
Soft Computing manuscript No.
(will be inserted by the editor)

Using genetic algorithms to generate test sequences for
complex timed systems

Alberto Núñez · Mercedes G. Merayo ·
Robert M. Hierons · Manuel Núñez

Received: date / Accepted: date

Abstract The generation of test data for state based

specifications is a computationally expensive process.

This problem is magnified if we consider that time con-

straints have to be taken into account to govern the

transitions of the studied system. The main goal of

this paper is to introduce a complete methodology, sup-

ported by tools, that addresses this issue by represent-

ing the test data generation problem as an optimisa-

tion problem. We use heuristics to generate test cases.

In order to assess the suitability of our approach we

consider two different case studies: a communication

protocol and the scientific application BIPS3D. We give

details concerning how the test case generation problem

can be presented as a search problem and automated.

Genetic algorithms (GAs) and random search are used

to generate test data and evaluate the approach. GAs
outperform random search and seem to scale well as

the problem size increases. It is worth to mention that

we use a very simple fitness function that can be eas-

ily adapted to be used with other evolutionary search

techniques.

Keywords formal testing · genetic algorithms · timed

systems

This research was partially supported by the Spanish MEC
project TESIS (TIN2009-14312-C02-01) and the UK EP-
SRC project Testing of Probabilistic and Stochastic Systems
(EP/G032572/1).

A. Núñez, M. G. Merayo, M. Núñez
Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Madrid, Spain,
alberto.nunez@pdi.ucm.es, mgmerayo@fdi.ucm.es,

mn@sip.ucm.es

· R. M. Hierons
Department of Information Systems and Computing,
Brunel University
Uxbridge, Middlesex, UB8 3PH United Kingdom,
rob.hierons@brunel.ac.uk

1 Introduction

In order to improve the reliability of complex systems,

it is important to use sound methods to formally spec-

ify their critical components. The use of formal specifi-

cations allows the developers to better understand and

model the behaviour of the produced systems. Commu-

nication protocols and control systems, amongst others,

have used formal specifications based on the classical

Finite State Machines (FSMs) formalism. In particu-

lar, FSMs have been used to formally model systems

in different areas like sequential circuits [17], software

development [5] and communication protocols [4]. Un-

fortunately, it cannot be guaranteed that system im-

plementations fully comply to the specifications and,

therefore, it is necessary to fix a validation process to

ensure that the (behavior of the) implementation con-

forms to the specification. Among the methods used to

check that system implementations behave as expected,

testing [43,2] is the most widely used in industrial envi-

ronments. Currently, testing is an important part of the

system development process that aims to increase the

reliability of the implementation. However, testing can

be very expensive and, due to its mainly manual appli-

cation, prone to errors. This motivates the research in

the combination of formal methods and testing [19,18]

since progress in this line of work helps to (partially)

automatize the testing process with the use of suitable

tools [54]. In fact, a very recent study clearly shows that

the use of formal methods reduces the cost of complex

projects in both time and monetary terms [14]. Other

studies advocate for the use of formal approaches to

test and validate critical systems in domains such as

aeronautics and automotive [27,3].

Testing systems formally specified using FSMs and

the automation of the test data generation have been of

2 Alberto Núñez et al.

interest [29,48,12]. In software testing one of the aims

is to distinguish between the correct and incorrect be-

haviour of system implementations. While the analy-

sis of some systems only considers the correctness of

their results (outputs), other systems might have spe-

cific time requirements as well. This can be especially

relevant in environments where system resources are

shared. In fact, in real-time systems the time it takes

for a process to execute can be as important as the out-

put. Thus, formal testing techniques started to deal also

with this kind of aspects. In fact, there are already a

myriad of proposals for formal testing of timed systems

and we have been very active in this line of work [36,35,

20,33,37]. Previous approaches to formally test timed

systems concentrated on general frameworks. However,

they usually did not deal with the problem of generat-

ing test sequences that can either focus on an important

property or on a specific part of the system under test.

The problem of generating test sequences for non-timed

systems is not trivial, due to state explosion, and the

inclusion of time complicates the testing problem as we

will discuss later. Therefore, it is necessary to work with

heuristic techniques that can find good enough test se-

quences. There has been some work on using artificial

intelligence techniques, like genetic algorithms (GAs)

and other meta-heuristic algorithms, to automate soft-

ware testing [23,38,32,16,47,31]. Our group has lately

been very active in this area of research [24,40,9,25,41,

42]. In this paper we concentrate on the use of GAs to

generate test sequences in complex timed systems. In

short, a GA is a heuristic optimisation technique which

derives its behaviour from a metaphor of the processes

of evolution in nature [13,51]. GAs have been widely

used in search optimisation problems. GAs are known

to be particularly useful when searching large, multi-

modal and unknown search spaces since one of its ben-

efits is their ability to escape local minima in the search

for the global minimum.

The initial step of our methodology considers the

generation of test sequences for Extended Finite State

Machines (EFSMs) models [8,9], where GAs are used to

deal with the inherently exponential nature of exploring

the combination of constraints associated with transi-

tions of a path in a model. This problem is even more

complicated in the case of timed systems. One of the

main problems to overcome is that it is not enough to

test whether the implementation system is doing what

it is supposed to do. Additionally, it is necessary to

test that it is also taking the specified time to com-

plete the considered task. Moreover, the tests applied to

system implementations have to consider when to test

[34]. Specifically, this paper addresses the issues related

to generating test sequences for temporally constrained

EFSM based systems. It focuses on generating transi-

tion paths with specific properties that can, in turn,

be used to generate test input. The problem of gener-

ating these paths is represented as a search problem,

being GAs used to help to automate the test data gen-

eration process. Moreover, simulation techniques have

been jointly used with GAs to model and generate test

sequences for a complex scientific application.

In order to validate the usefulness of our method-

ology we considered two case studies of very different

nature. The first case study is a basic communication

protocol: the class 2 transport protocol. This case study

allowed us to validate the main features of our method-

ology in a simple and easy to control environment. How-

ever, it was necessary to consider a more complex sys-

tem to evaluate whether our methodology scales well.

Therefore, we considered a real application: BIPS3D.

Briefly, BIPS3D [30] is a scientific application that per-

forms 3-dimensional simulations of BJT and HBT bipo-

lar devices. This case study shows that our methodol-

ogy indeed scales and it is interesting for itself because

it combines, in an intricate way, three different fields

of study: Formal Testing, by using methods to gener-

ate test sequences from formal models, Artificial Intelli-

gence, by using GAs to choose the most promising paths

to be explored, and Simulation, by considering a com-

plex simulator to help in the computation of relevant

quantities.

This paper represents an extended and enhanced

version of previous work on the generation of test se-

quences for timed systems [10,11]. We have revised the

theoretical framework to fix some minor mistakes. We

have included a long discussion, Section 5, about High

Performance Computing and the use of simulation tech-

niques as a way to implement our approach. The first

case study, the communication protocol, was already

introduced in the previously mentioned work, but the

complex case study presented in this paper is com-

pletely new. Similarly, the integration of the different

GAs considered in this paper in the SIMCAN simula-

tion platform [44] is also new and, indeed, represents

a novel and interesting combination of formal testing,

GAs and simulation.

The rest of the paper is structured as follows. Sec-

tion 2 describes the problem faced in this paper. Sec-

tion 3 shows the model of Timed extended finite state

machine (TEFSM). Section 4 describes the use of ge-

netic algorithms to aid test case generation. Section 5

briefly enumerates the main characteristics of High Per-

formance Computing (HPC), used in our second case

study, and the use of simulation techniques in HPC.

Section 6 presents two different study cases to validate

Using genetic algorithms to generate test sequences for complex timed systems 3

this work. Finally, Section 7 presents our conclusions

and some directions for future work.

2 Description of the problem

In this section we introduce the problem that we want

to confront and motivate why this problem is relevant.

Formal definitions of all the concepts informally used

in this section will be given in the next section.

As we have already mentioned in the introduction

of the paper, FSMs are known to model appropriately

sequential circuits and control portions of communica-

tion protocols. However ordinary FSMs are not power-

ful enough for some applications where extended finite

state machines (EFSMs) are used instead. Finite state

systems are usually modelled using Mealy machines

that produce an output for every transition triggered

by an input. In EFSMs however the transitions are as-

sociated with conditions. EFSMs have been widely used

in the telecommunications field, and are also now being

applied to a diverse number of other areas ranging over

aircraft, train control, medical and packaging systems.

Examples of languages based on EFSMs include SDL,

Estelle and Statecharts. In our framework we consider

EFSMs with the addition of time: timed EFSMs (TF-

SMs).

Usually the implementation of a system specified by

an FSM or EFSM is tested for conformance by apply-

ing a sequence of inputs and verifying that the corre-

sponding sequence of outputs is that which is expected.

This commonly involves executing a number of transi-

tion paths, until all transitions have been tested at least

once. In EFSMs, in order to execute a transition path

it is necessary to satisfy all of the transition guards in-

volved, in addition to using a specific input sequence to

trigger these transitions.

When FSM based systems are tested for confor-

mance with their specification, often a fault can be

categorised as either an output fault (wrong output is

produced by a transition) or a state transfer fault (the

state after a transition is wrong). A test strategy would

involve moving M to a state si, applying some input x,

verifying that the output is y as expected for that tran-

sition under test, and using a state verification tech-

nique to verify the transition’s end state. To achieve

this there are test sequences with different properties.

State verification sequences for example aim to check if

the end state of a transition (or TP) is the one expected

and state identification sequences identify the unknown

state the system is in [29].

When TEFSMs are tested for conformance there are

time related faults that could be present besides the

output and transition faults. The time related faults

arise when a transition within the implementation takes

longer to complete than the time specified by the TEFSM.

In EFSMs (and TEFSMs) test sequence generation

is more complex than it is for FSMs. In FSMs all paths

are feasible since there are no guards and actions do not

affect the traversal [12]. With EFSMs (and TEFSMs),

however, in order to trigger the transition path it is

necessary to satisfy the transition guards. A transition

guard may refer to the values of the internal variables

and the input parameters, which in turn can assume

different values after each transition. Some transition

paths might have no conditions, some might have condi-

tions that are rarely satisfied and some transition paths

will be infeasible. The existence of infeasible transition

paths creates difficulties for automating the test gener-

ation process for EFSMs (and TEFSMs).

With TEFSMs however there is the element of time

that needs to be considered as well, making the trigger-

ing of a path successfully harder than in EFSMs. One

way of approaching the test sequence generation prob-

lem is to abstract away the data part of the TEFSM

and consider it as an FSM on its own. However, a tran-

sition sequence for the underlying FSM of a TEFSM

is not guaranteed to be feasible for the actual TEFSM

nor to satisfy the temporal constraints. This leads to

the problem that an input sequence will only trigger

a specific TP in a TEFSM if all the transition guards

allow this and so an input sequence generated on the

basis of the FSM may not follow the required path in

the TEFSM. Another approach is to expand a TEFSM

to an FSM and then use the techniques used for FSMs.

However this can lead to a combinatorial explosion.

The problem of TP feasibility in EFSMs has been

considered in the past [8,9]. That work uses the TP fea-

sibility approach proposed in that work and extends it

to consider TEFSMs and problems associated to testing

the compliance of an implementation to its temporal as-

pects of the specification. In addition to estimating the

feasibility of a TP in this paper we examine how to

consider the temporal properties of a TP and help in

related test case generation.

In order to generate a test case for a TEFSM M

we can first consider the properties of the TP that this

test case is expected to trigger. The general problem of

finding a (an arbitrary) feasible transition sequence for

a TEFSM is uncomputable, as is generating the nec-

essary input sequence to trigger such a transition se-

quence. The task of finding a transition sequence with

particular temporal conditions complicates the prob-

lem even further. Test generation for EFSMs [28,12]

and TEFSMs [34] is still an open research problem.

4 Alberto Núñez et al.

While a random algorithm could be used it does not

always produce acceptable results. Test case generation

and optimisation for FSM based systems has been of

interest [21,12,49,22]. Heuristic search techniques like

genetic algorithms (GAs) have been used in problems

like estimating feasibility of TPs in EFSMs [9], generat-

ing test sequences for FSMs [15,8] and communicating

FSMs [7]. Heuristic search techniques can also be ap-

plied to the problem of generating TPs with other char-

acteristics if a robust fitness function can be defined.

Hence a function that can estimate the likelihood that

a TP in a TEFSM can be executed and also satisfies

the temporal constraints imposed may help in areas like

test sequence generation. Heuristic search can be used

to direct a search towards TPs that are likely to satisfy

the set requirements.

3 Timed Extended Finite State Machines:

model and test sequences

In this section we formally introduce the concepts that

will be used along the paper. In particular, we will intro-

duce the notions of timed extended finite state machine

and timed feasible transition path.

3.1 Definition of the TEFSM model

EFSMs are Mealy (finite state) machines with parame-

terised input and output, internal variables, operations

and predicates defined over internal variables and in-

put parameters. Timed EFSMs (TEFSMs) are classical

EFSMs with added conditions on the time transitions

need to take to complete.

We assume that the number of different variables

is m. If we assume that each variable xi belongs to a

domain Di thus the values of all variables at a given

point of time can be represented by a tuple belonging

to the cartesian product of D1 × D2 × ... × Dm = ∆.

Regarding the domain to represent time we define that

time values belong to a certain domain Time.

Definition 1 A TEFSM M can be defined as a tuple

(S, s0, V, σ0, P, I, O, T, C) where S is the finite set of

logical states, s0 ∈ S is the initial state, V is the finite

set of internal variables, σ0 denotes the mapping from

the variables in V to their initial values, P is the set

of input and output parameters, I is the set of input

declarations, O is the set of output declarations, T is

the finite set of transitions and C is such that C ∈ ∆.

A transition t ∈ T is defined by (ss, gI , gD, gC , op, sf)

where ss is the start state of t; gI is the input guard

expressed as (i, P i, gP i) where i ∈ I ∪ {NIL}; P i ⊆ P ;

and gP i is the input parameter guard that can either

be NIL or be a logical expression in terms of variables

in V ′ and P ′ where V ′ ⊆ V , ∅ 6= P ′ ⊆ P i; gD is the

domain guard and can be either NIL or represented as

a logical expression in terms of variables in V ′ where

V ′ ⊆ V ; gC : ∆ → Time is the time the transition

needs to take to complete; op is the sequential oper-

ation which is made of simple output and assignment

statements; and sf is the final state of t.

The label of a transition in a TEFSM has two guards

that decide the feasibility of the transition: the input

guard gI and the domain guard gD. In order for a tran-

sition to be executed gI , the guard for inputs from

the environment must be satisfied. Some inputs may

carry values or specific input parameters and M may

guard those values with the input parameter guard gP .

Hence the values of the input parameters may deter-

mine whether a transition is executed and affect the

output of M . The input guard (NIL, ∅, NIL) repre-

sents no input being required (spontaneous transition).

gD is the guard, or precondition, on the values of the

system variables (e.g. v > 4, where v ∈ V). Note that in

order to satisfy the domain guard gD of a transition t, it

might be necessary to have taken some specific path to

the start state of t. op is a set of sequential statements

such as v := v + 1 and !o where v ∈ V , o ∈ O and !o

means ‘output o to the environment’. Literal outputs

(output directly observable by the user) are denoted

with ! and output functions (an output function may

produce different output depending on the parameters

it receives) without it (e.g. !o and u(v)). The operation

of a transition in a TEFSM has only simple statements

such as output statements and assignment statements,

no branching statements are allowed.

In a TEFSM the time a transition took to complete

is also important. The time a transition needs to be

completed by, represented by gC can be dependant on

the current values of V ′ and P i, where V ′ ∈ V and

P i ⊆ P .

We assume that none of the spontaneous transitions

in a TEFSM are without any guards, gI = (NIL, ∅, NIL)

and gD = NIL, because they will be uncontrollable.

When a transition in a TEFSM is executed, all the

actions of the operation specified in its label are per-

formed consecutively and only once and the transition

must not take more than gC time units to perform.

The transition is considered to have failed (in terms of

compliance to the specification or be considered void)

if it is not completed within the required time. Such

transitions may be considered void if they take longer

than expected in some systems and in others they might

still be executed even though they took longer than ex-

pected. Our TEFSM model and our work is applicable

Using genetic algorithms to generate test sequences for complex timed systems 5

to both, however in our case study we considered the

former.

Definition 2 A TEFSM M is deterministic if any pair

of transitions t and t′ initiating from the same state s

that share the same input x have mutually exclusive

guards.

Upon an input, a TEFSM triggers a given transi-

tion depending not only on the input, but on the val-

ues of the internal variables. Hence TEFSM may be

called dynamically deterministic. As stated before trig-

gering a transition in a TEFSM involves satisfying all

those guards and conditions. This makes triggering a

transition in TEFSMs more complex than in FSMs and

EFSMs. As an example consider the Class 2 transport

protocol [50] represented as a TEFSM in Figure 1 and

the transition table in Table 1. There are two transi-

tions initiating from state S2 with the input declara-

tion N?TrCC: the transitions t2 and t3. However they

have mutually exclusive conditions: opt ind ≤ opt and

opt ind > opt, respectively.

Definition 3 A TEFSM is strongly connected if for

every ordered pair of states (s, s′) there is some feasible

path from s to s′.

We assume that any TEFSM considered is deter-

ministic and strongly connected. For example, consider

the Class 2 transport protocol [50] represented as a

TEFSM in Figure 1. There is a TP from the initial state

S1 to every other state. TEFSMs (inherently from EF-

SMs) have a notion knows as configuration that defines

the subset of available transitions that can be triggered

at any point.

Definition 4 A configuration for a TEFSM M is a

combination of state and values of the internal variables

V of M .

A TEFSM starts in its initial configuration and there

is a configuration for every combination of state s and

values of the set internal variables V .

3.2 Transition paths in TEFSMs

Now consider the problem of finding an input sequence

that triggers a timed feasible transition path (TFTP)

from state si to state sj of a TEFSM M .

Definition 5 A timed feasible transition path (TFTP)

for state si to state sj of a TEFSM M is a sequence of

transitions initiating from si that is feasible for at least

one combination of values of the finite set of internal

variables V (configuration) of M and ends in sj .

State identification and state verification sequences

for a TEFSM must trigger a TFTP (where the end

state is not important). Methods that can help identify

TFTPs can potentially be used to help in the state

identification and state verification sequence generation

problems.

In a transition path for FSMs each transition can be

identified and thus represented by its start state and in-

put (ss, i). However with TEFSMs (as well as EFSMs)

this information is not sufficient because there can be

more than one transitions sharing the same start state

and input due to having mutually exclusive guards. In-

stead a transition t in a TEFSM M can be identified

from its start state, input declaration, input parame-

ter, the input parameter guard and the domain guard

(ss, i, P
i, gP i , gD). gP i and gD for a transition t in M

can both be logical expressions and their results may

depend on input parameter P i of t and the values of

some of the internal variables of M . A transition in a

transition path of a TEFSM can be identified by a tuple

(ss, i, gP i , gD) in which si is its start state, i is its in-

put, gP i is its input guard and gD is its domain guard.

The input parameter P i is not required in order to be

able to uniquely identify a transition in M . Note how in

this case some transitions with different domain guards

share a common input predicate guard.

Transitions sharing the same start state and input

declaration can be classified according to their input

guard predicate and domain guard predicate. These

predicates consist of logical expressions that can eval-

uate to either True or False depending on the input

parameters or internal variables of M . To identify these

for every set of transitions sharing the same start state

s and input declaration i, the number of unique input

guards (input predicate branches) and unique domain

guards (domain predicate branches) is counted and a

predicate dependency tree for state s and input decla-

ration i can be constructed.

Consider the Sending state (S4) in the EFSM M1 on

Figure 1 . There are two transitions initiating from this

state that share the same input declaration N?TrAK

and input parameters XpSsq and cr. These transitions

have the same input but differ only in their input pa-

rameter guards and domain guards. Hence a transition

in a transition path of a TEFSM can be identified by

a tuple (ss, i, gP i , gD) in which si is its start state, i is

its input, gP i is its input guard and gD is its domain

guard. The input parameter P i is not required in order

to be able to uniquely identify a transition in M . Note

how in this case some transitions with different domain

guards share a common input predicate guard.

Not all transitions in TEFSMs have input param-

eter guards and domain guards and so transitions in

6 Alberto Núñez et al.

a TEFSM M can be categorised in the following way:

simple transitions are those transitions that have no in-

put parameter guard and no domain guard, gP i = NIL

and gD = NIL; gP i transitions are those transitions

that have input parameter guard but not a domain

guard, gP i 6= NIL and gD = NIL; gD transitions are

those transitions that have a domain guard but not an

input parameter guard, gD 6= NIL and gP i = NIL;

gP i-gD transitions are those transitions that have both

an input parameter guard and a domain guard, gP i 6=
NIL and gD 6= NIL.

An assignment statement in the op part of a tran-

sition would not generate any observable output. How-

ever such assignment statements can still contribute to

the value of the output generated in a later transition if

the assignment changes the value of one of the output

function’s parameters. It can also affect the feasibility

of the remaining transitions in the transition path and

should also be considered. In this paper we consider the

importance that the op part of the transition can have

on the feasibility in TPs but leave this for future work.

Definition 6 An input sequence (IS) is a sequence of

input declarations i ∈ I with associated input parame-

ters P i ⊆ P of a TEFSM M .

Instead of using gP i and gD notations together in

order to identify a transition we can simply use a label.

Definition 7 A predicate branch (PB) is a label that

represents a pair of gP i and gD for a given state s and

input declaration i. A PB identifies a transition within

a set of transitions with the same start state and input

declaration.

PBs can label conditional transitions and be used

to help simulate the behaviour of a potential input se-

quence for a TEFSM without the feasibility restrictions.

Definition 8 An abstract input sequence (AIS) for M

represents an input declaration sequence with associ-

ated PBs that triggers a TP in the abstracted M .

The advantages of using AIS and simulating the ex-

ecution of a TEFSM is that the configuration of the

TEFSM is not considered. Hence transition traversal

evaluations that can be used to estimate the character-

istics of a TP can be done without complex computa-

tion.

4 Using genetic algorithms to aid test case

generation

In this section we present our approach to use GAs for

generating test data and evaluate the approach. First,

a brief overview about genetic algorithms is presented.

The two GAs used in this work are also described. Sec-

ond, we describe the definition of the fitness function

used in this work.

4.1 Overview of Genetic Algorithms

A Genetic Algorithm [13,51] is a heuristic optimisation

technique which derives its behaviour from a metaphor

of the processes of evolution in nature. As we indicated

in the introduction of the paper, GAs have been widely

used in search optimisation problems and with the aim

to automate software testing.

Generally a GA consists of a group of individuals

(population of genomes), each representing a potential

solution to the problem in hand. An initial popula-

tion with such individuals is usually selected at ran-

dom. Then a parent selection process is used to pick a

few of these individuals. New offspring individuals are

produced using crossover, which keeps some of their

parent’s characterises and mutation, which introduces

some new genetic material. An objective function, known

as the fitness function, defines how close each individual

is to being a solution and hence guides the search. The

quality of each individual is hence measured by this fit-

ness function, defined for the particular search problem.

In our context, we consider the following notion.

Definition 9 The fitness is a function that given a

TP of a TEFSM M , sums the penalty points (assigned

through the transition ranking process for M and the

temporal constrain ranking for M) for each of the tran-

sition of the TP.

In the next section we fully describe the fitness func-

tions, used in two different contexts, that we consider

in this paper.

Crossover exchanges information between two or more

individuals. The mutation process randomly modifies

offspring individuals. The population is iteratively re-

combined and mutated to evolve successive populations,

known as generations. When the termination criterion

specified is satisfied, the algorithm terminates.

When using GAs the first issue that needs to be ad-

dressed is how to represent potential solutions in the

GA population. A genotype is how a potential solution

is encoded in a GA, while the phenotype is the real rep-

resentation of that individual. There are different rep-

resentation techniques, the most common being binary

and characters. Gray coding is a binary representation

technique that uses slightly different encoding to stan-

dard binary. As it has been shown [55] that Gray codes

are generally superior to standard binary by helping to

Using genetic algorithms to generate test sequences for complex timed systems 7

represent the solutions more evenly in the search space,

we used it in this work.

The first step in a GA involves the initialisation of

a population of usually randomly generated individu-

als. The size of the population is specified at the start.

Every individual is evaluated using the fitness function.

When ranking is used the population is sorted accord-

ing to the fitness value of the individuals. Then each

individual is ranked irrespective to the size of its and

its predecessors fitness. This is known as linear ranking.

It has been shown that using linear ranking helps re-

duce the chance of a few very fit individuals dominating

the search leading to a premature convergence [39].

An important part of the algorithm is parent selec-

tion. A commonly used technique is the roulette-wheel

selection. Here the chance of an individual being se-

lected is directly proportional to its fitness or rank (if

linear ranking is used). Hence the selection is biased

towards fitter individuals.

The most common recombination technique used is

crossover. During crossover the genes of the two parents

are used to create one or more new offsprings. The sim-

plest one is known as single point crossover [39]. In this

work we also use single point crossover with a randomly

generated crossover point.

Mutation is applied to each individual after crossover.

It randomly alters one or more genes known as single

point and multiple point mutation respectively [13]. A

predefined mutation rate (typically the reciprocal of the

chromosome length) determines which individuals are

mutated. A single point mutation with randomly se-

lected point has been also used [39].

There can be different termination criteria for a GA

depending on the fitness function. If the fitness func-

tion is such that a solution would produce a specific

fitness value, which is known, then the GA can termi-

nate when an individual with such fitness is generated.

However in many cases this is not known therefore the

GA must be given other termination criteria. Such a

criterion can be the specification of a maximum num-

ber of generations after which the GA will terminate

irrespective of whether a solution has been generated.

We use a combination of termination criteria.

4.2 Definition of the fitness function

In order to achieve our objectives we require an easy to

compute fitness function that estimates the feasibility

of a TP but also helps us test our temporal constraints.

Computing the actual feasibility of a transition path

is computationally expensive, so we need a method to

estimate this.

Some transition paths consist of transitions with dif-

ficult to satisfy guards. It is always possible to execute

a simple transition in a transition path since there are

no guards to be satisfied. The presence of gP i transi-

tions could render a transition path infeasible because

of its input predicate guard. However the conditions

of this guard are more likely to be satisfiable than do-

main guards because the values of the input parameters

P i ⊆ P can be chosen. When these conditions depend

also on some internal variables V ′ ⊆ V then such gP i

transitions might not be easier to trigger than gD tran-

sitions. In some cases the execution of a gD transitions

could require reaching its start state through a specific

transition path. The feasibility of gP i-gD transitions de-

pends on both issues outlined above for gP i transitions

and gD transitions.

Since the presence of gD transitions and gP i-gD tran-

sitions seem to increase the chance of a transition path

being infeasible such transitions can be penalised and

simple transitions rewarded in a TP. In this paper we

take the feasibility estimation framework from previous

work.

Secondly we may consider the temporal constraints

of the transitions in a TP. For example a test sequence

may be needed to stress test the temporal aspects of the

system. Adequate test cases should be feasible (in order

to be useful) and may focus on transitions with com-

plex temporal constraints. However since the temporal

constraints for every transition of M are dependant on

the configuration of M (the current values if the in-

ternal variables) then it is difficult to know the exact

temporal constraints without executing the system and

verifying the configuration of M . If the temporal con-

straints for M are listed in a table then we can analyse

the constraints and categorise different transitions in

a similar way as we classified them according to their

guards above. However if the temporal constraints are

represented by one or more formulas the complexity of

analysing all the possibilities the problem may become

untrackable.

The idea of generating configuration confirming se-

quences has been already implemented [49]. The po-

tential problem of combinatorial complexity associated

with exploring all the configuration of an EFSM has

been addressed by deriving a confirming test sequence

for a designated reference configuration and a given

black list of typical faulty configuration, supplied by

the tester.

We may try to estimate the different temporal con-

straints associated with each transition according to

how the temporal constraint is defined. Note that the

same transition may have different temporal constraints

depending on the values of the internal variables of M .

8 Alberto Núñez et al.

Some transitions may not have temporal constraints at

all, while others might have fixed temporal constraints

that are not dependant on the configuration ofM . Other

transitions may have temporal constraints that are ex-

pressed using tables while some may have the temporal

constraints represented using formulas.

Based on these observations we may classify the

transitions in a TEFSM M in the following way: no-

time transitions are those transitions that have no tem-

poral constraints; fixed-time transitions are those tran-

sitions that have temporal constraints that are not ef-

fected by the values of the internal variables V of M ;

known-time transitions are those transitions that have

temporal constraints that are effected by the values of

the internal variables V of M , but presented in an easy

to analyse way; variable-time transitions are transitions

that have temporal constraints that are effected by the

values of the internal variables V of M , but are pre-

sented by one or more formulas and the temporal con-

straints are not easy to analyse without considering a

subset of all the configurations of M .

A transition ranking process is completed before the

fitness function can be used. This process first ranks

each transition of the EFSM according to how many

penalty points are assigned to the transition guards.

A simple transition gets the highest rank (i.e. lowest

amount of penalty points), an gP i transition is ranked

next etc. Transitions that have the same number of

penalty points get the same rank. This algorithm, in

essence, sorts |T | elements and, therefore, has complex-

ity O(|T |.log|T |) where |T | is the number of transitions

in M . Then the process ranks each transition accord-

ing to the its temporal constraint category. In our case

if we are attempting to stress test the implementation

then we can argue that variable− time transitions can

potentially have the most complex temporal constrains

hence be ranked highest (i.e. lowest amount of penalty

points), known − time transitions can be ranked next

as they still dependant on the internal variables of M

etc. The order can be reversed if the aim is to find a

test sequence that will most likely work. Such test cases

may be used in early stages of software development.

In this paper the two rankings are given equal weight

before being combined, however different weights can

be given to the rankings if required. We chose to give

equal weight to the rankings following the conclusions of

a similar experiment in [6] where different weights were

used for a similar multi-optimisation problem. However

further work can be done to consider different ways to

combine the two matrices in the fitness function.

The fitness algorithm used in this work can be used

to reward a potential solution to a TP generation prob-

lem according to the combined ranks of the transitions

in the sequence. The fitness function reflects the belief

that the fewer constraints a sequence contains, the more

likely it is be feasible and the less we can analyse the

temporal constraints of a transition, the more likely it

is that they are more complex. It is important to note

that our particular temporal constraints classification

may not be fully applicable to all TEFSMs because it

depends on the particular specifications. However the

main principles should still hold even if different tem-

poral constraints classification is used.

Estimating the feasibility of a TP is just the first

part of the more difficult problem of generating actual

IS for a TFTP that do not always represent the short-

est path between two states. Also there may be other

computationally inexpensive analysis of a TP that can

be added to the existing fitness functions to make it

more accurate. In this work we focus on evaluating our

feasibility and complex temporal conditions estimation

fitness function.

5 High performance computing and simulation

Due to the emerging trend of High Performance Sci-

entific applications, techniques to validate these highly

complex systems are specially demanded by the research

community. This kind of applications is specially used

in fields like astronomy [53], medicine [52] and earth-

quake modeling [1]. In general, these applications re-

quire a large amount of resources, like multicore CPUs

and fast communication networks, to deal with very

large data sets. In most cases the execution can take

weeks and even months to be completed. If these ap-

plications are not correct, a lot of effort, time and re-

sources are wasted. Consequently, it is necessary to pro-

vide mechanisms for validating, in particular through

testing, applications before exploiting them. Major re-

quirements for this kind of applications are scalability,

reliability and feasibility. In High Performance Comput-

ing systems (HPC) the development of an implementa-

tion that satisfies a set of given requirements is a very

difficult and complex task because there are many inter-

related parameters that have an important influence in

each one of these requirements.

Basically, there are two ways to perform studies of

complex HPC environments. The first method consists

in running the desired application in a real hardware-

based system and then measuring the performance ob-

tained. The second method consists in running the same

application, or a simplified version of it, in a simulated

environment representing the real system. Both meth-

ods can be used to analyze and predict the performance

and behavior of different applications. However, simu-

Using genetic algorithms to generate test sequences for complex timed systems 9

lation methods have their own advantages and disad-

vantages. Some of them are:

– Simulation experiments are less expensive and more

flexible than hardware-based experiments because

they do not require modifying the real system to

analyze different possibilities.

– Simulation experiments can be launched on any hard-

ware platform.

– In many cases, simulation experiments are more time-

expensive than hardware-based experiments. This

problem can be minimized by adding hardware re-

sources for the simulation, for example, parallelizing

the simulation execution on a huge computing clus-

ter.

– Results obtained from simulation need to be va0lidated

to ensure their accuracy.

– Scaling the architecture of the real system is more

expensive and time-consuming that performing the

same changes in a simulated environment.

– Simulators can be shared easily with other researchers,

while hardware is more difficult to share.

– Simulation only takes care of these aspects we have

included on it. Therefore, the possibility that one

element not included results to be the key of the

performance is always there.

In this work we use the SIMCAN simulation plat-

form [44] to modelling, simulating and testing a High

Performance Scientific application called BIPS3D [30].

Our results are described in the next section. The SIM-

CAN simulation platform is oriented towards the simu-

lation of different kinds of parallel and distributed sys-

tems. SIMCAN has been designed to provide flexibility,
accuracy, performance and scalability, which makes it

a powerful simulation platform for designing, testing

and analyzing both actual and possible architectures.

The range of systems to simulate covers from a sin-

gle computing node to a complete high performance

distributed system. The best feature of SIMCAN is its

ability to model and simulate large environments (thou-

sands of nodes) with a customizable level of detail. The

way SIMCAN performs a simulation depends both on

the user requirements and on the resources available.

Therefore, SIMCAN can be either executed in a single

computer using sequential simulation or it can be exe-

cuted in parallel using both shared memory computers

and distributed memory systems. The speed of the sim-

ulation will depend highly of the computing resources

used for executing the simulation. The more CPU and

memory resources available, the better performance will

be obtained for executing the simulation.

The current version of SIMCAN provides a wide set

of developed components in order to build simulated en-

vironments. Although using those components a great

variety of architectures can be modeled and simulated,

the design of this simulation platform let users add its

own new components to the repository of SIMCAN.

Thus, new environments with more specific configura-

tions can be built. Moreover, SIMCAN offers different

programming schemas and a complete system API with

configurable facilities, which let build any application

model from scratch. Those application models could be

implemented using statistical approaches or could be

implemented as a port of the real application with more

or less detail.

6 Case studies

In this section we present two different case studies,

which consider temporal constraints of a certain class of

a finite state machines. Thus, the previously described

GAs and fitness function are applied to these scenar-

ios. Each case study shows how the test case genera-

tion problem can be presented as a search problem and

automated. In both cases, different GAs techniques are

compared with random search to evaluate the proposed

approach.

In order to check the usability and scalability of this

approach, two scenarios with different scale sizes are

evaluated. First, a basic communication protocol is an-

alyzed. Second, a real application, called BIPS3D, has

been modeled and evaluated using a simulation plat-

form for modeling and simulating distributed systems

and applications. While the first case study shows in

a simple way, the main features of our methodology,

the second case study shows that our framework can

cope with complex systems. In fact, this case study

illustrates how different research lines such as formal

methods, artificial intelligence, and simulation can be

successfully combined to solve difficult problems.

6.1 Class 2 transport protocol

The Class 2 transport protocol, in the following M1,

is presented in Figure 1 and the corresponding transi-

tion table (excluding the conditions and temporal con-

straints) is shown in Table 1. This table also shows the

ranked transition table for M1. For example t3 and t10
share the same temporal constraint classification and

therefore are ranked lower than some other transitions

however they have different feasibility ranking due to

the differently classified guards they have.

The search for a TP that is likely to be feasible and

yet have complex temporal constraints is represented as

a fitness minimisation problem. The GA is then used

10 Alberto Núñez et al.

s1

s2

s3

s4s5

s6

t0

t1

t4

t3

t2

t5

t6

t7-t15

t17

t16

t19-t20

t18

Fig. 1 Class 2 transport protocol TEFSM M1. The transi-
tion table is on Table 1.

Table 1 Temporal constraint ranking and feasibility ranking
for all transitions in M1

t input output feasibility temporal
rank rank

t0 ICONreq !CR 0 0
t1 CC !ICONconf 0 0
t2 T expired !CR 2 0
t3 T expired !IDISind 1 1
t4 IDATreq DT 0 0
t5 AK 6 1
t6 AK 6 1
t7 AK DT 5 0
t8 AK !IDISind 4 0
t9 T expired DT 3 0
t10 T expired !IDISind 2 1
t11 DR !IDISind 0 2
t12 DR !IDISind 0 2
t13 DR !IDISind 0 2
t14 DR !IDISind 0 2

to search for appropriate solutions. The same compu-

tational effort is also used with a random TP generator

using the same fitness function and result verification as

the GA. This search problem uses a fitness function that

rewards transition sequences with higher ranked tran-

sitions and penalises invalid transitions. It produces a

numerical value potentially showing how close an input

sequence is to defining a valid TFTP. The fitness func-

tion represents the search for a TFTP sequence as a

function minimisation problem so an AIS with a lower

fitness value is considered to be more likely to form a

TFTP since it is made up of more highly ranked tran-

sitions.

The fitness does not guarantee that a particular

transition path can be triggered or that it contains the

most complex temporal constraints in M . It makes sure

that it is constructed using consecutive transitions that

are highly ranked. The verification process then checks

if an IS can be generated to trigger such a TP. The ver-

ification method is similar to previous work [6] where

a TP is evaluated by resetting M to its initial con-

figuration and attempted to be trigger the TP in our

simulated implementation. The process is repeated sev-

eral times and the overall result of how many times the

TP was correctly triggered are counted and compared

to the times it failed. Hence an estimation is derived to

measure the feasibility of these TPs.

In our example we looked at a relatively simple tem-

poral constraints range (hence the small range of rank-

ings on Table 1) and it was easy to manually check the

complexity of the temporal constraints for each transi-

tion. This was sufficient for our case study, but defin-

ing an automated estimation measure for the temporal

qualities of a TP remains future work.

In order to compare the performance of the GA

and Random algorithms TFTP generation two differ-

ent metrics are used. State coverage is the number of

cases where at least one TFTP was generated for every

TFTP size attempted from each state in M and suc-

cess rate is the number of TFTPs that were generated

compared to the total number of attempts it took to

generate the results.

Fig. 2 State coverage for PB notation TFTPs generated us-
ing GA and Random generation algorithms for M1 with 1-8
transitions

In this case study two slightly different GAs were

used to compare their performance when applied to this

problem. The first GA used a single point crossover

and mutation while the second used a complex multiple

point crossover and mutation. In general the second GA

tended to find a solution slightly faster than the first

GA, but they produced the same results.

Table 2 represents a summary of the result aver-

ages. In general the results show that the GAs seem

Using genetic algorithms to generate test sequences for complex timed systems 11

to perform better than the Random generation method

according to both metrics. Figure 2 represents the state

coverage results for all the different TFTP sizes. GA1

performs well and GA2 fails to find only one TFTP of

size 4 and one of size 8, while the random generation al-

gorithm performance peaks when generating TFTPs of

size 4 and declines as the TFTP size increases. Clearly

the GAs outperform the Random generation method

for TFTPs of more than one transition. Figure 3 repre-

sents the success rate results for all the different TFTP

sizes in our case study. The high fluctuation here can

be explained by the different degree of difficulty in gen-

erating TFTPs of different sizes for some states. This

relates to the guards of transition t14, which is one of

the core transitions. Although the guard conditions are

complex in the context of M1 they are very easy to sat-

isfy. Hence the random algorithm can easily select t14

in its TP search, while the GAs try to avoid it with-

out realising that it should not. GA1 performs mostly

better than the random generation algorithm, except

for TFTPs of size 4 (average performance of 54%).

For TFTPs of size 4 the random algorithm performs

slightly better than GA1 and GA2. The random gener-

ation method did not find any TSTPs for sizes 4 to 6

while the GAs have different success rate for each size.

This shows how different states have different proper-

ties. Hence future work may focus on more analysis of

the guards and the temporal conditions to even out the

search performance.

Fig. 3 Success rate for PB notation TFTPs generated us-
ing GA and Random generation algorithms for M1 with 1-8
transitions

For both metrics the two GA search algorithms per-

form on average better than the random generation al-

gorithm. This suggests that the fitness function here

helps guide a heuristic search for TFTPs. In Figure 2

and Figure 3 we observe that as longer TFTPs (and

possibly when larger TEFSMs) are considered, the heuris-

tics seems to perform increasingly better than the ran-

dom generation algorithm when given equal processing

effort in terms of fitness evaluations and TFTP ver-

ifications. On all occasions the TFTPs generated by

the GAs the had equivalent or more complex tempo-

ral constraints compared to those generated using the

random TP generation method. For a TEFSM of this

size, as in our case study, it is expected to have similar

performance for the small TFTPs because the search

space in those situations is not that big. However as

the search space is increased (in or case study by in-

creasing the size of the TFTPs) it becomes clear that a

random generation approach finds it hard to generate

TPs that feasible and satisfy the temporal constraints.

The state coverage metric is the easier one to satisfy.

Not surprisingly the GAs found at least one TFTP for

every state in M1. This measure however discards all

the unsuccessful attempts to generate a given TFTP.

Hence the success rate metric considers those unsuc-

cessful attempts as well. The success rates results are

lower but the GAs seem to outperform the random al-

gorithm.

Table 2 GA and Random search result averages for the Class
2 protocols for TFTPs with 1-8 transitions.

State Coverage Success rate
GA1 100% 48%
GA2 96% 47%

Random 35% 28%

Overall both GAs performed well and generated very

similar results. This indicates that the fitness function

and the TP representation represent the problem of

TFTP generation reasonably well.

6.2 The BIPS3D application

BIPS3D [30] is a scientific application that performs

3-dimensional simulations of BJT and HBT bipolar de-

vices. The goal of the 3D simulation is to relate elec-

trical characteristics of the device with their physical

and geometrical parameters. The basic equations to be

solved are Poisson’s equation and electron and hole con-

tinuity, in a stationary state.

Figure 4 shows a basic schema of the different phases

of the BIPS3D application. This application starts with

a set of physics parameters belonging to the materi-

als that compose a transistor. In addition, we need an

unstructured mesh in which we place more nodes in

the areas of union between different areas of the tran-

sistor. The mesh is split by the master process into

sub-domains using the METIS library [26]. Each one

12 Alberto Núñez et al.

of these sub-domains is sent to one process (slave) to

compute it. When each of the slaves finishes to process

the corresponding sub-domain, generated data must be

sent to the master process to merge all resulting data

corresponding to the rest of processes. Finally, the re-

sults are written to a file.

Master
Process

Master
Process

Slave process 1 Slave process 2 Slave process N

1. Load Mesh

2. Split Mesh

3. Process sub-domain

Disk

4. Merge

5. Write Results

Fig. 4 Basic schema of BIPS3D

The TEFSMM2 that models the behavior of BIPS3D

is presented in Figure 5 and the corresponding transi-

tion table (excluding the conditions and temporal con-

straints) is shown in Table 3.

In this case study, we have used the SIMCAN simu-

lation platform [44] to model the BIPS3D application.

SIMCAN is a fast, flexible, scalable and expandable

simulation platform for modeling and simulating dis-

tributed systems. The main principle of SIMCAN lies

on integrating the model of the four basic systems into a

single simulation platform: CPU, memory, network and

storage. Since SIMCAN offers the event-programming

paradigm and a complete API with configurable facil-

ities, the applications that can be represented using

TEFSMs fit especially well in this simulation platform.

The event-programming paradigm is the normal way

to develop applications and modules in SIMCAN. This

paradigm is specially fitted for programming simula-

tions that have to deal with all the events that both

the hardware and the software produce. Applications

developed using the event-programming paradigm are

especially useful when TEFSMs are used to specify the

system.

The BIPS3D application has been modeled using

SIMCAN in the past. In these previous cases, the gen-

erated models were used to study the performance of

BIPS3D in distributed systems using different architec-

tural configurations [46,45]. However, in this paper the

model M2 is used to generate test sequences for tem-

porally constrained systems and, in particular, in gen-

erating timed feasible transition paths (TFTPs) with

specific properties that can in turn be used to gener-

ate test input. From the simulator’s point of view, the

Table 3 Temporal constraint ranking and feasibility ranking
for all transitions in M2

t input output feasibility temporal
rank rank

t0 iDat fDat 0 1
t1 eDat WTG 2 0
t2 SYNC S STBL 5 5
t3 iPSD Err WTG 0 0
t4 iSD fSD 5 3
t5 iMD fMD 4 0
t6 RTR 0 0
t7 iPMD fPMD 2 2
t8 RTR 2 1
t9 eMD WTG 0 2
t10 iSD fSD 5 0
t11 AK 6 5
t12 iSD fSD 0 0
t13 iPSD fPSD 0 0
t14 iRST fRST 6 0
t15 eSD RTR 0 4
t16 iPSD fPSD 2 0
t17 iRST fRST 2 0
t18 T expired RTR 2 4
t19 T expired RTR 0 0
t20 T expired RTR 1 0
t21 iRST ErrWTG 1 2
t22 iRST ErrWTG 2 0
t23 iRST ErrWTG 1 0
t24 RTR 0 5

application’s execution consists of a set of stages (tran-

sitions). The execution of all stages represents one iter-

ation (TP) and it must be performed in order, starting

from the synchronization stage and finishing at the re-

sults stage.

The event-programming that we have mentioned be-

fore has some advantages. The most important one is

scalability. Thus, scaling the model represented by a

given graph is immediate, because it is enough to con-

figure the corresponding parameters like the number of

processes, and the amount of data processed in each

operation. Another advantage is that we can study the

impact of changes in the application on the overall sys-

tem performance, without changing any line of code. It

can be done simply by configuring the corresponding

parameters with the right values.

Thus, the SIMCAN simulation platform has been

used to model the BIPS3D application and the under-

lying hardware to execute it. One of the best advan-

tages of using simulation, instead of executing the real

application in a real system, is that we can build a vir-

tual environment and initializing it in a specific state

to execute a given application model. This capability of

customizing and initializing the execution of a modeled

application let us to study and reproduce TPs easily.

This can be especially relevant in those environments

that contain shared resources, where it is necessary to

Using genetic algorithms to generate test sequences for complex timed systems 13

s1

s2 s3 s4

s5 s6 s7

s8

s9

t0

t2, t4

t1

t3, t6, t18

t5

t8, t19

t7

t10

t9

t24

t11 t12

t13

t20, t22

t15

t14

t17

t21, t23

t16

Fig. 5 BIPS3D applicaiton TEFSM M2. The transition table is on Table 3.

consider the correctness of the system results as well as

specific time requirements. Consequently, the TEFSM

shown in Figure 5 has been programmed in the SIM-

CAN simulation platform. In such a way that we can

apply the techniques described in this paper, by using

GAs and a fitness function, to generate and analyze test

cases for testing a corresponding application.

Similar to the situation in the previous case study,

the fitness function used in this case rewards transition

sequences with higher ranked transitions and impose a

penalty to invalid transitions. Table 3 shows the ini-

tial values computed by the initialization phase before

applying the fitness function. However, the fitness func-

tion used in this scenario is more sophisticated than the

function used in the previous case study. In this case,

the weight assigned to each rank varies dynamically.

These weights are computed by the simulation kernel

depending on the penalty points assigned to the tran-

sition guards. Thus, the simulation kernel ranks each

weight according to the temporal constraint. Therefore,

the transitions that can potentially have the most com-

plex temporal constrains are given a higher weight. The

main objective of the fitness function is to construct a

TP by using consecutive highly ranked transitions. The

feasibility of the created TPs is measured by compar-

ing how many times the TP was correctly triggered with

respect to the times it failed.

Due to the complexity of generating test sequences

for distributed applications, in this case study we merge

the advantages of three different fields to aid test se-

quence generation: formal testing, artificial intelligence

and simulations. Thus, apart from modeling the behav-

ior of BIPS3D in SIMCAN, a module that contains

a new engine for running GAs has been developed.

Therefore, the process to create test cases using ge-

netic algorithms and simulations is totally automated.

This module contains the logic to apply the two tech-

niques described in the previous case study: single point

crossover with mutation (GA1) and complex multiple

point crossover with mutation (GA2). Both techniques

use the same fitness function. Also, a random search

has been used to compare the performance obtained in

each GA.

Figures 6 and 7 show the performance of the GA

and Random search using two metrics, state coverage
and success rate, respectively. Table 4 presents a sum-

mary of the result averages. This table shows clearly

that random generations provides poor results in both

metrics, and G1 is slightly better than G2.

Figure 6 represents the state coverage results for all

the different TFTP sizes. This chart shows that GA1

performs well, while GA2 fails to find some TFTP’s

for specific sizes, such as 4, 8, 12 and from 14 to 16.

However, random search provides a coverage of 50%

for TFTP’s of size 4, and consequent results degener-

ate as the size increases. Clearly the Random genera-

tion method is not a feasible solution, because the state

coverage for TFTP’s of size greater than 1 is not accept-

able. In contrast, GAs provide good results by covering

in the worst case 75% of the states.

Figure 7 represents the success rate results for all the

different TFTP sizes in this case study. As occurs with

the previous case study, in this case we obtain high fluc-

tuation in success rate for both GAs. Similarly, it can

14 Alberto Núñez et al.

be explained by the different degree of difficulty in gen-

erating TFTPs of different sizes for some states, which

is more emphasized in this case because we use double

of states, 16 instead of 8. Moreover, in this case study

there are some core transitions with complex guard con-

ditions, such as t15 and t4.

This chart (see Figure 7) shows that success rate

using random search drops quickly. It is mainly caused

when a core transition is selected, which is in most

cases, difficult to satisfy. The only case when random

search is better than GAs is for TFTP’s of size 3. In

the rest of the cases, random search provides signifi-

cantly worst results than GA. In fact, as the search

space is increased (using sizes greater than 7) random

approach can barely generate feasible TPs that satisfy

the temporal constraints. Otherwise, when comparing

GA1 with GA2, we can observe that in average GA1

provides slightly better results than G2. There are only

three cases where G2 provides better results than G1

(TFTP’s of size 8, 9 and 11). Using TFTP’s of size

greater than 2, the best results provided by GA1 is 60%,

while the best results provided by GA2 is 65%. Other-

wise, the worst case is the same for both algorithms,

20%.

In general, as in the previous case study, GAs algo-

rithms obtains better results than the random gener-

ation algorithm on both metrics. Also, it is important

to mention that in this case study the results are very

similar to the results obtained in the previous one. In

this case, we use TFTP’s of size 16, instead of 8. This

means that our fitness function guides well the GA to

find a solution. Thus, performing simulations of the ex-

ecution is very useful to compute the specific state and

its corresponding condition guards. In Figure 6 and Fig-

ure 7 we can observe that as longer TFTPs (and possi-

bly when larger TEFSMs) are considered, the random

search does not scale at all, while GAs maintain a bal-

ance in the performance.

Table 4 GA and Random search result averages for BIPS3D
for TFTPs with 1-16 transitions.

State Coverage Success rate
GA1 100% 47.5%
GA2 94.0% 41,3%

Random 21.5% 15.9%

7 Conclusions and Future work

In this paper we have presented a complete framework

that provides a computationally inexpensive method to

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TFTP Size

GA1

GA2

Random

S
ta

te
 c

o
v

e
ra

g
e

Fig. 6 State coverage for PB notation TFTPs generated us-
ing GA and Random generation algorithms for M2 with 1-16
transitions

S
u

c
c
e

s
s
 r

a
te

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TFTP Size

GA1

GA2

Random

Fig. 7 Success rate for PB notation TFTPs generated us-
ing GA and Random generation algorithms for M2 with 1-16
transitions

address the important problem of test data generation

for TEFSMs. This work extends previous work on feasi-

bility of EFSMs [8,9] to consider temporal constraints.

We defined the problem of finding transition se-

quences that are likely to be feasible, and to satisfy

some temporal criteria, as a search problem. We defined

a computationally efficient fitness function that is used

to guide our GAs. We have considered two case studies

to evaluate the goodness of our methodology. We have

that the GAs almost fully satisfy our coverage criteria

and increasingly outperform random generation as the

TFTP size increases. Even though the success rate fluc-

tuated, the average success rate of the GAs was almost

double than that of the randomly generated results.

Overall, our results suggest that the approach scales

well and can be applied to even larger TEFSMs.

Future work may focus on refining the fitness func-

tion to take into account loops and other difficulties to

estimate transitions. Further analysis of the conditions

might also help. A more thorough evaluation of the fit-

ness function on other TEFSMs may also be beneficial

to evaluate further how well the method scales. Dif-

Using genetic algorithms to generate test sequences for complex timed systems 15

ferent TEFSMs may present the need for alternative

temporal constraint classification, which will be very

interesting to investigate.

Acknowledgements We would like to thank Karnig Derde-
rian for his participation in the previous stages of this re-
search.

References

1. Akcelik, V., Bielak, J., Biros, G., Epanomeritakis, I.,
Fernandez, A., Ghattas, O., Kim, E.J., Lopez, J.,
O’Hallaron, D., Tu, T., Urbanic, J.: High resolution for-
ward and inverse earthquake modeling on terascale com-
puters. In: 16th ACM/IEEE conference on Supercom-
puting, SC’03. ACM Press (2003)

2. Ammann, P., Offutt, J.: Introduction to Software Test-
ing. Cambridge University Press (2008)

3. Blanquart, J.P., Armengaud, E., Baufreton, P., Bour-
rouilh, Q., Griessnig, G., Krammer, M., Laurent, O.,
Machrouh, J., Peikenkamp, T., Schindler, C., Wien,
T.: Towards cross-domains model-based safety process,
methods and tools for critical embedded systems: The
CESAR approach. In: 30th Int. Conf. on Computer
Safety, Reliability, and Security, SAFECOMP’11, LNCS
6894, pp. 57–70. Springer (2011)

4. Bosik, B.S., Uyar, M.Ü.: Finite state machine based for-
mal methods in protocol conformance testing. Computer
Networks & ISDN Systems 22, 7–33 (1991)

5. Chow, T.: Testing software design modeled by finite state
machines. IEEE Transactions on Software Engineering 4,
178–187 (1978)

6. Derderian, K.: Automated test sequence generation for
finite state machines using genetic algorithms. Ph.D. the-
sis, Brunel University (2006)

7. Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: In-
put sequence generation for testing of communicating
finite state machines (CFSMs). In: 6th Annual Conf.
on Genetic and Evolutionary Computation, GECCO’04,
LNCS 3103, pp. 1429–1430. Springer (2004)

8. Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Au-
tomated Unique Input Output sequence generation for
conformance testing of FSMs. Computer Journal 49(3),
331–344 (2006)

9. Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Es-
timating the feasibility of transition paths in extended
finite state machines. Automated Software Engineering
17(1), 33–56 (2010)

10. Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.:
Aiding test case generation in temporally constrained
state based systems using genetic algorithms. In: 10th
Int. Conf. on Artificial Neural Networks, IWANN’09,
LNCS 5517, pp. 327–334. Springer (2009)

11. Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.:
A case study on the use of genetic algorithms to generate
test cases for temporal systems. In: 11th Int. Conf. on
Artificial Neural Networks, IWANN’11, LNCS 6692, pp.
396–403. Springer (2011)

12. Duale, A.Y., Uyar, M.Ü.: A method enabling feasible
conformance test sequence generation for EFSM models.
IEEE Transactions on Computers 53(5), 614–627 (2004)

13. Goldberg, D.: Genetic Algorithms in Search, Optimisa-
tion and Machine Learning. Addison-Wesley (1989)

14. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.:
Model-based quality assurance of protocol documenta-
tion: tools and methodology. Software Testing, Verifica-
tion and Reliability 21(1), 55–71 (2011)

15. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.:
Computing Unique Input/Output sequences using ge-
netic algorithms. In: 3rd Int. Workshop on Formal Ap-
proaches to Testing of Software, FATES’03, LNCS 2931,
pp. 164–177. Springer (2003)

16. Harman, M., McMinn, P.: A theoretical and empirical
study of search-based testing: Local, global, and hy-
brid search. IEEE Transactions on Software Engineering
36(2), 226–247 (2010)

17. Hennie, F.: Fault-detecting experiments for sequential
circuits. In: 5th Annual Symposium on Switching Cir-
cuit Theory and Logical Design, pp. 95–110 (1964)

18. Hierons, R.M., Bogdanov, K., Bowen, J., Cleaveland, R.,
Derrick, J., Dick, J., Gheorghe, M., Harman, M., Kapoor,
K., Krause, P., Luettgen, G., Simons, A., Vilkomir, S.,
Woodward, M., Zedan, H.: Using formal methods to sup-
port testing. ACM Computing Surveys 41(2) (2009)

19. Hierons, R.M., Bowen, J., Harman, M. (eds.): Formal
Methods and Testing, LNCS 4949. Springer (2008)

20. Hierons, R.M., Merayo, M.G., Núñez, M.: Testing from
a stochastic timed system with a fault model. Journal of
Logic and Algebraic Programming 78(2), 98–115 (2009)

21. Hierons, R.M., Ural, H.: Reduced length checking se-
quences. IEEE Transactions on Computers 51(9), 1111–
1117 (2002)

22. Hierons, R.M., Ural, H.: Optimizing the length of check-
ing sequences. IEEE Transactions on Computers 55(5),
618–629 (2006)

23. Jones, B.F., Eyres, D.E., Sthamer, H.H.: A strategy for
using genetic algorithms to automate branch and fault-
based testing. The Computer Journal 41(2), 98–107
(1998)

24. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible
transition paths for testing from an extended finite state
machine (EFSM). In: 2nd Int. Conf. on Software Testing
Verification and Validation, ICST’09, pp. 230–239. IEEE
Computer Society (2009)

25. Kalaji, A.S., Hierons, R.M., Swift, S.: An integrated
search-based approach for automatic testing from ex-
tended finite state machine (EFSM) models. Information
& Software Technology 53(12), 1297–1318 (2011)

26. Karypis, G.: METIS: A software package for partitioning
unstructured graphs, partitioning meshes and comput-
ing fill-reducing orderings of sparse matrices. version 5.0.
Tech. rep., Department of Computer Science & Engineer-
ing, University of Minnesota (2011)

27. Laurent, O.: Using formal methods and testability con-
cepts in the avionics systems validation and verification
(V&V) process. In: 3rd Int. Conf. on Software Testing,
Verification, and Validation, ICST’10, pp. 1–10. IEEE
Computer Society (2010)

28. Lee, D., Yannakakis, M.: Testing finite state machines:
State identification and verification. IEEE Transactions
on Computers 43, 306–320 (1994)

29. Lee, D., Yannakakis, M.: Principles and methods of test-
ing finite state machines: A survey. Proceedings of the
IEEE 84(8), 1090–1123 (1996)

30. Loureiro, A., González, J., Pena, T.F.: A parallel 3D
semiconductor device simulator for gradual heterojunc-
tion bipolar transistors. Journal of Numerical Modelling:
Electronic Networks, Devices and Fields 16(1), 53–66
(2003)

16 Alberto Núñez et al.

31. Mairhofer, S., Feldt, R., Torkar, R.: Search-based soft-
ware testing and test data generation for a dynamic pro-
gramming language. In: 13th Annual Conf. on Genetic
and Evolutionary Computation, GECCO’11, pp. 1859–
1866. ACM Press (2011)

32. McMinn, P.: Search-based software test data generation:
a survey. Software Testing Verification and Reliability
14(2), 105–156 (2004)

33. Merayo, M.G., Núñez, M., Hierons, R.M.: Testing timed
systems modeled by stream X-machines. Software and
Systems Modeling 10(2), 201–217 (2011)

34. Merayo, M.G., Núñez, M., Rodŕıguez, I.: Generation of
optimal finite test suites for timed systems. In: 1st IEEE
& IFIP Int. Symposium on Theoretical Aspects of Soft-
ware Engineering, TASE’07, pp. 149–158. IEEE Com-
puter Society Pres (2007)

35. Merayo, M.G., Núñez, M., Rodŕıguez, I.: Extending EF-
SMs to specify and test timed systems with action du-
rations and timeouts. IEEE Transactions on Computers
57(6), 835–848 (2008)

36. Merayo, M.G., Núñez, M., Rodŕıguez, I.: Formal testing
from timed finite state machines. Computer Networks
52(2), 432–460 (2008)

37. Merayo, M.G., Núñez, M., Rodŕıguez, I.: A formal frame-
work to test soft and hard deadlines in timed systems.
Software Testing, Verification and Reliability (2012). Ac-
cepted for publication, doi: 10.1002/stvr.448

38. Michael, C.C., McGraw, G., Schatz, M.A.: Generating
software test data by evolution. IEEE Transactions on
Software Engineering 27(12), 1085–1110 (2001)

39. Michalewicz, Z.: Genetic Algorithms + Data Structures
= Evolution Programs, 3rd, revised and extended edn.
Springer (1996)

40. Molinero, C., Núñez, M., Andrés, C.: Combining ge-
netic algorithms and mutation testing to generate test
sequences. In: 10th Int. Conf. on Artificial Neural Net-
works, IWANN’09, LNCS 5517, pp. 343–350. Springer
(2009)

41. Molinero, C., Núñez, M., Hierons, R.M.: Creating adap-
tive sequences with genetic algorithms to reach a certain
state in a non-deterministic FSM. In: IEEE Symposium
on Artificial Life, ALIFE’11, pp. 22–29. IEEE Computer
Society (2011)

42. Molinero, C., Núñez, M., Hierons, R.M.: Experimental
comparison of different techniques to generate adaptive
sequences. In: 11th Int. Conf. on Artificial Neural Net-
works, IWANN’11, LNCS 6692, pp. 404–411. Springer
(2011)

43. Myers, G.: The Art of Software Testing, 2nd edn. John
Wiley and Sons (2004)

44. Núñez, A., Fernández, J., Filgueira, R., Garćıa, F., Car-
retero, J.: SIMCAN: A flexible, scalable and expandable
simulation platform for modelling and simulating dis-
tributed architectures and applications. Simulation Mod-
elling Practice and Theory 20(1), 12–32 (2012)

45. Núñez, A., Fernández, J., Garćıa, J.D., Carretero, J.:
Analyzing scalable high-performance I/O architectures.
In: 3rd Int. Conf. on Parallel and Distributed Processing
Techniques and Applications, PDPTA’08, pp. 631–637
(2008)

46. Núñez, A., Fernández, J., Garćıa, J.D., Garćıa, F., Car-
retero, J.: New techniques for simulating high perfor-
mance MPI applications on large storage networks. The
Journal of Supercomputing 51(1), 40–57 (2010)

47. Oh, J., Harman, M., Yoo, S.: Transition coverage testing
for simulink/stateflow models using messy genetic algo-
rithms. In: 13th Annual Conf. on Genetic and Evolu-

tionary Computation, GECCO’11, pp. 1851–1858. ACM
Press (2011)

48. Petrenko, A.: Fault model-driven test derivation from fi-
nite state models: Annotated bibliography. In: 4th Sum-
mer School on Modeling and Verification of Parallel Pro-
cesses, MOVEP’00, LNCS 2067, pp. 196–205. Springer
(2001)

49. Petrenko, A., Boroday, S., Groz, R.: Confirming configu-
rations in EFSM testing. IEEE Transactions on Software
Engineering 30(1), 29–42 (2004)

50. Ramalingom, T., Thulasiraman, K., Das, A.: Context in-
dependent unique state identification sequences for test-
ing communication protocols modelled as extended fi-
nite state machines. Computer Communications 26(14),
1622–1633 (2003)

51. Srinivas, M., Patnaik, L.M.: Genetic algorithms: A sur-
vey. IEEE Computer 27, 17–27 (1994)

52. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.W., Liang,
Z.P., Sutton, B.P.: Accelerating advanced MRI recon-
structions on GPUs. In: 5th Conference on Computing
Frontiers, CF’08, pp. 261–272. ACM Press (2008)

53. Szalay, A.S., Kunszt, P.Z., Thakar, A., Gray, J., Slutz,
D., Brunner, R.J.: Designing and mining multi-terabyte
astronomy archives: the sloan digital sky survey. In: 26th
ACM SIGMOD Int. Conf. on Management of data, pp.
451–462. ACM Press (2000)

54. Utting, M., Legeard, B.: Practical Model-Based Testing:
A Tools Approach. Morgan-Kaufmann (2007)

55. Whitley, D.: A free lunch proof for gray versus binary en-
codings. In: 1st Genetic and Evolutionary Computation
Conference, GECCO’99, pp. 726–733. Morgan Kaufmann
(1999)

