the hypothesis that extracellular

ATP may help to drive the development of these cells. This

hypothesis is supported by the fact that IL-17+ and IFN-c+IL-17+

cells are more readily detectable in whole blood compared to

PBMC; the extracellular environment of whole blood is far more

complex than that of PBMC and our experiments have shown a

higher concentration of ATP in whole blood compared to PBMC

following stimulation. Furthermore, ATP has previously been

shown to induce IL-17 production by T cells in mice [29].

The link between these observations following MVA85A

vaccination is still under investigation. One mechanism that could

contribute to increased cytokine production is activation of the

NALP3 inflammasome. This leads to IL-1b production, which in

turn acts on induction of CD4+ T cells to produce IL-17 [17].

Since CD39 metabolises ATP, a vaccine-induced reduction in

circulating CD39+ Treg may result in increased concentrations of

pro-inflammatory extracellular ATP, known to act through the

P2X7 receptor to activate the inflammasome [14,30]. Adding to

this effect, a decrease in circulating CD39+ Treg would also reduce

the concentration of breakdown products of ATP, such as

adenosine, which is known to act in an inhibitory fashion through

the A2A receptor on activated T cells [31].

Figure 2. IL-17 and IFN-c production in PBMC peaks 2 weeks post-vaccination. PBMC from vaccinated subjects were stimulated with
Ag85A peptide pools with or without 100 uM ARL67156. No stimulation and phorbol 12-myristate 13-acetate with ionomycin were used as negative
and positive controls. Percentages shown are unstimulated subtracted from Ag85A stimulation. Following staining, cells were gated as shown in (A):
Lymphocytes were gated for on FSC vs. SSC. Singlets were then gated and dead cells, B cells and monocytes were gated out. CD3+ cells were selected
for CD4+CD82 cells. Antigen-specific cytokine expression from these cells was evaluated. Cells expressing both IL-17 and IFN-c were quantified and
shown in (B). The effect of ARL67156 on cytokine expression was investigated by addition during ICS stimulation (C).
doi:10.1371/journal.pone.0023463.g002
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A further contributing factor to inflammasome activation and

IL-17 induction might be the viral vector MVA, which has been

found to activate the NALP3 inflammasome in THP-1 cells

following its endocytosis [32].

The role of IFN-c+IL-17+ cells in protection against mycobac-

terial infection is not clear, however both cytokines individually are

known to be important in vaccine-induced protection. So far in

mice, it has been shown that ablation of an IL-17 response

following both vaccination (antigen-specific production) [21] and

high-dose M.tb challenge (production by innate cells) [33] leads to

reduced protection against M.tb infection. However, it would also

appear that pathology induced as a result of prolonged exposure to

mycobacterial antigens is IL-17-dependent [34]. Measurement of

IL-17 production in lungs following either vaccination or M.tb

infection is not possible in human studies so it is difficult to draw

comparisons and to predict the role of IL-17, especially since the

mouse model of M.tb disease is not an ideal representation of

human disease. As discussed above, it has been found that IL-17

levels in blood in both humans and cattle correlate with protection

against mycobacterial exposure [23] and mycobacterial infection

[24] respectively, so it may be, as proposed by Torrado and

Cooper [35], that while IL-17 may be essential in vaccine-induced

control of TB disease, it needs to be under tight regulation by

other aspects of the immune response in order to avoid induction

of immunopathology.

These findings demonstrate vaccine-mediated induction of a

subset of IFN-c+IL-17+ cells, whose peak corresponds with a

reduction in the ability of these cells to hydrolyse ATP in a CD39-

mediated manner. Should this cell subset prove to be protective in

vaccine-induce protection against TB disease, this pathway

represents a potential target for manipulation for their enhance-

ment.

Knowledge of mechanisms through which IL-17-, and IFN-c
and IL-17-producing cells can be induced is important with regard

to vaccine development, with the next step being to determine

their role in vaccine-induced protection or pathology.

Furthermore, it is important to investigate regulatory aspects of

cellular immunity, as the total outcome of any vaccine-induced

immunity will be the result of a balance between both effector and

regulatory responses. The work here helps to dissect this

interaction between regulatory and effector responses following

vaccination and provides potential avenues for manipulation of

immune responses in order to provide improved vaccine-induced

protection.

Figure 3. IL-17 and IFN-c production in whole blood peaks 1 week post-vaccination. Whole blood (WB) from vaccinated subjects was
stimulated for 6 h with a pool of 66 Ag85A peptides. Phytohaemagglutinin (PHA)-treated and untreated cells were used as positive and negative
controls respectively. Lymphocytes were gated for and cytokine-expressing cells quantified as described above. Percentages of IL-17+ and IFN-c+IL-
17+ cells responding to the Ag85A peptide pool (with the percentages from unstimulated cells subtracted) are shown in (A) and (B). Differences in
percentages of cells at the relevant peak time point in PBMC vs. WB is shown in (C). n = 7.
doi:10.1371/journal.pone.0023463.g003
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Materials and Methods

Vaccine study participants
PBMC were from subjects recruited for a trial approved by the

review committees indicated below. Subjects (aged 18–50) were

recruited on the basis of prior BCG vaccination (maximum

Mantoux test 15 mm, ,10 sfc/million ELISpot counts in response

to ESAT-6 and CFP10 peptide pools) and were seronegative for

HIV and hepatitis B and C viruses. The trial was registered on the

clinical trials database (ClinicalTrials.gov ID: NCT00465465).

Subjects from whom samples were taken received a dose of

MVA85A at 16108 pfu as two intradermal injections, administered

simultaneously, one in each arm. The MVA85A vaccine was

manufactured to Good Manufacturing Practice (GMP) by Im-

pfstoffwerk Dessau-Tornau (IDT) Biologika GmbH in Germany.

Samples from weeks 0, 1, 2, 4 and 24 were investigated.

The efficacy and safety data from this trial is in the process of

being written up but has yet to be published; immunological data

from the same trial has been published in Beveridge et al. 2008 [26].

Ethics statement
All clincal trials are fully approved by the ethical and regulatory

agencies (Centre of Research: Ethical Campaign, and Medicines

and Healthcare Products Regulatory Agency), and also local

GMO and NHS committees as required (the Gene Therapy

Advisory Committee), and full written consent was obtained from

each subject prior to enrolment in the trial. Storage of samples for

exploratory immunological analyses is fully ethically approved.

PBMC preparation
PBMC from vaccinated subjects were cryopreserved in liquid

nitrogen at time of acquisition in aliquots of 56106 cells in 50%

fetal bovine serum (FBS; Biosera Ltd.), 40% RPMI 1640, 10%

dimethylsulphoxide (DMSO; both from Sigma Aldrich). Prior to

use, cells were thawed in 9 mL R10 (10% FBS, 2 mM L-

glutamine, 100 U/mL penicillin, 100 ug/mL streptomycin in

RPMI 1640). Cells were treated with 67.2 U/mL Benzonase

(Novagen) for at least 2 hours at 37uC in 5% CO2. Cells were

washed and resuspended to ,16106 cells/mL and counted using

a CASY cell counter (Schärfe System, GmbH).

Antibodies and reagents
Anti-human antibodies (Pacific blue anti-CD19, eFluor450 anti-

CD19, Pacific blue anti-CD14, eFluor450 anti-CD14, PE-Cy5

anti-CD3, APC-AlexaFluor780 anti-CD8, APC anti-CD25, PE-

Cy7 anti-CD39, FITC anti-IFN-c, PE anti-IL-17) were obtained

from eBioscience, and Qdot655 anti-CD4 and the ViViD Live/

Dead cell stain were from Invitrogen. The Cytofix/Cytoperm

intracellular staining kit was from BD Biosciences. ATP was

purchased from Millipore, and ARL67156 from Tocris Biosci-

ence. The CellTiter-Glo cell viability kit was from Promega.

Brefeldin A was supplied by Sigma Aldrich and GolgiStop by BD.

Intracellular cytokine staining
Cells were resuspended at 16106 cells/mL and each sample

divided into seven 1 mL aliquots in 5 mL polystyrene round

bottom tubes (BD Falcon). Cells were stimulated for 18 hours at

37uC in 5% CO2 with one of the following: no stimulation, no

stimulation +100 uM ATP, no stimulation +100 uM ARL67156,

0.2 ug/mL phorbol 12-myristate 13-acetate (PMA) and 2 ug/mL

ionomycin, 2 ug/mL Ag85A peptide pool, 2 ug/mL Ag85A

peptide pool +100 uM ATP, 2 ug/mL Ag85A peptide pool

+100 uM ARL67156. After 2 hours, 5 ug/mL Brefeldin A and

0.7 uL GolgiStop (BD Biosciences) were added.

After stimulation, cells were sedimented at 1300 rpm for 5 min

at 4uC and transferred to a flexible 96 well plate for staining.

Cells were stained with ViViD Live/Dead cell stain prior to

surface staining with eFluor450 anti-CD19, eFluor450 anti-CD14,

APC anti-CD25 and PE-Cy7 anti-CD39. Cytofix/Cytoperm was

used to permeabilise cells prior to staining intracellularly with PE-

Cy5 anti-CD3, Qdot655 anti-CD4, APC-AlexaFluor780 anti-

CD8, FITC anti-IFN-c and PE anti-IL-17. Following permeabi-

lisation, washes between stains included sedimentation for 5 min

at 1800 rpm, 4uC.

Staining was analysed using an LSR II flow cytometer (BD

Biosciences).

Whole blood ICS
Freshly collected heparinised whole blood from MVA85A-

vaccinated volunteers was stimulated for 10–11 hours at 37uC
with either recombinant Ag85A, a pool of 66 peptides of Ag85A,

PPD or BCG. No stimulation and Phytohaemagglutinin were used

as negative and positive controls, respectively. After 5–6 hours,

Brefeldin A was added for the final 5 hours. Cells were harvested

by adding 1 mL FACS Lysing Solution (BD Bioscience) and

sedimenting. Cells were frozen in 10% DMSO in FCS and stored

at 280uC.

ATP consumption assay
ATP consumption was measured as described Borsellino et al.

[18]. Briefly, PBMC from subjects were resuspended at 16106

cells/mL and aliquoted into 6 wells/sample of a white 96 well

plate (Nunc) at 56104 cells/well. Cells were treated with either

nothing, 50 uM ATP or 50 uM ATP +100 uM ARL67156 for

10 min at room temperature. One volume CellTiter-Glo solution

was added to each well and cells were incubated for a further

10 min at room temperature in the dark. Luminescence was

recorded using a Varioskan Flash spectral scanning multimode

reader (Thermo Scientific). ATP consumption was calculated

using a standard curve of known ATP concentrations and

expressed in nmol.

Statistical analysis
Given the non-parametric nature of the data, Wilcoxon Sign

Rank Tests and Mann-Whitney Tests were performed as

appropriate tests for statistical analysis.
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