

Challenges in using GPUs for the real-time reconstruction of

digital hologram images

P R Hobson, J J Nebrensky and I D Reid

Centre for Sensors and Instrumentation, School of Engineering and Design,

Brunel University, Uxbridge UB8 3PH, UK

E-mail: peter.hobson@brunel.ac.uk

Abstract. In-line holography has recently made the transition from silver-halide based

recording media, with laser reconstruction, to recording with large-area pixel detectors and

computer-based reconstruction. This form of holographic imaging is an established technique

for the study of fine particulates, such as cloud or fuel droplets, marine plankton and alluvial

sediments, and enables a true 3D object field to be recorded at high resolution over a

considerable depth.

The move to digital holography promises rapid, if not instantaneous, feedback as it avoids the

need for the time-consuming chemical development of plates or film film and a dedicated

replay system, but with the growing use of video-rate holographic recording, and the desire to

reconstruct fully every frame, the computational challenge becomes considerable. To replay a

digital hologram a 2D FFT must be calculated for every depth slice desired in the replayed

image volume. A typical hologram of ~100 µm particles over a depth of a few hundred

millimetres will require O(10
3
) 2D FFT operations to be performed on a hologram of typically

a few million pixels.

In this paper we discuss the technical challenges in converting our existing reconstruction code

to make efficient use of NVIDIA CUDA-based GPU cards and show how near real-time video

slice reconstruction can be obtained with holograms as large as 4096 by 4096 pixels. Our

performance to date for a number of different NVIDIA GPU running under both Linux and

Microsoft Windows is presented. The recent availability of GPU on portable computers is

discussed and a new code for interactive replay of digital holograms is presented.

1. Introduction

In the last decade digital in-line holography has replaced silver-halide based techniques for the 3D

recording of volumes of small particles. It has applications in a number of areas of science and

engineering, for example cloud or spray droplets [1], marine plankton [2] and sediments [3]. Digital

holography replaces the older technique, which primarily used high-resolution silver-halide emulsions,

with direct recording onto a solid-state pixel sensor such as a CCD or CMOS array. There are a

number of different mathematical techniques that can be used to calculate the replayed image volume;

ours is based upon the convolution approach [4]. To replay the image volume encoded by a digital

hologram requires that the two-dimensional discrete Fourier transform of the hologram is multiplied

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

Published under licence by IOP Publishing Ltd 1

by a phase factor related to the recording beam and the distance of the replaced depth slice and then

the image is created by taking the inverse discrete Fourier Transform and calculating its magnitude. A

typical CCD or CMOS sensor used in digital holography has a few million pixels, although individual

sensors with over eighty million pixels have been made. To fully reconstruct the volume recorded on a

digital hologram requires 2D depth-slices at sub-millimeter intervals to be reconstructed over the

entire recorded depth which is often a few hundred millimeters in extent. Thus for a single hologram

of order one thousand individual 2D images will be replayed. The computational task, even with

modern multi-core processors and efficient discrete Fourier transform algorithms such as FFTW [5] is

considerable. In previous work [7], [8] we have exploited the trivially parallel nature of the hologram

replay to enable us to use computational grid resources. Unfortunately the stochastic nature of

submission to grid resources, via a broker, and the possibility of being queued until the validity of a

job’s X.509 proxy certificate expires means that the initial significant speed advantage over a single

local computational node is rarely maintained and quite often not all of a volume is reconstructed. In

earlier work a number of different jobs each reconstructing ten, fifty or one hundred sequential depth

slices, for a total of 2200 planes for each run, were submitted to nodes on the EGEE grid [9]. An initial

large advantage over a single processor was seen but the rate dramatically slowed in all cases and only

a fraction of all the jobs completed, behaviour which is typical of current scientific production grids.

With the advent in recent years of powerful and increasingly inexpensive GPU chips considerable

effort from ourselves [10] and many other researchers (see for example [11], [12], [13]) has been

expended in porting, or developing, digital hologram replay code to run efficiently on these systems.

In this paper we describe our latest work using NVIDIA Tesla and Fermi class GPU systems, the

optimization techniques that we have deployed to achieve very significant replay speed, and the

prospects for further improvement. Finally we speculate on whether a hybrid approach of GPU and

distributed (grid or cloud) based computing may be optimum when the task of both replay and object

extraction is considered.

2. Recording and replaying a digital hologram

We consider in this paper only the recording and replay of in-line (Fraunhofer) holograms recorded

digitally on a pixel area sensor. Other forms of digital hologram, for example those recorded in off-

axis holography, do not differ in the essential principles of replay.

2.1. Hologram recording

We recorded in-line holograms of objects in water using an 8 megapixel camera (ATMEL Camelia

8M, 2300 by 3500 10 µm-square pixels with 12-bit depth) with a collimated beam from a c.w. HeNe

laser (=633 nm, 1 mW). As in earlier work [10] we recorded a sample volume consisting of

cenospheres mostly of 100-300 µm dia. (Fillite Trelleborg Specialty Grade (High Alumina) SGHA

500) dispersed in a water tank (figure 1). A variety of other subjects, for example air bubbles in water

were also used as test objects.

More recently, dynamic objects, such as digitalis seeds set in motion by breath [14], were recorded

using a fast pulsed green laser (figure 2). The laser is a custom doubled Nd-YAG from Elforlight Ltd,

model number LP3-10-532. This produced single longitudinal-mode pulses with a wavelength of 532

nm, duration of 2 ns and an adjustable energy of a few millijoules. The beam was then attenuated

using a Newport 935-10 high-power variable attenuator and reflected, using a BK7 wedge, towards a

beam expander telescope. The expanded beam then traversed a sample tank with BK7 flat windows

and the resulting hologram was recorded using the same ATMEL camera.

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

2

2.2. Hologram replay

Our general approach has been summarised elsewhere [5]. The process is computationally heavy as it

requires multiple 2D complex FFT to be calculated. Regarding only the reconstruction of a digital

hologram, and ignoring the challenging and similarly computationally intensive task of locating

“regions of interest” (ROI) within the replayed volume, it can be seen that every depth slice may be

calculated in parallel. Since the initial Fourier transformed hologram is common to any depth slice

calculation there are clearly potential advantages in doing this step once and making the transformed

data available to all processors. With the recent availability of very powerful GPU processors and the

porting of the FFTW algorithm to the NVIDIA CUDA library, most recent work in the digital

holography field has made use of such GPU based systems. In the next section we describe results of

our work on porting our existing replay code HoloReco [15] to the NVIDA CUDA environment.

Figure 1. (Left): An extract (10 mm wide) from a digital hologram of cenospheres in water. (Right):

The region of a numerically-reconstructed arbitrary plane through the sample volume. The smallest

particles imaged here are approximately 30 µm in size [9].

3. Porting to the NVIDIA CUDA environment.

The original HoloReco code carried out reconstruction separately for every depth slice. Performing the

FFT of the input hologram and maintaining the result to be used subsequently for a series of different

depth slices eliminated all but one of the time intensive serial transfers from host to GPU memory.

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

3

Another significant improvement to the processing speed was finding a way to parallelise the transfer

function (unique to each depth plane). This allowed all computations to be carried out in the GPU and

thus no bulk data movement is needed until the output stage

3.1. Tesla-based system with no video display

Using a system containing three NVIDIA Tesla S1070 (240 thread processors per GPU core, shaders

clocked at 1.30 GHz) we were able to process our hologram to files at 13.6 planes/second. This should

be compared to our original code running on an eight-core Xeon E5420 (2.50 GHz) based system

where a speed of only 0.057 planes/second was achieved. Thus code refactoring and using three GPUs

Figure 2. Window capture of the replay of a pulsed-laser hologram on a laptop computer equipped

with a GT 555M GPU. The image shows digitalis seeds (~1 mm long) scattered by breath. The

original hologram was cropped to 2300x2044 pixels and the image has been zoomed by a factor of 1.5

in the 1187x1080 window.

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

4

provided a factor of nearly 240 improvement in reconstruction speed. These early results used V2.2 of

the CUDA libraries (including FFTW).

3.2. Fermi-based systems with video display

There are two clearly different user cases for hologram data visualisation:

 An expert user (e.g. a Marine Biologist) searches through a video stream of replayed hologram

depth slices looking for “interesting” objects

 An image-processing system searches through replayed hologram image slices looking for

“objects”. The set of detected objects is then sent to a classifier.

A better use of the human expert is for them to locate quickly holograms that contain some objects

of interest, for example a zooplankton species, and then to create a selected list of holograms to be

systematically replayed in full and processed by an image-processing system and object classifier.

Alternatively the expert user could look, in context, at those regions of the replayed volume in which

an automated system had previously located and classified objects. Some Tesla and many Fermi-class

GPUs have a video output and an OpenGL compatibility library is included in the CUDA

development environment. For human visualisation this is ideal since one can efficiently copy the

reconstructed hologram to the video buffer and overall performance is not compromised. As well, the

OpenGL library allows simple panning and zooming of the image within the display window. The

sequence of events for each replayed frame is shown in figure 3.

Table 1 lists the video rates we achieved for three different holograms (two cropped from the

original) on four separate GPUs with integrated video output. Notable is the performance of the

GT 555M GPU, which is designed for portable systems and in our case is part of a Dell XPS17 laptop

computer which consumes just 80 W of power whilst continuously calculating and displaying the

reconstructed images.

In practice, the replay software (HoloMovie) has a simple interface. Control and data parameters,

such as laser wavelength, pixel spacing, input file-name, and reconstruction step size and depth range

are read, as in HoloReco, from a simple text file. The programme calculates the window size which

will fit the largest reconstructed image on the screen and begins the cycle of reconstruction and

passing the image data to the display system. User controls are limited to manually changing the

reconstruction depth or choosing to loop continuously back and forward in the range set by the

parameter file, zooming the image in and out within the window, and panning the window across the

image. This allows the operator to scan the reconstruction quickly and to examine closely any

interesting features which are discovered.

Table 1. Reconstruction and replay rates achieved with several modern GPUs for three separate

histogram sizes (zero-padded sizes in parentheses). All models are Fermi-class devices and all

operating systems are 64-bit..

GPU
Model

Thread
Processors

Operating System

CUDA
Version

Driver
Version

2048x1389
(2048x2048)

2300x2044
(4096x2048)

2300x3500
(4096x4096)

GT 440 96 Windows 7 4.1 301.42 24.2 fps 13.6 fps 7.4 fps
GT 555M 144 Windows 7 4.1 301.42 25.1 fps 14.7 fps 9.3 fps
GTX 460 336 Scientific Linux 5 4.1 302.07 30.0 fps 20.0 fps 12.0 fps
C 2070 448 Ubuntu 11.10 4.2 295.53 39.8 fps 29.2 fps 15.9 fps

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

5

3.3. Profiling the code

The CUDA SDK also includes a profiler for mapping GPU usage which is a powerful tool for

locating and understanding which operations dominate the GPU processor time. We ran the CLI

version to get a timestamp snapshot of the programme running for 15 seconds on a 4-Core Xeon

computer running Ubuntu 11.04 and equipped with a Fermi-based C2070 GPU. This gave the start-up

and 50 iterations of the display loop (at ~4.4 frames/s; without the profiler it ran at ~16 frames/s). The

hologram was 2300x3500 and zero-padded to 4096x4096 for processing. Table 2 shows information

on GPU usage for this run.

The timing data show that, once the initial file is read, the majority of the GPU time is spent

manipulating data – performing the transfer function to prepare for the reverse FFT and converting

back from the complex transform to real magnitudes.

Figure 3. A UML representation of the sequence of key events in our software that occur

during the processing of a digital hologram. If a number of frames from the same hologram are

replayed to video then the sequence numbers 4 through 8 are repeated as often as required.

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

6

4. Discussion

With our code achieving a replay frame rate approaching standard video for holograms as large as

4096x4096 pixels and significantly exceeding it for 2048x2048 pixel holograms, there is no doubt that

for visualisation a GPU is far superior to a conventional CPU or a computational grid. Recent

advances (for example the GTX460 and GTX560 based systems) in inexpensive “desk-top Fermi”

processor GPU systems, developed primarily for the high-end computer gaming community, now

enable a very impressive price-to-performance ratio to be obtained for a modest monetary outlay.

Even more significant are the most recent Kepler-class systems exemplified by the GTX 680 with

1536 thread processors and power consumption less than 200 W. A recently released laptop computer

(Samsung Chronos 17) improves on our GT 555M system with a Kepler based GT 650M GPU,

containing 384 processors for twice the performance at the same power consumption. Clearly it is

Table 2. (a) GPU and CPU procedure call timings and GPU occupancy for the initialisation step common

to all slices. (b) GPU and CPU timings and GPU occupancy, averaged over 50 iterations, of the procedure

calls that are executed for each depth slice calculated and then displayed. Note that there are two

occupancy figures for the FFT because there are two separate kernels executed for each FFT; one executes

once, the other twice.

(a) GPU kernel Number
of calls

GPU time (µs) CPU time (µs) GPU
occupancy

Comment

memset32_post 3 6.7 27 0.042

memcpyHtoD 1 12203 12313 Copy data from Host to Device

Forward FFT operations 3 5011 36 0.667/0.417

Post-process 1 2379 5 1.000

memcpyHtoD 1 2.0 7 Parameters for unpacking
copy_kernel 4095 11123 18524 1.000 cudaBlas unpacking FFT

insert_conj 1 15609 4 0.167 Reconstruct 2nd half of FFT

setUpX22_kernel 1 421.1 9 0.021 Calculate a lookup table for
transfer

(b) GPU kernel Number of
calls/loop

Average GPU
time/loop (µs)

Average CPU
time/loop (µs)

Av. GPU
occupancy

Comment

doInnerLoop 4096 20780 19891 0.167 Parallelized Transfer Function

Reverse FFT operations 3 9898.9 26.0 0.667/0.333

cuPower16_kernel 1 22333 4.6 0.500 Extract amplitudes from
complex & remove zero-
padding

memcpyDtoH 1 2.6 40.1 Return subroutine results

memcpyDtoH 1 2.1 33 Return subroutine results

memcpyHtoD 1 1.6 5.4 Parameters for minmax to GPU

thrust::minmax_element 2 516.0 11.7 0.500 Find min & max

memcpyDtoH 1 2.0 539.0 Return subroutine results

setminmax 1 4.3 6.5 0.021 Place scaling factors in device

packfloat 1 5128.4 4.4 0.167 Create scaled, packed pixels

memcopyDtoD 1 272.4 7.8 Copy to OpenGL buffer

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

7

now becoming feasible to take considerable processing power into the field rather than needing to

bring data back to a compute farm.

Even further improvements lie on the horizon, with the upcoming CUDA 5 technology and the

second-generation Kepler GPUs providing new techniques such as dynamic parallelism, bringing the

need to master these concepts for maximum performance. However the picture is less clear when

considering the overall task of replaying a digital hologram and then searching in 3D for in-focus

images of “interesting” objects, extracting these and then classifying them.

Much existing code, including extensive image processing and classification libraries, would need

to be ported to a GPU to generate a significant speed increase. Nonetheless the challenge lies not in

the porting but in the code refactoring needed to make efficient use of the GPU. In our earlier work

[10] the naive approach of recompiling our unmodified HoloReco code with the CUDA FFTW

libraries resulted in only a factor of six improvement in processing speed and only extensive code

refactoring coupled with detailed profiling has enabled the current factor of 240 to be achieved. In

addition the task of locating objects in a replayed 3D volume is not a trivially parallel one. Several

correlated depth slices need to be considered in order to locate, using some appropriate focusing

metric [16], the best one so that each object may be extracted for subsequent classification. We

hypothesise that a hybrid approach, with replay using a GPU and subsequent processing of the datasets

using grid or commodity cloud computing may be the most appropriate combination of the two

different architectures.

References

[1] Yang Yan, Kang Bo-seon 2011 Opt.Lasers Eng 49 1254–63

[2] Sun H, Benzie P W, Burns N, Hendry D C, Player M A and Watson J 2008 Phil. Trans. R. Soc.

A 366 1789–806

[3] Graham G W, Smith W and Nimmo A M 2010 Limnol.Oceanogr.Meth. 82 1–15

[4] Kreis T M, Adams M and Juptner W P O 1997 Proc. of SPIE 3098 224–33

[5] Reid I D, Nebrensky J and Hobson P R (2012) Challenges in using GPUs for the reconstruction

of digital hologram images Advanced Computing and Analysis Techniques in Physics

Research September 5-9, 2011, Uxbridge, London to appear in Journal of Physics,

Conference Series

[6] Frigo M and Johnson S G 2005 Proc. IEEE 93 216–31

[7] Nebrensky J J, Hobson P R and Fryer P C 2005 Proc. of SPIE 5775 285–96

[8] Nebrensky J J and Hobson P R 2006 Proc. of SPIE. 6252 62521I.1–6

[9] Nebrensky J J and Hobson P R 2009 Replay of Digitally-Recorded Holograms Using a

Computational Grid [available] http://bura.brunel.ac.uk/handle/2438/3443

[10] Nebrensky J J, Hobson P R and Reid I D 2009 Digitally-Recorded Hologram Replay - a

Comparison Between a Computational Grid and a GPU Based System, EOS Topical

Meeting on Blue Photonics, Aberdeen, UK 18-19 August 2009

[11] Pandey N, Kelly D P, Naughton T J and Hennelly B M, 2009 Proc. of SPIE 7442 744205–1

[12] Zulfiqar A, Hyun-Eui Kim, Dongbiao Han, Jae-Hyeung Park and Nam Kim 2011 3D Res. 2 1–5

[13] Zhuqing Zhu, Min Sun, Heping Ding, Shaotong Feng and Shouping Nie 2009 Fast numerical

reconstruction of digital holography based on graphic processing unit [Available]

http://dx.doi.org/10.1109/CLEOPR.2009.5292249

[14] Hobson P R, Reid ID and Wilton JB 2012 Visualising breath using digital holograms, this

conference

[15] [Available] http://holoreco.sourceforge.net/

[16] Meinecke T, Sabitov N and Sinzinger S 2010 Appl.Opt. 49 2446–55

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012042 doi:10.1088/1742-6596/415/1/012042

8

http://acat2011.cern.ch/
http://acat2011.cern.ch/

