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Abstract

In this paper, the robust synchronization problem is investigated for a new class of continuous-time complex networks

that involve parameter uncertainties, time-varying delays, constant and delayed couplings, as well as multiple stochastic

disturbances. The norm-bounded uncertainties exist in all the network parameters after decoupling, and the stochastic

disturbances are assumed to be Brownian motions that act on the constant coupling term, the delayed coupling term

as well as the overall network dynamics. Such multiple stochastic disturbances could reflect more realistic dynamical

behaviors of the coupled complex network presented within a noisy environment. By using a combination of the Lyapunov

functional method, the robust analysis tool, the stochastic analysis techniques and the properties of Kronecker product,

we derive several delay-dependent sufficient conditions that ensure the coupled complex network to be globally robustly

synchronized in the mean square for all admissible parameter uncertainties. The criteria obtained in this paper are in

the form of linear matrix inequalities (LMIs) whose solution can be easily calculated by using the standard numerical

software. The main results are shown to be general enough to cover many existing ones reported in the literature.

Simulation examples are presented to demonstrate the feasibility and applicability of the proposed results.
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I. Introduction

Many systems in nature can be modelled as complex networks. The examples include, but are not limited

to, neuronal networks, genetic networks, networks in social sciences, power grid networks, coupled mechanical

systems, information networks and others. Complex networks pose new challenges for the understanding of

cluster formation, stability, sensitivity and robustness, bifurcations and chaos, etc. The connection weights

of the nodes of complex networks are largely dependent on certain resistance and capacitance values that

include uncertainties (modelling errors). Also, the signal transfer could be perturbed randomly from the

release of probabilistic causes such as neurotransmitters [21, 34] and packet dropouts [35]. When analyzing

the dynamical behaviors of complex networks, stochastic disturbances and modelling errors are probably two

of the main sources that result in uncertainties. Therefore, robust dynamics analysis for uncertain stochastic

complex networks has emerged as a challenging research issue. Note that the term ‘robust’ would appear

when discussing a property of systems/networks where parameter uncertainties exist [36–40].

Among many others, synchronization is one of the most important dynamical behaviors for complex net-

works and has therefore received recurrent research interests in recent years. For example, the synchronization
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problem has been thoroughly investigated for the large-scale networks of chaotic oscillators [15, 27, 33], the

coupled systems exhibiting spatio-temporal chaos and autowaves [29, 46], and the array of coupled neural

networks [18, 22, 23, 26, 28, 42]. On the other hand, time delay is recognized as an ubiquitous phenomenon in

networks due to the facts that: 1) the limited speed of signals travelling through the links [10,11]; 2) couplings

are frequently delayed in biological neural networks, gene regulatory networks, communication networks and

electrical power grids [3,10,17,20]; and 3) time delays can cause complex dynamics such as periodic or quasi-

periodic motions, Hopf bifurcation and higher-dimensional chaos. Therefore, synchronization problems for

various networks have recently been extensively studied, see e.g. [3, 7, 10, 13, 14, 17, 20, 24, 25, 31, 32, 42, 44, 47]

and the references cited therein.

It is worth pointing out that, in most existing literature, the synchronization problem has been investigated

mainly for deterministic and precise complex networks with or without delays, see e.g. [3, 5, 10, 18, 24, 41].

For example, in [41], the dynamical behavior has been studied for an array of identical differential equations

with linear coupling. Considering of the delay effects, the authors of [5] and [18] have dealt with the global

synchronization problems, respectively, for a coupled delayed neural network and a complex network with

coupling delays. Elegant results have been obtained in [5, 18] under the assumptions that 1) the outer-

coupling matrix of the networks is required to be irreducible so as to avoid isolated clusters; and 2) the

inner-coupling matrix is restricted to be symmetric. Very recently, a great deal of research efforts have been

made towards the improvement of the results in [5, 18] under milder assumptions [2, 4, 10]. In particular, the

properties of Kronecker products have been utilized in [3] and some sufficient criteria have been acquired

in the form of linear matrix inequalities (LMIs) that can be readily solved. In the few papers tackling the

synchronization problem for stochastic networks [4, 45], the stochastic coupling term has been introduced.

However, the deterministic couplings as well as the overall stochastic disturbances have not been taken into

account in [4]. Moreover, neither the coupling terms nor the parameter uncertainties have been considered in

[45] where only two sub-systems (i.e., the master system and slave system) have been investigated. So far,

to the best of the authors’ knowledge, the robust synchronization problem has received very little research

attention for complex networks in the simultaneous presence of parameter uncertainties, time-varying delays,

mixed couplings and multiple stochastic disturbances. Such a situation motivates our present investigation.

In this paper, we aim to challenge the robust synchronization problem for a new class of continuous-

time complex networks with parameter uncertainties, time-varying delays, constant and delayed couplings,

as well as multiple stochastic disturbances. The norm-bounded uncertainties enter into all the network state

matrices, and the multiple stochastic disturbances influence the constant coupling term, the delayed coupling

term as well as the overall network dynamics. Note that the considered multiple stochastic disturbances could

better describe the dynamical behavior of a coupled complex network presented within a noisy environment.

With the help from the Lyapunov functional method and the properties of Kronecker product, we employ

the robust analysis tool and the stochastic analysis techniques to derive several delay-dependent sufficient

conditions under which the coupled complex network is globally robustly synchronized in the mean square

for all admissible parameter uncertainties. The criteria obtained in this paper are in the form of LMIs whose

solution can be easily calculated by using the standard numerical software. We show that our main results

can cover many existing ones reported in the literature. Simulation examples are presented to illustrate the

usefulness of our results.

The rest of the paper is organized as follows. In Section II, an uncertain stochastically coupled complex

model with time-varying delays is proposed and some preliminaries are briefly outlined. In Section III, by

utilizing the Lyapunov functional method, we conduct the robust and stochastic analysis to obtain some

delay-dependent sufficient criteria in terms of LMIs, so as to ensure the considered complex network to be

globally robustly synchronized in the mean square. In Section IV, simulation examples are provided to show

the effectiveness of the obtained results and, finally, conclusions are drawn in Section V.
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Notations: Throughout this paper, Im is the m-dimensional identity matrix. Rn and R
m×n are, respectively,

the n-dimensional Euclidean space and the set of all m×n real matrices. P > 0 (respectively, P1 > P2) means

that matrix P (respectively, P1 − P2) is real, symmetric and positive definite. The superscript “T” stands

for matrix transposition and the asterisk “∗” in a matrix is used to represent the term which is induced by

symmetry. ‖ · ‖ refers to the Euclidean vector norm and its induced matrix norm. The Kronecker product of

matrices Q ∈ R
m×n and R ∈ R

p×q is a matrix in R
mp×nq and denoted as Q⊗R. Let (Ω,F ,P) be a complete

probability space with a filtration {Ft}t≥0 containing all P-null sets and being right continuous. Lp
F0

denotes

the family of all F0-measurable C([−τ, 0],Rn)-valued random variables ϕ = {ϕ(s)| − τ ≤ s ≤ 0} such that

sup−τ≤s≤0 E{|ϕ(s)|
p} < ∞, where E{·} is the mathematical expectation operator with respect to the given

probability measure P. Sometimes, when no confusion would arise, the dimensions of a function or a matrix

will be omitted for convenience.

II. Model formulation and preliminaries

Consider the following array of identical uncertain complex networks with stochastic coupling and distur-

bances:

dxi(t) =
[
(A+△A)xi(t) + (D +△D)xi(t− τ(t)) + (B +△B)f(xi(t))

]
dt+ σi(t, xi(t), xi(t− τ(t)))dω3(t)

+

N∑

j=1

G
(1)
ij Γ1xj(t)(dt+ dω1(t)) +

N∑

j=1

G
(2)
ij Γ2xj(t− τ(t))(dt + dω2(t)), t > 0 (1)

where i = 1, 2, . . . , N and N is the number of coupled subsystems; xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n

is the state vector of the i-th complex network; A, D and B are the known connection weight matrices; the

parameter uncertainties ∆A, ∆D and ∆B are of the following structure

[∆A ∆D ∆B] = EF [M1 M2 M3], (2)

where E, M1, M2 and M3 are known real constant matrices with appropriate dimensions and the uncertain

matrix F is unknown but satisfies

FTF ≤ I. (3)

The delay τ(t) is time-varying, bounded and differentiable with

0 ≤ τ(t) ≤ τM , τ̇(t) ≤ µ; ∀t ∈ R
+ (4)

where τM ≥ 0 and µ are known constants. Moreover, ω1(t), ω2(t) and ω3(t) are mutually independent scalar

Brownian motions defined on (Ω,F ,P) satisfying

E{dωi(t)} = 0 and E{[dωi(t)]
2} = dt, i = 1, 2, 3; t ∈ R

+. (5)

The noise intensity function vector σi : R × R
n × R

n → R
n satisfies the Lipschitz condition, i.e., there exist

constant matrices W1 and W2 of appropriate dimensions such that the following inequality
(
σi(t, u1, v1)− σj(t, u2, v2)

)T (
σi(t, u1, v1)− σj(t, u2, v2)

)
≤ ‖W1(u1 − u2)‖

2 + ‖W2(v1 − v2)‖
2 (6)

holds for all t ∈ R
+; i, j = 1, 2, . . . , N and u1, v1, u2, v2 ∈ R

n. Furthermore, Γ1 and Γ2 are matrices

describing the inner-coupling between the subsystems at time t and t− τ(t), respectively; G(1) = (G
(1)
ij )N×N

and G(2) = (G
(2)
ij )N×N are the outer-coupling configuration matrices representing the coupling strength and

the topological structure of the complex networks that satisfy the following conditions

G
(k)
ij = G

(k)
ji ≥ 0 (j 6= i) and G

(k)
ii = −

N∑

j=1,j 6=i

G
(k)
ij ; i, j = 1, 2, . . . , N ; k = 1, 2. (7)
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Finally, f(·) : Rn → R
m is an unknown nonlinear function of the network and is assumed to satisfy sector-

bounded condition given in Assumption 1.

Assumption 1: There exist real constant matrices X1 and X2 ∈ R
m×n such that

(
f(u)− f(v)−X1(u− v)

)T (
f(u)− f(v)−X2(u− v)

)
≤ 0, ∀u, v ∈ R

n (8)

where X2 −X1 is symmetric and positive definite.

Remark 1: The structure of the deterministic uncertainties as in (2)-(3) has been widely used in many

papers of the problem of robust control and robust filtering, see e.g. [35]. On the other hand, the nonlinear

function f(·) satisfying Assumption 1 is said to belong to the sector [X1,X2] and, as pointed out in [16], the

nonlinear description (8) is more general than the usually used Lipschitz conditions as in [3–5].

Remark 2: In the network model (1), stochastic disturbances are introduced on both the coupling term and

the overall network because the network coupling could occur in both a deterministic and a stochastic way.

Note that the stochastic coupling term was first proposed in [4] for investigating the complete synchronization

problem of an array of linearly stochastically coupled neural networks with time delays, but the deterministic

coupling as well as the overall stochastic disturbances have not been taken into account in [4]. Furthermore,

the parameter uncertainties resulting mainly from measurement errors have been included in the model (1),

which renders the model (1) even more general to reflect the reality.

The initial conditions associated with system (1) are given by

xi(s) = ϕi(s), −τM ≤ s ≤ 0, i = 1, 2, . . . , N ; (9)

where ϕi(·) ∈ L2
F0
([−τM , 0],Rn); and the corresponding state trajectory is denoted as xi(t, ϕi).

We are now ready to introduce the notion of robust synchronization for complex networks (1) with stochastic

coupling and disturbances.

Definition 1: The coupled complex networks (1) is said to be globally robustly synchronized in the mean

square if, for all admissible uncertainties (2)-(3) and for all ϕi(·) ∈ L2
F0
([−τM , 0],Rn), the following holds:

lim
t→∞

E{||xi(t, ϕi)− xj(t, ϕj)||
2} = 0, 1 ≤ i < j ≤ N. (10)

By denoting

Ā = A+∆A, D̄ = D +∆D, B̄ = B +∆B

and utilizing the Kronecker product ⊗, the network system (1) can be rewritten in a compact form as

dx(t) =
[
(IN ⊗ Ā+G(1) ⊗ Γ1)x(t) + (IN ⊗ D̄ +G(2) ⊗ Γ2)x(t− τ(t)) + (IN ⊗ B̄)F (x(t))

]
dt

+σ(t, x(t), x(t − τ(t)))dω3(t)

+(G(1) ⊗ Γ1)x(t)dω1(t) + (G(2) ⊗ Γ2)x(t− τ(t))dω2(t), t > 0 (11)

where x(t) = (xT1 (t), x
T
2 (t), . . . , x

T
N (t))T , F (x(t)) = (fT (x1(t)), f

T (x2(t)), . . . , f
T (xN (t)))T and σ(t, x(t), x(t−

τ(t))) = (σT
1 (t, x1(t), x1(t− τ(t))), σT

2 (t, x2(t), x2(t− τ(t))), . . . , σT
N (t, xN (t), xN (t− τ(t))))T .

Before starting the main results, some lemmas needed in the next section are given as follows.

Lemma 1: [6] Let α ∈ R and X, Y , P , Q be matrices with appropriate dimensions. Then the following

statements are true:

(1) (αX) ⊗ Y = X ⊗ (αY );

(2) (X + Y )⊗ P = X ⊗ P + Y ⊗ P , P ⊗ (X + Y ) = P ⊗X + P ⊗ Y ;

(3) (X ⊗ Y )(P ⊗Q) = (XP )⊗ (Y Q);

(4) (X ⊗ Y )T = XT ⊗ Y T .
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Lemma 2: [1] Let Q(x) = QT (x), R(x) = RT (x), and S(x) depend affinely on x. Then the following linear

matrix inequality [
Q(x) S(x)

ST (x) R(x)

]
> 0,

holds if and only if one of the following conditions holds:

(1) R(x) > 0, Q(x)− S(x)R−1(x)ST (x) > 0;

(2) Q(x) > 0, R(x)− ST (x)Q−1(x)S(x) > 0.

Lemma 3: [12] (Jensen inequality) For any constant matrix P ∈ R
n×n, P T = P > 0, scalar r > 0, and

vector function u : [0, r] → R
n, one has

r

∫ r

0
uT (s)Pu(s)ds ≥

(∫ r

0
u(s)ds

)T
P
(∫ r

0
u(s)ds

)
, (12)

provided that the integrals are well defined.

Lemma 4: Let e be an N -dimensional vector with all components being 1 and U = NIN − eeT . For

i = 1, 2, . . . , N , assume that P is an n×n matrix, x = (xT1 , x
T
2 , . . . , x

T
N )T where xi = (xi1, xi2, . . . , xin)

T ∈ R
n,

and y = (yT1 , y
T
2 , . . . , y

T
N )T where yi = (yi1, yi2, . . . , yin)

T ∈ R
n. Then, we have the following relationships:

(1) UG(j) = G(j)U = NG(j), j = 1, 2;

(2) xT (U ⊗ P )y = −
N−1∑
i=1

N∑
j=i+1

uij(xi − xj)
TP (yi − yj);

where G(1) and G(2) are defined in model (1).

Lemma 5: [43] Let X, Y , Ξ be any matrices with Ξ satisfying ΞTΞ ≤ I. For any given scalar ε > 0, the

following inequality holds:

XΞY + (XΞY )T ≤ ε−1XXT + εY TY.

III. Main Results

Before starting the main results, we introduce two more notations to facilitate the readers. Let C1,2(R ×

R
nN ,R+) denote the family of all nonnegative function V (t, x) on R × R

nN which are continuously twice

differentiable in x and once differentiable in t. For each V ∈ C1,2(R× R
nN ,R+), by Itô’s differential formula

[9], the stochastic derivative of V (t, x(t)) along (11) can be obtained as:

dV (t, x(t)) = LV (t, x(t))dt + Vx(t, x(t))
[
σ(t, x(t), x(t − τ(t)))dω3(t)

+(G(1) ⊗ Γ1)x(t)dω1(t) + (G(2) ⊗ Γ2)x(t− τ(t))dω2(t)
]
, t > 0

where the weak infinitesimal operator L of the stochastic process {xt = x(t+ s)|t ≥ 0,−τM ≤ s ≤ 0} is given

by

LV (t, x(t)) = Vt(t, x(t)) + Vx(t, x(t))
[
(IN ⊗ Ā+G(1) ⊗ Γ1)x(t) + (IN ⊗ D̄ +G(2) ⊗ Γ2)x(t− τ(t))

+(IN ⊗ B̄)F (x(t))
]
+

1

2
trace

[
σT (t, x(t), x(t − τ(t)))Vxx(t, x(t))σ(t, x(t), x(t − τ(t)))

+xT (t)(G(1) ⊗ ΓT
1 )Vxx(t, x(t))(G

(1) ⊗ Γ1)x(t)

+xT (t− τ(t))(G(2) ⊗ ΓT
2 )Vxx(t, x(t))(G

(2) ⊗ Γ2)x(t− τ(t))
]
. (13)

Our main results are given in the following theorem.

Theorem 1: Under Assumption 1, the complex network (11) is globally robustly synchronized in the mean

square, if there exist five matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0, two matrices T1, T2 and four

scalars λ > 0, β > 0, ε1 > 0, ε2 > 0 such that the following LMIs hold for all 1 ≤ i < j ≤ N :

P < λI, (14)
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Φ
(i,j)
11 Φ

(i,j)
12 Φ13 Φ

(i,j)
14 Φ

(i,j)
15 τMT1B ε1M

T
1 0 PE T1E

∗ Φ
(i,j)
22 0 Φ

(i,j)
24 Φ

(i,j)
25 τMT2B ε1M

T
2 0 0 T2E

∗ ∗ τMQ4 − 2βI 0 0 0 ε1M
T
3 0 0 0

∗ ∗ ∗ −τMQ2 0 0 0 ε2M
T
1 0 0

∗ ∗ ∗ ∗ −τMQ3 0 0 ε2M
T
2 0 0

∗ ∗ ∗ ∗ ∗ −τMQ4 0 ε2M
T
3 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I




< 0, (15)

where

Φ
(i,j)
11 = PA+ATP −NG

(1)
ij (PΓ1 + ΓT

1 P )−NG
(1,1)
ij ΓT

1 PΓ1 +Q1 + τMQ2 − T1 − T T
1

+λW T
1 W1 − β(XT

1 X2 +XT
2 X1),

Φ
(i,j)
22 = −NG

(2,2)
ij ΓT

2 PΓ2 − (1− µ)Q1 + τMQ3 + T2 + T T
2 + λW T

2 W2,

Φ
(i,j)
12 = PD −NG

(2)
ij PΓ2 + T1 − T T

2 , Φ13 = PB + β(XT
1 +XT

2 ), Φ
(i,j)
14 = τMT1A−NτMG

(1)
ij T1Γ1,

Φ
(i,j)
15 = τMT1D −NτMG

(2)
ij T1Γ2, Φ

(i,j)
24 = τMT2A−NτMG

(1)
ij T2Γ1, Φ

(i,j)
25 = τMT2D −NτMG

(2)
ij T2Γ2

and G(1,1) = G(1)G(1) = (G
(1,1)
ij )N×N , G(2,2) = G(2)G(2) = (G

(2,2)
ij )N×N .

Proof: Pre- and post-multiplying the inequality (15) by the block-diagonal matrix

diag(I, I, I,
1

τM
,
1

τM
,
1

τM
, I, I, I, I)

and by Lemma 2, the inequality is equivalent to

Φ̂ij = Φij + ε−1
2 T̂12EET T̂ T

12 + ε−1
1 P̂EET P̂ T + ε1M̄1M̄

T
1 + ε2M̂1M̂

T
1 < 0, (16)

where

Φij =




Φ
(i,j)
11 Φ

(i,j)
12 PB + β(XT

1 +XT
2 ) T1A−NG

(1)
ij T1Γ1 T1D −NG2

ijT1Γ2 T1B

∗ Φ
(i,j)
22 0 T2A−NG

(1)
ij T2Γ1 T2D −NG

(2)
ij T2Γ2 T2B

∗ ∗ τMQ4 − 2βI 0 0 0

∗ ∗ ∗ − 1
τM

Q2 0 0

∗ ∗ ∗ ∗ − 1
τM

Q3 0

∗ ∗ ∗ ∗ ∗ − 1
τM

Q4




,

and

P̂ =




P

0

0

0

0

0




, T̂12 =




T1

T2

0

0

0

0




, M̄1 =




MT
1

MT
2

MT
3

0

0

0




, M̂1 =




0

0

0

MT
1

MT
2

MT
3




.

Define a Lyapunov functional candidate V (t, x(t)) ∈ C1,2(R ×R
nN ,R+) by

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)), t > 0 (17)
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where

V1(t, x(t)) = xT (t)(U ⊗ P )x(t), (18)

V2(t, x(t)) =

∫ t

t−τ(t)
xT (s)(U ⊗Q1)x(s)ds+

∫ 0

−τM

∫ 0

θ

xT (t+ s)(U ⊗Q2)x(t+ s)dsdθ, (19)

V3(t, x(t)) =

∫ t

t−τM

∫ t

θ

xT (s− τ(s))(U ⊗Q3)x(s − τ(s))dsdθ, (20)

V4(t, x(t)) =

∫ t

t−τM

∫ t

θ

F T (x(s))(U ⊗Q4)F (x(s))dsdθ (21)

and the N ×N matrix U is defined in Lemma 4.

By Itô’s differential rule, the stochastic derivative of Vi (i = 1, 2, 3, 4) along the trajectory of complex

networks (11) can be obtained as follows:

dV1(t, x(t)) =
{
xT (t)

[
U ⊗ (PĀ+ ĀTP ) +NG(1) ⊗ (PΓ1 + ΓT

1 P ) +NG(1,1) ⊗ (ΓT
1 PΓ1)

]
x(t)

2xT (t)
[
U ⊗ (PD̄) +NG(2) ⊗ (PΓ2)

]
x(t− τ(t)) + 2xT (t)(U ⊗ (PB̄))F (x(t))

+σT (t, x(t), x(t − τ(t)))(U ⊗ P )σ(t, x(t), x(t − τ(t)))

+xT (t− τ(t))(NG(2,2) ⊗ (ΓT
2 PΓ2))x(t− τ(t))

}
dt

+2xT (t)(U ⊗ P )
[
σ(t, x(t), x(t − τ(t)))dω3(t)

+(G(1) ⊗ Γ1)x(t)dω1(t) + (G(2) ⊗ Γ2)x(t− τ(t))dω2(t)
]
; (22)

here, in the second step of (22), we have used the properties of Kronecker product in Lemma 1.

dV2(t, x(t)) =
[
xT (t)(U ⊗Q1)x(t)− (1− τ̇(t))xT (t− τ(t))(U ⊗Q1)x(t− τ(t))

+τMxT (t)(U ⊗Q2)x(t)−

∫ t

t−τM

xT (s)(U ⊗Q2)x(s)ds
]
dt

≤
[
xT (t)(U ⊗ (Q1 + τMQ2))x(t) − (1− µ)xT (t− τ(t))(U ⊗Q1)x(t− τ(t))

−
1

τM
(

∫ t

t−τ(t)
x(s)ds)T (U ⊗Q2)(

∫ t

t−τ(t)
x(s)ds)

]
dt. (23)

Note that, in obtaining (23), we have utilized the condition τ̇(t) ≤ µ, τ(t) ≤ τM and the Jensen inequality

(12) from Lemma 3 in the second step of (23). Similarly, by Lemma 3, one has

dV3(t, x(t)) ≤
[
τMxT (t− τ(t))(U ⊗Q3)x(t− τ(t))

−
1

τM
(

∫ t

t−τ(t)
x(s − τ(s))ds)T (U ⊗Q3)(

∫ t

t−τ(t)
x(s − τ(s))ds)

]
dt; (24)

dV4(t, x(t)) ≤
[
τMF T (x(t))(U ⊗Q4)F (x(t))

−
1

τM
(

∫ t

t−τ(t)
F (x(s))ds)T (U ⊗Q4)(

∫ t

t−τ(t)
F (x(s))ds)

]
dt. (25)

On the other hand, it follows that for any matrices T1 and T2,

2
[
xT (t)(U ⊗ T1) + xT (t− τ(t))(U ⊗ T2)

]
(
−x(t) + x(t− τ(t)) +

∫ t

t−τ(t)
dx(s)

)
= 0, ∀t > 0. (26)
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Substituting (11) into (26) gives

0 = −xT (t)(U ⊗ (T1 + T T
1 ))x(t) + xT (t− τ(t))(U ⊗ (T2 + T T

2 ))x(t− τ(t))

+2xT (t)(U ⊗ (T1 − T T
2 ))x(t− τ(t)) + 2xT (t)

[
U ⊗ (T1Ā) +NG(1) ⊗ (T1Γ1)

] ∫ t

t−τ(t)
x(s)ds

+2xT (t− τ(t))
[
U ⊗ (T2Ā) +NG(1) ⊗ (T2Γ1)

] ∫ t

t−τ(t)
x(s)ds

+2xT (t)
[
U ⊗ (T1D̄) +NG(2) ⊗ (T1Γ2)

] ∫ t

t−τ(t)
x(s− τ(s))ds

+2xT (t− τ(t))
[
U ⊗ (T2D̄) +NG(2) ⊗ (T2Γ2)

] ∫ t

t−τ(t)
x(s− τ(s))ds

+2xT (t)(U ⊗ (T1B̄))

∫ t

t−τ(t)
F (x(s))ds + 2xT (t− τ(t))(U ⊗ (T2B̄))

∫ t

t−τ(t)
F (x(s))ds

+2
[
xT (t)(U ⊗ T1) + xT (t− τ(t))(U ⊗ T2)

] ∫ t

t−τ(t)

[
σ(s, x(s), x(s − τ(s)))dω3(s)

+(G(1) ⊗ Γ1)x(s)dω1(s) + (G(2) ⊗ Γ2)x(s− τ(s))dω2(s)
]
, t > 0. (27)

Therefore, combining (22)-(25) together with (27) and by Lemma 4, we have

dV (t, x(t)) ≤
N−1∑

i=1

N∑

j=i+1

{
(xi(t)− xj(t))

T
[
PĀ+ ĀTP −NG

(1)
ij (PΓ1 + ΓT

1 P )−NG
(1,1)
ij ΓT

1 PΓ1

+Q1 + τMQ2 − T1 − T T
1

]
(xi(t)− xj(t)) + (xi(t− τ(t))− xj(t− τ(t)))T [−NG

(2,2)
ij ΓT

2 PΓ2

−(1− µ)Q1 + τMQ3 + T2 + T T
2 ](xi(t− τ(t))− xj(t− τ(t)))

+(f(xi(t))− f(xj(t)))
T (τMQ4)(f(xi(t)) − f(xj(t)))

+(

∫ t

t−τ(t)
(xi(s)− xj(s))ds)

T (−
1

τM
Q2)(

∫ t

t−τ(t)
(xi(s)− xj(s))ds)

+(

∫ t

t−τ(t)
(xi(s− τ(s))− xj(s− τ(s)))ds)T (−

1

τM
Q3)(

∫ t

t−τ(t)
(xi(s− τ(s))− xj(s− τ(s)))ds)

+(

∫ t

t−τ(t)
(f(xi(s))− f(xj(s)))ds)

T (−
1

τM
Q4)(

∫ t

t−τ(t)
(f(xi(s))− f(xj(s)))ds)

+2(xi(t)− xj(t))
T
[
(PD̄ −NG

(2)
ij PΓ2 + T1 − T T

2 )(xi(t− τ(t))− xj(t− τ(t)))

+PB̄(f(xi(t))− f(xj(t))) + (T1D̄ −NG
(2)
ij T1Γ2)

∫ t

t−τ(t)
(xi(s− τ(s))− xj(s− τ(s)))ds

+(T1Ā−NG
(1)
ij T1Γ1)

∫ t

t−τ(t)
(xi(s)− xj(s))ds + T1B̄

∫ t

t−τ(t)
(f(xi(s))− f(xj(s)))ds

]

+2(xi(t− τ(t))− xj(t− τ(t)))T
[
(T2D̄ −NG

(2)
ij T2Γ2)

∫ t

t−τ(t)
(xi(s− τ(s))− xj(s − τ(s)))ds

+(T2Ā−NG
(1)
ij T2Γ1)

∫ t

t−τ(t)
(xi(s)− xj(s))ds + T2B̄

∫ t

t−τ(t)
(f(xi(s))− f(xj(s)))ds

]

+[σi(t, x(t), x(t − τ(t))) − σj(t, x(t), x(t − τ(t)))]TP

×[σi(t, x(t), x(t − τ(t))) − σj(t, x(t), x(t − τ(t)))]
}
dt
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+2xT (t)
[
(U ⊗ P )σ(t, x(t), x(t − τ(t)))dω3(t) + (NG(2) ⊗ (PΓ2))x(t− τ(t))dω2(t)

+(NG(1) ⊗ (PΓ1))x(t)dω1(t)
]
+ 2
[
xT (t)(U ⊗ T1) + xT (t− τ(t))(U ⊗ T2)

]

×

∫ t

t−τ(t)

[
σ(s, x(s), x(s − τ(s)))dω3(s)

+(G(1) ⊗ Γ1)x(s)dω1(s) + (G(2) ⊗ Γ2)x(s − τ(s))dω2(s)
]
. (28)

Conditions (6) and (14) ensure that

[σi(t, x(t), x(t − τ(t)))− σj(t, x(t), x(t − τ(t)))]TP [σi(t, x(t), x(t − τ(t))) − σj(t, x(t), x(t − τ(t)))]

≤ λ[(xi(t)− xj(t))
TW T

1 W1(xi(t)− xj(t))

+(xi(t− τ(t))− xj(t− τ(t)))TW T
2 W2(xi(t− τ(t))− xj(t− τ(t)))], 1 ≤ i < j ≤ N, t ∈ R

+. (29)

At the same time, it follows from Assumption 1 that for all t ∈ R
+ and 1 ≤ i < j ≤ N :

β

[
xi(t)− xj(t)

f(xi(t)) − f(xj(t))

]T [
XT

1 X2 +XT
2 X1 −(XT

1 +XT
2 )

∗ 2I

] [
xi(t)− xj(t)

f(xi(t))− f(xj(t))

]
≤ 0. (30)

Using (28)-(30), we get

dV (t, x(t)) ≤
N−1∑

i=1

N∑

j=i+1

ξTij(t)(Φij +∆Φ)ξij(t) + 2xT (t)
[
(U ⊗ P )σ(t, x(t), x(t − τ(t)))dω3(t)

+(NG(2) ⊗ (PΓ2))x(t− τ(t))dω2(t) + (NG(1) ⊗ (PΓ1))x(t)dω1(t)
]

+2
[
xT (t)(U ⊗ T1) + xT (t− τ(t))(U ⊗ T2)

]
×

∫ t

t−τ(t)

[
σ(s, x(s), x(s − τ(s)))dω3(s)

+(G(1) ⊗ Γ1)x(s)dω1(s) + (G(2) ⊗ Γ2)x(s− τ(s))dω2(s)
]
; (31)

where ξij(t) = [(xi(t)−xj(t))
T , (xi(t− τ(t))−xj(t− τ(t)))T , (f(xi(t))−f(xj(t)))

T , (
∫ t

t−τ(t)(xi(s)−xj(s))ds)
T ,

(
∫ t

t−τ(t)(xi(s− τ(s))− xj(s− τ(s)))ds)T , (
∫ t

t−τ(t)(f(xi(s))− f(xj(s)))ds)
T ]T ,

∆Φ =




P∆A+ (∆A)TP P∆D P∆B T1∆A T1∆D T1∆B

∗ 0 0 T2∆A T2∆D T2∆B

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0




= P̂ℵT
1 + ℵ1P̂

T + T̂12ℵ
T
2 + ℵ2T̂

T
12

and ℵT
1 = [∆A ∆D ∆B 0 0 0], ℵT

2 = [0 0 0 ∆A ∆D ∆B].

From (2), one knows that

ℵT
1 = EFM̄T

1 , ℵT
2 = EFM̂T

1 ;

and therefore it follows from Lemma 5 that

∆Φ ≤ ε−1
1 P̂EET P̂ T + ε1M̄1M̄

T
1 + ε−1

2 T̂12EET T̂ T
12 + ε2M̂1M̂

T
1 . (32)
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Taking the mathematical expectation of both sides of (31) and considering (5), it can be derived that

E{dV (t, x(t))}

dt
≤

N−1∑

i=1

N∑

j=i+1

E{ξTij(t)(Φij +∆Φ)ξij(t)}

≤
N−1∑

i=1

N∑

j=i+1

E{ξTij(t)Φ̂ξij(t)} ≤ −αE{‖xi(t)− xj(t)‖
2}, t > 0 (33)

for some constant α > 0. This indicates from the Lyapunov stability theory [30] that the dynamics of the

complex networks (11) is globally robustly synchronized in the mean square. This completes the proof of

Theorem 1.

Remark 3: In Theorem 1, a delay-dependent criterion is established that ensures that the coupled complex

network is globally robustly synchronized in the mean square for all admissible parameter uncertainties, and

the criterion is expressed in terms of the solution to certain LMIs. Note that LMIs can be effectively solved

and checked by the algorithms such as the interior-point method [1].

Remark 4: In [4], the global synchronization problem has been studied for an array of linearly stochastically

coupled networks with time delays, where the subsystems are coupled stochastically. In this paper, we have

taken two significant steps further. First, the stochastic disturbances are considered not only in the coupling

terms (i.e., the coupled terms are subjected to stochastic disturbances) but also in the subsystems. Second,

the parameter uncertainties are taken into account. Accordingly, our main result is more general than that

of [4].

In the following, we show that the main criterion can be easily specified to some special cases.

Case 1. Let’s assume that there are no parameter uncertainties in A, D and B, that is, the coupled network

system is simplified to

dxi(t) =
[
Axi(t) +Dxi(t− τ(t)) +Bf(xi(t))

]
dt+ σi(t, xi(t), xi(t− τ(t)))dω3(t)

+

N∑

j=1

G
(1)
ij Γ1xj(t)(dt+ dω1(t)) +

N∑

j=1

G
(2)
ij Γ2xj(t− τ(t))(dt+ dω2(t)), t > 0. (34)

Then we have the following corollary.

Corollary 1: Under Assumption 1, the complex network (34) is globally synchronized in the mean square,

if there exist five matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0, two matrices T1, T2 and two scalars λ > 0,

β > 0 such that the following LMIs hold for all 1 ≤ i < j ≤ N :

P < λI, (35)



Φ
(i,j)
11 Φ

(i,j)
12 PB + β(XT

1 +XT
2 ) τM (T1A−NG

(1)
ij T1Γ1) τM (T1D −NG

(2)
ij T1Γ2) τMT1B

∗ Φ
(i,j)
22 0 τM (T2A−NG

(1)
ij T2Γ1) τM (T2D −NG

(2)
ij T2Γ2) τMT2B

∗ ∗ τMQ4 − 2βI 0 0 0

∗ ∗ ∗ −τMQ2 0 0

∗ ∗ ∗ ∗ −τMQ3 0

∗ ∗ ∗ ∗ ∗ −τMQ4




< 0,

(36)

where Φ
(i,j)
11 , Φ

(i,j)
22 and Φ

(i,j)
12 are defined as in Theorem 1.

Case 2. Assume now that there are no stochastic disturbances in (1) and the network model reduces to

dxi(t) =
[
(A+∆A)xi(t) + (D +∆D)xi(t− τ(t)) + (B +∆B)f(xi(t))

+

N∑

j=1

G
(1)
ij Γ1xj(t) +

N∑

j=1

G
(2)
ij Γ2xj(t− τ(t))

]
dt, t > 0. (37)
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Then the following result is true.

Corollary 2: Under Assumption 1, the complex network (37) is globally robustly synchronized, if there exist

five matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0, two matrices T1, T2 and three scalars β > 0, ε1 > 0,

ε2 > 0 such that the following LMIs hold for all 1 ≤ i < j ≤ N :



Ψ
(i,j)
11 Φ

(i,j)
12 Φ13 Φ

(i,j)
14 Φ

(i,j)
15 τMT1B ε1M

T
1 0 PE T1E

∗ Ψ
(i,j)
22 0 Φ

(i,j)
24 Φ

(i,j)
25 τMT2B ε1M

T
2 0 0 T2E

∗ ∗ τMQ4 − 2βI 0 0 0 ε1M
T
3 0 0 0

∗ ∗ ∗ −τMQ2 0 0 0 ε2M
T
1 0 0

∗ ∗ ∗ ∗ −τMQ3 0 0 ε2M
T
2 0 0

∗ ∗ ∗ ∗ ∗ −τMQ4 0 ε2M
T
3 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I




< 0, (38)

where Ψ
(i,j)
11 = PA + ATP − NG

(1)
ij (PΓ1 + ΓT

1 P ) + Q1 + τMQ2 − T1 − T T
1 − β(XT

1 X2 + XT
2 X1), Ψ

(i,j)
22 =

−(1− µ)Q1 + τMQ3 + T2 + T T
2 and the other symbols are as defined in Theorem 1.

Case 3. This time we assume that there are neither parameter uncertainties in A, D and B nor fixed

coupling terms in (1), then the complex system is specialized to

dxi(t) =
[
Axi(t) +Dxi(t− τ(t)) +Bf(xi(t))

]
dt+ σi(t, xi(t), xi(t− τ(t)))dω3(t)

+

N∑

j=1

G
(1)
ij Γ1xj(t)dω1(t) +

N∑

j=1

G
(2)
ij Γ2xj(t− τ(t))dω2(t), t > 0 (39)

and we can obtain the following corollary easily.

Corollary 3: Under Assumption 1, the complex network (39) is globally synchronized in the mean square,

if there exist five matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0, two matrices T1, T2 and two scalars λ > 0,

β > 0 such that the following LMIs hold for all 1 ≤ i < j ≤ N :

P < λI, (40)



Ξ
(i,j)
11 PD + T1 − T T

2 PB + β(XT
1 +XT

2 ) τMT1A τMT1D τMT1B

∗ Ξ
(i,j)
22 0 τMT2A τMT2D τMT2B

∗ ∗ τMQ4 − 2βI 0 0 0

∗ ∗ ∗ −τMQ2 0 0

∗ ∗ ∗ ∗ −τMQ3 0

∗ ∗ ∗ ∗ ∗ −τMQ4




< 0, (41)

where Ξ
(i,j)
11 = PA + ATP − NG

(1,1)
ij ΓT

1 PΓ1 + Q1 + τMQ2 − T1 − T T
1 + λW T

1 W1 − β(XT
1 X2 + XT

2 X1) and

Ξ
(i,j)
22 = −NG

(2,2)
ij ΓT

2 PΓ2 − (1− µ)Q1 + τMQ3 + T2 + T T
2 + λW T

2 W2.

IV. Numerical Examples

In this section, two examples are illustrated to show the effectiveness of our results.

Example 1: Consider the following two-dimensional uncertain network with stochastic disturbances and

time-varying delay:

dy(t) = [(A+∆A)y(t) + (D +∆D)y(t− τ(t)) + (B +∆B)f(y(t))]dt

+σ(t, y(t), y(t − τ(t)))dω3(t), t > 0 (42)
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where y(t) = (y1(t), y2(t))
T ∈ R

2 is the state vector of the network; the time-varying delay τ(t) = 0.1 +

0.05 sin(20t), that is, τM = 0.15 and µ = 1; the other parameters are as follows:

A =

[
−1.2 0.4

0.4 −1.6

]
, D =

[
−0.4 1.0

−1.4 −0.2

]
, B =

[
−0.6 −0.1

−0.3 −1.5

]
.

The parameter uncertainties ∆A, ∆D and ∆B satisfy the conditions (2)-(3) with

E =

[
0.1 0.5

0.5 0.3

]
, M1 =

[
0.1 −0.2

0.1 −0.1

]
, M2 =

[
−0.2 0

−0.3 0.2

]
, M3 =

[
0.1 0.2

−0.2 −0.3

]
.

The nonlinear function f(y(t)) = (f1(y1(t)), f2(y2(t)))
T with fi(yi) = tanh(yi) (i = 1, 2); the noise intensity

function vector σ(·, ·, ·) is of the following form:

σ(t, y(t), y(t− τ(t))) =

[
−0.1 0.1 0.2 −0.2

0.1 −0.1 0.2 −0.2

][
y(t)

y(t− τ(t))

]
, t ∈ R

+.

Obviously, the nonlinear functions satisfy Assumption 1 and condition (6) with

X1 =

[
0 0

0 0

]
, X2 =

[
1 0

0 1

]
; W1 =

[
−0.1 0.1

0.1 −0.1

]
, W2 =

[
0.2 −0.2

0.2 −0.2

]
.

The dynamical behaviors of (42) with initial conditions as follows are shown in Figs. 1-2:

y1(s) = 0.4, y2(s) = −0.2; s ∈ [−0.15, 0] (43)

where the uncertain matrix F is taken as a random variable satisfying the condition (3).

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

y 1

Fig. 1. State trajectory of y1(t) in model (42).

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

t

y 2

Fig. 2. State trajectory of y2(t) in model (42).

Now consider a coupled complex network consisting of three identical models (42). The state equations of

the entire array are

dxi(t) =
[
(A+△A)xi(t) + (D +△D)xi(t− τ(t)) + (B +△B)f(xi(t))

]
dt

+σ(t, xi(t), xi(t− τ(t)))dω3(t)

+

3∑

j=1

G
(1)
ij Γ1xj(t)(dt + dω1(t)) +

3∑

j=1

G
(2)
ij Γ2xj(t− τ(t))(dt + dω2(t)); (44)
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where xi(t) = (xi1(t), xi2(t))
T (i = 1, 2, 3) is the state vector of the ith subsystem. Choose the coupling

matrices G(1), G(2) and the linking matrices Γ1, Γ2 as

G(1) =




−2 1 1

1 −2 1

1 1 −2


 , G(2) =




−3 1 2

1 −2 1

2 1 −3


 ; Γ1 =

[
0.01 0.02

−0.03 0.01

]
, Γ2 =

[
−0.02 0.05

0.07 −0.05

]
.

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

t

x 11

Fig. 3. State trajectory of x11(t) in model (44).

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

t

x 12

Fig. 4. State trajectory of x12(t) in model (44).

By using the Matlab LMI Toolbox, LMIs (14)-(15) can be solved with the feasible solutions as follows:

P =

[
50.9053 −6.8528

−6.8528 27.7843

]
, Q1 =

[
7.4118 −0.4184

−0.4184 3.7582

]
, Q2 =

[
157.4762 −66.7004

−66.7004 129.3346

]
,

Q3 =

[
133.0133 −19.4280

−19.4280 59.9464

]
, Q4 =

[
164.1311 24.4229

24.4229 214.5054

]
,

T1 =

[
−17.1164 −2.0297

34.5245 −9.6288

]
, T2 =

[
−33.1419 −4.8834

26.6574 −24.8379

]
;

ε1 = 48.9679, ε2 = 48.7753, β = 43.7551, λ = 63.1424.

According to Theorem 1, the array of coupled uncertain networks (44) with stochastic disturbances can

achieve globally robust synchronization in the mean square. The trajectories of system (44) are shown in

Figs. 3-4 (for space consideration, only two of them are illustrated here)and the synchronization performances

are illustrated in Figs. 5-6, where the initial states for (44) are taken randomly constants in [0, 1]× [0, 1]. Figs.

3-6 conform that the dynamical system (44) is globally robustly synchronized in the mean square.

Example 2: The repressilator is a cyclic negative-feedback loop comprising three repressor genes (lacl, tetR,

and cl) and their promoters. The dynamics of the repressilator has been theoretically and experimentally

investigated in EScherichia coli [8, 19]. Specifically speaking, the kinetics of the system can be described as

follows:
{

ṁi = −mi +
α

1+pnj
,

ṗi = −γ(pi −mi)

where i = lacl , tetR, cl ; j = cl , lacl , tetR. mi and pi are the concentrations of the three mRNA and repressor-

proteins, and γ > 0 denotes the ratio of the protein decay rate to mRNA decay rate. By taking into account
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0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x i1
−

x 11

Fig. 5. Synchronization error of xi1(t)−x11 (i = 2, 3) for

model (44)

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x i2
−

x 12

Fig. 6. Synchronization error of xi2(t)−x12 (i = 2, 3) for

model (44)

the transcriptional time delay and selecting a set of biologically plausible parameters, the above equations can

be rewritten into the following vector form:

dy(t) = [Ay(t) +Dy(t− τ(t)) +Bf(y(t))]dt, t > 0 (45)

where y(t) = (y1(t), y2(t), . . . , y6(t))
T ∈ R

6; A = diag(−3,−3,−3,−2.5,−2.5,−2.5); the time-varying delay

τ(t) = 1
4(1+sin t), i.e., τM = 0.5, µ = 0.25; the nonlinear function f(y(t)) = (f1(y1(t)), f2(y2(t)), . . . , f6(y6(t)))

T

with fi(yi(t)) = 1/(1+y2i (t)) (i = 1, 2, . . . , 6), obviously, the Assumption 1 is satisfied withX1 = diag(−0.6495,

− 0.6495,−0.6495,−0.6495,−0.6495,−0.6495) and X2 = 0;

D =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.8 0 0 0 0 0

0 0.8 0 0 0 0

0 0 0.8 0 0 0




, B =




0 0 0 0 0 2.5

0 0 0 2.5 0 0

0 0 0 0 2.5 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




.

Now consider a coupled complex network consisting of three identical models (45), the state equations of

the entire array are

dxi(t) =
[
Axi(t) +Dxi(t− τ(t)) +Bf(xi(t)) +

3∑

j=1

G
(1)
ij Γ1xj(t) +

3∑

j=1

G
(2)
ij Γ2xj(t− τ(t))

]
dt; (46)

where xi(t) = (xi1(t), xi2(t), . . . , xi6(t))
T (i = 1, 2, 3) is the state vector of the ith subsystem. Choose the

coupling matrices G(1), G(2) and the linking matrices Γ1, Γ2 as

G(1) =




−0.2 0.1 0.1

0.1 −0.2 0.1

0.1 0.1 −0.2


 , Γ1 =




0.8055 0.4899 0.0596 0.8181 0.9730 0.0835

0.5767 0.1679 0.6820 0.8175 0.6490 0.1332

0.1829 0.9787 0.0424 0.7224 0.8003 0.1734

0.2399 0.7127 0.0714 0.1499 0.4538 0.3909

0.8865 0.5005 0.5216 0.6596 0.4324 0.8314

0.0287 0.4711 0.0967 0.5186 0.8253 0.8034




,
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G(2) =




−0.3 0.1 0.2

0.1 −0.2 0.1

0.2 0.1 −0.3


 , Γ2 =




0.0605 0.2920 0.3724 0.0527 0.4177 0.6981

0.3993 0.4317 0.1981 0.7379 0.9831 0.6665

0.5269 0.0155 0.4897 0.2691 0.3015 0.1781

0.4168 0.9841 0.3395 0.4228 0.7011 0.1280

0.6569 0.1672 0.9516 0.5479 0.6663 0.9991

0.6280 0.1062 0.9203 0.9427 0.5391 0.1711




.

By using the Matlab LMI Toolbox, LMIs (38) can be solved with the feasible solutions as follows (for space

consideration, only some of them are listed):

P =




47.4489 −3.7570 −1.1316 0.1900 −2.5717 −1.1133

−3.7570 46.9208 −3.2133 −4.9917 −2.1384 −3.8429

−1.1316 −3.2133 46.1916 −1.9864 −2.5593 1.2069

0.1900 −4.9917 −1.9864 70.2065 1.5434 −2.9769

−2.5717 −2.1384 −2.5593 1.5434 64.9746 −5.6841

−1.1133 −3.8429 1.2069 −2.9769 −5.6841 69.2279




,

Q1 =




111.8939 −10.4443 −3.0019 7.1653 10.7947 24.0458

−10.4443 98.6225 −0.5504 20.4771 1.9922 −13.7916

−3.0019 −0.5504 96.4250 1.1320 25.9715 7.7806

7.1653 20.4771 1.1320 134.5675 26.3377 8.1183

10.7947 1.9922 25.9715 26.3377 122.3597 10.7605

24.0458 −13.7916 7.7806 8.1183 10.7605 158.5158




,

T1 =




4.3514 0.2416 0.7972 −2.7124 −0.1404 1.3519

0.5996 4.8981 −0.5755 −0.6869 1.8925 0.8451

1.1770 −0.2907 5.7473 0.6206 −2.6226 0.2936

−3.7692 −0.0994 1.0228 −1.7906 5.6290 1.1377

0.9733 −4.1312 0.4865 4.7749 −1.6056 8.3088

−0.8207 −0.6842 −2.1438 8.4909 5.1912 −3.7950




,

and β = 108.8948. Therefore, according to Corollary 2, the array of the three coupled biological networks

(46) can achieve global synchronization.

V. Conclusions

In this paper, we have dealt with the synchronization problem for a general class of coupled complex

networks. The system under study are coupled by N identical subsystems, each of them has uncertain

parameters and stochastic disturbances, and they are linearly stochastically coupled which may reflect a more

realistic situation in practice. By employing the Lyapunov functional method combined with the matrix

inequalities and by using the properties of Kronecker product, several sufficient conditions have been obtained

which ensure the coupled complex network to be globally robustly synchronized in the mean square. The

criteria acquired in this paper are dependent on the upper bound of the time-varying delay which may be less

conservative than the delay-independent ones, and the derivative of the time-varying delay is not required to

be less than 1. Furthermore, these criteria can be easily verified by using the standard numerical software.

In the end of the paper, two examples have been given with simulations to demonstrate the effective of our

results.
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[26] J.H. Lü, G. Chen, A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE Trans.

Autom. Control, vol. 50, pp. 841-846, 2005.

[27] R. Palm, Synchronization of decentralized multiple-model systems by market-based optimization, IEEE Trans. Systems, Man

and Cybernetics - Part B, vol. 34, no. 1, pp. 665-672, 2004.

[28] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol. 64, no. 8, pp. 821-824, 1990.

[29] V. Perez-Munuzuri, V. Perez-Villar, L.O. Chua, Autowaves for image processing on a two-dimensional CNN array of excitable

nonlinear circuits: flat and Wrinkled labyrinths, IEEE Trans. Circuits Syst.-I, vol. 40, pp. 174-181, 1993.

[30] Z. Schuss, Theory and applications of stochastic differential equations, Wiley, New York, 1980.

[31] S. Senan, S. Arik, Global robust stability of bidirectional associative memory neural networks with multiple time delays,

IEEE Trans. Systems, Man and Cybernetics - Part B, vol. 37, no. 5, pp. 1375-1381, 2007.



FINAL VERSION OF JPB20070872 17

[32] Q. Song and J. Cao, Impulsive effects on stability of fuzzy Cohen-Grossberg neural networks with time-varying delays, IEEE

Trans. Systems, Man and Cybernetics - Part B, vol. 37, no. 3, pp. 733-741, 2007.

[33] X.F. Wang, G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurc. Chaos, vol. 12, no. 1, pp. 187-192,

2002.

[34] Z. Wang, Y. Liu, M. Li and X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays,

IEEE Trans. Neural Networks, vol. 17, no. 3, pp. 814-820, 2006.

[35] Z. Wang, F. Yang, D. W. C. Ho and X. Liu, Robust H∞ control for networked systems with random packet losses, IEEE

Trans. Syst. Man, Cybern.-B, vol. 37, no. 4, pp. 916-924, 2007.

[36] Z. Wang, J. Lam, L. Ma, Y. Bo and Z. Guo, Variance-constrained dissipative observer-based control for a class of nonlinear

stochastic systems with degraded measurements, Journal of Mathematical Analysis and Applications, Vol. 377, No. 2, May

2011, pp. 645-658.

[37] Z. Wang, D. W. C. Ho, H. Dong and H. Gao, Robust H∞ finite-horizon control for a class of stochastic nonlinear time-varying

systems subject to sensor and actuator saturations, IEEE Transactions on Automatic Control, Vol. 55, No. 7, Jul. 2010, pp.

1716-1722.

[38] Z. Wang, Y. Liu, G. Wei and X. Liu, A note on control of a class of discrete-time stochastic systems with distributed delays

and nonlinear disturbances, Automatica, Vol. 46, No. 3, Mar. 2010, pp. 543-548.

[39] Z. Wang, Y. Liu and X. Liu, Exponential stabilization of a class of stochastic system with Markovian jump parameters and

mode-dependent mixed time-delays, IEEE Transactions on Automatic Control, Vol. 55, No. 7, Jul. 2010, pp. 1656-1662.

[40] Z. Wang, Y. Wang and Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred

nonlinearities and mixed time-delays, IEEE Transactions on Neural Networks, Vol. 21, No. 1, Jan. 2010, pp. 11-25.

[41] C.W. Wu, L.O. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst.-I, vol.

42, no. 8, pp. 430-447, 1995.

[42] C.W. Wu, Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling, IEEE

Trans. Circuits Syst.-II, vol. 52, no. 5, pp. 282-286, 2005.

[43] L. Xie, Output feedback H∞ control of systems with parameter uncertainty, Int. J. Control, vol. 63, pp. 741-750, 1996.

[44] K. Yuan, J. Cao, H.-X. Li, Robust stability of switched Cohen-Grossberg neural networks with mixed time-varying delays,

IEEE Trans. Systems, Man and Cybernetics - Part B, vol. 36, no. 6, pp. 1356-1363, Dec. 2006.

[45] W.W. Yu, J. Cao, Synchronization control of stochastic delayed neural networks, Physica A, vol. 373, pp. 252-260, 2007.

[46] A. Zheleznyak, L.O. Chua, Coexistence of low- and high-dimensional spatio-temporal chaos in a chain of dissipatively coupled

Chua’s circuits, Int. J. Bifurc. Chaos, vol. 4, no. 3, pp. 639-674, 1994.

[47] J. Zhou, T.P. Chen, Synchronization in general cpmplex delayed dyanmical networks, IEEE Trans. Circuits Syst.-I, vol. 43,

no. 3, pp. 733-744, 2006


