
Interspecies Translation of Disease Networks Increases
Robustness and Predictive Accuracy
Seyed Yahya Anvar1*, Allan Tucker2, Veronica Vinciotti2, Andrea Venema1, Gert-Jan B. van Ommen1,

Silvere M. van der Maarel1, Vered Raz1, Peter A. C. ‘t Hoen1

1 Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands, 2 Center for Intelligent Data Analysis, School of Information Systems,

Computing and Mathematics, Brunel University, Uxbridge, Middlesex, United Kingdom

Abstract

Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The
derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is
problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in
transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct
and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a
reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to
the identification of the most consistent relationships within the network structure. In this study, we demonstrate the
performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and
patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate
predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability
and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on
notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data.
We show that the identified key components of the OPMD disease network can be confirmed in an unseen and
independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks
that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease
molecular mechanisms.
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Introduction

The degree to which gene products appear in the cell and exert

their function is regulated through interactions with other genes.

This interconnectivity implies that the identification of gene

regulatory networks is vital for understanding the phenotypic

impacts of gene defects and the associated complications [1–4].

The dawn of high-throughput technologies such as genome-wide

sequencing and microarray experiments has increased our

understanding of molecular behavior at the transcriptional level.

Although these large-scale datasets provide crucial information

about both the presence and relative abundance of RNA

transcripts, they also introduce an important challenge in

providing a comprehensive view of molecular mechanisms and

regulatory relationships among genes with different underlying

phenotypic conditions.

The presence of this obstacle calls for developing robust

machine learning models that can be used for generating gene

networks in which their transcriptional changes can affect

phenotypic outcome. However, building a network that involves

thousands of genes and millions of interactions is extremely

problematic and requires a great quantity of experimental data for

the valid interpretation of biological causes for a given phenotype.

Furthermore, the validity of gene regulatory networks is often

affected by limited and highly variable samples, heterogeneity in

transcript isoforms, noise and other artifacts [5–8]. Therefore, a

probabilistic approach is needed to identify and predict intercon-

nected transcriptional behaviors that give rise to disease outcome

[9] and to, ultimately, offer potential targets for therapeutic

intervention and drug development. Among the possible statistical

models, Bayesian networks have been an important concept for

modeling uncertain systems [10–13]. Bayesian networks can

represent complex stochastic relationships between genes and

are capable of integrating different types of data (i.e. phenotype

and genotype categorical information as well as gene expression

data). In addition, the probabilistic nature of such networks can

accommodate noise and missing data by weighting each

information source according to its reliability. In contrast to many

statistical models, the transparent nature of Bayesian networks (in

terms of the graphical structure and local probability distributions)

leads to better interpretation and understanding of the underlying

biological regulation of the disease.
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The high dimensionality of the genome wide expression

profiling datasets and the limited number of available samples

complicates the derivation of robust network structures. Methods

such as the use of prior knowledge about biological interactions

[13–15] have been shown to successfully reduce the search space

and to make networks more robust. This method works for well-

studied diseases or biological systems, but is not likely to identify

novel regulatory interactions underlying the molecular mecha-

nisms of rare or complex disorders. In addition, this bias can

falsely expose the network to sample differences in the absence of a

disease-related biological cause. In this study, we hypothesize that

biologically relevant relationships between genes are often

conserved across species. Thus, the robustness and stability of a

gene network should increase when modeling regulatory networks

using related datasets from different species. Moreover, we

hypothesize that the relationships identified in an interspecies

gene network should be biologically more meaningful. On the

other hand, cross-species translation of networks is far from trivial

given our limited knowledge of true protein orthologues and

transcript variants coding for proteins with similar functions in

different species. Therefore, we explore the performance of a novel

algorithm that combines our previously published model for

learning regulatory interactions from multiple datasets of increas-

ing complexity [16] with an interspecies translation and validation

regime, named Dandelion algorithm. We show that the supplemen-

tation of this algorithm with a modeling-driven selection of

transcripts coding for orthologous proteins (exhaustive Dandelion

algorithm) significantly improves the robustness and stability of the

interspecies network, when compared to a standard approach in

which expression levels of different transcripts for the same gene

are summarized (naı̈ve Dandelion algorithm). We also show that

the potential regulatory relationships that play a role in interspecies

disease networks can be reproduced and validated in an unseen and

independent model system.

In this study, three publicly available microarray datasets from

Drosophila [17], mouse [18], and human [19] that are all concerned

with oculopharyngeal muscular dystrophy (OPMD) have been

chosen to gain insight into the key regulators of the disease. These

datasets are described in Table 1. OPMD is a late-onset

progressive muscular disorder for which the underlying molecular

mechanisms are largely unknown. This autosomal dominant

muscular disorder has an estimated prevalence of 1 in 100,000

worldwide [20]. OPMD is caused by the expansion mutation of a

homopolymeric alanine stretch at the N-terminus of the Poly(A)

Binding Protein Nuclear 1 (PABPN1) by 2–7 additional Ala

residues [21]. Although PABPN1 is ubiquitously expressed, the

clinical and pathological features of OPMD are restricted to a

subset of skeletal muscles, causing progressive ptosis, dysphagia, and

limb muscle weakness. Drosophila and mouse models with muscle-

specific overexpression of expanded PABPN1 recapitulate pro-

gressive muscle weakness in OPMD [22,23]. However, the

potential artifact, heterogeneity in transcript isoforms, and the

presence of overexpression side-effects in OPMD animal models

and limited patient materials complicate the identification of key

regulators of OPMD. With the analysis of these datasets, we

demonstrate that modeling of interspecies disease networks increases

the robustness of the networks and aids in the identification of key

regulators of the disease.

Methods

Model of Interspecies Networks Using Dandelion
Algorithm

To construct interspecies networks that can accurately predict the

disease phenotype and provide a comprehensive view of molecular

relationships that underlie the disease-associated biological

processes, we developed a novel Dandelion algorithm with multi-

layers of analysis and evaluation criteria. A schematic presentation

of this approach can be found in Figure 1. In addition, the

definition of nomenclatures (italicized terms) used in this study is

provided in the Table S1 in Text S1.

The procedure starts with the identification of the disease-

associated modules by assessing the association of transcriptional

profiles with the disease state. In this study, gene modules are

defined according to current KEGG (Kyoto Encyclopedia of

Genes and Genomes) annotation of molecular pathways to ensure

functional relationships among genes within the same cluster.

After identification of the disease module, the set of genes in the

disease module is supplemented with a set of randomly selected

genes for the purpose of network performance estimation and

evaluation. The Dandelion algorithm integrates three recurring

phases of training and independent testing with the use of

multiple datasets derived from the different biological systems.

This involves a reiterative selection of one species as an organism

in which intraspecies gene regulatory networks are constructed.

Cross-validation is used for learning and optimization of the

intraspecies network structure. Some partitions were purely used

for testing the intraspecies network to ensure, in all experiments,

that the test data is previously unseen. Datasets from the other

species are used for interspecies translation, independent testing and

validation of the constructed disease networks. The construction

of intraspecies Bayesian networks is governed by our previously

published optimization procedure [16]. To ensure that these

interspecies networks are derived from a disease-related biological

cause, the specificity and sensitivity of the networks for prediction of

the disease phenotype are assessed. Moreover, the robustness and

translatability at different confidence thresholds are evaluated. After

defining the interspecies disease domains, a subset of genes is selected

for unbiased examination of reproducibility and validity of

disease-related transcriptional changes in an unseen and

independent model system. The detailed outline of the proce-

dure, depicted in Figure 1, is provided in the following

subsections.

Author Summary

The identification of gene regulatory networks can provide
vital information on biological processes. Despite numer-
ous advancements in developing machine learning strat-
egies, the stochastic nature of such biological systems
complicates the construction of robust and reliable
network structures. In recent years, the use of cross-
species datasets enabled scientists to better understand
the molecular mechanisms that are associated with human
disorders. However, it also presents a challenge in dealing
with especially difficult mapping of protein orthologues,
alternative transcript splicing, noise, or other artifacts.
Here, we developed a novel algorithm for constructing
interspecies disease networks that provide accurate
predictive value over the disease phenotype and gene
expression. We show that the disease-association of
potential key regulators that play a role in interspecies
disease networks can be reproduced and validated in an
unseen and independent model system. This study
presents a novel strategy for constructing networks that
can be translated across species whilst providing a
comprehensive view of regulatory relationships associated
with the disease.

Disease-Related Interspecies Regulatory Networks
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Disease modules. Disease modules have been identified

according to our previously published study [19] in which we

performed an integrated transcriptome analysis to identify the

most significant molecular pathways that are associated with the

OPMD across species.

Bayesian network structure learning. A Bayesian network

encodes the joint probability distribution of a set of random

variables. It consists of a directed acyclic graph (DAG) that

represents conditional independencies between variables, and

conditional distributions at each node in the graph. Bayesian

network classifiers are a special case of Bayesian networks where

one node represents some discrete class to be predicted. Here,

each node in the graph represents a gene transcript (or gene) and

the class node represents the disease states. In order to learn the

Bayesian network structure of a gene network, the algorithm

approximates the likely graphical model by searching the space of

possible networks via single-arc changes that improves some score.

We use a simulated annealing search in conjunction with the

Bayes Information Criterion (BIC) as a scoring metric [24].

Simulated annealing performs competitively with other

optimization methods as it aims to avoid local maxima [25].

There is a trade-off between simplicity of model with one that can

accurately identify the empirical distribution of gene expression

profiles and predict the disease phenotypic outcome. For this

reason the BIC is used as it is less prone to overfitting through the

use of a penalizing term for overly complex models.

The initial state of the structure is an empty DAG with no links.

In order to alter the network structures, three operations have

been used within the simulated annealing procedure. These

operators are adding, removing, or swapping links to generate a new

network which can be either accepted or rejected based on its

overall score and the current temperature. The outline of this

algorithm can be found in the Protocol S1 in Text S1.

In this study, the initial temperature (t0) has been set to 10 and it

terminates at 0.001 (tn), according to our previously published

optimization procedure [16]. The number of iterations (maxfc) has

been set to 1000 in respect to the number of nodes available in the

network. The training dataset is described as D. For the training

phase, the mode variable is set to ‘‘train’’ and the variable

networkMap is set to empty. During the interspecies translation and

testing, the variable mode is set to ‘‘test’’ and the variable

networkMap holds information on the regulatory relationships that

are present in the network map constructed on training organism.

Construction of interspecies networks. The Dandelion

algorithm takes multiple datasets from different species as input. In

this study, we launch two classes of Dandelion algorithm. Firstly, the

naı̈ve Dandelion algorithm, where the expression patterns of gene

transcripts are summarized by averaging the expression profiles of

gene probes, to provide one expression profile per gene. This enables

direct mapping of expression profiles of orthologous genes when

translating networks across species. This approach significantly

simplifies the process of constructing network structures. Secondly,

we developed the exhaustive Dandelion algorithm to overcome the

limitations caused by heterogeneity in transcript isoforms, differences

in annotation between organisms and technical factors (i.e. different

microarray platforms). In the exhaustive algorithm, transcripts that

are most likely to be coding for orthologous proteins are selected

automatically in the modeling phase.

The procedure involves reiterative selection of one species for

construction of the Bayesian network while other species are left

aside for independent testing and validation of learnt disease

networks. The highest-scoring intraspecies network structure is

learnt according to the algorithm described in the Protocol S1 in

Text S1. Before interspecies translation, in the exhaustive
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Dandelion algorithm, a detailed interaction map of a candidate

intraspecies disease network of gene transcripts needs to be

transformed to a network map of gene-gene relationships. This

step can be omitted in the naı̈ve Dandelion algorithm as the

constructed intraspecies networks are already at the gene level.

Using the cross-validation and network optimization procedure, the

algorithm searches through the relationships present in the network

map (constructed on the training set) to find the best fit for the

Figure 1. Schematic overview of the Dandelion algorithm for disease network analysis. The Dandelion algorithm involves three recurring
stages of training and independent testing regime with the use of multiple datasets derived from different species. In the first step, disease modules
are defined as the most consistently disease-associated molecular pathway across species. The disease module is supplemented by a set of randomly
selected genes to assess the performance of the algorithm and to check for overfitting. These datasets are standardized to mean 0 and standard
deviation of 1 across genes. The next step involves reiterative selection of one species as an organism in which the gene regulatory network is
constructed while others are left aside for independent testing and validation of learnt disease networks. For an intraspecies construction of disease
network, dataset is divided into k-folds, using cross-validation, and regulatory relationships between gene transcripts are learnt using Bayesian
network methodology enhanced by simulated annealing optimization of network BIC score. After applying confidence thresholds on relationship
between genes, the disease network can then be translated to the expected interspecies disease network which we call a network map. Using the
cross-validation and network optimization procedure the algorithm searches through the relationships found in the training dataset to find the best
fit for interspecies representation of the disease network. These networks are then integrated by removing all the links with low confidence score
across species.
doi:10.1371/journal.pcbi.1002258.g001

Disease-Related Interspecies Regulatory Networks
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interspecies representation of the disease network. These networks

are then integrated by removing all the links with a low confidence

score to construct the consensus interspecies disease networks. The

full algorithm details are outlined in the Protocol S2 in Text S1

where Speciestrain and trainfolds represent the training dataset and the

folding arrangements for the selected organism. Furthermore, the

series of Speciestest 1 … Speciestest M and testfolds 1 … testfolds M represent

the datasets and folding arrangements of organisms that are selected

for independent test and validation. The logical variable exhaustive

indicates the class of Dandelion algorithm (naı̈ve in case of false and

exhaustive in case of true) that needs to be performed.

In this study, the human dataset is divided into 4 folds due to the

limited number of patient samples. Mouse and Drosophila datasets

are divided into 6 folds. The average Sum of Squared Error (SSE) and

standard deviation (STD) are calculated for all nodes over these

folds by predicting the measured expression values of genes (or

gene transcripts) given the measurements taken from others. For

the class node, the state of the disease is predicted given the

expression profiles for genes (or gene transcripts) within the

network structure. The number of iterations was set to 1000 for

the training phase and was reduced to 500 during the interspecies

translation of disease networks. The code is implemented in

Matlab 2008b using the Bayes Net toolbox [26].

Network analysis and evaluation. The proposed approach

consists of three layers of analysis and evaluation. The constructed

interspecies disease networks are assessed for their predictive

accuracy towards the disease phenotype (class node) by

calculation of the level of sensitivity and specificity. Furthermore,

the Bayesian networks Sum of Squared Error (SSE) is calculated for

prediction of the expression of all genes (or gene transcripts).

Moreover, the level of robustness and translatability of the

generated networks are evaluated. The stability and robustness of

relationships between genes within the disease module are

compared to those of the random genes at different confidence

score thresholds. Confidence scores are the ratio of the number of

times a link is found in the interspecies disease networks to the

maximum number of times the link can possibly be found (based

upon the number of folds). For approximating the level of

translatability, the total number of links found during the training

phase is compared to the number of links that were successfully

translated to other species. Finally, the interspecies disease domains

are defined based on the Markov blanket principle for the extension

of the class node connectivity. In addition, unstable gene

interactions are removed through assessment of the level of

confidence in the relationships between genes. The interspecies

disease domains are used to select a subset of genes to further study

the reproducibility and validity of the observed relationships

towards their association with the disease phenotype in an unseen

and independent OPMD model system.

To assess the specificity of genes encoding for the proteasomal

proteins in accurately predicting the disease states, we generated

three additional gene sets. A set of 100 randomly selected genes, 87

genes within the ribosome pathway, and 70 randomly selected genes

with the constraint of none being deregulated (ND) constitute the

three genes sets that are used in a comparative analysis. The human

dataset is used for cross-validation whilst mouse and Drosophila

datasets were used for independent assessment of the constructed

networks. Networks are evaluated on their sensitivity, specificity, and

predictive accuracy towards the disease state (OPMD or control).

Microarray Datasets
The human, mouse, and Drosophila microarray datasets have

been previously published [17–19]. The human and mouse

datasets are publicly available at GEO repository under the

accession numbers GSE26605 and GSE26604, respectively. In all

datasets genome-wide expression profiles of skeletal muscles from

OPMD are compared to controls. In case there are multiple

probes for the same gene on the microarray platforms, these

probes usually measure the expression levels of different transcripts

from the same gene. The class node reflects the disease phenotype

(control or OPMD) of each sample. A detailed description of these

datasets can be found in Table 1.

Data Processing and Statistical Analysis
Microarray measurements were normalized using the quantile

method. In addition, these datasets were standardized to mean 0 and

standard deviation 1 across the genes. For the scope of this paper, the

human proteasome-encoding genes were annotated using illumina-

Humanv3BeadID package in R and the mouse and Drosophila

homologous were annotated using HomoloGene and Inparanoid

(http://ncbi.nlm.nih.gov/homologene and http://inparanoid.sbc.su.

se, respectively) online databases. Previously published data were used

to identify deregulated genes per species [19]. For cross-validation

[27,28] human data were divided into 4 folds (given the limited

number of OPMD samples), while the other datasets were divided into

6 folds (Table 1). Human, mouse, and Drosophila datasets hold 108,

96, and 78 transcripts, respectively, which encode for 74, 56, and 53

genes (including genes encoding for the proteasome and a set of 30

randomly selected genes). The differences are due to limitations of

mapping homologous genes or unavailability of expression data for

certain genes in a particular species. The gene lists are provided in the

Table S2 in Text S1.

Cell Model
IM2 cells stably transfected with normal (WTA) or expanded

PABPN1 (D7E) and were compared to assess the predictive value of

the interspecies modeling approach on an unseen OPMD disease

model [29]. Exogenous PABPN1 expression is under control of the

desmin promoter. IM2 cells were proliferated in DMEM supple-

mented with 20% fetal calf serum, 0.5% chicken embryo extract,

5 U/ml interferon gamma, at 33C and 10% CO2. Myotube fusion

was induced by culturing in DMEM supplemented with 5% horse

serum at 37C and 5% CO2 for four days, after which RNA was

extracted from three independent cultures.

Quantitative RT-PCR Analysis
Total RNA was extracted using the TRIZOL reagent

(Invitrogen) according to manufacturer’s instruction. First strand

cDNA was synthesized with random hexamer oligonucleotides

and MMLV reverse transcriptase (First Strand Kit; Fermentas,

according to manufacturer’s instruction). 3.6 ng cDNA was used

per quantitative PCR reaction. qPCR was performed with SYBR

green mix buffer (BioRad) and 7.5 pmole (per reaction) of forward

and reverse primers in a 15 mL reaction volume. PCR conditions

were as follows: 4 min at 95uC followed by 40 cycles of 10 sec at

95uC and 60 sec at 60uC. The program was ended with 1 min at

60uC. For each primer set, the specificity of the PCR products was

determined by melting curve analysis. Expression levels were

calculated according to the DDCT method normalized to mHrpt,

Desmin, and IM2 parental cells. The statistical significance was

determined with the student’s t-test. The list of primers used in this

study is provided in the Table S3 in Text S1.

Results

Identification of Disease Module
Previously we identified that the deregulation of the ubiquitin-

proteasome system (UPS) is the predominant molecular pathway

Disease-Related Interspecies Regulatory Networks
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affected in OPMD animal models and patients [19]. The UPS, a

cellular regulator of homeostasis, is highly dynamic machinery that

involves protein ubiquitination and degradation steps. From the

six UPS components, we found that only E3-ligases, deubiquiti-

nating enzymes, and proteasome components are consistently and

prominently deregulated in OPMD across species [19]. The

proteasome is composed of core and regulatory subunits. We

observed a substantial deregulation of proteasome and cytokine-

induced proteasome (also known as immunoproteasome) encoding

genes across species (Figure 2). To obtain more insight in the key

components in the proteasome machinery that are aberrantly

expressed in OPMD across species, we generated gene regulatory

networks. Unique to the current approach, the networks were

learnt on one species and evaluated on datasets from other species.

This was done to only retain those links between genes that can be

found across multiple species and that are more likely to be

directly connected to the disease phenotype than links that are

only found in a single species. For the interspecies translation we

used two version of our newly developed Dandelion algorithm.

The naı̈ve variant is a straw man approach, where expression

values for different transcripts of the same gene are first

summarized. This approach was then further refined in the

exhaustive Dandelion algorithm, where the model chooses the

transcript that is most predictive for the expression value of a

transcript in another species.

Naı̈ve Construction of Disease Network
The process of constructing disease networks using naı̈ve

Dandelion algorithm initially starts by averaging the expression

profiles of different gene transcripts in the human datasets. The

summarized gene expression values were then used for the

learning of intraspecies gene networks which consequently were

translated to the other species. The interspecies networks were

assessed for their predictive accuracy, sensitivity and specificity

(Figure 3). The constructed interspecies networks predict the

disease status (control vs. OPMD) of the unseen Drosophila and

mouse samples with a moderate accuracy of 71% and 72%,

respectively (Figure 3A). However, a large number of networks

perform worse than random expectations, as evident from the

ROC space (Figure 3B). This result indicates an overall low

Figure 2. OPMD-deregulation across different subunits of the proteasome in different species. There are widespread differences in gene
expression (depicted in dark colors) between OPMD and control in the different functional subunits of proteasome and immunoproteasome in
human (A), mouse (B) and Drosophila (C). The Significance of the association between the disease outcome and expression profiles of genes
encoding for proteasome and immunoproteasome were previously calculated [19] using the global test [46].
doi:10.1371/journal.pcbi.1002258.g002

Disease-Related Interspecies Regulatory Networks
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level of sensitivity and specificity in predicting the disease

phenotype. Moreover, the networks are weak and unstable as

they exhibit a very low level of translatability (Figure 3C). The

low level of robustness, stability and translatability is also evident

from the low percentage (8.7%) of relationships with the

confidence score of $0.1 in the intraspecies networks

(Figure 3D). Similarly, after applying the confidence threshold

of 0.1, the interspecies disease domain structure collapses as only

two links survive this constraint (Figure 3E). The level of

confidence in relationships within the interspecies disease domain

is estimated to be between 0.25 and 0.75 for both links and RPN9

is the only gene found differentially expressed in the Drosophila

dataset. This indicates that averaging the expression patterns for

different gene transcripts reduces the information content of the

network considerably and should be avoided for accurate

prediction of the disease phenotype and generating biologically

relevant regulatory networks.

Exhaustive Construction of Disease Network
We used the exhaustive Dandelion algorithm to overcome these

limitations and provide a detailed interaction map of molecular

pathology that extends our knowledge of disease mechanism

across species. In contrast to the naı̈ve variant, the exhaustive

Dandelion algorithm searches the space of possible relationships at

the level of gene transcripts to find the best scoring interspecies

regulatory network. It can accommodate missing data and possible

dissimilarities by identifying the best fit for a given relationship

across species.

Bayesian networks which are generated using the exhaustive

Dandelion algorithm can accurately predict the disease status from

the expression levels of genes coding for proteasomal components

(Figure 4A). We observe over 91% sensitivity and 80% specificity

in the prediction of the disease phenotype in the human dataset

(with an average SSE under 0.18), and similar values were

obtained for the Drosophila and mouse datasets. The interspecies

disease networks have very high predictive value for other species

while they tend to avoid overfitting to a given dataset. This is

evident from the low level of variation in SSE between constructed

interspecies networks (0.06 in human, 0.11 in mouse, and 0.08 in

Drosophila). The predictive ability of the interspecies models is

highly robust towards the use of different organisms for training

and testing, as the average SSE for a given species only slightly

varies between different networks. Furthermore, the generated

interspecies disease networks exhibit high sensitivity and specificity

scores towards their informativeness to the prediction of the

disease status. The majority of these networks provide sensitivity

and specificity scores higher than 70% (Figure 4B). All

constructed networks perform significantly better than random

expectations, as presented in the ROC spaces (Figure 4B). In

addition, the gene networks are strongly connected to the class

node (representing information on the control and disease states of

the samples) since the number of genes connected to the class node

only drops to 0 when the confidence threshold was raised to 0.3,

0.4, or 0.2 for networks learnt on human, mouse, or Drosophila,

respectively (Figure 4C). These are very restrained confidence

thresholds as they require networks to share the same level of

Figure 3. Performance of the naı̈ve Dandelion algorithm on constructing disease networks that are learnt on human and evaluated
on human, mouse and Drosophila datasets. A) The average Sum of Squared Error (SSE) for prediction of the disease phenotype (OPMD vs.
control) given the gene expression profiles within the disease networks learnt on human. The cross-validation set which is used during the training
phase is depicted by C.V. and the independent test sets are grouped as IND. Test Sets. B) ROC space demonstrates the relative sensitivity and
specificity of the generated networks in predicting the disease phenotype. The results from random expectations are illustrated by the red dash-line.
C) Number of relationships between genes and the class node, after applying confidence thresholds, are depicted in line per species. D) The number
of links found after interspecies translation and optimization of the disease networks within each species. The orange section, separated by red dash-
line, represents the number of links that can be found in all species with the confidence threshold of 0.1. E) The interspecies disease domain is
generated according to the Markov blanket criteria, after applying the confidence threshold of 0.1.
doi:10.1371/journal.pcbi.1002258.g003
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confidence for interactions across all species, and compare

favorably to the low number of links remaining at the lower

threshold of 0.1 with the naı̈ve Dandelion algorithm.

Figure 5 demonstrates the level of robustness and translatability

of the obtained disease networks. A large fraction of relationships

(37.4% in human, 28.7% in mouse, and 34.3% in Drosophila) can

be translated and found in the interspecies disease network with

the confidence threshold of 0.1 (Figure 5A). Remarkably, an

average of more than 60% of the translated links can be found in

all organisms. It is evident that the intraspecies networks are highly

resistant towards noise and the range of confidence in which

interactions can be found in the training set is at least 0.7 and are

as high as 0.9 in Drosophila and mouse datasets (Figure 5B). This

value is even higher for relationships that are successfully

translated from the intraspecies network to the other organisms

(Figure 5B). Noticeably, the interspecies networks can still be

obtained when applying a very stringent confidence threshold of

0.9 for all three constructed interspecies disease networks. More

than 71% and 39% of translated relationships from human pass

the confidence threshold of 0.9 in mouse and Drosophila datasets,

respectively. However, a slightly more severe drop in translatabil-

ity rate is observed for networks learnt on the mouse data. This

can be expected due to the presence of overexpression and

possibly other artifacts in this model system, also reflected by the

higher level of interconnectivity of these networks. Despite the

presence of noise and other artifacts in these datasets, a large

fraction of interactions between genes encoding for the protea-

some have high confidence scores in the interspecies networks

(Figure 5B). This is not true for links associated with the

randomly selected genes as the majority of those relationships do

not pass the confidence threshold of 0.1 (Figure 5C). Overall,

these results show model-driven selective and predictive ability of

the exhaustive Dandelion algorithm in capturing the disease-

related relationships between genes in which exhaustive Dandelion

significantly outperforms the naı̈ve Dandelion algorithm.

To assess the specificity of the proteasome in providing accurate

prediction of the disease status, we compared the SSE, sensitivity,

and specificity of the networks learnt on the proteasome to that of

three additional gene sets. The exhaustive Dandelion algorithm

was applied to a set of 70 random genes from which none is

Figure 4. Performance of the exhaustive Dandelion algorithm. A) The average Sum of Squared Error (SSE) for prediction of the disease
phenotype (OPMD vs. control) given the gene expression profiles within the disease networks learnt on human (i), mouse (ii), or Drosophila (iii). The
cross-validation set which is used during the training phase is depicted by C.V. and the independent test sets are grouped as IND. Test Sets. B) ROC
space demonstrates the relative sensitivity and specificity of the generated networks in predicting the disease phenotype. The results from random
expectations are illustrated by the red dash-line. C) Number of relationships between genes and the class node, after applying confidence thresholds,
are depicted in line per species.
doi:10.1371/journal.pcbi.1002258.g004

Disease-Related Interspecies Regulatory Networks

PLoS Computational Biology | www.ploscompbiol.org 8 November 2011 | Volume 7 | Issue 11 | e1002258



deregulated (ND) in OPMD, a set of 100 randomly selected genes

containing also deregulated genes that are expected to link with

the class node in one species but not necessarily across species, and

87 genes coding for the structurally-related ribosomal proteins,

which are not known to be consistently differentially expressed in

different species [19]. Noticeably, interspecies networks construct-

ed on the proteasome significantly outperformed (86% sensitivity

and 81% specificity across species) those constructed on other gene

sets (Figure 6). Strikingly, the predictive accuracy of networks

learnt on the proteasome was slightly improved from the previous

experiment (Figure 4) in which additional 30 random genes were

included. In contrast, the class prediction performance of the other

networks was much lower. The class prediction error for networks

learnt on the random genes was much higher than that of the

proteasomal genes (average SSE of 0.43 and 0.21, respectively) but

slightly lower than that of non-deregulated random genes and the

ribosome (0.52, and 0.48, respectively) (Figure 6A). Although the

performance is still acceptable for training and testing on human,

the decrease in the level of sensitivity and specificity of non-

proteasomal networks is particularly apparent during the transla-

Figure 5. Translatability and robustness of interspecies disease networks. A) The number of links that were found during interspecies
translation and optimization of the disease networks per individual datasets. The red dash-line depicts the number and fraction of links that can be
found in all species with the confidence threshold of 0.1. The translatability of disease networks learnt and trained on human (i), mouse (ii), and
Drosophila (iii) are presented separately. The cross-validation set which is used during the training phase is depicted by C.V. and the independent test
sets are grouped as IND. Test Sets. B) The translatability of relationships over series of different confidence thresholds. These line plots demonstrate
the percentage of relationships with confidence score higher than the threshold. For the independent testing datasets the ratio is towards the
number of links that were expected to be found after generation of the network map. C) The robustness of disease networks are assessed according
to the level of connectivity for genes encoding for the proteasome as compared to the set of randomly selected genes at different confidence
thresholds.
doi:10.1371/journal.pcbi.1002258.g005
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tion phase (in this case from human data to mouse and Drosophila)

(Figure 6B), indicating that the links between non-proteasomal

genes are not conserved across the different species. Altogether,

these results indicate a model-driven selective ability of the

algorithm in capturing the most informative and consistent gene

relationships which led to the construction of a highly robust

interspecies disease network.

Network Genes and Identification of Key Regulators
Interspecies disease domains represent the most robust, disease-

associated gene networks. They are identified by the class node

(describing the disease status) and the associated Markov blanket

of interactions with the confidence threshold of 0.1 across species

(Figure 7). In the original experiment, the interspecies disease

domain that is trained on human data shows the most robust

network as the overall confidence in relationships is very high

(Figure 7A). The mouse data, however, produced the highest

number of relatively weaker relationships among genes

(Figure 7B). The interspecies disease domain that is trained on

the Drosophila data shows the same level of robustness as those

constructed and trained on human (Figure 7C). In Drosophila,

Desmin (DES), a randomly selected gene, is connected to the class

node as part of the disease domain. Although DES (a muscle-

specific class III intermediate filament) is a member of the random

set, it is significantly deregulated in both human and Drosophila

datasets. This gene has been clearly linked to muscle differenti-

ation [30] and is likely associated with the OPMD phenotype. No

other randomly selected genes appear in the disease network

which indicates the reliability and the specificity of the obtained

networks. Overall, the interspecies disease domains exhibit a high

Figure 6. Specificity of the proteasome towards prediction of disease states. A) The average Sum of Squared Error (SSE) for prediction of
the disease phenotype (OPMD vs. control) given the gene expression profiles within the constructed networks learnt on the proteasome, 100 random
genes, 70 not-deregulated random genes (ND), and the ribosome. The cross-validation set which is used during the training phase is depicted by C.V.
and the independent test sets are grouped as IND. Test Sets. B) ROC space demonstrates the relative sensitivity and specificity of the generated
networks in predicting the disease phenotype. The proteasome, 100 random genes, 70 random genes (ND), and ribosome are illustrated in different
colors (red, purple, green, and yellow, respectively). The results from random expectations are illustrated by the gray dash-line.
doi:10.1371/journal.pcbi.1002258.g006
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level of robustness and informativeness towards different states of

the disease. This is due to the presence of relationships that can be

translated across species with at least a moderate confidence

(91.7% in human, 55.3% in mouse, and 71.4% in Drosophila).

Moreover, the interspecies disease domains contain a large

number of nodes that are differentially expressed in at least one

species (100% in human, 80% in mouse, and 92.9% in Drosophila).

Furthermore, the majority of genes are shared between at least two

interspecies disease domains (81.8%, 64%, and 78.6%, for disease

domains after training on human, mouse and Drosophila,

respectively). Many of the links between genes present in these

network structures demonstrate a strong correlation in expression

profiles in the different species (Table S4 in Text S1). Overall,

these results indicate that the expression levels of the majority of

genes in the constructed interspecies networks are strongly

correlated and more likely to be associated with the OPMD

phenotype than genes that are differentially expressed in single

species.

Evaluation of Disease Networks on Unseen Disease
Model

The model-driven and interspecies selection of genes that are

most likely to be associated with the disease phenotype suggests

their association with the disease in an independent and unseen

disease model. Therefore, we evaluated the disease-related

transcriptional changes for a subset of genes (selected from the

interspecies disease domains) in the IM2 cell model [29] with

moderate overexpression of the wild-type PABPN1 (WTA) or the

mutant PABPN1 protein isoform (D7E). Remarkably, all the

selected genes (PA28a, RPT3, RPN15, RPN11, b2, and b5) showed

significant differential expression in an unseen IM2 cell model

(Figure 8). PA28a appears to be an essential hub in the

interspecies disease domains trained on the human and mouse

datasets (Figure 7). Noticeably, it is also significantly deregulated

between D7E and WTA (Figure 8). In contrast, PA28b, which is

a closely related homolog in the PA28 complex [31] and also

significantly deregulated in human dataset, do not play a part in

the interspecies disease domains. Interestingly, it is evident that the

expression pattern of PA28b is not deregulated between the D7E

and WTA cells (Figure 8). Next, we assessed the expression of the

b2i, a member of immunoproteasome core subunit, present in the

interspecies disease domain constructed with the naı̈ve Dandelion

algorithm. This gene is not differentially expressed between D7E

and WTA cells (Figure 8). Overall, these results highlight the

unique ability of the exhaustive Dandelion algorithm to identify

disease-related genes that can be found across different OPMD

model systems and patients.

Discussion

Integration of transcriptome data from different species is far

from trivial and is complicated by our limited knowledge of true

Figure 7. Interspecies disease domains. These interspecies class network structures are learnt on human (A), mouse (B), or Drosophila (C)
dataset and optimized across species. Class network structures are presented according to Markov blanket criteria. Nodes represent genes. The outer
ring reflects deregulation in the expression in the different species (a, b). Relationships are depicted with lines that represent different degree of
confidence in relationships (described in c).
doi:10.1371/journal.pcbi.1002258.g007
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protein orthologues and transcript variants coding for proteins

with similar functions. Moreover, the presence of noise and

artifacts specific to certain model systems usually leads to limited

overlap between results obtained in cross-species comparisons [32–

35]. In this paper, we developed a Bayesian-based methodology

(Dandelion algorithm) to model gene networks associated with the

same disease in different species. We showed that the integration

and analysis of gene expression datasets from various species

increase the robustness of the constructed networks and the

predictive accuracy of the disease state. We also demonstrated that

the interspecies translation of the networks helps to avoid

overfitting. A newly developed model-driven selection of tran-

scripts that are most likely to be coding for orthologous proteins is

essential for the generation of robust interspecies disease networks.

Our approach for Bayesian modeling of datasets on a similar

phenotype from different model systems and patients is rather

unique. Several approaches have been described to avoid over-

fitting and increase the robustness of Bayesian networks. For

example, informative priors derived from protein-protein interac-

tion (PPI) data or from the literature have been used to generate

more stable and biologically meaningful networks [13–15,36].

While these methods obviously bias the results towards well-known

regulatory interactions [37,38], these methods may ultimately be

combined with our modeling approach to obtain regulatory

networks with a more straightforward biological interpretation.

Our method was applied to an a priori defined gene module

coding for a well-known biological structure, the proteasome.

Several studies in S. cerevisiae [39–42] have demonstrated the value

of an integrative modeling approach providing modularized

interaction networks without prior assumptions. Zhang et al.

[39], for instance, took an approach in which they integrated a

number of different available data sources, from PPIs to sequence

homology and gene co-expression, while Tanay et al. [40] and

others [41,42] expanded on the statistical analysis of network

properties and identifying modules within the network structure.

The performance of these models depends on the availability of

high quantities of samples and may be prone to overfitting due to

the presence of noise and other model-specific artifacts. Therefore,

a combination with our interspecies translation approach may

enable the allowing of larger gene regulatory networks with

multiple gene modules and connections between them.

In this study, three microarray datasets from Drosophila, mouse

and human, that are all concerned with OPMD, are used to gain

insight into key regulatory relationships of interspecies disease

networks that are directly and robustly associated with the disease.

Previously, we have established the importance of the deregulation

of the ubiquitin-proteasome system (UPS) for the disease etiology

[19]. From the different components of the UPS, the down-

regulation of the proteasome has been associated with the late-

onset of the disease [19] as the reduced proteasome activity can

Figure 8. Validation of differential expression of disease associated genes in an unseen disease model. Results from qPCR experiments
measuring differences in gene expression between control cells (WTA, N = 3 independent cultures) and cells expressing the OPMD-associated
PABPN1 with expanded repeat (D7E, N = 3 independent cultures). Expression levels were normalized to Desmin to correct for differences in the
myogenicity in the different cell cultures. Significant differences (P,0.05, Student’s T-test) between measured expression values in D7E and WTA cells
are indicated by *, whilst NS stands for no significant difference. PA28a, RPT3, RPN15, RPN11, b2, and b5 expression in IM2 cell lines were selected from
the group of genes present in the interspecies disease domain. PA28b (deregulated in human dataset) was selected as its role in assembling the lid
subunit of the immunoproteasome is highly similar to PA28a but not part of the interspecies disease domain. b2i is one of the two genes that
remained connected to the class node in the interspecies disease domain constructed by naı̈ve Dandelion approach. ACTA1 is a control for myotube
formation.
doi:10.1371/journal.pcbi.1002258.g008
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lead to futile protein degradation. However, little is known about

the key components of the proteasome that are contributing to the

OPMD phenotype. Hence, the generation of interspecies disease

networks for the proteasome encoding genes now shed some light

on the underlying regulatory mechanisms that govern the disease-

related transcriptional changes of the proteasome encoding genes.

We identified PA28a, one of the three components of the PA28

subunit, as an important hub gene in the interspecies disease

domain and validated its significant differential expression in an

unseen disease model. PA28a plays an important role in

assembling the lid subunit of the immunoproteasome and

stimulating the proteasome core component [31]. Previously we

showed that the induction of immunoproteasome activity leads to

a significant reduction in the nuclear expPABPN1 accumulation

[19]. This observation further signifies the role of PA28 assembly

and the immunoproteasome in the disease etiology. In contrast,

the other PA28 component PA28b although significantly dereg-

ulated in human OPMD patients, appears to play a less crucial

role since its association with the disease did not translate to the

OPMD animal models and could not be reproduced in the

OPMD cell model system. On the other hand, the association of

b2 and b5, members of the proteasome core subunit, with the

disease was identified by the interspecies disease domains and

reproduced in the OPMD cell model. Down-regulation of the

proteasome core subunit can lead to futile protein degradation

which results in protein accumulation. Our analysis suggests that

b2 and b5 are vital regulators of the proteasome activity which are

disease associated. It has been shown that the down-regulation of

the proteasome core subunit can trigger expPABPN1 accumula-

tion and play a role in the disease late-onset [19]. Relevant to the

late-onset of the OPMD, previously it has been shown that the

proteasome activity declines during muscle ageing [43–45], a

phenomena which is highly associated with the transcriptional

changes of the proteasomal genes [45]. In follow-up studies, the

functional role of proteasomal protein dysregulation in the disease

pathology and ageing of muscles needs to be investigated.

Furthermore, the functional relevance of gene regulatory relation-

ships should be investigated where changes in protein level mimic

the in vivo situation and directly affect the protein catabolism. This

would ultimately result in better understanding of the mechanism

in which the loss of proteostasis leads to degenerative loss of muscle

function during ageing and in OPMD.

In conclusion, this study presents a state-of-the-art strategy in

constructing interspecies disease networks that provide crucial and

comprehensive information on gene regulatory relationships. This

leads to better understanding and identification of the molecular

mechanisms underlying the disease. The high level of specificity

and sensitivity of these models enables the prioritization of

candidate regulators of molecular disease mechanisms to be

studied in follow-up validation experiments. In particular, it is

crucial to carry out additional experiments to investigate the

functional relevance of proteasomal proteins dysregulation to the

OPMD pathology. We believe that robust and unbiased

construction of the interspecies networks for rare or complex

human diseases can lead to novel discovery and identification of

key regulators which can ultimately offer potential targets for

therapeutic interventions and drug developments.
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