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EXISTENCE OF SYMMETRIC AND ASYMMETRIC SPIKES FOR A
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Abstract. We study a crime hotspot model suggested by Short, Bertozzi, and Brantingham in
[SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 462-483]. The aim of this work is to establish rigorously the
formation of hotspots in this model representing concentrations of criminal activity. More precisely,
for the one-dimensional system, we rigorously prove the existence of steady states with multiple
spikes of the following types: (i) multiple spikes of arbitrary number having the same amplitude
(symmetric spikes), and (ii) multiple spikes having different amplitude for the case of one large and
one small spike (asymmetric spikes). We use an approach based on Lyapunov—Schmidt reduction
and extend it to the quasilinear crime hotspot model. Some novel results that allow us to carry
out the Lyapunov—Schmidt reduction are (i) approximation of the quasilinear crime hotspot system
on the large scale by the semilinear Schnakenberg model, and (ii) estimate of the spatial dependence
of the second component on the small scale which is dominated by the quasilinear part of the system.
The paper concludes with an extension to the anisotropic case.
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1. Introduction: The statement of the problem. Pattern forming reaction-
diffusion systems have been and are applied to many phenomena in the natural sci-
ences. Recent works have also started to use such systems to describe macroscopic
social phenomena. In this direction, Short, Bertozzi, and Brantingham [19] have pro-
posed a system of nonlinear parabolic partial differential equations to describe the
formation of hotspots of criminal activity. Their equations are derived from an agent-
based lattice model that incorporates the movement of criminals and a given scalar
field representing the “attractiveness of crime.” The system in one dimension reads
as follows:

Ay =e®Apy — A+ pA+ Ag(z) in (—L, L),

(1.1) pt =D (pm - Q%Aw)m —pA+~(z) in(-L,L).

Here A is the “attractiveness of crime” and p denotes the density of criminals. The
rate at which crimes occur is given by pA. When this rate increases, the number of
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criminals is reduced while the attractiveness increases. The second feature is related
to the well-documented occurrence of repeat offenses. The positive function Ag(z) is
the intrinsic (static) attractiveness which is stationary in time but possibly variable
in space. The positive function ~y(x) is the source term representing the introduction
rate of offenders (per unit area). For the precise meanings of the functions Ay (z) and
~(z), we refer the reader to [19, 20, 21] and the references therein.

This paper is concerned with the mathematical analysis of the one-dimensional
version of this system. Let us describe our approach. Setting

=

the system is transformed into

Ay =e®Apy — A+ 0A® + Ag(x) in (=L, L),
(1.2) (A%v); =D (szw)w —vA3 +y(x) in (~L,L).

We always consider Neumann boundary conditions

Note that v is well-defined and positive if A and p are both positive.

The parameter 0 < £2 represents nearest neighbor interactions in a lattice model
for the attractiveness. We assume that it is very small, which corresponds to the tem-
poral dependence of attractiveness dominating its spatial dependence. This models
the case of attractiveness propagating rather slowly, i.e., much slower than individual
criminals. It is a realistic assumption if the criminal spatial profile remains largely
unchanged, or, in other words, if the relative crime-intensity does only change very
slowly. This appears to be a reasonable assumption since it typically takes decades
for dangerous neighborhoods, i.e., those attracting criminals, to evolve into safe ones,
and vice versa.

Roughly speaking, a k-spike solution (A, v) to (1.2) is such that the component A
has exactly k local maximum points. In this paper, we address the issue of existence of
steady states with multiple spikes in the following two cases: symmetric spikes (same
amplitudes) or asymmetric spikes (different amplitudes). Our approach is by rigorous
nonlinear analysis. We apply Lyapunov—Schmidt reduction to this quasilinear system.

In this approach, to establish the existence of spikes, we derive the following new
results:

(i) approximation of the crime hotspot system on the large scale of order one by
the semilinear Schnakenberg model (see section 3, in particular (3.13));

(ii) estimate of the spatial dependence of the second component on the small scale
of order ¢, dominated by the quasilinear part of the system (see section 6, in
particular inequalities (6.11)—(6.13)).

We remark that asymmetric multiple spike steady states (of ki small and ko
large spikes) are an intermediate state between two different symmetric multiple spike
steady states of kq + ko spikes (for which all spikes are fully developed) and ks spikes
(for which the small spikes are gone). These rigorous results shed light on the forma-
tion of hotspots for the idealized model of criminal activity introduced in [19].
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Let us now comment on previous works. As far as we know, there are three
mathematical works related to the crime model (1.2). Short, Bertozzi, and Brant-
ingham [19] proposed this model based on mean field considerations. They have also
performed a weakly nonlinear analysis on (1.1) about the constant solution

Y
A, p) = Ap,
(4.¢) (Iy—i— 0 7+A0)

assuming that both Ag(x) and v(x) are homogeneous. Rodriguez and Bertozzi have
further shown local existence and uniqueness of solutions [17]. In [5], Cantrell, Cosner,
and Manasevich have given a rigorous proof of the bifurcations from this constant
steady state. On the other hand, in the isotropic case, Kolokolnikov, Ward, and
Wei [13] have studied existence and stability of multiple symmetric and asymmetric
spikes for (1.2) using formal matched asymptotics. They derived qualitative results on
competition instabilities and Hopf bifurcation and gave some extensions to two-space
dimensions.

The present paper provides rigorous justification for many of the results in [13]
and also derives some extensions. In particular, we establish here the following three
new results: First, we reduce the quasilinear chemotaxis problems to a Schnakenberg-
type reaction-diffusion system and prove the existence of symmetric k spikes. Second,
this paper gives the first rigorous proof of the existence of asymmetric spikes in the
isotropic case. Third, we study the pinning effect in an inhomogeneous setting Ag(x)
and y(z). The stability of these spikes is an interesting issue which should be addressed
in the future.

We should mention that another model of criminality has been proposed and
analyzed by Berestycki and Nadal [1]. In a forthcoming paper [3], we shall study the
existence and stability of hotspots (spikes) in this system as well. Tt is quite interesting
to observe that both models admit hotspot (spike) solutions.

The structure of this paper is as follows. We formally construct a one-spike
solution in section 2 in which we state our main results. In section 3 we show how
to approximate the crime hotspot model by the Schnakenberg model. Section 4 is
devoted to the computation of the amplitudes and positions of the spikes to leading
order. Nondegeneracy conditions are derived in section 5. These are required for
the existence proof, given in sections 6-8. In section 6 we introduce and study the
approximate solutions. In section 7 we apply Lyapunov—Schmidt reduction to this
problem. Last, we solve the reduced problem in section 8 and conclude the existence
proof. In section 9 we extend the proof of single spike solution to the case when both
Ap(x) and y(z) are allowed to be inhomogeneous. Finally, in section 10 we discuss our
results and their significance and mention possible future work and open problems.

2. Steady state: Formal argument for leading order and main results.
Before stating the main results, we first construct a time-independent spike on the
interval [—L, L] located at some point zy. The construction here is carried out using
classical matched asymptotic expansions.

In the inner region, we assume that v is a constant vy in leading order:

v(z) ~vg, T —m0] K 1.
Then, if 0 < ¢ <« 1, the equation for A becomes

e2A" — A+ 0A® + Ag(z) = 0.
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Rescaling
—1/2 % r — X
Alz) = vy PAly), y="7,
we get

Ay — A+ A3 + Ag(zo + ey)vy> = 0.

We assume that vg — 0 as ¢ — 0. Then, at leading order, A(y) ~ w(y), where w is
the unique (even) solution of the ODE

Wyy — W + w? =0
so that
w(y) = V2sech (y).
In the outer region, we assume that
vA® < 1, g > 1
so that
A~ Ap(z).

We also assume that D = E%, where D is a positive constant, and we estimate

L oo
/ vA3 dx ~ 110_1/28/ w3dy.
—L —o0

Integrating the second equation in (1.2), we then have

00 L
(2.1) vo_l/Qa/ w3dy~/ ~(z)dz,

—o0 —L

(ffooo w3dy) 2 2

(22) Vo ~ 26 .
(ff 3 ’y(w)dw)
We remark that [w®dy = [wdy = /27 so that
2 2
Vo ~ il 62.

(ffﬂ(x))2

In particular, we obtain

V2 [F y(x)d _
A L T—xg -0
(2.3) Ay~ ] @ T w (), 2=00),

Ao(z), x> O(e).
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Now we state our main theorems on the existence of multispike steady states for
system (1.2). We discuss two cases.

In the case of isotropic coefficients Ap(xz) = Constant, vy(z) = Constant, we will
consider two types of solutions:

(i) multiple spikes of arbitrary number having the same amplitude (symmetric
spikes);

(ii) multiple spikes having different amplitude for the case of one large and one
small spike (asymmetric spikes).

In the case of anisotropic coefficients Ag(z) and ~y(x), we will consider the exis-
tence of a single-spike solution.

Our first result concerns the existence of multiple spikes of arbitrary number
having the same amplitude (symmetric spikes).

THEOREM 1. Assume that D = 522 for some fized D > 0 and

(2.4) Ag(z) = Ag,y(x) = A — Ay, where A > Ag.

Then, provided € > 0 is small enough, problem (1.2) has a K -spike steady state (Ac,ve)
which satisfies the following properties:

_ 1 1 T —t5 1
o aeae () o).

j=1 J
(2.6) va(tf)zazvf, 1=1,..., K,
where

t; —=t., 1=1, , K,
(2.7) ) 1 K
with

21—1-K
(2:8) J= L i=1..K
and

1
(2.9) vf:v?(1+0(610gg>), i=1,..., K,
with
2K2

(2.10) 0 T i=1,..., K.

© T (A - Ag)2L?’

Remark 2. Note that in (2.5) a two-term expansion of the solution A, is given,
L witj) of order O(2) is the leading term in the

€
s
J

where for each spike the term w(

inner solution and the term Ag of order O(1) is the leading term in the outer solution.
By using the operator T[A] defined in (3.12) this two-term expansion carries over to
0 as well. The same remark applies to (2.13) and (2.15). The two-term expansion
agrees with that in [13].

The next result is about asymmetric two-spikes.
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THEOREM 3. Under the same assumption as in Theorem 1, with D = 522 for
some fized D> 0, and supposing moreover that

2/m(DAG)/*
(2.11) m <

and

2/m(DAZY/A 2
(2.12) 2/m(DAY T, 2

(A= A0L 7 5
then, for € > 0 small enough, problem (1.2) has an asymmetric 2-spike steady state
(Az,ve) which satisfies the following properties:

i

2
1 1 T —15 1
2.13 A (x) = Ao+ - E — d O|(elog= ,
) . O+E j—1\/Fw( € )+ <60g5)

(2.14) v (t5) = %05, i=1,...,K,

where ¢ and v$ satisfy (2.7) and (2.9), respectively. The limiting amplitudes v{ and
positions Y are given as solutions of (4.1) and (4.6).

Condition (2.12) is a kind of nondegeneracy condition. Note that in the case of
asymmetric spikes we explicitly characterize the points of nondegeneracy.

The last theorem is about the existence of a single-spike solution in the anisotropic
case. X

THEOREM 4. Assume that € > 0 is small enough and D = 522 for some fixed

D > 0. Then problem (1.2) has a single-spike steady state (A.,v:) which satisfies the
following properties:

11 —t§ 1
(2.15) A(z) = Ao(z) + ——=w <x t0> +0 (alog—) )
€ /5 € €
(2.16) ve (t5) = 20§,
where
to L
(2.17) tg — to, / ~y(z)dx = / ~v(x)dx
—L to
and

(2.18) vg = (f_%i% <1 +0 <slog§)> .

We notice that in the anisotropic case, the single-spike location is determined only
by the function [, v(t)dt and Ag(z) has no effect at all. Note also that the location
to is uniquely determined by the condition

to 1 [
(2.19) / Y(z)dr = - / ~v(x)dx.
L 2 /-
With more computations, it is possible to construct multiple asymmetric spikes in the
isotropic case, and also multiple spikes in the anisotropic case. Since the statements
and computations are complicated, we will not present them here. We refer the reader
to [26] for some results in this direction.
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3. Scaling and approximation by the Schnakenberg model. We will use
the following notation for the domain and the rescaled domain, respectively:

(3.1) Q= (-L,L), Q= (--,-).

This section is devoted to the reduction of the system (1.2) to a particular
Schnakenberg-type reaction-diffusion equation in which no chemotaxis appears.

Based on the computations in section 2, we rescale the solution and the second
diffusion coefficient as follows:

ml\.’)| @>

A= Ay(x)+=-A, v=e’*, D=

™ | =

Then the steady-state problem becomes
0=c?A,, — A+ 0(eAo + fl)g + £3Ag, x e,

2
(3.2) 0=D ((Ao(x) + %A) v) — é@(ng(x) + AP +y(z), zeQ.

We will consider the case when £ < 1 and D is constant, with Neumann boundary
conditions.

A key observation of this paper is that the solutions of problem (3.2) are very
close to the solutions of the Schnakenberg model,

0=c2A4,, — A+ 0(eAo + 121)3 + a?’Ag, T €,

(3.3) 0=D (Add,) — —b(eAo + AP +y(x), zeQ,
with Neumann boundary conditions.
To see this, we first consider the following linear problem:
D(a(x)vz)r = f(a:)a —L<z<L,
(3.4)
vy (—L) = v, (L) =0,

where a € C*(—L,L), a(z) > ¢ > 0 for all x € (—L,L) and f € L'(—L,L). We
compute

D
So

(3.5) wle) = s [ Ziwa

and hence

(3.6) (@) —v(~L) = /_L Dal(s) /_SLf(t)dtds,
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which can be rewritten as
1 xT

(3.7) v(x) —v(=L) = o/, Ku(z,s)f(s)ds,

where

1
Ka(ac,s):/S @dt.

Remark 5. We note that the kernel K,(z, s) is an even (odd) function if a(x) is
an odd (even) function. More precisely, if a(z) = a(—=x), then

(3.8) Ky(—x,—s) = FK,(z, s).
Remark 6. We note that v is an even (odd) function if f is even and a is even

(odd). More precisely, using

0 1 (f -
/_Lf(t)dtzi/_Lf(t)dtz() if f is even,

we compute

1 1

Integration yields

x 1 S
U(x)—v(O):/O ﬁa(s)/o f(t)dtds

= %/OI Ko(z,s)f(s)ds
and

—X

1
v(=2) = v(0) = 5 ; Ka(=z,5)f(s)ds
1 x
= _5/0 Ko(—z,—s)f(—s)ds

1 xT
=+ Kq(x,s)f(s)ds
5 [ Eawoso)
= £(v(z) —v(0))
if a is an even (odd) function using (3.8). Similarly, if f is odd and «a is odd (even),

then v is an even (odd) function.
Integrating (3.4), we derive the necessary condition

L
(3.9) /7L f(z)dx =0.

Note that on the other hand v defined by (3.4) satisfies the boundary conditions
vy (—L) = vy (L) = 0, provided that (3.9) holds. This follows from (3.5).
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Let us now consider a(z) = (Ao + %w(%))Q, where w > 0 and w(y) ~ e~ as

ly| — co. Then we claim that
1 1
(3.10) Ka(w,s) = Kaz(z,s) +O(els —a|) + O < [s,2] N <—25 log = 2¢ log g) D )

Note that (3.10) is an L estimate for K,(z, s).
In fact, we have

Q/w———i———dt— wiﬂhﬁi/w{———L————;L]dt
o (Ao+1w)? ™ ), Af o L(Ao+zw)?  Af]

where
! 1 < 2eAgw + w?
— | dt= LT g
/s [A% (Ao + gw>2] 8/; (Ao + w2 ¥
ZE/ ...dy—f—a/ .o dy.
[s/a,m/a]ﬂ{\y\>2log%} [s/a7w/€]ﬁ{\y\<2log%}
The first term is O(e|z — s|) since w = O(g?) and so Zedowtw? (€). For the second

(cAotw)Z —
term, observing that % = O(1) we derive (3.10). All these estimates are in
the L* norm.
Thus, v satisfies

(3.11)
o) =0 = 5 [ Koo fas+0 (= [ (1o sl +1082) £ as).

Remark 7. The estimates (3.10) and (3.11) also hold if

o= (a2 o(552) )

lz—=zg|

where ¢(z) satisfies |¢(z)] < Cemax(e” 2= ,+/¢). This is the class of functions that
we will work with. This is also the motivation for our choice of the norm || - ||.. (defined
in (7.4)).

Therefore, we can approximate steady states for the crime hotspot model by the
Schnakenberg model as follows: Given A > 0, let & = T[A] be the unique solution of
the following linear problem:

D ((AO + gA)%z) —Li(edg+ AP +4(x) =0, ~L<az<lL,

(3.12)
ba(—L) = 0, (L) = 0.

Then, by the maximum principle, the solution T'[A] is positive.
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By the previous computations and remarks, if A = w + ¢ with |¢| < Cemax
_e—=g|

(e” 2= ,4/e), it follows that

(3.13) T[A] ="+ 0 <5 log é) in H*(—L, L),

where v° satisfies

(310 D (AFvl), — To°(eAo + AP 4 H(x)=0, —L<az<L,
3.14
V(L) = (L) = 0.

We adapt an approach based on Lyapunov—-Schmidt reduction which has been
applied to the semilinear Schnakenberg model in [12] and extend it to the quasilin-
ear crime hotspot model. This method has also been used to study spikes for the
one-dimensional Gierer—-Meinhardt system in [25, 26] as well as the two-dimensional
Schnakenberg model in [27]. We refer the reader to the survey paper [24] and the book
[28] for references. Multiple asymmetric spikes for the one-dimensional Schnakenberg
model have been considered using matched asymptotics in [22]. Existence and stabil-
ity of localized patterns for the crime hotspot model have been studied by matched
asymptotics in [13], and results on competition instabilities and Hopf bifurcation have
been shown, including some extensions to two space dimensions.

We remark that another approach for studying multiple spikes in one-dimensional
reaction-diffusion systems is the geometric singular perturbation theory in dynamical
systems. For results and methods in this direction we refer the reader to [7, 8] and
the references therein.

4. Computation of the amplitudes and positions of the spikes. In this
section, we study (3.2) in the isotropic case (2.4). In particular, we compute the am-
plitudes and positions to leading order. We consider symmetric multispike solutions
with any number of spikes and asymmetric multispike solutions with one small and
one large spike.

We first write down the system for the amplitudes in case of a general number
K of spikes, where we have either K spikes of the same amplitude or k; small and ko
large spikes with k1 + ke = K. We will first solve this system in the case of symmetric
spikes. Then we will choose k; = k2 = 1 and solve this system in this special case of
asymmetric spikes.

Integrating the right-hand side of the second equation in (3.2), we compute for

v; = limaﬁo @a (tj)

K \/§7T B
(4.1) = (A — Ap)2L.
; VT ’

Solving the second equation in (3.2), using (3.6) in combination with the approxima-
tion (3.13), we get

x 1 S 1 R _
() — 0e(—L) = — —V:(cA +A€3—A—|—A>dtds
(=) =) V/fL D(Ag+ 1A.)? ~/—L (5 (e4o ) ’

:/ Al / <1f)5(£A0+/15)3—A+A0)dtds—|—0(810g1>,
7LDA(2J L \€ €
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i— K
S| 2 . V2r ) s+ L 1
/LﬁA2 Z - H(s —t5) — Z = 5T ds—l—O(alogg)

0 [j=1 4/0e(t5) =1 4/ 0e(t5)

1 i Vor . ad Vor (v + L)? 1
= — Z 4(a:—tj)— ; ") N2 +O<slogg),

where

1 ifz >0,
H(z) =
0 ifz<o.

Taking the limit ¢ — 0 and setting x = ¢; = lim._, ¢, we derive

- K
1 2 t: + L)?
0 = — QE:J%a—t) }:J} L%fl +C
DAO |i=1 Yy j=1 VUi
[ K K
1 Vor | o1
(4.2) = - u ti| — —t2| + Co
DA3 Z: ;2 2 )

for some real constants C7, Co independent of 7, where the last identity in (4.2) uses
(4.4), which we now explain.
We use an assumption on the position of spikes that can be stated as follows:

(4.3)
1v2 t;+L

Fi(t9,49,...,t%) = = Z\f” + =0, i=1,... K.
2 — i) 2L

Note that (4.3) will be derived later on in section 8 (see (8.6)). We rewrite (4.3) and
compute

i—1 K
1 1 1 t,+ L
N I3l D0y Ry
7 j=1 . J

i\ &
i—1 1 K 1 K 1
(4.4) - _ _ 2

From (4.2) and (4.4), we derive

1 1 1
(45) s == ottt 03 (e - =)

In the next two subsections we solve these equations for the amplitudes of the spikes
in the cases of both symmetric and asymmetric spikes.
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4.1. Symmetric spikes. We first consider the case of symmetric spikes, where
v; = v is independent of ¢ = 1,..., K, and compute the amplitude v and the posi-
tions t;.

From (4.1), we get

2 K?
T 2(A - AL

From (4.5), the positions are t; = (—1 + 2?1) L,i=1,... K.

The proof of the existence of multiple symmetric spikes follows from the construc-
tion of a single spike in the interval (—%, %) The proof of the existence of a single
spike uses the implicit function theorem in the space of even functions, for which the
Lyapunov—Schmidt reduction method is not needed. This proof can easily be obtained
by specializing the proof given for multiple asymmetric spikes given below. In this

case, the proof can thus be simplified. Therefore we omit the details.
4.2. Asymmetric spikes. Combining (4.4) and (4.5), we get

L 1

29 1
\/—DA Z“W

This implies that there are only two different amplitudes, which we denote by vs < vy,
appearing k1 and ko times, respectively. Hence we get

™ L 1

~ _k k .
V2DAR 2 -+

ViVi41 =

(4.6) Vgl =

Multiplying (4.4) by & and subtracting (4.2) from the result, we get

k

m t; k T 2
v; — C = _ —_sgn(t; — — |
V2D AZ ; Vi Z:: V2 v 2L

where
+1 ifa>0,
sgn(a) =<¢ 0 ifa=0,
-1 ifa<O0.

Next we determine vs, v; from (4.1) and (4.6). Substituting (4.1) into (4.6), we
get

1 721 1
V)= ——-—=—.
"o DAZAA- Ay

Plugging this equation into (4.1) gives
1
C (z + —) =1,
z

VT (DA V20, (DAY (A — Ag)VA [k
NI Sk = =,
C= A= agpnagVik = NG oy

where
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To determine a solution, we need to satisfy the necessary condition 2C' < 1, which
can be summarized as

2y/m(DAG)
O Vg <1

The second necessary condition is given by vs < vy, which is equivalent to z < ,/]Z—f.
This implies the following cases.

Case (i): ko < ky. If
[ ko [ kq

then there exists exactly one solution with z < 1?2

On the other hand, if
ka k1
V| > 1
C( T + k2> >

then there exists no solution with z <
Case (ii): ko > k1. If 2C > 1, there is no solution. If 2C' < 1 and

[ ko k1
C( k_1+ k_2> <1,

then there exists exactly one solution with z < 1?2

If 2C < 1 and
ko k1
= — 1
C(’/kl +’/k2> >

then there exist exactly two solutions with z < 4/ Z—i

Special case: k1 = ko = 1. Finally, we consider the special case k; = ko = 1 which
belongs to Case (i) in the previous classification, and we have the following results:

If 2C' < 1, then there is one solution with z < 1. If 2C > 1, then there is no
solution with z > 1.

5. Existence and nondegeneracy conditions. We now describe a general
scheme of Lyapunov—Schmidt reduction. (We refer the reader to the survey paper [24]
for more details.) Essentially this method divides the problem of solving nonlinear
elliptic equations (and systems) into two steps. In the first step, the problem is solved
up to multipliers of approximate kernels. In the second step one solves algebraic
equations in terms of finding zeros of the multipliers.

In this section, we linearize (3.2) around the approximate solution and derive the
linearized operator as well as its nondegeneracy conditions, i.e., conditions such that
the resulting linear operator is uniformly invertible.
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Linearizing (3.2) around the solution, we get

0=2ppe — ¢ + 30(cAo + A)2¢ + (e Ag + A)® in Q,

A <( 1 A>2 ) A ( < 1 A) 1 : >
0=D A0+—A ’l,/)r + D2 A0+—A —d)vm
g . g g -
(5.1) _ ga( Ao + A2 — éwsAo AP inQ

with Neumann boundary conditions

¢2(—L) = ¢ (L) = ¢a(—L) = ¢2(L) =0
Note that for the second equation of (5.1) we have the necessary condition
Lo A 1 A
/ <—gﬁ(aAo + A)?2p — gw(aAo + A)3) dr =0,
L

which follows by integrating the equation and using the Neumann boundary conditions
for ¢ and v. In the limit € — 0 we get

Z |:‘pJ 3/2 +3/ 2¢] dy‘| O

where ¥; = ¥(x;).
The second equation of (5.1) can be solved as follows, using formula (3.6) and

estimate (3.13):
- L 9 9 -

d(eAo + A)%¢ + w(sAO + A)3

® 1
Y(x) —P(=L) = /_L ZM)T

A)Q
§ dtds
5

1 573 A 1 A 1
= —-— Zo(eAg+ A2+ (A +A3)dtds+0(510 —).
/LDAE/LQ(O 2o+ Lo+ A) =
Note that the contributions from the term
D <2 <A0 + 121) lqs@z)
€ € -

can be estimated by O (glog 1) since ¢ vanishes in the outer expansion. In the limit
e — 0, we get

i—1 .00
W(x) ~L) _/ P Z_;wj 3/2 tj)+3;/oow2¢jdyH(s—tj) ds
(5.2) L Zw tz)+3§/w w2 dy (x —t;)

DA% J 3/2 J g J il

where t;_1 <z <t;.
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From now on, we consider the case of two spikes having different amplitudes
(asymmetric spikes). Using the notation

() o)== () (o)
¢ = ) = , W= = 30 2 ;
P2 V2 V2 DAz Jwdady

we can rewrite (5.2) for x = t; as follows:

(B+C)¥ =
where
LI
2 3/2 1 _
_ V2| . | B=+ _1 L D
DA? 0 — da L1

Using & = C(B+ C)~!, we get the following system of nonlocal eigenvalue problems
(NLEPs):

26— 30 53 Jw2ED dy
Jwddy

Diagonalizing the matrix £, we know from [23, 29] that (5.3) has a nontrivial solution
iff £ has eigenvalue A, = %
Thus it remains to compute the matrix £ and its eigenvalues.
We get

(5.3) L® = d,, — &+ 3w

=B+C0)Cr=BCTt+1

DAQ 3/2 3/2
- \/—ﬂ-d2 3/2 +I
DAZ ( 3/2+

Then £~ ! has the eigenvector Um,1 = % (1, —1) with eigenvalue e,,,1 = Tand; (Vs
2

3 2 3/2  3/2
/ ) v’g‘l+v? (vl/ v/ )T with eigenvalue e,, 2 = 1 # 3.

For nondegeneracy, the condition e,, 1 £ 3 5 has to be satisfied, which is equiva-
lent to

+1 and the eigenvector v, 2 =

DA?
\/—Wdz

Using the formulas for ds, vs, v;, we compute

(032 +0)%) #

N~

DAz
V2rd,
_ D4

(v 3/2+v3/2)

L(\/—+\/_ = 3(Vusu + vs /1))
3 (A — Ay)3/2L3 4 7L
V2rL \ 2v2(DA2)3/2 2y/2D A2
(A — Ap)3/2L2 1

w\/DAg 4 2
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This implies the condition

2/T(DAY 2

(A—Ag)**L " V5

We have to exclude this point from our existence result Theorem 3. This is why
we impose the condition (2.12) in Theorem 3, which amounts to a nondegeneracy
condition. If this condition is violated, we expect small eigenvalues to occur, and
whether there will be spikes in this case is an open question.

6. Approximate solutions. For simplicity, we set L = 1. In this section and
the following we consider the case of general K = 1,2,... since it does not cause any
extra difficulty here, even in the case of asymmetric spikes. Let —1 < ) < - < t(;- <
-++t% < 1 be K points and let v; > 0 be K amplitudes satisfying the assumptions
(4.1), (4.2), and (4.4). Let

(6.1) t0=(@,...,t%).

We first construct an approximate solution to (3.2) which concentrates near these
prescribed K points. Then we will rigorously construct an exact solution which is
given by a small perturbation of this approximate solution.

Let -1 <t <---<t; <---<tg <1be K points such that t = (¢1,...,tx) €
B.a/a (to). Set

(6.2) wito) =w (154

3

and
1 . 0 o 1L .0 L0
(6.3) ro = 75 | min t1 + 1,1 —ty, 5212?#1 =t ) )-

Let x : R — [0, 1] be a smooth cut-off function such that x(z) =1 for |z| < 1 and
x(z) =0 for |z| > 2. We now define the approximate solution as

(6.4 3(0) = wian (1)

To
It is easy to see that w;(x) satisfies
(6.5) 6211);-, — W + 1D§’ = e.s.t.

in L?(—1,1), where e.s.t. denotes an exponentially small term.

Let
A L e e
(6.6) A=w.t(x) = Z =10 (z),  where v5 = T'[we ¢](t5),
j=1 V7
(67) 0= T[w57t],

where T[A] is defined by (3.12) and t € B.s/4(t°).
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Then by (3.13) we have
N 1
(6.8) vf = T[A](t5) = lim T[we ¢](t5) + O (6 log —) .
e—0 ] £

Now let © = t; + ey. We find for A= We ¢

TA](t; + ey) — T[A)(t:)

tit+ey 1 s 1 R B
:/ —2/ (—ﬁ(sAo+A)3 —A+A0> dt ds
“o D(Ag+LA) TS

i

Y 1 (w(®)® -~
=€ /O ﬁ(AO—l—%w(s))Z»/O - \/E dt ds

K Vort,+ L
_;\/v—j 2L
X (1+O(alog§>)
. Y 1 _ 1\/—77 V2 V2t + L
_epi(yHE/o D(A0+§w(§))2 +;\/@ < /7; 2L

ey 7 1 Tw®) o
P; (y)—/0 D(A0+§w(s))2/o NG did

using (4.1). Note that Pf is an even function and the second term is an odd function
in y.
We now derive the following estimate for all y > 0:

(Twes](ti + ey) — Tlwe ] (t:) wl, < Ce /Oy X ! dsw?(y)

D (Ao + Lw(s))’
C ("o 1 3
BE/O 3 w2(3) dsw(y)

C v
< 753/ 2 dse
D Jo

C
S T€3€7y.

IN

For y < 0 there is an obvious modification of this estimate. Further, it can be extended
to cover both of the cases when wg’t is replaced by gwf’t or e2w, ¢, respectively, giving
the same upper bound in either case.
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Now if we define the norm

610)  [flles = fllzan +  suwp [max(mine 2L VR f(y),

L L
—;<y<;

then by the decay of w, ¢ and the definition of the norm, we infer that

(6.11) (T we e](t; + ey) — Tlwe ] (£:) w2 ¢ e = O(>?),
(6.12) (T [we ] (£ + ey) — Twe e) (t:)) ew? gl = O(>/?),
(6.13) (T we e](t; + ey) — Tlwe ] (£:) £°we ¢ ]|es = O(7?).

Let us now define
(6.14) S.[A] == e?A,, — A+ T[A(e Ay + A)?,
where T[A] is defined in (3.12). Next we set A = w, ¢ and compute S.[w. ¢]. In fact,
Selwet] = € (we ) ae — we s + Tlwe ] (A0 + we t)?
= &% (We t)wa — We,p + Tlwe ] (i) wly
+ Twe +] (e A3 + 36 AJwe ¢ + 3<€A0w§)t)

+ (Tlwe e (t + ey) — Tlwe e (t:)) wl

(615) =: k1 + Es + Ej.

We compute

K
1 " T tz ~

E, = Z = <dzz —w; + Mw?) = e.s.t.

=1 Vi i

in Ly(Qe) since v§ = T[we ] (¢;). Further, we get
EQ = 0(8)

in L?(9.) since T|we¢] is bounded in L*>(£.) and w. ¢ is bounded in L?(£2.). We
also notice that actually Ey = O(ce™ mini(‘y_ts_”)). Lastly, we derive

K
B =3 g (Teal s+ 0) = Tluea (09) 2, = O

in L?(Q.) by (6.11).
Combining these estimates, we conclude that

(6.16) [[Slwe e[+« = O(e)-

Remark 8. The estimate (6.16) shows that our choice of approximate solution
given in (6.6) and (6.7) is suitable. This will enable us in the next two sections to
rigorously construct a steady state which is very close to the approximate solution.
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7. Lyapunov—Schmidt reduction. In this section, we use Lyapunov—Schmidt
reduction to solve the problem

K .
d’LUi
(71) Ss [ws,t + 11] = ; ﬁz dz
for real constants 3; and a function v € H?(—1, 1) which is small in the corresponding

norm (to be defined later), where w; is given by (6.4) and w. ¢ by (6.6). This is the
first step in the Lyapunov—Schmidt reduction method. We shall follow the general
procedure used in [25].

To this end, we need to study the linearized operator

Loy HX(Q) — L*(Q.)
given by
(7.2) zat = S;[wa7t]¢ = 2 A¢p—d+T[we ¢]3(e Ao +we 1)+ (T [we ¢ ] ) (Ao +we 1),

where for A = w, ¢ and a given function ¢ € L2(Q) we define T"[A]¢ to be the unique
solution of

(7.3)
D (A0 + LA2(T[Alg). ) - HT'[A)¢) (Ao + A)° = LT[A]3(e Ao + A)%6 = 0

; for —L<z<lL,

(T"[A)¢) (L) = (T"[A]¢)(L) = 0.

The norm for the error function ¢ is defined as follows:

(T4) 1ol =0l + s [max(mine 2L VB ().

L L
—e<y<z

We define the approximate kernel and cokernel, respectively, as follows:

K.t := span {dwi i= 1,...,K} C H*(Q.),
’ dx
dwz . 2
Cet :=span i=1,..., Ky C L°(Q).
dz

From (5.3) we recall the definition of the following system of NLEPs :

(7.5) L® = o, — &+ 3w?d — 3w3%,
where
b1
o= | 7 | cormy
o
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By Lemma 3.3 of [25] we know that
L:(Xo® - ®Xo)" N(H*R)" = (Xo® - & Xo)™ N (LAR)F

is invertible and its inverse is bounded.

We will show that this system is the limit of the operator L. ¢ (defined in (7.2)) as
e — 0. We also introduce the projection ﬂj:t : L2(Q) — Cj:t and study the operator
L. =L, o Ley. By letting e — 0, we will show that L. ¢ : K&, — CZ is invertible
and its inverse is uniformly bounded provided ¢ is small enough. This statement is
contained in the following proposition.

PROPOSITION 9. There exist positive constants &, 6, A such that for all € € (0,8),
te QX with mln(|1 + t1|, |1 — tK|,mini¢j |ti — tj|) > 5,

(7'6) HLa7t¢H** 2 /\”¢H*

Furthermore, the map
1 7 1 1L
La7t =Tet © La7t : Ica7t — Cat

s surjective.

Proof. This proof uses the method of Lyapunov—Schmidt reduction following, for
example, the approach in [12, 25, 27].

Suppose that (7.6) is false. Then there exist sequences {ex}, {t*}, {¢*} with
e — 0, t¥ € QF min(|1 + [, |1 — t& |, min,.; [t —t;’?|) >4, ¢ = ¢, € Kj;)tk,
k=1,2,..., such that

(7.7) L., x| >0 ask — oo,
(7.8) 6%« = 1, k=1,2,....

We define ¢.;, i =1,2,..., K, and ¢, g+1 as follows:

(7.9) $ei () = ¢:(2)x ("” — “) , zEQ,

To

K
be, k+1(x) = P (x) — Z bei(z), €.
=1

At first (after rescaling) the functions ¢.; are only defined on .. However, by a
standard result they can be extended to R such that their norm in H?(R) is still
bounded by a constant independent of € and t for € small enough. In the following we
will deal with this extension. For simplicity of notation we keep the same notation for
the extension. Since for i = 1,2,..., K each sequence {¢¥} := {¢., i} (k =1,2,...)
is bounded in H? (R) it converges weakly to a limit in H? (R), and therefore also
strongly in L? (R) and LS (R). Denoting these limits by ¢;, then

1
®2
o= "
bx
solves the system L¢ = 0. By Lemma 3.3 of [25], it follows that ¢ € Ker(L) =
Xo@---® Xy. Since ¢F € Kj;mtk, taking k — oo, we get ¢ € Ker(L)*. Therefore, we
have ¢ = 0.
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By elliptic estimates we get H¢5w| e —~0ask —oofori=1,2,... K.
Further, ¢ x4+1 — ¢x+1 in H(R), where Dy 11 satisfies

(PK+1)yy — dx41 =0 inR.
Therefore, we conclude that ¢x41 =0 and ||¢§ || m2r) — 0 as k — oc.
Once we have [|¢;|| g2®) — 0, the maximum prlnc1ple implies that ||¢;]|« — 0 since

the operator L. ¢ eesentlally behaves like (bi — ¢; for |x — t;| > e. This contradicts
the assumption that ||¢*||. = 1. To complete the proof of Proposition 9, we just need
to show that the conjugate operator to L. ¢ (denoted by LZ ) is injective from ICj’t

to Ct¢. Note that LY (¢ = m¢ o I:;)tgb with
i* t¢ = 52A¢ - ¢+ T[wg t]?)(EAo + w, t)2(l5 + (TI[U}E t]¢(<€AO T w. t)B)-

The proof for L’ follows along the same lines as the proof for L. and is there-
fore omitted. Here also the nondegeneracy condition (2.12) is required. For further

technical details we refer the reader to [25]. O

Now we are in a position to solve the equation
(7.10) Ty 0 Se(wet + ¢) = 0.
Since L | K+, is invertible (call the inverse L;%), we can rewrite this equation as
(7.11) ¢=—(LogomiyoSc(wey)) — (L oy 0 Nen(0)) = M o(9),
where
(712) Net(§) = Se(we + 8) = Se(we ) — 5. (we)

and the operator M. ¢ has been defined by (7.11) for ¢ € H?(€).). The strategy of
the proof is to show that the operator M. . is a contraction on

Bes={p € H*(Qe) : |9l <6}

if £ is small enough and ¢ is suitably chosen. By (6.16) and Proposition 9 we have
that

1Mee(@)lle < A7 (It © Newl@) e + [ 0 Selwen)], )

<A Co(e(8)6 + ¢),

where A > 0 is independent of § > 0, € > 0, and ¢(6) — 0 as § — 0. Similarly, we
show that

IMet(9) = Meio(@)l| < A Co(e(9)8) 6 — ¢ Il

where c(§) — 0 as § — 0. Choosing § = Cz¢ for A™1Cy < C3 and taking ¢ small
enough, then M.+ maps B, s into B, s, and it is a contraction mapping in B, s. The
existence of a fixed point ¢+ now follows from the standard contraction mapping
principle and ¢, ¢ is a solution of (7.11). d

We have thus proved the following.

LEMMA 10. There exist€ > 0 6 > 0 such that for every pair of £,t with 0 < & < &
andt € QX 1+t > 6, 1—tx >0, 3|t;—t;| > 0 there is a unique ¢. 4 € Kj:t satisfying
Se(Wet + ¢ep) € Ceg. Furthermore, the following estimate holds:

(7.13) el < Cae.

In the next section we determine the positions of the spikes so that the resulting
steady state is an exact solution of the original problem.
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8. The reduced problem. In this section we solve the reduced problem and
complete the proof of the existence result for asymmetric spikes in Theorem 3.
By Lemma 10, for every t € B_s/4(t°), there exists a unique ¢. ¢ € ICg:t solution of

(81) S[wa7t + ¢€,t] = Vet € Ca7t~
The idea here is to find t& = (¢5,...,t5) near t° such that also
(82) S[ws,ts + d)s,ts] L Cs,ts

(and therefore S{we = + @] = 0).
To this end, we let

Wo(t) := (Wer(t),...,We g (t) : Boaya(t?) — RE.

Then W.(t) is a map which is continuous in t, and our problem is reduced to
finding a zero of the vector field W(t).
Let us now calculate W(t) as follows:

dw;

1
(%
Weslt) = 5 | Sl 0 T

=1 + I, + I,

where I, I, and I3 are defined in an obvious way in the last equality.

We will now compute these three integral terms as ¢ — 0. The result will be that
I; is the leading term and I and I3 are O (5 log %)

For I, we have

L ~ L

v; dw; Vs

I, = — Ei+Ey+ FE der = — E.
T e L( ! ? 3) dz 62/,L ’

Ul dz 4+ O (810g1> ,
dx €

where Ep, Eo, E3 are defined in (6.15). For E; this estimate is obvious. For Ey, we
use the decomposition
Tlwe ) (€3 A3 + 3e? A2w. ¢ + 3<€A0w§7t)
= Tw, ) A
+ T[wat](ti)(?)azA%wE,t + BEAOw;t)
+ (TTwe ] (ti + ey) — Twe ] (t:)) (362 Adw. ¢ + SEAowf)t).
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Then we can estimate the first part directly, the second part using the fact that it is

an even function in y, and the third part using the estimates (6.12) and (6.13).
From (6.11), we derive

L ~
Uy dwl
— E

g2 / S dx de

L/E w,(y)
L/s \/U—i
UZ 1\/_7r \/§7r Vort,+ L
= +;@_Z\/_ 2L
L 1 w'(y)
5 ds(eAp + A)3 i d
/L/a/O ﬁ % ()) \/_X Y

o)

i—1
:e.s.t.—l 1\/_7T+Z\/§7T—Z\/—Wt +L +O<5logl>,
D — T, =y 2L e

where x;(z) = x(%+* tl). Here we have used the fact that P;(y) is an even function
and have computed the following integral:

Lje o '
/ / - - 5 ds(eAg + A)? L (y) xi(ti +ey) dy
L/ Jo D gA(t +ss)) Vi
L/e 1d 4 3751
- zdszd—(aA0+A) Xi(ti +ey)dy + O | € log —
—L/eJo D %A(t +£s)) 4 )
E L/s

Ag+ A ’ 31 L
= _L/sz(a + A(t; +sy)) dy+0<s ogg)

D
e? [ (wy)® 1
=—— [ —Zdy+0 | log -
5 o (o)
2 1 1
:—f—/ﬁdy—i—O(glog—)
Duv; Jr 2cosh”y €

5, o)
= —— e’log— | .
Du; g5

In summary, we have

i—1

111 2 L 1

(8.3) 11:—— \/—W+ g \/—W \/—Wt + +O(510g—>.
— Vv = €
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For I, we calculate

dw;
Iy = = / S wat (bat) i

;
= ? [8 A(b&t ¢€,t + T[wa,t]g(EAO + wa7t)2¢a7t
-L
dw;
+ (T/[wa7t]¢a,t)(EAO + Wet) } dr
v dw;  dw; o T[we ¢](t ) W;
2 ) [gAdx dx + 3w v; d Ge d
L
7 T 5 =T 5 d [
P [ Tedo) =Tt o, 06,
e J-L V5
V; L 22 dwl
+ 2 7LT[wat]( i)3 A0+2€A0\/— ¢at
v, L
— [ (Tl — Twe ) (t; 242 +2:A ;
+ 2% [ o) - T3 (o 4—ao¢_)¢t
L
V4 BdwZ
+ 5_2 _L(T/[ws t]d)s t)5 A dx dx
L ~ 2 ~9 ~
Yi 2 42 Wi wi | dw;
+ 5_2 7L(T [wa t]¢a t)( ) <3E A \/_ ?/2> %d{ﬂ
L

e [ (T [weg)e,6) (@) — (T e )e ) (8)]

52 L
- =2
9 43 Wi w; w dw;
><<3£A \/_+3£A0 + 3/2> . dx
=L+ B+ +I+ 15+ 15+ 15
With obvious notation, we now show that each one of the seven terms is O(e log %)

as € — 0.
For I3, it follows from T'[w, ¢] = v;, while for I3, we use (6.11) and the fact that

‘ d)s,t

We ¢

(8.4)

< Ce.
L=>=(Q.)

For I3, we use ||T[weg]|p~.) = O(1) and the fact that ¢.¢ is an even func-
tion. For I3, we use (6.12), (6.13), and (8.4). For I3, the estimate is derived from
[T [we t]¢e || Lo () = O(e). For I§, we use (T"[wet]det)(t;) = O(e) and the fact
that @; is even. Lastly, for IJ, we use estimates similar to (6.11), (6.12), (6.13) with
T'[we ] ¢e ¢ instead of T[we ¢] and the inequality

H T/[ws,t]d)s,t

< Ce.
T[’U}E)t]

Lo (82)

By arguments similar to those for I, we derive

(8.5) ng()(abg§> in L*(.).
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Combining the estimates for I, I, and I35, we have

1 [1v2n L Vo V2mt; + L 1
Ws,i(t):_g +; NG —Z o 5T +O<610gg>

(8.6) - —%Fi(t)JrO (Elog§>,

where F;(t) was defined in (4.3).
By assumption (4.4), we have F(t°) = 0. Next we show that

det(VtoF(tO)) 7é 0
in the case of two spikes with amplitudes v; = vs < v; = vo. We compute

VtF(t) = DtF + (DUF)(Dt’U),

where
2 Vor 1
DeF =— Y — |z
-3/2
2 0 Ua
DUF: % / 5
-3/2
1 0
—-1/2 —-1/2
. 1 v / v, /
tU =
\/_DAZ 3/2 L -2 3/2 -3/2
(Ul) +1- V2D AZ3/? vt .
This implies, using (4.1) and (4.6), that
2 1
Vo F(t%) = —
t ( ) 4DA% o 3/2 1
w1 + fDA2 V2D A2
_01—5/21};/2 g por? 1 20) 3/2 02—1/2 _01—3/2%—1/2
X
—v; —2 —vf‘r’/zv;/?—vflvgl—i—%f?—i—vf?’/zv;
Next, we compute
ml 1 1

det(Ve F(t%)) =

16(DA2)2 viv3 (a3 —2a2 — 204 1)°

x ((a® —a® =20+ 1)(a® = 20° —a + 1) — o?)
m 1 ad-a?—a+1
16(DA2)2 vivy o —2a2 —2a + 1’
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V2

where o = /2. Therefore, we have det(Vio F(t9)) # 0, except for two specific

positive values of a: « = 1 (the bifurcation point of asymmetric from symmetric

spikes which is not included in Theorem 3) and o = 1+2‘/5 (corresponding to the

eigenvalue e, 1 = % in section 5 which has been excluded from Theorem 3).
Thus, under the conditions of Theorem 3, we get

1 1
We.(t) = —thoF(to)(t -t 40 <|t —t%? +elog g) .

Since We(t) is continuous in t, standard degree theory [6] implies that for ¢ small
enough and J suitable chosen there exist t° € Bs(t") such that W.(t°) = 0 and
t° — tY. For further technical details of the argument, see [27]. O

Thus we have proved the following proposition.

PROPOSITION 11. For ¢ small enough, there exist points t& with t — t° such
that We(t%) = 0.

Finally, we complete the proof of Theorems 1 and 3.

Proof of Theorem 3. By Proposition 11, there exist t© — t such that W_(t¥) = 0.
In other words, S[we t= + ¢e ] = 0. Let Ae = We te + e te, Ve = T|we = + Po¢c]. By
the maximum principle, we conclude that A, > 0, 4. > 0. Moreover (1215, U ) satisfies
all the properties of Theorem 3. d

Proof of Theorem 1. To prove Theorem 1, we first construct a single spike in
the interval (—%, %) as above. Then we continue the single spike periodically to a
function in the interval (—L, L) and get a symmetric multiple spike in the interval
(=L, L). O

9. Proof of Theorem 4. The proof of Theorem 4 goes exactly as that of The-
orem 3.

First, let us derive the location of the single spikes formally: In the first equation
in (3.2) the term e®A; is very small and can be omitted in the computations. Thus
we may assume that

(9.1) A~ e 2y <Lt°> v(t?) = €.

3

Substituting the above expressions into the second equation of (3.2) and noting
that 91 (Ao + A)3 ~ £71/2([w®)8y,, we see that © satisfies in leading order:

(9.2) D20, — € ( [ dy) 1o +1(2) = 0.

Solving the above equation, we then obtain
L

3 -t ! x)dx, O :; x)dx
(9.3)  Dy(to—) = TIRTN /_L'y( Ydz, Oy (to+) NS /t v(x)dz.

Substituting (9.1) into the first equation of (3.2) and rescaling = = tog + ey, we
deduce that the error becomes

(9.4) £(Dp(to—)y™ + Vo (to+H)y)w (y) + Ao (to)3w? + O(e?),

where y~ = min(y, 0) and ¥ = max(y,0), from which we conclude that a necessary
condition for the existence of a spike at tg is that

(9.5) /R (202 (to—)y™ + B (to+)y ) w? (y) + e Ao (to)3w” + O(e*)] w (y) dy = 0,
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whence
(9.6) Uy (tO_) + Uy (t0+) =0,

which is equivalent to (2.17). It turns out that (2.17) is also sufficient, since the
derivative of fioL ~(z)dx — ftﬁ ~v(z)dr with respect to tg is y(tg), which is strictly
positive. The rest of the proof matches exactly the proof of Theorem 3. We omit the
details.

10. Discussion. In this article we have provided a rigorous mathematical anal-
ysis of the formation of spikes in the model of Short, Bertozzi, and Brantingham [19].
Thus, we have shown that this model naturally leads to the formation of criminal-
ity hotspots. The existence of such hotspots is one of the main stylized facts about
criminality. It is observed for an array of criminal activity types. Hotspots are ex-
tensively reported and discussed in the criminology literature. See, for example, the
articles [9] and [4] as well as the references therein. Now, the fact that a mathematical
model yields such hotspots can be viewed as passing one benchmark of validity. The
findings in our paper provide such a test for the Short, Bertozzi, and Brantingham
model [19].

Furthermore, the rigorous analysis carried here sheds light on the mechanisms for
the formation of hotspots in this model and the way it quantitatively depends on the
parameters. This type of analysis can then be applied to study issues such as the
reduction of hotspots by crime prevention strategies or optimal use of resources to
this effect. One of the goals is to understand when policing strategies actually reduce
criminal activity and when they merely displace hotspots to new areas.

In this paper we have proved three main new results. First, we showed that
we can reduce the quasilinear chemotaxis problems to a Schnakenberg-type reaction-
diffusion system and derived the existence of symmetric k spikes. Next, we established
the existence of asymmetric spikes in the isotropic case. Last, we have studied the
pinning effect by inhomogeneous media Ag(z) and v(x). The stability of these spikes
is an interesting open issue.

In [13] spikes in two space dimensions are considered by formal matched asymp-
totics. Our approach of rigorous justification can be extended to that case in a radially
symmetric setting, i.e., if the domain is a disk and we construct a single spike located
at the center. We remark that in [13] it is assumed that in the outer region (away
from the spikes) the system in leading order is semilinear, which allows an extension
of the results for the Schnakenberg model to this case. In [13], for the inner region, a
numerical computation by solving a core problem yields the profile of the spike.

An alternative approach to quasilinear problems in one space dimension would
be to write them as first-order semilinear ODE systems and then apply standard
methods, e.g., dynamical systems methods for the problem on the real line. We refer
the reader to a recent paper [11], where the dynamical systems approach is used
to construct traveling wave solutions of a quasilinear reaction-diffusion mechanical
system.

We remark that there are very few results concerning the analysis of spikes in
quasilinear reaction-diffusion systems. As far as we know, there are two such types
of systems. The first one is the chemotaxis system of Keller—Segel type. We refer the
reader to [10] for the background of chemotaxis models and [15] for the analysis of
spikes to these systems. The other one is the Shigesada—Kawasaki—Teramoto model
of species segregation [18]. For the analysis of spikes in a cross-diffusion system, see
[14, 16, 30].
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A family of related models for the diffusion of criminality has been proposed in [1].
We analyze the formation of hotspots in this class of models in our forthcoming work
[3]. The equations in [1] also envision the possibility of nonlocal diffusion. Indeed,
social influence can be exercised at long range, and it is natural to consider descriptions
that take long range diffusion into account. Such a nonlocal system arising in [1] reads

si(x,t) = Ls(z,t) — s(z,t) + sp + a(z)u(z, t),
(10.1) ug(z,t) = A(s) — u(x, t).

The case when £ = A is a local diffusion operator provides the framework of the
study in [2]. Here, £ can also be a nonlocal operator such as the fractional Laplace
operator or a general nonlocal interaction term:

Ls(z,t) = /J(x,y)(s(y,t) — s(z,t))dy.
Observe that the steady states reduce to a single nonlocal equation:
(10.2) —Ls = sp(x) — s+ a(zx)A(s).

We note that the interaction between nonlocal diffusion and the mechanism for the
formation of spikes is completely open. In particular, the description of the formation
of spikes in (10.1) and (10.2) are open problems. We expect that the decay of the
kernel may come into play for the formation of spikes.
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