
Bao et al. BMC Bioinformatics 2013, 14:169
http://www.biomedcentral.com/1471-2105/14/169

RESEARCH ARTICLE Open Access

Accounting for immunoprecipitation
efficiencies in the statistical analysis of
ChIP-seq data
Yanchun Bao1, Veronica Vinciotti1*, Ernst Wit2 and Peter AC ’t Hoen3,4

Abstract

Background: ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and between
repeated experiments with the same antibody. These differences have a large impact on the quality of ChIP-seq data:
a more efficient experiment will necessarily lead to a higher signal to background ratio, and therefore to an apparent
larger number of enriched regions, compared to a less efficient experiment. In this paper, we show how IP efficiencies
can be explicitly accounted for in the joint statistical modelling of ChIP-seq data.

Results: We fit a latent mixture model to eight experiments on two proteins, from two laboratories where different
antibodies are used for the two proteins. We use the model parameters to estimate the efficiencies of individual
experiments, and find that these are clearly different for the different laboratories, and amongst technical replicates
from the same lab. When we account for ChIP efficiency, we find more regions bound in the more efficient
experiments than in the less efficient ones, at the same false discovery rate. A priori knowledge of the same number of
binding sites across experiments can also be included in the model for a more robust detection of differentially bound
regions among two different proteins.

Conclusions: We propose a statistical model for the detection of enriched and differentially bound regions from
multiple ChIP-seq data sets. The framework that we present accounts explicitly for IP efficiencies in ChIP-seq data, and
allows to model jointly, rather than individually, replicates and experiments from different proteins, leading to more
robust biological conclusions.

Background
ChIP-sequencing, also known as ChIP-seq, is a recently
established technique to detect protein-DNA interactions
in vivo on a genome-wide scale [1]. ChIP-seq combines
Chromatin ImmunoPrecipitation (ChIP) with massively
parallel DNA sequencing to identify all DNA binding sites
of a Transcription Factor (TF) or genomic regions with
certain histone modification marks. The ChIP process
captures cross linked and sheared DNA-protein com-
plexes using an antibody against a protein of interest.
After decrosslinking of the protein-DNA complexes, the
final DNA pool is enriched in DNA fragments bound
by the protein of interest, but there are always random
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genomic DNA fragments piggybacking on the specific
DNA fragments. The degree of enrichment depends on
the ChIP efficiency. A more efficient experiment will
induce a higher proportion of protein-bound fragments
in the mixture pool, and generate more sequence reads
in bound regions and less sequence reads in non-bound
regions, than an experiment with lower ChIP efficiency.
As a result, the more efficient experiment will have more
power to discriminate between bound and non-bound
genomic regions and generally show a larger number of
bound regions.
The antibody used is the most critical factor affect-

ing ChIP efficiency [2]. However, different ChIP efficien-
cies are also observed between different batches when
using the same antibody, since ChIP protocols are noto-
riously difficult to standardize and control. In general,
we may encounter three relevant scenarios where differ-
ences in ChIP efficiencies play a role: (i) the comparison
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of bound regions between two experimental conditions
subjected to ChIPs with the same antibody but with vari-
able efficiencies; (ii) the comparison of bound regions
of the same TF or marked with the same histone mod-
ification but profiled with different antibodies; (iii) the
comparison of bound regions from two different TFs or
marked with different histonemodifications, profiled with
different antibodies. When making comparisons without
considering the ChIP efficiencies, the number of overlap-
ping regions may be underestimated while the number
of differentially bound regions may be overestimated. A
number of methods have been proposed recently for com-
parative analyses of ChIP-seq data e.g. [3-9]. In general,
there is recognition in the literature of different specifici-
ties associated to different antibodies used in ChIP-seq
experiments, e.g. [2], and attempts are made to account
for these in the analysis. These are often in the form
of a pre-selection of regions for the analysis: in [3,6]
only regions with high signal to background ratios are
used for further analyses and normalization procedures,
in [7] the normalization is performed only on commonly
enriched regions. A control experiment is often used to
aid the detection of truly enriched regions (e.g. in Peak-
Seq [10] and W-ChIPeaks [11]). However, overall, there
is a shortage of formal definition of ChIP efficiency and
a limited focus on how this affects the interpretation of
the results and how this should be fully accounted for
in the statistical analysis of the data and consequently in
the detection of enriched and differentially bound regions.
In this paper, we address these issues using ChIP-seq
data from a number of experiments conducted by dif-
ferent laboratories on two highly similar but different
proteins.
P300 and the CREB binding protein (CBP) are two His-

tone AcetylTransferases (HATs) which are transcription
co-activators for a broad range of genes involved in vari-
ous multiple cellular processes. P300 and CBP have highly
similar roles in transcriptional activation, but also dif-
fer in some aspects that are still not fully understood
[12]. This is reflected by the large but incomplete over-
lap in p300 and CBP binding sites in the genome [13,14].
In the ChIP-seq study of [14] it is known that the anti-
body specificity for the p300 experiments is higher than
for the CBP experiments. Using a Fisher exact test, [14]
find that the number of regions preferentially bound by
p300 is largely greater than the number of regions pref-
erentially bound by CBP. In [13], two experiments are
conducted on the same two proteins, but using a differ-
ent cell line. In this case, the antibody specificity for the
CBP experiment is known to be higher than the one for
p300. Consequently, the number of regions preferentially
bound by p300 found by this study is much smaller than
the number of regions associated only with CBP. Despite
the different experimental set-ups of the two studies, these

results suggest that the differences in ChIP efficiencies
associated with the antibodies used can have a major
impact on the findings of regions that are differentially
bound by CBP or p300, and may mask the real hetero-
geneity between the two HATs and the two cell types
studied. Hence, there is a need to explicitly account for
these in the statistical analysis and interpretation of the
results.
A large number of statistical methods have been devel-

oped in the last few years for modelling ChIP-seq data.
The majority of these concentrate on the detection of
peak-type profiles such as the ones generated by DNA-
binding TFs. Some others are proposed for detecting
genomic regions with broader signals such as those bound
by RNA Polymerase II binding [4] or marked with specific
histone modifications [15,16]. If no control experiment
is available (e.g. a ChIP experiment with a non-specific
IgG control antibody), a general strategy is to model the
background read distribution and then assign a statistical
significance cut-off for the detection of candidate peaks
or enriched regions using either analytical or simulation
approaches. One popular model for the background is
given by the Poisson or Negative Binomial (NB) distribu-
tions, which are used by a number of available software
packages (FindPeak [17], USeq [18], CisGenome [19],
SISSRs [20]). An alternative to the global Poisson or NB
models is to use local Poisson models (e.g. MACS [21]
and ChIPseqR [22]), mixture of Poisson/NB models (e.g.
MOSAiCS [23]) or more advanced hidden Markov mix-
ture or random field models (e.g. BayesPeak [24], HPeak
[25] and iSeq [26]).
In this paper, we use a latent mixture model, as

described in the Methods section, and show how this
model accounts for the ChIP efficiency of an experiment,
by modelling an appropriate signal to background ratio.
The general idea is that the different components of the
mixture model give flexibility to model both well sep-
arated signal and background components (i.e. efficient
experiments) and more overlapping components (i.e. less
efficient experiments). A formal definition of ChIP effi-
ciency is given, which can be easily extended to mix-
ture models of more than two components. Therefore,
other methods based on mixture modelling, such as the
ones mentioned above, could be used within the same
framework described in this paper. The fact that different
experiments, even technical replicates from the same lab,
can have different IP efficiencies has probably been the
main reasonwhy, to date, statistical modelling of ChIP-seq
data sets, and corresponding implementations, have been
developed for individual experiments. In the presence of
technical or biological replicates, the results from the dif-
ferent analyses are subsequently combined to increase the
robustness in the detection of regions and circumvent the
problem of different signal to background ratios [7]. One



Bao et al. BMC Bioinformatics 2013, 14:169 Page 3 of 16
http://www.biomedcentral.com/1471-2105/14/169

major contribution of this paper is to show how a mix-
ture model framework that explicitly account for ChIP
efficiencies can be used to perform a joint analysis of
ChIP data from multiple experiments on different pro-
teins, aiding to a more robust detection of enriched and
differentially bound regions.

Results and discussion
Joint modelling of ChIP-seq data with multiple replicates
and different IP efficiencies
The analyzed material from the immunoprecipitation
step of a ChIP-seq experiment is always a mix of frag-
ments bound by the transcription factor (true signal)
and random background fragments (background signal).
Furthermore, the majority of regions in the genome is
not enriched and should therefore contain only back-
ground signal. We would generally expect that the bin
counts reflect this mixture pattern. That is, some bins
are enriched regions with a lot of tags (possibly a ’peak’
for TF binding) and most other bins are not enriched,
containing only few tags. This motivated us to assume a
mixture model framework for the counts. The model that
we present in this paper does not make any use of peak
information and is therefore more suitable for the detec-
tion of broad regions, such as those marked with histone
modifications.
Let M be the total number of mappable bins and Ymcji

the counts in the mth bin, m = 1, 2, · · · ,M, under con-
dition c, antibody j and replicate i. In our context, the
condition c stands for a particular protein (either CBP
or p300) at a particular time point, and i = 1, . . . , nj
is the number of technical or biological replicates for
antibody j used in this condition, with j = 1, . . . , J .
The counts Ymcji are either from a background popula-
tion (non-enriched region) or a from a signal population
(enriched region). Let Xmc be the unobserved random
variable specifying if the mth bin is enriched (Xmc = 1)
or non-enriched (Xmc = 0) under condition c. Clearly,
this latent state does not depend on ChIP efficiencies.
Similarly to the model used in MOSAiCS for single exper-
iments [23], we define a joint mixture model for Ymcji as
follows:

Ymcji ∼ pcf (y − kcji|θScji) + (1 − pc)f (y|θBcji),

where pc = P(Xmc = 1) is the mixture portion of the
signal component and f (y, θScji) and f (y, θBcji) are the signal
and background densities for condition c, antibody j and
replicate i, respectively.
Using a mixture model allows to split the signal and

background component in the data: this is particularly
important when different ChIP efficiencies are observed,

as these will induce a different signal to background ratio.
The different parameters of the mixture components will
allow to capture the different IP efficiencies of individual
experiments, whereas the parameter pc, which does not
depend on the ChIP efficiencies, allows to properly com-
bine technical and biological replicates with the same or
different antibodies. This is not normally done in the liter-
ature, rather different analyses are performed for different
experiments and the detected regions are further com-
bined at a second stage, e.g. [5,6]. The constant kcji is a
non-negative value that represents the minimum observ-
able tag count in an enriched region and is used to provide
greater flexibility to the two-component mixture model,
particularly in the presence of a large proportion of zeros.
[19,23] set this offset equal to some pre-specified value
and use the same value for all experiments. However this
assumption does not seem to be supported by the data,
where the value of the offset k may also depend on the
library size and on the different signal and background
ratios of the experiments. We therefore opted to keeping
this parameter free in our maximum likelihood procedure
and estimating it from the data.
We fit this model to the p300 and CBP datasets

described in the Methods section, using the EM-
procedure outlined in the same section for parameter
estimation. The input to the model is count data from
all ChIP-seq datasets considered, together with informa-
tion on which experiments are replicates. The output of
the model is the estimates of all the parameters, that
is pc, θScji and θBcji for all c, j and i. The eight experi-
ments considered in this paper are performed by two
different labs. In [14], two technical replicates are con-
ducted at time 30 for each of the two proteins. In
[13], single experiments are conducted for non-activated
T-cells. Given the different cell lines used in the two
studies, the experiments from the two different labs can-
not be considered as biological replicates. However, the
framework described in this paper would be flexible
enough to allow for the situation when different repli-
cates are conducted in different labs (and using different
antibodies).
Table 1 gives the parameter estimates of the mixture of

two NB distributions, using the joint modelling approach
just described. The use of NB distributions returned a
better fit than a Poisson mixture model in terms of the
Bayesian Information Criterion (BIC) values (data not
shown here). The second column reports the value of
the parameter pc, that is the probability of enrichment.
This is the same for technical replicates, as constrained
by the model since these are assumed to share the same
binding profile. Columns 3 to 6 report the parame-
ters of the mixture distributions. These vary significantly
between different experiments, to reflect the different IP
efficiencies. Column 7 shows different estimates of the



Bao et al. BMC Bioinformatics 2013, 14:169 Page 4 of 16
http://www.biomedcentral.com/1471-2105/14/169

Table 1 Fitting results bymixture of two negative binomial distributions: mixture parameter estimates (second to fifth
column), offset value k (sixth column), corresponding estimate of ChIP efficiency (IPE; seventh column) and number of
enriched regions at a controlled 0.1% FDR (last column)

Experiment pc μS φS μB φB k IPE # Enriched regions

CBPT0 0.0305 3.7318 0.6635 1.2788 1.8891 2 0.8973 2383

CBPT301 0.0568 4.5659 1.1781 1.4140 2.7159 2 0.9221
41606

CBPT302 0.0568 8.4491 0.5236 1.1634 1.1867 3 0.9630

p300T0 0.0414 7.3513 0.7772 1.4159 2.0733 3 0.9628 22250

p300T301 0.0511 7.3276 0.7390 1.3524 3.0402 3 0.9684
65768

p300T302 0.0511 13.9161 0.5700 0.9740 0.9770 3 0.9793

Wang CBP 0.0180 24.7877 0.3742 4.8347 3.3128 9 0.9621 10251

Wang p300 0.0143 6.0192 0.2438 2.2001 4.3590 4 0.9156 3881

parameter k for the eight experiments, suggesting that set-
ting this value fixed a priori, as in [19,23], is generally not
advisable.

Quantifying IP efficiencies of ChIP-seq experiments
The mixture model that best fits the data can be further
used to derive an estimate of IP efficiency of a ChIP-
seq experiment. In the literature, this is often done using
informal ad-hoc measurements, e.g. [27] estimate ChIP
efficiency by the ratio of hybridization values at the top
1% of bound sites to the bottom 10%, which are taken
to represent background levels of binding, whereas [28]
measure it using the relative level of protein binding with
respect to control regions. In general, ChIP efficiency is
often thought in terms of a ratio between the total number
of counts in the enriched regions versus the total num-
ber of counts in the background regions. In the context
of our paper, such a quantity can be estimated by tak-
ing the ratio of the expected counts in the signal regions,
μS, versus the expected counts in the background regions,
μB. However, such a measure would not account for
overdispersion, or, in general, for more complex distri-
butions of the background and signal components. For
this reason, we present a more general measure of IP effi-
ciency in terms of separation of the signal and background
components of the mixture model. An efficient experi-
ment will generate well separated signal and background
components, whereas a less efficient experiment will gen-
erate two more overlapping components. In the Methods
section, we provide a formal derivation of this IP efficiency
estimate.
Table 1 reports the corresponding IP efficiencies for

the eight experiments on p300 and CBP. These estimates
reflect existing knowledge on the specificities of the anti-
bodies used for the different proteins, e.g. the efficiencies
of the experiments for p300 by [14] are larger than the
ones for the CBP experiments, whereas the opposite is
observed for the experiments by [13]. Furthermore, it
is interesting to note quite a large difference in ChIP

efficiency for technical replicates in the study of [14],
which is reflected also in the parameter estimates (e.g.
differences in the signal and background means for the
CBP technical replicates). These different ChIP efficien-
cies, if not accounted for, can potentially lead to erroneous
biological conclusions.

Accounting for ChIP efficiencies in the detection of
enriched regions
ChIP efficiencies need to be properly accounted for in
the detection of the regions bound by a protein from
the available ChIP-seq data. After fitting a mixture model
to count data, the estimates for all the parameters in
the model, that is pc, θScji and θBcji, are used to select the
regions enriched by p300 and CBP, respectively. A com-
mon procedure for mixture models is to set a cut-off on
the posterior probabilities of non-enrichment, P(Xmc =
0|y, �̂cji, k̂cji, p̂c) for regionsm and condition c. We choose
this threshold using a controlled False Discovery Rate
(FDR) of 0.1%, as detailed in theMethods section. The last
column of Table 1 gives the number of enriched regions
for each condition, in terms of the 1000 bp windows
used in the analysis. As technical replicates are modelled
jointly, a single list of enriched regions is detected for these
experiments.
The important step in the detection of enriched

regions is that, in order to properly account for
the different ChIP efficiencies, the enriched regions
are selected after controlling for the same FDR
amongst the different experiments. As shown in
Table 1 more regions are detected for the more efficient
experiments, as one would expect. For example, the ChIP
efficiency of Wang CBP is larger than Wang p300 and
this results in more than twice the number of enriched
regions detected in the CBP experiment than in the p300
experiment. This should not be confused with the actual
number of true binding sites, which is unknown and
is better reflected in the estimates of pc. For example,
WangCBP is a more efficient experiment than CBPT0, so
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Table 2 FDR values when the same number of enriched
regions is assumed for all eight experiments

Experiment 31689 bound regions 65768 bound regions

CBPT0 34.21% 56.35%

CBPT30 0.01% 1.70%

p300T0 1.18% 16.22%

p300T30 2.08e-06% 0.10%

WangCBP 26.81% 57.58%

Wangp300 59.94% 77.24%

more regions are detected as enriched in WangCBP than
CBPT0 at the same FDR, but the estimated probability of a
region being enriched is larger in CBPT0 (pc=0.0305) than
inWangCBP (pc = 0.0180). To emphasize the importance
of using the same FDR in the presence of different ChIP
efficiencies, Table 2 gives the estimated FDR when we
select the same number of enriched regions in the eight
experiments. In particular, we consider the case where for
each experiment we select the top 31689 regions, which
is the average of the number of enriched regions amongst
the eight experiments on CBP and p300, and the case
where we select 65768 regions, where the most efficient
experiment shows acceptably low FDRs. As expected,
the more efficient experiments show lower FDRs. This
means that not accounting for ChIP efficiency, which
we mimic here by assuming a fixed number of enriched
regions in all experiments, will result in a greater number
of false negatives for the more efficient experiment and
a greater number of false positives for the less efficient
experiment.
One strength of the approach proposed in this paper

is in the fact that replicates are joined in the model

by a common assumption of shared binding profiles.
This is an assumption on the latent states, prior to the
collection of data. The different IP efficiencies of the
replicates are further captured by the individual param-
eters of the signal and background distributions. This
joint modelling approach makes an appropriate use of
replicates and is expected to return a more robust set
of the regions bound by a protein. In the first instance,
we compare our results with those from an existing
method on single experiments. In particular, we per-
form a comparison with MOSAiCS [23], which is in
spirit very similar to our mixture modelling approach.
Figure 1 shows Venn diagrams of the detected regions
at the same FDR, for two representative experiments.
We compare our approach, denoted as enRich, with
two versions of MOSAiCS: MOSAiCS_1S corresponds to
a mixture model with one background and one signal
component, whereas MOSAiCS_2S fits a mixture of two
densities for the signal component. Figure 1 shows how
MOSAiCS_2S identifies more bins than MOSAiCS_1S, as
expected from amore flexible approach, and howenRich
has a very high overlap with MOSAiCS_2S. Despite our
method using only one signal component, the maximum
likelihood procedure that we use for parameter estima-
tion returns better estimates than the moment estima-
tors used by MOSAiCS. The MOSAiCS_1S model fits
an extremely large variance for the signal component to
capture the long tail of the distribution of counts. This
problem is attenuated by the use of the second signal
component.
Having established a very high overlap between our

method and an existing approach for single experiments,
we now assess the advantages of the joint modelling
approach when replicates are available. Table 3 compares

Enriched regions for CBPT0

enRich MOSAICS_1S

MOSAICS_2S 2841787

110

0

0

147

1094

0

1142

Enriched regions for p300T0

enRich MOSAICS_1S

MOSAICS_2S 2822030

0

0

0

234

3594

0

18422

Figure 1 Venn diagrams of enriched bins detected by enRich andMOSAiCS. Venn diagrams of enriched bins detected by our method (enRich)
and a similar existing method (MOSAiCS) for two selected experiments, CBP at time 0 and p300 at time 0, at a controlled 0.1% FDR. Two versions of
MOSAiCS are considered: MOSAiCS_1S fits a mixture model with one background and one signal component, MOSAiCS_2S uses a mixture of two
densities for the signal component.
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Table 3 Binding sites for Ramos T30 using separate models for replicates and taking the intersection (top) and the union
(bottom) of regions identified by individual analyses at an 0.1% FDR (column 2), compared to a joint analysis of
replicates at the same FDR (column 3)

Experiment Identified using the intersection Additionally identified

of separate models using joint model

Number Number % Number Number %

containing containing containing containing

TSS TSS TSS TSS

CBPT301 & CBPT302 5903 1444 24.46% 9659 1942 20.11%

p300T301 & p300T302 22984 5926 25.78% 9861 2676 27.14%

Identified using the union Additionally identified

of separate models using joint model

Number Number % Number Number %

containing containing containing containing

TSS TSS TSS TSS

CBPT301 & CBPT302 22762 4601 20.21% 18844 3870 20.54%

p300T301 & p300T302 43003 10156 23.62% 22765 1786 7.85%

the number of regions detected by our approach with the
number of regions that are detected at the same FDR
by fitting separate mixture models for each of the two
replicates and then finding the regions that are detected
as enriched by both experiments, which is the com-
mon procedure adopted in the current literature, e.g.
[6,7,22,29].
When conducting separate analyses, different latent

profiles Xmc, and consequently different pc, are implicitly
assumed for each replicate. This goes against reasonable
assumptions, as replicates are made under the same con-
dition c, and it has the result of reducing the power
in the detection of commonly enriched regions. In our
comparison, we find that all regions detected by the sep-
arate approaches are detected also by the joint modelling
approach. On the other hand, it is clear from Table 3 how
many more regions are detected when technical replicates
are modeled jointly, as in the approach proposed in this
paper, rather than individually. Furthermore, when taking
the intersection of lists of regions detected by single exper-
iments using a controlled FDR, it is not clear what the level
of FDR of the resulting list of regions is. In general, this
is expected to be much smaller than the FDR cutoff cho-
sen for each individual experiment, although this is rarely
discussed in the literature [30] and shows a further dis-
advantage of performing individual analyses of replicates.
In an attempt to perform a fair comparison with our joint
modelling approach, we estimate the FDR of the com-
monly enriched regions detected by separate experiments
using

P(X = 1|Y1,Y2) = P(Y1,Y2|X = 1)P(X = 1)
P(Y1,Y2)

for two replicates Y1 and Y2, sharing the latent binding
profiles X, where we estimate the posterior probability
P(Y1,Y2|X) from the two separate analyses and we take
P(X = 1) as an average of the two estimates from the
two separate analyses. When setting an 0.1% FDR cutoff
on each individual analysis, this method returns an esti-
mated FDR of 4.0e− 8 and 4.5e− 8 for CBP and p300,
respectively, for the commonly detected regions. We use
these FDR values for the joint modelling results of Table 3
(top). Note that these values are smaller than the 0.1% cut-
off chosen for Table 1, thus returning a smaller number of
enriched regions for the joint modelling approach. Similar
results are obtained by taking the union of separate anal-
yses, rather than the intersection, that is by considering
regions that are detected by at least one of the two sepa-
rate analyses (Table 3, bottom). The FDR of the union of
regions is similar to that of individual experiments, but the
joint modelling approach consistently finds many more
regions than the separate analyses.
CBP and p300 both have roles in transcriptional activa-

tion. To analyze whether the additionally identified CBP
and p300 bound regions are not merely false positives but
likely functional in transcription activation, the regions
are also evaluated for the presence of TSSs of annotated
genes (Table 3). With the exception of the last compari-
son, where an unusually low percentage is observed, these
results show that the additionally identified regions have
a similar percentage of TSSs to the ones in the indepen-
dent modelling approach, providing some evidence that
these regions are not just noise but genuine binding sites.
We use ChromHMM [31] to validate this further and to
explore whether other chromatin features are enriched in
the regions identified by the different methods. Figure 2
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Figure 2 Validation of enriched bins detected by separate and joint models, using ChromHMM. Validation of the enriched bins detected by
the intersection (CBP: 5903, p300: 22984, first row) and union (CBP: 22762, p300: 43003, second row) of separate analyses of technical replicates at
T30, and by the joint model proposed in this paper (CBP: 15562, p300: 32845, last row), using ChromHMM with a 4-state hidden Markov model. The
left plots show heatmaps of the probabilities (in percentages) that the CBP and p300 detected bins are enriched given each identified
chromatin-state. The right plots show the relative percentage of the genome represented by each chromatin state (first column) and the relative
fold enrichment for several types of annotation (remaining columns).
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shows the results of ChromHMM using a 4-state hidden
Markov model on the enrichment profile given by the
intersection and union of separate analyses, each at an
0.1% FDR (first and second row, respectively), and by the
joint model (third row), at the same FDR as the inter-
section. The data from both proteins is jointly modelled
by ChromHMM. The left plots give the emission proba-
bilities for the different analyses, that is the probability
of the observed enrichment given each of the four possi-
ble states. These plots show how, for all analyses, two of
the four states explain most of the enrichment pattern in
the identified lists. The right plots give the relative fold
enrichment for several annotations. These plots show how
these two states are mostly enriched with TSSs, active and
weak promoters, and weak enhancers. Furthermore, the
plots show how the second state, which is enriched only in
p300, reflects mainly the different degrees of enrichment
of CBP and p300 for the same chromatin features. This is
most likely the result of the different ChIP efficiencies of
the p300 and CBP experiments, respectively, which result
in a larger number of enriched regions for p300 than for
CBP and which are not accounted for in ChromHMM. The
findings from ChromHMM seem to be consistent across the
different analyses. Together with the results in Table 3, one
can conclude that by combining replicates jointly at the
modelling stage, rather than at a later stage, many more
regions are found at the same FDR, and that these regions
are generally of the same quality as those found by the
individual modelling approach.

Detection of differentially bound regions
When we have data on two or more proteins, or on one
protein and a control, an interesting question is to find the
regions that are differentially bound by the two proteins
of interest. These are the regions with a large difference
in the probabilities of enrichment, P(Xmc = 1|y) for the
two proteins. Antibody efficiencies also play a role in this
as, generally, one would expect to find many regions pref-
erentially bound by a protein for which a more efficient
experiment is conducted, than for a protein from the less
efficient experiment, simply down to the two different
antibodies used. Indeed, this is the case for the two studies
by [13,14] mentioned in the introduction. In the literature,
techniques which can detect peaks or enriched regions

for a single experiment against a control, e.g. MACS [21],
ChIPDiff [32] or MOSAiCS [23], can also be used to
detect differentially bound regions for two proteins. Here,
the general procedure is to use the experiment from the
other protein as a control. However this method lacks for-
mal probability definitions on the difference between the
two experiments. Furthermore, it is not implementable
for those peak-finder methods that do not use control
information. More recent methods, such as ChIPnorm
[6], allow to compare two experiments on two proteins
at the same time, but somewhat sidestep the issue of dif-
ferent IP efficiencies by focussing on regions with high
signal to background ratio and normalizing the counts
on these regions only. Finally, one of the latest methods,
DBChIP [5], allows the inclusion of biological replicates
in the model, but does not account for their different IP
efficiencies in the detection of enriched and differentially
bound regions.
In this paper, we formally develop a test for the detection

of differentially binding regions from a number of ChIP-
seq experiments on two proteins, based on the statistical
model proposed in this paper. The novelty of this test is in
the fact that the information from multiple experiments
is shared at the modelling stage, by properly accounting
for the different IP efficiencies, and is then fed into the
test. We consider the following probability of differential
binding

P(Xm1 �= Xm2) = P(Xm1 = 0|Y1)P(Xm2 = 1|Y2)
+ P(Xm1 = 1|Y1)P(Xm2 = 0|Y2) (1)

where P(Xmc = 0|Yc) is the probability that themth bin is
enriched for protein c, estimated by the model described
above and from all the data on protein c. In this way, all
replicates under the same condition are considered in the
estimation of the posterior probabilities, returning a more
robust set of differentially bound regions.
Table 4 reports the results of this analysis, for the detec-

tion of the regions that are bound only by CBP or p300
at 5% FDR, using the parameters estimated by the joint
mixture model (Table 1) to compute the posterior prob-
abilities in Equation (1). It is clear how more regions are
detected as bound by the protein where more efficient
experiments are conducted than for the other protein (i.e.

Table 4 Number of differentially bound regions at 5% FDR; at T30, where technical replicates are available, the results
are given both for the case where the joint model of replicates is used (first column) and for the case where the union of
two separate analysis is used (CBPT301 versus p300T301 and CBPT302 versus p300T302, second column)

Conditions # Regions bound only by CBP # Regions bound only by p300

Wang 3069 142

T0 9 2726

Joint analysis Separate Joint analysis Separate

T30 6126 118 9843 3402
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Figure 3 Genome browser views of representative differentially bound regions. Genome browser views of two representative regions, which
are found differentially bound by CBP (a) and p300 (b), using the joint modelling approach but not using the individual modelling approach. The
blocks in each figure represent individual sequence reads in CBPT301 (red), CBPT302 (blue), p300T301 (black) and p300T302 (green). Additional
evidence is provided from the ENCODE data on H3K4Me1 methylation marks, DNAseI hypersensitive sites and transcription factor binding, and from
the Broad annotation of enhancers, promoters and actively transcribed genomic regions in GM12878, hESC and K562 cells. Region (a) is in the first
intron of ARL15. We observe an overlap with CTCF binding and DNaseI hypersensitivity sites. Region (b) is 100 kb upstream of CTNNB1. It is likely
functioning as a promoter or enhancer, as suggested by the annotation of histone marks provided by the ENCODE consortium and the Broad
Institute.
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p300 for the Ramos study and CBP for Wang). This is to
be expected as there is more power in the detection of
these regions, but it should not be misleading: the con-
trolled FDR guarantees that only a controlled number of
errors is computed in the detection of regions for either
of the two proteins. Only by increasing the FDR even fur-
ther, would one be able to recover more regions in the less
efficient experiments, albeit with a higher probability of
false detections. Finally, it is interesting to note how the
number of differentially bound regions is more balanced
for the case when technical replicates are available (T30).
This suggests that properly accounting for replicates at the
modelling stage is expected to give more power also in
the detection of differentially bound regions. In support of
this, we have performed separate mixture modelling anal-
yses for p300T301 versus CBPT301 and p300T302 versus
CBPT302 and have taken the union of the differentially
bound regions from these two separate analyses. These
results are reported in Table 4 and show a remarkable
difference with the results from the joint analysis, espe-
cially for the less efficient experiment, where many more
regions are detected as differentially bound using the
joint modelling approach. Figures 3a and 3b give genome
browser views of two representative regions that are found
differentially bound by CBP and p300, respectively, using
the joint modelling approach, but that are not found using
the individual modelling approach. These plots show how
the power in the detection of differentially bound regions
increases when the counts of individual experiments on
technical replicates are modelled jointly. Future work will
look at validating these regions biologically.
In the presence of two different proteins, a priori bio-

logical knowledge about the two proteins can be fur-
ther included in the test. In particular, in the context of
the model described in this paper, one can impose the
assumption that the two proteins have the same number
of binding sites, that is p1 = p2, where pc is the probabil-
ity of a region being enriched by protein c. If realistic, this
assumption is expected to lead to a more robust detection
of the enriched regions, by providing a better estimate of
the expected number of enriched regions in the different
experiments. Indirectly, this allows to better account for
the different IP efficiencies of the different experiments.
The constraint of p1 = p2 can be imposed in the maxi-
mum likelihood procedure, in a similar way to parameter
estimation in the presence of replicates. However, in this
case, we do not make an assumption of equal binding pro-
files (i.e. Xm1 = Xm2 for all regions m), which is instead
appropriate for technical replicates. The main difficulty
in implementing this method is in assessing whether the
assumption of a same pc is appropriate in a particular bio-
logical context. When no definite knowledge is available,
we suggest to compare the fit of a model which makes
an assumption of p1 = p2 with a model which does not

make this assumption. As the two models have a different
number of parameters, we suggest to compare them in
terms of their BIC value. This is defined in the usual way
by −2 ln L(�̂) + r ln(M), with �̂ the estimated parame-
ters in the model, L(�̂) the maximum likelihood and r
the number of parameters. The estimated parameters are
different depending on whether the constraint of equal
pc is imposed or not, and the best model is chosen as
the one with the lowest BIC. Figure 4 shows the output
of a simulation study where we have assessed whether
this BIC measure leads to an informative choice in our
context. We have simulated count data on 10000 regions
for two different experiments (e.g. proteins), using the
mixture distributions p1NB(14, 2) + (1 − p1)NB(0.5, 2)
and p2NB(5, 1) + (1 − p2)NB(1, 1), respectively. We have
chosen these distributions so as to have different IP effi-
ciencies (namely, IPE1 = 0.9996 and IPE2 = 0.9732). The
plot gives the average BIC value, over 100 iterations, for
the model which does not make the assumption of equal
probabilities (grey line) versus themodel which doesmake
this assumption (black line). The x-axis shows the true
p2 − p1 value for the different simulations, where we fix
p1 = 0.05 and vary p2 between 0.05 and 0.06. Despite the
different IP efficiencies, it is clear how the BIC measure
manages to distinguish between the case when p1 = p2
and the case when this assumption is not satisfied. The
simulation shows further how there is a small margin of
error for values of p2 very close to, but not exactly equal
to, p1.
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Figure 4 Simulation study to assess the usefulness of BIC in
deciding whether two proteins have equal probability pc. BIC
values for the model that assumes different pc probabilities for each
condition (grey) and the one that assumes the same probabilities
(p1 = p2, black). The x-axis shows the true p2 −p1 values for simulated
ChIP-seq data on two experiments with different IP efficiencies.
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We have checked whether the assumption of an equal
number of binding sites is appropriate for CBP and p300
from the experiments considered in this paper. Of the
three comparisons reported in Table 4, the BIC measure
suggests that p300 and CBP can be assumed to have an
equal number of binding sites at time 0 (both from the
Ramos andWang experiments), but this assumption is not
appropriate at time 30 (BICp1 �=p2 - BICp1=p2 = −8034.47.)
Table 5 compares the results of the analyses at time 0.
The p1 �= p2 column shows the results from Table 4,
where different probabilities of enrichment are assumed
for the different proteins at the different time points. The
p1 = p2 column gives the results from the new anal-
ysis, where p1 and p2 are constrained to be equal in
the estimation procedure. The results show how the two
approaches lead to different results. In particular, fewer
regions are detected for the more efficient experiments at
the same false discovery rate. Our interpretation of this
is that, in the absence of replicates, when one compares
two experiments on two different proteins with two dif-
ferent antibodies being used (and consequently different
efficiencies of the experiments), it is difficult to estimate
accurately the parameter pc as well as accounting for IP
efficiency. Indeed, the estimated pc values from the more
flexible approach, with p1 �= p2, tend to be quite different
in these cases, against expectation (e.g. 0.0305 for CBPT0
and 0.0414 for p300T0 from Table 1). Particularly in these
situations, including in themodel the assumption of a sim-
ilar number of binding profiles returns a better estimation
of the probability of a region being enriched and conse-
quently it is expected to return a more robust detection of
the truly differential binding regions.

Conclusions
Different antibodies are used for ChIP-seq experiments
for different proteins, and these have different levels of
specificity. On top of this, different ChIP efficiencies are
observed even for replicated experiments on the same
protein. This results in different signal to background
ratios for ChIP-seq generated data, and consequently, in
a different percentage of expected enriched and non-
enriched regions. We have used simple arguments to
show how this is the case, how the ChIP efficiency of
an experiment can be quantified from the data and how

different ChIP efficiencies for different experiments can
lead to misleading biological conclusions if not accounted
for in the statistical analysis. This is shown both for the
detection of enriched regions and of differentially binding
regions, for which a new test is proposed. In the expo-
sition, we focus on the detection of broad regions, such
as those marked with histone modifications, and we do
not use any information about peak-shape or reads from
opposite strands.
We have used a mixture of negative binomial distribu-

tions to present the results in this paper. One important
point of the paper is that a mixture model approach, such
as the one presented here, allows to account for the ChIP-
efficiency of an experiment: less efficient experiments are
modelled by more overlapping signal/background mix-
tures than more efficient experiments. In our results, we
fitted this model to count data on 1000 bp-size win-
dows. The relatively large window size is motivated by
the fact that the mixture model considered here does not
account for Markov properties in the data. More sophisti-
cated statistical models of ChIP-seq data, such as HMMs
[24] or random fields models [26], or more sophisticated
distributions, such as zero-inflated Poisson or negative
binomials distributions, e.g. [23,25], can be used within
the same framework described in this paper, and are
currently under investigation. Similarly more robust esti-
mates of background distributions can be used, e.g. [3,23].
Current research is looking at an extension of the joint
model approach presented in this paper to one where
read-mappability and GC-content are directly included in
the model specification. Furthermore, most of the avail-
able normalization methods, e.g. [5-7], work with a pre-
defined set of enriched regions and often make use of
control experimental data to further improve the identi-
fication of enriched regions. The regions detected by the
method proposed in this paper could be further used as
part of existing normalization procedures.
A second important point of the paper is that estima-

tion of the parameters of the mixture model is performed
jointly, from all the available data. In particular, the knowl-
edge of experiments being technical or biological repli-
cates puts some constraints in the parameter space: the
parameter pc that is discussed in the paper is the same
for all technical and biological replicates, as these share

Table 5 Number of differentially bound regions at 5% FDRwhenmaking an assumption of the same number of binding
sites for the two proteins (p1 = p2), compared to the case when this assumption is not made (p1 �= p2); the last column
reports the difference in the BIC values of the twomodels (a positive differencemeans a better fit for themodel that
assumes p1 = p2)
Conditions # Regions bound only by CBP # Regions bound only by p300 BIC difference

p1 �= p2 p1 = p2 p1 �= p2 p1 = p2 BICp1 �=p2 - BICp1=p2

T0 9 11 2726 1277 16172.34

Wang 3069 2630 142 142 3267.04
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naturally the same binding profile. This parameter, as well
as all the other parameters in the model, are estimated
from data by an expected maximum likelihood approach.
Given the parameter estimates, the final point of the paper
is to show how these can be appropriately used to make a
decision about which regions in the genome are enriched,
and which are differentially bound in the case of two
proteins.
We use real ChIP-seq data on two histone modifiers,

p300 and CBP, to show how a joint modelling approach
for ChIP-seq data, which properly accounts for the differ-
ent ChIP efficiencies, is able to identify a larger number
of enriched regions than a standard approach, where indi-
vidual models are fitted to individual experiments and the
results of individual analyses are subsequently combined.
The regions identified by the joint modelling approach
have been validated by TSS overlap and ChromHMM and
have generally shown similar enrichment of chromatin
features to the regions detected by individual analyses.
Additional a priori biological knowledge, such as the
expectation of a same number of binding for two different
proteins, can also be included in the model and is found
to return more realistic numbers of differentially bound
regions, with a smaller number of regions bound by the
protein where a more efficient experiment is conducted
and therefore an expectation of a smaller number of false
positives. Further work will be conducted to validate these
regions biologically.
The methods described in this paper are implemented

in the R package enRich, which is available in CRAN.
The input to the main function in this package is count
data for a number of bins and a number of experi-
ments, together with information about which experi-
ments are replicates, which experiments are thought to
have the same number of binding profiles, which two
proteins (if available) should be compared for differen-
tial enrichment, and an FDR cut-off for the selection of
regions. The output of the function is a list of enriched
regions for each protein and each condition and the
list of differentially bound regions at the specified FDR
cut-off.

Methods
The data: pre-processing and validation
The ChIP-seq data on p300 and CBP analysed in this
paper was generated from two different labs [13,14]. In
[14], CBP and p300 binding is profiled in human T98G
cells at time point 0 (T0), where cells are serum starved
and where CBP or p300 is restricted to a limit set of
genes, and at 30 minutes after stimulation with tetrade-
canoyl phorbol acetate (T30). For the latter condition,
there are two technical replicates (T301 and T302) and it
is known that the ChIP efficiency in the second replicate
is higher than in the first. In [13], CBP and p300 binding

was evaluated in resting CD4+ T cells. We will use the
protein names followed by T0, T301 and T302 to refer
to the six experiments of [14], use T30 for the combina-
tion of T30-1 and T30-2 results and use Wang followed
by the protein names to refer to the two experiments
in [13].
All sequence reads were aligned to the human genome

(build hg18) using BWA version 0.5.9 with default set-
tings. We divide the whole genome into 1000 base pair
windows and summarise the raw counts for each win-
dow by the number of tags whose first position is in the
window. To account for a possible mappability problem
[10], we delete the bins which are not covered by any
of the experiments mentioned above, resulting in 7.67%
bins deleted in total. Furthermore, we exclude from
the analysis genomic regions that have been found to
exhibit anomalous or unstructured read counts (http://
hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/
wgEncodeMapability/wgEncodeDukeRegionsExcluded.
bed6.gz) [33]. The 2, 832, 221 remaining regions are con-
sidered for the analysis. All the results for enriched and
differentially bound regions are given in terms of these
1000bp bins and are provided as Additional file 1. These
bins could be further processed by joining consecutive
bins into regions.
Overlap with Transcription Start Sites (TSSs) was

assessed in Galaxy (https://main.g2.bx.psu.edu), using the
first (plus strand) and the last (minus strand) positions
of UCSC annotated genes. We consider a bin as con-
taining a TSS when there is at least 1bp overlap with an
annotated TSS. Enrichment of the detected regions with
chromatin features was assessed using ChromHMM [31].
The method is based on a hidden Markov model, which
takes as input the binary vector of enriched and not-
enriched regions, obtained from the method described in
this paper at a specified FDR cutoff, and gives as output
the predicted state for each region. We consider a model
with 4 states, as we find that these are enough to capture
the diversity of the detected regions in terms of chro-
matin features enrichment. The resulting predicted states
are evaluated for enrichment using a number of external
annotations. In particular, we use the Broad ChromHMM
classification, available from the UCSC genome browser,
and select the following categories: RefSeq exons, silent
DNA (Heterochromatin), promoters ready to start tran-
scription (PoisedPromoter), active and weak promoters
(ActivePromoter andWeakPromoter, respectively), strong
andweak enhancers (StrongEnhancer andWeakEnahncer,
respectively).

The joint latent mixture model: parameter estimation
We take the following steps to estimate the parameters
of interest of the mixture model. In order to simplify the
notation, we describe the general process without using

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeMapability/wgEncodeDukeRegionsExcluded.bed6.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeMapability/wgEncodeDukeRegionsExcluded.bed6.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeMapability/wgEncodeDukeRegionsExcluded.bed6.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeMapability/wgEncodeDukeRegionsExcluded.bed6.gz
https://main.g2.bx.psu.edu
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subscripts c, j, i. We will describe the case of replicates
more in detail in the next section.

1. We choose a grid of values for the offset k from 0 to
some user defined largest minimum observable tag
count, for which we set a default of 10. The
parameters of the mixture distributions depend on
the choice of k.

2. Since Xm is unobserved, we use an EM algorithm to
estimate the parameters � = (p, θS, θB) for a fixed
value k. The complete log likelihood for counts Y
and unobserved indicators X is given by

l(Y ,X|�) = log(P(Y ,X|�)

= log(P(Y |X,�)+log(P(X|�))

=
M∑

m=1
{I(Xm=1)[ log p+logP(Ym|Xm=1, θS)]

+ I(Xm=0)[ log(1−p)+logP(Ym|Xm=0, θB)]}.
Then the E- and M-steps for the tth iteration are as
follows:
E-step: Expectation of Likelihood

Q(�|�(t)) = EX|Y ,�(t) l(Y ,X|�)

where

τ
(t)
1,m = E(Xm = 1|Ym = ym,�(t))

= P(Xm = 1|Ym = ym,�(t))

= p(t)f (ym − k|θS(t))
p(t)f (ym − k|θB(t)) + (1 − p(t))f (ym|θB(t))

τ
(t)
0,m = P(Xm = 0|Ym = ym,�(t)) = 1 − τ

(t)
1,m.

From this,

Q(�|�(t)) =
M∑

m=1
τ

(t)
1,m[ log p + log f (ym|θS)]

+ τ
(t)
0,m[ log(1 − p) + log f (ym|θB)] .

M-step: Maximisation:

�(t+1) = argmax
�

Q(�|�(t)).

3. We calculate the marginal likelihood functions for
each pair of offset k and mixture parameters � and
choose the pair which gives the largest likelihood
values.

The special cases of poisson and negative binomial
When analysing deep-sequencing data, it is quite com-
mon to consider either a Poisson or a Negative Binomial
(NB) distribution for the mixture components. In what
follows, we give more details on the EM-algorithm imple-
mentation in the case of mixtures of Poisson and NB
distributions, respectively.

In the tth iteration, wemaximise the expected likelihood
and set the parameters for the next iteration. For the p
parameter:

p(t+1) = argmax
p

{ M
�

m=1
τ

(t)
1,m log(p)+ M

�
m=1

(1−τ
(t)
1,m) log(1−p)}

= 1
M

M
�

m=1
τ

(t)
1,m.

For the other parameters, we need to distinguish the case
of Poisson and NB distributions. If signal and background
follow Poisson distributions with parameters λS and λB,
respectively, we have

λ
(t+1)
S = argmax

λS
{ M

�
m=1

τ
(t)
1,m[ (ym − k) log λS − λS] }

= M
�

m=1
τ

(t)
1,mym/

M
�

m=1
τ

(t)
1,m − k

λ
(t+1)
B = M

�
m=1

τ
(t)
0,mym/

M
�

m=1
τ

(t)
0,m.

If both signal and background follow NB(μ,φ) distribu-
tions, where

NB(μ,φ) = �(y + φ)

�(y + 1)�(φ)

(
1

1 + μ/φ

)φ (
μ

μ + φ

)y
,

then, similarly to before, we have

μ
(t+1)
S = argmax

μS
{ M

�
m=1

τ
(t)
1,m[−φS log(1 + μS/φS)

+ (ym − k) log
(

μS
μS + φS

)
] } =

M
�

m=1
τ

(t)
1,mym

M
�

m=1
τ

(t)
1,m

− k

μ
(t+1)
B =

M
�

m=1
τ

(t)
0,mym

M
�

m=1
τ

(t)
0,m

.

And for the overdispersion parameters, φ(t+1)
S is set as the

φ value that maximises:

M∑
m=1

τ
(t)
1,m

[
log(�(ym−k+φS))−log(�(ym−k+1))−log(�(φS))

−φS log
(
1 + μS

φS

)
+ (ym − k) log

(
μS

μS + φS

)]
,
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and φ
(t+1)
B is set as the φ value that maximises

M∑
m=1

τ
(t)
0,m

[
log(�(ym+φB))−log(�(ym+1))

− log(�(φB))−φB log
(
1+ μB

φB

)

+ym log
(

μB
μB+φB

)]
.

Given that no closed-form solutions can be found for the
φ parameters, we use the optim function in R for this
optimization.

Combining information from replicates in the detection of
enriched regions
In this section, we show how the framework described
above can be used for the joint analysis of technical and
biological replicates. Since replicates are made at the same
condition c, the latent binding profiles Xmc are the same
for these experiments, and consequently also the parame-
ter pc.
Including this assumption in the model is expected to

lead to a more robust detection of the enriched regions,
particularly when different IP efficiencies are observed for
each experiment. This framework would be suited also to
the case when different antibodies are used for the differ-
ent replicates, such as experiments on the same protein
conducted in different laboratories.
In what follows, we give the details of the EM algo-

rithm in the presence of replicates. More specifically, in
the E-step, the joint log-likelihood function of replicates
Yc11, · · · ,YcJnJ and latent variable Xc is given by

l(Yc11, · · · ,YcJnJ ,Xc|�)

=
M∑

m=1
{I(Xmc = 1)

∑
j,i

[ log pc + logP(Ymcji|Xmc = 1, θS)]

+ I(Xmc=0)
∑
j,i

[ log(1−pc)+logP(Ymcji|Xmc=0, θB)] }.

Given a fixed offset kcji for each experiment, replicates
share a common τ (t) term, which is defined as

τ
(t)
1,m = E(Xmc = 1|Ymcji,�(t), kcji)

= p(t)
c

∏
j,i P(ymcji−kcji|θS(t)cji )

p(t)
c

∏
j,i P(ymcji−kcji|θS(t)cji )+(1−p(t)

c )
∏

j,i P(ymcji|θB(t)
cji )

τ
(t)
0,m = 1 − τ

(t)
1,m.

Using the estimates of the mixture model parameters
from the bin counts Y, we can predict each bin as being

enriched or not under condition c by computing the
posterior probability of the latent variable, that is

P(Xmc = 1|ymcji, �̂cji, k̂cji, p̂c)

= p̂c
∏

j,i P(ymcji − k̂cji|θ̂Scji)
p̂c

∏
j,i P(ymcji − k̂cji|θ̂Scji) + (1 − p̂c)

∏
j,i P(ymcji|θ̂Bcji)

P(Xmc = 0|ymcji, �̂cji, k̂cji, p̂c)=1−P(Xmc=1|ymcji,�̂cji, k̂cji, p̂c).

Note that a single probability of enrichment is derived
under condition c by combining all replicates under this
condition.
As a final step in the analysis, we set a threshold on the

posterior probabilities to decide whether a bin is enriched
or not under a particular condition. Different criteria can
be used to set this cut-off. In BayesPeak [24], an 0.5 cut-
off is used, whereby each region is assigned to the state
with the highest posterior probability. In this paper, as in
[34], we use a cut-off corresponding to a specific value
of the expected posterior false discovery rate. If D is the
number of enriched regions corresponding to a particular
cut-off on the posterior probabilities, then the expected
false discovery rate for this cut-off is given by

FDR =
�

m enriched
P(Xmc = 0|y, �̂cji, k̂cji, p̂c)

D . (2)

This allows to account for the different IP efficiencies in
the detection of enriched regions.

Detection of differentially bound regions
We formally develop a test of differential binding based on
the probability

P(Xm1 �= Xm2) = P(Xm1 = 0|Y1)P(Xm2 = 1|Y2)
+ P(Xm1 = 1|Y1)P(Xm2 = 0|Y2)

where P(Xmc = 0|Yc) is the probability that themth bin is
enriched for protein c, estimated by the model described
above from all the data on protein c, at the same time
point.
W define Z as a random variable indicating the com-

mon binding profiles of two proteins, that is Zm = 1 if
Xm1 �= Xm2 and Zm = 0 if Xm1 = Xm2. Then, P(Zm =
0) = P(Xm1 = Xm2) and a cutoff can be set on the prob-
abilities of differential binding by controlling a predefined
FDR value, using the same formula defined in (2).

Estimating ChIP efficiencies
We derive a formal method to quantify IP efficiencies of
a ChIP-seq experiment based on the mixture model that
best fits the data. Let YS and YB be the random variables
representing the counts in a signal and background region,
respectively. We estimate IP efficiency by calculating the
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probability that the counts in the background region are
lower than those in the signal regions. Formally,

P(YB < YS) =
∫ ∞

0

∫ y

0
fB(z)fS(y)dzdy, (3)

with fB and fS the background and signal densities, respec-
tively, and assuming independence in the counts at differ-
ent locations.
This quantity varies between 0.5 and 1, namely 0.5

for perfectly overlapping components (inefficient experi-
ment) and 1 for perfectly separated components (efficient
experiment). Real estimates will vary between these two
extremes, the higher this value, the more efficient the
experiment is. The formula can be used to estimate ChIP
efficiency for mixture models with any two distributions
and could be easily extended to more than two mixture
components.
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