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Abstract 

In this paper a new constitutive model for flexible risers is proposed and a procedure 

for the identification of the related input parameters is developed using a multi-scale 

approach. The constitutive model is formulated in the framework of an Euler-

Bernoulli beam model, with the addition of suitable pressure terms to the generalized 

stresses to account for the internal and external pressures, and therefore can be 

efficiently used for large-scale analyses. The developed non-linear relationship 

between generalized stresses and strains in the beam is based on the analogy between 

frictional slipping between different layers of a flexible riser and frictional slipping 

between micro-planes of a continuum medium in non-associative elasto-plasticity. 

Hence, a linear elastic relationship is used for the initial response in which no-slip 

occurs; an onset-slip function is introduced to define the ‘no-slip’ domain, i.e. the set 

of generalized stresses for which no slip occurs; a non-associative rule with linear 

kinematic hardening is used to model the full-slip phase. The results of several 

numerical simulations for a riser of small-length, obtained with a very detailed (small-

scale) non-linear finite-element model, are used to identify the parameters of the 

constitutive law, bridging in this way the small scale of the detailed finite-element 

simulations with the large scale of the beam model. The effectiveness of the proposed 

method is validated by the satisfactory agreement between the results of various 

detailed finite-element simulations for a short riser, subject to internal and external 

uniform pressure and uniform cyclic bending loading, with those given by the 

proposed constitutive law. 

 

Keywords: non-associative plasticity; frictional slipping; parameter identification; 

finite-element simulations; unbonded flexible pipes. 

 

 

1   Introduction 

The continuous development of unbonded flexible risers is a core factor supporting 

the evolution of the subsea oil industry to face the challenges associated with the 

increasing demand for ultra deep-water applications. The main advantage of flexible 

risers with respect to rigid steel risers is the much lower bending stiffness of the 

former, leading to smaller radii of curvature with the same pressure capacity, due to 

the complex make up of flexible risers (API, 2002), in turn resulting in increased 

ability of undergoing large deformations under loads induced by the sea current, 

vortex-induced-vibrations, the motion of the floating-vessel and during installation.  

The above advantages derive from the complex make-up of flexible risers, which 

consists of different layers, each one designed for a specific task. Main components 

are the helical armor layers and a set of sealing and/or anti-wear polymer layers, while 
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additional components which are typically present include a metallic internal ‘carcass’ 

and a pressure armor layer (API, 2002).  

One of the problems associated with the complex design of unbonded flexible risers is 

the difficulty in the analysis. To capture the many important aspects of their structural 

response, including the energy dissipation due to frictional slip between layers, the 

hysteretic response and the fatigue damage, efficient and accurate tools are required.  

Current methods are generally divided into two categories: analytical formulations 

and finite-element models. The analytical models share many of the following 

simplifying assumptions, which significantly limit the range of applicability of the 

results: displacements and strains are small (Feret and Bournazel, 1987; Claydon, 

1992; Harte and McNamara, 1993); some coupling terms in total stiffness matrix are 

neglected (Lanteigne, 1986; Harte and McNamara, 1993); the conventional elastic 

thin-walled theory can be assumed valid (McNamara and Harte, 1989; Claydon, 

1992); tendons are restricted from rotating about their local helical axis (Claydon, 

1992); strains and/or stresses across the layer thickness are constant (Claydon, 1992); 

thicknesses of layers remain constant during deformation (Claydon, 1992); plane 

sections remain plane (Harte and McNamara, 1993); ovalisation effects are neglected 

(Harte and McNamara, 1993; Kraincanic and Kebadze, 2001); contact and/or 

frictional effects are ignored (Witz and Tan, 1992a&b; Harte and McNamara, 1993; 

McIver, 1995; Brack et al., 2005; Tan et al., 2005); no slip occurs between layers 

(Zhang et al., 2003); tendons are constrained to slide only along their own axis 

(Kraincanic and Kebadze, 2001); tendons respond only axially, (bending and torsional 

stiffness neglected) (Claydon, 1992; Harte and McNamara, 1993; Kraincanic and 

Kebadze, 2001); the interlayer contact pressure is constant (Feret and Bournazel, 

1987; Kraincanic and Kebadze, 2001); the contribution of the plastic sheaths to the 

strength and stiffness of the riser can be neglected (Feret and Bournazel, 1987; 

McIver, 1995); layers remain constantly in contact (no bird-caging effect) (Feret and 

Bournazel, 1987; McNamara and Harte, 1989; Claydon, 1992); the radial deformation 

is the same for all layers (Claydon, 1992; Kraincanic and Kebadze, 2001; Bahtui et 

al., 2008a); initial manufacturing residual stresses can be ignored (Brack et al., 2005). 

Claydon et al. studied the assessment of service life of unbonded flexible pipes under 

deterministic cyclic loading (Claydon, 1992). They took the interlayer contact 

pressures into account and also considered stress recovery, slip between layers and 

riser interlayer wear and fatigue. Kraincanic and Kebadze presented a non-linear 

formulation which accounts for the variation of the bending stiffness of an unbonded 

flexible riser due to frictional sliding between layers, as a function of curvature, 

friction coefficient and interlayer pressures (Kraincanic and Kebadze, 2001). 

McNamara and Harte developed a method for calculating the deformations, stresses 

and pressures in layered flexible pipelines under three-dimensional loading 

(McNamara and Harte, 1989). Their model was capable of estimating wear, slip, 

rupture, collapse of the carcass, and tendon failure. Similar approaches are used in 

other analytical works (Bahtui et al., 2008a; Bahtui et al., 2008b; McIver, 1995; 

Harte, 1993; Witz, 1992a; Witz, 1992b; Serta and Brack, 1990; Out, 1989; Feret, 

1986; Lanteigne, 1986). 

Almost all the weaknesses of these analytical methods can be overcome using 

detailed, three-dimensional finite-element (FE) analyses, as is shown in previous work 

by the authors (Bahtui et al., 2008a), where the results of a FE simulation for a six-

layer pipe made of a carcass layer, three anti-wear isotropic polymer layers and two 

steel helical armor  layers well correlate with those of an analytical model derived as a 

combination and an enhancement of the work presented by Kraincanic and Kebadze 
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(2001), McNamara and Harte (1989) and Lanteigne (1986) and demonstrate higher 

accuracy and reliability, as well as a wider range of applicability. However, the 

downside of this type of analysis is the high computational cost so that, to make the 

analysis feasible, the riser model length is restricted to only few meters in the best 

case scenario for which top-end computational facilities and a large solution time are 

available. 

 
 

Figure 1: six-layer unbonded flexible riser analyzed by Bahtui et al. (2008a). 

 

The aim of this paper is to address the above issue by combining the accuracy of a 

detailed FE model of a short part of riser, with the low computational cost of a 3D 

Euler-Bernoulli beam element, in the framework of a novel, multi-scale approach 

capable of addressing large scale problems. An ‘equivalent elasto-plastic’ constitutive 

law for the beam cross-section is introduced to relate axial strain, torsion and bending 

curvatures to the conjugate stress resultants. Such law models the small-scale 

frictional slip occurring between the layers, when a combination of values of the 

stress resultants and of the internal and external pressures overcome a given threshold, 

at the macroscopic level of the cross section.  To this end, an ‘equivalent yield 

function’ is defined, which depends on the current values of the stress resultants, on a 

set of internal history variables, but also on the values of the external and internal 

pressures acting on or within the pipe. This last functional relationship simulates the 

effect that the pressure values have on the inter-layer normal stress, which in turn 

affects the inter-layer frictional sliding and the overall dissipation. The zero level set 

of the yield function represents the boundary of a ‘no-slip domain’, that is the onset of 

slipping.  

In formulating this first model a linear kinematic hardening law has been employed. 

For the case of monotonic loading, the assumptions of linear hardening and of linear 

elastic behavior within the ‘no-slip domain’ result in a bilinear response, which can 

provide sufficient approximation of the structural response in many cases of interest. 

This simplified model entails that the single cross section of the riser can be either in a 

state in which ‘no slip’ is found, or in a state in which ‘full slip’ occurs.  

The bridging between the beam model, suitable for large-scale analyses of the entire 

riser, and the small-scale detailed FE model relies on the identification of the 

parameters of the beam model, which is achieved through a combination of 

reasonable engineering assumptions and careful curve fitting, using the small-scale 

detailed FE model as a virtual testing rig. It is worth observing that the numerical 
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data, on which the constitutive model is calibrated on, can also be directly originated 

from experiments if such results are available. However accurate experimental testing 

of flexible risers which correctly reproduces the in-service conditions is difficult and 

very expensive, whereas the availability of a detailed FE model to minimize the 

number of required experiments is very important, and its use within the proposed 

multi-scale method capable of analyzing both short and long risers is expected to have 

a significant impact on the feasibility, accuracy and economy of the overall design 

and analysis of flexible pipes. 

The paper is structured as follows. In Section 2 the constitutive law for the 3D beam 

model is formulated. In Section 3, the detailed FE model, mainly based on earlier 

work by the authors (2008a), is described. In Section 4 the key issue of the 

identification of the parameters of the beam constitutive model is addressed. In 

Section 5 numerical results are presented and discussed to validate the effectiveness 

of the proposed method. Some conclusions are finally drawn in Section 6, where other 

aspects to be investigated in future work are also discussed.  

 

2   Formulation of the Constitutive Model 

In this Section the constitutive law of a flexible riser for an Euler-Bernoulli 3D beam 

model is formulated. It is assumed that locally the pipe develops along a straight line, 

so that an infinitesimal element of pipe can be represented as in Figure 2. A local 

right-handed Cartesian system is introduced with the origin and the x and y axes 

located at the cross section and the z axis coincident with the centroid axis.  

 

2.1 Generalized stresses and strains 

The stress resultants, shown in Figure 2, are the axial force N, the torque T, and the 

bending moments around axes x and y, denoted by Mx and My, respectively.  

 
Figure 2: stress resultants. 

 

In addition, the internal and external pressures need to be considered in the model. 

Referring to the cross-sectional view of the riser in Figure 3, the average radial 

strain r  is given by 

in

in
r

t

tt 
  (1) 

where tin and t denote the initial and the current thickness of the whole riser, 

respectively. Notice that the negative sign is added for convenience in the above 
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equation so that the work done by the pressure parameter P , which is introduced 

later in Equation (5), for a positive r  is positive. 

 
Figure 3: cross view of the riser section. 

 

The radial displacement of the average radius, the radial displacement of the internal 

layer and the radial displacement of the external layer, indicated with int,uur  and extu , 

respectively, are related to the radial strain and to the current thickness as follows: 
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 (2) 

 

 

The work W done by the pressure per unit of length of the riser is then 

 

extextext RuPRuPW  22 intintint   (3) 

 

where intR  and extR  are the internal and external radiuses, while intP  and extP  

represent the internal and external applied pressures.  

By substituting Eq. 2 into Eq. 3 we have: 

 

rru PuPW   (4) 

where uP  and P are the conjugate actions working for ur and r , defined by: 
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 (5) 

 

Increasing values of P  result in increasing compression normal stresses between 

layers in the radial direction and, therefore, in increasing frictional stresses. Instead, 

the value of uP  controls the radial displacement and does not affect the radial stresses 

or the amount of friction. 
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Hence, in the proposed model uyxt PMMMN ,,,,  and P  are the generalized 

stresses. The corresponding work-conjugated generalized strains 

are rryxz u  ,,,,, , where yxz  ,,  and   are the axial strain, the curvatures 

about the x and y directions and the torsional curvature, which are in turn related to 

the axial displacement uz and the torsional rotation    by the following relationships: 

.;;;
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dz
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(6) 

A compact notation is conveniently introduced denoting by   and   the generalized 

stresses and strains: 
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2.2 Constitutive law 

As discussed in Section 1, the constitutive law for the beam model is based on the 

observation that the local (small-scale) frictional slip between the different layers 

results in a macroscopic (large-scale) relationship between generalized stresses and 

strains which has many analogies with the laws of elasto-plasticity.  

Figure 4 shows the response of the flexible riser shown in Figure 1 under cyclic 

loading, evaluated using a detailed three-dimensional FE analysis which accurately 

models the interaction between all layers. For the qualitative analysis in this section, 

presented to justify the assumptions of the proposed constitutive model, it is sufficient 

to state that the values of the applied loading (internal and external pressures 

included) are within a meaningful range typical of practical cases. For the first 

monotonic increase of the curvature, the bending moment increases with an almost 

linear stiffness between points (a) and (b). Then the stiffness rapidly decreases 

between points (b) and (c) to a value which remains approximately constant up to 

point (d). Upon unloading, the flexural stiffness is initially very close to the initial 

stiffness, between points (d) and (e), and then it rapidly decreases between points (e) 

and (f) to a value which is constant between points (f) and (g) and approximately 

equal to that between points (c) and (d). Replacing the rounded parts between points 

(b) and (c) and between points (e) and (f) with two sharp elbows, a bilinear curve 

response is obtained with very good approximation. Such a bilinear curve represents 

the same type of response as that obtained using an elasto-plastic model with linear 

kinematic hardening, which is the model proposed here. 
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Figure 4:  plot of the bending moment against the corresponding 

curvature for the unbonded flexible riser of Figure 1 during 

cyclic loading; the response is evaluated with a detailed finite-

element simulation. 

 

In analogy with the elasto-plastic case, the generalized strains are additively 

decomposed into an elastic-like, i.e. ‘no-slip’, part e , and a plastic-like, i.e. ‘full-

slip’, part s .  

 

se    (8) 

 

The generalized stress is obtained from the no-slip components of the generalized 

strains via a linear-elastic relationship: 

 

eD  ˆ  (9) 

 

where D̂  indicates the stiffness during the no-slip phase. The full-slip strains evolve 

in accordance with a law which is analogous to the plastic flow rule of elasto-

plasticity, and which can be expressed as follows: 

 








g
s

   , (10) 

 

 

where g represents a suitable defined real-valued ‘slip potential’. The multiplier 

 evolves in accordance with the Khun-Tucker conditions: 

 



 8 

0           0 f           0  f  (11) 

 

where   represents the ‘back-stress’ associated with kinematic hardening.  

The real-valued function  f  represents the equivalent of the yield function in elasto-

plasticity and will be indicated as ‘slip-onset’ function in view of its mechanical 

meaning in the current context. When the stress resultant   is such that 

  0 f , then no slip occurs, i.e. the stress resultants are inside the ‘no-slip’ 

domain. Instead, when   0 f , slip can occur because it is possible to have 

0 .  

Notice that it is not possible to have   0 f . However, the back-stress follows 

the evolution of the full-slip component s  in accordance with a hardening 

relationship which, in this case, is assumed to be linear: 

 

        sH  ˆ          (12) 

 

where Ĥ  is a matrix of hardening coefficients. Therefore, although the value of the 

slip-onset function remains constantly null during the frictional slipping phase, the 

value of the stress components increase because of the hardening, in accordance with 

the expected response shown in Figure 4.  

The slip-onset function f and the potential g have to incorporate the dependence of the 

response of the flexible pipe cross section on the current state of internal stress. In 

particular, the values of the pressure component P  has a great influence on the 

normal interaction between layers and then on the onset of friction.  

Notice that the slip potential g and the slip-onset function f are different because of the 

frictional nature of the constitutive law. The mechanical meaning of this assumption 

will be discussed later in more detail. 

 

2.2.1 Finite-step equations 

From a computational point of view, the time domain needs to be subdivided into a 

number of finite steps. Adopting a fully implicit backward-Euler time-integration 

scheme, the equations to solve in each step are as follows: 
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In a conventional displacement-based finite-element analysis the constitutive law is 

‘strain driven’, whereby the generalized strain   at the end of the step and the history 

variables at the beginning the step, that is 0s  in this case, are given, and the 

remaining variables at the end of the step, that is the stress  , the back-stress   and 

the full-slip generalized strain s  have to be computed. The solution is found 
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iteratively, using the same well-established return-map algorithms used in elasto-

plasticity. 

The above equations provide a general formulation which is the basis for the current 

and future developments of this research work. As will be discussed later in more 

detail, the main difficulty lies in the identification of the coefficients of the stiffness 

and hardening matrices D̂  and Ĥ , and of both the expression and the related 

coefficients of functions f and g. Addressing the most general case is not convenient 

in this phase of the research work in which the main aim is to demonstrate the validity 

and the potential of the proposed method. Hence, in the following section some 

reasonable assumptions will be made to study some cases of significant interest. 

 

2.2.2 Specialisation to the case of cyclic flexural loading 

In this section, the very important case of cyclic flexural loading will be considered. 

To simplify the treatment and better focus on the factors which have a major influence 

on the structural response, the assumption is made that the axial force N and the 

torque Mt are constant throughout the deformation process. Hence, their influence on 

the determination of functions f and g can be incorporated within the coefficients and 

then ignored. Furthermore, a pure elastic relationship can be assumed between N and 

Mt and the conjugated variables z  and  , so that the hypothesis made that  N and Mt 

are constant allows us to completely ignore these terms. 

A further simplifying assumption made is that 0uP . This seems reasonable in this 

phase of the work because the main influence on the response of the flexible pipe on 

the onset of and during frictional slipping is given by the other term P . The latter 

simplification further reduces the number of degrees of freedom of the model and, 

because of Eq. (5)1, it results in the following relationship to be satisfied by the 

pressure values applied to the (small-scale) detailed FE model: 

 

extext RPRP intint  
(14) 

 

Symmetry of the cross section rules out coupling terms in the elastic relationship 

between the remaining components of the generalized stresses and strains, and also 

results in the same flexural response about the x and y axes, whereby the initial 

stiffness is represented by a diagonal matrix: 
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The components of the back-stress vector   which correspond to the generalised-

stress components xM , yM  and P are denoted by x , y  and  , so that the 

argument of the onset-slip function is given by: 
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To determine functions f and g and the coefficients of the kinematic hardening matrix, 

many results of several numerical simulations made with the detailed FE model have 

been reviewed and the following expression has been found to be sufficiently valid:  

 

       aPMMbf yyxx  )(
22

   (17) 

 

where a and b are material parameters to be identified, and again symmetry of the 

cross section has been exploited.  

The slip potential g has to account for the finding that frictional slipping in bending is 

not accompanied by any significant relative opening between layers. At the small-

scale level this means that no significant dilatancy is observed in the frictional 

slipping between layers. A suitable expression for the potential g which meets this 

requirement is as follows: 

 

      22
yyxx MMbg    (18) 

 

which results in the following slip rule: 
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where sysx   , and sr denote the full-slip components of the bending curvatures 

about the x and y axes and of the radial strain. Overlapping the generalized stresses 

and strains spaces, Figure 5 describes the above equation and shows that the 

inequality between functions f and g results in the full-slip strain rate s being not 

normal to the slip-onset surface, i.e. not parallel to the normal n . This is in analogy 

with the non-associative plasticity models used for many materials exhibiting internal 

friction for which the normality rule is not satisfied. 
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Figure 5: non-associative behaviour of the proposed model. 

 

The following proportional hardening law is used: 
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It is worth observing that because of the slip law in Equation (19), the radial full-slip 

strain sr results to be constantly zero, so that  also does so and the above 

equation further specializes as follows: 
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A final remark is that, having the same response about the x and y axes because of 

symmetry, a simple plane model can be used to study the structural response and to 

identify the model parameters, as will be done in Sections 3 to 5. Nevertheless, it was 

preferred to derive all the above equations for the general case in which components 

of moment and curvature about both axes are non-zero to clarify that the model can be 

used in a general three-dimensional problem.  

 

3   Detailed FE Model of an Unbonded Flexible Riser 

Several FE simulations for a typical 1.7 m long unbonded flexible riser have been 

conducted using the FE code ABAQUS. The model includes a complex make up of 

seven-layers of internal and external plastic sheaths, helical armors, carcass and anti-

wear layers and is described in the cross-sectional view of Figure 6. It has been 

created adding one additional layer to the model considered by the authors in previous 

work (Bahtui et al., 2008a and 2008b). Figure 7 shows the finite element mesh of the 

riser and indicates the number of nodes and elements used.  

n  

 P  



g
 

 M  
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The elements used in the model are of 8-noded linear brick type with reduced 

integration and hourglass control for the sheath and the helical armor layers and 4-

node doubly curved thin shell type with reduced integration and hourglass control for 

the carcass layer. The tendons of the helical armor layers, wounded in opposite 

directions, have been modeled separately as 3D beams, each one having a rectangular 

cross-section, revolved around the riser axis in circumferential direction with a 

constant pitch. The material data have been provided by the manufacturer. 

The explicit-dynamics solver of ABAQUS is used due to the large number of contact 

surfaces. Each load is applied with a low enough loading rate to allow the structure to 

settle into steady state, avoiding any significant vibration. This has been verified by 

comparing the results of various analyses done with different loading rates. 

 

 

 
 

Figure 6: detailed geometry of riser (cross-sectional view). 

 

 

 

 
 

Figure 7: finite-element mesh. 
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3D contact interaction is introduced between all layers, using a penalty contact 

method based on Coulomb friction model together with the general contact algorithm 

of ABAQUS/Explicit (Bahtui et al. 2008a), so that frictional sliding between the 

layers is correctly accounted for. The friction coefficient is assumed to be 0.1, in 

accordance with the experimental results provided by Saevik and Berge (1995). 

For the identification of the parameters, it was enough to consider the planar case in 

which moments are applied about the x axis in Figure 6. Accordingly, the only non-

zero flexural curvature is also about the same axis. 

The analysis starts with an initial ‘pressure load step’ which accounts for the internal 

fluid pressure and the external hydrostatic pressure. Four different input pressures are 

analysed and referred to as cases 1, 2, 3, and 4, respectively. The values of the applied 

internal and external pressures are given in Table 1 and satisfy Equation (14). 

The pressure step is then followed by a ‘bending step’, in which a 16 kNm bending 

moment is cyclically applied to the free end of the pipe. In each loading or unloading 

part of the cycles the moment is applied linearly with time.  

All the nodes at each of the two cross sections at both ends of the riser are rigidly 

connected to two reference points which are positioned at the center of the sections 

and marked as RP in Figure 7. The reference point connected to the bottom end of the 

riser is completely constrained in all translational and rotational directions during the 

analysis. The reference point which is connected to the top end of the riser model is 

completely free during the pressure loading step, whereas for the bending step is fixed 

in the rotational direction about the longitudinal axis of the riser. 

 

Load 

Case 

Loads applied to riser 

Pressure Loading 

(MPa) P ( kN) 
Max. bending 

moment  (kNm) 

Min. bending 

moment  (kNm) 

1 
Internal = 0 

External = 0 
0  16  -16  

2 
Internal = 10 

External = 7.804 
145.6  16  -16  

3 
Internal = 30 

External = 23.41 
436.9  16  -16  

4 
Internal = 50 

External = 39.02 
728.2  16  -16  

 

Table 1: load cases – steps and magnitudes. 

 

For each case analyzed, an average curvature of the riser has been computed at each 

increment by dividing the rotation of the free end of the riser about the x axis by the 

length of the riser. In Figure 8 the applied bending moment is plotted against the 

computed average curvature for the four different load cases. Notice that the initial 

pressure load step does not result in any curvature. As expected, results are similar to 

those in Figure 4.  

All results of Figure 8, except for the case P. = 0, illustrate a hysteretic behavior of 

the riser subjected to cyclic bending moment, the response tending towards a 

stabilized cyclic response gradually as the number of cycles increases. The first cycle 

represents the installation phase, whereas the stabilized results are more suitable to be 

used for the calibration procedure, which will be discussed in the next section. Figure 

8 also shows that the higher the pressure, the more cycles are needed to reach a 
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stabilized hysteresis loop, and the greater the energy dissipated during the hysteresis 

loop. 
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Case 2

Pε = 145.6 kN
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Case 3

Pε = 436.9 kN
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Case 4

Pε = 728.2 kN
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(d) 

 

Figure 8:  bending moment-curvature curves for the four different load cases (a) 

P  = 0, (b) P  = 145.6 kN, (c) P = 436.9 kN and (d) P  = 728.2 kN. 

 

4   Calibration of the constitutive model  

Several FE simulations have been used to calibrate the constitutive model. Each 

bending moment-curvature result from the numerical simulations was curve fitted 

using a bilinear curve, using the stabilised cycle. This bilinear curve can give three 

specific parameters for the constitutive model: the initial no-slip slope, a slip-initiation 

point, and a full-slip slope. In Figure 9 two representative results from the FE 

simulations are shown together with the fitted bi-linear curves. 

 

 



 16 

Pε = 291.3 kN
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Figure 9:  two representative results from the FE simulations and related fitted 

bilinear curves. 

 

For all cases except those with zero or very small applied pressure, an initial linear 

response can very clearly be identified. Therefore, an initial ‘no-slip slope’ can be 

determined and is found to be the same for each of the analysed cases. This validates 

the hypothesis that an initial linear part of the moment-curvature diagram, in which 

frictional slip between layers is absent or negligible, does exist. This slope directly 

provides the flexural stiffness D11 = D22.  

After this initial linear response, a non-linear part of the curve follows, which 

relatively rapidly tends to join a final full-slip slope. Upon repeated loading and 

unloading cycles, this final slope changes and stabilizes on a straight line which is that 

used in the identification procedure. This final full-slip slope is not equal to the 

hardening parameter h, but it is related to it and therefore its determination allows to 

estimate h.  
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The intersection point between the initial slope and the final slope provides a ‘slip-

initiation’ point, which is also a point of the boundary of the no-slip domain, i.e. a 

point of the zero level set of the slip-onset function. 

 

Remark 4.1 

In this proposed model, the non-linear transitional regime between the initial no-slip 

response and the final full-slip response is replaced with a bilinear response and a 

sharp elbow at the slip-initiation point. During the transition phase one part of the 

layers in contact (particularly the armor tendons) slip with respect to each other, and 

another part of them do not. Although the results of the proposed simplified model 

can be accurate enough in many cases, it is important to underline that the method can 

be further refined, as discussed later. 

 

The slip-initiation points identified have been fitted with the quadratic expression of 

Equation (17) and the resulting curve is shown in Figure 10.  
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Figure 10: curve-fitting of the slip-initiation points. 

 

Finally, the last parameter of the model to be identified is the stiffness value D33. This 

has been done by analysing the pressure steps in the above described analyses for 

different values of the pressure, and identifying the initial no-slip, nearly linear 

response. Table 2 reports the parameters of the model determined with the proposed 

procedure: 

 

Stiffness Slip-onset function Hardening 

D11 (kNm
2
) D33 (kN) a b (N

-1
 m

-2
) h (Nm

2
) 

608 26707 0 0.023 2.5 · 10
5
 

 

Table 2: identified parameters. 
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5   Validation of the model 

To demonstrate the validity of the proposed method, the same cyclic analyses 

performed using the detailed finite-element model in ABAQUS have been reproduced 

using the simplified proposed constitutive model adopting the parameters of Table 2 

identified as described in the previous section, and using the solution scheme 

described in Section 2.1.  

Results of this validation are reported in Figure 11 for four cases corresponding to 

four values of the applied pressure load P . For each case a graph is reported in which 

the moment-curvature curve obtained with the proposed constitutive model is plotted 

with a solid line and is compared with the dashed-line curve obtained using the 

detailed finite-element model.  

In Case 1 (P = 0), no friction occurs in both cases, which results in no hysteresis, i.e. 

no energy dissipation. The two curves overlap and cannot really be distinguished. 

Such perfect agreement is not obtained for the other cases, because the proposed 

model immediately provides the final stabilized cycle, whereas in the finite-element 

results one, two and three cycles are required to reach the nearly stabilized response, 

respectively. The difference between the stabilized response and that in the first one 

or two cycles increases with increasing values of P, and could be an issue of concern 

only in the analysis of the installation phase, while in the other cases it can be 

considered not important for the accuracy of the analysis. 

The comparison between the curves provided by the constitutive model and the 

stabilised cycles obtained with the FE numerical simulations indicate very good 

agreement. It is worth noting that for all cases the same stiffness and hardening 

parameters have been used, that these parameters have been determined by 

interpolating the FE results with a bilinear curve only assuming a monotonic case and 

that very good agreement could be reached for cases with significantly different 

values of the pressure and for the entire stabilised cycles. This demonstrates that the 

assumptions on which the constitutive model is based are well justified and that the 

proposed approach can represent an excellent method of analysis for long flexible 

risers. 
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(a) 

 

Case 2

Pε = 145.6 kN
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Case 4

Pε = 728.2 kN

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

-0.1 -0.05 0 0.05 0.1 0.15

Curvature (1/m)

B
e
n

d
in

g
 M

o
m

e
n

t 
(N

m
)

ABAQUS

Constitutive model

 
(d) 

 

Figure 11:  comparison of the results obtained from the constitutive model (solid 

line) and from the detailed FE model (dashed line). 

 

 

6  Conclusions 
 

A new method has been proposed for the formulation of constitutive models for 

flexible risers, suitable for large-scale analyses, and for the identification of the 

related input parameters. The approach used is multi-scale and entirely numerical. At 

the small scale, a detailed finite-element model of a riser of small-length has been 

used to conduct several numerical simulations for different values of the applied loads 

and internal/external pressure. This model accurately takes into account the detailed 

geometry of the riser and the frictional contact between various layers. At the large 

scale, an Euler-Bernoulli beam model has been developed with the addition of 

suitable pressure terms in the generalized stresses to account for the internal and 

external pressures. The constitutive law for the beam model has been derived based 

on a set of assumptions which are motivated by the analogy between the structural 

response obtained in the numerical simulations and that of an elasto-plastic model 

with non-associative type of flow rule, the frictional slipping between the different 

layers of the riser producing a similar type of response as the frictional slipping of 

micro-planes in a continuum medium. The parameters of the beam constitutive law 

are identified by ensuring that the analyses performed at different scales provide as 

close as possible results for a number of representative cases. 

The beam model supplemented with the proposed constitutive law is clearly suitable 

for large-scale analysis, unlike the detailed finite element model used to formulate it 

and to determine its parameters. On the other hand, it is able to capture all the 

important aspects of the structural response of the riser. 

The model has been specialized to the important case of cyclic bending loading of a 

riser subject to different values of internal and external pressures. In these first 
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developments of the method, linear kinematic hardening has been assumed. Very 

good agreement has been obtained between the response provided by the proposed 

(large-scale) model and that of the detailed (small-scale) finite element simulations. 

This makes this first implemented model already suitable to study many problems, 

such as hysteretic damping in vibration analysis.  

In future work the constitutive law will be improved by including non-linear 

hardening as well as more refined hardening models capable of simulating the 

stabilisation of the response during cyclic loading. Further improvements can be made 

by accounting for the presence of the shear force (switching to a Timoshenko beam 

model) and by incorporating the influence of variable axial force and torque on the 

non-linear response. Clearly, more sophisticated models will also imply more 

parameters to be identified and therefore call on the development of more refined 

identification procedures. 
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