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Introduction

Research into combination effects of genotoxic chemicals 
has typically employed concepts and approaches that dif-
fer in important ways from those underpinning other areas 
of mixture toxicology. Frequently, synergisms have been 
declared wherever the observed combined responses were 
larger than the simple sum of effects, with the implicit 
assumption that the summation of effects provides valid 
additivity expectations (Hecker 1976). Even more widely 
used is an approach based on comparisons between mixture 
effects and the effects of single components, without ref-
erence to null hypotheses about expected additive effects. 
Here, synergisms are pronounced when the mixture effect 
is greater than that of the most potent component (for 
recent examples, see Bouslimi et  al. 2008; Kocaman and 
Topaktas 2010). Due to its lack of additivity expectations, 
this approach precludes delineations of additive effects 
from true synergisms (defined as “greater than additive”), 
with a high chance of claiming synergisms when the com-
bined effects are in fact additive.

The fallacy of using effect summation for deriving addi-
tivity expectations as a point of reference for establish-
ing synergisms has been discussed by Berenbaum (1985). 
Effect summation produces erroneous additivity expecta-
tions when calculations are based on the effects of single 
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mixture components that exhibit nonlinear concentration–
response curves. Consequently, more reliable methods for 
defining additivity have been established in other areas 
of mixture toxicology [reviewed by Kortenkamp et  al. 
(2009)].

Two concepts have found wide application for the cal-
culation of expected additive effects: dose or concentration 
addition (CA) and independent action (IA). Both concepts 
utilise algorithms for translating effect concentrations 
(CA) or effects (IA) of the individual mixture components 
into expected combined effects, but are based on different 
assumptions. CA conceptualises the idea that all compo-
nents in a mixture behave as if they were dilutions of one 
another (Loewe and Muischnek 1926). If all mixture con-
stituents act on the same molecular target, it is thought that 
one chemical can be replaced by an equal fraction of an 
equi-effective concentration (e.g. an EC50) of another, with-
out diminishing the overall combined effect. In contrast, 
IA assumes that a combination effect can be calculated 
from the responses of the individual mixture components 
by following the statistical concept of independent random 
events (Bliss 1939). In the case of simultaneous exposure 
to several chemicals, the principles of IA are thought to be 
met only by substances with strictly dissimilar mechanisms 
of action. The validity of IA for multi-component mix-
tures under such conditions has been demonstrated in algae 
(Faust et al. 2003) and in bacteria (Backhaus et al. 2000), 
but evidence showing its applicability to responses of 
mammalian cells or whole organisms is missing altogether.

The application of CA and IA, based on concentration–
response regression modelling, has not been widely recog-
nised in the genotoxicity mixtures field, and consequently, 
there is no consensus about their validity and applicability. 
At one extreme of the spectrum of opinions, it has been 
claimed that the toxicity of mixtures cannot be predicted 
from that of its components, e.g. Kocaman and Topaktas 
(2010), referring to a paper by Marinovich et  al. (1996). 
Conversely, the US National Academy of Sciences, in 
their 1989 report on toxicants in drinking water (National 
Research Council 1989), recommended the use of IA for 
the estimation of risks from mixtures of carcinogens and 
genotoxic agents, viewing carcinogenesis and genotoxicity 
as stochastic processes, commensurate with the assump-
tions underlying IA. Finally, Lutz et al. (2002) found that 
the joint mutagenic effects (Ames assay) of polycyclic aro-
matic hydrocarbons could be accurately predicted by CA.

Until recently, studies that allowed comparative evalua-
tions of the validity of CA and IA for predicting combined 
effects of chemicals with genotoxic modes of action—
here understood broadly to include DNA damage, muta-
tions, chromosome damage and induction of micronuclei 
(MN)—were not available. We previously have begun to 
address this issue in experiments with seven aneugenic 

benzimidazole pesticides which induce MN in Chinese 
hamster ovary (CHO)-K1 cells through a common mecha-
nism (Ermler et al. 2013). As expected in the light of their 
mechanistic similarity, CA produced accurate predictions 
of the joint action of these seven benzimidazoles, on the 
basis of their individual effects, while IA yielded additivity 
predictions that fell short of the experimentally observed 
effects. Had we used additivity predictions derived from 
IA as the basis of assessment, we would have concluded 
erroneously that the combined effect of benzimidazoles is 
synergistic.

Here, we present investigations that extend the scope 
of our earlier mixture studies. We experimentally assessed 
several mixtures using nine chemicals known to be capa-
ble of inducing MN in the cytokinesis-block micronucleus 
(CBMN) assay in CHO-K1 cells by several different mech-
anisms (Table  1). We used five aneugenic compounds of 
which three (vinblastine sulphate, the anthelmintic fluben-
dazole and colchicine) induced MN by blocking microtu-
bule formation through binding to free β-tubulin monomers 
at the colchicine-binding site. The two remaining aneu-
gens were the anti-fungal drug griseofulvin, which disrupts 
microtubule polymerisation by binding to a tubulin mono-
mer site different from the colchicine-binding site, and the 
anti-cancer drug paclitaxel, which induces MN by inhibiting 
the depolymerisation of microtubules. We also used clas-
togens: mitomycin C and melphalan (DNA cross-linking 
chemotherapeutic compounds); doxorubicin hydrochloride 
(intercalating topoisomerase II inhibitor); etoposide (which 
inhibits topoisomerase II by binding to DNA grooves).

We assessed the applicability of CA and IA to mixtures 
of chemicals that induce MN through a wide range of dif-
ferent mechanisms.

Materials and methods

Chemicals and reagents

Colchicine (CAS 64-86-8), doxorubicin hydrochloride 
(CAS 25316-40-9), etoposide (4′-demethylepipodophyl-
lotoxin 9-(4,6-O-ethylidene-β-d-glucopyranoside), CAS 
33419-42-0), flubendazole [methyl N-(6-(4-fluorobenzoyl)-
1H-benzimidazole-2-yl)carbamate, CAS 31430-15-6], 
griseofulvin [(2S)-trans-7-chloro-2′,4,6-trimethoxy-6′-
methylspiro(benzofuran-2[3H],1′-[2]cyclohexene)-3,4′-
dione, CAS 126-07-8], melphalan [4-(bis(2-chloroethyl)
amino)-l-phenylalanine, CAS 148-82-3], paclitaxel (CAS 
33069-62-4), vinblastine sulphate (CAS 143-67-9) and 
benzo[α]pyrene (CAS 50-32-8) were purchased from Sigma-
Aldrich (Dorset, UK) at the highest purity available. MTT 
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide], acridine orange (AO) and cytochalasin B (10 mg/ml) 
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were also obtained from Sigma. Mitomycin C (CAS 50-07-
7) was provided by Calbiochem (Millipore, Watford, UK), 
paraformaldehyde (PFA) by Avocado chemicals (Lancashire, 
UK) and dimethyl sulphoxide (DMSO, cell culture grade) 
and Triton X-100 by VWR (Lutterworth, UK). F12-K cell 
culture medium and HBSS buffer were purchased from Inv-
itrogen (Paisley, UK).

Routine cell culture of CHO‑K1 cells

The CHO cell line CHO-K1 was purchased from the ATCC 
(ATCC No CCL-61, LGC standards, Teddington, UK). 
Cells were routinely grown in 75-cm2 canted-neck tissue 
culture flasks in F-12K medium (Invitrogen) supplemented 
with 10 % foetal calf serum (FCS; Invitrogen) in a humidi-
fied incubator at 37 °C with 5 % CO2. Cells were subcul-
tured when confluent over a maximum of 10 passages and 
were tested routinely for Mycoplasma infections.

CBMN assay

Treatment of CHO‑K1 cells

The CBMN assay (Fenech 2000) was performed as 
described earlier (Ermler et  al. 2013). Briefly, CHO-K1 
cells were seeded in F-12K medium (10 % FCS) at a den-
sity of 1.2 × 104 cells/well in 24-well plates and allowed 

to attach for 24  h before addition of the treatments. All 
compounds were dissolved in DMSO, and serial dilutions 
of the chemical or mixture stocks were diluted in F-12K 
assay medium, the DMSO concentration never exceeding 
0.5 %. Eight different concentrations were tested for each 
chemical or mixture per experiment. Controls were treated 
in duplicate with solvent (0.5 % DMSO, negative control). 
Cells were treated for 24 h, and exposure to light was kept 
to a minimum to avoid UV-induced genotoxicity.

Cytokinesis block

Subsequent to treatments, the cells were washed once 
with F-12K medium, before adding F-12K medium (10 % 
FCS) supplemented with 3 μg/ml cytochalasin B to block 
cytokinesis for 18–20 h. After this period, the medium was 
changed to F-12K medium (10 % FCS) and the cells left to 
recover for 1–2 h.

Slide preparation and staining

The cells were harvested by trypsinisation, counted and 
centrifuged onto glass slides using a cytocentrifuge for 
10 min at 1,200  rpm. The final cell density per slide was 
kept between 50,000 and 100,000 cells. The cells were 
immediately fixed in 4  % PFA or 4  % formaldehyde (in 
PBS) for 10  min at room temperature. The fixed slides 

Table 1   Composition of the mixtures tested in the CBMN assay

Percentages show the fraction of the individual compounds in the mixture

Compounds Mechanism of action Mixture composition and fraction of individual compounds

Mixture I  
(%)

Mixture II  
(%)

Mixture III  
(%)

Mixture IV  
(%)

Mixture V 
(%)

Aneugens

 Colchicine Inhibition of microtubule formation  
(colchicine-binding site)

1.82 – – – –

 Flubendazole Inhibition of microtubule formation  
(colchicine-binding site)

1.44 34.77 33.12 68.60 94.53

 Griseofulvin Inhibition of microtubule formation  
(distinct binding site)

96.07 – – – –

 Paclitaxel Inhibition of microtubule depolymerisation  
(distinct binding site)

0.66 – 15.15 31.40 –

 Vinblastine 
sulphate

Inhibition of microtubule formation  
(colchicine-binding site)

0.01 – – – –

Clastogens

 Doxorubicin 
hydrochloride

Topoisomerase II inhibitor (DNA intercalation) – 2.01 1.92 5.47

 Etoposide Topoisomerase II inhibitor (non-intercalating, 
binding to enzyme and DNA grooves)

– 8.89 – – –

 Melphalan DNA cross-linker (N7 alkylation of guanine) – 52.29 49.81 – –

 Mitomycin C DNA cross-linker (sequence specific  
N alkylations of guanine in 5′-CpG-3′)

– 2.04 – – –
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were washed for 2  ×  5  min in PBS on a shaker, before 
staining them with 10 μg/ml AO (in ddH2O) for 10 min at 
room temperature. The slides were washed for 2 × 5 min 
in ddH2O on a shaker, then dipped into ddH2O, allowed to 
air-dry and mounted with Vectashield HardSet mounting 
medium containing DAPI (1.5 μg/ml, Vector Laboratories).

Automated image acquisition and micronucleus scoring

For automated image acquisition and MN scoring, a Path-
finder™ Cellscan μN platform for automated micronu-
cleus assay scoring (IMSTAR) was used. It was equipped 
with an Olympus BX41 fluorescence microscope with an 
automated stage and employed the IMSTAR Pathfinder™ 
software for image acquisition and analysis. Image acqui-
sition and MN scoring were performed as reported previ-
ously (Ermler et  al. 2013). Comparison of manual with 
automated counts revealed that automated counting persis-
tently underestimated MN scores relative to manual count-
ing. This systematic error was consistently observed for 
different compounds and at different effect concentrations. 
The underscoring by automated counting was mostly due 
to the more conservative setting of the scoring algorithm 
towards avoiding false-positive MN and was comparable 
to other automated MN scoring systems as discussed in 
Ermler et  al. (2013). Most importantly, automated scor-
ing produced data with sufficiently low inter-experimental 
variability and high data reproducibility which provided 
good foundations for mixture experiments. Data output 
contained the total number of mono- and bi-nucleated 
cells and the number of mono- and bi-nucleated cells that 
contained MN. Treatment of cells with aneugens might 
cause mitotic slippage, i.e. upon prolonged activation of 
the spindle assembly checkpoint, the cells might escape 
mitosis and re-enter G1 phase, leading to tetraploid mono-
nucleated cells with MN instead of binucleated cells in 
the CBMN assay (Elhajouji et  al. 1998; Hashimoto and 
Todo 2013). As an exclusive focus on binucleated cells 
might have led to underestimations of MN frequencies, we 
also looked at MN induction in mono-nucleated cells. A 
slightly higher number of MN containing mono-nucleated 
cells were observed upon treatment with the aneugens in 
comparison with clastogens. However, with the automated 
scoring system, it was not possible to distinguish between 
diploid and the relevant tetraploid cells. Furthermore, the 
differences between MN frequencies in mono-nucleated 
cells and those in binucleated cells were only minor and 
were without impact on the estimated threshold concentra-
tions for the individual mixture components. Our mixture 
studies were therefore based on MN frequencies in binu-
cleated cells only. For each slide >1,000 binucleated (bn) 
cells were analysed (unless this was not possible due to 
cytotoxicity).

MTT assay for measurement of cytotoxicity

To ensure that cytotoxicity did not have a major impact 
on MN induction by the chemicals and mixtures, we also 
determined their cytotoxicity using a modified version of 
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay (Mosmann 1983) as described in 
(Ermler et  al. 2013). Briefly, CHO-K1 cells were seeded 
at 5,000 cells/well in F-12K medium (10 % FCS) in clear 
plastic 96-well plates. Cells were allowed to attach for 24 h 
before being treated with the test compounds. Cells were 
treated similar to the CBMN assay, i.e. for 24  h with test 
compounds or mixtures, washed and cytokinesis blocked 
for 18–20  h with cytochalasin B (3  μg/ml) followed by 
1 h recovery. All chemicals were dissolved in DMSO and 
diluted in assay medium, the DMSO concentration never 
exceeding 0.5  %. Samples were tested in duplicate. Con-
trols were treated with DMSO only (solvent control) or with 
1  % Triton X-100 (positive control). Following the treat-
ments, the medium was replaced with MTT-solution (F-12K 
medium (10  % FCS) containing 250  μg/ml MTT) and 
incubated for 1  h (reduction of yellow MTT to dark blue 
formazan crystals by viable cells). After washing the cells 
with HBSS buffer, the formazan crystals were dissolved in 
DMSO for 30 min on a shaker. The absorbance was read in 
a plate reader at 570 and 620  nm. Background correction 
was performed by subtracting the 620 nm from the 570 nm 
readings. Data were normalised by subtraction of the aver-
age positive control values from the sample values and the 
average of solvent controls, and then by dividing the cor-
rected sample values by the corrected solvent controls.

Biostatistical analysis of the CBMN assay

Our methods for the biostatistical analysis of the CBMN 
assay have been described in detail previously (Ermler 
et al. 2013) and are briefly outlined below. MN induction in 
the CBMN assay was measured as the number of binucle-
ated (bn) cells with at least one MN (NMN≥1) in relation to 
all binucleated cells (Ntotal) and expressed as ratio r:

All cells expressed spontaneous levels of MN, which 
can be observed in untreated control cultures, and these 
baseline responses were taken into account for regression 
modelling. Furthermore, for all selected test compounds, 
we assumed a concentration threshold concept and selected 
three potential threshold concentration–response mod-
els—logit, probit and Weibull—all capable of accurately 
describing concentration–response data from the CBMN 
assay. The corresponding functions for a response likeli-
hood P at concentration c are

(1)r =
NMN≥1

Ntotal

.
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where θ1 and θ2 are location and scale model parameters, 
d the threshold model parameter which defines the thresh-
old concentration as cthreshold = 10d, and probnorm(x) the 
function that returns the probability that an observation 
from the standard normal distribution is ≤x (inverse of 
the probit function). The baseline rate of response was 
defined in the upper part of each conditional equation, 
i.e. at concentrations below the threshold concentration. 
All models were fitted separately to each data set, and the 
best fitting model was selected for each chemical accord-
ing to a statistical goodness-of-fit criterion (Akaike infor-
mation). To address the uncertainty of threshold estima-
tions and their consequences on the mixture assessment, 
we alternatively assumed a non-threshold situation in our 
data and used the proposed concentration–response mod-
els without a threshold model parameter to describe the 
data. Here the sigmoidal-shaped curve rises from a lower 
asymptote equalling the baseline (see Scholze et al. 2001 
for more details). Only data from concentrations <40  % 
cytotoxicity (MTT–EC40) were included in data analysis. 
Data analyses were always performed on pooled data sets 
from at least three independent experiments, a potential 
extra binomial variation was taken into account by an 
additional overdispersion parameter, and model param-
eters were estimated by (restricted) maximum likelihood. 
All statistical analysis was performed using SAS statis-
tical software version 9.2 (SAS Institute Inc., Cary, NC, 
USA).

Mixture predictions

Mixture effects were predicted with the two models 
for CA and IA that we previously adapted to the use of 
threshold concentration–response relationships (Ermler 
et  al. 2013). In short, CA is defined for a mixture of n 
components by

(2)

Logit :

P(c) =

{

1/(1 + exp(−θ1)) for c ≤ 10d

1/
(

1 + exp
(

−θ1 − θ2 × (log10(c) − d)
))

for c > 10d

(3)

Probit :

P(c) =

{

probnorm (θ1) for c ≤ 10d

probnorm
(

θ1 + θ2 ×
(

log10(c) − d
))

for c > 10d

(4)

Weibull :

P(c) =

{

1 − exp (− exp(−θ1)) for c ≤ 10d

1 − exp 1
(

− exp
(

θ1 + θ2 × (log10(c) − d)
))

for c > 10d

(5)
n

∑

i=1

ci

ECxi

= 1.

In these equations, ci are the individual concentrations 
of the substances 1 to n which are present in a mixture that 
produces the definite effect x, and ECxi denote the equiva-
lent effect concentrations of the single substances, i.e. 
those concentrations that alone would produce the same 
quantitative effect x as the mixture. The individual con-
centrations ci sum up to a total concentration cmixture that 
causes the joint effect E(cmixture) = x, and thus by defini-
tion is the effect concentration ECxmix. Equation (5) can be 
rearranged to

with pi defined as the prevalence of a mixture component 
in the mixture, i.e. the ratio of its concentration to the total 
mixture concentration (pi = ci/cmixture), and Fi

−1 the inverse 
of concentration–response functions from Eqs. (2)–(4), i.e. 
Fi

−1(x) describes the concentration c of the ith substances 
that produce an individual effect x, i.e. ECxi = Fi

−1(x). In 
Ermler et al. (2013), we described in more detail how we 
deal with varying individual baseline rates from the indi-
vidual compounds in Eq. (6).

IA can be defined for a mixture of n components by

where E(ci) denotes the effect caused by the individual 
compound c1 of the ith compound and E(cmixture) is the total 
effect of the mixture concentration cmixture. The individual 
effects of mixture compounds E(ci) are calculated from the 
concentration–response functions from Eqs. (2)–(4). For 
concentration–response models with a baseline effect, the 
single effects have to be corrected first by their individual 
background baseline estimates (baselinei), followed by a 
correction of the total mixture effect by an estimate for the 
expected baseline for the mixture, i.e.
 

There is no universally accepted procedure for estimat-
ing the baseline response for a combination of agents. We 
used the smallest and highest baseline from all compounds 
and calculated for each mixture concentration two effect 
predictions, spanning a range of IA predictions (see Ermler 
et al. 2013 for more detail).

To extend our assessment to more diverse types of mix-
tures, when only subsets of components in a mixture were 
expected to follow the principles of CA, we used a hybrid 
version of CA and IA. The principle of the hybrid version 
is as follows: first all compounds presumed to act through 
a similar mechanism are grouped together and their 

(6)ECxmix =

(

n
∑

i=1

pi

F−1
i (x)

)−1

(7)E(cmixture) = 1 −

n
∏

i=1

(1 − E(ci))

(8)E(cmix) = 1 + baselinemixture −

n
∏

i=1

(1 − (Fi(x) − baselinei)).
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combined effects predicted according to CA. This approach 
is not limited to a single group, but in the case of n different 
mechanisms n different group responses can be predicted. 
A prediction of the overall effects of the mixture is then 
derived by using the effects anticipated for these groups, 
together with the individual effects from all remaining 
ungrouped compounds as inputs for calculations accord-
ing to IA. However, the mathematical realisation is less 
straightforward, mainly as Eq. (6) predicts effect concen-
trations for CA groups, but not effects (which are required 
as input in the IA equation). As consequence, an explicit 
mathematical form describing the total mixture effect as 
a function of the single substance effects cannot exist, at 
least for the concentration–response functions from Eq. 
(2)–(4), and CA mixture effects within each group can only 
be estimated at a given mixture concentration by numerical 
methods. Here, we used the bisection method (Burden and 
Faires 1985), but any other simple root-finding algorithm 
might be used.

Mixture experiment design and testing

The mixtures were designed using the concentration–
response relationships of the CBMN positive compounds 
to be included in the respective mixture (Table 2). A fixed 
mixture ratio approach (Altenburger et al. 2000) with mix-
ture ratios proportional to equi-effective levels was used 
for all mixtures. To maximise the prediction differences 
between CA and IA, we chose mixture ratios in proportion 
to the estimated threshold concentrations of the selected 
chemicals. The mixture ratios, expressed as fractions of the 
individual compounds within the different mixtures, are 
presented in Table 1. Mixture stock solutions at the respec-
tive mixture ratios were prepared and serially diluted to 
cover the effective concentration ranges predicted by CA 
and IA. In some cases, this meant testing concentrations 
in the cytotoxic range. The sum of the estimated threshold 
concentrations was also included in the test concentrations. 
The effects of all mixtures were assessed experimentally in 
the CBMN assay in at least three independent experiments 
and compared to the predictions.

Results

Concentration–response analysis of individual aneugens 
and clastogens

To provide a basis for predicting and assessing their 
combined effects, we conducted detailed concentration–
response analyses for all individual chemicals included 
in our mixtures. Each chemical was tested in at least 
three independent experiments and at eight different 

concentrations in the CBMN assay. At low concentrations, 
all chemicals produced MN frequencies not different from 
those observed in untreated controls, typically between 
1.02 and 2.26 % of binucleated cells. As the concentrations 
increased, MN frequencies did not change until there was a 
discontinuous rise, indicative of an effect threshold. Above 
these estimated threshold concentrations, highlighted as 
vertical dashed lines in Fig.  1, the compounds induced 
MN in a concentration-dependent manner, in a nonlinear 
fashion. The exception to this was benzo[a]pyrene, which 
proved ineffective in these studies, presumably because the 
levels of cytochrome P450 isoforms required to convert 
benzo[a]pyrene into active epoxides were too low in CHO-
K1 cells. To describe these concentration–response rela-
tionships, we employed nonlinear regression models which 
included a threshold parameter. These nonlinear models 
(listed in Table 2, together with model parameters, includ-
ing estimated thresholds) generally described the data bet-
ter than the widely used hockey stick models with their lin-
ear functions at concentrations above thresholds (Lutz and 
Lutz 2009).

Of the tested aneugens, vinblastine sulphate was the 
most potent, with an estimated threshold concentration 
of 0.6  nM, followed by paclitaxel (42  nM), flubendazole 
(92 nM), colchicine (116 nM) and griseofulvin, which was 
the least potent at 6.13 μM. The most potent clastogen was 
doxorubicin hydrochloride with an estimated threshold 
of 5.33  nM, closely followed by mitomycin C (5.4  nM), 
etoposide (23.6 nM) and melphalan (139 nM) (Table 2).

As with benzimidazoles (Ermler et al. 2013), cytotoxic-
ity led to considerably increased variability in MN frequen-
cies and a downturn in effect, which was quite pronounced 
in the case of colchicine, griseofulvin and vinblastine 
(Fig. 1). Clearly, cytotoxicity was a confounding factor that 
complicated concentration–response analysis. It therefore 
became necessary to establish concentration ranges associ-
ated with cytotoxicity, with the aim of excluding data points 
confounded by cytotoxicity from concentration–response 
analyses. We considered the cytokinesis-block proliferation 
index (CBPI) as a diagnostic criterion, but found previously 
that this method produced unreliable results especially with 
aneugens (Ermler et al. 2013). We therefore tested all com-
pounds in the MTT assay (Table  3) and used effect con-
centrations associated with 40 % cytotoxicity (MTT–EC40) 
as a cut-off criterion above which data from the CBMN 
assay were omitted from concentration–response analysis 
for both aneugens and clastogens. We chose the MTT–
EC40 instead of up to 55 ± 5 % cytotoxicity as suggested 
by OECD guideline 486 (2010) because of a consider-
able increase in inter-experimental data variability above 
40 % cytotoxicity, which would have impacted negatively 
on regression modelling. The grey-shaded areas in the 
graphs in Fig.  1 show the concentration ranges above the 
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MTT–EC40. With all aneugens, concentrations associated 
with cytotoxicity did overlap with those causing MN, but 
this was not the case with the clastogens we tested.

Prediction and assessment of combination effects

Mixture of five aneugens with differing sites of action

We composed a mixture (Mixture I) of inhibitors of micro-
tubule polymerisation colchicine, flubendazole, vinblastine 
sulphate and griseofulvin, and paclitaxel which inhibits 
microtubule depolymerisation. The mixture ratio was deter-
mined using the chemicals’ estimated threshold concentra-
tions (Table 1). The regression models constructed for the 
single chemicals were used to calculate mixture effects pre-
dictions according to CA and IA. The resulting prediction 
curves were discriminating, with approximately fourfold 
higher threshold concentrations predicted by IA (Fig. 2a). 
Due to a degree of between-experiment variability in the 
background MN frequencies, two IA curves had to be cal-
culated, one based on the lowest and the other on the high-
est observed baseline. CA predictions are less sensitive to 
these baseline variations (Ermler et al. 2013).

The observed MN frequencies of Mixture I fell between 
the extremes of the prediction window defined by CA and 
IA (Fig.  2a; Table  4), with neither CA nor IA providing 
good approximations of the experimental data. When all 
five chemicals were combined at their individual threshold 
concentrations, a MN frequency of approximately 7 % was 
measured, which was well above the baseline levels pre-
dicted by IA for this combination.

Next, we examined whether the use of a hybrid CA/IA 
prediction concept would provide better descriptions of the 
experimental data. To this end, we first grouped the inhibi-
tors of microtubule polymerisation colchicine, flubenda-
zole, griseofulvin and vinblastine sulphate together and 
predicted their effects by CA. A prediction of the overall 
effects of the mixture was derived by using the effects 
anticipated for this group, together with the concentration–
response relationship for paclitaxel as inputs for calcula-
tions according to IA. This yielded a combination effect 
prediction that matched the experimental data very well 
(Fig. 2b).

The grey-shaded areas show the concentrations above 
which cytotoxicity caused increased data variability, and 
data in this range were excluded from regression analysis.

Table 2   Model parameters of threshold concentration–response models for all tested single compounds and five mixtures

AIC Akaike information criterion (small indicates better fit)
a  Baseline rate is expressed as percentage; θ̂1, θ̂2 and d̂ are estimates of the unknown model parameter θ1, θ2 and d
b  Published in Ermler et al. (2013)
c N on-threshold model regression fit (Scholze et al. 2001)

Compounds Model Model parameter Baseline ratea Threshold concentration Goodness-of-fit (AIC)

θ̂1 θ̂2 d̂ (95 % CI) (%) (95 % CI) [M] (%) Threshold No 
thresholdc

Aneugens

 Colchicine Probit −2.228 1.903 −6.936 1.30 (1.10–1.49) 1.16E−07 (9.50E−08–1.41E−07) 150.9 157.1

 Flubendazoleb Weibull −4.358 3.134 −7.035 1.27 (1.14–1.41) 9.22E−08 (7.29E−08–1.16E−07) 160.1 160.8

 Griseofulvin Logit −4.093 3.735 −5.213 1.64 (1.45–1.83) 6.13E−06 (4.88E−06–7.69E−06) 152.1 154.0

 Vinblastine sulphate Weibull −3.932 1.216 −9.219 1.94 (1.65–2.23) 6.04E−10 (3.24E−10–1.12E−09) 175.0 172.6

 Paclitaxel Logit −3.810 2.549 −7.375 2.17 (1.95–2.38) 4.22E−08 (3.37E−08–5.28E−08) 190.5 186.7

Clastogens

 Doxorubicin  
hydrochloride

Weibull −3.778 2.756 −8.273 2.26 (2.00–2.52) 5.33E−09 (4.42E−09–6.43E−09) 195.2 195.3

 Etoposide Weibull −3.872 2.156 −7.628 2.06 (1.83–2.29) 2.36E−08 (1.88E−08–2.96E−08) 191.6 189.8

 Melphalan Weibull −4.149 2.307 −6.858 1.57 (1.37–1.76) 1.39E−07 (1.16E−07–1.66E−07) 294.4 295.2

 Mitomycin C Probit −2.027 0.617 −8.268 2.14 (1.84–2.43) 5.40E−09 (3.69E−09–7.88E−09) 166.7 166.4

Mixtures

 I Weibull −4.299 2.561 −5.857 1.34 (1.10–1.60) 1.39E−06 (1.05E−06–1.83E−06)

 II Weibull −4.088 2.855 −7.018 1.66 (1.45–1.87) 9.59E−08 (8.28E−08–1.11E−07)

 III Weibull −4.326 2.577 −7.233 1.31 (1.04–1.57) 5.85E−08 (4.67E−08–7.33E−08)

 IV Weibull −4.479 2.036 −7.418 1.13 (0.87–1.39) 3.82E−08 (2.64E−08–5.52E−08)

 V Weibull −4.581 2.653 −7.369 1.02 (0.70–1.34) 4.28E−08 (3.01E−08–6.07E−08)
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Mixture of an aneugen and four clastogens

In an effort to compose a mixture which could be expected 
to match more closely the principles of IA, we applied 
stricter criteria in terms of varying mechanisms of action 
and chose the aneugen flubendazole together with the clas-
togens doxorubicin hydrochloride, etoposide (both topoi-
somerase II inhibitors, but by different mechanisms), mel-
phalan and mitomycin C (both DNA cross-linking agents 
but by differing mechanisms), Mixture II (Table 1). Again, 
CA and IA produced quite different prediction curves 
(Fig.  2c). By taking account of the variability between 
baseline levels from different experiments, we derived two 
curves for IA, which were located closely together. Still, 
the observed combination effects of these five agents were 
larger than those anticipated by IA, but fell short of those 
calculated according to CA. Again, this mismatch prompted 
us to assess whether a hybrid prediction model would yield 
better approximations of the observed effects. Accordingly, 
we combined the two topoisomerase II inhibitors, doxoru-
bicin hydrochloride and etoposide, in one group and the 
alkylating agents, melphalan and mitomycin C, in a sec-
ond group and calculated the corresponding group effects 
separately by using CA. The resulting two CA predictions 
were then combined with the concentration–response data 
for flubendazole to derive overall predictions according to 
IA. As before, we had to accommodate the variability in the 
baseline levels and obtained two quite closely matched pre-
diction curves. These predictions agreed very well with the 
observed effects of the combination (Fig. 2d).

Mixture of two aneugens and two clastogens

In attempting to define a reference case for IA, in Mixture 
III, we combined two aneugens with diametrically opposed 
mechanisms of action, flubendazole and paclitaxel, with 
the clastogens doxorubicin (topoisomerase II inhibitor) 
and melphalan (alkylating agent) (Table  1). On the basis 
of the threshold-dependent regression models for these 
four chemicals (Fig.  1; Table  2), we obtained prediction 
curves of combination effects according to CA and IA that 
were separated by a factor of 2–3 on the concentration axis 

(Fig.  3a). The experimental data showed relatively high 
between-experiment variability. The observed combina-
tion effects agreed better with CA at low mixture concen-
trations, up to the total mixture concentration equivalent to 
the sum of the individual estimated thresholds of all single 
components. At this point, IA predicted MN frequencies 
similar to background levels, but the observed responses 
were significantly higher. Beyond that concentration, the 
observed MN frequencies fell within the window defined 
by the two predictions.

IA predictions in the range of small effects are strongly 
affected by the quality of the regression models for the sin-
gle components in the corresponding concentration ranges. 
We therefore assessed whether the concentration–response 
relationships for the individual compounds were described 
better by regression models without a threshold term and 
whether the threshold parameters included in our origi-
nal regressions might have produced a downward bias of 
the predicted IA effects. We therefore calculated CA and 
IA predictions using regression models for all single com-
ponents that did not include a threshold parameter. As 
expected, this shifted the IA predicted effects at low mix-
ture predictions slightly upwards, towards the experimen-
tally observed values (Fig.  3b), but without substantially 
improving the agreement between prediction and observa-
tion (Table 2).

Binary mixtures

Finally, we tested whether the effects of binary combi-
nations of agents with strictly different mechanisms of 
actions could be approximated by IA. Accordingly, we 
predicted and assessed the effects of a mixture of fluben-
dazole and paclitaxel, Mixture IV, and of flubendazole and 
doxorubicin, Mixture V (Table 1). For both combinations, 
we obtained CA and IA prediction curves located relatively 
closely together, with sometimes overlapping 95  % con-
fidence belts (Fig.  3c, e). In both cases, the experimental 
data came quite close to the effects predicted by IA. We 
also calculated the IA predictions on the basis of thresh-
old-independent regression models (Fig.  3d, f), and this 
produced a prediction curve in better agreement with the 
observed MN frequencies. CA led to overestimations of the 
experimentally observed combination effects.

Discussion

We have previously shown that chemicals capable of 
inducing MN by strictly similar mechanisms (disruption of 
microtubule polymerisation) act together according to the 
principles of CA (Ermler et al. 2013). In the present study, 
we relaxed the similarity criteria by which we selected our 

Fig. 1   Induction of MN by aneugens and clastogens in the CBMN 
assay using CHO-K1 cells. MN induction is presented as percent-
age of MN positive binucleated cells. The graphs show the data for 
at least three independent experiments (red dots, exception: benzo[α]
pyrene was tested only once); solvent controls are shown on the left 
(green dots as indicated). The regression curves (thick black lines) 
are shown with their 95 % confidence belts (dashed lines). Estimated 
threshold concentrations are indicated by the vertical dashed lines. 
Mean baseline levels of MN within the cells are depicted as hori‑
zontal lines. The grey areas show the cytotoxic concentrations deter-
mined in the MTT assay (MTT–EC40) (colour figure online)
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mixture components and investigated the joint effects of 
chemicals that produce MN through a variety of different 
mechanisms. Our aim was to design mixture experiments 
that were decisive in determining whether the principles of 
CA were fulfilled or whether IA was applicable. However, 
despite their differing conceptual origins, CA and IA fre-
quently produce very similar predictions of the combined 
effects of the same mixture. The factors that drive the pre-
diction differences between CA and IA are well under-
stood (Drescher and Boedeker 1995) and include mixture 
ratio, steepness of the concentration–response curves of 
the individual mixture components, the effect magnitude 
considered for analysis and the number of components 
included in the mixture. To achieve our aims, we therefore 
maximised the number of mixture components, as far as 
possible. More importantly, we chose mixture ratios in 
proportion to the estimated threshold concentrations of 
the selected chemicals. This had the added advantage of 

offering the opportunity to test a central tenet of the IA 
concept: if the principles of IA apply, mixture effects are 
not expected to rise above background MN frequencies 
if all chemicals are present at their respective threshold 
concentrations.

None of the mixtures investigated here produced combi-
nation effects described well by CA. Instead, we exposed 
an assessment dilemma for two of our mixtures, Mixtures 
I and II, where the observed MN frequencies fell between 
the boundaries defined by the CA and IA predictions. Since 
CA predicted higher combination effects than IA in both 
cases, the observed responses can be evaluated as antago-
nisms in relation to CA, or as synergisms relative to IA. 
We were able to resolve this unsatisfactory situation by 
application of hybrid CA/IA models, where chemicals 
were first grouped according to criteria of similarity, their 
joint effects predicted by CA and finally the overall mix-
ture effects anticipated by using IA. This procedure yielded 

Fig. 2   Predicted and observed induction of MN by two mixtures of 
aneugens or aneugens and clastogens in the CBMN assay. Mixture 
I was composed of flubendazole, colchicine, griseofulvin, paclitaxel 
and vinblastine (a), and mixture II of flubendazole, doxorubicin, 
etoposide, melphalan and mitomycin C (c). Prediction curves were 
derived from CA (green curves in a, c as labelled) and IA (light blue 
curves in a, c as labelled), with dashed lines as the respective 95 % 
confidence belts. Prediction curves were also generated from a hybrid 
CA/IA model (dark blue lines in b and d as labelled) for mixture I (b) 
and mixture II (d), with compounds grouped according to strict crite-
ria of similar and dissimilar mechanism of action. All mixtures were 

designed at a ratio of the estimated threshold concentrations of the 
individual compounds and tested as dilution series (the mixture con-
centrations corresponding to the sum of the individual threshold con-
centrations are indicated as ΣITC). Data are shown from at least three 
independent experiments (red dots a–d), together with their regres-
sion curves (thick black lines) and 95  % confidence belts (dashed 
lines b, d). Threshold concentrations (vertical dashed lines) and mean 
baseline levels of MN (horizontal line) were estimated by regression 
analysis (see Table 2 for more information). The grey areas show the 
cytotoxic concentrations determined in the MTT assay (MTT–EC40) 
(colour figure online)
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mixture effect predictions in good agreement with the 
experimental observations.

We anticipated that the four-component mixture (Mix-
ture III) composed of flubendazole, paclitaxel, doxorubicin 
and melphalan should follow IA since these agents are 
known to produce MN by a variety of mechanisms. How-
ever, the observed responses were better approximated 
by CA, up to concentrations equivalent to the sum of the 
estimated thresholds for all single components. Beyond 
that concentration, neither concept provided satisfactory 
approximations of the empirical MN frequencies. It seems, 
therefore, that the fundamental principles of IA, the statisti-
cal concept of independent random events, cannot be trans-
lated fully to our biological test system with multi-compo-
nent mixtures. This might be due to overlapping stress and 
repair responses and other signalling pathways in response 
to the treatments, which might violate the principles of IA, 
but ultimately, we are unable to advance convincing expla-
nations at this stage. The application of CA/IA hybrid mod-
els to this mixture was not feasible, as an assignment of 
components to groups according to similarity criteria was 
not possible, due to their distinct mechanisms.

We venture that the poor agreement between IA and 
the observed MN frequencies with Mixture III might be 
related to biased IA predictions resulting from inaccuracies 
in estimating threshold concentrations for the single com-
pounds. The accuracy of IA predictions depends strongly 

on reliable estimations of small effects associated with low 
concentrations. Inaccuracies with a bias in the same direc-
tion can sum up to quite large errors, especially with larger 
numbers of components. Mixture effect predictions derived 
from CA are far more robust in this respect. The variations 
that inevitably occur in every data set determine a statisti-
cal detection limit below which the reliable estimation of 
effects is no longer possible. This means that the functional 
form of empirical regression models in the range of effects 
below this statistical detection limit can neither be rejected 
nor confirmed empirically. The existence (or otherwise) of 
an effect threshold for MN can therefore only be speculated 
upon, but not be determined by measurement (Slob 1999). 
In this situation, the only avenue open to us to support the 
choice between a regression model with a threshold model 
parameter and its threshold-independent version was to use 
global goodness-of-fit criteria. In using such criteria, we did 
not encounter an example where the inclusion of a thresh-
old parameter for any of our single chemical data sets led to 
significantly poorer goodness-of-fit (Table 2). In most cases, 
threshold-based regression models even provided slightly 
better data descriptions. However, it should be emphasised 
that goodness-of-fit judgements always have to be based on 
the entire range of data and cannot be restricted to the range 
of low effects. Accordingly, we derived estimated threshold 
concentrations from a statistical model that described all 
the data for a single chemical, and not only those in the low 

Table 4   Statistical uncertainty of predicted and observed effect concentrations for mixtures

CA concentration addition, IA independent action, CI confidence interval
a  Prediction ranges are calculated assuming lowest or highest observed baseline; significance between predicted and observed ECX values was 
judged as a non-overlapping of their 95 % percentile bootstrap CIs and is shown in bold

MN induction Effect concentration ECxmix [M]

Observed Predicted by CA Predicted by IA

Mean 95 % CI Mean 95 % CI Meana 95 % CI

Mixture I: five aneugens (ratio as defined in Table 1)

 5 % 4.59E−6 [4.17E−6–5.06E−6] 3.24E−6 [3.00E−6–3.54E−6] 8.07E−6–8.53E−6 [6.50E−6–9.36E−6]

 10 % 8.77E−6 [7.27E−6–1.06E−5] 5.72E−6 [5.31E−6–6.88E−6] 1.08E−5–1.13E−5 [9.70E−6–1.24E−5]

Mixture II: flubendazole and four clastogens (ratio as defined in Table 1)

 5 % 2.36E−7 [2.22E−7–2.51E−7] 1.47E−7 [1.36E−7–1.56E−7] 3.44E−7–3.74E−7 [2.88E−7–4.15E−7]

 10 % 4.22E−7 [4.06E−7–4.37E−7] 3.01E−7 [2.90E−7–3.15E−7] 4.92E−7–5.23E−7 [4.38E−7–5.68E−7]

Mixture III: four dissimilarly acting compounds (ratio as defined in Table 1)

 5 % 2.02E−7 [1.94E−7–2.10E−7] 1.70E−7 [1.56E−7–1.80E−7] 3.68E−7–4.03E−7 [3.11E−7–4.37E−7]

 10 % 3.94E−7 [3.83E−7–4.07E−7] 3.18E−7 [3.06E−7–3.38E−7] 5.32E−7–5.66E−7 [4.79E−7–6.04E−7]

Mixture IV: flubendazole and paclitaxel (ratio as defined in Table 1)

 5 % 2.10E−7 [1.93E−7–2.30E−7] 1.64E−7 [1.41E−7–1.79E−7] 2.23E−7–2.52E−7 [1.80E−7–2.84E−7]

 10 % 4.75E−7 [3.99E−7–5.64E−7] 3.02E−7 [2.81E−7–3.39E−7] 3.73E−7–3.98E−7 [3.39E−7–4.33E−7]

Mixture V: doxorubicin hydrochloride and flubendazole (ratio as defined in Table 1)

 5 % 1.73E−7 [1.60E−7–1.88E−7] 1.12E−7 [1.04E−7–1.22E−7] 1.55E−7–1.75E−7 [1.37E−7–1.94E−7]

 10 % 3.24E−7 [2.81E−7–3.73E−7] 1.98E−7 [1.87E−7–2.14E−7] 2.51E−7–2.71E−7 [2.34E−7–2.89E−7]
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concentration range. For this reason, a threshold represents 
an estimate of means. As a result, it may happen that certain 
responses around the threshold estimate are located above 
the mean estimate, but still within the 95 % confidence belt 
of the mean. However, such responses will always be larger 
than the threshold estimate of the regression model. Since 
the regression models form the basis of the IA prediction, 

combination effects at threshold concentrations can only be 
underestimated by IA, but never overestimated and this may 
well have introduced a downward bias. Within the confines 
of the IA concept, that bias could only be removed by using 
threshold-independent regression models for the single mix-
ture components, but at the price of an inferior goodness-
of-fit. This price was difficult to justify, considering that the 

Fig. 3   Predicted and observed induction of MN by three mixtures of 
aneugens or aneugens and clastogens in the CBMN assay. Mixture 
III was composed of flubendazole, paclitaxel, doxorubicin and mel-
phalan (a), mixture IV of flubendazole and paclitaxel (c), and mix-
ture V of flubendazole and doxorubicin (c). Prediction curves were 
derived from CA (green curves as labelled) and IA (light blue curves 
as labelled), with dashed lines the respective 95 % confidence belts. 
Prediction curves were re-calculated by using only non-threshold 
regression models and are shown for mixture III (b), mixture IV 
(d) and mixture V (f). All mixtures were designed at a ratio of the 

estimated threshold concentrations of the individual compounds and 
tested as dilution series (the mixture concentration corresponding 
to the sum of the individual threshold concentrations is indicated as 
ΣITC). Data shown are from at least three independent experiments 
(red dots), together with their regression curves and 95 % confidence 
belts (thick black curves with dashed lines, b, d and f). Mean baseline 
levels of MN (horizontal line) were estimated by regression analysis 
(see Table 2 for more information). The grey areas show the cytotoxic 
concentrations determined in the MTT assay (MTT–EC40) (colour 
figure online)
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resulting upward shift in the IA predicted mixture effects 
still did not describe the data well (Fig. 3b). The uncertain-
ties associated with estimating low-level effects also pre-
cluded us from arriving at firm conclusions regarding one 
hallmark of the IA concept, namely that combination effects 
are not expected when all mixture components are com-
bined at zero effect levels, here understood as background 
MN frequencies.

For the two binary mixtures (Mixtures IV and V), com-
posed with the intention of realising the principles of dis-
similar action, IA did prove to be a reasonable approach for 
approximating the experimentally observed effects. Other 
studies have demonstrated that MN induced by binary mix-
tures of two methylating agents (similar action) could be 
predicted by CA, whereas binary mixtures with methylat-
ing agents and topoisomerase inhibitors (dissimilar action) 
led to effects that fell between the CA and IA prediction in 
one case and were smaller than anticipated by IA in another 
case (Lutz et  al. 2005). The only reference cases for IA 
for multi-component mixtures were established in experi-
ments with strictly dissimilarly acting mixtures in bacteria 
and algae (Backhaus et al. 2000; Faust et al. 2003). This is 
significant, because the applicability of IA to mammalian 
systems has been questioned on grounds of principle (Ber-
enbaum 1989), and our findings with the four compound 
mixture appear consistent with this.

In practice, situations where IA will be the correct 
prediction approach are not likely to be encountered fre-
quently. The number of chemicals capable of inducing MN 
by far exceeds the number of different mechanisms avail-
able for MN formation. When applied to realistic exposure 
scenarios, this means that it is highly likely that several 
chemicals will exhibit similar mechanisms and produce 
combined effects according to CA. To aggregate differ-
ent classes of mechanisms, the use of hybrid CA/IA mod-
els would be called for. In such cases, the application of 
IA will lead to an underestimation of the joint effect (see 
Mixtures I and II, and Ermler et  al. 2013). The degree of 
underestimation will depend, ceteris paribus, largely on the 
number of mixture components.

The use of hybrid CA/IA models for the assessment of 
experimental data may not always be straightforward. It 
requires clear criteria for the grouping of chemicals accord-
ing to similar mechanisms. For chemicals capable of induc-
ing MN, a classification into aneugens and clastogens sug-
gests itself as a starting point, but additional information 
will be required to arrive at finer groupings. For clastogens, 
a consideration of types of DNA damage (cross-links, inter-
calation, etc.) might prove productive, but more experience 
with a wider range of genotoxicants capable of inducing 
MN will be necessary to draw firm conclusions. It would 
also need to be taken into account that some compounds 
exhibit more than one mechanism of action.

While these considerations will be useful when it comes 
to the evaluation of experimental data, we have doubts 
whether they will be relevant for the assessment of com-
bination effects of aneugens and clastogens in risk assess-
ment practice. The application of IA, or of hybrid CA/
IA models, requires detailed concentration–response 
data in the range of low effects, which is rarely available. 
Much less demanding are the data requirements for using 
CA [reviewed by Kortenkamp et  al. (2009)], and CA has 
the advantage of yielding conservative mixture effect 
predictions.

In considering whether our observations with the in vitro 
CBMN assay have relevance to other cell-based systems, or 
indeed to in vivo MN models, it will be necessary to con-
sider that the CHO-K1 cells employed in our experiments 
harbour a mutated TP53 gene. The use of p53 compromised 
cells has been questioned recently, with the argument that 
a dysfunctional p53 might lead to the induction of MN in 
cells that would otherwise have undergone repair or apop-
tosis (Fowler et  al. 2012; Kirkland et  al. 2007). This line 
of argument is no doubt relevant in the context of discus-
sions about extrapolations in a risk assessment and regula-
tory context, but does not invalidate our observations. It is 
conceivable that differences in p53 status have an impact 
on differences in the sensitivity of cells to MN-inducing 
agents, although evidence from experiments with p53 defi-
cient variants of human TK6 cells have revealed little influ-
ence of p53 status on MN formation (Hashimoto et al. 2011; 
Honma and Hayashi 2011). Furthermore, deviations from 
additivity for the combined effects of gamma irradiation and 
ethyl methanesulfonate seemed to be species specific rather 
than dependent on p53 status (Lutz et al. 2002). In any case, 
functional p53 is not likely to lead to complete protection 
against formation of MN, although the potency of chemi-
cals in inducing MN might be affected. However, there is no 
reason to suspect that alterations in the cells’ reaction to the 
effects of individual mixture components will change the 
general principles which govern their joint action. We there-
fore expect that our findings have relevance to MN forma-
tion in other cell-based systems and to in vivo MN models.

It remains to be seen whether the principles of joint 
action that we established for MN-inducing chemicals are 
also applicable to other genotoxicity endpoints, such as 
gene mutations, chromosome mutations or carcinogenicity. 
The experiences with a mixture of benzo[a]pyrene, benz[a]
anthracene and dibenz[a, c]anthracene in a bacterial system 
(Ames assay) communicated by Lutz et  al. (2002) show 
that CA provided good approximations of the observed 
joint effects, which was explained in terms of the similarity 
of the mode of mutagenic action of the tested chemicals, 
i.e. formation of a similar type of DNA adducts.

In conclusion, our study has established basic princi-
ples of joint action of chemicals that affect an endpoint of 
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relevance to genotoxicity. We demonstrate that it is possible 
to approximate, often fairly accurately, the combined effects 
of MN-inducing chemicals when their single effects are 
known. Our study also exposes the need to re-examine the 
numerous claims of synergisms that have appeared in the 
specialist literature. These claims stem from an experimen-
tal approach based on comparisons of the effects of the mix-
ture with those of the most toxic component, where syner-
gisms are declared when the mixture effect is larger than the 
effect of the most potent component. It has been frequently 
overlooked that these observations may also be compatible 
with additive mixture effects. Proper re-evaluations of the 
published data in terms of compatibility with ideas about 
additive effects are not possible in most cases, because 
concentration–response data of the single mixture compo-
nents were not provided [see the review by Kortenkamp 
et al. (2009)]. It is to be hoped that the study of genotoxic 
mixture effects will be enriched in the future by embracing 
the theory development that has taken place in other areas of 
mixture toxicology during the last two decades.
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