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ABSTRACT 

 
 

This is a foundational study that applies Receiver Operating Characteristic (ROC) 

analysis to the evaluation of a chronic disease model that utilizes Remote Monitoring (RM) 

devices to identify clinical deterioration in a Chronic Obstructive Pulmonary Disease (COPD) 

population.   

Background: RM programmes in Disease Management (DM) are proliferating as one strategy to 

address management of chronic disease. The need to validate and quantify evidence-based value 

is acute. There is a need to apply new methods to better evaluate automated RM systems. ROC 

analysis is an engineering approach that has been widely applied to medical programmes but has 

not been applied to RM systems. Evaluation of classifiers, determination of thresholds and 

predictive accuracy for RM systems have not been evaluated using ROC analysis.  

Objectives: (1) apply ROC analysis to evaluation of a RM system; (2) analyse the performance 

of the model when applied to patient outcomes for a COPD population; (3) identify predictive 

classifier(s); (4) identify optimal threshold(s) and the predictive capacity of the classifiers.  

Methods: Parametric and non-parametric methods are utilized to determine accuracy, sensitivity, 

specificity and predictive capacity of classifiers Saturated Peripheral Oxygen (SpO2), Blood 

Pressure (BP), Pulse Rate (PR) based on event-based patient outcomes that include 

hospitalisation (IP), accident & emergency (A&E) and home visits (HH).  

Population: Patients identified with a primary diagnosis of COPD, monitored for a minimum of 

183 days with at least one episode of in-patient (IP) hospitalisation for COPD in the 12 months 

preceding the monitoring period.  

Data Source: A subset of retrospective de-identified patient data from an NHS Direct evaluation 

of a COPD RM programme. Subsets utilized include classifiers, biometric readings, alerts 

generated by the system and resource utilisation.  

Contribution: Validates ROC methodology, identifies classifier performance and optimal 

threshold settings for the classifier, while making design recommendations and putting forth the 

next steps for research. The question answered by this research is that ROC analysis can provide 

additional information on the predictive capacity of RM systems.  

Justification of benefit: The results can be applied when evaluating health services and 

planning decisions on the costs and benefits. Methods can be applied to system design, protocol 

development, work flows and commissioning decisions based on value and benefit. 

Conclusion: Results validate the use of ROC analysis as a robust methodology for DM 

programmes that use RM devices to evaluate classifiers, thresholds and identification of the 

predictive capacity as well as identify areas where additional design may improve the predictive 

capacity of the model. 
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DEFINITIONS 
 

Classifier In this research,  SpO2, blood pressure and pulse rate 

Area under 

the curve 

Plot of the cumulative distribution function (area under the curve (AUC) of the 

detection probability in the y-axis versus the cumulative distribution function of 

the false alarm probability in x-axis 

 (Swets 1996). 

Clinical 

decision 

support 

The use of a computer to bring relevant knowledge to bear on the health care 

and well-being of a patient (Greenes 2007).  

Chronic 

disease 

A disease that persists for a long time. A chronic disease is one lasting 3 months 

or more according to the CDC U.S. National Center for Health Statistics (CDC 

2013). 

Chronic 

Obstructive 

Pulmonary 

Disease 

Chronic Obstructive Pulmonary Disease (COPD) is not one single disease but an 

umbrella term used to describe chronic lung diseases that cause limitations in 

lung airflow. The more familiar terms 'chronic bronchitis' and 'emphysema' are 

no longer used, but are now included within the COPD diagnosis. The most 

common symptoms of COPD are breathlessness, or a 'need for air', excessive 

sputum production, and a chronic cough. However, COPD is not just simply a 

"smoker's cough", but a under-diagnosed, life threatening lung disease that may 

progressively lead to death (WHO 2013). 

Class skew Statistics (of a statistical distribution) not symmetrical. (Oxford dictionary) 

Confusion 

matrix 

A confusion matrix summarizes the classification performance of a classifier 

with respect to some test data. It is a two-dimensional matrix, indexed in one 

dimension by the true class of an object and in the other by the class that the 

classifier assigns (Springer reference 2013). 

Disease  

management 

programme 

Disease management consists of a group of coherent interventions designed to 

prevent or manage one or more chronic conditions using a systematic, 

multidisciplinary approach and potentially employing multiple treatment 

modalities. The goal of disease management is to identify persons at risk for one 

or more chronic conditions, to promote self management by patients and to 

address the illnesses or conditions with maximum clinical outcome, 

effectiveness and efficiency regardless of treatment setting(s) or typical 

reimbursement patterns (Schrijvers 2009).  

Decision 

model 

Describe the relationship between all the elements of a decision - the known data 

(including results of predictive models), the decision and the forecast results of 

the decision - in order to predict the results of decisions involving many 

variables (Wikipedia, Predictive analytics 2010). 

Diagnostic 

accuracy 

Diagnostic accuracy is correctly classifying subjects into clinically relevant 

subgroups. Diagnostic accuracy refers to the quality of the information provided 

by the classification device (Pintea & Moldovan 2009). 

Exacerbation 

For this research exacerbation is defined as worsening respiratory symptoms 

requiring treatment and management as evidenced by a home visit, accident and 

emergency visit or in-patient hospitalisation.   
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DEFINITIONS 
 

False 

positive rate 

Created by plotting the fraction of false positives out of the negatives (FPR = 

false positive rate), at various threshold settings. FPR is one minus the 

specificity or true negative rate. (Swets 1996) 

Long-term 

Condition 

Any health condition that cannot at present be cured, but can be managed with 

medicines and/or therapy. This includes conditions such as diabetes, heart 

failure, COPD, arthritis, depression (Department of Health  UK 2012) 

Negative 

likelihood 

ratio 

The negative likelihood ratio is the ratio between the probability of a negative 

test result given the presence of the disorder and the probability of a negative 

test result given the absence of the disorder (Pintea & Moldovan 2009). 

Non-

parametric 

statistics 

A statistical method wherein the data is not required to fit a normal distribution. 

Nonparametric statistics uses data that is often ordinal, meaning it does not rely 

on numbers, but rather a ranking or order of sorts (Investopedia 2013). 

Negative 

predictive 

value 

The negative predictive value is defined as the probability that the disorder is not 

present when the result of the test is negative (Pintea & Moldovan 2009). 

Parametric 

statistics 

 Parametric statistics is a branch of statistics that assumes that the data has come 

from a type of probability distribution and makes inferences about the 

parameters of the distribution (Geisser 2006). 

Positive 

likelihood 

ratio 

The positive likelihood ratio is the ratio between the probability of a positive test 

result given the presence of the disorder and the probability of a positive test 

result given the absence of the disorder (Pintea & Moldovan 2009). 

Positive 

predictive 

value 

Positive predictive value, also called precision, is defined as the probability that 

the disorder is present when the result of the test is positive (Pintea & Moldovan 

2009). 

Remote 

monitoring 

Electronic sensors or equipment that monitors vital health signs remotely, e.g. in 

your own home or while on the move (Department of Health UK 2012). 

Sensitivity 
Sensitivity, also called the true positive rate (when expressed as a percentage) is 

defined as the probability that a test result will be positive when the disorder is 

present (Pintea & Moldovan 2009). 

Specificity 
Specificity, also called the true negative rate (when expressed as a percentage), 

represents the probability that a test result will be negative when the disorder is 

not present (Pintea & Moldovan 2009). 

SpO2 Saturation of peripheral oxygen, Oxygen Saturation, Saturation of Hemoglobin 

with Oxygen as measured by Pulse Oximetry (Free dictionary 2013). 
 

True positive 

rate 

Created by plotting the fraction of true positives out of the positives (TPR = true 

positive rate) vs. the fraction of false positives out of the negatives (FPR = false 

positive rate), at various threshold settings. TPR is also known as sensitivity. 

(Swets 1996). 

Verification 

bias 

A type of measurement bias in which the results of a diagnostic test affect 

whether the gold standard procedure is used to verify the test result (Begg 1983). 
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CHAPTER 1 

 

INTRODUCTION 

 

“... knowledge must continually be renewed by ceaseless effort, if it 

is not to be lost. It resembles a statue of marble which stands in the 

desert and is continually threatened with burial by the shifting sand. 

The hands of service must ever be at work, in order that the marble 

continue to lastingly shine in the sun. To these serving hands mine 

shall also belong.” 

Albert Einstein, On Education, 1950  
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1.0 INTRODUCTION AND OVERVIEW 

 

The use of remote monitoring (RM) devices as a part of disease management (DM) 

programmes is proliferating. These devices are being implemented as part of a broader chronic 

DM strategy in healthcare. The goal of these DM models is to identify clinical deterioration early 

enough to allow clinicians to intervene and avoid episodes of clinical decompensation that impact 

negatively on the patient and attribute high costs to the healthcare system. This research will apply 

a rigorous methodology to validate the use of the receiver operating characteristic (ROC) in a 

chronic obstructive pulmonary disease (COPD) population, based on patient outcomes, to evaluate 

the performance of the DM system that uses RM devices. 

1.1 Research purpose 

The purpose of this research is to evaluate the utility, predictive capacity and overall 

performance of the DM system using ROC analysis, as a tool, to evaluate the DM model that uses 

RM devices for a COPD population, based on patient outcomes.   

1.2 Research question 

 The research question is: does ROC analysis provide greater utility in the evaluation of 

model performance of DM programmes that use RM devices?  

1.3 Problem addressed 

The problem addressed in this research is that current evaluation methods for technology-

assisted DM programmes that use RM devices lack rigorous methodology and processes to 

evaluate the efficacy of their performance and justify the long-term investment. In addition, the 

DM models monitor a number of biometric parameters or classifiers, but it is not known, based on 

specific diseases and patient outcomes, which of these are the most useful or predictive for the 

disease in question.  
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Assessment of the DM models that use RM devices in the COPD population remains 

inconclusive (Buntin 2006; Busse, Blumel, Scheller-Kreinsen & Zentner 2010; Mattke, Seid & Ma 

2007; Webb & Howson 2006) and there are no studies that apply ROC analysis to RM systems.  

ROC methodology is investigated to determine its potential to provide more robust 

evaluative data and analysis of the best classifiers and appropriate thresholds for the classifiers, as 

these are critical indices to evaluate the performance of RM systems to identify clinical 

deterioration. The utility of ROC analysis in other clinical areas that rely on the interpretation of 

signals lends this method to RM devices, which are essentially signalling devices that generate 

alerts based on a threshold. There is an absence of research in its use in DM systems, although 

ROC has the potential to provide salient knowledge to inform the design and operational features 

of these systems and to improve their efficacy and predictive capacity (Linden 2006). The results 

of this research support the use of ROC analysis, and identify areas where re-design would provide 

better value to both the patient and the healthcare system by adjustments to the classifiers for 

specific disease states and to the optimum thresholds. 

The current lack of predictive value in the methods used to evaluate the performance of the 

new DM programmes that use RM devices leaves both the providers and the purchasers not 

knowing when systems and configurations will provide the best predictive value of a deteriorating 

clinical event for their population, what devices and classifiers work best and unable to evaluate 

the cost of investing in these systems relative to their expected value. 

1.4 Objectives 

 The overarching goal of this research is to determine if ROC analysis can be applied to DM 

systems that use RM devices, and provide additional utility and more accurate assessment in 

evaluating these new models of care.    

Objective 1: Apply ROC analysis to evaluation of a RM system 
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Objective 2: Analyse the performance of a disease management model for prediction of patient 

outcomes in a COPD population 

Objective 3: Identify predictive classifier(s)  

Objective 4: Identify the optimum threshold for classifier(s) of interest and the predictive 

capacity of the classifiers. 

1.5 Hypotheses 

This work will investigate the accuracy of the alert generated in a DM system using ROC 

analysis. Results are based on patient outcomes, and will indicate the degree of predictability and 

will determine the performance of the classifiers.  

H1: ROC analysis is applicable to the problem of evaluating a technology-assisted DM model that 

utilizes RM devices and will provide additional utility to evaluate the performance and predictive 

capacity for the specific classifiers being used to monitor patients with COPD. 

H0: The null hypothesis is that the ROC analysis will not provide any additional information in 

which to evaluate the DM models that utilize RM devices for COPD. 

1.6 Research stages  

This research is multi-faceted and was conducted in three stages. The first stage included 

the development of a proposal for a COPD programme evaluation for the NHSD. The proposal 

was completed in June 2010. The NHSD operationalised a RM programme in November 2010 for 

COPD in two primary care trusts (PCTs).  

Stage two included an evaluation report prepared for the NHSD and the PCTs involved in 

the project. The evaluation was conducted by Brunel University and Chorleywood Health Centre 

for the NHSD and was completed in August 2012. The evaluation team members included Ms. 

Joanna Fursse and Russell Jones, M.D. from the Chorleywood Health Centre, Malcolm Clarke, 

Ph.D., and Nancy E. Brown Connolly, R.N., M.S., from Brunel University. Stage three utilized a 
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subset of data from the NHSD COPD programme evaluation to explore the use of ROC analysis in 

a RM system.   

1.7 Structure of the thesis 

This thesis describes the problems healthcare systems are facing due to our aging 

population, the changes that will be required in healthcare systems and how programmes may 

utilize RM technology in DM programmes. This research contributes to knowledge by providing a 

new tool to be used in the evaluation of the performance of DM programmes that utilize RM 

devices. Chapter 2 describes the background of the study and discusses details of the DM 

programme that are the basis for this study.  

Chapter 3 presents a search of the current literature, specifically for RM technology used in 

DM programmes and the use of ROC analysis in evaluation. An in-depth description of ROC, its 

utility, a description of ROC space and interpretation of ROC space and measures are provided.  

Chapter 4 outlines the methods, assumptions and processes used to create the data sets for 

ROC analysis. The methodology for ROC analysis is well defined mathematically and is also 

reviewed.  

Chapter 5 presents an analysis of the data and results. Chapter 6 includes a discussion, 

Chapter 7 presents conclusions, contribution to knowledge and recommendations for the further 

use of ROC in the design and evaluation of DM programmes.  

1.8 Potential contribution  

This research will contribute to a more accurate evaluation process that can be applied to 

RM systems used in DM programmes. ROC analysis, as a methodological, validated tool has the 

potential to empirically illustrate the performance of the RM system and allows for comparisons to 

be made between two or more classifiers. The use of ROC curves enables comparison of the 
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performance of the classifiers at varying thresholds and the optimum operating point to be 

determined. This type of analysis will help identify design and operational process issues which 

may need further development or adjustment within the overall system.  

Trade-offs in performance would be measurable and vendor claims would be verifiable 

based on an evaluation of system performance that is based on patient outcomes. Methods can be 

applied to programmes utilising RM systems for other chronic diseases to identify the performance 

of classifiers and the value that is added to the healthcare system. The generalizability of results to 

other health systems and countries is equally significant. It is expected that the results will be 

valuable in enabling informed decisions by purchasers, insurers, health systems and policy makers 

with regard to the effectiveness of these systems. For those organizations that purchase DM 

services, this research will provide a substantive background with which to discuss the inclusion of 

ROC as an integral component of the programme evaluation with their contracted vendors.  

Health care planners and commissioners would be better able to make informed decisions 

based on outcomes and value, including predictive cost analysis when purchasing and planning 

disease management programmes. Medical resources are hard pressed to manage our current 

populations with chronic disease and as the aging population increases, they will need to integrate 

validated models for chronic conditions in order to be able to increase efficiencies without 

sacrificing quality and personal care for patients. Other variables such as the scalability of the 

programme and its long-term sustainability, local readiness factors and infrastructure will need to 

be considered in the cost valuation going forward, but first there is a need to find a better way to 

analyse and evaluate the performance of the RM systems.  

The programmes that are implemented must exhibit value and benefit to patients and the 

healthcare system alike in order to responsibly manage healthcare resources. In addition, systems 
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must be flexible enough to support organizations ranging from solo practitioner offices to national 

integrated delivery networks, improve workflow, reduce cost, and improve the quality of care, 

while maintaining long-standing beneficial patterns of communication, collaboration, and care 

(Avison & Young 2007). 
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CHAPTER 2 

 

BACKGROUND 

 

“The task is not so much to see what no one yet has seen, but to think 

what nobody yet has thought about that which everybody sees.”  

Arthur Schopenhauer, 1788-1860 
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2.0 BACKGROUND 

The use of technology to support the provision of medical treatment and management for 

persons with chronic disease conditions has been gaining acceptance and is viewed as a necessity 

if we as a society are to meet the needs of our aging population (Kalorama Information 2013).  

Manuel Castells, the sociologist, advances the idea that we are in the midst of a third 

industrial revolution that has at its roots citizens, knowledge and information technology (Castells 

1997). This is evident in the uptake of technology in all sectors of our social institutions as well as 

among individuals in society. Imagine having no cell phone today! No e-mail or computer at work! 

No cash machine during a bank holiday or while on vacation in another country. Information 

communications technology (ICT) and the Internet are changing the way we live and work. You 

have only to look at the generation below 18 years of age and their ease in using technology along 

with the new ideas that are being generated to realize that we are indeed in the midst of a 

revolution.  

The provision of healthcare is a part of this revolution and one that has historically been 

slow to change, but those changes are in process, and the pace will be accelerated as we learn to 

absorb new applications into our healthcare systems and use them for the patients’ benefit. We, our 

families and our neighbours are the patients. We will be using these technologies and it behoves us 

to ensure that they are the appropriate applications, developed, designed and used in ways that 

enhance our quality of life and well-being, since we will be the end-users.  

As we age, we develop, either through lifestyle, environment or our genetic inheritance, 

medical conditions that we must learn to live with and manage. These chronic conditions, such as 

hypertension, heart disease, diabetes and respiratory diseases, necessitate medical advice and 

services. The management of chronic conditions can be time-consuming, inconvenient, costly and 
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difficult for people, especially for frail individuals and their families. Timely access to services is 

necessary to prevent acute episodes and the prompt identification and management of deteriorating 

health status. Delays in treatment can also lead to clinical deterioration and episodes of 

hospitalisation.  

Most people would prefer to be treated at home, or at least enable easier management of 

their condition, without having to inconvenience family and friends; in other words, people would 

like to be able to maintain their independence. While working on a technology-assisted DM project 

in Iowa, in the US. I was asked by an older woman to explain what I was doing; when I finished a 

lengthy description of my work, she asked, quite simply, “Will this help me stay in my home?” 

(Personal communication, 2004) I answered, “Yes”.  

2.1 Scope of the problem    

Healthcare systems are facing the onslaught of an aging population with increases in 

chronic disease rates that they are ill-prepared to manage. A study that included health trends for 

50 countries in the next 25 years determined that trends would mainly be influenced by the aging 

of the world’s population (Murray & Lopez 1997). COPD is projected to become the fourth 

leading cause of death globally by 2030 (Mathers & Loncar 2006). 

The European Observatory on Health Systems and Policy, in a comprehensive review of 

multiple European countries and the United States notes,  

“Chronic diseases are the leading cause of mortality and morbidity in Europe, and research 

suggests that complex conditions such as diabetes and depression will impose an even 

larger burden in the future. Some years ago chronic diseases were considered to be a 

problem of the rich and elderly population. Today we know that within high-income 

countries, poor as well as young and middle-aged people are affected by chronic 

conditions. The economic implications of such diseases are also serious. Chronic diseases 

depress wages, earnings, workforce participation and labour productivity, as well as 

increasing early retirement, high job turnover and disability. Disease-related impairment of 

household consumption and educational performance has a negative effect on gross 

domestic product (GDP). As expenditure on chronic care rises across Europe, it takes up 
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increasingly greater proportions of public and private budgets.” (Buss, Blümel, Scheller-

Kreinsen & Zentner 2010, p.16).  

 

A snapshot of the chronic disease burden from around the globe includes; Australia where 

12 chronic diseases accounted for US $11.0 G, or 22.4% of the total allocated healthcare 

expenditure. Expenditure on heart disease was US $1.5 G alone. (Australian Institute of Health & 

Welfare, accessed 22 November 2010). In the UK COPD direct costs are estimated to be £492M in 

annual costs (Alder, Mayhew, Moody & Morris 2005); the United States spends 75% of its’ 

healthcare expenditures in chronic disease care (CDC 2009). This is an increase of 5% from the 

CDC 2004 dataset (CDC 2004). The World Health Organization (WHO) estimated accumulated 

losses from 2005 to 2015 in USD, for China of $558 G, for India $236 G, and for the Russian 

Federation $303 G (WHO 2010).  

With the current state of healthcare systems in some disarray, due in part to the complexity 

of our healthcare systems and the need to redesign these systems for our populations, what 

strategies are being tested to address the needs of the chronically ill and aging population?   

2.2 Strategy to address chronic disease  

Structured DM programmes are one strategy being used to manage chronic diseases.  

Developing and deploying DM programmes designed to monitor patients in their homes is being 

used to address inadequate access to care and escalating cost. Many countries with an aging 

population are struggling to provide the needed services. The complexity of the healthcare system, 

transportation and other logistics become problematic for the person with a chronic condition. 

Many healthcare systems have a demand versus capacity issue that is creating a barrier to access to 

medical care. The European Observatory on Health Systems and Policy presented an overview of 

the crisis faced by countries that are struggling to provide services, and outlined the responses 
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from budget cuts to increasing efficiencies, access and wait time increases, reform and private pay 

options (Figueras 2012).   

RM has been introduced as an enabling technology to facilitate data gathering and provide 

clinical decision support as a part of a DM programme. DM programmes were originally 

developed as part of a chronic care model (CCM), Figure 2.1. The model has proliferated in 

European countries. Of note is the progression of the six areas of the model within the healthcare 

system. Self-management support and delivery system design precede the application of a decision 

support system (DSS) (Wagner 1998). An issue with RM systems has been the industry push for 

adoption without a rigorous design methodology or evaluation of the design for specific chronic 

diseases. 

 
Figure 2.1. Chronic care model (Wagner 1998) 

 



 

13 

 

In 2008, the National Health Service (NHS) in the UK rolled out the Whole System 

Demonstrator (WSD) project using a randomized controlled trial in three PCTs to address and 

evaluate chronic disease care using remote monitoring (Department of Health Gateway 2011).  

“The early results indicate that telehealth can deliver a 15% reduction in A&E visits, 20% 

reduction in emergency admissions, 14% reduction in elective admissions, 14% reduction in bed 

days and an 8% reduction in tariff costs. More strikingly, results demonstrated a 45% reduction in 

mortality rates.” (Department of Health 2011, p. 3) 

 

The WSD project in the UK evidenced significant impact on the use of services in chronic 

disease care using RM systems (Department of Health 2013). In the US, the Veteran’s Health 

Administration (VHA) deployed a range of RM programmes including COPD and estimated that 

50 % of the patient population could be cared for with RM technologies by 2011 (Darkins,  Ryan, 

Kobb, Foster, Wakefield & Lancaster 2008; New England Healthcare Institute 2013).  

However, there remains an issue with the accuracy of the alerts generated by the DSS. It is 

not known how changes to the DSS, biometric measures (classifiers), and thresholds (biometric 

parameters) would impact on the accuracy of the alert and the effect on patient outcomes.  

Improving accuracy would include consideration of how design enhancements might impact on the 

overall performance of the RM system and its effect on the healthcare system.  

2.3 System design 

Developers of RM systems have advocated the use of their respective systems with little 

research on system design and performance, and instead design the programme from the 

perspective of the technology.  

However, the physiology of each disease is consistent and a RM system designed to 

provide identifying data for specific chronic diseases that is based on medical indicators, should 

reflect those clinical indicators shown to be predictive for the disease.  
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It is essential that the technology being used is supported by good clinical care and it is 

only within the context of its application to a physiologic disease process, and capability to support 

treatment guidelines, that the technology can be of assistance. Without a framework for a well-

designed programme, the programme and the technology will both fail to support the self-

management by a patient while providing little value to the end-user or to the healthcare system. 

Although medical research has identified clinical indicators for COPD exacerbation, research to 

identify the predictive capacity of common classifiers and evaluate the design of the measures used 

in DM programmes that use RM has not been done. System design lags secondary to gaps in the 

research that has been conducted to identify the factors that may improve the DM system 

performance for patient outcomes, appropriate classifiers and measures in specific populations and 

acceptability by the health system and end user.  

As an example, this research was unable to evaluate the self-reported respiratory measure 

for shortness of breath (SOB), cough or sputum production using ROC analysis due to the design. 

The design of the respiratory questions did not use a scale that could be translated within the DSS 

to quantify a change in respiratory effort or sputum production that could be issued as an alert for 

the healthcare professional nor be linked to patient outcomes. A scaled measure and routine 

timeframe for questions would be needed and could be included within the DSS as part of an 

algorithm to identify the risk for COPD exacerbation.  

The two classifiers, of cough (Foreman, DeMeo, Hersh, Reilly & Silverman 2007) and 

sputum production, (Burgel, Nesme-Meyer, Chanez, Caillaud, Carré, Perez & Roche 2009) are 

known to be predictive of COPD exacerbation and indicate clinical deterioration. Inclusion of 

these measures into the design of the DSS has the potential to improve prediction of COPD 

exacerbation. Improved prediction would have further impact on patient outcomes and this may 
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decrease the costs associated with false alerts as well as free-up additional time in the Care 

Matron’s schedule to focus on patients with a greater risk of clinical deterioration.   

The health system must consider the cost and predictive capacity in order to allocate 

resources. Clinicians need to know that the system provides reliable information that is designed 

for the targeted population, and that can improve health outcomes through timely alerts. It must be 

easy to use for the patient and acceptable as a tool to improve the patient’s access to healthcare 

services when needed.   

2.4 Healthcare system change   

Professional organizations are seeking change and identifying the need to adopt new 

strategies and methods that use engineering techniques and evaluative processes to become more 

efficient. Abbasi and colleagues note that professional organizations such as the Royal Society of 

Medicine in the UK, and the Institute of Medicine (IOM) in the US are calling for a systems 

approach to healthcare and leadership to manage the change (Abbasi 2010; Reid, Compton, 

Grossman & Fanjiang 2005). 

The National Academy of Engineering in the US and the IOM have also called for the 

integration of engineering applications in healthcare, and to identify areas of research that could 

contribute to rapid improvements in healthcare. Both organizations recommend the use of 

currently available systems engineering tools, as well as the development of new tools through 

research (Reid 2005).  The IOM in the United States noted that,  

 “Healthcare is substantially underperforming on most dimensions: effectiveness, 

appropriateness, safety, cost, efficiency, and value. Increasing complexity in health care is 

likely to accentuate current problems unless reform efforts go far beyond financing, to 

foster significant changes in the culture, practice, and delivery of health care. If the 

effectiveness of health care is to keep pace with the opportunity of diagnostic and treatment 

innovation, system design and information technology must be structured to assure 

application of the best evidence, continuous learning, and research insights as a natural by-

product of the care process. In effect, the nation needs to engineer the development of a 
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learning healthcare system—one structured to keep the patient constantly in focus, while 

continuously improving quality, safety, knowledge, and value in health care. Striking 

transformations have occurred through systems and process engineering in service and 

manufacturing sectors—e.g. banking, airline safety, and automobile manufacturing. 

Despite the obvious differences that exist in the dynamics of mechanical versus biological 

and social systems, the current challenges in health care compel an entirely fresh view of 

the organization, structure, and function of the delivery and monitoring processes in health 

care.” (IOM, Engineering a Learning Healthcare System 2005, p.1).  

 

ROC is one engineering tool that has shown broad application in healthcare measurement 

and its validation as a tool to be used in RM systems, will be useful in developing designs that 

improve clinical decisions, resource allocation and ultimately improve patient outcomes.  

2.4.1 Underlying Issues 

“Why have healthcare systems been slow to change”?  There are several underlying issues. 

These include: (1) a lack of empirical evidence, i.e. measurement of the effectiveness of the RM 

systems’ overall performance in specific chronic diseases; (2) challenges to existing assumptions; 

(3) system design and; (4) cost and value to patients and the healthcare system (Buntin 2006; 

Duncan, Owen & Dove 2006; Mattke, Seid & Ma 2007; Webb & Howson 2006). This research 

addresses several issues in an effort to add some clarity and metrics to the discussion. These are 

effectiveness of the performance of the RM system and of the classifiers in relation to patient 

outcomes, and threshold settings for the classifier.  

The first issue is empirical evidence. Claims by industry vendors and programmatic 

evaluations evidence shortcomings in the methodology. RM programmes are relatively new, and 

often leave gaps in the evaluation process (Buntin 2006; Duncan, Owen & Dove 2006; Mattke, 

Seid & Ma 2007; Webb & Howson 2006). Additionally, programmes are managed in a variety of 

healthcare settings and systems, such as doctor’s offices, larger multi-specialty clinics, hospitals, 

as sub-contracted or commissioned services, in nationalized health services, and private health 
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insurance companies. This variety of settings does not lend itself to applying similar metrics and 

processes to an evaluation, since designs are reflective of the multiple environments.   

Furthermore, the expertise to undertake the necessary evaluation in all settings is markedly 

absent. This lack of standard metrics for quality of service assessment impedes evaluation and 

obscures the progress of technology adoption and utility (Ackerman, Filart, Burgess & Poropatich 

2010). A major difficulty is the inability to predict the potential impact that can be expected as 

well as the limitations of current methodology (Buntin 2006).  

In a 2005 issue brief, the American Academy of Actuarials noted that,  

“Escalating health care costs and an increasing public focus on health care quality are 

causing employers and insurers to reassess the value and effectiveness of their medical 

management procedures. Many are looking at DM programs as a means for improving the 

treatment of major chronic diseases as well as the quality of life, while reducing the need 

for and the costs of medical care. … there is often a gap between the favourable clinical 

results and a clearly identifiable financial impact” (Duncan 2005, p. 1).  

 

The Academy has not assessed or explored the new technology-assisted programmes that 

use RM, nor evaluated ROC analysis in its assessment procedures.  

Another limitation is that not all technology-assisted programmes use the same 

technologies. The outcome however, in terms of the  impact on a patient’s well-being should be 

comparable for all programmes. Any programme that elicits a signal or “alert” should be amenable 

to ROC analysis. Analysis using ROC techniques allows the DSS to be evaluated to identify 

criteria changes such as the classifiers that have predictive capacity for the chronic disease that 

they are used to monitor. This might improve the outcome for a specific population and save health 

resources in terms of the personnel needed. Differences in other parameters such as scalability and 

long-term cost would be more easily identified and enable better decision-making.  

This lack of good evaluation and research methodologies leaves the results of DM 

programmes that utilize RM systems open to question in terms of their efficacy. Healthcare 
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systems are slow to change and require validation in approaches and the use of these programmes 

that are methodologically strong and evidence positive effects on patient outcomes in order to 

change. Research to evaluate these models for DM is lacking both in specific diseases and in the 

methods employed to evaluate results that are based on patient outcomes and between different 

technologies. In addition, specific programme design elements such as, identifying the optimum 

threshold settings for the alerts in specific diseases, as well as the identification of the predictive 

capacity of the classifier has not been done. This decreases the effectiveness as well as the 

predictive capacity of the system.  

There is a need to study the automated DSS in a way that can view several real-time or near 

real-time datasets simultaneously for chronic disease states using RM systems, that can assist 

providers with a timely detection of outliers (Ackerman, Filart, Burgess & Poropatich 2010). An 

outlier in the context of this research refers to a patient at-risk for clinical deterioration. This 

research will use patient outcomes to evaluate the effectiveness of the RM system. Outcomes are 

defined as home health visits (HH), accident & emergency (A&E) visits and in-patient (IP) 

episodes. 

The second issue is that the development of new delivery models that use RM devices 

challenges the existing assumptions in the medical system. These include assumptions about the 

location where care can best be provided, as well as the episodic nature of that care. It will 

necessitate making further changes to the work processes (Speedie, Ferguson, Sanders & Doarn 

2008).  

The third issue is system design. Analysis based on patient outcomes can help to identify 

additional measures for specific diseases which if applied through re-design, would improve the 
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performance of the system, including improved prediction of clinical deterioration. First, we must 

evaluate current design more rigorously to inform future development of RM systems.  

Lastly, health systems are spending billions of dollars implementing DM programmes 

(Alder 2005;  CDC 2009). The UK invested £31 M in the Whole System Demonstrator (WSD) 

project that utilises RM. (Whole System Demonstrator Program, accessed December 1, 2010). The 

US market for remote patient monitoring is forecasted to reach US $296.5 M by 2019 (Monegain 

2013).  As the number of elderly individuals in the world continues to rise, chronic diseases, 

including COPD, are increasingly over-represented in hospital populations. In fact, according to a 

recent study, 63% of the patients with a chronic condition will need some form of home care. 

(Kane, Chen, Finch, Blewett, Burns & Moskowitz 2000).  

However, technology and its evaluation is not the only barrier. The business model in a 

nationalized health system addresses one barrier to adoption which is evident in the US; this is the 

issue of reimbursement (New England Healthcare Institute 2009). National health systems can 

show immediate benefit with fewer IP hospitalisations and A&E visits. The ensuing cost 

reductions accrue directly to the NHS and PCTs. In the US, multiple agencies are involved in 

patient care and the costs and the benefits do not necessarily accrue to the agencies that are the 

most frequent service providers for in-home DM services and RM, with the exception of the VHA. 

Cost is a barrier to RM uptake in healthcare systems. “The VHA estimates the cost per patient to 

be $1,600 USD per year.” (Darkins, Ryan, Kobb, Foster, Wakefield & Lancaster 2008).  

This research uses cost as an optimization criterion in creating the ROC curve.  The return-

on-investment (ROI) analysis is based on the patient outcomes and is expected to provide another 

tool to evaluate the impact of the cost and value of RM systems as well as contribute to DM 
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system design, irrespective of the vendor system or configuration of the healthcare system, 

whether national or commercial.  

2.5 Remote monitoring system and processes 

DM models that utilize RM, most frequently use the telephone in the patient’s home to 

transmit data from the RM devices to a central server. The devices connect to an interface that 

transmits the data via telephone to the DSS. Clinicians access data on an Internet website and 

respond to alerts.  

DM models utilize a DSS consisting of an enterprise application-server framework that is 

combined with a rules engine and statistical analysis tools (Berner 2009). This clinical decision 

system analyses the data base using predetermined parameters for the patient. The DSS identifies 

variance in parametric values. If the data received from the RM devices are outside the set 

parameters or thresholds, the DSS elicits an “alert”. The alert will be evaluated by a healthcare 

professional in the context of the patient’s history and presentation. Based on the level of variance 

the alert is identified as 1 - no risk, 2 - moderate risk, or 3 - high risk. The alert identifies the 

probability of clinical decompensation based on the thresholds that are programmed into the 

system. Communications to the patient are triaged by the alert system with high-risk alerts having 

priority. 

Access to daily information is controlled by user identification and authority to view 

functionality. The DM systems are secure and compliant with privacy standards and have 

redundancy to protect from data loss. The follow-up of alerts and non-responses are completed by 

clinical personnel who contact the patient and evaluate whether a change in treatment or 

management is needed. This entails a second level of decision-making. The information flow is 

illustrated in Figure 2.2. 
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Figure 2.2. Information flow 

The second level of decision-making occurs when the clinician assesses the patient by 

telephone.  This second level of decision-making differs in that it includes judgmental decisions by 

the clinician based on their experience, training and valuation, so an element of uncertainty is 

introduced. It is determined that the patient may be deteriorating based on the classifier and 

clinician’s expertise. This step in decision-making highlights the need for the right information 

based on a patient’s clinical diagnosis and is critical in designing a patient-centred system. A 

decision is arrived at by clinical staff in favour of an HH visit, dispatching the patient to the A&E 

or IP hospitalisation. Performance of best classifiers set at the best threshold, based on the patient’s 

clinical condition, is needed to provide clinical decision support (CDS) that assists clinicians in 

making treatment decisions.  

2.6 Decision process 

The decision begins with the signal of the patient’s biometric data being transmitted to the 

DSS. Based on the value attributed to the signal, and the algorithm applied within the DSS, a risk 

level is established. If the risk level is outside the established parameters or thresholds, the DSS 

issues an alert that represents the probability of a clinical deterioration. This is followed by a 

response from the healthcare professional. This research evaluates the accuracy of the signal based 

on the patient outcome.  
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There are several decision points to consider. The first occurs through an algorithm or 

machine logic system within the DSS or “black box”. The performance of the accuracy of this 

process will be visualized and evaluated but it is outside the scope of this research to evaluate the 

parameters or the architecture of the DSS. The next decision occurs when the patient’s risk level is 

reviewed and a decision as to its accuracy is made. The Care Matron is alerted to the need for a 

clinical decision to either change treatment or management, or that no change is necessary. If the 

decision is that the patient is at risk for clinical deterioration, the Care Matron will schedule a 

home visit or refer the patient to A&E or IP services.  

The next decision is a human decision process, which is influenced by the structure and site 

of the programme and the personnel administering the programme. For example, if operating under 

pre-determined protocols that use evidence-based practice guidelines with specialty nurses and 

prior knowledge of the patient’s clinical history, the decision -- to treat or not to treat -- may differ 

from that taken in a call centre where the personnel managing the alerts may be non-licensed 

healthcare practitioners. In a call centre setting, non-professional personnel pass on information to 

another level of decision-makers (nurse or physician).   

In the example of a call centre, there may be uncertainties in the human decision process 

that are introduced by a lack of prior knowledge of the patient’s response to treatment or their level 

of knowledge and skills specific to the chronic disease or even interviewing skills. This is the 

situation for this research. The NHSD Telehealth Agent was the first line of decision-making that 

occurred in relation to the patient alarm. The final decision to visit or refer the patient was made by 

the clinical staff. All of these factors exert an influence on the decision to make an HH visit or 

referral to A&E or hospital.  Evaluation and research for the secondary decision processes and 

influences are outside the parameters of this research but would be an area for further study.   
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2.7 Why ROC analysis? 

The quote from Arthur Schopenhauer (1788-1860) that precedes this chapter is especially 

appropriate because ROC analysis is a well-known engineering application and a widely used 

method to evaluate the performance of binary classification models in engineering that has been 

applied extensively in clinical areas to visualize and analyse the behaviour of diagnostic systems, 

laboratory testing, and in the area of psychology (Swets 1988; Zou, O’Malley & Mauri 2007).  

There are various methods to evaluate the performance of a system. Many are based on a 

2x2 classification table known as a confusion matrix or decision matrix (the term confusion matrix 

will be used throughout this research). ROC analysis is one such method in this class and one that 

is widely used in healthcare. The use of ROC analysis in RM systems represents a maturity of 

thought in applying this method to a newly emerging area of healthcare. A detailed description of 

the confusion matrix and classification framework is given in Chapter 4, section 4.6. ROC analysis 

is described in detail in Chapter 3, section 3.4. 

The attribute that makes ROC analysis especially appealing is that it is a method that is 

independent of the distribution of the data and therefore skew-agnostic. Skewing in the data for 

chronic disease is to be expected. There will be more true negative (TN) readings - this is due to 

the fact that people at home are chronically ill but stable, so more frequently will be within the 

biometric parameters programmed into the system. This skew in the data will increase the 

sensitivity and decreases the specificity, leading to results using a 2 X 2 classification table, that do 

not clearly demonstrate the performance of the classifiers (Krzanowski & Hand 2009).    

ROC is ideally suited as a classification model for the types of data being assessed as 

COPD exacerbation presents as a binary classification problem. The goal is to identify the patient 

who will have a clinical exacerbation or not, and evaluation is seeking an unbiased estimate of how 



 

24 

 

well the RM model performs using a rigorous methodology. The aim of ROC analysis is to detect 

the presence of a particular signal, missing as few positive occurrences as possible while also 

identifying as few false alarms as possible (Krzanowski & Hand 2009). “Characteristic” refers to 

the characteristics of behaviour over the potential range of its operation (Krzanowski & Hand 

2009, p.2). ROC analysis will graphically illustrate the performance of the classifiers at all 

thresholds allowing evaluation of how well the classifier predicts clinical deterioration.  
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CHAPTER 3 

 

                    LITERATURE REVIEW 

 

“If you would not be forgotten as soon as you are dead and rotten, either write 

something worth reading or do things worth the writing.” 

Benjamin Franklin, 1706-1790 

 

 

 

  

http://www.quotationspage.com/quote/40109.html
http://www.quotationspage.com/quote/40109.html
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3.0 LITERATURE REVIEW 

This chapter reviews relevant studies and papers on ROC analysis in DM programmes that 

utilize RM. The topical areas include: ROC analysis applied to the assessment of RM programmes; 

ROC analysis processes; current evaluation methods for DM programmes; and clinical factors for 

COPD that need to be considered in the use of technology-assisted programmes in order to identify 

the potential areas for improvement in design.  

3.1 Literature review process 

A comprehensive search was conducted through electronic search facilitated by the Brunel 

University Library.  The literature review included books and studies that appeared in peer-

reviewed journals in the English language together with relevant reports and policy papers from 

the government, universities, and private organizations, Cochrane reviews in technology and 

healthcare, abstracts and meta-analysis. Additional searches included Google, Google Scholar and 

the Internet using keywords. The search covered the past ten years as the technology-enabled DM 

model has only emerged during that time frame. The background research on ROC applications 

and analysis was not time limited.        

Identification of articles in the literature was approached in three stages: Stage one included 

a broad search of the Brunel library databases for journals and books on DM systems, ROC 

analysis, ROC analysis and medical programmes, DM evaluation and engineering applications in 

healthcare.  In stage two, the search criteria were limited to MeSH terms, sub-headings or 

descriptors. Titles and abstracts were scanned for applicability to the research topic. Stage three 

included a review of full articles, reports and books. References in articles were used to generate 

additional sources of information.  



 

27 

 

The spelling of keywords was modified to include both American and British spelling, (e.g. 

program and programme). Keywords used included: RM, RM and DM programme, COPD RM 

programme, chronic disease and RM, receiver operating characteristic (ROC), ROC analysis and 

DM, evaluation and ROC, ROC analysis in healthcare,  ROC and diagnostic performance, 

accuracy, sensitivity, specificity, predictive accuracy, ROC analysis and healthcare programme 

evaluation, ROC and model validation,  ROC analysis and DM, DM evaluation, DM programme 

evaluation, DM and technology programme, healthcare technology programme, information 

communication technology (ICT) and healthcare programme, chronic disease programme 

evaluation, DM models, sensitivity and specificity, predictive modelling, DM outcomes and 

return-on-investment (ROI).  

3.2  ROC analysis in disease management and remote monitoring 

Despite the wide application of ROC analysis in other areas of healthcare, only one article 

was identified that used ROC analysis techniques in a RM system. Jensen and colleagues used 

ROC to analyse the predictive capacity of RM classifiers (SpO2, BP, weight, and PR), to predict 

what the authors call, moving prediction of COPD exacerbation during a rehabilitation programme 

(Jensen, Cichosz, Dinesen & Hejlesen 2012). Moving prediction was defined as, “…prediction on 

a day-to-day basis.” (Jensen, Cichosz, Dinesen & Hejlesen 2012, p.99). A major limitation of the 

study was that data were used from a study with another purpose and there was no consistent 

sampling protocol. Performance of the individual classifiers was not compared and the data 

provided in the article require further definition and information regarding methods for better 

evaluation. However, the conclusion was that the overall system had the capacity to discriminate. 

“The 70% sensitivity (SpO2) is assessed as acceptable, since the alternative is no prediction at all.” 

(Jensen, Cichosz, Dinesen & Hejlesen 2012, p.101). This statement highlights the need to further 
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refine RM systems to increase the predictive capacity. A sensitivity of 70% is a low level of 

performance and would be unacceptable in other areas of medical testing.   

Research into the use of ROC did not identify any studies regarding the performance of the 

classifiers, overall assessment of RM systems using ROC to improve the predictive capacity or 

enhance design. This, despite the fact that there is a call in the literature to do so (Linden 2006). As 

Linden notes,  

“Receiver operator characteristic (ROC) analysis is a more appropriate and useful 

technique for assessing diagnostic and predictive accuracy in DM. Its advantages include; 

testing accuracy across the entire range of scores and thereby not requiring a predetermined 

cut-off point, easily examined visual and statistical comparisons across tests or scores, and 

independence from outcome prevalence. Therefore the implementation of ROC as an 

evaluation tool should be strongly considered in the various phases of a DM program.” 

(Linden 2006, p. 132). 

 

References and citations from the Linden and Jensen articles did not uncover any further 

studies that have applied ROC analysis to DM or RM programmes. Although Linden calls for 

ROC analysis for the programme elements, he does not address the use of ROC in DM 

programmes that use RM, nor does he identify the foundational research necessary to answer the 

question of whether ROC offers any advantage in predictive capacity for patient deterioration. 

The article does not address the question of identification of an optimum threshold nor 

identification of classifiers for any specific chronic disease.   

One other pertinent article addressed the design of decision support architecture for patient 

management using RM and although there is discussion of signal quality, ROC analysis was not 

applied to evaluating the performance of the model. The article focused on development of the 

DSS with respect to patient outcomes (Basilakis, Lovell, Redmond & Celler 2010).  

Basilakis et al. (2010) used a single case study extracted from an initial pilot trial of a DSS, 

in patients with COPD and CHF, to illustrate the potential benefit of integrating telehealth and 
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decision-support within a chronic DM technology-assisted programme. A description of the DSS, 

application server framework combined with a rules engine and statistical analysis tools, illustrates 

the value provided by this type of system in identifying the trends and shifts in parametric values 

for patients. The DSS provides a means to stratify health risk and target patients at risk for clinical 

deterioration and it is noted that this process influences changes in workflow by targeting scarce 

clinical resources (Basilakis, Lovell, Redmond & Celler 2010).  

The article does not link the DSS performance to the outcomes for patients in the systems 

reviewed. This creates a gap in analysis since the end-point for all of these DM models needs to be 

based on the value provided to the patient. The accurate performance of the machine logic system 

within the DSS or “black box,” is an important element to be visualized and evaluated, just as the 

article notes, but it is outside the scope of this research to evaluate the parameters and elements of 

the DSS. This would compromise the intellectual property rights of DM providers and the 

information is not freely available. However, DM providers would be able to follow-up with 

internal evaluations of their respective DSS based on patient outcomes following the methods 

employed in this research. Basilakis does identify the salient areas where additional research 

would be beneficial and notes,  

 “Future DSS research work will focus on applying additional domain knowledge and 

improving the capability of the input and output modules, as well as improving and 

evaluating the robustness of the DSS analysis and risk stratification strategy. Research in 

this area is critical as telehealth systems become more widely adopted, and there is a need 

to screen large volumes of electronically monitored patient data effectively and efficiently. 

’ 

 

‘At the signal level, refinement of the analysis techniques will identify specific pathological 

markers that would give further warning of a patient’s health deterioration, such as a 

transition from a regular to an irregular heart-beat. Ongoing analysis of signal quality will 

further improve the robustness of the final DSS analysis. The use of machine-learning 

techniques will be investigated as an additional method for capturing domain knowledge, 

for instance, training sets of monitoring results against recorded clinical outcomes for a 

specific patient or clinical domain.’ 
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‘Developmental work is currently aimed at expanding and refining the process flows for 

the workflow management system. As described earlier, the electronic clinical guideline or 

care pathway, will be critical in coordinating evidence based best practice telehealth 

management, in a way that can manage the resource needs of the health carers while at the 

same time being sensitive to the health requirements of the patient.’” (Basilakis, Lovell, 

Redmond & Celler 2010, p. 1224-1225). 

 

There were no methods addressed that applied ROC analysis to evaluate the system 

performance nor was there mention of a process to apply ROC analysis to identify the optimum 

threshold values for a specific population.  

3.3 Current evaluation methods in disease management programmes 

Mattke et al. (2007) and colleagues at RAND in the US completed a meta-analysis of 

existing disease management programmes (Mattke, Seid & Ma 2007). They noted that the 

literature contained very little information about large, population-based disease management 

programmes that target the entire diseased populations and that use mass communication and 

information technology. There was no note of RM monitoring specifically or of ROC analysis in 

the evaluation. They were able to identify two meta-analyses and three reviews of 25 studies in 

COPD and noted that none of the five analyses addressed the effects on cost. There was also 

insufficient evidence to draw conclusions about the impact of DM programmes for COPD patients.  

De San Miguel et al. (2010) completed a study in Australia to evaluate the impact and 

value of a COPD RM programme. The goal was to better evaluate cost and benefit. Results did not 

include an evaluation of the classifiers but did include the cost of the various monitoring devices 

(De San Miguel, Smith & Lewin 2010). This leaves a gap in the research. It is unclear if the right 

indicators for the disease are being measured. Cost analysis included potentially unnecessary 

devices that will have no contributory effect on the patient’s outcome.  

A systemic analysis of respiratory conditions concluded that “evidence on the magnitude of 

clinical and structural effects remains preliminary, with variations in study approaches and an 
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absence of robust study designs and formal evaluations.” (Jaana, Pare & Sicotte 2009). A 

subsequent article concluded that the knowledge of how to conduct a systematic review and meta-

analyses in the area of home telemonitoring is not apparent (Spyros, Pare & Jaana 2013). 

The National Institutes of Health (NIH) in the US funded a randomized control trial for a 

population-based technology-assisted disease management model that uses a DSS and a low-cost 

telephone voice over technology system (iVo). The system queries patients, using disease specific 

questions and patient specific parameters. The results indicated no significant difference in 

hospitalisation for CHF between the groups with and without telemonitoring. The study concluded 

that telemonitoring did not improve outcomes for heart failure patients (Chaudhry, Mattera, Curtis, 

Spertus, Herrin, Lin, Phillips, Hodshon, Cooper & Krumholz 2010). However, the study did not 

apply a consistent protocol for patient management and had a short six-month time frame for the 

data collection period.  

The same iVo technology was used in a DM programme in Iowa, US (Hickman, Brown-

Connolly, Garloff, Kunath & Appelgate 2004) and had consistent decreases in CHF specific IP 

hospitalisations of 86% over a three-year period, with significant decreases in all-cause 

hospitalisation as well. The difference in outcomes in the Iowa study may be explained by the 

inclusion of care management by nursing as a critical component of the system. This approach 

integrates the clinical decision process into the workflow using technology as clinical decision 

support, rather than the sole mechanism in identifying clinical deterioration. The logic systems in 

the DSS are not yet mature enough to perform as well as or better than experienced clinicians.  

The difference in outcome from these studies identifies issues that cannot be answered by 

considering only the technology aspect, rather all factors need to be identified and considered. 
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However, systemic analysis, such as ROC, was not applied to evaluate the performance of the RM 

system nor was ROC utilized to evaluate the predictive capacity for clinical deterioration.  

Current methods to determine the predictive value of DM programmes have clear 

limitations in the factors considered. The National Public Health Service for Wales in an 

international overview of effective service models in DM noted that although decision support and 

clinical information systems are an essential component in DM programmes, their efficacy as part 

of DM is not considered in peer reviewed journals (Webb & Howson 2006). Overall there is a lack 

of strong systematic evaluations for population-based chronic DM programmes (Buntin 2006; 

Busse, Blümel, Scheller-Kreinsen & Zentner 2010; Duncan 2005). As noted by Buntin, “Since the 

early 1990s, disease management has been one of the most heralded – and least rigorously 

evaluated developments in health service delivery.” (Buntin 2006, p. 121) 

Mattke et al. (2007) draw similar conclusions. Their comprehensive review found that 

many studies had methodological flaws, such as incomplete accounting for costs or a lack of a 

suitable control group. Even looking at the reported costs and the savings generated rarely 

identified any conclusive evidence that DM brought about net savings on direct medical costs 

(Busse, Blümel, Scheller-Kreinsen & Zentner 2010). 

In review of the literature, it has been cited by multiple organizations and government level 

reviews that the ROI and efficacy of DM programme and ICT is unproven (Congressional Budget 

Office (CBO) 2004; Dove & Duncan 2005; OECD Health Policy Studies 2010).  

This research considered the well-documented gaps in evaluation of DM models that use 

RM, and applied rigorous engineering evaluation method to technology-assisted DM model that 

use a DSS. This is highlighted by there being no further articles, papers or presentations that apply 
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the rigorous technique of ROC analysis to evaluate a RM programme linking results to the patient 

outcomes.  

The gap in knowledge of programmes that utilize both RM technology and a DSS, and the 

lack of the use of engineering assessment methods, such as ROC analysis, is not surprising. DM 

models that use RM devices have been deployed over the past 12 years and indeed are still 

evolving. These technologies and new approaches require scrutiny and evaluation, like many 

technology applications that apply new paradigms to patient care; it will take time to fully realize 

their strengths and limitations.  

3.4 Review of the receiver operating characteristic  

ROC analysis is an engineering application and is a well-known method widely used to 

evaluate the performance of binary classification models. It has found wide use in healthcare areas 

with extensive use in psychology and in evaluation of diagnostic systems and laboratory tests 

(Lasko, Baghwat, Zou & Ohno-Machado 2005; Obuchowski 2003; Swets 1988).  ROC analysis 

has also been applied to radiology, epidemiology and bioinformatics (Lasko, Baghwat, Zou & 

Ohno-Machado 2005; Lusted 1978; Obuchowski 2003).  

ROC analysis is based on statistical decision theory and signal detection theory (Green & 

Swets 1966; Swets 1964; Wald 1950). Signal detection theory arose from the application of 

statistical decision theory to engineering problems, in particular, detecting a signal embedded in 

noise. (De Carlo 1998). Although initially developed in the field of statistical decision theory, 

ROC became well known for its use in signal detection theory during WWII where it was applied 

to distinguish radar signals from noise to identify enemy targets (Egan 1975; Peterson, Birdsall & 

Fox 1954; Swets 1973). There was a very real need to determine the probability that the signal was 

an airplane approaching London (a true positive), versus radar noise (a false positive) and the 
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ability to adjust settings to optimize performance toward desired outcomes.  The number of correct 

and incorrect determinations is calculated as the true positive rate (TPR) versus the false positive 

rate (FPR). 

Signal detectability specifies a mathematical ideal or optimal detection process, and 

provides a means of analysing the structure of the decision process while applying a quantitative 

method for the study of performance (Swets 1964). The assumption for signal detection is that all 

reasoning and decisions take place in the face of some uncertainty. The ROC curve is the graphic 

representation that provides a way of analysing the decision process (Heeger 2003).  The 

mathematical calculations and theory behind ROC analysis are well documented and have been 

used since the 1950s. (Lasko, Bhagwat, Zou & Ohno-Marcado 2005; Swets 1986; Swets 1992; 

Zou, O’Malley & Mauri 2007). The calculations will be presented in Chapter 4.  

An historical overview of the receiver operating characteristic, its refinement in signal 

detection and its acceptance in quantitative psychology is presented by Swets (1973).  Green and 

Swets (1966), present an in-depth summary of the concepts and processes involved in signal 

detection theory. 

 “The ROC graph was designed in the context of the theory of signal detectability by 

Peterson, Birdsall, and Fox (1954) to provide an index of accuracy consistent with their 

basic model of the detection process. They saw the detection task as one of discriminating 

occurrences of "signal plus noise" (sn) from occurrences of "noise alone" (ri). Given that 

noise is a random variable, the two alternatives can be considered as statistical hypotheses. 

The theory of statistical decision, or of testing statistical hypotheses (e.g., Wald, 1950), is 

the basis for a model that provides an accuracy index that is independent both of the 

probability of occurrence of the two alternatives (s and 1 — s) and of the discriminator's 

tendency to favor the choice of one or the other alternative. Neither variable, the detection 

theorists suggested, is usefully or properly regarded as part of the process of discrimination 

per se and neither should therefore influence an index of discrimination capacity or 

accuracy” (Swets 1986, p.104). 
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The overriding concept in applying ROC analysis to a RM system is that the RM elicits a 

signal and presents a binary decision problem. Elements of the decision problem in DM systems 

that use RM include: (1) identification of two possible states for the patient, i.e. stable or at-risk for 

decompensation; (2) information with which to make a decision (reading value and risk level 

based on a set threshold) and; (3) a decision.     

Identification of the two states begins with an instance (I). The ‘I’ is the patient input to the 

decision support system i.e. BP, SpO2, P.  An -- alert or no-alert-- is generated within the DSS 

based on the ‘I’, the clinical parameters and the thresholds, as set by the patient’s physician or 

nurse. A classification model maps an ‘I’ to a predicted class (Fawcett 2004, p.2). This has four 

possible outcomes (TP, TN, FP, FN) and Fawcett notes that, “Given a classifier and a set of 

instances a 2x2 confusion matrix can be constructed...” (Fawcett 2003, p.3). As noted in Chapter 1, 

ROC graphs visually represent a 2 X 2 classification model i.e. a confusion matrix to examine the 

performance of classifiers (Swets 1988).   

ROC is a technique to visually represent, organize and select classifiers based on their 

performance (Fawcett 2004; Swets 1973; Swets 1986). ROC graphs provide another method in 

addition to confusion matrices to examine the performance of classifiers (Swets 1988).  

Swets presents a clear, easily understood description of ROC,  

“’In signal detection theory, a receiver operating characteristic (ROC), or simply ROC 

curve, is a graphical plot which illustrates the performance of a binary classifier system as 

its discrimination threshold is varied. It is created by plotting the fraction of true positives 

out of the positives (TPR = true positive rate) vs. the fraction of false positives out of the 

negatives (FPR = false positive rate), at various threshold settings. TPR is also known as 

sensitivity ..., and FPR is one minus the specificity or true negative rate. In general, if both 

of the probability distributions for detection and false alarm are known, the ROC curve can 

be generated by plotting the cumulative distribution function (area under the probability 

distribution... AUC) of the detection probability in the y-axis versus the cumulative 

distribution function of the false alarm probability in x-axis.’  

 

http://www2.cs.uregina.ca/~hamilton/courses/831/notes/confusion_matrix/confusion_matrix.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
http://en.wikipedia.org/wiki/Signal_detection_theory
http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/True_positive
http://en.wikipedia.org/wiki/False_positive
http://en.wikipedia.org/wiki/Sensitivity_(tests)
http://en.wikipedia.org/wiki/Specificity_(tests)
http://en.wikipedia.org/wiki/Cumulative_Distribution_Function
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‘ROC analysis provides tools to select possibly optimal models and to discard suboptimal 

ones independently from (and prior to specifying) the cost context or the class distribution. 

ROC analysis is related in a direct and natural way to cost/benefit analysis of diagnostic 

decision making. ROC is also known as a relative operating characteristic curve, because it 

is a comparison of two operating characteristics (TPR and FPR) as the criterion changes.’” 

(Swets cited in Wikipedia 2013).  

 

As noted by Fawcett, 

 “The ROC graphs are two-dimensional graphs in which the TP ratio is plotted on the Y-

axis and the FP ratio is plotted on the x-axis. The ROC graph depicts relative trade-offs 

between the benefits (TPs) and costs (FPs).” (Fawcett 2003, p.4)   

 

The rules that determine the decision are systematic in the DM model and the relative merit 

of the decision procedure is evaluated based on the patient outcomes in this research (HH, A&E, 

IP). The objective is to make as many correct decisions as possible, alerting the clinician to the 

need to intervene. So the probability of the decision needs be determined.  

“In signal detection theory, the first quantity is termed the hit rate and the second, the false-

alarm rate. (also indicating the frequent asymmetry between alternatives A and B are the 

corresponding terms "true-positive ratio" and "false-positive ratio". The two quantities in 

question vary together from low to high as the criterion for choosing alternative A is made 

more lenient (or the bias toward the choice of A becomes stronger) and, thus, for any 

particular degree of accuracy, an ROC curve is traced from left to right and low to 

high...and reflects all possible decision criteria or response biases, and hence is independent 

of any one.” (Swets 1973, p.100-101).  

 

What is important is that there exist probability densities for each possible ‘I’ given an 

alert, or a no alert. Therefore ‘I’ is an element in a set, and a probability can be defined for each 

event. The number of correct and incorrect alerts is the dependent variable in the analysis of the 

model. 

ROC curves are frequently used in clinical informatics to evaluate classification and 

predictive models that use a DSS and elicit a signal (Lasko 2005).  Positive cases are identified as 

true positive (TP), and false negative (FN). Negative cases are identified as true negative (TN) and 

false positive (FP).  

http://en.wikipedia.org/wiki/Decision_making
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Lasko et al. (2005) notes, 

“ROC analysis investigates the accuracy of a model’s ability to separate positive from 

negative cases (such as predicting the presence or absence of disease), the results are 

independent of the prevalence of positive cases in the study population. It is especially 

useful in evaluating predictive models or other tests that produce output values over a 

continuing range, since it captures the trade-off between sensitivity and specificity over the 

range.” (Lakso, Bhagwat, Zou & Ohno-Machado 2005, p. 2).  

 

In predicting the clinical decompensation leading to COPD exacerbation, the RM system 

documents a biometric measure that classifies the biometric parameters as falling above or below a 

certain threshold. This is interpreted as a probability of a patient having an exacerbation of their 

COPD. The clinician can adjust the threshold, which will in turn change the FP rate. Increasing the 

threshold would result in fewer FPs and more FNs. The actual shape of the curve is determined by 

the overlap of the two distributions. The relationship of the confusion matrix (TP, FN, FP, TN) 

with the bimodal curve and ROC curve is illustrated in Figure 3, p.40.  

In order to describe how ROC analysis may be used to evaluate a RM system, it is first 

necessary to define the terms, structure and processes used in ROC analysis.  

3.4.1 ROC space 

 

Hamilton (2012) explains the ROC space in his course notes and provides a clear 

explanation of the graphic representation of the classifiers in ROC space,  

“The point (0, 1) is the perfect classifier: it classifies all positive cases and negative cases 

correctly. It is (0, 1) because the false positive rate is 0 (none), and the true positive rate is 

1 (all). Point (1, 0) is the classifier that is incorrect for all classifications. In many cases, a 

classifier has a parameter that can be adjusted to increase TP at the cost of an increased FP 

or decrease FP at the cost of a decrease in TP. Each parameter setting provides a (FP, TP) 

pair and a series of such pairs can be used to plot an ROC curve. A non-parametric 

classifier is represented by a single ROC point, corresponding to its (FP, TP) pair.” (Swets 

cited in Hamilton course notes 2012, np). 

 

The classifier is the measurement parameter that when outside a set threshold generates the 

alert identifying the probability of a COPD exacerbation.  However, in order to accomplish this 
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task, the appropriate classifier at an optimum threshold needs to be identified for the target 

population, which in this research, consists of persons afflicted with COPD. Research to identify 

the optimum threshold for RM systems has not been undertaken. This is important, as accuracy in 

identifying the probability of clinical deterioration is a matter of degree and lies along a 

continuum. Swets notes,  

“Diagnosis is probabilistic and diagnostic decisions are made with more or less confidence. 

Hence, making a positive or negative decision in a systematic way requires selecting a 

threshold along the scale of evidence, such that values above the threshold uniformly lead 

to a positive decision and values below it lead to a negative decision. In principle, one can 

set such a positivity criterion anywhere along the scale and so can  aspire to choose the 

particular criterion that is best for a given purpose and best for the specific situation at 

hand.” (Swets 1992, p.522).  

 

ROC graphs are another way besides a 2x2 classification table or confusion matrix to 

examine the performance of classifiers (Swets 1988).  

 “ROC graphs are bi-dimensional representations of the sensitivity [called the true positive 

rate (TPR) on the Y axis] and 1-specificity [called the false positive rate (FPR) on the X 

axis], corresponding to each possible cut-off point (classifying value). In other words, they 

represent the tradeoffs between benefits (TPs) and costs (FPs)” (Pintea & Moldovan 2009, 

p.53).  

 

ROC analysis involves first determining the sensitivity and specificity of every individual 

in the sample group (i.e. both subjects with and without alerts), and then plotting sensitivity vs. 1-

specificity across the full range of threshold values. The ROC curve or point is independent of 

class distribution or error costs (Kohavi & Provost 1998).  A unique feature of ROC curves is that 

the results are independent of assumptions regarding distribution, so are “distribution-free. The 

ROC curve includes all information contained in the confusion matrix, since a false negative (FN) 

is the complement of a true positive (TP) and true negative (TN) is the complement of the false 

positive (FP) (Swets 1988).  

http://www2.cs.uregina.ca/~hamilton/courses/831/notes/confusion_matrix/confusion_matrix.html
http://www2.cs.uregina.ca/~hamilton/courses/831/notes/confusion_matrix/confusion_matrix.html


 

39 

 

Green and Swets (1966) note that an important aspect of the application of decision theory 

experiments and relationships with properties of the ROC curve and structure is that it represents 

the underlying decision process.  “The slope of the ROC curve at any point is equal to the 

likelihood ratio criterion that generates the point.” (Green & Swets 1966, p.36).  

It is further noted that,  “A ROC curve based on likelihood ratio criteria must have a hit 

probability (TP) that is a monotonically increasing function of the false alarm probability and a 

slope that is monotonically decreasing” (Green & Swets 1966, p.38).  

Evaluation includes determining an alert level at which the DM model will best detect the 

potential for COPD exacerbation, and the corresponding threshold setting  from the ROC curve 

that will provide a suitable number for detecting the ‘I’ correctly. The area under the curve (AUC) 

provides the actual measure of performance. The AUC varies from .50, representing a range where 

the hit probability equals the false alarm probability, to 1.0 where no errors occur.   

Figure 3.1 visually represents the relationship between the bimodal curve (3.1a), the 2 X 2 

classification model (3.1b), and the ROC curve (3.1c). Figure 3.1a depicts the classification of a 

two-valued variable having a normal distribution about each value with the shaded areas 

identifying the classification categories (TP, TN, FP, FN). Overlap of the curves results in FP and 

FN results.  Figure 3.1b presents the areas of the bi-modal curve as a 2 X 2 confusion matrix. 

Note that the sum of the TP and FN, and of the FP and TN will equal 1 in each case representing 

the areas under their respective curves. The ROC curve in Figure 3.1c, represents the performance 

of the threshold as it is varied over the range of thresholds. The ROC is derived by calculating the 

confusion matrix at a succession of threshold values and plotting the outcomes with respect to FP 

against TP. The dot on the curve represents the optimum threshold value.  
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Call to mind that the aim of ROC analysis is to detect the presence of a particular signal, 

missing as few positive occurrences as possible while also raising as few false alarms as possible 

(Krzanowski & Hand 2009). 

 
Figure 3.  Bimodal curve (3.1a), confusion matrix (3.1b), ROC space (3.1c) 

(Wikipedia, Receiver Operating Characteristic, accessed June 7, 2013) 

 

Figure 3.2 illustrates ROC space and depicts three curves with varying predictive capacity; 

the higher the curve the better the classifier performance in predicting whether a patient has a 

disease or not. In the case of this research, it would identify the potential for COPD exacerbation. 

3.1a 3.1b 

3.1c 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure3.2. Hypothetical ROC curves  

 

The three hypothetical ROC curves represent the diagnostic accuracy of the gold standard 

(lines A; AUC = 1) on the upper and left axes in the unit square, a typical ROC curve (curve B; 

AUC = 0.85), and a diagonal line corresponding to random chance (line C; AUC = 0.5). As 

diagnostic test accuracy improves, the ROC curve moves toward A, and the AUC approaches 1 

(Zou 2009, p. 656). 

 “The ROC analysis can be used in determining the optimal cut-off point of a test. As 

mentioned above, the optimal cut-off point is the most north-western point in the ROC 

space. It is the cut-off point where the proportion of subjects that were accurately classified 

is maximal (cut-off point which has a high sensitivity and also a high specificity). In other 

words, as a rule, the optimal cut-off point is the one which maximizes TP+TN (or 

minimizes the FP+FN). However, this principle is based on the assumption that the cost of 

making a false positive mistake is equal to the cost of making a false negative mistake. In 

real life, these costs are rarely equivalent.” (Pintea & Moldovan 2009, p. 54). 

 

This research evaluates the performance of the classifiers commonly utilized in RM 

systems for a COPD population by using patient outcomes to determine performance. Patient 

outcomes are defined as HH, A&E or IP hospitalisation. The classifiers for this research are the 

biometric readings for BP, SpO2 and P.  As noted above, the ROC curve provides a graphic 
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illustration in which to examine the trade-off between the ability of a classifier to correctly identify 

positive cases and the number of negative cases incorrectly classified (Lakso, Bhagwat, Zou & 

Ohno-Machado 2005). Current thresholds for classifiers in RM systems are set at varying 

thresholds without an evaluation of the optimum setting.   

As Basilakis et al. (2010) note, this type of analysis will enable an informed development 

of the DM system and research is critical as telehealth systems become more widely adopted  and 

have a need to screen large volumes of electronically monitored patient data effectively and 

efficiently (Basilakis, Lovell, Redmond & Celler 2010).  

3.4.2  ROC attributes 

ROC analysis is a statistical technique that as noted, is widespread in medical testing and 

many areas of science. ROC analysis continues to evolve and be applied in new and different 

areas. Applying ROC to analyse DM models that use RM devices is such an extension. It is 

particularly helpful when evaluating a binary decision problem in a probability model. This 

research seeks to determine if the patient will have a COPD exacerbation and its probability.  

The RM device elicits a signal and a threshold is applied within the DSS and a risk level 

for the classifier is determined. The clinician will make a secondary decision based on their 

experience and knowledge. The question is whether the signal is predictive for COPD exacerbation 

and to what degree. The predictive value of the classifier, signal and threshold is needed. ROC 

analysis is being investigated as a method to evaluate the performance of the model.  

Basing the performance on patient outcomes specific to the disease is viewed as a 

necessary next step widespread use of these systems is to be encouraged. (Ackerman, Filart, 

Burgess, Lee & Poropatich 2010) 
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However, it must be determined if the right classifiers are being monitored in the system. 

ROC is especially useful in this context as it is distribution-free and skew-agnostic, and bearing in 

mind, that RM is evaluating populations where skew in the data does exist.  It is inevitable that 

there will be more TNs in a stable but chronically ill population. This is the case for all chronic 

illnesses and makes ROC a valuable tool to use to evaluate the in-home RM system. 

In summary, the following characteristics of ROC curves provide capability to assess RM 

systems. 

 The ROC curve graphically captures the performance for the full range of threshold 

values in an easily viewed format  

 The ROC graph visually represents the performance of classifiers 

 The ROC graph includes and graphically represents all information contained in the 

confusion matrix  

 Classifiers can be linked to the patient outcome to identify the TPR and FPR 

 ROC provides a method that can be used to compare performance between classifiers 

 The ROC curve or point is independent of class distribution or error costs (Provost et 

al., 1998). This is important since the distribution of outcomes for the COPD RM 

programme evidences “skew” with greater numbers of TNs  

 Prevalence of the outcome is not a limiting factor 

Chapter 4 will describe the methods used in this research that include the population 

criteria, data sources, processes and logic used to create the classification categories and the ROC 

curves. 

 

  

http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
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CHAPTER 4 

 

 

METHODS 

 

“Concern for man and his fate  

must always form the chief interest of all technical endeavours.  

Never forget this in the midst of your diagrams and equations.”  

Albert Einstein, 1879-1955 
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4.0 METHODS  

This research utilizes both parametric and non-parametric methods. All measures are 

identified and formulae provided in relevant sections.  ROC analysis is applied to the performance 

of the DM model. Performance is measured for accuracy, sensitivity, specificity and probability of 

predicting clinical deterioration in a COPD population based on patient outcomes.  

4.1 Research process 

The framework for the application of ROC analysis follows the methods described in 

“Signal Detection Theory” (Green & Swets 1966),  as noted in Chapter 3, and the model 

evaluation processes outlined by Zou and colleagues (Zou, O’Malley, & Mauri 2007). The 

approach and assumptions applied in this research were developed by the researcher. Databases 

were created in Microsoft Excel® in order to analyse the results of the signals elicited by the 

biometric data for the classifiers (SpO2, BP, PR) and to link these to the resultant patient outcomes. 

Outcomes are identified as HH, A&E visits and IP hospitalisations. 

4.1.1 Steps in the research process 

The research process included:  

1. Identification of a cohort of interest. 

a. Development of population inclusion criteria 

b. Development of population exclusion criteria 

2. Development of a stratification process based on the documented resource usage.  

3. Creation of a confusion matrix and measurement process based on patient outcome events.  

4. Creation of ROC curves for each classifier.  

5. Identification of the most effective classifier(s).  

6. Defining the assumptions for cost/valuation based on the resource usage.  
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7. Developing a cost avoidance credit to be applied in the cost/valuation for the RM system.  

8. Application of optimization criteria to the final ROC curve for the classifier(s) of interest.  

9. Establishing an optimum threshold for each classifier shown to have predictive value.  

10. Calculating the predictive capacity of the classifiers using ROC analysis. 

4.1.2 Challenges  

Evaluation was based on available data from the RM system. In order to minimize the 

intrusion in work flow for the PCT staff and to maintain the confidentiality of the patient’s 

information, access to the patient specific data was unavailable. Due to this data limitation, the 

patient event-based outcomes of HH, A&E and IP have been used to evaluate the predictive 

capacity of the classifier. HH visits are documented in the biometric file, and the A&E and the IP 

data were provided by the PCT.   

The limited access to patient data also impacted upon the stratification of the population. 

Without access to the medical records and pulmonary function information, it became necessary to 

seek an alternative method to stratify the population.  Hospitalisation was used as a metric and the 

cohort included patients with at least one IP hospitalisation for COPD within a one year timeframe 

prior to the monitoring period.  

4.2 Ethics Approval  

This research was approved by the Brunel University Ethics Committee on December 8, 

2010. The NHS Health Research Authority approval was received on April 15, 2013 and the 

permission to use programme data was received from the NHS Direct on April 16, 2013 

(appendices A, B, C).  

4.3  Statistical analysis tools 

 The tools for statistical analysis included: Microsoft Excel® spreadsheets for data input and 
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tabulation of the confusion matrices and MedCalc® version 12© 1993-2013.  The MedCalc® 

software is used to generate the ROC curves and statistical measures. Statistics include accuracy, 

sensitivity measured by the area under the curve (AUC), specificity, confidence intervals, standard 

error and p value.  The ROC curves were generated using the data input process stipulated in 

MedCalc®. 

4.4 Data source and process  

 Data were acquired from the NHS Direct COPD monitoring programme evaluation 

conducted by Brunel University and the Chorleywood Health Centre. The NHSD report was 

finalized in August 2012. The de-identified secondary data were abstracted and analysed for the 

time period November 2010 through February 2, 2012. Access to all data was via a secure Brunel 

ftp site in the Department of Information Systems and Computing. A data use agreement (DUA) is 

in place between the researcher, Brunel University and the NHSD.  

 The MedCalc® statistical process assumes a negative event at a higher threshold. Values 

have been subtracted from 100 to account for this since a negative event occurs for a lower 

threshold for SpO2 in the COPD population.  

4.4.1 Data sets and description  

The patient population included in this study consisted of patients with a confirmed 

diagnosis of COPD verified by the PCT and diagnostic codes. Patients were sorted by the number 

of days monitored and the number of hospitalisations occurring within a one year timeframe prior 

to the start date for telemonitoring. The data were limited to one PCT site.  

The number of days monitored was determined by the start and end date in the readings 

file. Results are presented in Chapter 5.  The start date is the first day that the RM device reported 

biometric data and the final date is the last reported monitoring date or February 2, 2011. Visits to 
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the home by Care Matrons were recorded in the readings data set and documents the date and time 

when home visit occurred. A master file was created in MS Excel® that contains all patients 

monitored for at least 183 days, exclusions, the population included in the research, resource 

usage, and readings for all biometric data, as well as the normalised resource usage data and 

process. 

All of the participants were identified by an ID number that is created in the DM system. A 

simple numeric was substituted in the tables for each patient included in the research cohort in 

order to protect patient privacy.  

Biometric readings for each patient for the classifiers (BP, SpO2, PR) have been extracted 

from the DM system summary data sets and all readings contain a date and time stamp.  

Identification of the use of healthcare services was extracted from the PCT data. Resource 

usage codes were identified using published code sets from the NSRC01 2011-12 (Department of 

Health 2011). 

Data used to calculate the confusion matrices and formulae for event-based outcomes (TP, 

TN, FP, FN), are included in the MS Excel® spreadsheets.  

ROC graphs and statistics were completed in MedCalc® for all classifiers and followed the 

processes and statistical methodology in the application.  

4.4.2 Data inclusion criteria 

1. All data from the PCT that meet the inclusion criteria. 

2. All data in the readings file with a value and risk designation.  

3. Resource usage for all A&E and IP events.  

4. Resource usage for COPD respiratory codes. 

5. All classifiers with documented measurement values i.e. SpO2, BP, PR. 
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6. Care Matron visit. 

7. First patient reading of the day, on days having a Care Matron visit.   

4.4.3 Data exclusion criteria 

1. Resource usage for non-COPD respiratory services is excluded. For example, accidents not 

related to COPD, cardiac services, scheduled services and surgeries, elective admissions, 

ophthalmology, psychiatry, urology and other gerontology services.   

2. Data in the readings file by day/line that fail to provide an alarm rating, i.e. “0”. 

3. Multiple readings by the Care Manager during a HH visit.  

4. IP data that occur outside of monitoring dates or more than five days from the last 

monitored date.  

4.5 Population 

 The total population includes 34 patients. Patients were identified by the system ID, the 

start and end dates and the total number of days monitored.  Each classifier includes more than 

6,000 lines of data in the statistical tabulation. One patient with only SpO2 data was included in the 

SpO2 analysis. All other data sets for classifiers contain 33 patients. 

4.5.1 Population inclusion criteria 

1. Primary diagnosis of COPD was confirmed by the PCT and evidence of thoracic and 

respiratory codes are documented in the resource usage file.  

2. Individuals who were monitored for a minimum of six (6) months (183 days) or more. 

3. Patients with at least one IP stay for COPD within one year prior to the monitoring period.  

4. Full data sets for the classifier.  
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4.5.2 Population exclusion criteria 

1. The primary diagnosis is identified as other than COPD. Patients who have no documented 

COPD services within the monitoring timeframe and who are identified as having a 

primary medical issue that is not respiratory. As an example, cardiac or cancer services. 

2. Individuals who are monitored for less than six months (183 days). 

3. There are no IP COPD admissions or services identifiable as COPD within a one year 

timeframe prior to monitoring.  

4. Missing data sets for classifiers.  

4.6 Framework and processes  

The underlying approach applied in this research follows the model evaluation methods for 

ROC analysis as described earlier. ROC analysis is applied to DM models that use RM in a similar 

manner and represents an extension of the use of ROC into disease management, another field of 

healthcare. The following sections provide definitions and descriptions of the processes that have 

been adapted for this research.   

4.6.1 Confusion matrix 

 By definition, a classification model is the mapping of an alert to a predicted class or 

outcome (Fawcett 2005). This provides an estimate of the probability of the alerts predicting 

clinical deterioration (Fawcett 2005). There are four possible outcomes, TP, TN, FP and FN.  

“The confusion matrix ...is a table layout that allows visualization of the performance of an 

algorithm. Each column of the matrix represents the instances “I” in a predicted class, 

while each row represents the instances in an actual class. The name stems from the fact 

that it makes it easy to see if the system is confusing two classes.” (Wikipedia, Confusion 

matrix 2013).  

 

A simple statistical method for assessing diagnostic accuracy is through the use of the 

confusion matrix. The table has two rows and two columns identifying the number of TP, TN, FP 

http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Confusion_matrix
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and FN instances. The confusion matrix (Table 4.1) contains information about the actual and the 

predicted classifications identified by a classification system (Kohavi & Provost 1998).   

    

  
actual value 

  p n total 

predicted 

outcome 

p' TP=50 FP=100 P' 

n' FN=50 TN=800 N' 

total P N 
 

Table 4.1. Confusion matrix 

 

The layout of the confusion matrix is depicted in Table 4.1 and an example is given that 

illustrates each section of the confusion matrix. For example, consider the DM model that predicts 

1,000 patient alerts. Each alert requires a decision based on whether the alert requires an action or 

not. The model correctly predicts 50 true actionable alerts (TP) but incorrectly predicts 100 alerts 

that are non-actionable (FP). It incorrectly predicts 50 cases that are not alerts but are actionable 

(FN) and 800 cases that are not alerts and are not actionable (TN). The identification of positives 

and negatives is attributed based on the patient outcomes in this research. ROC space represents 

the trade-offs between the benefits (TPs) and the costs (FPs) (Pintea & Moldovon 2009, p.53), i.e. 

between the sensitivity and the specificity. Cost methodology applied in this research is described 

in section 4.9. The ROC graph will visually illustrate the performance of the classifiers in the DM 

model using the classification categories from the confusion matrix. 

http://en.wikipedia.org/wiki/Insurance_claim
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An explanation of the relationship of the sensitivity and specificity of the four 

classifications to threshold and accuracy is presented below and illustrated by the bi-modal curve 

in Figure 4.1. 

 

 

“The sensitivity and specificity of a diagnostic test depends on more than just the "quality" 

of the test--they also depend on the definition of what constitutes an abnormal test.  Look at 

the idealized graph at right showing the number of patients with and without a disease 

arranged according to the value of a diagnostic test. This distributions overlap--the test 

(like most) does not distinguish normal from disease with 100% accuracy. The area of 

overlap indicates where the test cannot distinguish normal from disease. In practice, we 

choose a cutpoint (indicated by the vertical black line) above which we consider the test to 

be abnormal and below which we consider the test to be normal. The position of the 

cutpoint will determine the number of true positive, true negatives, false positives and false 

negatives. We may wish to use different cutpoints for different clinical situations if we 

wish to minimize one of the erroneous types of test results.” (Tape 2013, n.p.) 

 

4.6.2 Measures and formulae 

 Measures and formulae used to tabulate the confusion matrix and ROC curves are listed 

below with definitions. The ROC curves are created for each of the classifiers based on the patient 

outcomes, resource usage and cost optimisation methodology as defined in section 4.9.  The 

Figure 4.1.  Bi-modal curve 
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classifications for the category designation of TP, TN, FP, and FN that are used for the confusion 

matrix are the same as those used for the ROC curve.  

1. The accuracy (AC) is the proportion of the total number of predictions that were correct. It 

is determined using the equation: AC = (TP + TN) / (TN + FN + FP + TP) (Fawcett 2006) 

2. Sensitivity is the probability that a test result will be positive when the disease is present is 

defined as: Sensitivity = (TP) / (TP+FN). It is same as true positive rate which is expressed 

as a percentage. (MedCalc® Version 12.7.0 1993-2013). 

3. Specificity, is the probability that a test result will be negative when the disease is not 

present i.e. the proportion of negatives cases that were classified correctly is defined as 

Specificity = (TN) / (TN + FP) = 1 - FPR. (It is same as true negative rate, which is 

expressed as a percentage) (Fawcett 2006; MedCalc® Version 12.7.0 1993-2013). 

4. Precision (P) or true positive rate (TPR) is the proportion of positive cases that were 

correctly identified, as calculated using the equation: TPR = (TP) / (FN + TP) (Fawcett 

2006).  

5. The false positive rate (FPR) is the proportion of negatives cases that were incorrectly 

classified as positive, as calculated using the equation: FPR = (FP) / (FP + TN).  This is a 

Type 1 error equivalent to a false alarm (Fawcett 2006). 

6. The false negative rate (FNR) is the proportion of positives cases incorrectly classified as 

negative, and as calculated using the equation: FNR = (FN) / (FP + FN). This is a Type 2 

error equivalent to a miss (Fawcett 2006).  

7. Negative predictive value (NPV) is the probability that the disease is not present when the 

test is negative.  NPV = (TN) / (FN+TN) (MedCalc® Version 12.7.0 1993-2013). 
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8. Positive predictive value (PPV) is equivalent with precision and is the probability that the 

disease is present when the test is positive. PPV = (TP) / (TP+FP) 

(Fawcett 2006; MedCalc®Version 12.7.0 1993-2013). 

9. Positive likelihood ratio (PLR) is the ratio between the probability of a positive test result 

given the presence of the disease and the probability of a positive test result given the 

absence of the disease. PLR = (TPR) / (FPR) = Sensitivity / (1-Specificity)  

(MedCalc®Version 12.7.0 1993-2013). 

10. Negative likelihood ratio (NLR) is the ratio between the probability of a negative test result 

given the presence of the disease and the probability of a negative test result given the 

absence of the disease, NLR = (FNR) / (TNR) = (1-Sensitivity) / Specificity (MedCalc® 

Version 12.7.0 1993-2013). 

11. P value measures the strength of evidence in support of the null hypothesis.  

12. Optimum threshold for an empirical ROC is the point at which a line with the above slope 

first intersects the ROC curve (Zweig & Campbell 1993). It is tangent to the ROC curve.  

Criterion values for the parameters of PLR, NLR and P value were calculated in MedCalc® 

and are provided in Appendices E, F, G, and H for all classifiers.  

4.6.3 Accuracy 

The DM model issues alerts that are based on a set threshold applied to a signal intended to 

predict a physiological event. The variance between the set threshold and the value indicates the 

potential for decompensation. The system is identifying the potential or probability for a negative 

clinical event and the alert may be thought of as predictive for COPD exacerbation. Although the 

patient’s COPD diagnosis is known, the likelihood for clinical deterioration at the point in time 

that the signal is created, is not known.  

http://stattrek.com/Help/Glossary.aspx?Target=Null%20hypothesis
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“Diagnostic accuracy studies are used to obtain how well a test, or a series of tests, is able 

to correctly identify diseased patients or, more generally, patients with the target condition, 

the condition of interest.” (Bossuyt 2008, p. 2)   

 

Generally, diagnostic test accuracy is expressed as sensitivity and specificity. However, 

accuracy statistics describe the performance under specific conditions, the sensitivity and 

specificity may change with the population being measured, the setting, and other extraneous or 

environmental variables. In predictive accuracy studies, the test is used to identify patients that 

benefit from treatment, and those that do not (Bossuyt & Leeflang 2008).  

The accuracy of the model, indicated by the sensitivity and specificity is evaluated using 

established and validated mathematical formulae as noted in the previous section. 

4.6.4 Classifiers  

There are four (4) classifiers in the readings data set: (1) systolic blood pressure (SBP), (2) 

diastolic blood pressure (DBP), (3) pulse rate (PR) and, (4) saturated peripheral oxygen (SpO2). 

Three of these, SBP, DBP and PR, have both high and low threshold settings in the DSS and the 

level of risk is determined using the deviation from these threshold settings.  

4.6.5 Risk designation 

The DSS does not present a simple binary decision, rather it assigns a number denoting risk 

levels based on the deviation from the threshold setting. Typically three risk levels are defined in 

RM systems and are used in this study. Risk level 1 is categorized as a non-alarm.  There is no 

indication of COPD exacerbation based on the thresholds set in the DSS. A SpO2 risk level of 2 or 

3 is an alarm resulting from a reading that exceeds the threshold settings for each risk level. This 

indicates that some intervention may be appropriate to correct a deteriorating health condition.   

The occurrence of an alarm triggers a decision process to provide a HH visit, send the 

patient to the A&E or for IP hospitalisation. These same actions may be expected for any threshold 
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that generates an alarm. The higher risk level may indicate prioritisation for intervention, but are 

treated equally in this research.  

4.6.6 Threshold 

The threshold value used in the RM system is an important factor to consider as it will 

influence the decision to provide healthcare resources and there is an associated cost to mobilizing 

limited healthcare resources based on alarms that have no relationship to the patient outcome. The 

accuracy of the threshold can also impact upon the healthcare system and attribute a high cost if 

the DM system fails to generate an alarm for a patient who has a deteriorating health status and is 

clinically decompensating; in this situation, a high level of impact for the patient and a high cost to 

the healthcare system for IP hospitalisation.  

The ideal threshold for any individual patient may vary by disease progression and will 

ultimately be a clinical decision. However, this should be based on outcomes to focus resources 

where best needed.  

In addition, patients may become anxious or experience “alarm fatigue” if the system is 

generating alarms that are set too high or too low for non-performing classifiers, i.e. measures that 

do not indicate a relationship to a deteriorating health status. In the case of non-performing 

classifiers, the patient, nurses and other healthcare workers may not pay attention to a classifier 

that can indicate deterioration if alarms are not predictive. The optimal threshold settings for 

classifiers can be determined in ROC space.   

4.6.7 Outcomes 

Patient outcomes, as defined for this research, are categorized as event-based clinical 

outcomes (HH, A&E, IP). The decision process applied depends on the Care Matron’s clinical 

judgment that the patient’s health status was deteriorating and whether a home visit is necessary or 
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that a visit to the A&E and/or an IP hospitalisation would be initiated for a person who was 

experiencing more severe respiratory difficulties. 

4.6.7.1 Home health designation 

The HH visit was attributed based on the documentation from the readings in the Master 

file. Tables 4.2 and 4.3, illustrate the layout of the data fields. The column labelled “Collection 

Type” when designated as “Care Manager Reported” indicates a HH visit. The protocol for HH 

visits is to document the biometric parameter while visiting the home so that the reading is entered 

into the system. One limitation was that there is potentially some data loss if the Care Matron did 

not follow the protocol. The assumption that is applied to the HH visit is that the secondary 

decision to visit the home is in response to the clinical decision being made by the Care Matron 

that the patient is deteriorating. 

4.6.7.2 Resource usage identification process 

The A&E visit and the IP admissions were confirmed by identifying the COPD code from 

the cost data sets, i.e. reason for admission. The cost data sets were provided by the PCT.  

4.6.7.3 Code identification process 

The service code identification process used the PCT resource utilisation data and paired 

the column labelled “Specialty_ M”, (designates services by specialty area, i.e. thoracic, 

cardiology, endocrine etc.), with the column labelled “Agreement_Line_Number”, (contains 

COPD DZ series codes). This identified the resources used and the COPD services.  

4.6.8 Category designation process 

Category designation occurs following a series of events. First, the signal that is generated 

is based on a threshold set into the DSS for each biometric classifier. The value is interpreted 

within the DSS and identified as a risk level in the RM system.  The risk levels are identified as a 1 
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(no risk), 2 (medium risk) or 3 (high risk). Once a risk level is established the biometric classifier 

is designated into one of four categories (TP, TN, FP, FN) based on event-based patient outcomes 

(HH, A&E, IP).  

Categories are listed below. True positive category designation also takes into account a 

range of three days for IP hospitalisation and a range of one day for a HH visit. This is because 

respiratory exacerbations are an infective process that takes three to five days to develop and a 

positive signal followed by an IP hospitalisation would be indicative of that timeframe. Further 

research with access to the medical record would clarify the best timeframe to use, i.e. three or five 

days. Likewise, a HH visit within one calendar day of an alert is also identified as a true positive 

event. This takes into account the data submission process, as patients may send biometric 

readings at any time of the day and the HH visit may not be possible on the same day, therefore. 

one day is allowed for the nursing response time to account for the work flow process for the Care 

Matrons.  

 Categories in this research are defined as follows: 

1. TP is an alarm with a HH, A&E or IP hospitalisation.  

2. FN has no alarm with a HH, A&E visit, or IP hospitalisation.   

3. TN has no alarm and no HH, A&E visit, or IP hospitalisation. 

4. FP has an alarm with no HH, A&E visit, or IP hospitalisation.  

4.6.9 Signalling data spreadsheets 

Spreadsheets were created in MS Excel® linking the signal and risk level for all classifiers 

with the patient outcomes. A confusion matrix was created from these spreadsheets and data from 

the confusion matrix was entered into MedCalc® to create the ROC curves for the classifiers. 

Formulae were applied to the MS Excel® spreadsheet to identify IP hospitalisations within three 
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days and HH visits within one day of a signal.  All data were reviewed on a line by line basis to 

check formulae in the spreadsheet. The master file serves as the source document for all classifier 

readings and data. Table 4.2 and 4.3, identify the relevant patient data fields in the spreadsheet. 

This format is consistent throughout the data sets for all classifiers.  

C D F G H J K L M N 

Type Value 
Reading 

Date/ time Collection Type 
Risk 

Level 
NO 

Signal  
YES 

Signal HHC A&E IP 

Diastolic 

BP 85 

2/6/2012 

12:33 

Device-

Reported 3 

 

1 

   Pulse 

Rate 75 

2/6/2012 

12:33 

Device-

Reported 1 1 

  

  

 Systolic 

BP 166 

2/6/2012 

12:33 

Device-

Reported 3 

 

1 

   Diastolic 

BP 80 

2/6/2012 

11:30 

Care Manager 

Reported 3 

 

1 1 

  Systolic 

BP 175 

2/6/2012 

11:30 

Care Manager 

Reported 3 

 

1 

   Oxygen 

Sat. 94 

2/6/2012 

11:21 Self-Reported 1 1 

    *HHC - home health visit 

*A&E - accident and emergency 

*IP - in-patient hospitalization 

Table 4.2. Sample spreadsheet with data field labels 
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H J K 

 

L 

 

 

M 

 

 

N 

 

 

T 

 

 

U 

 

 

V 

 

 

W 

 

Risk 

Level 
NO 

Signal 
YES 

Signal HHC A&E IP NS_NA =TN NS_A = FN S_NA = FP S_A = TP 

2 

 

1 

  

 

  

1 

 1 1 

   

 1 

   1 

    

1 

 

1 

  2 

 

1 

  

 

  

1 

 2 

 

1 

  

 

  

1 

 3 

 

1 1 

 

 

   

1 

3 

 

1 

  

1 

   

1 

*NS – no signal 

*NA – no action 

*A – action 

*S – signal 

Table 4.3. Sample spreadsheet with data field labels-continued 

 

4.7 Gold standard 

In estimating the accuracy of the classification, the disease status of each patient is 

measured. This is called the gold standard and when evaluating a test result, it would be verified 

for the sake of accuracy (Zou, O’Malley & Mauri 2007). In this research, all patients have a 

confirmed diagnosis of COPD verified by the PCT. Confirmation of the COPD exacerbation is 

confirmed by patient outcomes for resource usage data. The codes are used to confirm the A&E 

and IP hospitalisations for respiratory care episodes.  The HH visits are documented in the 

readings files and are shown in Table 4.3, column L. 

4.8 Cost optimization  

ROC analysis requires a cost optimization method to identify the value or estimated costs 

of a TP, TN, FP, and FN. There are different optimization criteria that could be used.  

The resource usage in this study is quantified by cost. There are different resource 

utilisation costs applicable to each decision and costs are not equal. In this analysis a high cost is 

applied to a FN because missing the COPD exacerbation will eventually result in a negative event 
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for the patient and healthcare system (A&E or IP). The costs associated with a FP and TN are 

moderate to low respectively, as these may or may not result in a HH visit. In the case of the TN, 

no alert is generated and the cost is low as no untoward event occurs and no services are utilized. 

A FP has a moderate cost as health resources are utilized with a HH visit but the cost to the patient 

is low. A TP has a moderate to high cost as health resources are utilized, with the  most frequent 

being a HH visit. However, the avoidance of the use of higher-cost resources for an A&E visit 

and/or an IP hospitalisation is a frequent outcome. Therefore there is a cost avoidance associated 

with the TP as cost could have been quite high if resulting in A&E visits and/or IP hospitalisation.   

The method used for cost valuation was calculated using direct resource usage cost data 

incurred during the monitoring period. The average cost of services for a HH visit and an A&E 

visit uses the UK Reference Costs 2011-2012. The IP cost used in this study reflects the average 

cost calculated in the NHSD program evaluation (UK reference costs 2011-2012; NHSD 

Evaluation Report 2012).  

 A cost avoidance value was developed and applied as the cost valuation method. Cost 

avoidance was chosen because the use of RM is predicted to prevent the cost of avoidable 

healthcare resources and result in a savings to the healthcare system reflecting the avoidance of 

HH, IP and A&E events. Commissioners and vendors project that the savings will offset the cost to 

support the investment in RM systems over time. Using the cost avoidance method more clearly 

evaluates the reality of this assumption. A weighted value and the method used to calculate the 

cost is presented in the next section.  

The start-up and on-going technical support costs are not included in calculations as they 

are not available. However these should be considered for inclusion in future cost models.   
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4.8.1 Cost valuation methodology 

Comparing data from the pre-monitoring period with the data from the monitored period 

shows a decrease in the use of A&E and IP resources (this is covered in Chapter 5).  

This decrease in resource usage has a cost avoidance value.  The cost avoidance could be 

recognized as a cost reduction factor for A&E and IP hospitalisation or attributed to HH.  For the 

purposes of this study, the avoidance value is assigned to HH because it is assumed that the early 

intervention by the Care Matrons during a HH visit is the reason for the reduction in A&E and IP 

hospitalisation during the monitoring period.  This approach is used because it can be quantified 

and because the data show a recognizable pattern in the form of HH visits in response to alarms 

during the monitoring period, exclusive of other documented actions.   

The calculation method is as follows: A&E visits decreased from 86 in the pre-monitored 

period of 12,045 patient-days to 42 during the monitored period of 9,593 patient days.  The 

effective cost avoidance was calculated by weighting the reduction by the patient-days in the two 

periods.  The same technique was used for the decrease in IP costs due to the reduction in bed 

days.   

The reductions were then applied to the HH cost resulting in an effective savings to the 

overall system of £226 for every HH visit.  The HH cost of  a negative £-226 was applied, the 

A&E cost of £119 and the IP cost of £640 were also applied to the monitored data of the SpO2 

classifier in order to develop a confusion matrix for resource usage (as expressed by cost).  Cost 

valuation is needed to identify the optimum threshold and was applied when ROC curves were 

created for the classifiers. Each cost was assigned to one of the confusion matrix quadrants (TP, 

FP, TN, FN) previously calculated for SpO2 readings and associated alarms and was applied to the 
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cost/value calculations in the final ROC curve.  Chapter 5, Table 5.7, presents the weighted values 

applied when generating the ROC curves.  

This study assumes that any IP usage within three days of an SpO2 reading applies to the 

confusion matrix. The cost of the IP hospitalisation was divided equally between all readings that 

occurred within the three days prior to the date for the IP hospitalisation.  Therefore, the cost of a 

hospitalisation was, in some cases, divided between TP (for a SpO2 reading below the alarm 

threshold) and FN (for readings above the alarm threshold).    

The results of this research are presented in Chapter 5.  

 



 

64 

 

CHAPTER 5 

 

RESULTS 

 

“Measure what is measurable, and make measurable what is not so.”  

Galileo Galilei, 1564-1642 

  

http://www.brainyquote.com/quotes/quotes/g/galileogal381325.html
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5.0 RESULTS 

  

5.1 Population  

The sample size includes (NT=34) patients listed in Table5.1. The table contains patients 

identified as meeting all of the eligibility criteria, the start date and end date of monitoring, and the 

total number of days monitored. A numeric has been substituted for the ID in this study to protect 

patient confidentiality. All patient diagnoses are confirmed as COPD by the PCT and by the code 

sets included in the PCT cost data files. The cost data files document at least one (1) IP admission 

for respiratory illness within a 12 month period prior to the monitoring start date for all patients 

included in the cohort.  

ID Start Date End Date Monitor 
Days 

ID Start Date End Date Monitor 
Days 

1.  10/11/2010 06/02/2012 454 18. 04/05/2011 06/02/2012 279 

2.  24/11/2010 06/02/2012 440 19. 10/05/2011 06/02/2012 273 

3.  25/11/2010 06/02/2012 439 20. 11/05/2011 06/02/2012 272 

4.  25/11/2010 06/02/2012 439 21. 12/05/2011 06/02/2012 271 

5.  25/11/2010 06/02/2012 439 22. 24/05/2011 06/02/2012 259 

6.  21/02/2011 06/02/2012 351 23. 01/06/2011 06/02/2012 251 

7.  21/02/2011 06/02/2012 351 24. 31/03/2011 30/11/2011 245 

8. ** 24/02/2011 06/02/2012 348 25. 08/06/2011 06/02/2012 244 

9.  10/03/2011 02/02/2012 330 26. 10/03/2011 17/10/2011 222 

10.  25/03/2011 06/02/2012 319 27. 20/04/2011 15/11/2011 210 

11.  29/03/2011 06/02/2012 315 28. 26/07/2011 06/02/2012 196 

12.  29/03/2011 06/02/2012 315 29. 27/07/2011 06/02/2012 195 

13.  30/03/2011 06/02/2012 314 30. 27/07/2011 06/02/2012 195 

14.  30/03/2011 03/02/2012 311 31. * 28/07/2010 06/02/2012 194 

15.  19/04/2011 06/02/2012 294 32. 10/05/2011 15/11/2011 190 

16.  20/04/2011 06/02/2012 293 33. 20/04/2011 25/10/2011 189 

17.  21/04/2011 06/02/2012 292 34. 04/08/2011 02/02/2012 183 

* SpO2 data only 

** No alarms for pulse during the monitoring period 
Table 5.1. Patient population  

 

5.2 Programme results 

The overall impact of the COPD RM programme, for this cohort of patients, evidences a 

decrease of 50% fewer IP bed days during the monitoring period, representing 437 fewer days as 

compared to the 12 months prior to monitoring. The number of A&E visits decreased by 49% 
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representing 44 fewer A&E visits (Table 5.2). There was no baseline available for the number of 

pre-monitoring HH visits and consequently the change during the RM period could not be 

evaluated.  

ID Monitored 

Days 

# Home 

Visits 

Pre A&E # A&E 

Monitored 

 

Δ 

A&E 

Pre IP 

Days 

# IP Days 

Monitored 

Δ 

IP 

1.  454 88 1 1 0 10 6 -4 

2.  194 11 5 3 -2 45 19 -26 

3.  440 35 1 0 -1 13 0 -13 

4.  439 102 2 1 -1 2 1 -1 

5.  439 76 3 1 -2 23 3 -20 

6.  439 41 4 1 -3 56 7 -49 

7.  351 126 5 0 -5 27 0 -27 

8.  351 86 1 1 0 10 3 -7 

9.  348 56 1 0 -1 1 0 -1 

10.  330 95 3 2 -1 24 14 -10 

11.  319 62 0 0 0 12 1 -11 

12.  315 81 2 3 +1 26 0 -26 

13.  315 78 3 0 -3 19 15 -4 

14.  314 50 1 0 -1 4 0 -4 

15.  311 115 7 1 -6 61 7 -54 

16.  294 47 1 0 -1 59 0 -59 

17.  293 12 5 0 -5 11 0 -11 

18.  292 58 1 1 0 4 3 -1 

19.  279 20 1 1 0 4 6 +2 

20.  273 21 3 0 -3 27 0 -27 

21.  272 77 3 1 -2 12 4 -8 

22.  271 14 1 0 -1 9 0 -9 

23.  259 39 2 0 -2 8 0 -8 

24.  251 6 3 0 -3 3 0 -3 

25.  245 23 1 4 +3 16 80 +64 

26.  244 15 1 0 -1 2 0 -2 

27.  222 22 2 0 -2 8 0 -8 

28.  210 53 11 8 -3 290 154 -136 

29.  196 25 5 0 -5 29 0 -29 

30.  195 69 1 6 +5 3 45 +42 

31.  195 49 1 0 -1 13 2 -11 

32.  190 34 2 2 0 16 32 +16 

33.  189 23 2 4 +2 12 16 +4 

34.  183 25 1 1 0 5 9 +4 

TTotal  1734 86 42 -44 864 427 -437 

Table 5.2 Resource utilisation 

 

5.3 Summary data by classifier 

The RM system considers a continuous output classification problem with two classes. The 

confusion matrices for the classifiers illustrates the relationship of the signal to the patient event-

based outcome in order to identify the accuracy into the two classes of interest, i.e. COPD 

exacerbation or no COPD exacerbation.  As discussed in Chapter 4, HH visits within one day of an 
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alert are designated as TPs and IP hospitalisation within 3 days of an alert are designated as TPs. 

Data are inclusive for all submitted data that meet the data inclusion criteria as noted in Chapter 4, 

section 4.4.2 and has been compiled following the processes outlined in Chapter 4, section 4.6.  

Table 5.3 presents the summary data for the classifiers as a first step in the research process prior 

to ROC analysis being applied. 

It should be noted that data for all classifiers were not submitted by all patients. The 

summary numbers represent all submitted data that meet the criteria outlined in Chapter 4. For 

example, the discrepancy between the SBP and DBP numbers is a result of there being separate 

parameters. If the system does not register one of the parameters, it is not included in the summary 

data set.  Tables 4.2 & 4.3 in Chapter 4 illustrate the process of assigning a category based on a 

signal and an event-based outcome. Table 5.3 below summarizes the results for each classifier 

following the processes and formulae presented in Chapter 4.  

 

NS_NA

=TN 

NS_A= 

FN 

S_NA= 

FP 

S_A= 

TP 

 

Accuracy 

TPR 

Sensitivity 

Precision 

PPV 

FPR 

1-

Specificity 

 

TNR 

Specificity 

FNR  

SpO2 4233 763 783 705 0.77 0.48 0.16 0.84 0.52 

SBP 4637 1547 1310 2014 0.66 0.57 0.30 0.70 0.43 

DBP 4546 1547 1328 1799 0.69 0.54 0.23 0.77 0.46 

PR 4737 721 148 192 0.51 0.21 0.03 0.97 0.79 

All 18453 4578 3569 4710 0.72 0.51 0.19 0.81 0.49 

NS – no signal, NA –no action, A –action, S – signal 

Table 5.3 Classifier summary measures  

The statistical results that relate to the performance of the DM system include accuracy, 

precision, the TPR, representing the sensitivity, the FPR, representing 1-specificity, TNR and 

FNR. Note that the results presented in Table 5.3 can present a misleading impression of the 
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relative performance of the tests due to the skew in the data. However, SpO2 is identified as the 

most accurate classifier and this will also be illustrated with the ROC curve in the next section.  

Accuracy is the proportion of the total number of correct predictions, and precision is the 

proportion of positive cases correctly predicted. The accuracy equals 0.72 for all of the classifiers 

combined and 0.77 for SpO2 alone. The mean difference in accuracy between all classifiers 

combined and SpO2 is 0.05. Inclusion of the additional biometric classifiers of BP and PR does not 

improve the overall accuracy of the model.  

The precision of the model for all classifiers combined is 0.51 and for SpO2 is 0.48. 

Although SBP is identified as the most precise classifier with a rate of 0.57, the ROC curve in the 

next section will show that SBP has little or no relationship to patient outcomes and fails as a 

classifier. Distribution skew in the data accounts for higher sensitivity and lower specificity as seen 

in Table 5.3 (Krzanowski & Hand 2009). 

The diagnostic accuracy is used to identify how well a test, in this case a classifier, is able 

to identify the target condition (Bossuyt & Leeflang 2008) and is expressed in sensitivity and 

specificity.  Statistical results using the confusion matrix identify the highest sensitivity as SBP at 

0.57 and the lowest false positive rate as pulse rate at 0.03 (Table5.4). However, SpO2 is identified 

as the most accurate classifier and this will also be illustrated with the ROC curve in the next 

section.  

This difference in outcome for the two approaches, statistical and ROC curve, will illustrate 

the need to use the appropriate method for the system being evaluated. As the ROC curve is 

distribution-free and therefore skew-agnostic, the results in the next section will better represent 

the performance of the classifiers and their predictive capacity.   
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5.4 ROC analysis of classifier performance 

The characteristics of ROC analysis summarised in Chapter 3 are depicted by the ROC 

curve and the quantitative results are provided. All ROC curves were produced in MedCalc® and 

the scales (normalised to 100) are those produced by the MedCalc® application. Table 5.4 

summarises classifier performance. A summary of all criterion values as calculated in MedCalc® 

for sensitivity, specificity, likelihood ratio, P value, confidence interval and cost, for all thresholds, 

are provided in Appendices E, F, G, and H. Characteristics visually represented by the curve 

include:   

1. The trade-off between sensitivity and specificity.  

2. The AUC as a measure of the accuracy of the classifier.  

3. The slope of the tangent line at a cut-off point is the likelihood ratio (LR) denoting the 

optimum threshold for the classifier being measured. 

Performance of the classifiers is visually represented in Figures5.1-5.4. The ROC curves 

illustrate the relationship between the classifiers and the prediction of COPD exacerbation based 

on the patient outcomes. The only classifier that correlates with clinical deterioration, i.e. COPD 

exacerbation and is predictive is SpO2. The classifiers for SBP, DBP and PR are only slightly 

above the diagonal indicating poor performance, i.e. they are only a little better than random 

chance. It should be noted that each point on the curves corresponds to the true frequency of 

clinical deterioration as measured by an event-based outcome (HH, A&E or IP). The ROC curve 

presents all thresholds for the classifiers.  
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Figure 5.1. ROC curve for SpO2 

*Confidence interval (CI) and the diagonal are denoted by dotted lines and the AUC is labelled for 

clarity.  
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Figure 5.2. ROC curve for SBP 

 

 
Figure 5.3. ROC curve for DBP 
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Figure 5.4. ROC curve for pulse rate (high and low)  

 

 

Variable SpO2 SBP DBP Pulse Rate 

Classification variable Outcome Outcome Outcome Outcome 

Sample size 6533 10039 10034 6427 

Positive group :  674 1422 1344 831 

Negative group :  5859 8617 8690 5596 

Disease prevalence (%) 10.3 14.2 13.4 12.9 

Area under the curve (AUC) 0.693 0.540 0.527 0.553 

Standard Error
a
 0.0107 0.00849 0.00881 0.0117 

95% Confidence interval
b
 0.682 to 0.704 0.530 to 0.550 0.517 to 0.537 0.541 to 0.566 

Significance level P (Area=0.5) <0.0001  <0.0001 0.0020 <0.0001 

a DeLong et al., 1988 

b Binomial exact 
*Taking into account disease prevalence and estimated costs:  

   cost False Positive: -0.003; cost False Negative: -0.255 

   cost True Positive: -0.742; cost True Negative: 0 
 

Table 5.4. ROC measures of classifier performance   
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5.5 The Area under the curve  

The accuracy of a test using the ROC curve is measured by the AUC. AUC for this 

research is the probability that the system correctly identifies the clinical deterioration of a COPD 

exacerbation.  The AUC for each of the classifiers is presented in section 5.5 and quantifies their 

accuracy. To give some perspective the following analogy and scale is used. 

“A rough guide for classifying the accuracy of a diagnostic test is the traditional academic 

point system:  

 .90-1 = excellent (A)  

 .80-.90 = good (B)  

 .70-.80 = fair (C)  

 .60-.70 = poor (D) 

 .50-.60 = fail (F)” (Tape, accessed July 8, 2013). 

The ROC curves illustrate that the classifiers for SBP, DBP and PR are only slightly above 

the diagonal. BP and PR fail the usefulness test as classifiers. Performance is quantified between 

.50 and. 60. Comparing the AUC for the classifiers indicates that  SBP, DBP and PR with AUCs 

respectively of 0.540, 0.527 and 0.553 are deemed poor predictors for COPD exacerbation. The 

only classifier that demonstrates predictive capability is SpO2. It is the best of the classifiers, 

however it is rated as a poor classifier, using the scale above, with an AUC of 0.693. As noted in 

Chapter 3, section 3.2, Jensen et al. (2012) identified the sensitivity for SpO2 in their study as 0.70 

providing concordance with the results of this work. And, as has been noted, this level of 

performance and predictive capability is only acceptable as the alternative is no predicition.  

5.6 Optimum threshold  

In order to determine the threshold at which the alarms were set, a manual review of the 

data sets was conducted based on the SpO2 reading at which alarms occurred to establish the 

threshold for each patient.  The optimum threshold was only identified for SpO2 as it is the only 

classifier with predictive capability. The optimal threshold was calculated using the sensitivity 
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(TPR) and specificity (TNR). The threshold range for SpO2 of 85-86 evidences the highest 

sensitivity and specificity as an average for the population. This is illustrated in Table 5.5 with 

sensitivity (TPR) of 0.62, and specificity of 0.91 (TNR). 

 

TH VALUE 

SpO2 

FPR 

(1-

specificity) 

TPR 

Sensitivity 

TNR 

Specificity 

POS 

(TP+FN) TP 

NEG 

(TN+FP) TN 

80-82  0.18 0.61 0.82 77 47 360 297 

85-86  0.09 *0.62 *0.91 109 68 1069 968 

87-88  0.20 0.51 0.80 312 159 1038 834 

89-90  0.19 0.39 0.81 698 275 1349 1086 

91-92  0.23 0.07 0.77 270 156 1202 1050 

Total 

  

 1466 

 

5018  

Table 5.5. SpO2 results by threshold 

The graph of SpO2 thresholds (Figure 5.5) indicates the level of performance for each 

threshold. The diagonal line (0, 0) to (1, 1) represents the performance of the classifier that is no 

better than random chance. A comparison of thresholds in Figure 5.4 indicates that a threshold set 

at 92, which is a common standard setting for respiratory illness, performs below the random 

chance diagonal when evaluated based on the patient outcomes- there is no relationship. Each 

point in the graph corresponds to a threshold for SpO2 referenced in Figure 5.5 on the next page. 
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Figure 5.5. Threshold performance - SpO2 

 

5.7 Cost valuation 

 The process of assigning cost involves identification of the benefit/value of each outcome 

and assigning a weighted value to each category (TP, TN, FP, FN) in constructing the ROC curve.  

As previously noted in Chapter 4, clinical cost data is used to weight the values as they are 

available. The cost associated with the on-going management of the devices and contracts is 

outside the scope of this research but should be considered in future research.  These start-up and 

on-going technical system costs provide additional indices to consider in evaluation of value for 

purchasing. Table 5.6 identifies the cost applied. The cost optimisation process is outlined in 

section 4.8. Apportioned values based on cost that were used to produce the ROC curves in 

MedCalc® are listed in Table 5.7.  
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COST (£) 

Specialist Nurse 

Home visit 

A&E IP Bed day (Avg. cost) 

*£58 (CN217AF) *£119 **£640 

*UK Reference Costs 2011-2012 

** NHSD Evaluation Report 2012 

Table 5.6. Cost applied to ROC curves 

 

Disease prevalence and estimated costs 

True Positive: -0.742 False Positive: -0.003 

False Negative: -0.255 True Negative: 0 

Table 5.7. ROC data input - cost by outcome 

 

5.8 Limitations  

This study has limitations that are identified below. Future research can be designed to 

modify these limitations and improve model evaluation and design.   

The limitations include: 

1. A lack of access to the patient record and notes limits a more detailed analysis of the degree 

of respiratory compromise for the individual patient. Areas where this would be helpful 

would be in stratification of the population, identification of the past history of 

exacerbation that was treated at the PCT, identifying the decision process and work 

processes applied in managing the RM of patient alerts. Access to the patient record would 

also provide a Forced Expiratory Volume (FEV1) value for lung function. The FEV1, as a 

measurement parameter would identify the true disease status of the patient. In addition, the 

lack of access to the medical record introduces the potential loss of data. Information 

contained in the record would quantify primary physician visits at the PCT and incorporate 

these costs into the cost valuation. The documentation of these visits was unavailable and 

was not identified in the data used for this study. In addition, specialty physician visits are 
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generally scheduled in advance but access to the medical record would also allow those 

specialty visits that occur as a result of an alarm to be calculated. 

2. Classification processes have been applied consistently across all patients. However, 

COPD is a progressive disease and not all patients in the population measured represent the 

same level of disease.  Stratification by level of disease with adjustment of the threshold 

may be needed to optimize the performance of the DM system and improve the predictive 

capability of the classifiers and the DSS.  

3. Selection bias - DM programmes are dependent on the cooperation of the patient, and a 

willingness to participate. The patients in the RM programme all consented to RM 

indicating a willingness to participate. However, there was no matching cohort of COPD 

patients that had declined participation and that could be used for comparison. Outcomes 

may also be influenced by the choice of patients chosen for RM. The process of selection 

was not stipulated by the PCT and in future research a selection process should be designed 

at the beginning of the programme.   

4. Reporting errors - all HH are entered into the system at the time of the visit and there may 

be some visits that were not recorded. Access to the patient record and notes would 

alleviate this potential data loss. 

5. Verification bias - use of event based outcomes from cost data resource usage (HH, A&E, 

IP) did introduce the possibility of verification bias. This may influence results and 

introduce verification error.  

6. Cost valuation is limited to direct cost with a cost-avoidance applied. However, this is 

subject to some data loss, including the cost of a visit to the primary care clinician at the 
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PCT for respiratory illness. The cost of prior HH services for each patient prior to the RM 

was unavailable and these costs should be included in future studies.  
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CHAPTER 6 

 

DISCUSSION  

 

 

“Good ideas are not adopted automatically. They must be driven  

into practice with courageous patience.”  

Hyman Rickover, 1900-1986  

 

  

http://www.brainyquote.com/quotes/quotes/h/hymanricko126384.html
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6.0  Discussion 

The simplistic threshold model of single stratification and no selection of an optimum 

threshold is currently the state of the art for RM systems. However, this limits their evaluation as 

well as their predictive capability. The RM systems are being driven from a technology perspective 

and what is needed, is a reframing of the questions being asked in the context of the clinical 

decision support, i.e. information being provided to the clinician from which to make a decision to 

treat or not to treat in order to improve patient outcome. The RM system must provide correct and 

useful information to the clinician. This is CDS. Further research on the thresholds is needed to 

identify the optimum for each specific disease and subgroups of patients with co-morbid 

conditions. Machine learning should be linked within the DSS for clinical indices and the 

classifiers must be appropriate to the chronic disease as well as set at the correct threshold. These 

design developments can not only contribute to  the benefit of the patient but also to the healthcare 

system.  

The rigorous evaluation method of ROC analysis has been applied in this research to the 

current state of measures.  Although the findings are specific to the COPD population measured, 

the methods can be applied to the broader chronic disease populations. Results indicate that current 

systems require design enhancements in order to improve performance and potentially, the 

predictive capability. Specific areas of the research are discussed in the next sections.  

6.1 Classifier predictive capability 

The results indicate that only SpO2 has predictive value in this COPD population and that 

the relationships of the other classifiers, BP and PR, are not predictive. The results for BP and PR 

indicate that they perform only slightly better than random chance and are deemed to be failed 

classifiers. Remote monitoring can provide an avenue for communication between the patient and 
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the healthcare provider before deterioration makes hospitalisation inevitable. Clinicians, both 

doctors and nurses, must have a system that provides accurate CDS.  

6. 2 Clinical decision support 

CDS is provided as a result of the alerts that are generated in the DM system and which are 

based on the thresholds and classifiers. Non-predictive classifiers may set up a situation where 

home visits are made when unnecessary, as will threshold values that are either too high or too 

low. Alarms identifying a risk level of 2 or 3 for any of the classifiers trigger a second decision 

process by the Care Matron to either make or not to make a HH visit. Table 6.1 identifies the total 

number of HH visits made during the monitoring period and the number of visits made for each 

classifier.  

What is important about potentially unnecessary visits is that a cost is incurred in the time 

and personnel providing home care services. There are visits made as a result of an FP signal for 

classifiers (BP and PR) that provide little value and are not predictive of COPD exacerbation. 

These alarms trigger potentially unnecessary visits that will impact upon the workflow process. 

Evaluation of workflow is outside the scope of this research, however, because this has a real 

impact on health services utilisation, it represents an opportunity for further research. Future 

research should therefore evaluate whether focusing on a specific classifier performs better and so 

improves outcomes and releases nursing time to concentrate on the sickest patients. The patterns of 

care embedded in the analysis can be used to assess the workflow to better target patients at risk 

for deterioration. The cost of services is impacted upon by the number of responses to alarms with 

no correlation to the outcome and this also needs further evaluation. 
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TOTAL 

Total # 

Home 

visits 

SpO2  

# Home 

visits  

Pulse 

 # Home 

visits  

SBP 

 # Home 

visits  

DBP  

# Home 

visits  

1734 1139 794 1354 1348 

* There may be alarms for multiple classifiers that initiated the decision to visit the home and 

totals tabulated for all classifiers are therefore greater than the total number of visits.  

Table 6.1. HH visits by classifier 

 

  Non-predictive classifiers can add cost to the healthcare system through the purchase of 

equipment as well as answering false alarms. This is the case for the classifiers of PR and BP for 

COPD. Rather design should include multiple clinically proven indicators for the specified disease 

based on medical research. The example of the respiratory questions from this research illustrates 

the need for a rigorous approach to incorporate additional measures that are targeted to specific 

disease states and designed in a manner that makes them usable. 

6. 3 Design implications 

RM can provide near real-time data to assist the clinician in making a decision that can 

potentially prevent a negative clinical event. However, the classifiers must be correct and accurate. 

In this research, SpO2 is a marginal classifier and is rated as poor. Yet, this provides a level of 

clinical decision support that when linked to home health services decreases the IP bed days by 

50%. This performance of the classifiers leaves room for improvement, but identifies the need to 

continue research into more clinically accurate classifiers by disease state using the more rigorous 

methodology of ROC analysis in order to improve the predictive capability.  

Although disease specific measures can be designed into the DSS to allow automatic 

algorithms to more accurately identify clinical deterioration, additional identification of critical 

factors in the management of patients with COPD in the home environment using RM is needed. 

The iVo research by Chaudhry et al. (2010) indicates that simply applying technology to a problem 

evidences no value in patient outcomes. Patterns of care coordination with nursing management 
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coupled with the CDS supplied by RM appears to be a critical need when designing the DM 

programme and is supported by the results of this study and of the Iowa iVo study referenced in 

Chapter 3. Additional research is needed to identify the impact of the two combined services.  

ROC analysis can identify features that would enhance the DM model. An interview with 

Dr. Jan Van Emelen, Association Internationalé de la Mutualité, illustrated the design issue and the 

impact on care when he stated,  

“We need to first concentrate on content. What does the programme look like which 

delivers the best achievable results for patients with COPD? Then we need to focus on 

processes and the role for the different providers. Only then should we be designing the IT 

systems. Otherwise, all we end up with is a series of IT projects which are incompatible 

and which cannot be compared to each other and where the content and processes have not 

been thought through properly.” (Association Internationalé de la Mutualité  2010, np).  

 

An example is the aforementioned respiratory questions in the RM system that were not 

amenable to ROC analysis as they were not designed with a measurement scale that could be 

interpreted with an alert threshold and were sporadically delivered. As noted earlier, respiratory 

effort, cough and sputum are important indicators of clinical deterioration and of COPD 

exacerbation and they should be included in the algorithm within the DSS (Burgel, Nesme-Meyer, 

Chanez, Caillaud, Carre, Perez & Roche 2009; Schlecht, Schwartzman & Bourbeau 2005). In 

order for system design to be more effective, it needs to reflect the medical knowledge for specific 

disease conditions.  

 RM can provide a communications avenue to the healthcare provider before deterioration 

reaches the point of needing hospitalisation. Clinicians, both doctors and nurses, must have a 

system that is reliably providing the needed information. So again, the appropriate classifiers for 

the disease process need to be built into the DSS as well as the optimal threshold for alerts 

generated by the system when readings exceed set thresholds.  
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 The best approach for the design of classifiers is to integrate the clinical research on the 

best predictive measures for the targeted disease with design of the DSS to incorporate the most 

predictive clinical measures (Jurado, Feu, Jurado, Garcia, Munoz, Jimenez & Munoz 2013). This 

concept is starting to appear in the literature, McKinstry (2013) comes to the conclusion that,  

 “Key to the success of future telemonitoring interventions will be establishment of the 

utility of different physiological measures and the construction of accurate predictive 

algorithms which can take into account individuals’ risk factors, patterns of symptom and 

physiological parameters and recent therapy changes.”  (McKinstry 2013, p. 1) 

 

 This research points out the need to identify the correct parameters for measurement and 

link them to real world outcomes so that we do not waste time and resources on poorly designed 

systems.  

 Medical research should drive the design. The results of this research highlight the value of 

designing the DM system based on the disease profile and medical research, rather than only the 

technology. The technology should be a tool and therefore is dependent on the requirements, in 

this case the medical and clinical profile for COPD.  

 A review of the literature for COPD exacerbation indicates that there are several design 

elements that can be added to the system and the DSS. Examples of indicators investigated in other 

research include respiratory effort, dyspnea, exercise tolerance and temperature, pulmonary 

function, prior history of exacerbation (Burgle, Nesme-Meyer, Chanez, Caillaud, Carré, Parez & 

Roche 2009; Dijk, Bemt, Haak-Rongen, Bischoff, Weel, Veen & Schermer 2011; Sundh, Janson, 

Lisspers, Stallberg & Montgomery 2012). Designing these with a measurement scale that allows 

for a threshold and decision process to be applied would allow comparative data to be analysed in 

the DSS and with ROC analysis.  

 As diagnostic devices mature other classifiers can be added. However, current designs need 

further development to increase the predictive capability of the system and to support their use and 
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continual development. Linking additional measures with SpO2 through DSS redesign has the 

potential to enhance accuracy and predictive capability. 

6. 4 Health policy considerations 

The patients in the measured cohort were monitored over an extended period of time based 

on clinical needs in a nationalized system that provides home health visits that are not time limited. 

In some countries, RM programmes include designs and payment structures that restrict the 

timeframe for use of the RM, as well as limiting the number of HH visits. In a seasonal and cyclic 

disease such as COPD, this approach limits the usefulness of these systems and may also decrease 

their value in cost and human benefit. Additional research is needed to inform governments and 

private payers of the value of these systems. The annual cost of providing RM has been measured 

by the VHA in the US as $1,600 per annum (Darkins, Ryan, Kobb, Foster, Edmonson, Wakefield 

& Lancaster 2008). One IP hospitalisation is on average, twice that amount. This is another area 

for further research so that public policy decisions are better able to develop service standards that 

include the long term cost of RM systems and value provided to patients.  

Chapter 7 presents the conclusions in relation to the hypothesis, the contribution to 

knowledge and identifies future areas for research. 

  



 

86 

 

CHAPTER 7 

 

CONCLUSIONS 

 

 

“There is great satisfaction in discovery.”  

Nancy E. Brown Connolly, 2013  
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7.0 Conclusion 

In conclusion, ROC analysis provides a robust and rigorous approach to measuring 

programme performance for technology-assisted DM models that use RM devices and as this 

research illustrates, can be successfully applied to this domain. Software applications to perform 

ROC analyses are readily available and easy to use. It is hoped that this research, by providing 

evidence of its value, will encourage additional effort to identify classifier performance, inform 

design for specific chronic diseases and provide commissioners and health systems with indicators 

to assist in choosing the most efficacious RM systems for their patients. 

7.1 Results in relationship to the hypothesis and objectives  

The hypothesis of this research has been confirmed. The process of ROC analysis is a 

valuable tool that can be applied to DM systems that use RM and does provide additional utility 

and a more accurate depiction of model performance. The results of this research meet the 

objectives outlined in Chapter 1 and are referenced below for clarity.  

 

Application of ROC analysis methods and processes are applied successfully to a DM 

system that uses RM devices. Chapter 4 outlines the methods and processes applied in this 

research and further identified a framework that can be used for other chronic disease programs 

that use RM devices. The process scales to small and large volumes of data. The hypothesis under 

test was that the accuracy of the alert, generated in the RM system, can be measured through ROC 

analysis and that ROC would provide broader utility in the assessment of RM systems. The 

validation of the hypothesis is illustrated in the difference between the results for accuracy using a 

confusion matrix and the ROC curve which is agnostic to skew distribution. Measurement based 

solely on the confusion matrix indicates a higher sensitivity and lower specificity for the 

Objective 1: Apply ROC analysis to evaluation of a RM system 
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classifiers, which arises from the skew-distribution (Krzanowski & Hand 2009). The ROC curve 

presents a more accurate measure of the specific performance of the system in relation to the 

classifiers for the COPD population in this study. Therefore, ROC analysis did provide additional 

utility to evaluate the RM model in a COPD population.   

 

ROC analysis predicts more clearly the performance of the DM model and classifiers when 

based on the patient outcome. The relationship of the biometric classifiers to patient outcomes is 

clearly depicted by ROC and will allow health professionals and planners to better evaluate which 

devices are needed to improve outcomes and provide value to the patient and healthcare system. 

The processes outlined in the methods and results sections, illustrate how event-based outcomes 

are associated with the signal that is generated. This process provides a measure of the accuracy of 

the alert in relation to real event-based patient outcomes and health resources. The degree of 

predictability for the RM system establishes a benchmark for the performance of the classifier and 

further identifies the best classifier for prediction of COPD exacerbation. ROC analysis provides a 

better method to predict the performance of the classifiers than the simple statistics of a 2 X 2 

classification table. One attribute of ROC that is very important to remote monitoring is its 

characteristic of being distribution free and “skew-agnostic”. Skew in the data for chronic disease 

is a factor in all chronic diseases monitored in the home environment and so ROC analysis 

provides a more accurate depiction of model performance. 

 

ROC analysis identifies SpO2 as the most predictive classifier for COPD exacerbation 

based on patient outcomes, and identifies SBP, DBP and PR as failed classifiers for COPD 

exacerbation based on patient outcomes. When classifier performance is linked to the patient 

Objective 3: Identify the predictive classifiers for COPD 

Objective 2: Analyse the DM model performance model based on patient outcomes 
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outcome, as in this research, appropriate classifiers can be identified. This should inform the 

design of RM systems. 

 

ROC analysis identifies an optimum SpO2 threshold of 85-86 as an average for all patients 

in this COPD population. Setting a threshold value is a clinical decision and as COPD is a 

progressive disease, lower thresholds may be necessary for patients with a more severe disease. 

The sensitivity and specificity of the threshold set to 87-88 is similar in value and Figure 5.5 and 

Table 5.5 indicate that the peak is fairly flat and a range of values may provide similar 

performance. Additional research is required to understand how patient specific clinical data, such 

as the FEV1, may be applied to provide more accurate prediction for patients as their disease 

progresses.  

 

  In addition to meeting the research objectives outlined above, a cost valuation 

methodology was developed that includes cost avoidance. As previously noted, the savings are 

apportioned to HH. This research identifies additional aspects for inclusion in cost valuation that 

can potentially improve the assessment of cost in relationship to the value provided. 

The results from this research impact on the design of the RM system and may improve 

predictive capability with design changes to the DSS. Design changes that incorporate disease 

specific measurement indices and appropriate classifiers may further enhance the capacity of the 

system to identify the likelihood of a COPD exacerbation. As previously noted, future design 

should incorporate disease specific indicators into the DM system while paying particular attention 

to the medical literature. This would ensure that critical measures for the specific disease are 

incorporated in a manner that aids clinicians in making treatment decisions and best utilises health 

Objective 4: Identify the optimum threshold for predictive classifiers 

Additional findings and observations in cost valuation and design 
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resources. The addition of specific classifiers for respiratory measurement, based on clinical 

factors such as cough, sputum, prior exacerbation and lung capacity, can also be evaluated using 

ROC analysis.  

7.2 Research contribution 

This research contributes to our knowledge by providing a new tool to be used in the 

evaluation of the performance of DM programmes that utilize RM devices. ROC analysis and 

processes have empirically illustrated the performance of the RM system, and the predictive 

capacity of the classifiers used to monitor patients with COPD. The use of ROC methods have 

enabled comparison of the performance of the classifiers at varying thresholds and the optimum 

operating point to be determined for SpO2. This type of analysis can assist in the development of 

policies and procedures related to the workflow for patient support services. It has further 

identified issues, such as the design of the respiratory questions that need changes so that they can 

be integrated into the clinical decision process in order to improve patient outcomes.  

Trade-offs in performance are more accurately and measurably predicted using ROC 

analysis. Vendor claims are verifiable based on an evaluation of system performance that are based 

on patient outcomes. Methods are applicable to programmes utilising RM systems for other 

chronic diseases and can be used to identify the performance of classifiers for specific medical 

conditions and the value that is added to the healthcare system can be quantified using cost 

evaluation processes. The generalizability of results to other health systems and countries is 

equally significant. Results enable purchasers, insurers, health systems and policy makers to 

evaluate the effectiveness of these systems during the planning process. This research further 

provides a substantive background with which to discuss the inclusion of ROC as an integral 
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component of the programme evaluation with their contracted vendors. Future research efforts that 

are needed to improve the predictive capacity of RM systems are presented in the next section.  

7.3 Future research recommendations 

Recommendations stemming from this research include both COPD specific 

recommendations and broader design recommendations for other areas of disease management.   

1. Redesign respiratory measures for COPD and integrate into the DSS. 

2. Develop and design classifiers based on medical research for known variables that lead to 

acute episodes by disease. 

3. Identify classifiers based on predictive performance for specified chronic disease states. 

4. Identify optimum thresholds by classifier and disease based on patient profiles and level of 

disease. 

5. Analysis of data patterns should be included in the research to identify critical factors in 

patient management. 

6. Focus research on specific chronic disease designs to improve predictive capacity and 

target resources to patients with the greatest need. 

7. Develop workflow analysis of design changes. 

8. Increase decision support research in the telehealth and remote monitoring areas to evaluate 

designs and systems for DM.  

9. Calculate the cost for multiple scenarios i.e. implementation, start-up, and on-going 

administration. 
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APPENDIX D 

 

Population and resource usage  

ID 
Monitored 

Days 

# Home 

Visits 
Pre A&E 

# A&E 

Monitored 

 

Δ 

A&E 

Pre IP 

Days 

# IP Days 

Monitored 

Δ 

IP 

1. . 454 88 1 1 -0 10 6 -4 

2.  194 11 5 3 -2 45 19 -26 

3.  440 35 1 0 -1 13 0 -13 

4.  439 102 2 1 -1 2 1 -1 

5.  439 76 3 1 -2 23 3 -20 

6.  439 41 4 1 -3 56 7 -49 

7.  351 126 5 0 -5 27 0 -27 

8.  351 86 1 1 -0 10 3 -7 

9.  348 56 1 0 -1 1 0 -1 

10.  330 95 3 2 -1 24 14 -10 

11.  319 62 0 0 0 12 1 -11 

12.  315 81 2 3 +1 26 0 -26 

13.  315 78 3 0 -3 19 15 -4 

14.  314 50 1 0 -1 4 0 -4 

15.  311 115 7 1 -6 61 7 -54 

16.  294 47 1 0 -1 59 0 -59 

17.  293 12 5 0 -5 11 0 -11 

18.  292 58 1 1 0 4 3 -1 

19.  279 20 1 1 0 4 6 +2 

20.  273 21 3 0 -3 27 0 -27 

21.  272 77 3 1 -2 12 4 -8 

22.  271 14 1 0 -1 9 0 -9 

23.  259 39 2 0 -2 8 0 -8 

24.  251 6 3 0 -3 3 0 -3 

25.  245 23 1 4 +3 16 80 +64 

26.  244 15 1 0 -1 2 0 -2 

27.  222 22 2 0 -2 8 0 -8 

28.  210 53 11 8 -3 290 154 -136 

29.  196 25 5 0 -5 29 0 -29 

30.  195 69 1 6 +5 3 45 +42 

31.  195 49 1 0 -1 13 2 -11 

32.  190 34 2 2 0 16 32 +16 

33.  189 23 2 4 +2 12 16 +4 

34.  183 25 1 1 0 5 9 +4 

TOTAL  1734 86 42 -44 864 427 -437 
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APPENDIX E 

 

 Criterion Values - SpO2 
 Criterion  

SpO2 
Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 

≥0 100.00 0.00 1.00 
 

10.3 9.6 - 11.1 

  
-0.0792 

>0 100.00 0.017 1.00 0.00 10.3 9.6 - 11.1 100.0 2.5 - 100.0 -0.0792 

>1 100.00 0.051 1.00 0.00 10.3 9.6 - 11.1 100.0 29.2 - 100.0 -0.0792 

>2 99.85 0.31 1.00 0.48 10.3 9.6 - 11.1 94.7 73.1 - 99.9 -0.0792 

>3 99.26 0.90 1.00 0.82 10.3 9.6 - 11.1 91.4 80.9 - 97.2 -0.0788 

>4 98.37 3.77 1.02 0.43 10.5 9.8 - 11.3 95.3 91.7 - 97.6 -0.0783 

>5 95.55 11.85 1.08 0.38 11.1 10.3 - 11.9 95.9 94.1 - 97.2 -0.0767 

>6 92.58 22.46 1.19 0.33 12.1 11.2 - 13.0 96.3 95.2 - 97.3 -0.0749 

>7 86.80 34.32 1.32 0.38 13.2 12.2 - 14.2 95.8 94.8 - 96.6 -0.0717 

>8 81.01 47.76 1.55 0.40 15.1 14.0 - 16.3 95.6 94.8 - 96.3 -0.0684 

>9 69.73 57.98 1.66 0.52 16.0 14.7 - 17.4 94.3 93.5 - 95.1 -0.0625 

>10 56.82 71.16 1.97 0.61 18.5 16.8 - 20.2 93.5 92.7 - 94.2 -0.0556 

>11 44.81 78.22 2.06 0.71 19.1 17.2 - 21.2 92.5 91.7 - 93.2 -0.0494 

>12 38.13 84.45 2.45 0.73 22.0 19.7 - 24.5 92.2 91.5 - 92.9 -0.0459 

>13 30.12 89.52 2.87 0.78 24.8 21.9 - 28.0 91.8 91.0 - 92.5 -0.0417 

>14 23.89 92.49 3.18 0.82 26.8 23.3 - 30.5 91.4 90.6 - 92.1 -0.0385 

>15 21.22 94.49 3.85 0.83 30.7 26.5 - 35.1 91.2 90.5 - 91.9 -0.0371 

>16 16.02 95.56 3.61 0.88 29.3 24.7 - 34.3 90.8 90.1 - 91.5 -0.0345 

>17 13.50 96.57 3.94 0.90 31.2 25.9 - 36.8 90.7 89.9 - 91.4 -0.0332 

>18 10.39 97.71 4.54 0.92 34.3 27.8 - 41.3 90.5 89.7 - 91.2 -0.0316 

>19 8.61 98.48 5.67 0.93 39.5 31.5 - 47.9 90.4 89.6 - 91.1 -0.0307 

>20 6.23 98.99 6.19 0.95 41.6 31.9 - 51.8 90.2 89.4 - 90.9 -0.0295 

>21 5.64 99.04 5.90 0.95 40.4 30.4 - 51.0 90.1 89.4 - 90.8 -0.0292 

>22 5.34 99.10 5.90 0.96 40.4 30.1 - 51.4 90.1 89.3 - 90.8 -0.0290 

>23 4.90 99.11 5.52 0.96 38.8 28.4 - 50.1 90.1 89.3 - 90.8 -0.0288 

>24 4.60 99.13 5.28 0.96 37.8 27.3 - 49.3 90.0 89.3 - 90.8 -0.0286 

>25 4.30 99.20 5.36 0.96 38.2 27.2 - 50.0 90.0 89.3 - 90.7 -0.0285 

>28 4.15 99.20 5.18 0.97 37.3 26.4 - 49.3 90.0 89.2 - 90.7 -0.0284 

>30 3.86 99.74 15.07 0.96 63.4 46.7 - 78.0 90.0 89.3 - 90.7 -0.0283 

>32 3.86 99.76 16.14 0.96 65.0 48.1 - 79.5 90.0 89.3 - 90.7 -0.0283 

>41 3.71 99.76 15.52 0.97 64.1 46.9 - 79.0 90.0 89.3 - 90.7 -0.0282 

>100 0.00 100.00  1.00   89.7 88.9 - 90.4 -0.0263 
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APPENDIX F 
 

Criterion values - SBP 

Criterion 

SBP Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 
<-33 0.00 100.00  1.00   85.8 85.1 - 86.5 -0.0361 

≤-33 0.00 99.99 0.00 1.00 0.0 0.0 - 97.5 85.8 85.1 - 86.5 -0.0361 

≤-19 0.00 99.98 0.00 1.00 0.0 0.0 - 97.5 85.8 85.1 - 86.5 -0.0361 

≤-13 0.00 99.97 0.00 1.00 0.0 0.0 - 70.8 85.8 85.1 - 86.5 -0.0361 

≤-12 0.00 99.94 0.00 1.00 0.0 0.0 - 52.2 85.8 85.1 - 86.5 -0.0361 

≤-10 0.070 99.93 1.01 1.00 14.3 0.2 - 61.9 85.8 85.1 - 86.5 -0.0362 

≤-8 0.14 99.91 1.51 1.00 20.0 2.5 - 55.6 85.8 85.1 - 86.5 -0.0362 

≤-7 0.14 99.88 1.21 1.00 16.7 2.1 - 48.4 85.8 85.1 - 86.5 -0.0362 

≤-5 0.14 99.87 1.10 1.00 15.4 1.7 - 47.0 85.8 85.1 - 86.5 -0.0362 

≤-4 0.14 99.85 0.93 1.00 13.3 1.7 - 40.5 85.8 85.1 - 86.5 -0.0362 

≤-3 0.14 99.84 0.87 1.00 12.5 1.4 - 39.5 85.8 85.1 - 86.5 -0.0362 

≤-2 0.21 99.81 1.14 1.00 15.8 3.2 - 40.4 85.8 85.1 - 86.5 -0.0363 

≤-1 0.21 99.78 0.96 1.00 13.6 2.8 - 35.6 85.8 85.1 - 86.5 -0.0363 

≤0 0.21 99.72 0.76 1.00 11.1 2.4 - 29.2 85.8 85.1 - 86.5 -0.0363 

≤1 0.21 99.70 0.70 1.00 10.3 2.1 - 27.8 85.8 85.1 - 86.5 -0.0363 

≤2 0.28 99.63 0.76 1.00 11.1 3.1 - 26.1 85.8 85.1 - 86.5 -0.0363 

≤3 0.28 99.61 0.71 1.00 10.5 2.9 - 24.8 85.8 85.1 - 86.5 -0.0363 

≤4 0.28 99.56 0.64 1.00 9.5 2.6 - 22.8 85.8 85.1 - 86.5 -0.0363 

≤5 0.28 99.55 0.62 1.00 9.3 2.6 - 22.1 85.8 85.1 - 86.5 -0.0363 

≤6 0.35 99.49 0.69 1.00 10.2 3.4 - 22.2 85.8 85.1 - 86.5 -0.0364 

≤7 0.35 99.45 0.64 1.00 9.6 3.2 - 21.2 85.8 85.1 - 86.5 -0.0364 

≤8 0.49 99.36 0.77 1.00 11.3 4.6 - 22.0 85.8 85.1 - 86.5 -0.0365 

≤9 0.49 99.34 0.74 1.00 10.9 4.5 - 21.3 85.8 85.1 - 86.5 -0.0365 

≤10 0.63 99.30 0.91 1.00 13.0 6.1 - 23.3 85.8 85.1 - 86.5 -0.0366 

≤11 0.63 99.27 0.87 1.00 12.5 5.9 - 22.4 85.8 85.1 - 86.5 -0.0366 

≤12 0.77 99.18 0.94 1.00 13.4 6.9 - 22.8 85.8 85.1 - 86.5 -0.0367 

≤13 0.91 99.12 1.04 1.00 14.6 8.0 - 23.7 85.8 85.1 - 86.5 -0.0368 

≤14 0.98 99.08 1.07 1.00 15.1 8.5 - 24.0 85.8 85.1 - 86.5 -0.0368 

≤15 1.05 99.04 1.10 1.00 15.3 8.8 - 24.0 85.8 85.1 - 86.5 -0.0369 

≤16 1.55 98.91 1.42 1.00 19.0 12.3 - 27.3 85.9 85.2 - 86.6 -0.0372 

≤17 1.69 98.87 1.50 0.99 19.8 13.1 - 28.1 85.9 85.2 - 86.6 -0.0373 

≤18 1.76 98.82 1.49 0.99 19.7 13.1 - 27.7 85.9 85.2 - 86.6 -0.0374 

≤19 1.90 98.76 1.53 0.99 20.1 13.7 - 28.0 85.9 85.2 - 86.6 -0.0375 

≤20 2.11 98.61 1.51 0.99 20.0 13.9 - 27.3 85.9 85.2 - 86.6 -0.0376 

≤21 2.18 98.54 1.49 0.99 19.7 13.8 - 26.9 85.9 85.2 - 86.6 -0.0377 

≤22 2.32 98.44 1.49 0.99 19.8 14.0 - 26.6 85.9 85.2 - 86.6 -0.0378 

≤23 2.53 98.32 1.50 0.99 19.9 14.3 - 26.5 85.9 85.2 - 86.6 -0.0379 

≤24 3.02 97.96 1.48 0.99 19.6 14.6 - 25.5 86.0 85.3 - 86.6 -0.0383 

≤25 3.45 97.78 1.55 0.99 20.4 15.5 - 26.1 86.0 85.3 - 86.7 -0.0386 

≤26 3.59 97.62 1.51 0.99 19.9 15.2 - 25.4 86.0 85.3 - 86.7 -0.0387 

≤27 4.01 97.32 1.50 0.99 19.8 15.3 - 24.9 86.0 85.3 - 86.7 -0.0390 

≤28 4.64 96.81 1.45 0.99 19.4 15.3 - 24.0 86.0 85.3 - 86.7 -0.0394 

≤29 4.99 96.46 1.41 0.98 18.9 15.1 - 23.2 86.0 85.3 - 86.7 -0.0397 

≤30 5.34 96.24 1.42 0.98 19.0 15.3 - 23.2 86.0 85.3 - 86.7 -0.0399 
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Criterion 

SBP Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 
≤31 5.84 95.74 1.37 0.98 18.4 15.0 - 22.3 86.0 85.3 - 86.7 -0.0403 

≤32 7.52 94.85 1.46 0.97 19.4 16.2 - 23.0 86.1 85.4 - 86.8 -0.0414 

≤33 7.95 94.43 1.43 0.97 19.1 16.0 - 22.5 86.1 85.4 - 86.8 -0.0417 

≤34 8.51 93.99 1.42 0.97 18.9 16.0 - 22.2 86.2 85.4 - 86.9 -0.0421 

≤35 9.42 93.49 1.45 0.97 19.3 16.4 - 22.4 86.2 85.5 - 86.9 -0.0428 

≤36 10.34 92.64 1.41 0.97 18.8 16.1 - 21.7 86.2 85.5 - 86.9 -0.0434 

≤37 11.46 92.13 1.46 0.96 19.4 16.8 - 22.2 86.3 85.6 - 87.0 -0.0442 

≤38 11.81 91.71 1.43 0.96 19.0 16.5 - 21.8 86.3 85.6 - 87.0 -0.0445 

≤39 12.31 91.24 1.40 0.96 18.8 16.4 - 21.5 86.3 85.6 - 87.0 -0.0448 

≤40 13.43 90.12 1.36 0.96 18.3 16.0 - 20.8 86.3 85.6 - 87.0 -0.0456 

≤41 14.35 89.49 1.36 0.96 18.4 16.1 - 20.8 86.4 85.6 - 87.1 -0.0463 

≤42 15.40 88.79 1.37 0.95 18.5 16.3 - 20.8 86.4 85.7 - 87.1 -0.0470 

≤43 16.24 88.24 1.38 0.95 18.6 16.4 - 20.8 86.5 85.7 - 87.2 -0.0476 

≤44 17.44 87.06 1.35 0.95 18.2 16.2 - 20.3 86.5 85.7 - 87.2 -0.0485 

≤45 18.71 86.31 1.37 0.94 18.4 16.4 - 20.5 86.5 85.8 - 87.3 -0.0494 

≤46 19.34 85.40 1.32 0.94 17.9 16.0 - 20.0 86.5 85.8 - 87.2 -0.0498 

≤47 20.46 84.74 1.34 0.94 18.1 16.3 - 20.1 86.6 85.8 - 87.3 -0.0506 

≤48 22.22 83.13 1.32 0.94 17.9 16.1 - 19.7 86.6 85.9 - 87.4 -0.0519 

≤49 22.86 82.29 1.29 0.94 17.6 15.9 - 19.4 86.6 85.8 - 87.3 -0.0523 

≤50 24.12 81.47 1.30 0.93 17.7 16.0 - 19.5 86.7 85.9 - 87.4 -0.0532 

≤51 25.18 80.76 1.31 0.93 17.8 16.1 - 19.5 86.7 86.0 - 87.5 -0.0540 

≤52 27.50 79.22 1.32 0.92 17.9 16.3 - 19.6 86.9 86.1 - 87.6 -0.0556 

≤53 28.90 78.38 1.34 0.91 18.1 16.5 - 19.7 87.0 86.2 - 87.7 -0.0566 

≤54 29.89 77.24 1.31 0.91 17.8 16.3 - 19.4 87.0 86.2 - 87.7 -0.0573 

≤55 31.08 76.52 1.32 0.90 17.9 16.4 - 19.5 87.1 86.3 - 87.8 -0.0582 

≤56 32.56 74.76 1.29 0.90 17.6 16.1 - 19.1 87.0 86.3 - 87.8 -0.0592 

≤57 33.83 73.73 1.29 0.90 17.5 16.1 - 19.0 87.1 86.3 - 87.9 -0.0601 

≤58 34.74 72.59 1.27 0.90 17.3 15.9 - 18.7 87.1 86.3 - 87.8 -0.0608 

≤59 35.44 71.63 1.25 0.90 17.1 15.7 - 18.5 87.1 86.2 - 87.8 -0.0613 

≤60 37.90 69.65 1.25 0.89 17.1 15.8 - 18.4 87.2 86.4 - 88.0 -0.0630 

≤61 38.75 68.76 1.24 0.89 17.0 15.7 - 18.3 87.2 86.4 - 88.0 -0.0637 

≤62 40.23 67.80 1.25 0.88 17.1 15.8 - 18.4 87.3 86.5 - 88.1 -0.0647 

≤63 41.28 66.69 1.24 0.88 17.0 15.7 - 18.3 87.3 86.5 - 88.1 -0.0655 

≤64 43.25 64.47 1.22 0.88 16.7 15.5 - 18.0 87.3 86.5 - 88.1 -0.0669 

≤65 43.88 63.19 1.19 0.89 16.4 15.3 - 17.7 87.2 86.4 - 88.0 -0.0673 

≤66 44.73 61.99 1.18 0.89 16.3 15.1 - 17.5 87.2 86.3 - 88.0 -0.0680 

≤67 45.85 60.71 1.17 0.89 16.1 15.0 - 17.3 87.2 86.3 - 88.0 -0.0688 

≤68 48.80 58.31 1.17 0.88 16.2 15.1 - 17.3 87.3 86.5 - 88.2 -0.0709 

≤69 49.58 56.77 1.15 0.89 15.9 14.8 - 17.0 87.2 86.3 - 88.1 -0.0714 

≤70 50.91 55.30 1.14 0.89 15.8 14.8 - 16.9 87.2 86.3 - 88.1 -0.0724 

≤71 51.76 54.07 1.13 0.89 15.7 14.7 - 16.8 87.2 86.2 - 88.1 -0.0730 

≤72 53.73 51.00 1.10 0.91 15.3 14.3 - 16.4 87.0 86.0 - 87.9 -0.0744 

≤73 55.27 49.63 1.10 0.90 15.3 14.4 - 16.3 87.1 86.1 - 88.0 -0.0755 

≤74 56.26 48.15 1.09 0.91 15.2 14.2 - 16.2 87.0 86.0 - 87.9 -0.0763 

≤75 58.02 46.64 1.09 0.90 15.2 14.3 - 16.2 87.1 86.1 - 88.0 -0.0775 

≤76 61.18 43.40 1.08 0.89 15.1 14.2 - 16.1 87.1 86.1 - 88.1 -0.0798 

≤77 62.45 41.94 1.08 0.90 15.1 14.2 - 16.0 87.1 86.1 - 88.1 -0.0807 
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Criterion 

SBP Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 
≤78 63.71 40.48 1.07 0.90 15.0 14.1 - 15.9 87.1 86.0 - 88.1 -0.0816 

≤79 65.12 39.17 1.07 0.89 15.0 14.1 - 15.9 87.2 86.1 - 88.2 -0.0826 

≤80 68.00 36.47 1.07 0.88 15.0 14.1 - 15.9 87.4 86.2 - 88.4 -0.0847 

≤81 69.20 35.08 1.07 0.88 15.0 14.1 - 15.8 87.3 86.2 - 88.4 -0.0855 

≤82 70.25 33.63 1.06 0.88 14.9 14.0 - 15.7 87.3 86.1 - 88.4 -0.0863 

≤83 71.59 32.18 1.06 0.88 14.8 14.0 - 15.7 87.3 86.1 - 88.4 -0.0873 

≤84 73.28 29.85 1.04 0.90 14.7 13.9 - 15.5 87.1 85.9 - 88.3 -0.0885 

≤85 74.33 28.66 1.04 0.90 14.7 13.9 - 15.5 87.1 85.8 - 88.3 -0.0892 

≤86 75.74 27.41 1.04 0.89 14.7 13.9 - 15.5 87.3 85.9 - 88.5 -0.0902 

≤87 76.51 26.11 1.04 0.90 14.6 13.8 - 15.4 87.1 85.7 - 88.3 -0.0908 

≤88 78.97 23.59 1.03 0.89 14.6 13.8 - 15.4 87.2 85.8 - 88.5 -0.0926 

≤89 79.96 22.30 1.03 0.90 14.5 13.7 - 15.3 87.1 85.6 - 88.5 -0.0933 

≤90 80.73 21.14 1.02 0.91 14.5 13.7 - 15.2 86.9 85.4 - 88.3 -0.0938 

≤91 82.14 19.65 1.02 0.91 14.4 13.7 - 15.2 87.0 85.4 - 88.4 -0.0948 

≤92 84.04 17.42 1.02 0.92 14.4 13.6 - 15.2 86.9 85.2 - 88.4 -0.0962 

≤93 85.16 16.41 1.02 0.90 14.4 13.6 - 15.2 87.0 85.3 - 88.6 -0.0970 

≤94 85.72 15.57 1.02 0.92 14.4 13.6 - 15.1 86.9 85.1 - 88.5 -0.0974 

≤95 86.50 14.63 1.01 0.92 14.3 13.6 - 15.1 86.8 84.9 - 88.5 -0.0980 

≤96 88.33 12.64 1.01 0.92 14.3 13.6 - 15.0 86.8 84.8 - 88.6 -0.0993 

≤97 88.89 11.83 1.01 0.94 14.3 13.5 - 15.0 86.6 84.5 - 88.5 -0.0997 

≤98 89.73 11.04 1.01 0.93 14.3 13.6 - 15.0 86.7 84.5 - 88.6 -0.100 

≤99 90.58 10.29 1.01 0.92 14.3 13.6 - 15.0 86.9 84.6 - 88.9 -0.101 

≤100 91.77 8.89 1.01 0.93 14.3 13.5 - 15.0 86.7 84.3 - 88.9 -0.102 

≤101 91.98 8.10 1.00 0.99 14.2 13.5 - 14.9 86.0 83.4 - 88.3 -0.102 

≤102 92.41 7.42 1.00 1.02 14.1 13.4 - 14.9 85.5 82.8 - 88.0 -0.102 

≤103 92.69 6.87 1.00 1.06 14.1 13.4 - 14.8 85.1 82.2 - 87.6 -0.102 

≤104 93.46 5.91 0.99 1.11 14.1 13.4 - 14.8 84.6 81.4 - 87.3 -0.103 

≤105 93.95 5.47 0.99 1.11 14.1 13.4 - 14.8 84.6 81.3 - 87.5 -0.103 

≤106 94.37 4.93 0.99 1.14 14.1 13.4 - 14.8 84.2 80.7 - 87.2 -0.104 

≤107 94.87 4.62 0.99 1.11 14.1 13.4 - 14.8 84.5 80.9 - 87.7 -0.104 

≤108 95.64 3.70 0.99 1.18 14.1 13.4 - 14.8 83.7 79.6 - 87.3 -0.105 

≤109 96.06 3.37 0.99 1.17 14.1 13.4 - 14.8 83.8 79.5 - 87.5 -0.105 

≤110 96.55 2.98 1.00 1.16 14.1 13.4 - 14.8 84.0 79.4 - 87.9 -0.105 

≤111 96.62 2.63 0.99 1.28 14.1 13.4 - 14.8 82.5 77.5 - 86.8 -0.105 

≤112 96.91 2.14 0.99 1.45 14.0 13.4 - 14.7 80.7 75.0 - 85.6 -0.105 

≤113 97.26 1.93 0.99 1.42 14.1 13.4 - 14.8 81.0 74.9 - 86.1 -0.106 

≤114 97.61 1.75 0.99 1.36 14.1 13.4 - 14.8 81.6 75.3 - 86.9 -0.106 

≤115 97.68 1.59 0.99 1.46 14.1 13.4 - 14.8 80.6 73.8 - 86.2 -0.106 

≤116 98.17 1.32 0.99 1.38 14.1 13.4 - 14.8 81.4 74.0 - 87.5 -0.106 

≤117 98.38 1.14 1.00 1.42 14.1 13.4 - 14.8 81.0 72.8 - 87.6 -0.107 

≤118 98.45 1.07 1.00 1.45 14.1 13.4 - 14.8 80.7 72.2 - 87.5 -0.107 

≤119 98.73 0.96 1.00 1.31 14.1 13.4 - 14.8 82.2 73.3 - 89.1 -0.107 

≤120 98.95 0.70 1.00 1.51 14.1 13.4 - 14.8 80.0 69.1 - 88.4 -0.107 

≤121 99.16 0.59 1.00 1.43 14.1 13.5 - 14.8 81.0 69.1 - 89.8 -0.107 

≤122 99.23 0.55 1.00 1.42 14.1 13.5 - 14.8 81.0 68.5 - 90.2 -0.107 

≤123 99.44 0.48 1.00 1.18 14.2 13.5 - 14.9 83.7 70.3 - 92.7 -0.107 

≤124 99.51 0.41 1.00 1.21 14.2 13.5 - 14.9 83.3 68.4 - 93.1 -0.107 
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Criterion 

SBP Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 
≤125 99.58 0.32 1.00 1.30 14.2 13.5 - 14.9 82.4 65.2 - 93.4 -0.107 

≤126 99.58 0.29 1.00 1.45 14.1 13.5 - 14.8 80.6 62.2 - 92.7 -0.107 

≤127 99.72 0.26 1.00 1.10 14.2 13.5 - 14.9 84.6 65.1 - 95.6 -0.107 

≤128 99.79 0.19 1.00 1.14 14.2 13.5 - 14.9 84.2 59.6 - 96.8 -0.108 

≤129 99.79 0.17 1.00 1.21 14.2 13.5 - 14.9 83.3 57.7 - 96.6 -0.108 

≤130 99.86 0.16 1.00 0.87 14.2 13.5 - 14.9 87.5 60.5 - 98.6 -0.108 

≤131 99.86 0.14 1.00 1.01 14.2 13.5 - 14.9 85.7 55.8 - 98.4 -0.108 

≤132 99.93 0.13 1.00 0.55 14.2 13.5 - 14.9 91.7 61.5 - 99.8 -0.108 

≤133 99.93 0.12 1.00 0.61 14.2 13.5 - 14.9 90.9 58.7 - 99.8 -0.108 

≤135 99.93 0.10 1.00 0.67 14.2 13.5 - 14.9 90.0 55.5 - 99.7 -0.108 

≤136 99.93 0.093 1.00 0.76 14.2 13.5 - 14.9 88.9 51.8 - 99.7 -0.108 

≤140 99.93 0.081 1.00 0.87 14.2 13.5 - 14.9 87.5 47.3 - 99.7 -0.108 

≤142 99.93 0.070 1.00 1.01 14.2 13.5 - 14.9 85.7 42.1 - 99.6 -0.108 

≤143 99.93 0.058 1.00 1.21 14.2 13.5 - 14.9 83.3 35.9 - 99.6 -0.108 

≤146 100.00 0.046 1.00 0.00 14.2 13.5 - 14.9 100.0 39.8 - 100.0 -0.108 

≤150 100.00 0.035 1.00 0.00 14.2 13.5 - 14.9 100.0 29.2 - 100.0 -0.108 

≤155 100.00 0.023 1.00 0.00 14.2 13.5 - 14.9 100.0 15.8 - 100.0 -0.108 

≤159 100.00 0.012 1.00 0.00 14.2 13.5 - 14.9 100.0 2.5 - 100.0 -0.108 

≤162 100.00 0.00 1.00  14.2 13.5 - 14.9   -0.108 
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APPENDIX G 
 

Criterion values - DBP  
Criterion 

DBP 
Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI 

<-544 0.00 100.00   1.00     86.6 85.9 - 87.3 

≤-544 0.074 100.00   1.00 100.0 0.0 - 100.0 86.6 85.9 - 87.3 

≤2 0.074 99.99 6.47 1.00 50.0 0.04 - 100.0 86.6 85.9 - 87.3 

≤10 0.074 99.97 2.16 1.00 25.0 0.2 - 86.8 86.6 85.9 - 87.3 

≤11 0.074 99.95 1.62 1.00 20.0 0.5 - 71.6 86.6 85.9 - 87.3 

≤17 0.074 99.92 0.92 1.00 12.5 0.2 - 56.0 86.6 85.9 - 87.3 

≤18 0.074 99.90 0.72 1.00 10.0 0.2 - 47.0 86.6 85.9 - 87.3 

≤20 0.074 99.88 0.65 1.00 9.1 0.2 - 43.4 86.6 85.9 - 87.3 

≤22 0.074 99.87 0.59 1.00 8.3 0.2 - 38.5 86.6 85.9 - 87.3 

≤24 0.074 99.85 0.50 1.00 7.1 0.2 - 33.9 86.6 85.9 - 87.3 

≤26 0.15 99.83 0.86 1.00 11.8 1.5 - 36.4 86.6 85.9 - 87.3 

≤27 0.22 99.80 1.14 1.00 15.0 3.2 - 37.9 86.6 85.9 - 87.3 

≤28 0.22 99.79 1.08 1.00 14.3 2.9 - 37.0 86.6 85.9 - 87.3 

≤30 0.22 99.78 1.02 1.00 13.6 2.9 - 34.9 86.6 85.9 - 87.3 

≤31 0.22 99.77 0.97 1.00 13.0 2.8 - 33.6 86.6 85.9 - 87.3 

≤34 0.22 99.76 0.92 1.00 12.5 2.5 - 32.9 86.6 85.9 - 87.3 

≤36 0.30 99.72 1.08 1.00 14.3 4.0 - 32.7 86.6 85.9 - 87.3 

≤37 0.37 99.71 1.29 1.00 16.7 5.5 - 35.1 86.6 85.9 - 87.3 

≤39 0.37 99.69 1.20 1.00 15.6 5.2 - 33.1 86.6 85.9 - 87.3 

≤40 0.37 99.68 1.15 1.00 15.2 5.1 - 31.9 86.6 85.9 - 87.3 

≤41 0.37 99.67 1.11 1.00 14.7 4.8 - 31.4 86.6 85.9 - 87.3 

≤42 0.37 99.64 1.04 1.00 13.9 4.7 - 29.5 86.6 85.9 - 87.3 

≤43 0.37 99.63 1.01 1.00 13.5 4.4 - 29.0 86.6 85.9 - 87.3 

≤45 0.37 99.62 0.98 1.00 13.2 4.4 - 28.1 86.6 85.9 - 87.3 

≤46 0.37 99.60 0.92 1.00 12.5 4.2 - 26.8 86.6 85.9 - 87.3 

≤47 0.37 99.57 0.87 1.00 11.9 4.0 - 25.6 86.6 85.9 - 87.3 

≤48 0.45 99.54 0.97 1.00 13.0 4.9 - 26.3 86.6 85.9 - 87.3 

≤50 0.45 99.53 0.95 1.00 12.8 4.8 - 25.9 86.6 85.9 - 87.3 

≤51 0.45 99.48 0.86 1.00 11.8 4.4 - 24.0 86.6 85.9 - 87.3 

≤52 0.52 99.42 0.91 1.00 12.3 5.0 - 23.8 86.6 85.9 - 87.3 

≤54 0.52 99.41 0.89 1.00 12.1 5.0 - 23.3 86.6 85.9 - 87.3 

≤55 0.52 99.40 0.87 1.00 11.9 4.9 - 23.0 86.6 85.9 - 87.3 

≤56 0.60 99.33 0.89 1.00 12.1 5.3 - 22.6 86.6 85.9 - 87.3 

≤57 0.60 99.31 0.86 1.00 11.8 5.2 - 21.9 86.6 85.9 - 87.3 

≤58 0.60 99.29 0.83 1.00 11.4 5.1 - 21.3 86.6 85.9 - 87.3 

≤59 0.60 99.26 0.81 1.00 11.1 4.9 - 20.7 86.6 85.9 - 87.3 

≤60 0.67 99.26 0.91 1.00 12.3 5.8 - 22.1 86.6 85.9 - 87.3 

≤61 0.74 99.24 0.98 1.00 13.2 6.5 - 22.9 86.6 85.9 - 87.3 

≤63 0.82 99.21 1.03 1.00 13.8 7.1 - 23.3 86.6 85.9 - 87.3 

≤64 0.82 99.17 0.99 1.00 13.3 6.8 - 22.5 86.6 85.9 - 87.3 

≤65 0.89 99.14 1.03 1.00 13.8 7.3 - 22.9 86.6 85.9 - 87.3 

≤66 0.97 99.13 1.11 1.00 14.6 8.0 - 23.7 86.6 85.9 - 87.3 

≤67 0.97 99.10 1.08 1.00 14.3 7.8 - 23.2 86.6 85.9 - 87.3 

≤68 0.97 99.04 1.01 1.00 13.5 7.4 - 22.1 86.6 85.9 - 87.3 
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Criterion 
DBP 

Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI 

≤69 1.04 99.02 1.06 1.00 14.1 7.9 - 22.6 86.6 85.9 - 87.3 

≤70 1.04 98.99 1.03 1.00 13.7 7.7 - 22.0 86.6 85.9 - 87.3 

≤71 1.19 98.95 1.14 1.00 15.0 8.8 - 23.1 86.6 85.9 - 87.3 

≤72 1.19 98.88 1.07 1.00 14.2 8.3 - 22.0 86.6 85.9 - 87.3 

≤74 1.34 98.83 1.14 1.00 15.0 9.1 - 22.7 86.6 85.9 - 87.3 

≤75 1.34 98.80 1.12 1.00 14.8 9.0 - 22.3 86.6 85.9 - 87.3 

≤76 1.64 98.76 1.32 1.00 16.9 10.9 - 24.5 86.7 86.0 - 87.3 

≤77 1.71 98.71 1.33 1.00 17.0 11.1 - 24.5 86.7 86.0 - 87.3 

≤78 1.86 98.64 1.37 0.99 17.5 11.6 - 24.7 86.7 86.0 - 87.3 

≤79 1.93 98.62 1.40 0.99 17.8 12.0 - 25.0 86.7 86.0 - 87.3 

≤80 2.08 98.49 1.38 0.99 17.6 12.0 - 24.4 86.7 86.0 - 87.3 

≤81 2.08 98.45 1.34 0.99 17.2 11.7 - 23.9 86.7 86.0 - 87.3 

≤82 2.08 98.40 1.30 1.00 16.8 11.4 - 23.3 86.7 86.0 - 87.3 

≤83 2.23 98.34 1.35 0.99 17.2 11.9 - 23.7 86.7 86.0 - 87.3 

≤84 2.38 98.25 1.36 0.99 17.4 12.2 - 23.7 86.7 86.0 - 87.3 

≤85 2.46 98.19 1.36 0.99 17.4 12.3 - 23.5 86.7 86.0 - 87.3 

≤86 2.46 98.15 1.33 0.99 17.0 12.0 - 23.1 86.7 86.0 - 87.3 

≤87 2.68 98.08 1.39 0.99 17.7 12.7 - 23.7 86.7 86.0 - 87.4 

≤88 2.75 97.92 1.32 0.99 17.0 12.2 - 22.6 86.7 86.0 - 87.4 

≤89 2.83 97.85 1.31 0.99 16.9 12.2 - 22.4 86.7 86.0 - 87.4 

≤90 2.98 97.74 1.32 0.99 16.9 12.4 - 22.4 86.7 86.0 - 87.4 

≤91 3.12 97.62 1.31 0.99 16.9 12.4 - 22.1 86.7 86.0 - 87.4 

≤92 3.57 97.26 1.30 0.99 16.8 12.6 - 21.6 86.7 86.0 - 87.4 

≤93 3.79 97.15 1.33 0.99 17.1 13.0 - 21.8 86.7 86.0 - 87.4 

≤94 4.02 96.93 1.31 0.99 16.8 12.9 - 21.4 86.7 86.0 - 87.4 

≤95 4.24 96.70 1.28 0.99 16.6 12.8 - 20.9 86.7 86.0 - 87.4 

≤96 5.43 95.94 1.34 0.99 17.1 13.7 - 21.1 86.8 86.1 - 87.4 

≤97 6.32 95.64 1.45 0.98 18.3 14.9 - 22.1 86.8 86.2 - 87.5 

≤98 6.62 95.36 1.43 0.98 18.1 14.8 - 21.8 86.8 86.2 - 87.5 

≤99 7.22 94.93 1.42 0.98 18.0 14.9 - 21.5 86.9 86.2 - 87.5 

≤100 7.89 94.19 1.36 0.98 17.3 14.4 - 20.6 86.9 86.2 - 87.5 

≤101 8.26 93.76 1.32 0.98 17.0 14.2 - 20.1 86.9 86.2 - 87.5 

≤102 8.71 93.28 1.30 0.98 16.7 14.0 - 19.7 86.9 86.2 - 87.5 

≤103 9.45 92.76 1.31 0.98 16.8 14.2 - 19.7 86.9 86.2 - 87.6 

≤104 10.79 91.71 1.30 0.97 16.8 14.3 - 19.4 86.9 86.2 - 87.6 

≤105 11.38 91.06 1.27 0.97 16.5 14.1 - 19.0 86.9 86.2 - 87.6 

≤106 12.35 90.38 1.28 0.97 16.6 14.3 - 19.0 87.0 86.2 - 87.6 

≤107 13.62 89.78 1.33 0.96 17.1 14.9 - 19.5 87.0 86.3 - 87.7 

≤108 15.55 88.43 1.34 0.95 17.2 15.1 - 19.5 87.1 86.4 - 87.8 

≤109 16.67 87.70 1.35 0.95 17.3 15.3 - 19.5 87.2 86.5 - 87.9 

≤110 18.08 86.86 1.38 0.94 17.5 15.6 - 19.7 87.3 86.5 - 88.0 

≤111 19.42 85.81 1.37 0.94 17.5 15.6 - 19.5 87.3 86.6 - 88.0 

≤112 22.47 83.80 1.39 0.93 17.7 15.9 - 19.6 87.5 86.8 - 88.2 

≤113 23.36 82.54 1.34 0.93 17.1 15.4 - 19.0 87.4 86.7 - 88.2 

≤114 24.63 81.23 1.31 0.93 16.9 15.2 - 18.6 87.5 86.7 - 88.2 

≤115 26.04 79.86 1.29 0.93 16.7 15.1 - 18.3 87.5 86.7 - 88.2 

≤116 29.02 77.18 1.27 0.92 16.4 15.0 - 18.0 87.5 86.8 - 88.3 
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Criterion 
DBP 

Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI 

≤117 29.99 75.56 1.23 0.93 15.9 14.5 - 17.4 87.5 86.7 - 88.2 

≤118 31.32 74.03 1.21 0.93 15.7 14.4 - 17.2 87.5 86.7 - 88.2 

≤119 33.04 72.11 1.18 0.93 15.5 14.2 - 16.9 87.4 86.7 - 88.2 

≤120 37.72 68.35 1.19 0.91 15.6 14.3 - 16.9 87.6 86.8 - 88.4 

≤121 40.10 66.29 1.19 0.90 15.5 14.4 - 16.8 87.7 86.9 - 88.5 

≤122 42.71 64.09 1.19 0.89 15.5 14.4 - 16.7 87.9 87.0 - 88.6 

≤123 44.27 62.07 1.17 0.90 15.3 14.2 - 16.5 87.8 87.0 - 88.6 

≤124 47.77 58.09 1.14 0.90 15.0 13.9 - 16.1 87.8 86.9 - 88.6 

≤125 49.40 56.08 1.12 0.90 14.8 13.8 - 15.9 87.8 86.9 - 88.6 

≤126 51.49 53.65 1.11 0.90 14.7 13.7 - 15.7 87.7 86.8 - 88.6 

≤127 53.13 51.45 1.09 0.91 14.5 13.5 - 15.5 87.6 86.7 - 88.5 

≤128 56.03 47.08 1.06 0.93 14.1 13.1 - 15.0 87.4 86.4 - 88.3 

≤129 57.74 44.94 1.05 0.94 14.0 13.1 - 14.9 87.3 86.3 - 88.3 

≤130 59.30 42.90 1.04 0.95 13.8 13.0 - 14.8 87.2 86.2 - 88.2 

≤131 61.01 40.76 1.03 0.96 13.7 12.9 - 14.6 87.1 86.0 - 88.1 

≤132 63.91 37.00 1.01 0.98 13.6 12.7 - 14.4 86.9 85.8 - 88.0 

≤133 65.62 34.82 1.01 0.99 13.5 12.7 - 14.3 86.8 85.6 - 87.9 

≤134 67.63 32.92 1.01 0.98 13.5 12.7 - 14.3 86.8 85.6 - 87.9 

≤135 69.12 30.96 1.00 1.00 13.4 12.6 - 14.2 86.6 85.4 - 87.8 

≤136 73.51 26.88 1.01 0.99 13.5 12.7 - 14.3 86.8 85.4 - 88.0 

≤137 75.15 25.22 1.00 0.99 13.5 12.7 - 14.2 86.8 85.4 - 88.1 

≤138 77.01 23.15 1.00 0.99 13.4 12.7 - 14.2 86.7 85.2 - 88.0 

≤139 79.02 21.06 1.00 1.00 13.4 12.7 - 14.2 86.6 85.1 - 88.1 

≤140 82.89 17.07 1.00 1.00 13.4 12.7 - 14.1 86.6 84.9 - 88.2 

≤141 84.90 15.44 1.00 0.98 13.4 12.7 - 14.2 86.9 85.1 - 88.5 

≤142 86.68 13.81 1.01 0.96 13.5 12.7 - 14.2 87.0 85.1 - 88.7 

≤143 87.95 12.23 1.00 0.99 13.4 12.7 - 14.1 86.8 84.7 - 88.6 

≤144 90.18 9.47 1.00 1.04 13.3 12.7 - 14.1 86.2 83.8 - 88.3 

≤145 91.00 8.35 0.99 1.08 13.3 12.6 - 14.0 85.7 83.2 - 88.0 

≤146 91.89 7.39 0.99 1.10 13.3 12.6 - 14.0 85.5 82.8 - 87.9 

≤147 92.71 6.21 0.99 1.17 13.3 12.6 - 14.0 84.6 81.6 - 87.4 

≤148 94.49 4.65 0.99 1.18 13.3 12.6 - 14.0 84.5 81.0 - 87.6 

≤149 95.39 3.86 0.99 1.20 13.3 12.6 - 14.0 84.4 80.4 - 87.8 

≤150 96.13 3.16 0.99 1.22 13.3 12.6 - 14.0 84.1 79.7 - 87.9 

≤151 96.95 2.57 1.00 1.19 13.3 12.7 - 14.0 84.5 79.5 - 88.6 

≤152 97.92 1.74 1.00 1.20 13.4 12.7 - 14.0 84.4 78.2 - 89.3 

≤153 98.36 1.36 1.00 1.21 13.4 12.7 - 14.0 84.3 77.2 - 89.9 

≤154 98.59 1.07 1.00 1.32 13.4 12.7 - 14.0 83.0 74.8 - 89.5 

≤155 98.74 0.82 1.00 1.55 13.3 12.7 - 14.0 80.7 70.9 - 88.3 

≤156 99.11 0.51 1.00 1.76 13.3 12.7 - 14.0 78.6 65.4 - 88.5 

≤157 99.18 0.40 1.00 2.03 13.3 12.7 - 14.0 76.1 61.2 - 87.4 

≤158 99.26 0.36 1.00 2.09 13.3 12.7 - 14.0 75.6 59.5 - 87.8 

≤159 99.48 0.29 1.00 1.81 13.4 12.7 - 14.0 78.1 60.0 - 90.7 

≤160 99.55 0.20 1.00 2.28 13.4 12.7 - 14.0 73.9 51.0 - 90.1 

≤161 99.63 0.17 1.00 2.16 13.4 12.7 - 14.1 75.0 50.9 - 91.3 

≤162 99.63 0.15 1.00 2.49 13.4 12.7 - 14.1 72.2 46.5 - 90.3 

≤164 99.70 0.12 1.00 2.59 13.4 12.7 - 14.1 71.4 40.7 - 92.1 
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Criterion 
DBP 

Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI 

≤166 99.85 0.092 1.00 1.62 13.4 12.7 - 14.1 80.0 42.2 - 97.9 

≤167 99.85 0.081 1.00 1.85 13.4 12.7 - 14.1 77.8 37.5 - 97.7 

≤168 99.85 0.069 1.00 2.16 13.4 12.7 - 14.1 75.0 32.1 - 97.5 

≤170 99.85 0.058 1.00 2.59 13.4 12.7 - 14.1 71.4 25.8 - 97.2 

≤171 99.93 0.046 1.00 1.62 13.4 12.7 - 14.1 80.0 28.4 - 99.5 

≤174 99.93 0.035 1.00 2.16 13.4 12.7 - 14.1 75.0 19.4 - 99.4 

≤175 99.93 0.023 1.00 3.23 13.4 12.7 - 14.1 66.7 9.4 - 99.2 

≤176 100.00 0.023 1.00 0.00 13.4 12.7 - 14.1 100.0 2.5 - 100.0 

≤178 100.00 0.012 1.00 0.00 13.4 12.7 - 14.1 100.0 0.0 - 100.0 

≤180 100.00 0.00 1.00   13.4 12.7 - 14.1     
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APPENDIX H 
 

Criterion values – pulse rate   
Criterion 
Pulse 

Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 

<8 0.00 100.00  1.00   87.1 86.2 - 87.9 -0.0330 
≤8 0.12 99.96 3.37 1.00 33.3 0.8 - 90.6 87.1 86.2 - 87.9 -0.0330 

≤18 0.36 99.96 10.10 1.00 60.0 14.7 - 94.7 87.1 86.3 - 87.9 -0.0332 

≤26 0.36 99.95 6.73 1.00 50.0 11.8 - 88.2 87.1 86.3 - 87.9 -0.0332 

≤34 0.48 99.95 8.98 1.00 57.1 18.4 - 90.1 87.1 86.3 - 87.9 -0.0333 

≤40 1.08 99.95 20.20 0.99 75.0 42.8 - 94.5 87.2 86.3 - 88.0 -0.0337 

≤47 1.20 99.93 16.84 0.99 71.4 41.9 - 91.6 87.2 86.4 - 88.0 -0.0337 

≤53 2.17 99.89 20.20 0.98 75.0 52.8 - 90.5 87.3 86.5 - 88.1 -0.0343 

≤55 2.29 99.89 21.32 0.98 76.0 54.4 - 90.9 87.3 86.5 - 88.1 -0.0344 

≤58 3.13 99.86 21.89 0.97 76.5 58.5 - 89.4 87.4 86.6 - 88.2 -0.0349 

≤63 3.49 99.82 19.53 0.97 74.4 57.6 - 87.1 87.4 86.6 - 88.2 -0.0352 

≤67 3.61 99.82 20.20 0.97 75.0 58.6 - 87.4 87.5 86.6 - 88.3 -0.0352 

≤68 5.17 99.77 22.27 0.95 76.8 63.6 - 87.0 87.6 86.8 - 88.4 -0.0362 

≤71 5.29 99.77 22.79 0.95 77.2 64.2 - 87.3 87.6 86.8 - 88.4 -0.0363 

≤72 7.10 99.61 18.06 0.93 72.8 61.8 - 82.1 87.8 87.0 - 88.6 -0.0375 

≤75 7.34 99.61 18.67 0.93 73.5 62.7 - 82.6 87.9 87.0 - 88.7 -0.0376 

≤77 10.35 99.30 14.85 0.90 68.8 59.9 - 76.8 88.2 87.4 - 89.0 -0.0395 

≤78 10.47 99.30 15.02 0.90 69.0 60.2 - 77.0 88.2 87.4 - 89.0 -0.0396 

≤80 12.52 98.39 7.78 0.89 53.6 46.3 - 60.8 88.3 87.5 - 89.1 -0.0409 

≤82 12.64 98.39 7.86 0.89 53.8 46.6 - 61.0 88.4 87.5 - 89.1 -0.0410 

≤84 13.48 97.02 4.52 0.89 40.1 34.3 - 46.2 88.3 87.5 - 89.1 -0.0415 

≤85 13.84 97.02 4.64 0.89 40.8 35.0 - 46.8 88.3 87.5 - 89.1 -0.0418 

≤87 13.96 97.02 4.68 0.89 41.0 35.2 - 47.0 88.4 87.5 - 89.2 -0.0418 

≤88 16.13 95.78 3.82 0.88 36.2 31.3 - 41.4 88.5 87.7 - 89.3 -0.0432 

≤90 16.37 95.78 3.88 0.87 36.6 31.6 - 41.7 88.5 87.7 - 89.3 -0.0434 

≤91 18.05 93.85 2.94 0.87 30.4 26.3 - 34.6 88.5 87.7 - 89.3 -0.0445 

≤92 18.17 93.85 2.96 0.87 30.5 26.5 - 34.8 88.5 87.7 - 89.3 -0.0446 

≤93 18.41 93.85 3.00 0.87 30.8 26.8 - 35.0 88.6 87.7 - 89.4 -0.0447 

≤94 20.34 91.33 2.35 0.87 25.8 22.5 - 29.4 88.5 87.7 - 89.3 -0.0460 

≤95 20.70 91.33 2.39 0.87 26.2 22.9 - 29.7 88.6 87.7 - 89.4 -0.0462 

≤96 20.82 91.33 2.40 0.87 26.3 23.0 - 29.8 88.6 87.7 - 89.4 -0.0463 

≤97 22.98 87.96 1.91 0.88 22.1 19.4 - 25.0 88.5 87.6 - 89.3 -0.0478 

≤98 22.98 87.94 1.91 0.88 22.1 19.3 - 25.0 88.5 87.6 - 89.3 -0.0478 

≤99 24.91 83.52 1.51 0.90 18.3 16.1 - 20.7 88.2 87.3 - 89.1 -0.0491 

≤100 25.03 83.51 1.52 0.90 18.4 16.2 - 20.8 88.2 87.3 - 89.1 -0.0492 

≤101 25.03 83.49 1.52 0.90 18.4 16.2 - 20.8 88.2 87.3 - 89.1 -0.0492 

≤102 29.24 78.43 1.36 0.90 16.8 14.9 - 18.8 88.2 87.3 - 89.1 -0.0519 

≤103 29.36 78.43 1.36 0.90 16.8 14.9 - 18.8 88.2 87.3 - 89.1 -0.0520 

≤104 33.33 73.18 1.24 0.91 15.6 13.9 - 17.3 88.1 87.1 - 89.0 -0.0547 

≤105 33.81 73.14 1.26 0.90 15.8 14.1 - 17.5 88.2 87.2 - 89.1 -0.0550 

≤106 34.54 73.14 1.29 0.90 16.0 14.4 - 17.8 88.3 87.3 - 89.2 -0.0554 

≤107 41.28 67.76 1.28 0.87 16.0 14.4 - 17.6 88.6 87.6 - 89.5 -0.0598 

≤108 41.76 67.76 1.30 0.86 16.1 14.6 - 17.8 88.7 87.7 - 89.6 -0.0601 

≤109 44.89 62.76 1.21 0.88 15.2 13.8 - 16.7 88.5 87.4 - 89.4 -0.0622 
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Criterion 
Pulse 

Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 

≤110 45.01 62.74 1.21 0.88 15.2 13.8 - 16.7 88.5 87.4 - 89.5 -0.0623 

≤111 49.58 57.22 1.16 0.88 14.7 13.4 - 16.0 88.4 87.3 - 89.5 -0.0653 

≤112 50.06 57.22 1.17 0.87 14.8 13.5 - 16.2 88.5 87.4 - 89.5 -0.0656 

≤113 54.99 51.88 1.14 0.87 14.5 13.3 - 15.8 88.6 87.4 - 89.7 -0.0689 

≤115 59.21 46.84 1.11 0.87 14.2 13.0 - 15.4 88.5 87.3 - 89.7 -0.0716 

≤116 59.57 46.82 1.12 0.86 14.3 13.1 - 15.5 88.6 87.4 - 89.8 -0.0719 

≤117 64.14 41.74 1.10 0.86 14.1 13.0 - 15.2 88.7 87.4 - 89.9 -0.0749 

≤118 64.26 41.74 1.10 0.86 14.1 13.0 - 15.2 88.7 87.4 - 89.9 -0.0750 

≤119 67.99 36.40 1.07 0.88 13.7 12.7 - 14.8 88.4 87.1 - 89.7 -0.0774 

≤120 71.60 31.58 1.05 0.90 13.4 12.5 - 14.5 88.2 86.7 - 89.6 -0.0798 

≤121 71.96 31.58 1.05 0.89 13.5 12.5 - 14.6 88.3 86.9 - 89.7 -0.0801 

≤122 75.33 27.20 1.03 0.91 13.3 12.4 - 14.3 88.1 86.5 - 89.6 -0.0823 

≤123 75.57 27.20 1.04 0.90 13.4 12.4 - 14.4 88.2 86.6 - 89.7 -0.0825 

≤124 78.82 23.14 1.03 0.92 13.2 12.3 - 14.2 88.0 86.3 - 89.7 -0.0846 

≤125 81.59 19.12 1.01 0.96 13.0 12.1 - 14.0 87.5 85.5 - 89.3 -0.0865 

≤126 81.83 19.12 1.01 0.95 13.1 12.2 - 14.0 87.6 85.7 - 89.4 -0.0866 

≤127 84.48 15.53 1.00 1.00 12.9 12.0 - 13.9 87.1 84.8 - 89.1 -0.0884 

≤128 86.64 12.28 0.99 1.09 12.8 11.9 - 13.7 86.1 83.5 - 88.4 -0.0898 

≤129 88.81 9.56 0.98 1.17 12.7 11.9 - 13.6 85.2 82.2 - 87.9 -0.0913 

≤130 88.93 9.51 0.98 1.16 12.7 11.9 - 13.6 85.3 82.2 - 87.9 -0.0913 

≤131 90.37 7.20 0.97 1.34 12.6 11.8 - 13.5 83.4 79.8 - 86.6 -0.0923 

≤132 91.70 5.75 0.97 1.44 12.6 11.8 - 13.5 82.4 78.2 - 86.0 -0.0932 

≤133 93.26 4.40 0.98 1.53 12.7 11.8 - 13.5 81.5 76.6 - 85.7 -0.0942 

≤134 93.74 3.40 0.97 1.84 12.6 11.8 - 13.4 78.5 72.8 - 83.5 -0.0945 

≤135 94.58 2.61 0.97 2.08 12.6 11.8 - 13.5 76.4 69.8 - 82.3 -0.0951 

≤136 94.95 2.04 0.97 2.48 12.6 11.8 - 13.4 73.1 65.4 - 79.9 -0.0953 

≤137 95.07 2.02 0.97 2.44 12.6 11.8 - 13.4 73.4 65.6 - 80.2 -0.0954 

≤138 95.43 1.61 0.97 2.84 12.6 11.8 - 13.4 70.3 61.6 - 78.1 -0.0956 

≤139 95.55 1.30 0.97 3.41 12.6 11.8 - 13.4 66.4 56.7 - 75.1 -0.0957 

≤140 95.91 0.86 0.97 4.77 12.6 11.8 - 13.4 58.5 47.1 - 69.3 -0.0960 

≤141 96.27 0.79 0.97 4.74 12.6 11.8 - 13.4 58.7 46.7 - 69.9 -0.0962 

≤142 96.39 0.73 0.97 4.93 12.6 11.8 - 13.4 57.7 45.3 - 69.5 -0.0963 

≤143 96.63 0.66 0.97 5.10 12.6 11.8 - 13.5 56.9 44.0 - 69.2 -0.0964 

≤144 96.63 0.61 0.97 5.55 12.6 11.8 - 13.5 54.8 41.7 - 67.5 -0.0964 

≤145 96.75 0.57 0.97 5.68 12.6 11.8 - 13.5 54.2 40.8 - 67.3 -0.0965 

≤146 96.87 0.50 0.97 6.25 12.6 11.8 - 13.5 51.9 37.8 - 65.7 -0.0966 

≤147 96.87 0.43 0.97 7.30 12.6 11.8 - 13.5 48.0 33.7 - 62.6 -0.0966 

≤149 96.99 0.38 0.97 8.02 12.6 11.8 - 13.5 45.7 30.7 - 61.2 -0.0966 

≤150 97.35 0.36 0.98 7.41 12.7 11.9 - 13.5 47.6 32.0 - 63.6 -0.0969 

≤151 97.83 0.36 0.98 6.06 12.7 11.9 - 13.6 52.6 35.6 - 69.2 -0.0972 

≤152 98.19 0.29 0.98 6.31 12.8 11.9 - 13.6 51.6 33.1 - 69.8 -0.0974 

≤153 98.19 0.23 0.98 7.77 12.8 11.9 - 13.6 46.4 27.5 - 66.1 -0.0974 

≤154 98.32 0.20 0.99 8.57 12.8 12.0 - 13.6 44.0 24.4 - 65.1 -0.0975 

≤155 98.68 0.14 0.99 9.26 12.8 12.0 - 13.6 42.1 20.3 - 66.5 -0.0977 

≤156 99.16 0.14 0.99 5.89 12.9 12.0 - 13.7 53.3 25.7 - 79.5 -0.0980 

≤157 99.28 0.13 0.99 5.77 12.9 12.1 - 13.7 53.8 24.0 - 81.7 -0.0981 

≤158 99.52 0.13 1.00 3.85 12.9 12.1 - 13.7 63.6 30.8 - 89.1 -0.0982 
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Criterion 
Pulse 

Sensitivity Specificity +LR -LR +PV 95% CI -PV 95% CI Cost 

≤159 99.64 0.13 1.00 2.89 12.9 12.1 - 13.7 70.0 34.8 - 93.3 -0.0983 

≤160 99.76 0.13 1.00 1.92 12.9 12.1 - 13.8 77.8 37.5 - 97.7 -0.0984 

≤200 100.00 0.00 1.00  12.9 12.1 - 13.8   -0.0986 

 

 

 


