A STUDY OF THE FOLYMDRFHISM OF 4-METHYL-2-NITROACETANILIDE AND FELATED COMFOUNDS

A thesis submitted for the degree of Doctor of Fhilosophy by

Alan Yeadon

Department of Chemistry, Erunel Lniversity

BEST COPY AVAILABLE

TEXT IN ORIGINAL IS CLOSE TO THE EDGE OF THE PAGE

The full crystal structures of three polymorphs of 4-methyl-2-nitrgacetanilide (MNA) are described. The white form (MNA-1), is the most stable form. The least stable form is the amber form (MNA-2). The yellow form (MNA-3) has been found to change in a topotactic manrer into the white form.

The relationships between the three polymorphs are discussed and possible mechanisms to account for the topotactic phase changes are presented.

The poiymorphs show different i.r. and Raman spectra in the solid state. These spectra, and those of deuterated analogues are interpreted and their differences explained.

A study of the proton and $13-\mathrm{C}$ n.m.r. spectra show that the conformation of flexible MNA molecules is markedly dependent on the nature of the solvent.

The ability of other o-nitroacetanilides to exist in a white (intermolecular) and yellow (intramolecular hydrogen bonded) forms tas been examined.

Finally, detaile of the synthesis of these compounds and an account of the axamination of MNA polymorphs by differential scanning calarimetry (d.s. ©) are described.

A description of computer programs used, including one in BASIC which will enable the contents of unit cell(三) to be vizwed, is given.

Acknowl edgements

I gratefully acknowledge the help and guidance from my supervisor Dr. David N. Waters and the helpful co-operation and work by John C. Moore, School of Fhysics, Slough College of Higher Education who determined the crystal structures of three polymorphs of MNA at Birrbeck: College, London.

I would also 1 ifie to thank Mr Fobert W. Lancaster; Glaxo Fesearch, Greenford, Middlesex for providing facilities for the determination of infrared spectra at low temperature and to Mr Martin Kipps. ICI Flant Frotection, Eracknell who recorded the 400 MHz n.m.r. spectrum of mNA.

I gratefully acknowledge the encouragement and financial support given to me during the period from 1976 to 1985 by Eerkshire Education Committee and all involved in the Staff Development Scheme. Finally, I express my gratitude to the Science Department secretarial staff for their unflagging assistance and to all my colleagues for their encouragement and patience.

Contents

Fage number

```
Chapter 1.
1
```

A survey of previous work on the structures and
spectra of amides and anilides.
Chapter 2. 30
A review of the polymorphism of amides and the
topotactic changes of organic compounds.
Chapter 3.
55
Crystallographic structure of the white (MNA-i),
amber (MNA-2), and yellow (MNA-3) forms of 4-metryl-
2-nitroacetanilide (MNA).
Chapter 4.108
G study of the topotactic phase changes associated
with these polymorphs.

```
Chapter 5.177
The relationship between the molecular coardinates
and orientations of unit cells in MNA-1, MNA-2 and
MNA-3.
```

Chapter 6. 236
The infrared and Riaman spectra of polymorphs of MNA
and its deuterated derivetives.
Chapter 7 304
The nuclear magnetic resonance spectra of MNA andrelated compounds.
Chapter 8. 328
A search for polymorphism in compounds related to MNA.
Chapter 9. 356
Experimental methods.
Chapter 10. 376
Fiefersences.

Crapter 11.
Appendices.

1. The unit eell parameters for 2,4dinitroacetョnilide.
2. The unit cell parameters for 2-nitroacetanilide.
B. Fieferences to other computer programs which have been used in the preparation of this thesis.
3. A BASIC computer programme using high resolution graphics which may be used to view a unit cell (s) before or after rotation around specitied axes.
4. A dynamie display showing the phase change yellow (MHA-S) to minite (MNA-1).

CHAPTER DNE

A survey of previous work on the structures and spectra of amides and anilides.

This grouping in N-methylacetamide has been shown to adopt the trans form in gaseous, liquid and solid states as well as in aqueous solutions. $1,2,3,4$. x-ray examinations ${ }^{5}$ made on many molecules containing the peptide group also show that this group takes only the trans form. From a study of stretching vibrations, however: Russell and Thompson' suggested that both the trans and cis forms co-existed. Jones 7 concluded that the molecule of N-methylformamide is in the $\underline{\underline{i}} \leq$ the gaseous state rather than the trans form. Secondary amides which are anilides contain the group

-CONHPh

A wide variety of anilides have been examined by infrared spectroscopy. Suzuki8 and co-workers have examined the infrared spectra and apparent dipole

Abstract

moments of acetanilide and formanilide and concluded that acetanilide exists in the trans form in solution whereas formanilide exists in the trans and 등 forms.

The Fiaman spectra of formamides and deuterated formamides have been examined by Miyazawa and Suzuki 10 and also by Smith and Thompson ${ }^{11}$. Some assignments due to the latter workers are listed in TAELE 1.

TAELE_1

	HCONH2	deuterated f			formamides	
$v(C H)$	2896		$v(C-D)$	2177	in	DCOND_{2}
U(OCN)	1393					
V(OCN)	1672		V(OCN)	16.39	in	HCOND 2
		듣	$\delta(N-D)$	1123	in	HCOND_{2}
		tran	$\delta(N-H)$	1215	in	HCONHD
		tran	$\delta(\mathrm{N}-\mathrm{H})$	1215	om	HCONHD
		드드	$\delta(\mathrm{N}-\mathrm{H})$	1444	IN	HCONHD

In Guzuti's ${ }^{12}$ worl: on N-methylacetamide the band at $94 \pm \mathrm{m}^{-1}$ has considerable $\delta(N D)$ character. Miyazawa, Shimanouchi and Mizushimả have considered the band at 977 cm-1 to be almost pure $\delta(N-D)$. Smith and Thompson found evidence for 드노 and trans forms of HCONHD and DCDNHD.

Many papers have been published concerning the infrared spectra of secondary amides. Work on this subject is summarised and extended by Miyazawa et al.' and their results are as follows:

1. The $1650 \mathrm{~cm}^{-1}$ band (amide I) does not change in position and intensity on deuteration and is mainly $v C=0$.
2. The $1550 \mathrm{~cm}^{-1}$ band (amide II) disappears on deuteration.
3. A strong band in the region 1300-1200 (amide III) disappears on deuteration.
4. In N-deuterated compounds a new band appears at $1450 \mathrm{~cm}^{-1}$ and $950 \mathrm{~cm}^{-1}$. These bands were called amide II' and amide III' respectively.
5. Molecules containing the group $\mathrm{CH}_{2} \mathrm{CONH}$ give rise to a strong band near $620 \mathrm{~cm}^{-1}$ (amide IV). The position hardly changed on deuteration.
6. Monosubstituted amides in the trans form show a band in the region 700-750cm ${ }^{-1}$ (amide V). This band was assigned to $\gamma(N-H) . \quad \gamma(N-D)$ produced a band in the region 510-570cm ${ }^{-1}$ (amide V^{\prime}).
7. Another characteristic vibration of molecules containing the group $\mathrm{CH}_{2} \mathrm{CONH}$ is observed near $600 \mathrm{~cm}^{-1}$ (amide VI). After deuteration the amide VI' band overlaps with the amide IV' band.

The amide I, III and IV bands can be observed in the Raman spectra as lines with strong or medium intensity, whereas lines due to amide II, V and VI appear as weak lines.

Miyazawa et al. 9 have assigned amide bands to molecular vibrations. Thus, amide I is assigned to $\nu(C=0)$ with a small contribution from $\delta(N H)$. However: the assignment of the amide II band has given rise to much controversy ${ }^{13}$. Richards and Thompson ${ }^{14}$ assigned it to $\mathrm{N}-\mathrm{H}$ in-plane-bending vibration. Randall, Fowler, Fuson and Dangle 15 have assigned $V(C-N)$ to the amide II band. Letow and Gropp ${ }^{16}$ have assigned amide II to $v(C-N)$. Frazer and Price ${ }^{17}$ have suggested that the vibrations $v(C=[), \quad \delta(N-H)$, and $v(C-N)$ have considerable interaction among each other. Kessler and Sutherland ${ }^{18}$ have assigned the band near $720 \mathrm{~cm}^{-1}$ to the N-H out-of-plane bending vibration.

Vibrations in cis-amides have been assigned by Miyazawa ${ }^{3}$. A band near $840 . \mathrm{cm}^{-1}$ to $\quad \gamma$ (NH) which on deuteration shifts to 652cm-1 [γ (ND)]. It was considered in the $\underline{\text { cis }}$ form, that coupling between $\delta(\mathrm{NH})$ and $v(O C N)$ is small and bands occur near $1440 \mathrm{~cm}-1$ and 1350cm ${ }^{-1}$. However, in the trans form interaction is considerable. Hence amide II was assigned to a combination of $\delta(N H)$ and $V(C N)$ and amide III to a combination $V(C N)$ and $\delta(N H)$. The assignments due to Miyazawa are presented in TABLE II.

IABLE II

Amide	Wavenumber	r Assignment	Raman
I	1650	$V(O=C-N)$ and $\delta(N H)$	medium
I I	1560	$\delta(\mathrm{NH})$ and $\mathrm{V}(\mathrm{O}=\mathrm{C}-\mathrm{N})$	weak:
I I I	1300	$V(\mathrm{O}=\mathrm{C}-\mathrm{N})$ and $\delta(\mathrm{NH})$	strong
IV	6305	skeletal vibration $\mathrm{CH}_{2} \mathrm{CON}$	strong
v	754	$\gamma(N H)$	weak
VI	610	$\gamma(\mathrm{CO})$ and $\gamma(\mathrm{NH})$	weat:

The position of bands in lactams has been calculated using a "consistent force field" method by Warshel, Levitt and Lifson ${ }^{17}$. These workers agree with Miyazawa et al. that amide II is absent from cis amides. Two bands at $1422 \mathrm{~cm}^{-1}$ and $1375 \mathrm{~cm}^{-1}$ in 2 -pyrrolidone have $\delta(N H)$ and $v(C N)$ character. The assignments of bands in deuterated pyrrolidone and deutererated caprolactam are based on different combinations of vibrations. In caprolactam, bands of medium intensity disappear after deuteration and several new bands occur. Interpretation of these changes is difficult since bands change their characteristics as, for example, $\delta(\mathrm{N}-\mathrm{H})$ is coupled to $\nu(C N)$ and also to CH_{2} vibrations in different combinations. $\quad \delta(N-H)$ is associated in varying degrees with nine bands and $\delta(N-D)$ with ten bands. In deuterated caprolactam, bands at $1170 \mathrm{~cm}^{-1}$ and $1085 \mathrm{~cm}^{-1}$ are mainly due to $\delta(N-D)$. Bands containing a contribution from $V(C-N)$ also contain considerable contributions from CH_{2} vibrations.

The infrared spectra of acetanilide and deuteroacetanilide have been studied by Abbott and Elliott 20 in 1956. Earlier work using infrared analysis had been carried out by Crooks ${ }^{21}$, Mann and Thompson 22 , and Eamford ${ }^{23}$ et $\equiv 1$. and Gierer24. The Raman and infrared spectra of acetanilide and deuteroacetanilide have been studied in detail by Chalapathi and Ramiah ${ }^{25}$. These molecules were subjected to normal co-ordinate treatment and the mixing of the amide vibrations has been determined and is listed in TABLE III.

IABLE_III

Acetanilide
Deuteroacetanilide

Wavenumber $/ \mathrm{cm}^{-1}$		Assignment	
IR	RAMAN		
1658	1640	$V(\mathrm{C}=0)$	1640
1558	1550	$\delta(\mathrm{NH})$	1410
1258	1269	$V(\mathrm{C}-\mathrm{N})$	1080
1017	1025	$V(\mathrm{~N}-\mathrm{FH})$	958
650	632	$\delta(\mathrm{O}=\mathrm{C}=\mathrm{N})$	645
843	850	$V(\mathrm{C}-\mathrm{CH})$	820
3305		$V N-H \quad V(\mathrm{~N}-\mathrm{D})$	2500 (near)

The assignments given to the bands at $1410 \mathrm{~cm}^{-1}$ and $1080 \mathrm{~m}^{-1}$ in deuteroacetanilide are inconsistent in this work. For example, it is stated that in the $1080 \mathrm{~cm}^{-1}$ band of deuteroacetanilide "there is no contribution from $C-N$ stretching vibration". However the band at 1080cm ${ }^{-1}$ is assigned to $V(C-N)$. If the assignments of bands at $1410 \mathrm{~cm}^{-1}$ and $1080 \mathrm{~cm}^{-1}$ were reversed i.e. $1410 \mathrm{~cm}^{-1}$ to $V(C N)$ and $1080 \mathrm{~cm}^{-1}$ to $\delta(N-D)$ then these conclusions would be in accordance with those of Miyazawa. The amide V band in acetanilide is assigned to a band near boo $c m^{-1}$ and $\gamma(N-D)$ to a band at $520 \mathrm{~cm}^{-1}$. These bands do not differ by a factor of $\sqrt{ } 2$ which is expected for a pure vibration in which D has replaced H. The band at $745 \mathrm{~cm}^{-1}$ has a distinct shoulder which disappears on deuteration. It seems likely that the amide V band in acetanilide is obscured by the $745 \mathrm{~cm}^{-1}$ band and it may be coupled to aromatic $\gamma(\mathrm{CH})$ vibrations. This might explain the changes in intensity in the bands near $750 \mathrm{~cm}^{-1}$ and $700 \mathrm{~cm}^{-1}$ on deuteration. The infrared spectra of anilides have been measured by Forbes, Morgan and Newton ${ }^{26}$. By observing the wavenumbers of bands near $3300 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$ these workers were able to detect intramolecular hydrogen bonding in the solid form as well as in solution. Generally, a band at a wavenumber $1700 \mathrm{~cm}{ }^{-1}$ was taken to indicate a free non-hydrogen bonded $\mathrm{C}=0$ group, whereas a band about $1670 \mathrm{~cm}^{-1}$ indicated a hydrogen bonded $\mathrm{C}=0$ group.

In general, o-nitroacetanilides are intramolecularly hydrogen bonded $\left[V(N H) 3370 \pm 20 \mathrm{~cm}^{-1}\right.$ in chloroform] and could be distinguished from non-bonded e-nitro and unsubstituted compounds $\left[v(N-H) 3440 \pm 20 \mathrm{~cm}^{-1}\right.$ in chloroform]. Intramolecular hydrogen bonding does not occur in 2-methyl-b-nitroacetanilide and in 2,4-dimethyl-b-nitro acetanilide in the solid state as revealed by their typically bonded $N-H$ and $C=0$ bands. The nature of the hydrogen band in some nitronaphthalides is also discussed.

The interaction of nitro and amino groups in nitroanilines and nitronaphthylamines has been examined in detail 27.

The infrared spectra of anilides has been examined by Peltier, Pichevin and Bonnin². Mono and disubstituted aniled show a band near $1710 \mathrm{~m}^{-1}$ due to $v(C=0)$. This value was compared with that for acetanilide (1705cm-1) and N-methylacetamide [1686cm-1 (s) and $1712 \mathrm{~cm}^{-1}(\mathrm{w}) \mathrm{J}$. Conjugation of the N atom with the ring should increase the value of $\mathrm{V}(\mathrm{C}=0)$. Since a lowering in wavenumber is apparent, Feltier et $\underline{\text { al }}$. proposed a hydrogen bonding effect which would lower $\nu(C=0)$.

In I the vibration $v C=0$ is restricted by the proximity of H-6. In 2, b-dinitro-4-methylacetanilide and 2,4-dichloroacetanilide the band due to $v \mathrm{C}=0$ occurs near $1740 \mathrm{~cm}^{-1}$. (doublet). Hence the presence of II was inferred and dipole-dipole repulsion was the suggested explanation. Anilides containing an ortho ester group were found to be strongly hydrogen bonded as indicated in III

I

II

III

Gomel and Lumbroso ${ }^{29}$ have measured the dipole moments of acetanilides. In certain benzene solutions acetanilide was present as open chain dimers IV.

IV
In general the results once more indicated the trang arrangement for the amide group. o-chloroacetanilide appeared to be unassociated due to intramolecular hydrogen bonding whereas o-methylacetanilide was strongly associated, with both molecules having the amide group as in I. Smith has also measured the dipole moments of anilides 30 . Small amounts of the form II have been detected 31,32 and Siddall 33 has reported the isolation of 듣 and trans
forms of o-methylformanilide. For formanilides 34 the value of the rotational barrier is about 76 kJ mol -1 Some investigators have considered the acetamido group as a substituent in aromatic systems. Dyall and Kemp ${ }^{32}$ examined the infrared spectra of about si\% ortho and six eara substituted anilides in solvents. The shift of the $v(N-H)$ band was measured and compared with that observed for acetanilide. Evidence for various forms of anilides was obtained. Two bands due to $\nu(N-H)$ (about $45 \mathrm{~cm}^{-1}$ apart) were observed in non-basic solvents but only one in basic solvents. These bands also differ in intensity, the stronger one at higher frequency is attributed to the trans isomer. The frequency separation has been described by Moritz 35 as being due to the direct field effect of the $C=0$ group. For an orthg substituted anilide, four conformations are possible, and the infrared spectrum of Q-methylacetanilide shows 4 bands due to $V(N-H)$. Qrtho substituents which can hydrogen bond to the amide group have only one XNH) band which moved to lower wavenumbers in more basic solvents. From the linear plots of $V(N H)$ of a compound against $v(N H)$ acetanilide [BELLAMY FLotj36 evidence for hydrogen bonding was obtained. However, similar plots were obtained for o-methylacetanilide where intramolecular hydrogen bonding is not possible. It was concluded that intramolecular hydrogen bonds can be broken by the more basic solvents.

Structure_gf the_Amide_Groue

Amides have been extensively studied by n.m.r. since the amide linkage is of interest to biochemists, theoretical chemists and organic chemists. Most of the chapter headings in a popular high level textbook 37 can be directly applied to amides. Application has ranged from a study of internal rotations of amides, finger-printing, confirmation of structure and the electronic structure of the amide bond.

This short review will refer to studies which show the conformation and flexibility of the amide group in secondary amides since rotation around the $C-N$ bond and around the $R^{2}-N$ bond could lead to polymorphism in anilides.

Nomenclature_for_the_gegmetrical_isomerism_in__secondary amides

Authors have used the terms cis/trans, endo/exo and E / Z to describe the two possible arrangements around the amide bond. Geometrical isomerism is possible since the amide group is resonance stabilised.

$$
O=\stackrel{1}{C}-\stackrel{+}{\mathrm{N}}-\mathrm{H} \quad \mathrm{O}-\mathrm{C}=\stackrel{+}{N}-\mathrm{H}
$$

The $C-N$ bond achieves partial double bond character and hence rotation around the $C-N$ bond is restricted and the amide group has a stiff planar structure.

In aliphatic secondary amides the two possible geometrical isomers are as follows

In anilides, the possible arrangements are as follows:

The relative positions of the O and H atoms in the amide group are shown in I and II. It is proposed in this thesis to use the terms E and Z to describe the arrangements. The term Z refers to the structure (I) in which the 0 and aromatic ring lie on the same side of the (partial) double bond as each other. In anilides the problem of the positions of the planes occupied by the amide group and aromatic ring arises. Extreme cases arise where the rings can be either coplanar or at right angles to each other. If the group X (I,II and III) can hydrogen bond to the amide group then the rings will be coplanar. However, in III the rings will be perpendicular whether or not X (or Y) is capable of hydrogen bonding to the secondary amide group.

An important feature of structure I is that the oxygen atom in the carbonyl group must lie very close to $H-(6)$ if the ring is coplanar with the amide group. Such proximity is revealed by protons $H-(6)$ having a much greater chemical shift than expected from mesomeric and inductive effects. Dther ring protons are affected to a much lesser extent. In some cases H-(5) is coupled to $\mathrm{N}-\mathrm{H}^{38}$.

Anisotropic_Effects_in_Amides

The shielding and deshielding areas have been determined by Faulsen and Todt 39 . Generally, protons are deshielded when held in the plane of the amide and shielded when out of the amide plane 40,41 .

Comprehensive reviews of the n.m.r. spectra of amides, covering the literature to 1970 are available42,43.

Bartels-Keith and Cieciuch $\mathbf{S B}_{8}$ have examined the n.m.r. spectra of a range of grtho substituted nitroacetanilides. The high chemical shift for the $H-(6)$ proton and the effect of change of solvent on this parameter enabled these workers to estimate the relative strength of the intramolecular hydrogen bond in compounds where the group ortho to the amide group was nitro and the group gara to the amide was either methyl or methoxy or hydrogen. The greater the change in chemical shift in CDCl_{3} to $\mathrm{CD}_{3} \mathrm{CN}$, the weaker the intramolecular hydrogen bond was assumed to be. By this means it was possible to conclude that the order of hydrogen bond strengths was

5-methyl-2-nitroacetanilide>o-
nitroacetanilide>4-methyl-2-nitroacetanilide>4-methoxy-2nitroacetanilide.

Since the chemical shift of $H-(6)$ in
Q-acetylacetanilide was not solvent dependent the COCH_{3} group may be assumed to form a stronger hydrogen bond to the NHCOCH_{3} group than a nitro group does.

Rae and co-workers measured acylation shifts for a series of 4-substituted-2-nitroacetanilides and a good correlation with o values of the substituents was found ${ }^{44}$.

Lynch ${ }^{45}$ has used the anisotropic effect of the $C=0$ group to analyse the n.m.r. spectra of a series of 2-nitroacetanilides. In the intramolecularly hydrogen
bonded molecules the deshielding effect of the $C=0$ group is larger than in non-planar anilides. Hence such studies can provide evidence for hydrogen bonding whereas infrared spectra may not provide such unequivocal evidence ${ }^{46}$.

Conformation_and_Structure_of_Anilides

 The n.m.r. spectra of formanilides have been studied by Carter 47 . The stereochemistry of formanilides is rather easier to measure by n.m.r. since the formyl proton is on an adjacent atom to the $\mathrm{N}-\mathrm{H}$ group and its coupling constant is either about 2 Hz (J 동) or 10 Hz (J trang)
cis

trans

In the case of the trans formyl proton it is possible to relate the chemical shift to the dihedral angle between the amide and benzene ring planes 48 . Carter 47 , found that appreciable amounts of Z and E forms exist in solution and since it is possible to assign signals due to each of these isomers; quantitative results could be obtained. It has been possible to isolate stable Z and E isomers ${ }^{49}$. Also rotational barriers can be found and these are of the order of 18 kcal/mole at about $350 k$.

In formanilide, the amount of E isomer increases on dilution perhaps due to the stabilisation of dimers 50 .

Appreciable amounts of both E and Z forms are reported for acetanilide, 4-methylacetanilide and 4-butylacetanilide in CDC15 (Fef.6 p.SEB). Acetanilide in solution appears to exist mainly in the Z form and changing the alkyl substituent on the carbonyl group does not alter the isomer ratio 51,52,55,40. A bulky orth substituent increases the stability of the E form si and is greatest when the ortho substituent is t-buty154. Such groups increase the barrier to rotation of the Z and E isomers and such isomers of 2.4: $6-t r i-(t-b u t y 1)$ acetanilide can be separated by TLC Ss and crystals of the pure E form obtained from ethanol.
 The early work on this subject has been reviewed by Adams 56. In general, ortho substituted anilides show signals due to E and Z forms. $2,6-d i-i s o p r o p y l a c e t a n i l i d e$ shows signals due to the $C H$ group in the acetyl group in different orientations.

$$
\begin{aligned}
& A=M e \text { or } 0 \\
& B=0 \text { or Me }
\end{aligned}
$$

Kesslers7 has measured the E/Z ratios of this anilide in various solvents. The Z isomer predominates in solvents of high dielectric constant. In solvents of low dielectric constant the proportion of E isomer increases up to a maximum of $26: 74$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Siddall and Stewart 58 have measured the energy barrier to rotation of the $A r-N$ bond in some ortho substituted acetanilides and obtained values of the order of Ea=20 kcal/mole and ΔG^{*}, the free energy of activationg slightly greater. Some data are presented for 0. $丆$ M $\mathrm{CH}_{3} \mathrm{CONH}-\Omega, 6(2 \mathrm{Fr}) \mathrm{C}_{6} \mathrm{H}_{3}$ in $\mathrm{CHEr} \boldsymbol{3}:-$

```
for rotation around amide bond = 19. 3 kcal/mole(105}\mp@subsup{}{}{\circ}\textrm{C}
for rotation around benzene ring-nitrogen bond in E
isomer = 18.7 k:cal/mole(750}\textrm{C}
for rotation around benzene ring-nitrogen bond in }
isomer = 11.8 kcal/mole(-600)
```


Conformations off_N-methylacetanilide

In contrast to the preferred Z arrangement of the amide group in e° amides: N-methylacetanilide has been shown to exist mainly in the E form 59 . The n.m.r. spectrum of this compound in pyridine solution consisted of large peaks at 112 Hz and 195 Hz with smaller peatss at 126 Hz and 177 Hz. This corresponds to an E/Z ratio of $99.5 / 0.5$. The E arrangement in N-methylacetanilide has been inferred by Thomson and Hollberg ${ }^{60}$ from dipole moment measurements. Gutowsky and Holmbl detected only one isomer in benzene solution but were unable to decide whether the E or Z arrangement was present. Carter has compared the m.m.r. spectra of acetanilide and N-methylacetanilidese.

5
In thiqacetanilides, the thioamide (NHCF) was shown by n.m.r. experiments to lie in the plane of the benzene ring only if intramolecular hydrogen bonding is possiblés. By measuring the acylation shift i.e. the difference in chemical shift of the $H-(G)$ proton in the amide and parent amine, it is possible to deduce whether the $\mathrm{C}=\mathrm{S}$ (or $\mathrm{C}=\mathrm{\square}$) is ad.jacent to $H-(6)$. If this is the case, then the acylation shift is relatively high. Thus in 2,5 -dimethoxyacetanilide the acylation shift of $H-(6)$ is 16S Ha which is a large value and hence the following conformer should exist:

An acylation shift of 64 Hz in 4-methylthiopivanilide indicates that the E isomer exists in CDCIz colution.

The_anisotrogic_effect_of_the_C=g_group_in_a heter으드디드_드요으늠

The chemical shift of H (З) of the heterocyclic compound Z-acetoacetamido-4-methylpyridine is 7.79 ppm (CDCL 3) 6 . This position corresponded to a large "acylation shift" thus the conformation shown must be the favoured one $i . e . t h e d=0$ group lies near $H-(3)$.

1SC_namar._spectra_on_anilides

Solvent effects on the 13 C n.m.r. spectra of anilides have not been reported. These spectra, which should prove to be complementary to I_{H} n.m.r. should also show solvent dependence due to the change in electron density at the ortho and para positions (relative to the amide group) as the dihedral angle between the benzene ring and amide group changes. Several such series of spectra have been recorded 64. Raeb 65 has examined the n.m.r. spectra of 1,3-diacylphenylenediamines.

The acylation shifts for ring protons in such compounds were only slightly smaller than those predicted on the basis that each of the amide groups acts independently.

The following acylation shifts were assumed (a) 1.0 ppm for protons grtho to the amide group (b) o. 2 ppm. meta and (c) 0. 4 ppm. parg.

When substituents which are capable of hydrogen bonding are introduced in the 4 and 6 positions acylation shifts of about 4 ppm are recorded for H - 2.

Hydrogen bonding must maintain the planarity of the whole molecule in spite of a severe dipole-dipole repulsion.

A low field shift due to anisotropic shielding of an N-acetyl group has been reported by Erugel in Z-acetylaminopyridine (I), in N-acetyl derivatives of benzimidazoles (II) and purines and 4-N-acetylpyrimidine.

The_crystal_structure_of anilides

The first anilide examined by X-ray diffraction techniques was acetanilide 67 . A further refinement of this wort improved the overall regularity of the molecule and corrected a mistake in the earlier paper in which the value for the dihedral angle between the amide and ring planes was given as $37^{\circ} 54^{\prime}$. The recalculated 68 value was 17.6°. Federsen and Federsen ${ }^{69}$ examined the structure of N-methylacetanilide and found the amide group existed in the E conformation, in contrast to the Z conformation adopted by acetanilide, and that the amide-ring dihedral angle was 90°.

Fing viewed
edge on.

The 1_{H} chemical shifts in these compounds have been correlated with electron density by Carter who assumed that the molecules had the same conformation in solution as in the solid state ${ }^{70}$.

Some monosubstituted anilides have been examined by $X-r a y$ diffraction and these include p-aminoacetanilide, 71 p-methylacetanilide, 72 p-hydroxyacetanilide, $75 \quad \mathrm{p}$-chloracetanilide, 74 and p-bromoacetanilide. 75 The crystal structure of benzanilide has recently been determined and its structure compared with poly (p-phenyleneterephthalimide)[KEVLAR] and poly(mphenyleneisophthalamide) (NOMEX].76 A dominant feature of all these structures is the z conformation of the amide ($H-N-C=0$) system which allows linear chains of intramolecularly hydrogen bonded molecules to be constructed.

A computer search of the data files at the Centre for Crystallographic Data, University of Cambridge was carried out on 9th March 1978. Thirty five compounds containing the fragment. FhN($C=D$) C which were listed by the computer are presented in Table IV. A complementary computer search of Chemical Abstract Indexes using the key words form, AMIDE and ANILIDE revealed that few anilides which exist in polymorphic forms have been examined by X-ray erystallography. The search did reveal that the erystal structures of polymorphic forms of p-methylacetanilide ${ }^{72}$ and p-hydroxyacetanilide ${ }^{73}$ had been reported.

In the former compound, two forms exist. One form contains molecules stacked in a parallel (orthorhombic) and the other contains molecules stacked in an antiparallel (monoclinic) manner. An interesting feature of the crystal structure of p-hyoroxyacetanilide is that the hydronyl group can form hydrogen bonds to the amide group.

The crystal structure of several N-methylamides was determined by Leiserowitz and Tuval. 77 The molecular packing of N-methyl derivatives of propiolamide, tetrolamide, banzamide, cinnamide and sorbamide were determined and compared with other secondary amides whose structures had been determined by other workers. The types of structures found were classified as follows:-

Type 1 (2_{1} axis or glide)

Type $1(c)$

Type 2. (Translation type)

It was noted in monoamides where fin and fic differ in size e.g. p-bromoacetanilde. that the molecules tend to interlink via the glide or Z_{1} axis. Acetanilide links as in la with the phenyl groups arranged around a Σ_{1} axis which coincides with the hydrogen bonding chain. In this way contact between the bulky groups is avoided. In type 2 the group Rc... Fic and Fin... Rn would be forced to be the same distance apart along the hydrogen bond axis i.e. about SA apart. N-bromoacetamide packs according to $1 c$. N-propyldipropylacetamide packs according to 2. F-bromoacetanilide and p-chlororacetanilide pack according to la which has hydrogen bonded molecules related by a glide. [A glide translation consists of a reflection through a plane parallel to the hydrogen bonding followed by a translation along the axis of the hydrogen bondl. Secondary diamides tend to form hydrogen bonds by translation e.g. N,N-diethyladipamide along the axis in the direction of the hydrogen bond. This effect places adjacent hydrogen bonded molecules about 5 å apart.

Secondary 도 (or E) amides may be interlinked by
N-H. ... O bonds in two ways; (a) as hydrogen bonded pairs

or (b) by simple N-H.... $O=C$ bonds along a 2_{1} axis thus linking molecules by a helical arrangement of hydrogen bonds.

An example of type (b) is α-pyridone and an
example of (a) is succinimide. In such compounds the N-H....D distances are close to $2.84 \AA$ thus demonstrating that the length of the N-H....O bond in secondary amides does not seem to depend on $a Z$ or E arrangement of the amide group.
tABLE IV
Anilides of known crystal structure
acetanilide 67
N, O-diacetyl-5-p-chloroanilino-4-hydrocypenta-2,4-dienal 73
p-acetotoluidide 72
3-amino-z-chloro-2-cyano-acrylic acid anilide79
N-acetyl-1-tyrosine-p-nitroanilide 80
2,2'-bis(2-bromoacetylaminoanilina)-benzalazine benzene solvate 81

2-bromo-5-trifluoromethyl-dipropylacetanilide 82
(-)-N-(2-benzylmethylamino)propyl) propionanilide
hydrobromide 83
$N(1 ')-c a r b o x y b i o t i n d i(p-b r o m o a n i l i d e) 84$
4-chloro-di-N-propylacetanilide 85
2-chloro-5-trifluoromethyl-diethylacetanilide86
p-chloroacetanilide 74
2-chloro-isonitrosoacetanilide87
$\mathrm{N}-($ (6-chloro-4-oxo-4H-3, 1-benzoaxin-2-yl)methyleneamino)

- N-phenylacetamide 88
desoxycholic acid p-bromoanilide 89
3.4-dichloro-isobutyranilide 90

N, N-diphenylacetamide 91
4-ethoxy-isonitrosoacetanilide92
2-ethoxy-isonitrosoacetanilide ${ }^{93}$
$N-(1-\{-3(p-f 1$ uorobenzoyl $)$ propyl $)-4-p i p e r i d y)$ propionanilide 94
p-hydrocyacetanilide (orthorhombic form)73a
p-hydroxyacetanilide (monoclinic form) 7 b
2-(isopopylidineamino-oxy)propion-p-bromoanilide isonitrosoacetanilide 95

2－diethylamino－2＇ ＇＇acetoxlidide 76
1idocainebis（p－nitrophenyl）phosphate 97
lidocaine hydrohexaf luoroarsenate（ 2 －diethylamino－2＇， $\mathbf{o n}^{\prime}-$ acetoxylidide hydrohexafluoroarsenate） 98

1idocaine hydrochloride monohydrate 99
2－methy1－4－（N－acetanilino）－6－bromo－1，2，S，4－
tetrahydroquinoline 100
N－methylacetanilide69
J－methyl－N－ethylisonitrosoacetanilideiol
こ－methoxy－isonitroso－acetanilide 102
alpha－dibromo－alpha－（4－methyl－2－nitrophenylaza）
acetanilide 103
N－methyl－piperidinium－（0－methyl－acetanilide）iodide 104
N－methylpiperidinium acet－p－nitroanilide iodide 105
2－（1－methylpiperidino－（1））－2＇－chloroacetanilide iodide 106
N－methylpiperidinium－m－chloroacetanilide 107

N－methylpiperidinium acet－p－bromoanilide iodide
monohydrate 108
N－methyl－2，4， $6-t r i n i t r o a c e t a n i l i d e 109$
4－methoxy－isonitroso－acetanilide110
N－（4－methosymethyl）－1－（2－phenylethy1）－4－piperidiny 1）－N－ phenyl－propanamide 112
alpha－（2－nitro－4－chlorophenylazo）acetoacetanilide $1 \mathbf{~}$
（N－methylimidazole）－（dioxygen）－tetrapivalamidophenyl）－
（porphinato）iron（II） 114
1．1－bis（N－phenylcarbamoyl）－2－（p－chlorophenyl）－ethylene
piperidinoacetic acid o－chlomoanilide 115
（N－piperidino－acetyl）－m－bromoanilide 116
2：- －dihydro－1，ふ－diphenyl－こ－oxoindol－玉－yl
diphenyl (phenylcarbamoyl)methyl sulphide 117
ionylidene acetyl p-bromoanilide118
rifamycin p-iodoanilide acetone pentahydrate 119
rifamycin p-iodoanilide DMSO solvate $1 \supseteq 0$
tetrahydrothiophene-(dionygen)-(pivalamidophenyl)-porphinato-
iron (II) tetrahydrothiophene solvate121
P-bromoacetanilide 75

CHAFTER TWO

A review of the polymorphism of amides and the topotactic changes of organic compounds.

Po.lymorehismı_conformational_Rolymor hism
and_topotactic_changes in_organic_compounds

A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. The molecular conformation in each polymorph may be the same or different. If the relationship between the molecules in the different forms is one involving tautomerism or geometrical isomerism then this does not constitute polymorphism. Folymorphism can result from identical molecules being packed in different types of crystalline structures or from molecules having different conformations being packed in similar or different. ways. Such changes in conformation may result from rotation of parts of the molecule around certain bonds and this is usually accompanied by small differences in bond lengths and bond angles so that equivalent intramolecular and intermolecular distances can be markedly different.

Folymorphism is the ability of any element or compound to crystallise as more than one distinct crystal species. An example of polymorphism is shown by the ability of carbon to exist either as graphite (hesagonal) or diamond (cubic). Different polymorphs of a given compound are often different in structure and properties as the crystals of two different compounds.

Thus density, colour, solubility, melting point, erystal shape, crystal symmetry, hardness, vapour pressure, optical, electrical and biological properties can vary with the polymorphic form. The latter property makes the study of polymorphism in drugs an important topic in the pharmaceutical industry. In addition, the preparation of individual polymorphs of drugs may be protected by patents. The pharmaceutical industry is also interested in polymorphic changes which occur during the preparation of tablets or polymorphic changes which occur during the storage of drugs. Also drug dosage is dependent on polymorphic form. Applications of polymorphism in the pharmaceutical industry have been reviewed by Haleblain and McCrone and this review contains references to the polymorphism of steroids, barbiturates, antihistamines, and sulphonamides. 122 The subject of polymorphism has been covered in several texts including those by Jenkins, 123 D'Connor 124 Hartshorne and Stuart, 125 Kofler and Kofler, 126 McCrone, 127 and Verma and Krishna 128. Deffet 129 has published a comprehensive compilation of organic compounds which show polymorphism and the amides included in his survey are listed in Table V. The most recent reference is cited.

TABLE V

Folymorphic amides and anilides listed by Deffet 129

acetamide
dichloroacetamide
malonamide
lactamide
succinimide
asparagine
sulphanilamide
formanilide
benzamide
acetanilide
2,4-dibromoacetanilide
1-nitro-3-bromo-4-acetanilide
valeranilide
p-chloroacetanilide
p-bromoacetanilide
p-iodoacetanilide
2-chloro-4-bromoacetanilide
4-chloro-2-bromoacetanilide
2-nitro-6-methylacetanilide
2-nitro-4-methylacetanilide
3-chloro-4-methylacetanilide
p-bromopropio-anilide
p-iodopropio-anilide
N-butyranilide
p-acetophenetidine
N-alkylvanillamides
p-toluenesulphanilide
4-nitrobenzoyl-2-chloro-4-bromanilide

A historical_acccount_of the_polymorphism_of
 4-methyl-2-nitroacetanilide
 In 1885 Gattermann ${ }^{130}$ reported the occurence of

 polymorphic forms for 4-methyl-2-nitroacetanilide. Subsequent workers examined the physical properties of the white and yellow forms of this compound. Schenck ${ }^{131}$ found the melting point of the yellow form $\left(91.58^{\circ} \mathrm{C}\right)$ and the white form $\left(93.32^{\circ} \mathrm{C}\right)$. Auwers 132 measured the molecular weight of several amides and found that some amides especially formamides, showed anomalous behaviour in that the molecular weight was higher than the formula weight. However, 4-methyl-2-nitroacetanilide did not show this behaviour indicating that the compound was not associated in solution. Baly: Tuck: and Marsden 15 S examined the absorption spectrum of 4-methyl-2-nitroacetanilide. Hantzsch 134 commented on several compounds; including 4-methyl-2-nitroacetanilide and a dichloro-dihydroxy derivative of diethyl phthalate, which did not obey Beer's Law. Later Hantzsch ${ }^{135}$ examined the UV spectra of several nitro compounds and found that the UV spectra of 4-methyl-2-nitroacetanilide was solvent dependent in addition to its deviation from Eeer's Law. It was suggested that these properties were related to the existence of coloured isomers.- Muller 136 examined over twenty five compounds which had been found to exist in polymorphic forms. The amides mentioned in this work included acetamide, acetanilide, benzamide, formanilide and 4-methyl-2-nitroacetanilide.

Schaum ${ }^{137}$ listed a wide variety of compounds which showed polymorphism and grouped these compounds into various categories of polymorphism.

The association of amides was studied by Hunter and Chaplin 138 using cryogenic and wet melting point techniques. It was found that 2,b-disubstituted anilides associate even in the presence of an ortho nitro group which was capable of forming an intramolecular hydrogen bond and hence preventing intermolecular association. Compounds such as

associate and have low solubility in hydrocarbon solvents whereas the compounds

were found to be soluble in hydrocarbon solvents and unimolecular. These properties were explained on the basis that the latter compounds contained intramolecular hydragen bonds. These workers also discussed the possibility of optical activity in 2,b-disubstituted anilides. Although optical activity would be predicted in such molecules due to restricted rotation of the amide group this was not realised in practice. This
inability to show optical activity was explained in terms of a low barrier to rotation of the amide group which would result in rapid racemisation. skulski 139 examined the $U V$ spectra and infrared spectra of some o-nitroacetanilides in pyridine:cyclohexane mixtures. The changes in UV spectra with solvent were explained in terms of the relative strengths of the intramolecular hydrogen bond viz. o-nitroacetanilide = 4-methyl-2-nitroacetanilide >1-nitro-2-acetonaphthalide Y 2,b-dimethyl-b-nitroacetanilide. Since the UV spectrum of 4-mthyl-玉-nitroacetanilide in cyclohexane was very similar to that of the yellow form and the infrared spectrum of

N-methyl-4-methyl-2-nitroacetanilide was similar to the white formy it was concluded that the yellow form contained intramolecular hydrogen bonds and the white form contained intermolecular hydrogen bonds. This view was confirmed by the infrared spectra of the yellow and white forms (kEr disc). The yellow form showed bands near $3400 \mathrm{~cm} \mathrm{~m}^{-1}$ and $1710 \mathrm{~cm}^{-1}$ whereas the white form showed bands near $3300 \mathrm{~cm}^{-1}$ and $1690 \mathrm{~cm}^{-1}$. These bands were assigned to $V N-H$ and $v C=0$ respectively. It was also noted that after grinding the yellow form for about five minutes with KBr the spectrum of the white form was obtained whoih was known to be the stable form. No other compound mentioned showed this behaviour. This technique offers a method for detecting polymorphism when the phenomenon depends on the presence of a weak: hydrogen bond which can change to a more stable system involving intermolecular hydrogen bonds.

Stulski 140 has examined the ultraviolet absorption spectra of several o-nitroacetanilides including o-nitroacetanilide, 4-methyl-2-nitroacetanilide, and 1-nitro-2-acetamidonaphthalene. The UV spectra of these compounds changed considerably with solvents whereas no change was observed with the N-methyl analogues of these compounds. It was concluded that these compounds were intramolecularly hydrogen bonded in cyclohexane but addition of a solvent, such as methanol, caused the formation of a noncoplanar species since the solvent could compete with the nitro group for the formation of hydrogen bonds with the amide group.

Extensive studies of the solvent dependance of the ultraviolet absorption spectra of numerous nitroacetanilides and a few nitrophenols led Skulski to conclude that the nature of the hydrogen bond in such molecules was obtained better with aid of UV spectroscopy than by other physical techniques such as infrared spectroscopy.

The infrared and ultraviolet spectra of two polymorphic forms of 4-amino-2-nitroacetanilide were examined and Skulski concluded that the red form contained an intramolecular hydrogen bond whereas the yellow form contained an intermolecular hydrogen bond.

Identification_of_Rolymorphic_forms_of_crystals

by_infrared_spectroscogy

The use of infrared spectroscopy to recognise polymorphic forms is well established and is complementary to other techniques available for this tasks such as X-ray analysis of powders, optical microscopy, and electron microscopy. The infrared technique offers advantages such as the use of samples of the order of 1 mg , the analysis is rapid and the detailed character of the spectrum can be used as a permanent record for characterisation and comparative purposes. Kendall in 1953 reported on the use of infrared spectroscopy to identify polymorphic forms of dyes and titanium dioxide in the form of mulls. 141 In the case of dyes, which often occur as powders rather than crystals, the use of the microscope is not possible. However, by means of infrared spectroscopy Kendall was able to determine polymorphic forms qualitatively and quantitatively present in mixtures to the level of about 1%. Mesley ${ }^{142}$ has examined the solid state infrared spectra of 35 steroids and investigated the various polymorphic forms. About 20 of these steroids showed polymorphism and this could be ascribed to the formation of different types of hydrogen bonds. Examples of some other compounds, mainly of pharmaceutical interest, which have been examined for polymorphism by infrared spectroscopy are trimethorprim, 143 sulphonamides, 144 steroids, 145 cephaloridine, 146 phenobarbitone 147 and acetohexamide. 148

The occurence of polymorphism has been detected in steroids by means of a technique which involves comparison of the infrared spectra after melting and resolidification with that of the original solid. 149 In this procedure polymorphic forms of the same compound, treated under the same conditions of melting and cooling, will revert to that single polymorph favoured by energy consideration. This approach requires complete melting, identical cooling rates, and the absence of foreign matter that could provide nucleation sites favouring a particular polymorph.

Since polymorphic transitions can be induced by the grinding process involved in making potassium bromide discs and since polymorphism is a phenomenon of wide occurence the resulting infrared spectra may not correspond to the original material. In order to test for possible changes occurring during the preparation of a disc the spectrum given by the disc and that produced by a mull made under as mild conditions as possible should be compared. If no changes occur then the crystals have not undergone a polymorphic transition. However, it cannot be assumed that if a certain crystalline solid does not change on grinding that the compound does not show polymorphism. Several examples of variations between mull and pellet spectra have been reparted by Eaker ${ }^{150}$ and warnings of different spectra from different polymorphs are given in textbooks on practical infrared spectroscopy. 151

Folymorehism_and_molecular_conformation

The technique of X-ray diffraction has been used to solve the crystal structures of polymorphs and several polymorphic amides have been examined. Using this technique exact values of bond angles, bond lengths and molecular contacts can be found. Haisa and co-workers have examined the crystal structures of the polymorphs of p-methylacetanilide (FMA) 72 and p-hydroxyacetanilide (FHA). 73 Orthorhombic (O) and monoclinic (M) forms of each polymorph were examined. The main difference between the palymorphic forms of each compound is that molecular pacting: as revealed by the space group, is different whereas there are only minor differences in intramolecular bond lengths and bond angles. A comparison of the crystal structures of these polymorphs is presented in Table VI.

TABLE VI

	FMA	PMA	PHA	PHA
Space group	$\mathrm{F} 2_{1} / \mathrm{c}$	Pnaz	Fcab	$\mathrm{Fe} 1 / \mathrm{a}$
(A)	2_{1}	a glide	b glide	a glide+c
				translation
(E)	$N(a m i d e)$	N(amide)	O(hydroxy)	Q (hydroxy)
(C) O...D(A)	2.923	2.904	2.724	2.663
D....H(A)	2.05	1.97	1.91	1.80
O...H-D $\left(^{\circ}\right.$)	178	174	171	165
$\mathrm{C}=\mathrm{D} . \mathrm{H} \mathrm{H}\left({ }^{\circ}\right)$	142	166	128	136
(D)	\square	a	b	[102]
(E)	antiparallel		parallel	$\mathrm{O}(\mathrm{OH}) \ldots \mathrm{H}-\mathrm{N}$
$\mathrm{O}(\mathrm{OH}) \ldots \mathrm{H}-\mathrm{N}$				
	molecular	molecular	hydrogen	hydrogen
	stacking	stacking	bond	bond
(F)	inversion	c	a glide	a glide
		translati		
(G)	(100)	(010)	(001)	(010)
(H)	a	b	c	b

The characteristic feature of the crystal
structures of p-methylacetanilide and p-hydroxyacetanilide are summarised in Table VI under items (A) to (H). The molecules related by (A) are linked by the hydrogen bond $C=0 . . . H-(B)$ with dimensions (C) to form a chain along (D). The chains are held together by (E) between molecules related by (F) to form a sheet parallel to (G). The sheets are stacked along (H) by van der Waal's interactions. The torsion angles around $C(1)-N$, where $C(1)$ is the ring atom joined to the amide group, is -19.6° (FMA (m)), -8.3° (FMA(D)), 17.8* (FHA(O)): $\mathbf{S B}^{\circ}$ (FHA (M)). The resonance interaction between the ring and amide group depends on this torsion angle. This effect could account for the slight changes in molecular geometry between the polymorphs. Haisa did not report on any aspect of infrared spectroscopy in his wort: on FMA and FHA.

Conformational_Folymorphism

Structural investigations consistently show that bond angles and bond lengths do not differ significantly between polymorphs as was indicted in the case of the polymorphic forms of p-methylacetanilide and p-hydrocyacetanilide. Large deviations are not expected since relatively large energies are required to bring about changes in these quantities. For example, in the case of aromatic nitro compounds and anilides, groups such as nitro or amide would be expected to be very nearly in the same place as the benzene ring so as to maximise the overlap of the p-orbitals. This is not the case with single bonds where the energy involved in the torsional parameter is of the order of 4-8 kJmol-1. This value is of the same order as the energy difference between crystalline forms. Since it is the torsional parameters which determine the conformation of molecules, for molecules with torsional degrees of freedom, various polymorphs may exhibit significantly different molecular conformations. Several examples of such cases have been reported and these include 2,2',4,4'6,6'-hexanitroazobenzene, 152 the antiviral agent virazole, 153 and, adenosine 5'-monophosphate. 154

The development of advanced computational technology has led to much work on the prediction of crystal structures and comparisons of the energies of hypothetical structures. The parameters which must be considered in such calculations have been summarised by Kitaigorodsky, ${ }^{155}$ and Kaloustian. ${ }^{156 .}$

It is interesting to note that kiitaigorodsky states that "Most conformational calculations are conducted on free molecules" and that "the crystal field does not affect the lengths of the bonds in any way and alters but insignificantly the values of the valence angles".

Bernstein and Hagler 157 have termed the occurrence of polymorphism due to molecules adopting different conformations in different crystalline forms as "conformational polymorphism". In such cases the differences in molecular conformation must be directly related to intermolecular or crystal forces since this is the only variable in the system. Hence conformational polymorphism provides excellent opportunities for investigating the relationship between crystal forces and molecular conformation.

The work of Eernstein and Hagler on the conformational polymorphism of N-(p-chlorobenzylidene)-p-chloroaniline(BACL) has been reported. 158 Bar and Bernstein have examined the conformational polymorphism of p-methyl-N-(p-methylbenzylidene)-aniline (EAME). 157

These compounds were chosen since their lattice paramaters were known (EACL) 160. (EAME)161. The molecules are relatively small and can be reasonably compared with model compounds which are amenable to ab_initio calculations. Also the conformation of the molecules is defined by two exocyclic torsion angles. Since the crystal structures do not contain molecules of solvation the crystal structure is determined by interactions between like molecules. Finally the molecular conformation in the two polymorphs of EACL differ significantly. In one form (triclinic space group Fl) the molecule is essentially planar while in the second form (orthorhombic space group Focn) the exocyclic torsion angles are each 24.8° with rings rotated in opposite senses with respect to the four atoms in the central bridge.

Lattice emergy calculations were performed using "6-12":" $6-9 "$ and an exponential function. The charges on atoms for calculating the electrostatic contribution to the total energy were estimated from values obtained
 the difference in molecular energy due to rotations about the N-phenyl and CH -phenyl bonds. These calculations let to the result that the triclinic form was the more stable structure (which is in agreement with. experiment). However, the triclinic: form contains the more highly energetic plamar form and, in order to discover why the molecule does not pack in the crystal in which the intramolecular energy is a minimum;
calculations were performed on a system in which the dichloro compound (BACL) was placed in the crystal structure of the dimethyl compound (BAME). The latter compound is trimorphic and in one form the molecules have the low energy conformation and it was this crystal structure which was used in the calculations. The analysis of the results showed the lack of stability to arise from the relatively unfavourable energetic environments of the aniline ring (including its Cl) as compared with its enviromment in the observed crystal.

The examples discussed above show that it is now possible to calculate crystal structures and to compare these with known structures. Polymorphic structures can by analysed in detail and subtle differences in packing and conformation can be studied and if necessary, hypothetical structures can be constructed and analysed in order to achieve a deeper understanding of forces which are operating in crystals. Such an approach is possible using the crystal structures of the trimorphic 4-methyl-玉-nitroacetanilide which will be described in a subsequent chapter and an additional feature in this case would be the contribution that the various types of hydrogen bonding would make to the lattice energy.

Irgnsformation_of Rolymorghic_forms
 in_the_solid_state

The formation of polymorphic forms of crystal is usually associated with recrystallisation procedures i.e. the crystalline form of a compound is dependent to some extent on the type of recrystallisation solvent. One polymorph may crystallise from non-polar solvents, another from poler solvents, and perhaps even a third one from hydrogen bonded solvents. Another manner in which polmorphs may arise is a solid state transformation which may occur at ambient temperature or more rapidly on heating. During the latter process the extent of "reaction" may be observed as a band or front moving through the parent crystal. The daughter crystal may be formed in a random manner with no preferential orientation but some changes occur with strong orientational growth. The latter type of growth is described as a topotactic growth and can be recognised by optical microscopy, electron microscopy, or by $X-r a y$ diffraction techniques.

In this research 4-methyl--2-nitroacetanilide has been obtained in the following three forms:-
(i) a dark yellow or amber polymorph (MNA-2),
(ii) a yellow polymorph (MNA-3), and,
(iii) a white polymorph (MNA-1)

It has been found that the following solid state phase changes occur:-
(a) MNA-2 changes to MNA-3 on standing at ambient temperature for a few days or in several minutes in a te mperature range 60° to 90°;
(b) MNA-3 has been observed to change to MINA-1 over a period of several weeks. (However, some sample of MNA- 3 have remained stable for over three years at ambient temperature);
(c) MNA-S has been observed to change to MNA-1 on maintaining the temperature of the sample in the range $80-90^{\circ} \mathrm{C}$.

The crystal to crystal phase changes observed in (b) and (c) occur with new growth either directed along the long axis of the filament or in a direction at approximately 45' to the filament. Similar behaviour has been observed with other compounds and a brief account of such examples follows.

A review of thermal reactions in the solid state by Curtin Et_at. was published in 1979. 162 In some of the examples cited in this review a chemical change occurs in the solid phase so that one or two compounds are formed whereas the other examples involve the formation of a new conformation i.e. a polymorphic transition (or phase transition) has occurred. Where changes in the type of hydrogen bonding occur, as in a change involving a transition from intramolecular to intermolecular hydrogen bonding, it is not obvious whether such changes should be considered as solid state reactions or a polymorphic transition. In the former type of changes the distance between the reacting centre and orientation of molecules is critical. This has led to the synthesis, by the strategem of "crystal engineering", of stereochemically pure products, and also of single crystal, extended chain polymers, both of which are difficult if not impossible to prepare by solution techniques. Examples of such reactions have been presented in review articles by Schmidt 163 and Cohen. 164 Reactions in which the product shows one or a small number of erystallographically equivalent, definite orientations relative to the lattice of the parent crystal and where the reaction has proceded through the bulk of the reactant are said to be topotactic. Topotactic reactions and topology in the solid state have been discussed in a comprehensive manner by Thomas. 165

In surveying reactions of crystals Curtin has considered two hypothetical mechanisms. The first type is designated the "homogeneous mechanism" and involves the conversions of "A" molecules of the starting material in the initial crystal lattice to "B" molecules which remain in place at the sites previously occupied by the " A " molecules from which they were formed. Thus the reaction proceeds through a continuous series of solid solutions and the reaction would be topotactic. In the second hypothetical mechanism, the "heterogeneous mechanism", the reaction starts at one or several sites and reaction fronts spread through the crystal. No mixing of A and B structures occurs. If the orientation of growth of the new lattice is determined by the old lattice at the interface it is possible that the reaction proceeding by the "heterogeneous mechanism" could be topotactic.

A likely candidate for the homogeneous mechanism is the phase transition of the perchlorate (F) since a crystal of the β-form, stable at $25^{\circ} \mathrm{C}$, after structure determination at that temperature gave on cooling to $3^{\circ} \mathrm{C}$ single crystals of the α-form which was a second

$\mathrm{ClO}_{4}{ }^{-} \quad \mathrm{P}$
polymorphic form of the compound and this new crystal was used to determine the new crystal structure. 166

The polymorphic change was explained in terms of inversions and rotations but an alternative mechanism based on the idea of simple planar shear has been proposed. 167
The reversible change of red crystals of the anil
(A) at room temperature to colourless at liquid air temperature has been interpreted as an equilibrium of tautomeric forms. 168

The thermal rearrangement of 2,2'-diiodobenzoyl peroxide has been extensively investigated. 169 Single crystals of the compound slowly transform at room temperature to single crystals of (B) over a period of several weeks. The relationship between the new crystallographic axes and the old ones has been discussed. However, the reaction mechanism cannot be homogeneous in spite of the observed topotaxy.

In the heterogeneous mechanism the reaction begins at one or more nucleation sites and is characterised by the spread of well defined reaction fronts through the crystal. Certain phase changes involving small or no change in crystal shape have been studied in detail and that of the conversion of α - and f-p-dichlorobenzene has been carefully examined. 170 The transformation only involves reorientation of molecules. The thermal transformation of the metastable g-phase of p-nitrophenol to the stable α-phase has been found to occur with the phase boundary moving perpendicular to the axis of the needle shaped erystal. 171 The structural change in this transformation involves a twist of rings in adjacent linkgs in the chains of molecules.

The conversation of the yellow form of 3,b-dichloro玉,5-dihydroxyterephthalate (C) to a white form of the sampe compound has been examined in detail bu Curtin and Byrn. 172

C

The change involves a rotation of phenolic hydroxyl groups together with a change of intramolecular hydrogen bonding in the yellow form to intermolecular hydragen bonding in the white form.

In addition, the plane of the ester groups changes from a position of being coplanar with the ring to one where the ring and ester groups are approximately at right angles. Also each ring has to rotate round an axis by 180 ${ }^{\circ}$. A description of the changes as observed using an optical microscope has been recorded. 173 This thermal rearrangement has also been studied by spectroscopic means by Swiatkiewicz and Frasad. 174 The rearrangement has been found to start as a homogeneous process but becomes heterogeneous as product forms. A temperature-dependence study of the Fiaman phonon spectra suggests that the rearrangement may be defect controlled rather than phonon assisted.

Colour changes are also observed in the solid
state conversion of \quad-(4'-methoxyphenyl)-1,4
-benzoquinone. 175 On heating the yellow form changes to a red form. Single crystals rearrange by a process which begins at a number of nucleation sites in the crystal and spreads by migration of well defined fronts. The yellow and the red constituent molecules are related to each other as diastereoisomers. The difference in colour is accounted for by the stacking of the molecules in the yellow form with overlap between the adjacent quinone rings, whereas in the red form there is π complexing between the quinone and anisyl rings.

The structures of the yellow and orange forms of diethyl-2,5-diaminoterephthalate ($D: R=H$) have been determined by $X-r a y ~ c r y s t a l l o g r a p h y ~ a n d ~ t h e ~$ rearrangement of single crystals studied. 176

D

The structural results show that the reaction involves major changes in hydrogen bonding and also significant molecular reorientation. The reaction was shown by studies using an optical microscope to be heterogeneous with nucleation at one or more sites followed by spread of the reaction through the crystal. The heterogenequs thermal transformation of the orange diethyl NN'-diphenyl-1玉,5-diaminoterephthalate (D \quad Fi=Fh) has been studied by Mann, Curtin and Faul. 177 The orange form contains benzene which becomes included in the complex when the parent compound is recrystallised from benzene. Dn heating, a red benzene-free crystalline solid is formed. The reaction normally began at a side face of the crystal but naturally occurring defects or pin prick:s could influence the start of the reaction.

Abstract

Naphthazarine (E) exists in three polymorphic forms:- a green form (A), a dart: red form (B), and a light red form (C).

E

The green form (A) changes to the red form (C) on cooling to - $0^{\circ} \mathrm{C}$. The two structures differ in their edge-to-edge molecular contacts. The reaction belongs to the heterogeneous class and the reaction front spreads along the needle axis of the crystal. 178 .
o-Acetamidobenzamide has been found to crystallise in at least two distinct forms, both of which undergo complex thermal solid-state transformations which result in the formation of Ξ-methylquinazol-4-one (F). 179

F

The polymorphic transformation occurs at $150^{\circ} \mathrm{C}$ and involves loss of an intramolecular N-H... O hydrogen bond and formation of a new intermolecular N-H... D hydrogen bond. The polymorphic transformation occurs simultaneously with the cyclodehydration reaction. Different phases were characterised by infrared spectroscopy and by differential scanning calorimetry curves.

Although this next example does not involve transformation of polymorphic forms it is included because it is a solid state reaction which has been shown to proceed at a faster rate in the crystal than in solution or in the melt.

Methyl-p-dimethylaminobenzenesulphonate rearranges to p-trimethylammoniumbenzenesulphonate.

The structure of the starting material was determined by x-ray crystallography and showed that the molecules in the crystal are ideally orientated for the given reaction. 180 This example emphasises that rapid changes in crystals are possible if the correct topology is present.

Another rare example of a reaction which occurs more rapidly in the solid phase than in the liquid phase is formation of compounds containing azetidione groups from isocyanate groups in 4.4'-methylenebis (phenyl isocyanate) ($\left.\mathrm{DCNC}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NCO}\right)$ known in industry as MDI 181

An important feature of the crystal structure of this compound is that adjacent molecules have isocyanate groups related by an inversion centre with intermolecular contacts of only J. $146(2)$ A and with adjacent antiparallel $N=C$ atom pairs forming an approximate square. Dctahydro-1, 3:5:7-tetranitro-1, З,5,7-tetrazocine (HMX) is an important monopropellant material and is known to exist in four solid-state polymorphs labelled α, in γ : and $\delta \cdot \quad x-r a y$ crystal structure determinations on the $\alpha-182$ g-, 18S and $\delta-184$ forms have been carried out. $\alpha-H M X$ and $\delta-H M X$ are quite similar to one another as far as the conformation of the HMX molecule is concerned: but differ in the positioning of the molecules relative to one. another in the lattice. The conformation of the ring is a "boat" form. B-HMX exists more in the "chair" form giving the entire molecule a centre of symmetry.

The laser Raman spectra of the four polymorphs have been recorded and anlysed by Goetz and Brill.185 Thermally induced phase transitions could be readily detected by Faman spectroscopy.

The intramolecular and intermolecular interactions in these polymorphs have been examined in great detail by Erill and Fieese 186 with a view to understanding the known properties of this material. Erill and karpowicz 187 have reported a Fourier transform infrared method to study the rates of solid-solid phase transitions in HMX.

A rare example of a solid state rearrangement of an organometallic compound has been reported by Etter and Siedle. 188

(Fhenylazophenyl)palladium hexafluoroacetylacetonate (G) crystallises from hexane solution in the form of yellow needles which on heating to approximately $90^{\circ} \mathrm{C}$ undergo an expansion of about 10% along the meedle axis. On further heating a red phase front develops at one end of the crystal and moves along the needle until the entire crystal is an opaque red colour. Weissenberg patterns indicated that the red solid formed from single crystals of the yellow form was microcrystalline. On the basis of their known structures and their relationship to the observed crystal expansion it was proposed that molecular stacks slip together as in a Martensitic transformation.

CHAPTER THREE

```
The first part of this chapter contains an account of the crystal and molecular structure of the white (MNA-1) and yellow (MNA-3) polymorphs of 4-methyl-2-nitroacetanilide.
The second part contains the crystal and molecular structure of the amber polymorph (MNA-2).
```

The X-ray diffraction experiments described in this chapter were performed by John C. Moore at Birkbeck College, Malet Street, London WClE 7HX. Mr. Moore processed the diffractometer data to obtain the atomic coordinates of the three polymorphs.

Abstract
The crystal and molecular structure of white (MNA-1) and yellow (MNA-3) forms of 4-methyl-2-nitroacetanilide have been determined by X-ray diffraction techniques ${ }^{196}$ The crystals of MNA-1 are monoclinic, $a=10.421(2), b=9.980(2), c=9.568(2) A_{\text {, }}$, $\beta=99.51(5)^{\circ}$, space group $P 2_{1} / c(14), Z=4$. Crystals of MNA-3 are triclinic, $a=17.956(2), b=12.908(2), c=4.039(1) A$, $\alpha=93.13(5)^{\circ}, \beta=83.71(5)^{\circ}, \gamma=90.77(5)^{\circ}$, apace group $\overline{\mathrm{P}}(2)$, $Z=4$. Both structures were solved by direct methods using the SHELX-76 system of programs and refined using full matrix least squares. The numbers of unique reflexions used in refinement and the final R values are MNA-1, 1545, 0.0674 ; MNA-3, 3127, 0.0654. The two distinct molecules in MNA-3 have intramolecular hydrogen bonds, different molecular conformations, although both are fairly planar, and each type is closely packed in columns of parallel molecules along the c direction. In MNA-1 the C $=0 \ldots \mathrm{H}-\mathrm{N}$ geometry is indicative of intermolecular hydrogen bonding and the molecules adopt a conformation in which the nitro and amide groups lie in planes at approximately 45° to the benzene ring.

White and yellow polymorphs of MNA $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ were first reported
proposed that intermolecular hydrogen bonding was present in the white form and intramolecular in the yellow form. During the present investigation a third (amber) polymorph of MNA has been found to exist and four different types of solid state transformations have been observed to take place at room temperature.

X-ray analyses of the white and yellow polymorphs have been completed and quite different molecular conformations have been found in the two structures. It has been verified that fairly strong intermolecular hydrogen bonding is present in the most stable (white) polymorph and in the yellow form the amide hydrogens are situated such that an intra hydrogen bond is indicated.

The objectives of this work were to establish confirmation, or otherwise, of Skulski's proposal; to obtain further information on possible conformations of nitro groups, viz. when close to an amide group; ultimately to use this example of polymorphism to study the relationships between crystal forces and molecular conformation $157,158,189$
after the manner of Bernstein \quad, , to study a rare example of solid state phase transformations and to explain the actual mechanism of the topotactic transformation from yellow to white form.

This present paper reports the atructures of the most stable (white) form, MNA-1, which has been found to be monoclinic ($\mathrm{P} 2_{1} / \mathrm{c}(14)$) and of the next most stable (yellow) form, MNA-3, which is triclinic (P $\overline{1}(2))$.

The structure of the relatively unstable (amber) form, MNA-2 (also monoclinic, $\mathrm{P}_{1} / \mathrm{C}$) and an account of the mechanisms and energy
changes of the transformations will be published later.

The crystals were grown by slow evaporation, MNA-1 forming white tabular crystals from aqueous ethanol and MNA-3 forming very long filamentary yellow crystals from petrol (boiling range $60^{\circ}-80^{\circ} \mathrm{C}$) or from carbon disulphide. The MNA-3 crystals have longitudinal/ transverse dimensional ratios $10: 1$ to $10^{2}: 1$ and great difficulty was experienced in trying to obtain approximately equi-dimensional crystals, suitable for X-ray diffraction data collection, until a dominant cleavage plane was discovered at approximately 65° to the longitudinal axis. All other attempted methods for reducing the crystal length resulted in excessive cracking and initiation of the phase transformation from MNA-3 to MNA-1.

Unit cell and space group data were obtained from rotation and Weissenberg films. Accurate cell dimensions were determined by least squares refinements of Θ, \mathcal{X} and \varnothing values measured on a four circle diffractometer. For structure analysis purposes, integrated intensities were measured by step scanning in the ω / \boldsymbol{e} mode. Lorentz and polarisation factors were applied in the usual manner, and semi-empirical absorption corrections were made using 193
the method of North, Phillips and Mathews modif
according to Kopfmann and Huber 192 and Tickle.

Crystal data and details of diffractometer data collection are recorded in Table 3.1 .

Both structures were solved by direct methods using the program SHELX-76. The E-maps produced gave all the non-hydrogen atoms of MNA-1 and all except three non-hydrogen atoms of the bimolecular asymmetric unit of MNA-3. An electron density map then gave all the missing non-hydrogen atoms of MNA-3. For each structure, three cycles of isotropic least squares refinement were then completed, with hydrogen atoms in theoretical positions, before using a difference electron density map to actually locate the non-methyl hydrogens. Although the difference maps gave indications of significant electron densities present in all methyl hydrogen regions, the peak locations given did not correlate to ideal methyl hydrogen geometries, neither relative to each other nor relative to the carbon atoms. The final R values were then achieved by further least squares refinements, using anisotropic temperature factors for the non-hydrogen atoms and isotropic factors for all the hydrogens, with methyl hydrogens refined as rigid groups. However, when three hydrogen atoms, each with a site occupation factor of unity, were placed in each methyl group, exceptionally high isotropic thermal parameters were obtained for those hydrogens. When six hydrogens per rigid methyl group were considered, symmetrically orientated and each with a site occupation factor of 0.5 , more reasonable isotropic parameters were obtained together with reductions in ' R and R_{W} values, which were shown to be significant by application 190
of Hamilton's tests - It was thus concluded that some appreciable degree of methyl hydrogen disorder is present in both structures.

The numbering system for MNA which is used in all polymorphic forms. This system is used in crystal structures and general discussions.

Fig. 3.1

Results

The atom identity scheme is shown in Fig.3.1, corresponding bond lengths and bond angles are presented in Table 3.3, mean plane equations, interplanar angles and deviations of atoms from the planes are given in Table 3.4. Atom co-ordinates and isotropic thermal parameters, with e.s.d. values are in table 3.5.

MNA-1 Structure:

The results confirm Skulski's proposal that intermolecular hydrogen bonding is present in the stable, white, MNA-l and this has been found to be due to strong $C=0 \ldots . . . H^{-N}$ bond between the molecules which are c-glide related, to form chains along the $\underset{\sim}{c}$ direction. The chains are held together by anti-parallel molecular stacking involving molecules related by inversion, thus forming a sheet structure parallel to (100).

The intermolecular hydrogen bond geometry of this structure is 0
such that the 0.... distance is 1.947 (38)A, the O....H-N angle is $172.8(2.5)^{\circ}$, the $0 \ldots N$ distance is $2.859(4) A$ and the $C=0 \ldots$....N N torsion angle is $165.4(2.5)^{\circ}$, where $C=0$ are at x, y, z and $H-N$ are at $x, \frac{1}{2}-y,-\frac{1}{2}+z$.

The next closest intermolecular contacts are as follows:

$$
\begin{align*}
& 2.37 \text { (8)A between } H(10) \text { at } x, y, z \text { and a } \tag{i}\\
& \text { methyl hydrogen of } C(7) \text { at } 1-x, 1-y, 1-z \text {. } \\
& 2.49 \text { (8)A between a methyl hydrogen of } C(7) \tag{ii}\\
& \text { at } x, y, z \text { and a methyl hydrogen of } C(9) \text { at } \\
& -1+x, y, z \text {. }
\end{align*}
$$

MNA-3 Structure:

In this polymorph there is no significant intermolecular bonding but there are indications of intramolecular effects. The results show that the shortest distances for possible intramolecular interactions, involving the amide hydrogens, $0 \quad 0$
are 1.950 (35)A and 1.976 (38)A and both of these are $H(10) \ldots 0(2)$
distances (within molecules 1 and 2 respectively). With respect to possible intermolecular interactions, the shortest distance is between $H(10)$, molecule 1 , and $O(2)$, molecule 2 , and this is 0
2.625(35)A, the next shortest intermolecular distance being 0
3.050 (38)A between $H(10)$, molecule 2 , and $O(2)$ molecule 1
($x, y, z+1$). Since such intermolecular closest contacts are larger than the sum of the van der Wal's radii, intermolecular hydrogen bonding considerations can thus be discounted.

The packing arrangement may be described as columnar, the columns consisting of either type 1 or type 2 molecules. The columnar direction is parallel to c and along each column the'stacking
arrangement consists of x, y, z or $-x,-y,-z$ molecular types, the benzene ring planes being inclined to the c direction at an angle of 31.6° for molecule 1 columns and 29.2° for molecule 2 columns. This dominant columnar structure in the c direction would account for the pronounced filamentary or needle shape of the crystals, particularly since the longitudinal axis of the macro crystal coincides with the short c direction.

The average ring-ring interplanar spacings are $3.433^{\circ} \mathrm{A}$ (molecule 0 1 columns) and 3.52 A (molecule 2 columns), the overlapping of the rings presumably being stabilised by the weak bonding forces such as those operating in IT woleculat complexes. Another interesting feature of the columnar structure is that the $C=0$ and $N(2)-0(2)$ bonds lie nearly perpendicular to $\underset{\text { c }}{ }$, thus maximising the distances between the amide-amide groups and nitro-nitro groups along the c direction.

It has also been found that type 1 molecules at translation $\mid+\bar{x}$, $1+\bar{y}, 3+\bar{z}$ have ring planes which are essentially co-planar with the ring planes of the type 1 molecules (x, y, z) and this would explain the occurrence of the most intense X-ray reflexion in the diffraction pattern, $d(3 \overline{1} 1)=3.432 A^{\circ}$. Not only are the ring-ring interplanar spacings of molecules of type 1 equal to 3.43 A , as previously stated, but the angle between the normal to the ring pianes and the normal to the (3II) planes is only 2.4°. The parallel sets of rings of type 2 molecules account for the second most intense reflexion, corresponding to $d(021)=3.329 A$, the angle between the normals to these planes and type 2 rings being 5.4°.

FIG 3.2

A view along Y showing the arrangement of molecules 1 and $1^{\prime \prime}$ in MNA-3 (orthonormal coordinates)

The packing arrangement is such that $\pi-\pi$ interactions between amide groups and between benzene rings is particularly favoured by the degree of overlap which occurs in the columnar stacking of type 2 molecules. However, the reduced degree of overlap of type 1 molecules, and hence less favourable T T-Tinteractions, does increase the possibility of a stronger intramolecular amide-nitro group interaction, i.e. an increased intramolecular hydrogen bond effect, resulting in a more planar molecule.

Discussion

In both polymorphs the molecules contain essentially planar amide groups in trans (Z) form and the benzene rings are also reasonably planar, Table 3.4 . However, together with the nitro groups, no overall molecular planarity exists in either form with the molecule of MNA-I having significantly greater interplanar angles than even the least planar molecule of MNA-3, Table 3،4b.

The nitro group angle relative to the benzene ring is, for MNA-I in particular, quite different to the general trend of non-sterically hindered aromatic nitro groups as reported by Holden and Dickinson (1977) and the $O(2)-N(2)-O(3)$ bond angles in both structures are smaller than the equilibrium value of 126.4° suggested by the same authors, thus suggesting that significant steric hindrance is present.

The results show that several bond lengths and angles are dependent on the conformation of the nitro and amide groups. In the single conformation of MNA-1 and both conformations of MNA- 3 , the $C(3)-C(4)$ and $C(5)-C(6)$ bonds are the relatively short ones in the ring, Table3.3, and the lengths of the $C(1)-N(1)$ and the longer $C(2)-N(2)$ bonds
remain very nearly the same. However, the length of the $C(1)-N(1)$ bond is shorter than the corresponding bond in acetanilide (1.426 A) 67
(Brown and Corbridge) and in eight other anilides examined 71,720 by Haisa and co-worker (average bond length 1.420 A). This indicates that there is a significant contribution from the canonical form (Figure 3.3) in all three conformations. The approximately constant $N(2)-C(2)$ bond length is in accordance with the reported lack of correlation between $C-N$ bond lengths and angles of nitro group rotacions out of ring planes.

There are distinct differences in the geometrics of the amide groups in MNA-1 and MNA-3, Table 3.3 and these are consistent with the idea of competition for the $N(1)$ lone pair electrons, either by the adjacent carbonyl group or by the ring and nitro group. In MNA-1, interaction by the carbonyl group predominates so that the amide group geometry is similar to that in acetanilide. In MNA-3 interaction between the $N(1)$ lone pair electrons and the ring and the nitro group predominates, but in molecule 2 the conjugation between the nitro and amide groups is reduced due to the increased rotation of the amide and nitro groups relative to the ring plane and also due to weak $\pi \boldsymbol{\pi}$ interaction between the overlapped, parallel amide groups. These effects would explain why the amide group in MNA-3, molecule 2 , is the most planar amide group of all three molecular conformations reported in this work.

Electron withdrawal by the nitro groups (in both MNA-3 molecules) causes the $N(1)-C(8)$ bonds to be longer and the $C(8)-O(1)$ bonds to be shorter, Table 3.3 than is generally observed in anilides (Brown 677172
and Corbridge, ; Haisa et al. , .).

Fig. 3.3
A canonical form for MNA.

The shortening of the $\mathrm{C}(8)-\mathrm{C}(9)$ bonds in all three molecules is presumably due to hyperconjugation and an increased hyperconjugative effect may also explain the indicated shortening of the $c(4)-c(7)$ bond in MNA-3, molecule 2, which would then offset the reduced conjugation of the ring with the nitro and amide groups.

Coplanarity of the amide group and benzene ring is prevented by steric hindrance, either by the nitro group in MNA-1 ($N(2) \ldots . .0(1)$, $2.69{ }^{\circ} \mathrm{A}, \mathrm{O}(2) \ldots \mathrm{O}(1), 2.97 \mathrm{~A}^{\circ}$ and $\mathrm{O}(3) \ldots \mathrm{O}(1), 3.10^{\circ} \mathrm{A}$) or by $H(6)$ in MNA-3 ($\mathrm{H}(6) \ldots .0(1), 2.26 \mathrm{~A}$, molecule 1 and 2.32 A , molecule 2).

In all three molecules, maximum resonance interaction between the NH and CO groups is prevented by the displacement of the amide hydrogen out of the amide plane, towards the plane of the benzene ring.

In both molecules of MNA-3, the displacement of the amide group, due to $H(6)-O(1)$ steric hindrance, is also accompanied by a displacement of the nitro group in such a way that an intramolecular $H(10) \ldots .0(2)$ interaction is indicated ($\mathrm{H}(10$) $\ldots .0$ (2) being 1.95 A and 1.98 A in molecules 1 and 2 respectively).

The displacements of the carbon atoms from the mean plane of the benzene ring in MNA-1 reveal a slight boat conformation, $C(2)$ and $C(5)$ being out of the ring plane, Table 3.4 c A similar but far less significant effect is observed in both benzene rings of MNA-3, with $C^{\prime}(1)$ and $C(4)$ being the atoms with maximum displacement from the mean plane.

Stereo paic illustrations of the structure of MNA-1 and MNA-3
are presented in Figures 3.4 a and 3.4 b respectively.

Fig. 3.4 a

MNH-3 CELL CONTENTS IVIEN DOWM 201

Fig. 3.4 b

Stereo Pair views of MNA-1 (upper) and MNA-3 (lower)

Sterecpair $\quad \mathrm{MN}_{\mathrm{i}}-1$

IEW perp. to ring (cell contents)

FIG 3.5

A view down z of the arrangement of molecules in MNA-3 (orthonormal coordinates).

FIG. 3.5 b
MN A -3

N.B. SOAL GROUPS ONITTEO FOR CLARITY ORTHOGOINAL CO-ORDINATES VSED

A view of molecules $1,1^{\prime}, 2$, and 2^{\prime} in $\operatorname{MNA}-3$ (yellow)
Note the coplanarity of molecules 1 and $l^{\prime}(1-x, 1-y, 3-z)$.
The view is down y.

Fig. 3.6View of MNA-1 down x. Benzene rings are represented by lines since they are viewed (approximately) parallel to the ring plane.

Fiy. 3.79 unit cells of MNA-1 viewed down x. The diagram shows the parallel lines of hydrogen bonded amide groups at $y=0.25$ and $y=0.75$ lying parallel to the z axis.

TABLE 3.1- Crystal Data and Experimental Details
(Molecular formula: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$, Rel. mol. mass: 194.1

Max. residual electron density (e A)
0.2
0.3
$U_{\text {ISO }}, R$ and R_{w} values obtained using different CH_{3} group specifications:
a) three H atoms per group, each with unity site occupation factor.
b) six H atoms per group, each with 0.5 site occupation factor.

MNA-1

MNA-3

inolecule 1 Molecule 2
$\mathrm{U}_{1 \mathrm{SO}}-\mathrm{H}(7)$ group (a) 0.215
0.157
0.200
$U_{1 \text { so }}-H(7)$ group (b)
0.098
0.069
0.082
$\left(U_{\text {ISO }}-c(7) \quad 0.084\right.$.
0.078
0.071)
$U_{\text {ISO }}-H(9)$ group (a)
0.237
0.188
0.157
$U_{\text {rSO }}-H(9)$ group (b)
0.091
0.109
0.092
$\left(U_{1 S O}-C(9)\right.$
0.078
0.088
0.070)
0.072

R(a)
0.075
0.065
$R(b)$
0.067
0.098
$R_{w}(a)$
0.107
$R_{w}^{R_{w}(b)}$
0.103
0.092
$\mathcal{R}_{1,1,189,0.005}$
$R_{8,2817,0.005}$
1.039
1.065
1.005
1.004 MNA-3, molecules 1 and 2 , (with esd's, $10^{3} \sigma /{ }^{\circ}$ or σ / deg, in parentheses)

Bond Length/Angle	MNA-1	MNA-3 (1)	MNA-3 (2)
$c(1)-c(2)$	1.391 (4)	1.405 (3)	1.405 (3)
$c(1)-c(2)-C(3)$	121.7 (.3)	121.9(.2)	122.2(.2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	121.3 (.2)	122.1(.2)	121.6 (-2)
$C(2)-N(2)$	1.460 (4)	1.454 (3)	1.459 (3)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{O}(2)$	118.6 (.3)	120.8 (.2)	119.7 (.2)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{O}(3)$	117.4(.3)	118.5 (.2)	118.8 (.2)
$N(2)-0(2)$	1.208 (3)	1.204 (3)	1.205 (3)
$N(2)-O(3)$	1.231 (3)*	1.211 (3)	1.218 (3)
$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{O}(3)$	123.9(.3)*	120.7(.2)	121.5 (.2)
$N(2)-C(2)-C(3)$	116.8 (.3)	116.0(.2)	$116.2(.2)$
$c(2)-c(3)$	1.390 (4)	1.388 (3)	1.386 (3)
c(2)-c(3)-C(4)	120.9(.3)	121.4 (.2)	121.2 (.2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.5 (2.1)	120.7 (1.7)	118.0.(1.6)
$\mathrm{C}(3)-\mathrm{H}(3)$.961 (39)	. 866 (28)	. 916 (26)
H(3)-C(3)-C(4)	119.4 (2.1)	117.9 (1.7)	120.8 (a.6)
$c(3)-C(4)$	1.378 (4)	1.372 (4)	1.383 (3)
$c(3)-c(4)-C(5)$	117.4(.3)	117.3 (.2)	116.5 (.2)
c(3)-C(4)-c(7)	120.6 (.3)	121.9 (.2)	122.0 (.2)
$c(4)-c(7)$	1.507 (4)	1.512 (3)	1.499 (3)
$\dot{c}(7)-c(4)-c(5)$	122.0 (.3)	120.8 (.2)	121.4 (.2)
C(4)-C(5)	1.384 (5)	1.397 (4)	1.392 (3)
$C(4)-C(5)-C(6)$	122.0 (.3)	121.7 (.2)	122.8 (.2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	117.3 (20)	121.7 (1.7)	115.8 (1.4)
$\mathrm{C}(5)-\mathrm{H}(5)$.990 (35)	.988 (32)	. 978 (26)
$\mathrm{H}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	120.6 (2.1)	116.6 (1.7)	121.4 (3.4)

TABLE 3,3Continued..................

Bond Length Angle	MNA-1	MNA-3 (1)	MNA-3 (2)
$c(5)-c(6)$	1.370 (4)	1,367 (3)	1.373 (3)
C(5)-C(6)-c(1)	121.5 (.3)	122.0(.3)	121.3 (.2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	118.2 (1.9)	118.2 (1.6)	120.3 (1.7)
$\mathrm{c}(6)-\mathrm{H}(6)$. 957 (33)	.904 (28)	. 998 (28)
$\mathrm{H}(6)-\mathrm{C}(6)-\mathrm{C}(1)$	120.0 (1.9)	119.8 (0.6)	118.3 (1.7)
$c(6)-c(1)$	1.391 (4)	1.403 (3)	1.393 (3)
$c(6)-c(1)-c(2)$	116.5 (.3)	115.6 (.2)	115.9 (.2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{N}(1)$	119.1 (.3)*	121.5 (.2)	121.3 (.2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	124.3 (.3) *	122.9 (.2)	122.8 (.2)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.410 (4)	1.396 (3)	1.400 (3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	124.8(.2)*	127.2 (.2)	126.5 (.2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(10)$	117.1 (21)	114.0 (1.8)	115.3 (2.2)
$\mathrm{N}(1)-\mathrm{H}(10)$. 918 (38)	. 948 (32)	. 899 (35)
$\mathrm{H}(10)-\mathrm{N}(1)-\mathrm{C}(8)$	115.7 (2.1)	118.7 (18)	115.6 (22)
$\mathrm{N}(1)-\mathrm{c}(8)$	1.346 (4)*	1.366 (3)	1.372 (3)
$N(1)-C(8)-0(1)$	121.3 (.3)*	123.0 (.3)	122.9 (.2)
$N(1)-C(8)-C(9)$	116.0 (.3)*	114.6 (.2)	114.5 (.2)
c(8)-0(1)	1.225 (3)*	1.208 (4)	1.211 (3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	122.7 (.3)	122.4 (.3)	122.7 (.2)
c(8)-C(9)	1.490 (4)	1.501 (4)	1.495 (3)

[^0]TABLE 3.4 Mean plane equations, interplanar angles and deviations of atoms from the planes.
(Plane 1 is identified by atoms $C(1), C(2), C(3), C(4), C(5)$ and $C(6)$ Plane 2 by atoms $C(2), N(2), O(2), O(3)$ and Plane 3 by $N(1), C(8), O(1)$, and $C(9)$)
3.4a), Orthonormal equations:-

MNA-1, Plane 1 Plane 2 Plane 3	$\begin{aligned} & 0.0409(\mathrm{XO})+0.7939(\mathrm{YO})+0.6067(\mathrm{zO})=4.7551 \\ & -0.5437(\mathrm{XO})+0.8277(\mathrm{YO})+0.1389(\mathrm{zO})=0.3724 \\ & 0.3912(\mathrm{XO})+0.9193(\mathrm{YO})-0.0437(\mathrm{zO})=5.8965 \end{aligned}$
MNA-3 (1) Plane 1 Plane 2 Plane 3	$\begin{aligned} & 0.4584(\mathrm{XO})-0.2547(\mathrm{YO})+0.8515(\mathrm{ZO})=8.2181 \\ & 0.6373(\mathrm{XO})-0.2182(\mathrm{YO})+0.7391(\mathrm{zO})=10.6905 \\ & 0.3059(\mathrm{XO})+0.0628(\mathrm{YO})+0.9500(\mathrm{ZO})=8.5229 \end{aligned}$
MNA-3 (2) Plane 1 Plane 2 Plane 3	$\left\{\begin{array}{l} 0.0648(\mathrm{xO})+0.4831(\mathrm{yo})+0.8732(\mathrm{zO})=4.3817 \\ -0.3601(\mathrm{xO})+0.3819(\mathrm{y})+0.8512(\mathrm{zo})=0.7470 \\ 0.3235(\mathrm{xO})+0.1319(\mathrm{yo})+0.9370(\mathrm{zo})=10.1148 \end{array}\right.$

3.4b), Interplanar Angles:-

	MNA-1	MNA-3 (1)	MNA-3 (2)
	44.0°	12.3°	18.0°
Planes 1 and 2	44.0°	21.1°	30.6°
Planes 1 and 3 2 and 3	57.2°	28.0°	43.0°

Planes 1, MNA- 3 (1) and (2) : 53.8°
Planes 2, MNA- 3 (1) and (2) : 71.6°
Planes 3, MNA- 3 (1) and (2) : 4.2°
3.4c) Deviations of atoms from planes

Plane	Atom	Dev	$\text { (A) from } m$	anes
1	c(1)	- MNA-1	MNA-3 (1)	MNA-3 (2)
		-0.0121	-0.0054	-0.0094
	c(2)	0.0169	0.0037	0.0056
	c(3)	-0.0052	0.0014	0.0021
	c(4)	-0.0115	-0.0047	-0.0058
	c(5)	0.0163	0.0029	0.0018
	c(6)	-0.0045	0.0022	0.0059
2	c(2)	0.0042	-0.0006	-0.0001
	N(2)	-0.0150	0.0019	0.0002
	O(2)	0.0055	-0.0007	-0.0001
	O(3)	0.0053	-0.0007	-0.0001
3	N(1)	0.0006	-0.0008	-0.0001
	c(8)	-0.0018	0.0024	0.0002
	O(1)	0.0007	-0.0010	-0.0001
	c(9)	0.0005	-0.0007	0.0000
	H(10)	-0.1465	-0.0770	-0.2093

\qquad
TABLE 3.5

Atom Co-ordinates and Isotropic Thermal Parameters for MNA-1 and MNA-3, molecules 1 and 2 (with esd's, $10^{3} \sigma$, or $10^{3}\left(A^{2}\right)$ in parentheses)
3.5a) MNA-1

А ${ }^{\text {ATOM }}$	\mathbf{x}	y	z	$\mathrm{u}_{\text {iso }}{ }^{*}\left(\AA^{\circ}{ }^{2}\right.$
c(1)	0.6575 (3)	0.3503 (3)	0.4096 (3)	0.049 (2)
C(2)	0.6193 (3)	0.4350 (3)	0.2949 (3)	0.050 (2)
c(3)	0.4889 (3)	0.4599 (3)	0.2431 (3)	$0.056 . \quad(2)$
H(3)	0.4661(34)	0.5216(39)	$0.1659(41)$	0.080 (10)
C(4)	0.3922 (3)	0.4046 (3)	0.3071 (4)	0.060 (2)
c(5)	0.4304 (3)	0.3248 (3)	0.4249 (4)	0.066 (10)
H(5)	0.3609(33)	0.2850(37)	0.4707(37)	0.075 (2)
c(6)	0.5586 (3)	0.2965 (3)	0.4737 (4)	0.060 (9)
H(6)	0.5795(31)	0.2463(33)	0.5597(36)	0.064 (3)
C(7)	0.2510 (3)	0.4307 (5)	0.2493 (5)	0.084 (2)
$\mathrm{N}(2)$	0.7145 (3)	0.5102 (3)	0.2304 (3)	0.063 (2)
O(2)	0.8039 (2)	0.5634 (3)	0.3071 (3)	0.089 (2)
O(3)	0.6954 (3)	0.5201 (3)	0.1004 (3)	$0.085: \quad$ (2)
$\mathrm{N}(1)$	0.7873 (2)	0.3122 (3)	0.4592 (3)	0.056 (2)
H(10)	0.8085(31)	0.2910(34)	0.5535 (41)	0.070 (10)
c(8)	0.8719 (3)	0.2704 (3)	0,3763 (3)	0,056 (2)
O(1)	0.8454 (2)	0.2766 (2)	0.2469 (2)	0.066 (2)
C(9)	0.9984 (3)	0.2176 (5)	0.4516 (4)	0.078 (3)

Lists of structure factors and anisotropic temperature factors have been deposited with the British Lending Division as supplementary publication No. 60415 which contains 34 pages of structure factor tables.
3.5b) (i) MNA-3, molecule 1

ATOM	x	y	z	$u_{i s o}{ }^{*}\left(A^{2}\right)$
C(1)	0.7671 (1)	0.4992 (2)	0.7456 (6)	0.051 (1)
c(2)	0.8276 (1)	0.4590 (2)	0.5289 (6)	0.054 (1)
c(3)	0.8887 (1)	0.5201 (2)	0.4212 (6)	0.059 (1)
H(3)	0,9252(14)	0.4944 (20)	0.2846(70)	0.063 (7)
C(4)	0.8931 (1)	0.6229 (2)	0.5231 (6)	0,060: (1)
C(5)	0.8338 (1)	0.6636 (2)	0.7418 (6)	0.058 (1)
H(5)	0.8333(15)	0.7369(24)	0,8261(73)	0.079 (8)
c(6)	0.7732 (1)	0.6042 (2)	0,8488 (6)	0.056 (1)
H(6)	$0.7362(15)$	0.6344(20)	0.9899(66)	0.059 (6)
c(7)	0.9585 (2)	0.6908 (2)	0.4003 (8)	0.078 (2)'
$N(2)$	0.8296 (1)	0.3515 (2)	0.4011 (6)	0.065 (1)
O(2)	0.7857 (1)	0.2887 (2)	0.5192 (7)	0.093 (2)
0 (3)	0,8762 (1)	0.3265 (2)	0.1716 (7)	0.099 (2)
$N(1)$	0.7053 (1)	0.4390 (2)	0.8596 (5)	0.059 (1)
H(10)	$0.7131(16)$	0.3665(25)	0.8272(74)	0.079 (8)
$c(8)$	0.6362 (1)	0.4736 (2)	0.9910 (8)	0.073 (2.)
O(1)	0.6198 (1)	0.5643 (2)	1.0181(11)	0.111 (2)
c(9)	0.5816 (2)	0.3894 (3)	1.0974(10)	0.088 (2)

3.5b) (ii) MNA-3, molecule 2

ATOM	x	y	z	$\left.u_{\text {iso }}{ }^{(} A^{0}{ }^{2}\right)$
c(1)	0.7411 (1)	-0,0198 (2)	1.1673 (6)	0.053 (1)
c(2)	0.6663 (1)	0.0060 (2)	1.1410 (6)	0.053 (1)
c(3)	0,6069 (1)	-0.0577 (2)	1.2497 (6)	0.055 (1)
H(3)	0.5593(15)	-0.0356(20)	1.2311(66)	0.065 (7)
c(4)	0.6186 (1)	-0,1502 (2)	1.3930 (6)	0.055 (1)
c(5)	0.6927 (1)	-0.1748 (2)	1.4239 (6)	0.060 (1)
H(5)	$0.7003(13)$	-0.2411(21)	1.5210(64)	0.060. (6)
c(6)	0.7520 (1)	-0.1123 (2)	1.3173 (6)	0.059 (1)
H(6)	0.8043(16)	-0.1332(23)	1.3415(73)	0.080 (8)
$c(7)$	0.5551 (1)	-0.2201 (2)	1.5125 (7)	0.071 (2)
N(2)	0.6469 (1)	0.1015 (2)	0.9939 (6)	0.063 (1)
O(2)	0.6919 (1)	0.1715 (2)	0.9687 (9)	0.103 (2)
O(3)	0.5852 (1)	0.1084 (1)	0.8989 (6)	0.085 (1)
N(1)	0.8017 (1)	0.0426 (2)	1.0514 (6)	0.059 (1)
H(10)	$0.7898(18)$	0.1070(29)	1.0022(90)	0.097 (10).
c(8)	0.8716 (1)	0.0092 (2)	0.9204 (6)	0.057 (1)
O(1)	0.8899 (1)	-0.0810 (1)	0.9083 (6)	0.074 (1)
C(9)	0.9233 (1)	0.0934 (2)	0.7933 (8)	0.070 (2)

* for non-H atoms

$$
u_{i s o}=\left[\begin{array}{lll}
u_{11} & u_{22} & u_{33}
\end{array}\right]^{\frac{1}{3}}
$$

The crystal and molecular structure of a third polymorph of 4-methyl-2-nitroacetanilide has been determined by x-ray diffraction techniquess it crystallises in the monoclinic system, space group $P 2, / c, Z=4$, with $a=10.158(2), b=$ 11.635(2), and $c=8.041(2) A, \beta=94.55(2)^{\circ}$. Using 1027 unique reflections the structure was solved by the (Patterson) method of vector verification and refined by full matrix least squares which gave convergence to $R=0.080$. The structure consists of nearly planar molecules, all approximately parallel to each other with their principal axes being parallel to b. The amide group forms an intramolecular hydrogen bond with the nitro group. Molecules related by c-glide are stacked along c in a very distinct columnar form. The columns are held together by the dipole forces between carbonyl groups of molecules related by an inversion centre and similarly by the nitro groups.

White and yellow polymorphs of 4-methyl-2-nitroacetanilide 130

137
(MNA) were first reported by Gattermann and Schaum reported the existence of a third unstable variety which was described as dark yellow. X-ray analyses of the white (MNA-1) 196
and yellow (MNA-3) forms have been reported (Moore et_al.,) and the intermolecular and intramolecular type of hydrogen 139
bonding proposed by Skulski for the white and yellow forms respectively was confirmed.

In the present work the crystal structure of the third variety, MNA-2 or amber form, was investigated in order to establish the nature of the hydrogen bond and as part of a study of the solid state phase changes of MNA. In fact, the ease with which the amber variety changed form and differences in thermal stability and crystal size between similarly prepared batches of crystals caused some of the difficulties experienced in this work.

Amber crystals of MNA-2 were prepared by partial evaporation of a hot (caㅡ $60^{\circ} \mathrm{C}$) solution of MNA-2 in petrol (bailing range 80-100 C) containing about $10 \%(v / v)$ of carbon tetrachloride. Short filamentary crystals were obtained and a cleavage plane was found at approximately 60° to the longitudinal axis.

Unit cell and space group data were obtained from rotation and Weissenberg films. Accurate cell dimensions were determined by least squares refinements of θ, \mathcal{C}, and ϕ values measured on a four circle diffractometer. For structure analysis purposes, integrated intensities were measured by step scanning in the W/O mode. All diffractometer work was carried out with the crystal situated in an air stream maintained at $2^{\circ} \mathrm{C}$ in order to minimise the possibility of a solid state phase transformation which can take place at room temperature. Lorentz and polarisation factors were applied in the usual manner, and semi-empirical absorption corrections were made using the method of North et_al. $193 \quad 192$ modified by Kopfman and Huber
and Tickle

Crystal data and details of diffractometer data collection are recorded in Table 3.6.

Table 3.6 Crystal data and experimental details (molecular formula $\mathrm{C}_{\mathrm{q}} \mathrm{H}_{10}$ $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{Mr}$ 194.1)

Crystal system
Habit
$a, b, c(\dot{A})$
$\alpha, \beta, \gamma(d e g)$
$v_{c}(A)^{2}$
Z
D $\left(\mathrm{gcm} \mathrm{cm}^{-3}\right)$
$\mathrm{D}_{\mathrm{m}}\left(\mathrm{gc} \mathrm{m}^{-3}\right)$
Flotation mixture
Crystal size (mm)
$\lambda, C u-K \propto(\stackrel{\circ}{A})$
фaxis
$\operatorname{Max} \theta(\operatorname{deg})$
h, k, l limits

Total reflections
unique reflections

F (000)
Systematic absences

Space group
$R=\sum|\Delta F| / \Sigma\left|F_{0}\right|$
$R_{\omega}=\Sigma|\Delta F| \omega^{\frac{1}{2}} / \Sigma\left|F_{0}\right| \omega^{\frac{1}{2}}$
Max. residual electron
density $\left(e A^{-3}\right)$
0.2

The structure could not be solved by direct methods of the progran SHELX-76 nor by MULTAN-78 but the solution was obtained by the method of Patterson search, using a known part of the 195 molecule, as proposed by Braun, Hornstra, and Leenhouts The molecular fragment used for this vector verification method consisted of atoms located at $C(1), C(2), C(3), C(4), C(5), C(6)$, $C(7), N(1)$, and $N(2)$, Fig. 1 , with orthonormal coordinates obtained from earlier work completed on polymorph MNA-1 (Moore et 196
al.). A vector set was found which had an excellent degree of compatibility with the sharpened Patterson function and an electron density map then gave all other nonhydrogen atoms. Three cycles of isotropic least squares refinement, with hydrogen atoms in thearetical positions, preceded a difference electron density map from which all nonmethyl hydrogens were located. With reference to the methyl hydrogens, the difference map only gave indications of significant electron densities present in the appropriate regions, it did not give peak locations which had good correlation with ideal methyl hydrogen geometries.

Final R values were achieved by further least squares refinement, using anisotropic temperature factors for the nonmethyl hydrogen atoms and isotropic factors for all the hydrogens, with methyl hydrogens refined as rigid groups. Refinements were obtained with three hydrogen atoms per methyl group, each with a site occupation factor of 1.0 , and also with six hydrogen atoms per group, each with a site occupation factor of 0.5. Differences obtained between isotropic thermal

Table $3.7 U_{i S 0}, R_{3}$ and R_{w} values obtained using different CH_{3} group specifications.

${ }^{\text {a }}$ Three H atoms per group, each with unity site occupation factor.
$\mathrm{b}_{\mathrm{Si} \times} \mathrm{H}$ atoms per group, each with 0.5 site occupation factor.

Bond lengths and bond angles are presented in Table 3.8 meanplane equations, interplanar angles and deviations of atoms from the planes are given in Table 3.9. Atom coordinates and thermal parameters, with esd values, are given in Table.3.10.

Molecular structure

The dimensions and general features of the MNA-2 molecule are similar to those reported for MNA-3 (viz. molecule 1). Thus resonance interaction of the nitro and amide groups would account for the relatively short $C(3)-C(4)$ and $C(5)-C(6)$ bonds. Such interaction of the substituent groups is favoured by the low dihedral angles between the amide and ring and between the ring and nitro groups. The benzene ring is more planar whilst the amide and nitro groups are slightly less planar than were found for MNA-1 and MNA-3. In general terms, all the nonhydrogen atoms lie very nearly in the molecular plane. The dihedral angle (3.9°) between the amide and ring planes is lower than the equivalent angle reported for MNA-1 and MNA-3 as well as for 32 out of 35 other anilides whose structures were retrieved from the data files at the Cambridge Crystallographic Data Centre. Also, the value of the nonbonded distance $0(1)-$ $H(6), 2.16(6) A$ is lower than that reported for the equivalent distance in MNA-3 and in a series of 4-substituted-anilides 72
(Haisa et_al. '). The deviation of the angles C(1)-N(1)$C(8), 129.7^{\prime}(.6)$ and $N(1)-C(8)-Q(1), 123.4(.5)$ from 120° and the short $\mathrm{O}(1)-\mathrm{H}(6)$ distance may be explained on the basis of a
bulky amide group being forced into the plane of the benzene ring. As a further consequence of the same effect the $\mathbf{O}(2)$ atom of the nitro group is slightly displaced from the plane of the benzene ring. The $H(10) \ldots .0(2)$ distance $1.98(.05) \AA$ is very similar to that found in MNA-3 fmolecule 1, $1.95{ }^{\circ}$ and molecule 2, $1.98 \AA^{\circ}$). This, together with the angle C(1)-N(1)$H(10)$, $111(3.6)^{\circ}$ is consistent with a weak intramolecular hydrogen bond between $\mathrm{O}(2)$ and $\mathrm{H}(10)$.

The projection of the unit cell contents along Z shows that the molecules are packed in distinct columns parallel to c, with molecular axes parallel to b, and the projection along Y shows the molecular planarity and how parallel they are to each other. Adjacent molecules within the column are glide plane related. The average perpendicular distance of the ring atoms of a molecule $x, 0.5-y, 0.5+z$ to a molecule x, y, z which is adjacent to it within the column, is 3.40 A. These molecules are very nearly parallel the angle between the normals to the ring planes being only 0.95°. Presumably molecules within a column are bonded by weak forces such as those operating in Π molecular complexes and since the whole molecule is very planar, orbital interaction must occur between amide and benzene ring. This interaction is expected to be at a maximum when charge alternation on adjacent atoms is at a maximum i.e. when the amide and nitro groups are in the plane of the benzene ring.

An adjacent column consists of malecules of symmetry 1-x, 1$y, 1-z$ and $1-x, 0.5+y, 0.5-z$. A molecule in the adjacent column at $1-x, 0.5+y, 1.5-z$ lies very nearly parallel to that at x, y, z in the first column. The perpendicular distance between the planes occupied by each benzene ring is $0.173 \AA$ and the angle between the planes is 1.42°. Thus an unusual feature of this structure is that all atoms (except for the methyl hydrogens) lie in parallel planes. This feature accounts for the very strong reflection in the diffraction patterng(ī20) $=3.271$ A which is comparable to the distance between the ring planes of

A view down y

Fig. 3.8
Stereo-pair diagrams for the unit cell of MNA-2
F.IG. 3.9

M NA-2

VIEW DOWN Y

FiG. 3.10

MRA 2
VIEW DOWN Z
(i) $x y z$
(ii) $1-x$ 1-y $1-2$
the molecules at $x, 0.5-y, 0.5+z$ and $1-x, 0.5+y, 1.5-z, i=e .3 .29$ A. Angles between normals to the $\overline{2} 02$ plane and molecular planes are 3.5° (plane 1), 7.1° (plane 2), and, 5.5° (plane 3).

The main columnar interactions appear to be of the dipoledipole type between carbonyl groups across a centre of inversion and a similar interaction for nitro groups. The distance between the oxygen atoms of the carbonyl groups in the molecules of symmetry x, y, z and $1-x, 1-y, 1-z$ is $3.25(1) \quad \AA$ and the distance between nitro group oxygen atoms ($0(2) \ldots 0(2)$, in molecules x, y, z and $-x, 1-y, 1-z$ is $3.52(1) \stackrel{\circ}{A}$. The shortest intermolecular distances involve $O(1)[x, y, z]$ to $H(5)[1-x, 0.5+y, 1.5-z], 2.23(6){ }_{\text {A }}$; $H(3)[x, y, z]$ to H on $C(7)[-x,-y, 1-z], 2.51(9) ~ \AA ;$ and $O(2)[x, y, z]$ to H on $C(9)[-x, 1-y, 1-z], 2.55(7) \dot{A}$.

Table 3.8 Bond lengths and bond angles for MNA-2 (esd's: $10^{3} \sim\left(\dot{A}^{2}\right)$ for bonds not involving H atoms; $10^{2} \sigma\left(\dot{A}^{2}\right)$ for bonds to H atoms; or o(deg) for bond angles, in parentheses.)

bond length	A or degree	bond length	$\dot{\text { A }}$ or degree
or angle		or angle	
C(1)-C(2)	1.395 (6)	$\mathrm{C}(5)-\mathrm{H}(5)$	0.93 (6)
$C(1)-C(2)-C(3)$	121.6(0.5)	$H(5)-C(5)-C(6)$	121.8(3.3)
$C(1)-C(2)-N(2)$	122.1(0.5)	C(5)-C(6)	1.367 (8)
$\mathrm{C}(2)-\mathrm{N}(2)$	1.458 (6)	$C(5)-C(6)-C(1)$	121.1(0.5)
$C(2)-N(2)-0(2)$	120.1(0.5)	$C(5)-C(6)-H(6)$	120.5(3.4)
$C(2)-N(2)-0(3)$	118.4(0.5)	C(6)-H(6)	0.95 (6)
$N(2)-0(2)$	1.234 (5)	H(6)-C(6)-C(1)	118.4(3.4)
$N(2)-0(3)$	1.224(5)	C(6)-C(1)	1.401 (7)
$O(2)-N(2)-D(3)$	121.5(0.4)	C(6)-C(1)-C(2)	116.3(0.5)
$N(2)-C(2)-C(3)$	116.2(0.5)	$C(6)-C(1)-N(1)$	120.8(0.5)
$C(2)-C(3)$	1.386(7)	$C(2)-C(1)-N(1)$	123.0(0.5)
$C(2)-C(3)-C(4)$	121.8(0.5)	C(1)-N(1)	1.400(7)
$C(2)-C(3)-H(3)$	120.2(3.3)	$C(1)-N(1)-C(8)$	129.7(0.6)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.88 (5)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(10)$	111.0(3.6)
$H(3)-C(3)-C(4)$	119.0(3.2)	N(1)-H(10)	0.79 (5)
$C(3)-C(4)$	1.364(7)	H(10)-N(1)-C(8)	119.3(3.6)
$C(3)-C(4)-C(5)$	116.9(0.5)	$N(1)-C(8)$	1.368 (7)
$C(3)-C(4)-C(7)$	122.4(0.5)	N(1)-C(8)-0(1)	123.4 (0.5)
C(4)-C(7)	1.510(7)	$N(1)-C(8)-C(9)$	113.8(0.6)
$C(7)-C(4)-C(5)$	120.7(0.5)	C(8)-0(1)	1.206 (6)
$C(4)-C(5)$	1.393(7)	O(1)-C(8)-C(9)	122.8(0.5)
$C(4)-C(5)-C(6)$	122.3(0.6)	$C(8)-C(9)$	$1.505(7)$
$C(4)-C(5)-H(5)$	115.9(3.3)		

Table 3.9 Least-squares planes, displacements (\dot{A}) of atomsfrom the planes, and interplanar angles (deg).

```
1 Benzene ring
-0.5310(\mp@subsup{x}{0}{})-0.0051(Y0) + 0.8473(Z0) = 2.0083
C(1) - 0.002
C(2) 0.001
C(3) 0.000
C(4) 0.000
C(5) - 0.002
C(6) 0.003
```

2 Nitro group
$-0.5763\left(X_{0}\right)-0.1238\left(Y_{0}\right)+0.8078\left(Z_{0}\right)=1.4680$
$C(2) \quad 0.002$
$N(2)$
-0.006
O(2)
0.002

O(3)
0.002

3 Amide group
$-0.5182\left(x_{0}\right)+0.0608\left(Y_{0}\right)+0.8531\left(Z_{0}\right)=2.3730$

$N(1)$	-0.002
$C(8)$	0.005
$D(1)$	-0.002
$C(9)$	-0.002
$H(10)^{a}$	0.056

Dihedral angles between the planes

1 and 2	1 and 3	2 and 3
7.6°	3.9°	11.4°

all atoms within a specified group were used to calculate the respective planes except $H(10)$ in group 3.

Table 3.10 Atom co-ordinates and isotropic thermal paramenters for MNA-2 (with esd's, $10^{4} \sigma$ or $10^{3} \sigma\left(A^{2}\right)$, in parentheses)

Atom	\times	y	z	u $\quad\left(A^{2}\right)^{\infty}$
C(1)	0.2446 (3)	0.3123 (3)	0.5147 (5)	0.063 (3)
C(2)	0.1470 (3)	0.2468 (3)	0.4277(5)	$0.062(3)$
C(3)	0.1504(4)	0.1277(4)	0.4296 (6)	0.069 (3)
H(3)	0.863 (39)	0.0879 (32)	$0.3763(46)$	0.071 (13)
C(4)	$0.2492(4)$	0.0686 (3)	$0.5170(5)$	0.070 (3)
C(5)	0.3470 (34)	0.1335(4)	0.6043 (6)	0.077 (3)
H(5)	$0.4143(43)$	0.0922 (35)	$0.6609(50)$	0.078(14)
c(6)	0.3455 (4)	0.2510 (4)	0.6046 (6)	0.069 (3)
H(6)	0.4148 (48)	0.2932 (35)	$0.6638(56)$	$0.092(15)$
C(7)	$0.2524(5)$	-0.0611(4)	$0.5239(7)$	0.088 (4)
N(2)	0.0367 (3)	$0.2992(4)$	0.3281 (5)	0.073 (3)
O(2)	$0.0185(3)$	$0.4039(3)$	0.3344 (4)	0.091 (3)
0(3)	-0.0375 (3)	0.2367 (3)	$0.2414(4)$	$0.092(2)$
N(1)	$0.2450(4)$	0.4326 (3)	$0.5130(5)$	0.071 (3)
H(10)	0.1837 (41)	0.4566 (32)	0.4574 (45)	$0.058(13)$
C(8)	$0.3360(5)$	0.5078 (3)	0.5850 (6)	0.075 (3)
O(1)	0.4328 (3)	0.4780 (2)	$0.6707(5)$	$0.095(2)$
C(9)	0.3056 (5)	$0.6318(3)$	0.5450 (7)	$0.084(4)$

$a_{\text {for non-hydrogen atoms }} u_{1 s 0}=\left[u_{11} u_{22} u_{33}\right]^{\frac{1}{3}}$

Some intraplanar distances. in $\mathrm{MNA}-2$.

Fig. 3.11
Some intermolecular distances between molecules lying in the $\overline{2} 02$ plane in MNA-2. The symmetries of molecules are shown in the ring. The values in parentheses are e.s.ds of the distance.

$6.46(8)$
$3 \cdot 48(8) .6 \cdot 15(8)$
MOL'

Fig. 3.1la
Some intermolecular distances between molecules of type 1 and l^{\prime} which are coplanar in MNA-3. All distances are given in Angstrom units and values in parentheses are e.s.d values.
Some distances from adjacent molecules of type molecule 2 are also given. Molecules of type 1 and 1^{\prime} lie nearly in the $3 \overline{1} 1$ plane.

Fig. 3.12 Stereoscopic view of molecules 1 and 2 in MNA-3 (yellow)

Fig. 3.13 A view of three pairs of molecules 1 and 2 in MNA-3. The outline of the unit cell is shown in perspective.

CHAPTER FOUF

The Topotactic Phase Changes of MNA

An introduEtion to Chapter 4.

Section 4.1a (page 116)

This section $i s$ an account of the morphology of the yellow polymorph (MNA-S) and describes how it can be regarjed as a structure of columns which form laths Farallel to the z direction. This feature, as well as the presence of a cleavage plane which made analysis by x-ray diffraction possible, are shown in a selection of electron micrographs.

Sertion 4.1b (page 117)

This section describes the solid state phase change of MNA-3 (yellow) to MNA-1 (white). This change occurs on standing at ambient temperature for periods which may vary from several weeks to several years or more rapidly on heating to about $85^{\circ} \mathrm{C}$. The growth of the new phase has strong directional preferences which are illustrated in fig. 4.4 (page 118) and fig. 4.5 (page 119).

Section 4.2 (page 123)

This section describes a hypothetical mechanism for the phase change in which pairs of molecules rotate around anes

```
which are parallel to the z axes and pass through centres
of symmetry (fig. 4.8, page 125). Although this approach
yields calculated }x\mathrm{ and }y\mathrm{ coordinates which are in good
agreement with those found experimentally for MNA-1 ( see
fig. 5.5 and fig. 5.6 on pages }194\mathrm{ and 195 respectively) a
mechanism involving less translational movement is
preferred (Section 4.3).
```

Section 4.3 (page 127)

This section introduces the possibility that the main factor which determines the orientation of the new phase is that their respective flat faces will prefer to be parallel.

Section 4.4 (page 129)

In this section the consequences of possible defects in the column structures are considered.

Section 4.5 (page 137)

This section shows how MNA-2 (amber) and MNA-3 (yellow) can be regarded as crystal structures composed of molecules in closely packed parallel layers.

Section 4.6 (page 146)

This section considers that the phase change of MNA-S to MNA-1 could occur by a mechansim which involves movement of the contents of parallel planes as in a martensitic transformation. 188

Section 4.7 (page 150)

This (second) mechanism for the change of MNA-S to MNA-1 is summarised and criticised in this section.

Section 4.8 (page 152)

A third mechanism for the phase change MNA-3 to MNA-1 is considered in this section. The mechansim involves folding planar molecules found in MNA-S in such a way that the molecule pivats about $N(1)$ (Fig. 4.20 page 15S). Although this mechanism involves movement of benzene rings it explains the orientation of the new phase and shows how a new sheet or layer of molecules of MNA-1 can arise from a layer or sheet of MNA-3 molecules (fig. 4.21, page 156 and 4.22 page 157).

Section 4.9 (page 158)

The phase change MNA-2 (amber) to MNA-S (yellow) is described and a possible mechanism is proposed and illustrated in fig. 4.27. page 165.

Section 4.10 (page 169)

This section shows how the crystal structures of MNA-2. MNA-3: and MNA-1 can be viewed as structures constructed from molecules lying in parallel planes.

Section 4.la

The morphology of yellow crystals of MNA-3

Abstract

Crystals of MNA-S which are grown from solutions of light petrol form long rod-1ike structures which fracture readily when attempts are made to cut them. The crystals are not circular in cross section but tend to be flat, and well formed orystals of MNA-s have an elongated diamond-shaped cross section which is shown below. :-

Several electmon micrographs of MNA-3 crystals are shown in figs.4.1to 4.5. . It is known from x-ray work that the z-direction is parallel to the $10 n g$ axis of the crystal. The crystals show a cleavage plane which is inclined at about 75° to the $2-a x i s . \quad$ Electron mirographs of a small section of MNA-S which was cut from a long section are shown in fig. 4.l. The tendency for the orystal to fracture in planes parallel to the cleavage plane is also revealed: The well defined flat surface of the crystalis shown in fig. 4.3 - Close examination of the flat surface reveals that it is built up from closely pacted laths. This feature is probably responsible for the observed property of the crystal to $\equiv p l i n t e r$ along the 1 ength of the crystal.
The stacking of laths parallel to the z-direction
is regarded as an important feature of the crystal structure
and could account for the observed directions of growth of
MNA-1 in the solid state. The strong tendency for MNA-1 to
form well developed layers or sheets in the yz plane was
emphasised in the previous section.
Following from the ideas of Mnyukh 170 the formation of
the strongly layered structure of MNA-1 could be due to the
diffusion of MNA molecules across a microcavity and
deposition on a flat surface might occur in such a way that
the flat layers of MNA-1 grow on the flat layers of MNA-3 so
that at an intermediate stage parallel layers of MNA-s and
MNA-1 would co-exist. Hence the orientation of molecules of
MNA-s at the flat surface would be of lesser importance than
its flat or planar nature.

1. \quad x 120
2. x 110

1,2 , and 4 show a cut crystal of MNA-3 (yellow).
Note the dislocation on the right-hand end of the crystal as well as 'holes'. 3. shows a surface built from overlapping laths (MNA-3).

Fig. 4.2

1. $\times 250$

Electron micrographs of MNA-3 (yellow) cut by a
razor blade. The clean cleavage is clearly seen (1, 3, 4).
2. This shows the surface of MNA-3 (yellow).

Parallel columns along the diagonal of the photograph are parallel to the z axis.

2. $\times 250$

4. $\times 250$

Fig. 4.3
114

Electron micrographs of a crystal of MNA-3 (yellow) which was splintered by pressing with a spatula end. Stress induced twining has probably occurred.
The scale is indicated on each photograph.

In addition to the electron microscopy wort further x-ray work was carried out on single crystals of MNA-s in order to determine the directions of the a or axes with respect to the surface of the crystal.

Rotation photographs of MNA-S crystals were obtained when the reystal was fixed to a glass fibre so that a T-shaped arrangement was present which is shown below:-

The separation of layer lines suggested that the direction of greatest cross-sectional width corresponded to the $a+b$ axis. The calculated value of the diagonal $a+b=21.9 \AA^{\circ}$. whilst the separation of layers lines was $21.95 \pm 0.05 \mathrm{~A}$.

Hence it is concluded that the when the rrystals are viewed perpendicular to their flat side (a position which they naturally adopt when placed on a glass plate on the laboratory bench, that the molecular axes $N(1) .$. . C(7) are perpendicular to the observer. The orientation of unit cells in a cross section of the crystal is as shown in fig. 5.15

However: if layers of MNA-1 molecules are to grow in the solid state in the observed orientation, then the molecular
axes $N(1) . . C(7)$ must change from one of being parallel to MF in fig. 4.18 to one of lying parallel to MA !. Such a re-orientation involves rotation of the molecular axes through about 90 degrees. This possibility will be discussed in the next section.

Section 4.1b

The solid state phase change of MNA-3 to MNA-1

The formation of the white form of MNA from the yellow form i.e. MNA-3 to MNA-1 has been observed to occur in samples which have been stored at ambient temperature or on heating to about $85^{\circ} \mathrm{C}$. In the latter case the change can be observed using a Kofler hot-stage microscope. The growth of the new phase can be seen to occur with strong directional preferences and photographs of such growths are shown in the photographs in figs. 4.4 and 4.5.

* It can be seen that the crystals of the white form are produced in densely packed clusters of small crystals which have their long axes (which corresponds to the direction in which hydrogen bonds occur, either in the same direction as the needle axis of the yellow form or inclined at an angle of about 45° to this direction.

An attempt has been made to rationalise the formation of the white form and a mechanism for the solid state phase change will be presented.

Tightly packed crystals of MNA-1 (right) formed from MNA-3 (left) at ambient temperature in the solid phase. This represents 'vertical' growth of MNA-1 from MNA-3. The MNA-1 and MNA-3 axes are horizontal.

Tightly packed MNA-1 crystals (left) formed in the solid phase from MNA-3 which is just visible on the right of the photograph.

Lateral growth of MNA-1 (upper) occurring on a crystal of

Fig. 4.6a. Oscillation photographa of aingle filaneat of MNA-3 taken at point A and at point B where lateral growth of MNA-1 had occurred which was of the same type as shown in Fig. 4.6. In the lower photograph the layer lines correspond to the 'c' apacins of the triciinic lattice which along the long filamentary azia. The upper rotation photograph showe that the deughter crystallites have grown with preferred orientation but a single crystal, which would have produced horizontal rows of spots, has not been formed. (Stubbens camera. 7.5* oscillation. Cr-Xa radiation)
18. 4.6

A view of MNA-1 crystals (upper) formed from MNA-3 (lower in the solid phase at ambient temperature. (x sou)

1.

2.

3.

1. A view of MNA-1 crystallites formed in the solid phase fron MNA-1.
2. A congloneration of infa-1 crystals formed from yellow MA-3 (upper half of photorraph). This shows lateral growth of Mik-1 crystils. Magnification z 375 3. .wh-1 layers (lower half) forled by allowing the wher $(M / /-2)$ form to stand for several wecks.

Section 4.2
A model for the transtormation of MNA-S (yellow) to MNA-1 (white)

The projection of the crystal structure of MNA-S in the x-y plane shows that the structure is composed of pairs of molecules which are related by an inversion rentre. For example, molecules 1 and $1^{\text {: }}$ have an inversion centre at 9.5 .9 .5 .9 .5 and molecules 2 and 2 have an inversion centre at $1,1,1 . \quad$ Thus the structure may be viewed as pairs of molecules with members of each pair being related by an inversion centre. The position of the carbonyl groups in these pairs is important since it is probable that dipole-dipole interaction between carbonyl groups helps to stabilise the columnar structure of MNA-3. The relative positions of such pairs of molecules are shown in fig. 4.8.

The formation of MNA-1 may occur by rotation of these pairs in a Eloct:wise manner around the centre of symmetry.

This rotation has been simulated by computer drawn diagrams. A projection of the crystal structure before and after rotation of the pairs of molecules around centres of symmetry is shown in fig. 4.8 , fig. 4.9 and fig. 4.10 . The difference between the last two diagrams is that the repeat distance along the $:$-direction has been reduced by a factor of G. $5 . \quad$ This corresponds to a contraction in this direction. However, the important aspect of this diagram is that
new pairs of molecules are formed which are separated byashort distance of about $4 \stackrel{\AA}{A}$ and they are related by a centre of symmetry. Such pairs are equivalent to molecules $A(x, y, z)$ and $B(1-x, 1-y, 1-z)$ in MNA-1. Another important aspert of fign4. 10 is that the pairs of molecules are packed in parallel rows both in the x and y directions. An MNA-1 type of structure can be constructed from this by rotation of the amide groups into directions which are perpendicular to the plane of the diagram so the the old and new z directions are approximately parallel.

The intermolecular hydrogen bonds would be formed parallel to the z axis of MNA-3 i.e. the MNA-1 and MNA-3 z axes would be parallel. Photographs of this type of growth of MNA-1 from MNA-3 in the solid state are shown in fig. 4.4 whereas in the case of lateral growth of MNA-1 the z axis of MNA-3 is at 45° to the z axis of MNA-1.

Although the rotation mechanism accounts for the formation of new centres of symmetry the formation of MNA-1 from MNA-3 in two different orientations is, in the opinion of the author, fully explained by the approach discussed in section 4.8 in which the molecules are assumed to pivot about $N(1)$.

$$
\text { (} \quad \begin{aligned}
& \text { Fig. } 4.8 \\
& \text { showing molecules related } \\
& \text { by centres of symmetry (})
\end{aligned}
$$

x

$x+x$
ユロース

Fig． 4.10
A more dense packing of rotated molecules．

Fig. 4.11
Molecules 1 and 1^{\prime}, and 2 and 2^{\prime} The . indicates a centre of inversion.

The validity of a physical interpretation of MNA- 3 (yellow) to MNA-1 (white) conversion.

Previous sections of this thesis have described how the MNA-1 (white) crvstal structure can be derived from the MNA-3 crystal structure by a clockwise rotation of pairs of molecules which are related by a centre of symmetry and which occupy adjacent positions in the crystal by a dipole-dipole interaction between the carbonyl groups. This interaction is much weaker in MNA-1 (white) since the antiparallel carbonyl groups have an increased separation compared to the MNA-3 (yellow) crystal structure. , (The distances Q(1)...O(1) in MNA-3 are $4.61 \AA^{\circ}$ (molecule 1) and $4.57 ~ \AA$ (molecule 2); and $0(1) \ldots 0(1)$ in MNA-1, 7.69 A. The molecules in question are at x, y, z and $2-x,-y, 1-z$ and they are related by a centre of symmetry at $1,0,0.5$.

One possible interpretation is that rotation of an object can be treated as a mathematical operation in which the coordinates of points in a body are multiplied by a matrix and a comparison of the old and new coordinates may correspond to a convenient physical interpretation involving rotation and perhaps translation. A mathematical relationship between old and new positions does not prove that rotation and translation actually occurred. However,
such an interpretation does remain a possibility.

It is important to stress at this stage that the conversion of MNA-3 (yellow) to MNA-1 (white) is not a phase transformation of a single crystal to a single crystal. This is revealed by examination of transformed crystals under the optical and electron microscopes as well as by the powder pattern obtained by x-ray diffraction of the transformed material. However: the former techniques do clearly show that well formed microcrystals are produced which have grown with strong orientational preferences.

Since MNA-s and MNA-1 have crystal structures in which distinct layers are present it js possible to apply the ideas of Mnyuch ${ }^{17 C}$ i.e.the transformation could occur from layers of molecules lying parallel to the $y z$ planes across microcavities by a process of sublimation and layers of MNA-1 type crystalsmight be deposited in such a way that the yz 1 ayers (these layers are very pronounced in MNA-1) are laid parallel to the layers of molecules in the yz planes of MNA3. The mathematical transformation of the MNA-T to the MNA1 structure would still be valid because it is based on a feature, namely the close antiparallel c=0 groups: which is common to both systems.

Section 4.4
An explanation of the topotactic growth of MNA-1 (white)
based on the likely presence of crystal defects in MNA-3
(yellow).

Abstract

Many batches of crystals of the yellow triclinic form of MNA have been prepared and it has been observed that the

 stability of these different batches is very variable. For example, a sample which was prepared by crystallisation from light petroleum (boiling range $40-60^{\circ}$) which was collected on a Hirsch funnel and then dried in air, changed completely into the white form on storing in a sample tube for two months. In another case, a sample of the yellow form, which was made by slow cooling of a solution in light petroleum (boiling range $60-80^{\circ}$) containing carbon disulphide, was stable for more than three years although one crystal of the yellow form had changed to the white form. In the latter case the crystals had been made with a view to preparing good crystals for $x-r a y$ diffraction experiments and consequently they had been isolated by decantation of the crystallisation solvent and allowed to dry in air. These crystals had grown as well formed spikes or needles which were several centimetres long and 1 to 2 mm thick and many adhered to the sides and bottom of the flask. Hence decantation of the solvent proved to be an easy operation. In fact it was apparent that the stability was increased by careful and gentle handing and that some operations, such as collection on filter funnels,pressing to remove solvent and packing into sample tubes, should not be attempted.

During the preparation of crystals of MNA-Z for x-ray diffraction is was noticed that the crystals tended to splinter easily when attempts were made to make cuts with a razor blade perpendicular to the length of the crystal. However, the discovery of a cleavage plane: which is mentioned in chapter 3 , enabled clean cuts to be made.

It is therefore possible that crystals of MNA-3 might contain faults or defects in which the long columns of molecules: which are packed along 2 and parallel to the long filamentary axis of the crystals have separated. This separation of columns might be of the order of several Angstrom units and the fault would not be detectable by external examination.

It is suggested that a possible line of fracture in the MNA-3 structure is parallel to the line drawn in the projection of the MNA-3 crystal structure which is viewed down z and shown in fig. 4.8 . The general direction of the fracture or potential cleavage plane is parallel to the yaplane. The protruding portions on either side could be members of pairs of 1 and 1^{\prime} or 2 and 2 '. Diagrams of sections parallel to the yz-plane of MNA-S are shown in figs. 4.12

Fig. 4.12 Views of columns of molecules $1,2,1^{\prime}, 2^{\prime}$ in MNA-3. Unit cells viewed down y.

The dark line is a potential cleavage plane. The plane is viewed edge on.

Fig. 4.13

A view of several unit cells stacked along z The view is perpendicular to the cell diagonal OP shown in Fig. 4.18.

- It should be noted that these diagrams offer varying degrees of magnification. These diagrams clearly emphasise the columnar arrangement of MNA-S and it is suggested that the cleavage plane, which proved invaluable for the preparation of suitable samples for X-ray diffraction experiments, corresponds to a section along a plane, viewed edge-on, in fig. 4.12 .

This cleavage plane may also be used to explain the shape of twinned crystals of MNA-3. A photograph of a twinned crystal is shown in fig.4.14 and the twinned crystal constructed from the computer generated crystal structure of MNA-3 is shown in fig. 4.15. The adjacent molecules on either side of the boundary of the twinned crystals are related by a centre of inversion.

One important aspect of the fracture-plane depicted in fig. 4.8 is that the protruding molecules will be of the 1 and 1^{\prime} type on one side and 2 and 2^{\prime} on the other side. If a molecule of MNA in the vapour state attaches itself by dipole-dipole interaction to one of the protruding molecules the two molecules would be related by a centre of inversion and rotation of the amide groups would give molecules equivalent to molecules $A(x, y, z)$ and $B(1-x, 1-y, 1-z)$ in MNA1 (white). This pair of molecules would then act as a nucleus for the growth of MNA-1 throughout the entire MNA-3

A twinned crystal of MNA-3 (yellow)

Fig. 4.15 A possible arrangement of molecules in a twinned crystal of MNA-3. Each unit cell is viewed perpendicular to the cell diagonal from $0,0,0$ to $1,1,0$.
crystal.

According to this hypothesis the orientation of growth of MNA-1 is dictated by (a) the formation of fraftures along the crystal axis and parallel to the ya planes and (b) the attachment to a molecule of type 1 or type 2. Attachment to the former would favour growth of MNA-1 with the intermolecular bonds parallel to the long filamentary axis (i.e. vertical growth) and attachment to a molecule of type 2 would favour lateral growth. Since there are the same number of exposed molecules of types 1 and 2 (but on opposite sides of the fracture) there should be an equal probability that vertical and lateral growth occur. This point has not been investigated and examination of many crystal transformations would be necessary to establish this point. However, both lateral and vertical growth of MNA-1 crystals from MNA-3 crystals are commonly observed.

In a perfect crystal of MNA-3 fractures would be absent and spontaneous transformation should not occur. However. the formation of the white form should be observed if small traces of white form are introduced i.e. seeding. Also, if it was possible to make small. well formed crystals of MNA-3 then the sample should show greater stability. It should be noted that small: well formed crystals of MNA-S are not usually formed from solution where initially fine hajr-like
erystals are formed and subsequent growth merely adds to the length to width ratio of 29 or more.

The latter point will be referred to later when the phase change of MNA-2 is discussed since it proved possible to make a thermally stable variety of MNA-3 from MNA-2.

Section 4.5
An alternative model for viewing the changes occurring during phase transformations.

The previous discussion of the mechanis.m of the phase change concentrated on the structure and organisation of molecules in columns. In this second model, which complements the first model. emphasis is placed on the existence of groups of molecules which occur in planes. For example, all molecules in MNA-2 (amber), are found in parallel planes and fig. 3.8 which gives a view of the structure of MNA-2 down the y direction, clearly shows that all atoms of a molecule to lie in one plane and all molecules lie in planes parallel to the 502 plane.

The arrangement of molecules in this plane is shown in fig.4.l

- This diagram was drawn on a hexagonal grid to assist in the construction of hand-drawn hexagons. An additional feature is apparent in that the line diagram fits remarkably well into a pattern which is reminiscent of the crystal structure of graphite. Also the interplanar spacing of MNA-2 $(3.4$ A) is very similar to the value found for the interplanar spacing in graphite ($3.4 \quad \dot{A}$). If this diagram is regarded as a projection of the crystal structure then x and y coordinates can be measured from the diagram and z coordinates can be estimated using the following approximation which is based on
the equation for the least-squares plane through the benzene ring:-

$$
2=0.89 x+0.3
$$

The slope of this line is approximately 41° and hence a reasonable model of MNA-2 can be envisaged by holding fig. 4.16 with the y-axis horizontal and at an angle of inclination of about 49°.

The crystal structure of MNA-3 (yellow) can be constructed by rotating alternate rows of molecules. lying parallel to the y-axis, through 180° i.e. a rotation of 180° around an axis formed by an intersection of the glide plane and the plane of the diagram. The resulting structure is shown in fig.4. 17 and after adjustment to the hexagonal grid the resulting structure is found in fig. 4.18 . If the parallelogram OAEF is regarded as a projection of the unit cell onto the inclined plane then x and y coordinatess can be measured. o represents the origin of the unit cell, $O A$ and DB mepresent the projections of the a and b sides of the unit cell respectively and $A M$ the projection of the c-axis.

Although the molecules marked MDL 1 at $x: y, z$ and $1-x, 1-y, z-z$ are known to be coplanar those marked MOL 2 are not in the same

plane as represented by this diagram. The later types which are all marked MOL 2 presumably adjust their position to stabilise columns of molecules of type MOL 1 by intermolecular hydrogen bonds but. the 1 ong anis of the molecule (C(7)....N(1)) remains in the inclined plane. Hence an approximate model of MNA-S can be construmed by viewing superimposed parallel planes inclined at approximately 40° to the horizontal. A diagram showing the experimentally determined distances in the स11 plane is shown in fig. 3.11a.

The angle of inclination of the plane of the benzene ring to the z-direction is about 32° and the interplanar spacing is 3.4S A. The later value is very nearly the same as that in MNA-2 but the angle of inclination is about 8 degrees smaller. Fractional coordinates measured from fig. 4.18 agree with those from the x-ray diffraction studies to within 0.04 for the x and y values and 0.1 for the z values. The ratio of the lengths $\square A: O B$ is 1.24 compared to 1.39 for the found ratio of the unit cell sides a:b.

The general shape of the projection of the unit cell sides a,b, and c onto the inclined plane is consistent with a triclinic unit cell.

In conclusion fig. 4.18 is an approximate representation of the molecules present in the $\overline{1} 11$ plane. Dne difference is
that all molecules labelled MOL 2 should be rotated around the C(7)...N(1) axis by about 30 degrees and the $N(1) \ldots C(7)$ axes tilted as shown in fig. 5.2.

View of a section through a crystal of MNA-3 (yellow) showing the diamond shaped cross section. The Miller indices of the faces are given. OABP represents the unit cell if the cross section is perpendicular to the z axis which is approximately perpendicular to the plane of this page.

However, the molecules shown in fig. 4.18b should be viewed as lying in the inclined plane ($3 \overline{1} 1$). In fact, molecules which are of the type molecule 2 and 2^{\prime} are twisted about their $N(1) \ldots . C(7)$ axis, out of this plane so that a molecule 2 in successive planes is linked to a molecule 1 by weak intermolecular hydrogen bonds.

Section 4.6

A mechanism for the transformation of MNA-3 (yellow) to MNA-1 (white) based on interplanar interactions.

This mechanism is based on the premise that the new centres of symmetry, which are necessary for the change to a new space group, are formed between molecules in adjacent inclined planes. For example, a molecule labelled MDL 1, x, y, z and one of the MOL 2 type at x, y, z in the adjacent upper plane could form the two centre molecules in the MNA-1 unit cell i.e. the two molecules at x, y, z, (A) and $1-x, 1-y, 1-$ z (B). Similarly molecules at the centre of a new unit cell of the white form would be formed between MOL 2 1-x,1-y,2-z and a molecule in the upper adjacent inclined plane labelled MOL 1 1-x,1-y,3-z.

The shapes outlined by AMNQ, EDMN would correspond to a view of the MNA-1 unit cell perpendicular to the ring plane of the two centre molecules A view of the cell contents of MNA-1 perpendicular to the ring plane of molecule x,y,z is shown in fig. 3.4 c . This view is very similar to that in fig. 4.18 with AMFG as an approximate outline of the MNA-1 unit cell. TS would correspond to the projection of the x axis onto the inclined plane whilst TF and TG would correspond to the projections of the z and y axes respectively. Thus the directions of the z-axes in MNA-3
(AM) and MNA-1 (TF) are paralled.

The diagram also predicts a contraction of about 25% in the y-direction of MNA-Z (i.e. AF - - A (AG). MF represents
 ASM and GTF are common $y=$ faces between unit cells.

A side view of the inclined plane is shown in fig. 4.19. The calculated distancesbetween the ring planes of A type molecules in the cells shown in fig. 4.19 is about -2.13 A and +2.11 A. This result would indicate that individual rings have increased their inclination to the z-axis by rotation around the $C(7) . . . N(1)$ axis. The calculated angles between the individual z-axes and the ring planes are :

MNA-2	32.65°
MNA-5	29.17°
MNA-1	52.65°

The above results are consistent with the benzene rings being maintained in the same plames in MNA-2 and MNA-s but in MNA-1 the angle Mas increased by about 20°. This increase can be accounted for by rotation around the $C(7) . . N(1)$ axis as described above and such an increase would allow for a stronger interaction between molecules of types 1 and 2 which are situated in adjacent columns.

Formation of the intermolecular hydrogen bonds

Formation of the intermolecular hydrogen bonds ocrurs by rotation of the amide groups around the $C(1) \ldots \ldots N(1)$ asis by 13S degrees so that the $C=0$ and $N-H$ bonds are directed along the new $z-a x i s$ which is parallel to the $z-a x i s$ in MNA-S. The nitro groups of molecules of type MoL 1 remain directed towards $A Q$ and on either side of the new hydrogen bonds that are formed so that a glide plane is formed parallel to the z direction and perpendicular to the y direction.

Similarly intermolecular hydrogen bonds involving molecules of type MOL 2 are formed by rotation of the amide groups around the $C(1) \ldots . . N(1)$ axis by about 135 degrees and the ring atoms and $N(1), N(2), \quad$ and $C(7)$ memain in the inclined plane.

Thus, adjacent molecules in the columns stacked along 2 in MNA-S become comnected by hydrogen bonds and each column is linked to each adjacent column by an alternate ring-ring interaction. The arrangement of molecules in the inclined planes can be seen in fig. 4.19 which shows the contents of an assembly of unit cells viewed down the $x-a x i s$.

Fig. 4.19 An assembly of MNA-1 unit cells viewed down the x axis.

Section 4.7

A mechamism for the formation of the white form (MNA-1) from the yellow form (MNA-S).

The second transformation mechanism (summarised below), has the merit of maintaining the direction of the $N(1) \ldots . . C(7)$ axis and the relative positions of half of the benzene rings.

The proposed changes will be discussed using the molecules described in fig. 4.18 and involve the following :-

1. Lateral movement of columns of those molecules labelled * 50 that the $N(1) \ldots C(7)$ axes would be lined in parallel 1 ayers. 2. The a axes of MNA-1 would lie parallel to MF and the c axes parallel to the c axes of the parent MNA-3.
2. Intermolecular hydrogen bonds would be formed by rotating the amide groups through about 135°.

These bonds would be formed from the intracolumnar amide groups.
4. The benzene rings within in a column would interact with those of adjacent columns on an alternate basis.
5. If the rings and $N(1) . . . C(7)$ axes remained approximately parallel to the original inclined plane then the hydrogen bonds would lie parallel to the c axis of MNA- if an amide group of
a. molecule 1 type was involved, or at about 45 degrees to the c axis if a molecule 2 type was involved.
6. In the latter case the sheets of new hydrogen bonds would lie parallel to the plane of the inclined plane of MNA-

A diagram showing the formation of sheets or 1 ayers of MNA-1 molecules is shown in fig. 4.19 and it is important to note that the flat layers of MNA-1 would be formed approximately at right angles to the diagonal (DF) of the MNA-S unit cells.

This mechanism, which attempts to minimise the movement of the benzene rings during the transformation of MNA-3 to MNA-1 has lead to a result which is not in in accordance with experimental observation which requires the layers of MNA-1 i.e. the sheets of molecules parallel to x, to be parallel to the diagonals (OP) of the MNA-3 unit cells.

However, this discepancy is absent from the third mechanism which is discussed in section 4.8 .

Section 4.8

```
A mechanism for the solid state conversion of the yellow
    (MNA-3) into the white (MNA-1) form
```

A mechansim for the conformatiomal change of MNA.

The orvetal structures of the amber and yellow forms of MNA consist of planar arrangements of flat and slightly kinked molecules qf MNA respectively whereas the molecular Eonformation found in MNA-1 is a pronounced folded conformation. From a study of MINIT molecular models it appears that a series of movements of groups could acoount for the change in conformation. Fig. 4.20 shows the conformation of MNA in the planar form in which intramolecular hydrogen bonding is possible. The arrangement of groups around $N(1)$ consists of a hydrogen atom (H 19), a substituted benaene ring: and an acetyl group. In the molecular model the bond angle between any two of these groups and $N(1) i \leq 120$ degrees.

Fotation around the $N(1) \ldots$. . (8) bond would give the second structure shown in fig. 4.20 . After this rotation about the mitrogen atom has occurred intramolecular hyorogen bonding is not possible. Other important aspects are that a cis (or E) amide conformation results and the $N(1) \ldots \ldots(7)$ axis has shifted by about 120 degrees. The final change

Fig. 4.20 The change from a planar to a folded conformation could occur by a rotation around N(1). The conformation in MNA-3 and MNA-2 is shown in the lower part and that for MNA-1 in the upper part..
consists of a conversion of the amide conformation from Cis (E) to trans(Z) and this could occur so that the carbonyl group lies on either side of the nitro group. This would enable enanticomorphic folded conformations to be formed.

Consequences of the conformational change on crystal structure.

Consider a strip of the crystal structure of MNA-3 which lies parallel to the atb vector (the unit cell diagonal). Such a group could consist of pairs of molecules linked by weak intermolecular hydrogen bonds between nitro and amide groups in molecules $1(x, y, z)$ and $2(x, y, z)$ and also 1 ($2-$ $x, 1-y, z)$ and $z(z-x, 1-y, z)$ which are shown in fig. 4.21 . Fotation around each $N(1)$ occurring by the sequence of events described in the previous section would produce pairs of folded molecules which are equivalent to molecules $A(x, y, z)$ and $E(1-x, 1-y, 1-z)$ which occur at the centre of the unit cell of MNA-1. If enantiomorphic pairs were formed from the next layer i.e. of the equivalent symmetry but with $z+1$ then a layer of $C(x, .5-y, .5+z)$ and $D(1-x, .5+y, .5-z)$ types of molecules would be formed. Hence layers of molecules in MNA-3 which lie perpendicular to the z axis form layers of folded molecules in MNA-1 and the layers are still
perpendicular to the z axis since parent (MNA-3) and daughter (MNA-1) z axes are parallel.

The phase change of MNA-2 (amber) to MNA-3 (yellow)

The structure of MNA-2 has been discussed previously in chapter (3). However, some of the main points, which are considered relevant to this phase change, will be restated at this point.

The structure may be regarded as columnar and molecules which are related by the glide plane, which is perpendicular to b, are stacked in columns along c. The crystals of MNA-2 are filamentary but generally are much shorter in length than those of MNA-3. The long axis of the crystals is parallel to the z direction. An unusual feature of the crystal structure is that all molecules lie in parallel planes which are parallel to the plane $202 . \quad$ This aspect of the crystal structure and the nearly planar shape of the molecules is shown in fig. 3.8 and fig. 3.9 which are views of the crystal structure along the y axis.

A view of the arrangement of molecules in the lower half of several unit cells is shown in fig. 4.23 where molecules at x, y, z and $1-x, 1-y, 1-z$ are shown. This arrangement is perpendicular to the long axis of the crystal. The arrangement of molecules which lie in the parallel planes are shown in fig. 4.24and fig. 4.25 .

Figs 4.23 A view of MNA-2 down z

Fig. 4.24 A view of molecules x, y, z and $-x, 0.5+y, 0.5-z$ which are coplanar.

Fig. 4.25 A view of molecules $x, 0.5-y, 0.5+z$ and 1-x,1-y, l-z which are coplanar.

1. A crystal of the amber form (MNA-2). Such crystals have a diamond shaped cross section.
2. A 'ripple' effect caused by the protruding edges of molecules in the parallel $\overline{2} 02$ planes.

3. A splintered crystal of MNA-3 (yellow).
4. Crystallites of MNA-3 made by heating the amber form at $80^{\circ} \mathrm{C}$ for several hours. Note the two sets of interlocking crystals.

The phase change of MNA-2 (amber) to MNA-3 (yellow) occurs rapidly when the amber crystals are heated to about $85^{\circ} \mathrm{C}$. When this process is observed under the microscope on a Kofler not-stage the clear amber crystals become opaque and yellow. The infrared spectrum and $x-r a y$ powder diffraction pattern of the heat treated crystals are identical to that of the MNA-3 polymorph. The dsc curve shown in fig. 9.2 indicates that an exothermic phase change occurs below the melting point when the amber crystals are heated.

It has been observed that amber crystals change, on standing at ambient temperature, to the yellow form which on further standing changes into the white form. For the Change amber to yellow, periods of a few days to si\% months have been recorded as time intervals for the change to occur. The single crystal of MNA-2 which was used in the collection of X-ray diffraction data proved to be stable at ambient temperature for several months after that experiment and hence the maintenance of the crystal at about $2^{\circ} \mathrm{C}$ during data collection was not essential although at the time it was considered a reasonable precaution against an unwanted phase transition which had occurred in some earlier samples. A plausible explanation for this observed behaviour is that initial samples may have been contaminated with the yellow form. This contamination can occur easily since the amber form was made by allowing hot concentrated solutions of MNA
in petrol (boiling range $60-80^{\circ} \mathrm{C}$ or $80-100^{\circ} \mathrm{C}$) to cool slowly. Initially, the amber form crystallises from the warm (ca $50^{\circ} \mathrm{C}$) solution but crystals of the yellow form may suddenly appear and continue to grow rapidly and thus contaminate the amber form. Subsequent batches of crystals were obtained from concentrated solutions of petrol of higher boiling ranges (e.g. $80-160^{\circ} \mathrm{C}$ and $100-120^{\circ} \mathrm{C}$) with carbon tetrachloride. The composition of the solvent mixture was such that a clear solution was obtained below the boiling point of the solvent and amber crystals appeared when the temperature of the solution was about $60^{\circ} \mathrm{C}$. If long yellow crystals appeared then the solvent was reheated to dissolve the crystals and more MNA was added. Thus, later batches of MNA-2 were relatively stable at ambient temperature but heat treatment and grinding still rapidly converted the amber form into the yellow form. A mechanism which will account for the observed changes will be discussed.

Two aspects of crystal structure which the amber and yellow form possess are that both structures are columnar and the nitro groups of molecules within any given column are stacked along z (which is parallel to the general direction of the column, so that the coordinates of the atoms in the nitro groups (viz. $N(2), 0(2), 0(3))$ of the intracolumnar neighbours have exactly (MNA-3) or nearly the
same (MNA-2) x, y coordinates. The necessary molecular displacements required can be followed by referring to fig. 4.24 and fig. 4.25 which show the arrangement of molecules
within the parallel planes. If half the molecules (denoted by *) in each plane are rotated around an axis comprising of the $N(2)-C(2)$ bond, then the molecules are in the correct relative positions for the MNA-S structure. Inspection of a model of the MNA-2 structure shows that there is sufficient room for such a manoeuvre to occur. A diagram of the model considered is shown in fig.4.26. The new arrangement of molecules within the planes is shown in fig. 4.8 which shows that the NH...O(2) groups in adjacent molecules are close to each other.

The final stage would be the stabilisation of adjacent columns by intermolecular hydrogen bonds so that one column may adopt the MNA- 3 (molecule 1 or $1^{\prime \prime}$) conformation and the other molecule the MNA-3 (molecule 2 or 2^{\prime}) conformation.

The relationship between the MNA-2 axes and those of MNA-3 are as follows :-

$$
\begin{aligned}
& c(3)=c(2) * 6.5 \\
& a(3)=a(2) * 2.2 \\
& b(3)=b(2) * 2.2
\end{aligned}
$$

The halving of the c unit cell dimension is a consequence

Fig 4.26 Two molecules of MNA in MNA-2 which
are stacked along z.

DIRECTION OF
YE MQLEGLLES MARKED AR STATE AROUND

> Fig. 4.27 Six molecules of MNA in a column parallel to 2 . The formation of MNA-3 may occur by a rotation of half the molecules about the $C(2) \ldots N(2)$ axis.
of the removal of the glide plane and the changes in the a and b values of the unit cells is depicted by the resetting of the axes in the ry-plane as shown in fig. 4.28 . Some calculated and observed unit cell dimensions for MNA-s are as follows :-

observed (A) calculated (\dot{A})		
17.956	15.445	a
12.908	15.445	b

4.0394 .021 c

These figures show that an expansion has occurred along the x-direction of MNA-3 whereas a contraction has occurred along the y-direction. The observed and calculated areas for the section through the unit cell in the xy plane are 2S1.7日 $\stackrel{\circ}{A}^{2}$ and 238.56 $\stackrel{\circ}{A}^{2}$ respectively. Qverall: a slight contraction occurs in the xy plane which would account for the small difference in volume of the unit cells of the MNA-2 (947.4 $\stackrel{0}{A}^{3}$) and MNA-S (929.1 $\stackrel{0}{A}^{3}$) This would imply that in MNA-2, the molecules such as those at \because, y, z and $1-\%, 1-y, 1-2$ where the $C=0$ groups are close together, are moving further apart whilst those at x, y, z and $-x, 6.5+y, 6.5-z$ move closer together. The latter pair would form molecules of the type 1 and 2 in MNA-3 and a further movement towards each other would enable the MNA-1 structure to be formed. Thus the MNA-3 structure can be regarded as a metastable structure

NA 2 WIEN DOWN 2 -

Fig. 4. 28 Molecules of MNA in unit cells of MNA-2 are shown by vertical and horizontal axes. The diamond shaped figure is the outline of the unit cell of MNA-3 viewed down z.
$0(3) \ldots . . X(3)$ represents the x axis of MNA-3.
between the structure (MNA-2) which is favoured at high temperature (ca. $60^{\circ} \mathrm{C}$) and the MNA-1 structure, which is favoured at lower temperatures. Dne of the reasons why this change occurs is likely to be associated with a change in the stability of the amide-nitro system in relation to the benzene ring. At higher temperatures, where increased atomic vibrations can occur, the steric hindrance of the nitro and amide and between the carbonyl oxygen (01) and a hydrogen atom on the benzene ring (HG), may be accommodated easily but at lower temperatures the concomitant contraction of bonds does not favour a coplanar arrangement of nitro, amide and ring systems. Also. in MNA-2, the angle strain associated with the $C(1) N(1) C(B)$ angle (129.7*) may increase at lower temperatures.

Section 4.10
The following series of diagrams shown in figs. 4.29, 4.30, and 4.31 view the polymorphs MNA-1, MNA-2, and MNA-3 as structures which are constructed from MNA molecules in series of parallel planes.

MNA-2 (amber) is regarded as the 'parent' structure. In this structure all molecules lie in planes parallel to the $\overline{2} 02$ planes. The explanation for the change in inclination of the parallel planes with the z axis is given in fig. 4.30.

The diagrams in fig. 4.29 show how each of the MNA polymorphs can be constructed from parallel planes and this arrangement can be seen in the arrangement MNA-1 unit cells which are orientated in such a way as to produce a lateral growth of MNA-1 from MNA-3.

Molecules in $3 \overline{1} 1$ planes emphasised.

A view along the unit cell diagonal towards the origin in several MNA-3 cells.

The inserted lines are the edges of $\overline{1} 02$ planes $\mathrm{d} \overline{1} 02=4.585 \AA$

Fig. 4. 29 A comparison of the MNA-1, MNA-2, and MNA-3 crystal structures which show the arrangement of molecules in parallel planes.

Fig. 4.30

This figure is a diagramatic representation of a 4×4 array of MNA-2 unit cells showing the positions of the MNA molecules parallel to the $\overline{2} 02$ planes. The very planar molecules are viewed edge-on. Molecules can become arranged in $\overline{1} 02$ planes by notation about the emphasised points shown in a representative layer. Thus the nitro groups and amide groups in molecules such as those at x, y, z and $-x, 1-y, 1-z$ would become close enough to form the intermolecularly hydrogen bonded pairs found in MNA-3. The previous figure (Fig. 4.29) shows the experimentally determined positions of MNA molecules in the three polymorphs viewed so that the arrangement in parallel layers can be seen.

A view of the MNA-1 unit cell perpendicular to the X axis. The cell is orientated in such a way as to give hydrogen bonds at approximately 45° to vertical when viewed down the x axis (see Fig. 5.10 upper)

MNA-1 perpendicular to X axis

MNA-1 down X
Note the molecules lying in parallel planes i.e. parallel to the $\overline{1} 22$ planes. These parallel planes lie closer than the parallel planes ($\overline{1} 02$) shown in Fig. 4.29 where 'vertical' growth of MNA-1 is depicted. d $\overline{1} 22=3.376 \AA$

Fig. 4.31
$\mathrm{dIO} 2=4.585 \AA$

A view of the MNA-1 cell along X. Dotted lines indicate hydrogen bonds.

The arrangement of molecules in MNA-1 showing lateral growth of MNA-1 from MNA-3. Note the presence of layers parallel to $\overline{1} 22$ planes. Compare this diagram with the lower diagram in Fig. 5.10

Fig. 4.32

The arrangement of molecules in MNA-1 (white) can be constructed by superimposing successive layers or parallel planes such as that depicted above which is a projection of molecules on to the $\overline{1} 02$ plane and viewed along z. A, B, C, and D represent four rows of unit cells.
Rows B and D contain molecales at x, y, z and $1-x, 1-y, 1-z$ and rows A and C contain those at $x, \frac{1}{2}-y, \frac{1}{2}+z$ and $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

The parallel layers are built up by superimposing a row of type C over one of type D and vice versa along the z direction. A side-on view of the structure is shown in Fig. 4.29 (lower diagram).
An important feature of this diagram is that the arrangement of $N(1)$ atoms is very similar to that in the inclined plane ($3 \overline{1} 1$) in MNA-3 (yellow). $N(1)$ positions emphasised in above diagram.

Fig. 4.33

The arrangement of molecules in MNA-1 (white) can also be constucted from parallel layers in such a way that they become equivalent to $\overline{1} 22$ planes. When layers of molecules such as the one shown above are superimposed so that row C and row D alternate along z, the resulting structure becomes equivalent to that of lateral growth of MNA-1 (white) from MNA-3(yellow). See Fig. 4.31 for a side-on view of the above diagram. For any selected row (say) D, the relative arrangement of $N(1)$ in this diagram is very similar to that in Fig. 4.33 which depi cts 'vertical' growth of MNA-1 which in turn is similar to the distribution of $N(1)$ in the $3 \overline{1} 1$ plane.

Fig. 4.34

Diagrams showing sets of $\overline{1} 02$ planes (left) and $\overline{1} 22$ planes (right). The former correspond to the arrangment of planes in MNA-1 which originated from the $3 \overline{1} 1$ planes in MNA-3 , and give rise to 'vertical' growth of MNA-1. The diagrams on the right correspond to the arrangment of planes and unit cells which give rise to 'lateral' growth of MNA-1 from MNA-3

Fig. 4.35

CHAPTER FIVE

The relationship between the molecular coordinates and orientations in MNA-1, MNA-2, and MNA-3.

Introduction to Chapter 5

The conversion of MNA-2 to MNA-S im the solid etate acoure readily on heating to about so C and more slowly at ambient temperature and the change could occur by a process in which half the molecules rotate about the $C(2) " . " N(2)$ axis. The other half of the molecules could remain in their orioinal relative positions. The molecules: at
 molecules 1 and 1 in MNA- and a new positionimg of the crystallographic axes enables the coordinates of atoms in MNA-2 to be converted to those of molecule 1 and 1 in MNA- 3.

The solid state comvercion of MMA-S to MNA-1. which occurs on heating the crystals to about $\mathrm{Br} \mathrm{m}_{\mathrm{o}} \mathrm{C}$ or at ambiemt temperature. is accounted for by two approaches. Firstly paire or molecules in MNA s sumb as 1 and 1 " and z and $2 "$ could rotate aroume their respective centres of symmetry in a clockwise manmer. Thus molecules of the type 1 and 2 would become physically eloser and if they were related by a new centre of inversiong . these molecules would become equivelent to molecules A (xnynz) amo $B(1-x, 1-y, 1-z)$ in MNA-1.

[^1]The transformation of MNA-2 coordinatess into MNA-S Eoordinates by matrix multiplication.

Examination of the projection diagram shown in fig. 5.1 which is a view down the 2 -axis of MNA-2, shows that the x and y coordinates of MNA-2 and MNA-s should be related by a simple geometrical relationshipn The relative positions of the x and y axes in relation to each other are shown in fig. 5.1. The figure shows a square within another square. The sinaller square represents the MNA-2 unit cell and the 1 arger square represents the MNA- 3 unit cell whilst $O(2)$ and $O(Z)$ represent the origins of the MNA-2 (amber) unit cell and the latter the origin of the MNA-S (yellow) unit cell. The transformation requires a change in position of the origin and a change in scale. Ey means of either vector methods or by transformation geometry it is possible to calculate the x and y coordinates of MNA-S, shown $a s x(3)$ and $y(3)$ from the MNA-2 coordinates $:(2)$ and $y(2)$ by the following equations:-

$$
\begin{aligned}
& x(3)=-0.5 x(2)-0.5 y(2)+1 \\
& y(3)=0.5 x(2)-6.5 y(2)+9.5
\end{aligned}
$$

Some transformations of points are as follows:-

$$
\begin{aligned}
& 0.0-\cdots 1.0 .5 \\
& 1.0-\cdots-\gamma 6.5 .1 \\
& 0.1-\cdots-20.5 .0
\end{aligned}
$$

Fig. 5.1
02.... X 2 , and $02 \ldots \mathrm{Y} 2$ are the x and y axes of an MNA-2 unit cell. Similarly,
the x and y axes of the MNA-3 unit cell are 03...X3, and 03...Y3 and those of MNA-1 are 01...X1 and 01...Y1.

This diagram also defines the relative positions of the unit cells in the MNA system of polymorphs.

$$
1.1--\infty 6.6 .5
$$

Since the repeat distance along the z-axis is halved the relationship between the c coordinates is as follows:-

$$
z(3)=2 * 2(2)-6.5
$$

The transformation matrix is:-

The MNA-2 crystal coordinates are multiplied. as a row vector $x y=1$, by the matrix using the matrix as a post multiplier.

Some MNA-S coordinates which have been calculated using this matrix are presented in table 5.1 .

Table 51. Matrix generated x, y, z coordinates for MNA-Z

$C(1)$	0.7216	0.4662	0.5294
$C(2)$	0.8031	0.4501	0.3554
$C(3)$	0.8610	0.5113	0.3592
$C(4)$	0.8411	0.5963	0.3540
$C(5)$	0.7598	0.6068	0.7686
$C(6)$	0.7018	0.5473	0.7692
$C(7)$	0.9644	0.6568	0.5478
$N(1)$	0.6612	0.4062	0.5260
$N(2)$	0.8321	0.3688	0.1562

A comparison of the calculated and experimental coordinates shows that there is fair agreement to two decimal places in the case of the x and y coordinates but this is not the case with all the 2 coordinates. For example, there is agreement in the case of the z coordinates of $C(4) \quad i . e$. 0.5340 (calculated) and 0.5231 (found) but there is a large difference in the case of $N(1)$: 0.5260 (calculated) and 6. 8590 (found).

This discrepancy may be explained on the basis of a minor reorientation of molecules which are involved in the weak

```
intercolumnar hydrogen bond. lhis reorientation in which
the c(7)....N(1) axis of the molecule pivots to a small
extent about C(4) with respect to the z-axis, is shown in
fig. 5.2
```


Fig. 5.2
This figure shows the orientation of the molecular axis $N(1) . . . C(7)$ in MNA-2, where it is parallel to the y axis, and in MNA-3 where it is not parallel to the y axis.

A matri: transformation of the plane 202 in MNA-2

The inverse of the matrix (M1) which was used to convert MNA-2 to MNA-3 coordinates is :-
$\left[\begin{array}{ccc}-1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0.5\end{array}\right]$

M2

The multiplication of $-202, ~ a s$ a row vector by M2 gives the row vector $2-21 . \quad H e n c e s$ the plane denoted by Miller indices $\overline{2} 02$. in MNA-2 should transform to $2 \overrightarrow{2} 1$ in MNA-Z.

This is confirmed by the equation of the plane of the calculated coordinates given in Table 5.1. This equation is:-

$$
1.8243 X-1.8414 Y+1.6282 Z=1
$$

The ratio of these coefficients is approximately $2:-2:$ 1. However: the experimental result for the indices of this plane $i s \quad s \overline{1} 1 . \quad$ The difference may be accounted for by the tilting of the $C(7) . . N(1)$ axis to accommodate the intercolumnar hydrogen bond.

Fig. 5.3

The ring coordinates and coordinates of $N(1), N(2)$, and $C(7)$ of MNA-3 may be converted to the equivalent MNA-1 coordinates by the following matrix : -

$$
\left[\begin{array}{cccc}
-1.0218 & 2.0186 & 0.3194 & 0 \\
-0.9733 & -0.9763 & -0.0442 & 0 \\
0.0730 & 0.3340 & 0.6165 & 0 \\
1.8734 & -0.9623 & -0.2727 & 1
\end{array}\right]
$$

M3

The approximate matrix is :-
$\left[\begin{array}{llll}-1 & 2 & 0.33 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0.33 & 0.6 & 0 \\ 2 & -1 & -0.3 & 1\end{array}\right]$

M4
Each of the above 4×4 matrices is premultiplied by $x, y, z, 1$ i.e. the coordinates of the individual points of MNA-3. The conversion matrix was calculated with the aid of a computer program named GENINV by A. Mackay ${ }^{189}$ which will produce a least squares solution to a series of simultaneous equations. The values of the columns are found by assuming them to be coefficients in the enpression :-
where x, y, z are the nine MNA-3 coordinates. Thus there are nine equations and four unknowns which are calculated by the computer program. When this process is repeated for the y and z coordinates of MNA-1 the complete matrix can be calculated.

The transformation of MNA-3 to MNA-1 coordinates based on a clockwise rotation of molecules 1 and 1^{*}.

A model for the conversion of MNA-3 to MNA-1 was considered in Chapter 4 in which pairs of molecules such as 1,1, and 2,2' rotated about centres of symmetry. If molecules 1 and 1^{3} are rotated about 0.5.0.5.0.5. as indicated in fig. 5.5. then the resulting structure would be one based on fig. 5.6.

Calculated coordinates are shown in Table 5.2 and a comparison of theses with coordinates obtained from X-ray diffraction is shown in Fig. 5. B. Pairs of molecules at $x, y, z+1$ rotate in the same manner as those at x, y, z but the benzene rings must be rotated about the $N(1)=.=[(1)$ axis in order to generate molecules $C(x, 0.5-y, 0.5+z)$ and $D(1-$ $x, 0.5+y, 0.5+z)=$

Although this model is of interest because it enables fairly accurate ring coordinates to be calculated for MNA-1 molecules it does NOT agree with the observed orientations of crystals of MNA-1 which form in the solid state from MNA3. The mechanism in which the molecules of MNA-3 fold about $N(1)$ does not suffer from this disadvantage.

Abstract

Transformation of MNA-Z coordinates to MNA-1 coordinates by matrix multiplication.

The rotation of the pairs of molecules 1 and $1^{\text {. }}$ described above may be translated into a mathematical transformation which involves the following steps :-

1. move the origin of MNA-3 to 6.5.0.5:
2. rescale the x axis by a factor of 2 i.e. $x=2 x:$
3. rotate x and y axes around the z axis: $\left(-45^{\circ}\right)$
4. $y^{\prime}=-y$:
5. $x^{3}=1-x$;
6. $z^{*}=2: 0.5$ in each case the coordinate marked (*) refers to the new calculated coordinate.

The calculated coordinates are presented in table 5.2.

Table 5.2 Calculated MNA-1 coordinates

$C(1)$	0.6228	0.3783	0.3728
$C(2)$	0.5657	0.4925	0.2645
$C(3)$	0.4361	0.5355	0.2106

Table 5.2 (continued)

$C(4)$	6.3572	0.4690	0.2616
$C(5)$	0.4123	0.3564	0.3709
$C(6)$	0.5406	0.3127	0.4244
$C(7)$	0.2167	0.5135	0.2001
$N(1)$	0.7528	0.3355	0.4298
$N(2)$	0.6389	0.5711	0.2005

The equation for the new plane of the benzene ring is

$$
-0.1684 X+1.3989 Y+1.54 .19 Z=1
$$

The plane for the ring plane of molecule A in MNA-i is

$$
-6.1368 X+1.6658 Y+1.2206 Z=1
$$

The angles between the normals to these planes is 11.55°. The angles between the $z-a x i s$ and ring planes are 42.23° and $53^{3} .77^{\circ}$ respectively. A comparison of the calculated coordinates and the equivalent coordinates obtained by x-ray diffraction studies on MNA-1 is presented in fig. 5.8 in which a view down z is presented.

Fig. 5.5 Molecules 1 and 1^{\prime} in MNA-3. The theoretical conversion to MNA-1 might occur by rotation of such pairs around centyes of

Fig. 5.7
This is a sideways view of two unit cells of MNA-1 which have an edge in common. It is a view down the unit cell diagonal i.e. from $1,1,0$ to $0,0,0$. The diagram shows molecules of type A and B which might be related to the rotated dimer unit originally in MNA-3. Molecule A would be equivalent to molecule 1 in MNA-3 and molecule B would be equivalent to molecule 1^{\prime} in MNA-3.

Fig. 5.8
The calculated position of a type A molecule (dotted line) shown in comparison with the position of molecule of type A based on experimentally determined coordinates.

A summarv of the relationship between the crystal lattices of MNA polymorphs.

Abstract

It is convenient to regard the MNA-2 structure as the "parent" structure. In fig. 5.1 molecules at x, y, z and $1-$ \therefore 1-y, 1-z are shown. The origin of the unit cell is 02 and \therefore and y axes are shown by $02 . \ldots \times 2$ and $02 . .42$ respectively. The transformation of MNA-2 to MNA-S is thought to occur by alternate molecules in the columns parallel to the z axis rotating around the $N(2)-C(2)$ bond. The MNA-S unit cell is and 0B...Y马 respectively. The common points occur where the two sets of axes intersect. The length of the c side of the unit cell in MNA-S should be half that of MNA-2 and these values are $4.930 \dot{\AA}$ (found) and $8.641 * 6.5=4.2 \dot{A}$ (calculated from MNA-2 crystal data). The $\%$ and y coordinates of the MNA-2 can be converted to those of MNA-S by a matrix which was presented in a previous section ie. M1. This matrix allows for a rescaling and rotation of the reterence axes.

Formation of MNA-1 from MNA-S may be assumed to occur by molewules adopting a folded conformation with the N(1) atoms as pivots. The position of the MNA-1 unit cell is given by the origin at $D 1$ and x and y axes at $01 \ldots \ldots x$ and $01 \ldots \ldots 1$

In the diagram shown in fig. 4.21 formation of the folded conformation. with $N(1)$ as stationary points, leadsto a situation where the benzene rings overlap exactly. Comparison of this diagram with that obtained for the MNA-1 unit gell which has been rotated 45 degrees around the x axis shows a remarkable similarity. Similarly, the positions of molecules obtained by rotation around the $N(1)$ atoms followed by displacement along half the hexagonal grid leads to the projection which is very similar to that shown for the view of MNA-1 down the z axis (fig. 4.22). The lines G1 and G2 would represent the intersection of the glide planes with the $x y$ plane. Approximate x and y coordinates can be obtained from the diagrams and they are in fair agreement with those obtained from x-ray diffraction experiments.

Another feature which is revealed by these diagrams is that the distance $\quad 0 X$ (the length of the a side of the unit cell, should be equal to that of half the longer diagonal of the MNA-z unit cell. These values are

$$
10.421 \stackrel{\circ}{A} \text { and } 22.26 * 0.5=11.13 \stackrel{\circ}{A}
$$

A view of MNA-1 after rotation round the x axis by 45 degrees.

This Fig. is very similar to that in Fig. 4.21 obtained by pivoting MNA molecules about $N(1)$

Fig. 5.9

A comparison of the relative positions of the MNA-S and MNA-1 unit rells

In fig. 5.1 the larger squares with axes $O Y Z$ and $\square X Z$ represent the outlines of the unit cells of MNA-S viewed down the z axis and 01...Y1 and O1... $X 1$ represent the axes of the MNA-1 unit cell viewed down the z axis. The MNA-s and MNA12 axes are parallel. The coordinates of the point M. repesented as a projection on the $X Y$ plane are $0.75,9.25$ on the MNA- 3 axes but become 0.5.0. 5 on the MNA-1 set of axes. The significance of the point M is.that it is an approximate point of inversion for the x and y coordinates of molecule 1 and molecule 2. When molecules of MNA-1 adopt the folded conformation i.e. when the transformation to MNA-1 occurs then M becomes a true centre of inversion since it is assumed to become the point 0.5 .6 .5 .6 .5 in MNA-1.

A matrix, which is used as a post multiplier, for the conversion of $x: y, z$ coordinates based on Fig. 5.1 is given below:-
$\left[\begin{array}{llllll}\because & y & 1\end{array}\right]\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 6 & 0.5 & 0 \\ 0 & -0.5 & 0 & 1\end{array}\right]$

M5

This matrix converts the coordinates of $N(1)$ in molecules 1 and 2 in MNA-S very nearly into those found for $N(1)$ in MNA-1.

The calculated and found
values are shown in Table 5.3.

Table 5.3
calculated ronversions

$N(1)$	mol 1	0.2660	0.6443	0.4298
$N(1)$ mol 2	0.7591	0.3443	0.5257	
found values for $N(1)$	in $M N A-1$			
$N(1) 1-\times, 1-y, 1-z$				

6.2127
0.6878
9.5468

N(1) x, y, z
$0.7873 \quad 0.31220 .4592$

It is concluded that molecular rotations can occur round $N(1)$ and that $N(1)$ in molecule 2 and molecule 1 can become equivalent to $N(1)$ in MNA-1.

Diagrams which show these rotations are shown in fig. 4.21 and fig. 4.22 . In each of these diagrams a view of MNA-S is presented as viewed down the z axis and the flat face of the MNA-z erystal is parallel to the line OF which is the a+b vector of the MNA-3 unit cell.

Similarly the length of the side of the unit cell represented by $O Y$ (the length of the b side should be equal to half the 1 ength of the shorter diagonal of the MNA-3 unit cell and these values are
$9.98 \dot{A}$ and $21.97 * 0.5=10.985 \dot{A}$

Thus contractions of approximately 6% and 10% are predicted in the MNA-1 $\%$ and y directions but since an expansion of 19% occurs in the z direction $\&$ i.e. from 2 * $4.039=8.678 \stackrel{\circ}{\mathrm{~A}}$ to $9.568 \stackrel{\circ}{\mathrm{~A}}$, an overall expansion should occur. This is supported by the values of the volumes of the unit cells which are $929.1 \quad \circ^{3}$ and $981.4 \AA^{3}$ for MNA 3 and MNA-1 respectively.

The type of phase change which is represented by the fig.4.2l shows that oblique or lateral growth of MNA-1 from MNA-S involves an expansion in the direction of aF from

$$
21.97 * 0.5=10.985 \text { to } 13.85 \quad \stackrel{\circ}{A}
$$

where the value of $1 S_{\mathrm{m}} 8 \mathrm{~S}$ A is the length of the diagonal of the be face of MNA-1. A concomitant contraction of

$$
4 * 4.039=16.156 \text { A to } 13.83 A
$$

will occur in the c direction of MNA-3. These values amount to a 25% expansion in the original width of the needle shaped

MNA-3 crystal and a contraction of 14.4% along the length of the needle shaped crystal.

The formation of these two different orientations of MNA-1 unit cells are represented diagrammatically in fig. 5.10 where each block represents an edge-on view of a benzene ring.

Arrows represent
direction of
intermolecular hydrogen bonds Lateral growth of MNA-1 from MNA-3

Columns of MNA molecules in MNA-3

Vertical growth of MNA-1 from MNA-3

Columns of MNA molecules in MNA-3

Fig. 5.10 Diagramatic schemes for the formation of intermolecular hydrogen bonds at 45° (upper) and paralle1 to z axis of MNA-3

Fig. 5.11 Computer simulation of the MNA-3 to MNA-1 change

The positions of N(1)...C(7) axes after rotation around the pivot N(1)

The outlines of the MNA-1 unit cells shown here.

Four molecules inthe MNA-3 unit cell as.viewed down the z axis.

The MNA-2 unit cell viewed down the z axis The two molecules shown are regarded as equivalent to molecules 1 and 1^{\prime} in MNA-3

The MNA-1 unit cell viewed down the z axis. Note the two $N(1)$ atoms are regarded as equivalent to $N(1)$ in molecules 1^{\prime}
and 2^{\prime} in MNA-3
(N l) =emphasised points)

Fig. 5.12
In each case the projections are based on the appmpriate coordinates of each polymorph (crystal coordinates) and each cell is drawn to the same scale.

A view of MNA-3 perpendicular to the cell diagonal from $0,0,0$ to $1,1,0$. Several units shown stacked along z.

Two views of MNA-1 Four unit cells are stacked along z and views are perpendicular to the z axis.

The MNA-1 diagram (A) is drawn to the same scale as the diagram of MNA-3. Emphasised points which denote $N(1)$, are shown and in each case they form the same pattern. This result is in accord with $N(1)$ being the pivot for the change in conformation.

In diagram B an expansion of about 20% has occurred along the z direction. The expected expansion along z is $2 \times 4.039=8.078 \AA$ to $9.568 \AA$ where 4.039 is the length of c in MNA-3 and 9.568 is the length of c in MNA-1 (i.e. an expansion of 18.5%)

Fig, 5.14

Fig. 5.13

Nine unit cells of MNA-2 viewed down the z axis. Only molecules at x, y, z and 1-x,1-y,1-z are shown.

Four unit cells of MNA-3 viewed down the z axis. Note the similarity of this projection with that for MNA-2 .

Nine unit cells of MNA-1 shown down the axis. Note that the positions of the $N(1)$ atoms in this case are equivalent to the $N(1)$ positions in MNA-3. Only molecules at x, y, z and $1-x, 1-y, 1-z$ are shown.
Fig. 5.13 The relative positions of molecules in MNA-1, MNA-2, and MNA-3

Calculation at abvotant for the transformetiom of MNA $\operatorname{ton} \operatorname{NA}-1$

The matrix me will trensform coordinates of atomic positions of rimg atoms and $N(1)$ and $N(2)$ in MNA x to those found for equivalent positions in MNA-ln

The metris ME which was introduced in this chapter is one which merely allows for a change of position of the migin and a rescaling of the ases of the MNAm unit cell. The matrix mio is obtained by multiplyimg matrix MS by

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

If it is assumed that the conversion of MNA- t to MNAM. dees occur by a pracess involving molecular rotation then a woint (inen the pivoty should exist which should womvert to the same point when multiplied by either Me or M10.

In mathematical terms:-

```
(:yz1) *ME= (x y z 1) *M10
```

The matrix MIGis:-

$$
\left[\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & \cdots & \vdots \\
1 & 1.5 & 1 & 1
\end{array}\right]
$$

If the coordinates ot the pivot point are muttiplied by ME and Mto and like terme are qethered together then three simultaneous equations result :-

-6.0218\%	-	1.973	$+0.67$	
- 6166	$+$	$0.024 y$	$-2.462 x$	
9.3194\%		9.6442	$+1.161$	

These equations were solved using the general inverse proqram GENINV and qave the result a-

$$
\begin{aligned}
& x=0.7167 \\
& y=0.4349 \\
& z=0.9167
\end{aligned}
$$

or approximately $x=6.71, \quad y=64 x$ and $z=0.92$

The coordimates for the atom $N(1)$, in MNA-

Since there is a close correwpondence betwem these coordinates it $i=$ comeluded that the $N(1)$ atoms in MMA- x are the most likely pivot points when mons ehanges in the solid state into MNA-1.

```
A matrix conversion of MNA-2 (amber) coordinates to MNA-1
(white) coordinates
```

It is possible to construct a matrix for this conversion by assuming that a molecule at x,ysz in MNA-2 becomes a molecule (type A) at $x, y: z$ in MNA-1. The following steps are involved in the construction of the elements of the matrix:-
a) re-position the origin of MNA-2 at $0.5,0,0$
b) 1 et $x(1)=y(2)$
c) let $y(1)=0.5-x(2)$
d) rotate the re-positioned axes by 20°

It is also assumed that the z-anes are parallel in both structures and that the z coordinates are related by the following relationship:-

$$
z(1)=z(2)
$$

A diagram showing the relative positions of the MNA-2 and MNA-1 axes are shown in fig. 5.1 .

A conversion matrix based on the above transformations is:-
$\left[\begin{array}{lll}x(2) & y(2) & 1\end{array}\right]\left[\begin{array}{lll}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0.5 & 1\end{array}\right]$

A transformation matrix for rotation of x and y akes around a z-axis is :-
$\left[\begin{array}{lll}: & y & 1\end{array}\right]$
$\left[\begin{array}{lll}\cos A & \sin A & 0 \\ -\sin A & \cos A & 0 \\ 0 & 0 & 1\end{array}\right]$

Multiplication of these matrices gives a new matrix :-

$$
\left[\begin{array}{lll}
\sin A & -\cos A & \theta \\
\cos A & \sin A & \theta \\
-0.5 \sin A & 0.5 \sin A & 1
\end{array}\right]
$$

If a value of 20° is assumed for the rotation then the actual transformation matrix is:-
$\left[\begin{array}{lll}-0.34 & -0.94 & 0 \\ 0.94 & -0.34 & 0 \\ 0.17 & 0.47 & 1\end{array}\right]$

A transformation matrix has been calculated for the transformation of the x and y coordinates of MNA-2 to MNA-1 using the computer program GENINV ${ }^{189 \text {. The }: ~ a n d ~} y$ coordinates of $C(1), C(2), C(3), C(4), C(5)$, and $C(6)$ were used as data and the following matri\% was calculated:-

$$
\left[\begin{array}{ccc}
-0.3294 & -0.6862 & 0 \\
1.0837 & -0.2369 & 0 \\
0.4000 & 0.5932 & 1
\end{array}\right]
$$

M7

MATRIX 7

The elements of the matrices M6and M7 are comparable in sign and magnitude. One element which differs is that element which corresponds to the translation along the x axis of MNA-2 (or the y-axis of MNA-1). The predicted -
value is 0.171 but GENINV gives 0.400 . This difference could be accounted for if molecules at x, y, z and $1-x, 1-y, 1-$ z in MNA-2 i.e. those molecules related by a centre of inversion at $9.5,0.5,0.5$, rotated around this centre of inversion and moved apart while the molecule at x, y, z moved closer to a molecule at $1-x, 1-y, 1-z$ in the adjacent cell i.e. at -x,1-y,1-z.

The relationship between the z coordinates, as given by

 the equation :-$$
z(1)=2(2)
$$

is an approximate one and it varies from giving a fairly close agreement for $N(1)$ in MNA-2 (0.51) and $N(1)$ in MNA-1 (0.46) to giving a poor agreement for $C(7)$ which has values 0.52 in MNA-2 and 0.25 in MNA-1. This discrepancy can be explained on the same basis as that used when romparing the MNA-2 and MNA-3 structures when it was noted that the N(1)...C(7) axis is parallel to the y-axis in MNA-2 but is inclined to the equivalent (x-axis) in MNA-1.

```
A mathematical construction of a hypothetical crystal
structure related to MNA-1
```

By means of a transformation matri> it is possible to construct a hypothetical erystal structure which is closely related to MNA-1 in that it will have the symmetry elements of MNA-1 (viz F' $21 / c$) but the molecules will have the conformation found in MNA-2 i.e. the molecules will be planar and contain intramolecular hydrogen bonds. Using the coordinates of the atoms $C(1), C(2), C(3), C(4), C(5)$, and $C(6)$ in MNA-2 and MNA-1 as data, the computer program GENINU provided a matrix which will convert MNA-2 coordinates into MNA-1 coordinates. Ey means of this matrix it is possible to calculate coordinates of atoms such as $0(1)$ which would be in positions consistent with an intramolecularly hydrogen bonded system. The transformation matrix is shown as MATRIX 8:-
$\left[\begin{array}{llll}-1.1648 & -0.7330 & 1.2509 & 0 \\ 1.0754 & -0.2373 & 0.4431 & 0 \\ 0.9393 & 0.0523 & -0.3927 & 0 \\ 0.1232 & 0.5778 & 0.1681 & 1\end{array}\right]$

M8

MATFIX 8

Using this matrix as a post-multiplier the following coordinates were obtained for the atoms specified:-

$0(1)$	0.7631	0.1822	0.6580
$0(2)$	0.8501	0.4859	0.2389
$0(3)$	0.6482	0.5618	0.1313
$N H$	0.8299	0.3588	0.4206
$C(8)$	0.8274	0.2417	0.5839
$C(9)$	0.9586	0.2331	0.6163

In this hypothetical structure the amide and nitro groups of molecules which are related by the glide plane are very close to each other and some close contacts are presented in Table 5.3 .

Table 5.3

Some important intermolecular distances (f) in a hypothetical intramolecularly hydrogen bonded MNA-1.

	using MNA-1 cell parameters	
$O(1)$	$O(2)$	2.6
$O(1)$	$O(3)$	2.7
$O(1)$	$N H$	2.5
$O(1)$	$C(8)$	4.1
$O(1)$	$C(9)$	4.6

$\square(1)$	$O(2)$	2.2
$\square(1)$	$O(3)$	3.1
$\square(1)$	$N H$	2.1
$\square(1)$	$C(8)$	3.55
$\square(1)$	$C(9)$	4.2

The above distances show that the oxygen atom in the amide carbonyl group: $0(1)$: would lie very close to one of the nitro-group oxygen atoms, $0(2)$. Such a close proximity of these electron-rich atoms would lead to strong repulsive
forces between the amide and nitro groups which could be relieved by simultaneous rotation of the amide and nitro groups in such a way as to increase the o(1)....o(2) distance.

It is noted that $O(1)$ is very close to the NH group in the adjacent molecule in this structure and this situation would assist in the formation of intermolecular hydrogen bonds between the glide plane related adjacent molecules.

Abstract

A summary of the changes involved in the transformation of MNA-2 (amber) to MNA-3 (yellow) to MNA-1

The distribution of columns of MNA molecules which lie parallel to the 2 axis are arranged as shown in Fig. 5.13 and this distribution is shown diagranatically in Fig. 5. 15. There is a similar distribution of columns in MNA-3 but in this case weak intermolecular hydrogen bonds link alternate columns. The formation of the most stable polymorph, MNA-1s: from MNA-3 is thought to occur by intermolecular hydrogen bond formation along the column $\{$ i.e. in an intracolumnar fashion , Thus sheets or layers of MNA-1 molecules are formed in planes parallel to the plane formed by the atb direction of MNA-3 (or the y direction in MNA-1) and the z axis. These sheets are then stacked along the x direction of MNA-1.

The positions of molecules in the various polymorphs can be visualised by the diagrams drawn on the hexagonal grids. The MNA-2 structure is shown in Fig. 4.16 and MNA-3 in Fig. 4.18. These diagrams represent the arrangement of coplanar molecules in these structures hence Fig. 4.16 should be viewed with ob horizontal and $O A$ inclined at an angle of 45 degrees to the horizontal plane whereas Fig. 4.18 should be held with AP horizontal and inclined at about 30 degrees to the horizontal.

The relative positions of columns in MNA-2

The relative positions of columns in MNA-3
The oblique lines represent columns linked by hydrogen bonds.

Abstract

The diagram for MNA-1 is shown in Fig. 5.16 where DA represents the projection of the a side of the unit and oc the projection of $c . \quad$ The atoms involved in the hydrogen bonding system are in the plane of the diagram and the rings should be viewed as projections onto this plane which coincides with the glide plane. The directions of the hydrogen bonds are (i) along the columns so as to be parallel to the $z a x i s$, and (ii) inclined at an angle of about 45 degrees to the z axis. The edges of these planes coincide with arrows in Fig. 5. 10.

Fowder Diffraction Studies.

Fowder photographs of the three polymorphs were recorded and Debye-Scherrer photographs are shown in Fig. 5.17 A sample of MNA-2 which was heated at $80^{\circ} \mathrm{C}$ for 5 minutes gave a powder pattern which was identical to that of MNA-S showing that the phase change MNA-2 to MNA-3 occurs rapidly on heating: However a powder sample of MNA-3 was stable at $86^{\circ} \mathrm{C}$ for 72 hours. A possible explanation for stability under these conditions is that in order for MNA-1 to be formed an expansion of about 20% must occur along the direction in which the new intermolecular hydrogen bonds are formed. In a powder sample which is packed into a capillary tube the orientaion of crystallites is random and they are tightly packed making expansion unlikely.

Eamples of MNA-2 and MNA-s both gave MNA-1 powder patterns after ultrasonic vibration whilst suspended in water.

The positions of powder lines were measured using a transparent vernier scale and the corresponding d-spacings were calculated on a Sharp microcomputer. The measurements along the films were estimated to be accurate to within 0.2 mm and the calculated d spacings, together with line intensity estimates have been correlated with. single crystal diffraction data.

Apparatus and conditions used for powder photographs.

A Raymax so XRD unit was used which has a 9 em diameter camera (1inear gorrection factor, 0.977) and 0.3 mm diameter sample holder. Exposures lasted two hours and chromium $k \bar{\alpha}$ radiation (wavelength $2.290 \AA$) was used with a vanadium foil \quad-filter.

The results from the powder photographs are presented in Table 5.4 Intensity values (I) are vs $=$ very strong: 5 $=$ strong; $m=$ medium; $w=$ weak; $v w=$ very weak; br = broad.

```
POWDER PHOTOGRAPHS OF MNA POLYMORPHS
```

$$
\left\|\left\|\left(\cos ^{2-1}\right)\right\|\right\| \|
$$

$$
\text { Fig. } 5.17
$$

Table 5.4

Correlation between powder and single crystal diffraction むata.

MNA-1

Fowder data		single Erystal data		
$d(\dot{A})$	I	hkil	F (obs)	d(calc)
10.31 (3)	5	100	35	10.278
7.14(2)	5	119	35	7. 160
6.80(2)	w	011	21	6.857
6.04 (2)	m-w	I11	30	6.649
5.41 (1)	5	111	42	5.412
5.15	w	290	38	5.139
4.45:1)	m-br	102	27	4.585
		210	32	4.569
		129	47	4.489
		021	48	4.411
4.27(1)	m-5	021	54	4.266
4.16(1)	m	121	48	4.172
3.89(1)	m	202	61	3.803
3. 58(1)	$m-w$	220	44	3. 580
		212	30	3.553
3. 4.3 (1)	5	022	66	3.428
S. 22(1)	w	F11	35	3.223
3.150	s-br	150	56	3. 165
		122	51	3.141
		031	53	3.137

MNA-2
$\left.\begin{array}{llll}\text { Fowder data } & \text { Single crystal data } \\ 10.13(5) & m & 100 & 35\end{array}\right] 10.126$

MNA- 3

Powder data		Single	crystal	data
10.49 (3)	m	T19	28	10.486
8.91(3)	$v \leq$	200	54	8.924
6.43 (2)	5	020	52	6.444
5.40 (1)	m	316	36	5.417
		310	14	5.386
$5.23(1)$	m	220	36	5.243
		220	25	5.206
4.46(1)	m	400	56	4.462
4.19(1)	m	$\overline{130}$	44	4.184
		130	47	4.170
4.61	w	001	32	4.969
3.89 (1)	m	011	34	3.887
		$\overline{111}$	51	3.887
$3.77(1)$	m	011	42	3.771
		111	71	3.767
3.61(1)	m	111	26	3.617
		211	59	3.606
3.50(1)	m	5.30	58	3.495
		121	49	3.498
		336	27	3. 471
3.43 (1)	5	了 11	100	S. 428
		311	20	3. 428
3. $33(1)$	m	021	87	3.325
		$\overline{211}$	50	צ. 355

A comparison of the powder photographs of MNA polymorphs and correlation with the proposed phase transformations.

An inspection of the powder photographs of MNA polymorphs shown in fige 5.17 shows that MNA-2 (amber) shows 5 main lines whereas that of MNA-3 (yellow) shows lines in similar positions but occurring as closely spaced doublets. The powder photograph of MNA-1 (white) show lines at positions similar to that in MNA-2 but with the addition of two broad bands in the centre of the pattern.

If it is assumed that each polymorph consists of colums and layers of MNA molecules in the same relative positions then similarities in the powder photographs would be expected since the lines observed are caused by diffracting layers. However, equivalent layers would be labelled by different Miller indices which should be interconvertible by fnowing the relative positions of the unit cells of MNA-2; MNA-3, and MNA-1 in the proposed transformation mechanism. This is shown in fig. 5.18 in which each of the projections of the x and y axes is viewed down parallel z axes. Using this diegram it is possible write the indices of equivalent layers which lie parallel to z and these are isted in table 5.5 .

Fig. 5.19

Fig. 5.19 Projections on to the $x y$ planes of MNA polymorph crystal structures. The positions of parallel equivalent planes is shown with their d-spacings.

Fig. 5.18 The relative orientations of unit cells of MNA-1, MNA-2, and MNA-3. Each cell is viewed down a z axis.

Table 5.5
Equivalent layers in MNA polymorphs with their corresponding
observed d-spacings.

MNA-2	MNA-3	MNA-1
100	$\overline{1} 10$	100
$10.13(3)$	$10.49(3)$	$10.31(3)$
110	200	$\overline{110}$
$7.62(2)$	$8.91(3)$	$7.14(2)$

100	020	110
$7.64(2)$	$6.43(2)$	$7.14(2)$
200	220	200
$5.05(1)$	$5.23(1)$	$5.15(1)$

The layers referred to in this table are shown in fig. 5.19, in small scale crystal projection structures (all viewed down 2) to enable the layers to be easily observed.

The presence of lines due to layers of parallel benzene rings in the various polymorphs are :-

MNA-2	202	$3.29(1) \dot{A}$
MNA-S (mol 1)	311	3.43(1) ${ }_{\text {A }}$
MNA-3(mol 2)	021	3.33 (1) ${ }^{\text {A }}$
MNA-1	022	3.43 (1) A .

Two broad bands occur in the powder photographs of MNA-1 which do not correspond to any 1 ines in MNA-2 or MNA-3 powder photographs. Some of these additional lines are due to new layers due to intermolecular hydrogen bonds e.g. a plane with Miller indices of 120 has $d=4.45(1) \dot{A}$ and a plane with indices 012 has $d=4.27(1) \dot{A}$. These sets of planes would give rise to lines which would not be expected of the MNA-2 and MNA-3 structures which do not possess intermolecular hydrogen bonds. Comparison of indices of equivalent planes is once more in agreement with the proposed transformation of MNA-2 to MNA-3 to MNA-1.

CHAFTER SIX

The infrared and Raman spectra of polymorphs of MNA and its deuterated derivatives.

[^2]triclinic form of 4-nethyl-2-nitroacetanilide

1,2,4-trisubstituted benzenes have at most only the molecular plane of symmetry, and the fundamentals, apart from the additional vibrations of substituents, consist of 21 in plane vibrations (a*) and 9 out-of-plane vibrations (a"). Examples of the interpretation of such spectra are presented in the collection of interpreted spectra by Varsanyi 199 Green et al. have also interpreted several such spectra 200 . The present assignments are based on these works as well as on the shift of bands concomitant with the phase change and on the spectra of isotopically labelled compounds. The bands are listed in three tables, one assigning the fundamental frequencies associated with the benzene ring (Table 6.1): and the others listing the frequencies associated with the nitro group (Table G.J) and with the amide group (Table 6.3). The vibrations are numbered according to the Mulliken notation 201 , in order of decreasing wavenumbers for the a^{\prime} modes followed by the a" modes. The wilson nomenclature with reference to the Varsanyi scheme 202 is also used for the benzene ring modes.

The weat but sharp absorptions between who and 3goocm-1 were attributed to three aromatic [-H stretches expected in this region. The location of four of the C - C ring stretrhing and three of the $0-H$ in-plane bending modes are located at frequencies within the accepted range for a $1,2,4-t r i s u b s t i t u t e d$ benzeme derivative. The assignment of the $-x$ stretching vibrations in the region $1306-1200 \mathrm{cm-1}$ is difficult because of the broad absorntion near 1246 cin-1. Bands at $1286 \mathrm{~cm}-1.1216 \mathrm{~cm}-1$ and 9 ge co-1 are unaffected either by denteration of the aromatic $\mathrm{C}-\mathrm{H}$ groups or by deuteration of the $\mathrm{N}-\mathrm{H}$ group. These bands have counterparts in the Faman spectrum and the strong Fiman 1 ine at 1220 cm-1 is assigned to the vibration 7a in whirh the substituents vibrate in phase. The band near $1246 \mathrm{~cm}-1$ which $i=$ strong in the fiaman and i.nfrared spertra is assigned to the amide II vibration.

The mighest $\gamma(C H)$ moden 17 b , $i s$ detected as a medium band in the infrared spectrm at gog em-1 and its position is contimmed by the combination bands in region 1750-2090 cm-1. The doublet near $890 \mathrm{~cm}-1$ and the band at 328 cm-1 were also assigmed to $\gamma(C H)$ modes. Five bands due to radial skeleton vibrations were assigned on the besis that they were unaffected by rimg or side chain
deuteration. both in the infrared and Faman spectra.

Nitro group frequencies

```
The assignments ju Table 6.3 are based on well
established values in the literatume and in particular on
those given by Green.. 207
```


Amide group frequencies

The strong band near $3 \mathbf{S 7 6} \mathrm{~cm}-1$ and the band near 1719 cm-1 which both appear as distinct doublets (separation 24 and 12 cm-1 respectively) were assigned to $u(N H)$ and U(CD). On amide deuteration the doublet near 3s76 nom is replaced by doublet near 2590 cm-1. This ratio of the two wavenumbers (0.742) $i=$ close to that (9.767) expected for the behaviour of a pure $N-H$ stretching vibration. The identification of bands corresponding to $\delta(N H)$ (Amide II) and $\gamma(N H)$ (Amide V) has proved to be unexpectedly difficult. Some of the problems encountered were :-(a) some aromatic bands changed intensity and position slightly on amide deuteretion. (b) the nitro group stretching vibrations obscured regions of interest and (c) more bands were otserved in eome regions of the spectra of deuterated compounde than was anticipated. The stromg and broad band near 1400 cm-1 was assigned
the amade It bard since (a) this band disappeared on amide deuteration and (b) a mand at this position was observed in the spectra of other orthomitroacetanilides. The Amide III tand was assigned to the band near 1246 em1 since the intensity of this band, which is strong in the infrared spectrum and very strong in the Fiaman spectrum, was markedly reduced on deuteration of the $\mathrm{N}-\mathrm{H}$ group. The N-H out-of-plane bending vibration could not be assigned to one band. After amide deuteration the broad band near b50 cm-1 and the strong band at 600 cm-1 were replaced by a new band near 470 cm-1. Amide IV and Amide VI bands were assigned to the absorptions at bso cm-1 and 596 com-1 respectively

Normal vibrations of benzene

Fig. 6.1
Fends whiot eppear as doublets are assigned to (a) NW strething. (b) $C=0$ stretching and inwplame and ationfPlane bending (c) NO2 wagging (d) two of the three $\mathbb{C}-\boldsymbol{H}$ in-plane bending vibrations. and (e) three out-of-plane bending vibrations of symmetry a". of the above items, (a) and (b) can be explained on the basis that the vellow triclinic form consists of two distinct molecules whose amide groups are conjugated to the ring to different extents. Item (e) can be explained on the basj= that the assaciated vibretions viz. $5, ~ 4, ~ a n d ~ l o a$ all have $N(1)$ and $N(2)$ vibrating out-of-phase and out of plame of the benzene ringn This is presumably a reflection of a differemce in interaction of the nitro and amide groups in the two types of molecules which is at a maximum in the outwof-puane vibrations. ftem (c) can be explained if coupling between the Noe wagging vibration and vibration 4 is ascumed as stated by Varsanyi 203 . Since vibrations 15 and 15 n . which involve in-plane $\mathbb{C}-H$ bending vibrations, also have N(1) and $N(2)$ vibrating out of phase a similar explanation of the splitting of absorption bands is possiblen

The specturn of 4 -metmy]-amitroacetanilide at low temperatury
$x-r a y$ diffraction stuclies on erystals of this compoumd have shown that the triclinic form has an asymmetric unit consisting of two molecules of 4-methyl-amitroacetanilide. The mitro group and amide group in each of these molecules lie in plames at different angles to the bemaene ring in each case. Hence the doublet nature of $\mathrm{N}-\mathrm{H}$ stretching could be explained on the Dasis of two amide groups which differ by virtue of their different conjugation to the benzene ming" The doublet mature of the band near $1700 \mathrm{~cm}^{-1}$ would be then explained on the same basis i. .E. the two different amide growps would have different G=0 stretohing vibrations. Ondy one other closely spaced doublet is evident and this occhrs near B88 cm-1" This 15 identified as due to a $Y(C-H)$ mode since an overtome occurs at $2 \times 898=1776$. Also this bamd disappears on ring deuteration. This band js assigned to the out-ot-phase vibrations of H(S) and $H(6)$ (mormal mode $\overline{5}$).

It $i s$ possiblen therefore to account for three coublets but since the amide and nitro groups have Sever-al bands associated with themu other doublets should be present if the conformations of the amide and

The low temperature spectrum of the white form of MNA contained sharper bands than that obtained at ambient temperature but no splitting of bands occurred.

[^3]

The intrared spectrum and faman spectrum of the amber form of MNA

Abstract

The amber form showed bands in the infrared speatrum at verv mearly the sane wavenumbers as the corresponding ones in the spectrum of the yellow triclinic form. The differences, although smally were measurable since an infrared spectum of a mixture of amber and yellow forma was obtained at 77 f. It proved impossible to obtaim an infrared spectrum of the amber form at 77\%n ine spectrum of the mixture several peaks occurred as closely spaced doublets and their signifitance will be discussed later. It was possible to obtain a spectrum of the amber form in a potassium bramide disc providing the grinding period was of the order of a few seconds.

However certain differences were evident. The band due to $V(N-H)$ now appeare ass a single band indioating only one type of NH group. The band near $1710 \mathrm{~cm}-1$ due to $V($ eo $)$ appear s as a elosely spaced doublet (separation 10 (en-1) presumanly due to urysted field splitting. The ervstal structure is surh that $C=0$ groups are onlv ás A apart across a Gentre of inversion. Hence the v (Cob) band may be split into asymmetric and symmetric components. This idea is supported by the strong line
in the Faman spectrum at 1710 cm-1 amd the abeemce of a Line at 1726 tm-1.

The bands at $15 \mathrm{So} \mathrm{cm}-1$ and 1 S 40 cmol due to the $\mathrm{N} \mathrm{O}_{2}$ stretching vibration in the nitro group are less intense. The $\gamma(C-H)$ mode at 892 cm-1 now appears as a single line and that at $B 2 \mathrm{~cm} \mathrm{c}-1 \mathrm{is}$ greatly pedured in intensity. The band due to $\gamma(N-H)$ now has its maximum absorption at abo cm-1 so that this broad band $i=$ nearly symmetrical (except for a shoulder at sub (m-1).

The infrared spectrum of the amber form is in accordance with the presence in the crystal. of omly one type of molecule, which comteims an intramolecular hydrogen bond.


```
    #pectrmm of vellow ame wmite forms of M|A
```

Although infrared spectroscopy bes been usfed to
 minor difterences between the spectra of the polymorphs Mave been mpparent: However. im the meme of MNAy the infrared spertra of the yellow and white forms appear at first qlance to be quite different. Chamges in intensities af bands have occurred iand certain bands five appeamed in new positions and some bands have apparently disappeared. simce the yellow form rhanges to the white form on standing the followjng discussjon will assume a change of yellow to white form ocicurrimg.

Famds due to $V(C-\cdots)$ decrease whereas those due to v(C.... x) wibrations increase slightly as if the substituents. whith may be requrded as point masses. decrease in mass. The bond order of $\quad \square(1)-N(1)$ and $E(2)-N(2)$ which decreases durimg the observed change is not the major fartor involved.

The positions of bands due to vibratioms involving the $E-H$ in-plene and out-af-plame bemding vibratioms da not cmange. A similar situntion applies to mheradial

Abstract

steletal vibrations. The out-of-plane ring bending vibrations (16a and lob) appear to move to lower wavenumbers indicating a rather less migid ring system. As a general comment the bands due to the benzene r-jng become sharper although they lose some intemsity and their position is hardly affected.

The positions of bands due to the nitro group are also hardly affected inspite of the loss in conjugetion between the nitmo and amide groups. Comparison of the vas and ve wavenumbers reveals that the former has decreased and the latter has increased (this conclusion is based on the more accurate Fiaman wavenumbers). Such a conclusion was reached by Murray et al. regarding the 206
effeet of steric hindrance on such viorations . The slight upward shift on the vs band is also in accordance with reduced conjugetion as stated by varsanyi 203 pSe9). This slight increase is also in accordance with the model of an in-phane vibration of the oxygen atoms rather than a C-N stretching vibration.

The downward shift of the δs vibration could be due to loss of coupling with ves (vibration 4) whilst the increase in the $\delta a s$ vibration is most libely due to steric hindrance. The value for the latter vibration (near 58o (om-1) is very w lose to those of onitro

The most easjly recogmised changes are those assoriated with the amide group. The intense doublet near suso cm-1 becomes the broad band near $3250 \mathrm{~cm}-1$. This value is typical for the $N-H$ stretching band in an anilide 13 . The increase in intensity and broadening is in accordance with the formation of a stronger intermolecular hydrogen bond. The value of $1676 \mathrm{~cm}-1$ is typical of the $V C=0$ in anilides 13 and again the change from $1720 \mathrm{~cm}-1$ to $1670 \mathrm{~cm}-1$ is accounted for by a stronger hydrogen bond being formed.

The location of the band which can be ascribed to AMIDE II, which is mainly $\delta(N-H)$ with $V(C-N)$, is not straightforward in either case. As mentioned in the introductory worl: the interpretation of this and the AMIDE III band has been the subject of numerous investigations. In the yellow form: a broad band mear $1450 \mathrm{~cm}-1$ disappears on deuteration (N-H to N-D). This value would be low for the AMIDE II band and also a band due to $C-C$ ring stretching (19b) is expected in this region. However. it has been shown by Miyazawa 4, that this band and the AMIDE III band is sensitive to changes of state. For example. the wavenumbers of these bands in N-methylacetamide. increase by 67 and 3
cm-1 respectivelv on changing from a nonpolar solvent to the 1 iquid form. Therefore the low values quoted for the AMIOE II and III bands may be a reflection of the weak intramolecular hydrogen bond and the complete absence of any hydrogen bond to the cerbonyl group in the yellow forin. On changing to the white form the AMIDE II and III bands increase to positions normally associated with anilides. Hence the broad band at $1456 \mathrm{~cm}-1 \mathrm{shifts}$ to near 1536 cm-1 so that this band becomes broad and intense and the AMIDE III band shifts to a lower position at $1266 \mathrm{~cm}-1$. A more detailed account of the results of $N-H$ deuteration follows in the next section.

The wavenumber of the broad band due to $Y(N-H)$ increases to about $700 \mathrm{cm-1}$. Here this band couples with a ring bending mode (both of symmetry a") and two broad bands result. It $i=$ not clear whether the $\gamma(N-H)$ vibration in the yellow form is associated with two bands or not since it is such a wide band and wovers other aromatic vibrations. If present. "these two bands would imply different $\gamma(N-H)$ viturations for the two types of molecules in the yellow triclinic form. There is some evidenae from the spectrum of the N-D compound that two (N-D) bands occur. If present, one vibration would occur at 686 com and this band is cilearly revealed in the 1 ow temperature spectrum and the other one would be
astioned to the shoulder at 6 os com-1.

The bands essigned to AMIDE IV and VI change little and this is the expected result for an increase in nydrogen bonding 4

In the spectrum of the vellow and white forms several bands due to combinations of frequmcies can be seen. Three of these viz. 1799.1845, and $1929 \mathrm{~cm}-1$ can be accounted for by combinations of $(\mathrm{C}-\mathrm{H})$ wavenumbers (2 $x 995, \quad 385+960.2 \times 960 . \quad$ In many amides an overtone is present near 3100 cm-1 and this has been assigned (and criticised) to $2 \times$ AMIDE II 13 . In all of the polymorphs of MNA a combination band near 3006 cm1 may be accounted for either by $2:$ AMIDE II or by $v(C=0)+2 x \gamma(N-H) . \quad$ The later combination has the advantage of explaining the position of the overtone near S109 cm-1 in lactams which do not have an AMIDE II band near 1559 cm-1.

Anelveis of the spectra of deuterated forms of MNA

Several deuterated forms of MNA were prepared in order to fulfil some of the following objectives:-

1. analvsis of the spectra of deuterated compounde would aidin the interpretation of the spectra of normal polymorphic forms of MNA.
2. the deuterated forms were examimed to see if they existed in equivalent polymorphic forms.

Bu the ability of the deuterated fomm to undergo a phase change equivalent to yellow triclinio changing to white monoclinic was examined.
4. The position of the AMIDE II and AMIDE III bands in the vellow forms wis not Elear. Comparisom of the Ghanges occurring with those reported for other amides should aid in the determination of the positions of the amide bands.

The following deuterated MNA derivatives were prepared
conly the position of the deuterium is specified; all other $F=H$)
a) ${ }^{\prime} \mathrm{F}=\mathrm{D}$
b) ${ }^{2} F=D$
c) ${ }^{3} \mathrm{~F}=\mathrm{D}$
d) ${ }^{3} \mathrm{~F}$ and ${ }^{4} \mathrm{~F}=\mathrm{D}$

Changes in the infrared and Faman spectra upon anide deuteration of MNA-8.

1. The doublet at 3382 and 3358 cm-1 has been replaced by one at 2520 and $2500 \mathrm{~cm}-1$.
2. the position of the strong doublet near $1769 \mathrm{cm-1}$ has shifted slightly to lower wavenumbers.
3. the band at 1445 cm-1 has disappeared.
4. a new strong band has appeared at 1380 cm-1.
5. the intense peak at 1230 cim-1 has been replaced by two peaks of medium intensity at 1215 cin-1 and 1230 cm-1.
6. a shoulder has appeamed on the band at 1095 cm-1.
7. it appears that the medium band near 1000 cin- 1 has
shifted to 970 cm-1.
Q. a weat: to medi um band has appeared at pob cm-i.
8. the shoulder at ges cm-1 has shifted to become a stronger peat: at 822 con-1.
9. the broad peat: around bsh cm-1 has disappeared.
10. Uhe strong peak at bo@ cin-1 has been greatly reduced in intensity.
11. the intensity of the strong band at 5s6 em-1 has been reduced.
12. medium and strong broad bands have appeared at 485 and 46 cm-1

The following changes in the Fiaman specturum of the yellow triclinc form are itemised below:-

1. a new doublet appears at 247 and $2466 \mathrm{~cm}-1$.
2. the very strong band at 1255 em-1 has almost completely disappeared.
Z. a new sharp band has appeared at 1100 cmol.
3. a new weat band has appeared at 1666 cm-1.
4. a weat: to medium band has appeared at oge com-1.
t. a strong band has appeared at $908 \mathrm{~cm}-1$.
5. a band of medium intensity has appeared at ExG cm-1.

These changes in the infrared and Raman spectra are ones which are associated with the changes in the amide group and the wavenumbers of amide and N-deuteroamide correlations are listed in Table 6.5 w The position of bands due to the nitro group Mardly changen Some bands, which are associated with the benzene ring, thange with regard to position and intensity. For example, the band at 1578 cm -1, decreases in intensity and shifts to 1565 cm-1. Also the band at 1300 cm-1 intensifies whilst the very strong band at 5 so co-1 apparently decreases in intensity. The broad band near $1520 \mathrm{~cm}-1$ sharpens to a marked degree. Such changes complicate the interpretation and it has been only possible to assign the amide bands with confidence after studying the deuteration of anide groups in severel other intramolecularly hydrogen bonded amides. The spertra of these amides are discussed in a later section of this chapter.

Some of the difficulties whith occur with the interpretation of these spectra are now listed:-
a) The position of the AMIDE II band would be either near $1580 \mathrm{~cm}-1, \quad$ or $1520 \mathrm{~cm}-1$ or $1445 \mathrm{~cm}-1$ since

Abstract

changes occur at all of these positioms and it is well known that the position of the band due to $\delta(N-H)$ in amines is difficult to lacate b) several bands overlap in the 1236 cm-1 region. (:) there are more bands appearing in the region 1.106 Gm-1 to 969 cm-1 than can be accounted for by simply assuming that the AMIDE III" would now be expected to occur in this region. d) complex changes occur in the region of $506 \mathrm{~cm}-1$ other than the expected one of the appearance of the fMIDE V^{\prime} band.

All subsequent i.r. spectra were recorded on a Perkin Elmer 683 infrared spectrophotometer using the potassium bromide disc technique.

Raman spectra were recorded on a Spex Ramalab laser spectromer using finely powdered samples in the solid state.

PEAKIMELADA

A

Fundamental frequencies for yellow and white MNA

a^{\prime}	yellow		white	Wilson	
v_{1}	3108	-	3100	-	20a
v_{2}	3080	3070	3065	3070	2
v_{3}	3040	3055	3035	-	20 b
v_{4}	1622	1630	1605	1610	8 b
v_{5}	1578	1580	1588	1590	8 a
v_{6}	1525	1525	1505	1505	19 b
V_{7}	1460	1460	1450	-	19a
ν_{8}	1310	1300	1320	1320	3
$\nu 9$	1280	1280	1280	1285	14
v_{10}	1220	-	1245	1250	7 a
v_{11}	1210	-	1218	1222	13
v_{12}	1150	1155	1155	1155	15
v_{13}	1085	1082	1090	1100	18 b
v_{14}	920	920	930	930	7 b
v_{15}	796	795	800	800	12
v_{16}	680	680	670	676	1
V_{17}	500	500	500	500	6 a
ν_{18}	430	440	455	460	6b
ν_{19}	390	390	380	382	9 b
$\stackrel{\square}{\square} 2$	360	360	340	340	9 a
$\because 20$ $\times 21$	230	230	230	224	18a
$\mathrm{a}^{\prime \prime} \nu^{2 \prime 2}$	960	960	958	-	17 b
a ν_{23}	885	-	882	-	5
v_{24}	828	830	820	828	11
ν_{25}	700	700	715	725	4
v^{26}	530		500	-	16a
v_{27}	412	412	400	398	16 b
ν_{28}	300	300	290	292	10 a
v_{29}	-	-	-	-	10 b
v_{30}	-	-	-	-	17a
	i.r.	Ram	i.r.	Ram	

> Table 6.1 The in-plane (a') and out of plane (a' ${ }^{\prime}$ vibrations of MNA

Table 6.2
The in-plane (a') and out-of-plane (a' ${ }^{\prime}$) vibrations of MNA-2 (amber form).

Table 6.3
Assignments of the bands due to the nitro, amide and methyl groups in yellow (MNA-3) and white (MNA-1)
yellow

Nitro group

	i.r.	Raman	i.r.	Raman
$\nu_{\text {as }}$	1542	1548	1530	1540
$\nu_{\mathbf{s}}$	1347	1345	1362	1365
$\delta_{\mathbf{s}}$	840	840	848	848
$\gamma_{\mathbf{s}}$	762	765	748	748
$\delta_{\text {as }}$	550	550	580	585

Amide group

$\nu \mathrm{NH}$	3382	3390	3250	3265
$\nu-\mathrm{NH}$	3358	3320		
$\nu \mathrm{CO}$	1720	1715	1670	1672
$\nu \mathrm{CO}$	1708	1710		
Amide II	1445		1520	1520
Amide III 1230	1235	1320	1320	
$\delta \mathrm{CO}$	645	652	630	632
$\gamma \mathrm{NH}$	680	680	725,695	725
$\gamma \mathrm{CO}$	592		608	612
$\nu \mathrm{C}-\mathrm{CH}_{3}$	918	920	980	980

Methyl groups
(i) acetyl methyl group

$\nu_{\text {as }}$		2980	2988	
ν_{s}	2930	2935		2930
$\delta_{\mathbf{s}}$	1372	1370	1380	1385
r1	1045,1032	-	1040	-
r	1010,1000	1014	1014	1018
$($ ii)	4-methyl group			
δ_{s}	1390	-	1395	1395
r	972	-	972	980

Table 6.4
Assignments of bands to the nitro, amide, and methyl groups in the amber form. (MNA-2)
Nitro group

	i.r.	Raman	
$\nu_{\text {as }}$	\cdots	1530	1535
ν_{s}		1340	1340
$\delta_{\mathbf{s}}$	850	840	
$\gamma_{\mathbf{s}}$	768	-	
$\delta_{\text {as }}$	540	-	

Amide group

$\nu \mathrm{NH}$	3360	3370
$\nu \mathrm{CO}$	1720,1710	1710
Amide II	1435	-
Amide III	1230^{*}	1230
δ_{CO}	658	660
γ_{NH}	670	-
γ_{CO}	595	-
$\nu_{\mathrm{C}-\mathrm{CH}_{3}}$	915	918

Methyl groups
(i) acetyl

$\nu_{\text {as }}$	2950	-
ν_{s}	2920	2930
δ_{s}	1362	-
r_{\perp}	1045	-
$r / /$	992	1000
$($ ii $)$	4-methyl	
δ_{s}	-	
$r / /$	-	1390
		-

* exact position uncertain due to overlap of bands

Assignments of bands due to the amide groups indeuterated		
(N-D) \quad yellow (MNA-3) and white (MNA-1) forms.		
Vibration	Yellow	White
UN-D	2520	2400
	2500	
amide I	1720	1665
	1700	
amide II'	1380	1420
amide III'	1085	1080
amide V'	460	530
r // CH 3	980	990
UC-C	900	945

The assignment of two of the bands given above was assisted by the corresponding Raman spectra
amide III'
1100(m) $1078(\mathrm{~m})$
$V C-C \quad 908(s) \quad 940(m)$

Since the bands assigned to the CH_{3} rocking vibration and $\cup C-C$ are sensitive to deuteration it is concluded that these vibrations are coupled to $\delta N-D$.

The intrared and Faman spectrum of deutierated white monoclimac MNA

The changes in the infrared gotetrum of white monocijnic FNA accompanving deuteration are as follows:-

1. a broad band at $240 \mathrm{cm-1}$ replaces the strong band at $2256 \pi-1$.
2. the band of medium intensitv at $1590 \mathrm{~cm}-1$ disappears. S. a broad band with a shoulder appears at 1420 com-1.
3. the band at $1390 \mathrm{~cm}-1$ intensifies.
S. the band at 1326 om-1. Decomes obscured by the broading of the band around 1 SE cmol,
b. the complex band at 1260 cm-1 decreases in imtensity and closely spaced bands at ix45 cint and 1220 comremainn
4. mew bands at $1178 \mathrm{~cm}-\mathrm{m}$ and 94 cm m apper whilst the medium band at 1914 cmw apparently emiftsto give a medium band at $988 \mathrm{cm-1}$.
5. the strong band at enocm-1 separetes into two sharp bands at 835 m-1 and 810 cm-1.
```
9. the two broad bands at 725 cm-b mod 69E cm-1 are
meplaced by a strong broad band at 525 cm-1
```

These changes can be explained by the following points:-
a) the major changes are associated with N-H becoming $N-D \leq 0$ that the amide bands change.
b) the nitro aroup bands do not change position.
E) some bands due to ring vibrations shift and change in intensity viz. the bands at 1589 cm-1 which becomes a less prominent shoulder at 15% cm-1, the broad band around $1520 \mathrm{~cm}-1$ sharpens and the band at 1245 cm -1 which appears as a shoulder becomes a weat: but sharp band at 1242 cm-1. The latter band which is strong in the Faman spectrum has been assigned to an in-phase C-x stretching vibration. A new band appears at 715 cm-1 which is sharp and is of medium intencity. Fresumably this band is due to an out-mf-plane ring vibration which couples with the $(M-H)$ vibration.

The changes in the Faman spectrm on deuteration of the white form are as follows:-

1. a wel: broad band appears at 1420 em-1.
2. the strong band at $1 \leq 20$ cm-1 and medium band at 1260 cm-1 are areativ reduced in intensity.
S. bands of weal: to medium intensity appear at $1678 \mathrm{~cm}-1$ and $949 \mathrm{~cm}-1$
3. the weat to medium bands at $1010 \mathrm{cm-1}$ and 980 om-1 almost disappear.
S. the band at $828 \mathrm{~cm}-1$ intensifies and shitts to 810 cm 1.
b. the broad band at 725 cm-1 becomes marrower and shifts to 710 Gm-1.

Some problems of assignment exist. For example. the position of the AMIDE II band could be either at 1588 cm1 or amongst the broad absorption near 1520 cm-1. Also the AMIDE III band position is obscured by other bands near $1249 \mathrm{~cm}-1 . \quad$ Also. ass in the case of the yellow form. more bands orcur in the $1190 \mathrm{~cm}-1$ to $999 \mathrm{~cm}-1$ range than might be expected from the possible appearance of a mew AMIDE III band. The fimal assigmments of the amide bands were based on the following evidence: -
a) assignments made by Mivazawa ${ }^{3}$ om N-methylacetamide
D. assiomments bv Chalapathi and Famian 25 on
acetanilide
c) examjnation of the spectra of several anilides and their N - d derivatives, and
d) an examination of the spectra of several. trideuteroanetyl derivatives of anilides (ine. $\mathrm{CD}_{3} \mathrm{CO}$ group has replaced the acetyl group and their $\mathrm{N}-\mathrm{D}$ derivatives.

Several important conclusions were reached and these are listed : -
a) the AMIDE II band: in anilides oceurs near $1556 \mathrm{~cm}-1$
b) the AMIDE II' band occurs near $1420 \mathrm{~cm}-1$
c) the AMIDE III* occurs near 1080 (om-1.

A comoarison of the infrared and Raman spectra of yellow and white forins of deuterated MNA.

The compound N-deutero-4-methyl-2-nitroacetanilide can exist in white and vellow forms which are equivalent to white and vellow forms of the undeuterated MNA. The i.r. and Raman spertre of these polymorphs show marked differences and the reason is again due to differences in the type of hydrogen bonding which occhirs in these compounds. The bands near 2566 cm-1 are due to $N-D$ stretching whilst that near $1700 \mathrm{~cm}-1$ is due to $\mathrm{C}=0$ stretching. The bands due to AMIDE I ${ }^{\text {a }}$ amd AMIDE III: occur at higher wavenumbers in the white form. This is a consequence of the stronger hydrogen bonding in MNA-1. and a shorter amide $C-N$ bond in MNA-1. It is noted that bands due to AMIDE III are more intense in the Raman spectrum than in the inr. spectrum.

The positions of the AMIDE IV and VI Dands are Mardly affected by deuteration 3 . The AMIDE v band in both cases occurs near sso com in the white form and near 460 cm-1 in the yellow form. The higher value in the case of the white form again is a reflection of the stronger hydrogen bonding in the white form.

```
Interoretation of the infrared spectrum of the
trideuteroacetvl derivative of 4-methyl-2-nitrommilime
```

This derivative was only obtained in one form. since the infrared spectrum showed two closely speced doublets near 3 -ige $c m-1$ and $1710 \mathrm{~cm}-1$ it was concluded that: the crvetals of the compound were in the triclinic: form. No attempt was made to obtain the form equivalent to the amber monoclinic form of the nondeuterated material. However, attempts were made to convert it to a white intermolecularly hydrogen bonded form and these included grinding the crvstals for about so minutes with potassium bromide, suspending the crystals in water and subjecting them to ultrasonic vibration or allowing the cmystals to stand at ambient temperature for about three years. The first two of the above methods also failed to convert an approximately $56: 50$ mixture (obtained by evaporation of a solution of the mixtures of the trideuteroacetyl and acetyl derivatives into the white form. This $105=0 f$ ability to transform into the white form is not due to an increase in the strength of the intramalecular hydrogen bond since the bands due to $\mathrm{N}-\mathrm{H}$ stretching and $\mathrm{C}=\mathrm{D}$ stretching are at the same frequencies as those in the undeuterated material. The ability of the amide group

```
to rotate out of the plane of the benzeme ring may be
affected and this would be the case if the initial
movement was that of a rotation of the acetyl group
around the amide C-N bond giving a cis (E) amide
intermediate. A trideuteroacetyl group would be
harder to rotate because of its greater mass.
The changes in the infrared spectra are as follows :-
a) the sharp band near 1370 cm-1 disappears.
b) the band near 1000 cm-1 disappearE.
c) a sharp band near 1676 cm-1 appears.
d) new peat:E appear near 920 cm-1 and 790 mom-1 and
    peatss near 920 cm-1 and 800 cm-1 shiftt to 942
    cm-1 and 818 cm-1.
e) the strong peak oriqinally at 590 cm-1 iss now
    absent.
f) a pear: of medium intensity appear= at ESE com1.
g) the strong peak at 5socm-1 shifts to 5locm-1 and
    the peak of medium intensity sliffts to 4Q2 cm-1
```

The first two changes are in accord with the bands at 1876 ch-1 and $1000 \mathrm{~cm}-1$ being assigned to the methyl

 tetradeuteroacetanilide

The cDS stretching modes appear at $2100 \mathrm{~cm}^{-1}$. Comparison of the spectrum of this compound with that of the $2,3.54-$ tetradeutero-acetotoluidide reveals the bands due to the 4-methyl group in p-acetotoluidide. The bending modes are assigned to the bands at 1439 and 1380 cm w and the rocking modes to those at $960 \mathrm{cm-1}$ and (possibly) 1018 cm-1. The position of the latter band would coincide with a rocking mode of the methyl group in the acetyl group. The new bands near 960 cm -1 can be assigned to the CDS rocking modes. The infrared spectrum of the N-D derivative confirms the presence of the AMIDE II and AMIDE III bands near $1520 \mathrm{~cm}-1$ and $1260 \mathrm{~cm}-1$. The band due to Al'IDE III' occurs near $1080 \mathrm{~cm}^{-1}$.

The infrared spectrum of p-acetotoluidide and its deuterated derivatives

Several deuterated derivatives of MNA have been prepared and examined for polymorphism by infrared spectroscopy. Some of these derivatives were prepared from deuterated p-acetotoluidides and the interpretation of the infrared spectra of the latter compounds was an important step towards interpreting the infrared spectra of the deuterated MNA compounds.

Varsanyi has presented an interpretation of the infrared spectrum of β-acetotoluidide 199

These assignments were checked by comparison with the infrared spectra of $2,3,5$, b-tetradeuteromacetotoluidide I , 4-trideuteromethy1-2, $3,5, b$-tetradeutero-acetotoluidide I * trideuteroacetotoluidide II , and N-D acetotoluidide

Some reassignments were necessary particularly with those bands associated with the amide group and therefore a re-assignment of certain bands to aromatic vibrations was necessary. The conclusions arising from a study of
the spectra of three deuterowamides are presented in Table 6.7. These values for the amide group vibrations are in good agreement with those values previously published for secondary amides. The positions of the C-H in-plane and out-of-plane bending vibrations were assigned to those bands which were removed on ring deuteration. The ring $C-C$ stretcming modes were slightly affected by ring deuteration. The shifts are comparable to thoses reported for ring deuteration of 1,4. 199199199 difluorobenzene , p-cresol and p-xyene *

The radial steletal vibrations and ring bending vibrations were also slightly affected and moved to lower wavenumbers.

Three bands near E200 cm-1 occur in the spectrum of p-aretotoluidide and similar bands occur in the infrared spectrum of other anilides. These bands can be explained as combinations and overtones of amide bands whilst the band at 1900 cm-1 is most likely an overtone of a $Y(C-H)$ vibration.

Another important reason for studying the infrared spectrum of p-acetotoluidide is that it shows a strong resemblance to that of the white form of MNA with. of course, allowance for the bands due to the nitro group.

Infrared spectrum of p-acetotoluidide $N-D$

The positions of the AMIDE II and III bands at 1540 cm-1 and 1240 cm-1 are clearly established. The new band at $1450 \mathrm{~cm}-1$ is due to AMIDE II*. A compley pattern of peaks results in the region $1060-1100$ Em-1 and AMIDE III is assigned to the band near 1080 tom-1. The band assigned to v[-C falls to 955 cin-1 whilst the strong broad band at $755 \mathrm{~cm}-1$ disappears and is replaced by a strong peat at 55^{5} cin 1 which must be due to fMIDE V^{*}. The bands due to the $C=0$ bending vibrations are hardly affected by deuteration. However: the band assigned to AMIDE VI'decreases im intensju'y
p-acet-DJ-toluidide

The infrared spectrum of this compound wes used to locate bands due to the amide-methyl group and the results are 1isted in Table 6.7 . An important result was that the methyl rocking vibration was established at 1020 cm-1. This derivative was also useful in locating the $C=0$ bending vibrations since it $i s$ finown that such vibrations in the $\mathrm{CD}_{3} \mathrm{CO}$-derivatives move to 1 ower wavenumbers and are reduced in intensity 209 . Similar behaviour is apparent when the spectra of acetophenone and aceto-Ds-phenone are

Infrared spectrum of p-acetotoluidide-D4

Replacement of the aromatic protons by deuterium causes those bands due to all types of $C-H$ vibrations to shift. vC-D appears as an unresolved group of bands near $2250 \mathrm{~cm}-$ 1. Although it is possible to detect bands due to vC-H and $\delta C-H$ by their disappearance after deuteration it is difficultto assign these to specific vibrations without recourse to a normal coordinate analysis. It seems probable that bands due to $\delta \mathrm{C}-\mathrm{D}$ occur in the region $1100-$ $850 \mathrm{~cm}-1$ whilst those due to $\gamma C-D$ appear in the region 859-700 cm-1. The strong band near 500 cm-1 shiftsto $4.3 \mathrm{~cm}-1$ while a rather $1 e s s$ intense band remains at 509 cm-1. The latter band and the one at $625 \mathrm{~cm}-1$ which are assigned to radial skeletal modes are expected to be only slightly affected by ring deuteration.
賏

㑆
\qquad WAVE HUARER (CA '
8019
\qquad

Table 6.6
Observed fundamental frequencies for p-acetotoluidide and p-acetotoluidide ($2,3,5,6$-tetradeutero)

Ring vibrations

a"			
v_{22}	960	$\gamma C-H(17 a)$	800
v_{23}	945	$"(5)$	780
v_{24}	828	$"(10 a)$	738
v_{25}	820	$"(17 b)$	710
v_{26}	710	$\gamma C-C(4)$	650
v_{27}	510	$"(16 b)$	438
v_{28}	390	$"(16 a)$	370
v_{29}	300	$\gamma C-X(10 b)$	-
v_{30}	-	-	-

Table 6.7
Assignments of methyl group vibrations in p-acetotoluidide
$\mathrm{C}_{-} \mathrm{CH}_{3}$ in the amide group

	I	II	III
$\delta_{\mathbf{a s}}$	1450	-	1115
$\delta_{\mathbf{s}}$	1370	1372	1030
\mathbf{r}	$\mathrm{VCH}_{3}-\mathrm{C}$	1020,	970
	970	1018,	972
	910		
		970	930

4-methyl

	I	II	III
$\delta_{\mathbf{a s}}$	1450	-	1450
$\delta_{\mathbf{s}}$	1380	1040	1380 sh
\mathbf{r}	1040,995	905,888	1040,995

CH_{3} and CD_{3} stretching vibrations

I	$2980,2960,2930$		
II	2980,	2960,2930	$2130,2110,2050$
III	$2960,2940,2120$	-	

Assignments of amide group vibrations in p-acetotoluidide

	$\mathrm{CH}_{3} \mathrm{CONH}$	$\mathrm{CH}_{3} \mathrm{COND}$	$\mathrm{CD}_{3} \mathrm{CONH}$	$\mathrm{CD}_{3} \mathrm{COND}$
NH	3290	2420	32990	2400
amide I	1670	1640	1655	1632
amide II	1540	1450	1555	1450
amide III	1260	1080	1270	1095
amide IV	648	648	-	595
amide V	755	555	855	560
amide VI	610	610	-	540
VC-CH	970	950	930	920

Overtone and combination bands.

```
3250 2 x amide I
3200 amide I + amide II or amide I + 2 x amide V
3100 2 x amide III
2860 2 x CuN
2800 amide II + amide III
1900 2 x 945 ( 2 x Y C-H)
```


Table 6.8

An assignment of the trideuteroacetyl and amide group vibrations in 4-methyl-2-nitro-trideuteroacetanilide

	$\mathrm{CD}_{3} \mathrm{CONH}$	$\mathrm{CD}_{3} \mathrm{COND}$
UNH	3380,3360	2520,2500
Amide I	1720,1700	1720,1700
Amide II 1440	1375	
Amide III 1230	1100	
Amide IV 630	630	
Amide V	650	460
Amide VI 635	635	

$\nu_{a s e^{C}} \mathrm{CD}_{3}$ -
$v_{s} C D_{3}$ -
$\delta_{\mathrm{as}} \mathrm{CD}_{3} 1095 \quad 1105$
$\delta_{s} C D_{3} 1070 \quad 1072$
$r_{\text {_ }} \mathrm{CD}_{3} 942$ 932
r // 820* 815
vC-CH3 905* 900

* The shift of $V C-C$ on formation of the $C D_{3} C O$ derivative and positions of the CD_{3} rocking vibrations indicate that a mixing of these vibrations occur.

Chapter Seven

A study of the nuclear magnetic resonance spectra of MNA

A study of the nuclear magnetic resonance spectra of MNA

Although the three polymorphs of MNA give the same n.in.r. spectrum in any given solvent in which MNA is soluble it has been found that the n.m.r spectrum varies according to the nature of the solvent. Thus both the 'H n.m.r. and the ${ }^{13} \mathrm{c}$ n.m.r. spectra of MNA are solvent dependent. One important factor which affects the 'H n.m.r. is the anisotropic effect of the amide carbonyl group. This effect, which causes a marked variation in the chemical shift of $H(6)$, has been extensively investigated in many aromatic anilides and the topic has been reviewed in Chapter 1.

In general terms, the chemical shift of $H(6)$ decreases on increasing the relative permittivity of the solvent. The chemical shift of $H(6)$ in various solvents is given in Table 7.1 and a plot of chemical shift against relative permittivity is shown in fig. 7.1. The change of chemical shift of $H(b)$ in various solvents in related 4-substituted-2-nitroacetanilides(4-X-2-nitroacetanilides) is also presented in this Table.

Table 7.1
The variation of chemical Shift (p.p.m.) of proton $H(6)$ with relative permittivity (Er) and donor number (D_{N})

solvent	CCl_{4}	CDCl_{3}	$\mathrm{Me}_{2} \mathrm{CO}$	EtDH	MeOH	MeCN	DMSO
Er*	2.2	4.8	21.3	25.7	33.0	38.8	45.9
$\mathrm{D}_{\mathrm{N}} * *$	2	-	17	31.5	25.7	14.1	29.8
	Chemical sinifts.	$x=4-$ substituent in MNA					

X							
H	531	525	511	487	493	504	490
NO_{2}	-	561	524	-	-	521	508
Cl	527	523	510	483	483	503	464
Me	$5: 9$	516	500	476	474	493	468
OMe	520	513	493	470	464	485	454

* The values for the relative permittivity were taken from the "Book of Data for Chemistry and Physical Science and Fhysics", Longman and the Merck Index (7th Edition).
** $\mathrm{q}_{\mathrm{N}}=$ Donicity Number. This solvent parameter is a measure of the nucleophilic properties of a solvent. Values were taken from a table compiled by Dr.D. Waters: Brunel University. A list of D values can be found in a text by V.Gutmann,
"Coordination Chemistry in Nonaqueous Solvents", Springer Veriag, Vienna; 1969.

Fig. 7.1
A plot of relative permittivity (E_{r})
of solvent against the chemical shift
of $H(6)$

Results in column 1 take the acetonitrile data into account but neglect it in column 2 .

A least squares computer calculation gives the following results :- $\quad y$ intercept 519.8
slope - 1.59
R $\quad 0.92$
It is concluded that a slightly better linear correlation exists between the chemical shift and. D_{N} numbers than with relative permittivity (Fig. 7.1).
The ${ }^{13} \mathrm{C}$ n.m.r. spectrum of MNA has been recorded in
several solvents and it has been found that the chemical
shifts of $C(2)$, $C(4)$, and $C(6)$ increase with increasing
relative permittivity whilst the chemical shift of $C(1)$ and
$C(5)$ decrease slightly. \quad The chemical shift of $C(3)$ increases slightly with increasing relative permittivity.

These changes may be explained on the basis that solvent molecules have variable degrees of ability to attach themselves to the amide group. A solvent such as DMSO should compete successfully with the nitro group in the molecule for the $N-H$ group and solvate the amide groups by forming N-H....D-S linkages. The bulky amide-solvent complex formed in this manner is anticipated to force the plane of the amide group away from the plane of the benzene ring. Thus: the $C=0$ group will move further away from $H(6)$ and consequently the chemical shift would be expected to decrease as the amide group moves further out of the plane of the benzene ring. For example, the chemical shift of $H(G)$ in MNA decreases from 8.6 ppm to approximately 7.6 ppm when the solvent is changed from deuterochloroform to DMSO. Since the chemical shift of $H(5)$ is about 7.6 ppm and is affected to a very small extent by solvent the pattern of peaks observed for the coupled protons $H(6)$ and $H(5)$ varies from an Ax type in deuterochlorform to an AB type in DMSO. The ${ }^{1} H$ n.m.r. spectrum of the aromatic protons in other solvents are intermediate between these two types.

[^4]chemical shift of $C(2), C(4)$, and $C(6)$ in the 13 C.m.r spectrusince the electron density over these positions would be expected to decrease. This prediction can be made by a study of the canonical forms of MNA where the amide group can donate electrons to the 2.4, and 6 positions of the benzene ring. As the amide group moves from the plane of the ring so resonance interaction is inhibited by a factor of cos ${ }^{2} \theta$ where θ is the dihedral angle between the ring and the amide plane 191 . The values of the chemical shifts of all carbon atoms of MNA are presented in Table 7.2 .

Table 7.2

The assignment* of ${ }^{13} \mathrm{C}$ n.m.r. signals for MNA

solvent	CDCl_{3}	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$	$\mathrm{CD}_{3} \mathrm{OD}$	$\mathrm{CD}_{3} \mathrm{CN}$	DMSOd6	1 c.
${ }^{13} \mathrm{C}$ n.m.r.							
spectrum	1	2	3	4	5	6	
carbon 1	132.2	132.6	132.3	130.9	132.1	130.3	131.8
carbon 2	136.2	-	138.2	141.5	136.3	143.6	138.5
carbon 3	125.2	125.4	125.6	125.5	125.8	120.6	124.5
carbon 4	133.1	133.6	134.3	136.3	134.8	136.3	132.7
carbon 5	136.4	136.6	136.2	135.8	136.5	135.7	135.1
carbon 6	121.9	122.2	123.5	125.9	123.7	126.0	119.4
carbon 8	168.4	168.6	168.7	171.3	169.5	169.6	-
carbon 9	25.4	25.5	24.8	24.6	25.6	24.9	-
carbon 7	20.4	20.6	20.3	29.5	20.4	21.6	-

* chemical shifts are measured in ppm from TMS

Calculated values are based on substituent constants listed 211
in Wehrli and Wirthlin

The same numbering sequence is used for the assignments of the carbon atoms in the ${ }^{13} \mathrm{C}$ n.m.r. as in the crystal structures.

MNDO calculations on MNA

The charges on the various: atoms in MNA were calculated using the computer program MNDO* The values obtained are presented in Table 7.3. The atoms of the benzene ring U(1) to $C(6)$ are alternately charged + and - . $N(2)$: the nitro group nitrogen, is the most positive atom whereas the amide nitrogen atom, the nitro group oxygen atoms, and the oxygen atom in the carbonyl group are all negative.

Fotation of the amide group out of the plane of the benzene ring is seen to reduce the value of the negative charge on $C(2), C(4)$ and $C(6)$. This is a result which is experted from a reduced resonance interaction between the lone pair on the amide nitrogen and the ring π electrons. Fotation of amide and nitro groups from the plane of the benzene ring reduces the value (neglecting the sign) of the charge on all ring atoms and this could account for the more even distribution of the $C-C$ bond lengths in the benzene ring in MNA-1 (white) compared with MNA-2 (amber) and MNA-S (yellow). These bond lengths are presented in a graphical form in fig. 7:2.

* The help of Dr E. Short is gratefully acknowledged.

Fig. 7.2 A plot of bond length against

lable 7.3

Electron density calculations based on MNDO

am	de-ring*	0	45	90	36	150
	ro-ring*	0	0	θ	30	50
1	C(1)	$+0.2126$	+0.1985	$+6.1849$	+6. 1985	$+0.1819$
2	c (2)	-6. 1691	-6.1379	-6.0952	-0.1458	-0.1093
3	C (3)	$+9.6410$	$+0.0301$	+0.0182	$+0.0332$	$+0.6344$
4	c (4)	-0.1490	-6.1303	-0.1100	-6.1353	-6.1336
5	C(5)	$+9.0366$	$+0.6224$	$+0.0071$	+0.0244	$+6.0184$
6	C(6)	-0.1380	-0.6820	-0.9783	-0.0907	-0.1177
7	H(3)	$+6.0922$	$+0.6949$	+6. 6974	+0.0881	$+0.6851$
8	H(5)	+0.6710	+0.6711	$+6.0710$	+0.0718	+0.6768
9	$H(6)$	$+0.1288$	$+0.0851$	+6.0734	+0.6983	$+0.0633$
16	C(7)	+6.0874	$+6.6847$	+6.0816	+6.9858	+6. 9860
11	H(71)	$+6.6015$	$+6.6034$	+0.0056	+9.0021	$+0.0033$
12	H(72)	$+6.0034$	+0.0065	+0.6084	+6.0034	$+6.0026$
	H(73)	$+0.6034$	+0.6088	+6.0949	+0.0060	$+0.0045$

Table 7.3 continued

	$N(2)$	$+6.5155$	$+6.5685$	$+0.5044$	+6. 5686	+6.5294
15	0(2)	-6. 3949	-0.3729	-6.3467	-6.3824	-6. 5628
16	$0(3)$	-6. 2248	-6.85	-6.3421	-6.325	-6.3179
17	N(1)	-6.3453	-6.3513	-6.3737	-6.3520	-6.3417
18	C (8)	+9.3365	$+0.3389$	$+9.3519$	+6. 3.349	+6. 3466
19	O(1)	-6.3657	-6.3660	-6.3766	-9. 561	-6.3515
29	C(9)	$+0.0146$	$+6.0174$	$+6.9203$	+6.6154	$+6.6206$
21	H(91)	$+6.6115$	$+6.6678$	$+6.6004$	+6.009	-9.0928
22	$H(92)$	+0.6538	$+6.6294$	+6.6259	+6.0394	+0.6428
23	$H(93)$	$+6.6358$	$+0.0360$	+6.0383	$+0.6325$	$+6.6325$
24	NH	+6.2635	+6.2411	+6.2229	+6. 25.14	$+0.2240$
dipole (Debve)						
		1.9664	3.5822	5.6744	2.7143	6.9275

Heat of
Formation (kcalmol ${ }^{-1}$)

| 34.95 | 19.05 | 21.34 | 43.58 |
| :--- | :--- | :--- | :--- | :--- |

Analvsis of the solvent-dependent ${ }^{1} H$ n.m.r. spectrum of MNA

The signals in the ${ }^{1} H$ n.m.r. spectrum are due to protons $N H, H(3), H(5), H(6)$ and the protons in the methyl groups which involve $\mathrm{C}(7)$ and $\mathrm{C}(9)$.

The latter protons give rise to singlets at 2.38 ppm and 2.36 ppm respectively in CDCl_{3}. The signals, due to the ring protons, in various solvents are shown in fig. 7.3 to 7.9 .

The explanation for the solvent dependence is mainly due to the variation of the chemical shift of $H(6)$ which is strongly affected by its distance from $O(1)$ i.e. the oxygen atom in the $C=0$ group. The anisotropic effect of the $C=0$ group is at its maximum when the amide group is in the same plane as the ring i.e. the $H(6) . .0(1)$ distance is at a minimum. Hence a decrease in the chemical shift of $H(6)$ is consistent with a rotation of the amide group from the plane of the ring. This solvent shift is greater for solvents of greater relative permittivity and probably acts by reducing the electrostatic interaction between the amide NH and $\mathrm{O}(2)$ in the nitro group. A plot of the chemical shift of $H(b)$ against solvent permittivity is shown in fig. 7.1 .

The splitting of signals due to the ring protons can be accounted for by spin-spin splitting. The extent of interaction is in the order

```
J(ortho) > J(meta) > J(para)
```

J(ortho) is about $9 H z$ when the chemical shift of $H(6)$ differs from the chemical shift of $H(5) b y$ more than 0.5 ppm. J(meta) is of the order of 2 Hz and J (para), which is observed when the spectrum is recorded in DMSO is 1 Hz . The interaction of protons $H(0)$ and $H(5)$ varies from an $A X$ type in deuterochloroform to an AB type in DMSO when the chemical shifts of $H(6)$ and $H(5)$ are approximately equal. The spinspin splitting by the ring protons, which is shown in figs. 7.3 to 7.7 ,' has been checked by specifying the chemical shitts and couplings shown in these figs. in the Fascal computer program NMF which is available from the Quantum Chemistry Frogram Exchange and has been described as a tried and tested computer program for the calculation of line positions and relative intensities for up to six interacting protons 212

The calculated positions and intensities of lines obtained from this program are shown in figs. 7.3-7.9.

The n.m.r. spectrum of the $N \mathrm{~N}$ - diacetyl derivative of 2 -nitro-4-methylaniline shows a doublet at $7.12 \mathrm{ppm}(\mathrm{J}=8 \mathrm{~Hz})$ which must be due to the protons of type $H(6)$. Inspection of molecular models shows that the most likely conformation
of this molecule is one with the amide group perpendicular to the ring. The upfield shift of the chemical shift of $H(6)$ could be due to $H\left(\begin{array}{c}\text { (}) ~ e s c a p i n g ~ f r o m ~ t h e ~ d e s h i e l d i n g ~ e f f e c t ~ o f ~\end{array}\right.$ the anisotropic effect of the $C=0$ group or perhaps $H(6)$ enters the shielding zone of the $C=0$ group or perhaps these two effects could be operating simultaneously. However, it would appear that the amide group is not perpendicular to the ring when MNA is in DMSO and has not attained the conformation of the amide group in MNA-1 (white) in which the amide group has moved 135° from the plane of the benaene ring. It is concluded that the chemical shift of $H(b)$ is sensitive to the dihedral angle which the amide group makes with the ring plane but it is not possible to make a direct correlation between the chemical shift of $H(6)$ and the dihedral angle between the amide and ring.

MNA is not sufficiently soluble in hexane solution to enable the n.m.r. spectrum to be recorded using a single sweep technique without interference from backoround noise. This problem was overcome by using a JEOL 4GomHz instrument fitted with a data accumulation system. The spectrum collected from a saturated solution of MNA in deuterohexane + 5% deuterodichloromethane is shown in fig. 7.10 . The chemi cal shift of the protons of type $H(\Delta)$ is 9 ppm. This is the highest chemical shift recorded for this type of proton and is consistent with an inverse relationship between
the chemical shift of proton $H(6)$ and the relative permittivity of the solvent. However. sinee the relative permittivity of this mixed solvent is not known the corresponding point is omitted from the graph shown in fag. 7.1 .

Width 270 Hz
Offset 620 Hz
Amplitude 3×10

No. AH-C

Amplitule
 10×5

No offset

7

Width 270 Hz Offset 650 Hz

Fig. 7.5
The ${ }^{1}{ }_{H}$ n.m.r spectrum of MNA in methanol

> Width 108 Hz
> Offset 750 Hz

Fig. 7.6
The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of MNA in DMSO

2	1	$0 r$
1	0	

> Offset 600 Hz
> Amplitude 3×10
> Solvent CDCl_{3}

Fig 7.7
The ${ }^{1}{ }_{H}$ n.m.r. spectrum of
$\mathrm{N}, \mathrm{N}-\mathrm{diacetyl}-2-\mathrm{nitro-4-methylaniline}$

Fig. 7.9
${ }^{13}$ C n.m.r. spectrum of MNA in acetone-d 6

LOCK SIGNAL
SPIN RATE

ACQuISITION

SPECTRAL WIDTH (SW) \quad YSOO NO. OF TRANSIENTS (NT) 1336 ACQUISITION TIME (AT) PULSE WIOTH (PW) PULSE DELAY (PD) DATA POINTS (DP)

TRANSMITTER OFFSET (TO)

 HIGH FIELD RECEIVER GAIN (RG)DECOUPLER MODE (DM) DECOUPLER OFFSET (DO NOISE BANDWIDTH (NB) \qquad kHz

DISPLAY

SENS. ENHANCEMENT (SE) sec. WIDTH OF PLOT (WP) \qquad \cdots END OF PLOT (EP)) $-\quad \mathrm{Hz}$ WIDTH OF CHART (WC
END OF CHART (EC) VERTICAL SCALE (VS) REFERENCE LINE (RL)

Fig. 7.10
The ${ }^{1} \mathrm{H}$ n.m.r. spectrum recorded on a JEOL 400 MHz instrument.

Chapter Eight

A search for polymorphism in a series of substituted nitroacetanilides.

A search for polymorphism in a series of substituted nitroacetanilides

The compounds investigated can be divided into five categories :-

1. 4-substituted 2-nitroacetanilides (I, $Y=H ; F=M e$;
2. 5 -substituted 2-nitroacetanilides (I, $X=H: F=M e$):

3. acyl derivatives of 4-methyl-2-nitroacetanilide $(1: X=$ Me: $Y=H$;
S. a miscellaneous collection of nitroamides.

```
These compounds were prepared by means of one of three general methods :-
1. acetylation or acylation of a commercially available primary aromatic mitroamine (METHOD 1) ;
2. nitration of an acetamide derivative in acetic anhydride using the method of Lynin 213 (METHOD 2 );
J. nitration of an acetamide using a mixture of concentrated nitric acid and concentrated sulphuric acid (METHOD 3 ) ;
```

Since these methods are classical synthetic methods and lead mainly to compounds which have been described in the chemical 1 iterature, only one example of each type of method is included in the experimental section.

The use of METHOD 3 often led to the formation of mixtures which were examined by TLC and separated by column Ghromatography using alumina as the separating material and this is indicated briefly in the experimental section.

The identity of each compound was established by
a) comparison with the literature m.p.
b) examination of the $i " r$ spectrum (KBr disc) ;
c) Examination of the n.m.r. spertrum.

Methods used to test for polymorphism in nitroacetanilides and related compounds.

Each compound was recrystallised from light petrol (boiling range $40-66^{\circ} \mathrm{C}$, or $60-86^{\circ} \mathrm{C}$, as well as from a polar solvent such as methanol or a methanol-water mixture. The appearance and colour of the resulting orystals were examined under the microscope and the i "r. spectrum of each form was recorded. In many cases polymorphism could be detected simply by noting the colour of the crystals obtained from the two types of solvent since the form which consisted of molecules which contained intramolecular hydrogen bonds was pale yellow whereas crystals containing intermolecular Hydrogen bonds were white or very pale yellow. Crystals containing intramolecular hydrogen bonds (yellow) were often obtained using petrol as crystallising solvent whereas those containing intermolecular hydrogen bonds (white form) were formed from solvents such as methanol or water.
Infrared spectroscopy proved to be a valuable tool for
distinguishing between the two possjble types of hydrogen
bonding since the intramolecular hydrogen bonded form showed
a band of medium intensity near $\mathbf{~} 400$ cm-1 due to $N-H$
stretching and also a band just above 1700 cm-l due to a non-
hydrogen bonded carbonyl group. The presence of the
intermolecularly hydrogen bonded form was characterised by a strong broad band near $3200 \mathrm{cm-1}$ and a strong band about 1680 cm-1 due to $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=0$ stretching bands. In some cases the yellow form could not be obtained by recrystallisation from petrol but was formed by rapidly cooling the molten form. In cases where yellow and white forms were obtained it was found that grinding with potassium bromide could rapidly change the yellow form into the white form and intermediate stages have been observed in which the two forms were present. Hence, when using the potassium bromide disc technique it was necessary to use gentle grinding to avoid changing the yellow into the white form. Since the yellow and white forms are only stable in the crystalline state, techniques such as n.m.r. or $U V$ are not suitable for the detection of this type of polymorphism. The last comment cannot of course be applied to reflectance uv which could be used to detect polymorphism resulting from intraand intermolecular hydrogen bonds.

Table 8.1

An examimation of some 4-substituted-2-nitroacetanilides for polymorphism
substituent yellow form white form polymorphism m.P.* lit. m.p. $\vee N-H \quad \vee C=0 \quad \vee N-H \quad \vee C=0$

H	92	93(B)	3875	1765	-	-	no
Me	94	94(E)	3380	1720	3260	1675	yes
			3360	1719			
Et	45	46(E)	3300	1760	-	-	yes ${ }^{\Delta}$
				1680			
Fr	79	77 (B)	3566	1765	-	-	no
$n-\mathrm{Eu}$	73	76 (CA)	3360	1792	-	-	no
$i-F \cdot r$	80	81 (CA)	3350	1765	-	-	no
$t-\mathrm{Em}$	107	164.5(E)	3850	1716	-	-	no
F	70	71 (D)	3369	1765	-	-	no
Cl	98	$109(B)$	8375	1718	-	-	no
Er	98	$102(B)$	3370	1715	-	-	no
CN	131	131(D)	3.340	1715	-	-	no
nitro	121	126 (B)	3346	1712	-	-	no (1)
acetyl	139	141 (D)	3350	1725	-	-	no
OMe	117	120(D)	2380	1798	\cdots	-	no

$\Delta_{\text {After standing at ambient temperature for about five years, colourless hexagonal plates . }}$. had formed and i.r. spectroscopy confirmed them as a "white" form.

* all m.p.s are reported in degreescentigrade. Enperimental determinations were made on a kofler Hot gtage. The sources of m.p.s are given in Table 8.2 (1) see Appendix 11.1 for details of unit cell dimensions and symmetries for yellow polymorphs of this compound.


```
Table 8.3
An examination of some acyl derivatives ( \(\mathrm{R} . \mathrm{C}=\mathrm{C}\) ) of 4-methyl-2-nitroacetanilide for polymorphism substituent yellow form white form polymorphism \(F \quad\) m.p. lit m.p. UN-H VC=O VN-H VC=O \(\begin{array}{llllll}\mathrm{H} & 124 & - & - & 360 & 1690(5) \mathrm{no}(1)\end{array}\)
FHCO 144 143(E) 33601690 -
\(0-\mathrm{ClC6H} 4139\) 139(E) 33701690 - no
Et 85 - 3341680 -
Fr \(59 \quad 62(\mathrm{E}) \quad 3501700\) - \(\quad\). no(3)
```



```
n-pentyl 54 - 35551705 - no
```



```
\begin{tabular}{lllllll}
\(\mathrm{i}-\mathrm{Bu}\) & 88 & \(88(\mathrm{~B})\) & - & - & 270 & 1669
\end{tabular}
\begin{tabular}{cccccccc|}
\(\mathrm{CH2Cl}\) & 118 & \(122(\mathrm{~B})\) & 290 & - no
\end{tabular}
(1) perhaps \(Z\) and \(E\) forms of this compound are present.
(2) only the white form of the compound was obtainable.
(3) crystals of this compound were obtained in the form of needles as well as plates.
```


Table 8.4

An examination of some 5-substituted-2-nitroacetanilides for polymorphism

substituent			yel 10	w form	white	form	polymorphism
	m.P.	lit. m.	N-H	$v C=0$	UN-H	$\nu C=0$	
Me	84	87(L)	3355	1695	-	-	no
F	87	$90(L)$	3355	1795	-	-	no
Cl	114	$118(L)$	3535	1695	-	-	no
Er	143	$138(\mathrm{~L})$	3550	1790	-	-	no
CN	135	152(D)	3566	1729	3260	1675	yes
nitro	11b(Y)	121(L)	3×70	1715	3260	1676	yes
	121(white)						
acetyl	118	121	3550	1690	2280	1675	yes
OMe	121	125(L)	3336	1760	-	-	no
CF_{3}	65	-	-	-	3.300	1685	no
COOH	295	$205(\mathrm{D})$	-	-	2260	1680*	yes
coome	95 (petrol)		3.390	1736	\cdots	-	yes
	104 (MeDH)						

[^5]
Table 8.5

Data on miscellaneous amides which Mave been examined for Purposes of comparison.
name
yellow form white form
polymorphism
m.p. lit.m.p. VN-H \quad VC=O $\quad \cup N-H \quad \cup E=0$

2-nitro-4-ethylpropiona:nilide
78 - $3 . \quad 1716$ -

2-methyl-5-nitroacetanilide
$155150(\mathrm{D}) \quad-\quad$ - 280 1670 no(5)

S-chloro-4-methylacetanilide
88 8S (E) - \quad - 360 1670 yes (1)
$102104(B) \quad-\quad-\quad 3001676$
2-chloro-4-methylacetanilicle
$119118(B) \quad 3280 \quad 1660$ no
N-benzenesulphonyl-4-methyl-2-nitroanilisme

99 99(E) 3260 - $3260-\quad$ yes (2)
S-nitro-4-methylacetanilide
143 $144(\mathrm{D}) \quad$ T280

2-nitro-1-acetamidonaphthaleme-
$195199(E) \quad-\quad 32961650$? (3)
1-nitro-2-acetamidonaphthalene
124 124(B) - \quad - 200 1670 yes(4)
b-methyl-Z-nitroacetanilide
$158 \quad 158(E) \quad-\quad-\quad 350 \quad 1660 \quad$ no
(1) this compound was obtained as needles from ethanol water (m.p. $88^{\circ} \mathrm{C}$) and as plates from toluene (m.p. $110^{\circ} \mathrm{C}$) The i.r. spectrum of each form was the same. The polymorphism of this compound has been reported earlier 214
(2) well formed yellow (rectangles) and white crystals were formed simultaneously by slow evaporation of an ethanol solution. Yellow and white forms of this compound have been reported
(3) the infrared spectrum of a sample of $2-n i t r o-1$ acetamidonaphthalene which crystallised from methanol as yellow needles showed only one band near 1700 cm 1 whereas another batch showed two strong bands (1676 and $1725 \mathrm{~cm}-1$) in this region as well as additional bands in other regions. The latter sample could be a mixture of polymorphic forms but only one polymorphic form corresponding to an intermolecularly hydrogen bonded form was obtained in a homogeneous form.
(4) 1-nitro-2-acetamidonaphthalene crystallised as fine needles from petrol or rods from methanol and in each case the i.r. spectrum showed only one band near $1670 \mathrm{~cm}-1$ and a cluster of sharp unresolved peaks near 3200 em-1 which would indicate intermolecular hydrogen bonding. However a sample recrystallised from methanol-water showed Etrong bands at 1730 and $1676 \mathrm{~cm}-1$ and additional new peaks but a homogeneous polymorph was not isolated.
(5) a mixture of two different erystalline forms was obtained using methanol as a crystallising solvent.

Table 8.6

Some deuterated MNA species which heve been examined for

name	UN-H	$v C=0$	crystal	type(5
N-D MNA	2520	1720	MNA-Z	
	2569	1760		
	2400	1576	MNA-1	
trideuteroacetyl derivative of MNA				
MNA-dS	3880	1720	MNA-S	
	3 S 06	1760	(1)	
3r, $5^{r}, 6^{r}$-trideuteromNA (ring deuterated)				
	3365	1710	MNA-2	
	$3 \mathrm{SB0}$	1720	MNA-3	
	336\%	1765	(2)	
			uteratie	and a
group)	3560	1710	MNA -2	
	3580	1.720	MNA - 3	
	3860	1760	(3)	
	380	1679	MNA-1:4	

(1) Eoth $N-D$ compounds were made by crystallising MNA from deuterjum onide.
(2) The characteristic doublets of the triclinic form are Elearly observed. Crystallisation from aquepus ethanol gave crystals which gave an i.r. spectrum of the same type as MNA2 and after standing for two years a portion of the sample had changed to Mair-like crystals which gave the MNA-X type of i.r. Epectrum.
(3) Crystallisation from petrol gave a sample which gave an i.r. spectrum which is similar to that of MNA-2. Crystallisation of a sample from aqueous ethanol gave a sample which had an i.r. spectrum showing the characteristic doublets of the MNA-s crystal structuren
(4) Vigorous grinding of the sample with KEr gave a spectrum which was characteristic of the white form i.e. MNA-1
(5) The crystal type (i.e. either MNA-1 or MNA-2 or MNA-3 type) was assigned by comparison with the i.r. spectrum of the appropriate polymorph.

Cominents on the polymorphism of deutereted MNA.

The replacement of $H(10)$ ine. the amide hydrogen. by deuterium does not affert the ability of MMA to exist in yellow (MNA-S) and white formss (MNA-1) and a similar result was obtained when the aromatir Mydrogen atoms and the hydrogen atoms in the ring methyl group were replaced by deuterium. In marked contrast to this behaviour, the trideuteroacetyl derivative i.e. where $\mathrm{CH}_{3} \mathrm{C}=0$ was replaced by $\mathrm{CD}_{3} \mathrm{C}=\mathrm{O}$, no method could be found which would convert the yellow crystalline material (which had an i.r. showing the characteristic doublets of the MNA-S form into the white form. The methods which were used to attempt the conversion were those which rapidly convert MNA-S into MNA-1 and include (i) treatment with ultrasonic sound waves for 30 minutes. (ii) prolonged grinding with kBr and. (iii) crystallisation from water.

It is concluded that the conversion of MNA-S to MNA-1 goes via an intermediate which contians a cis amide structure as shown in fig. 4.20 . This shows that the more bulky CD_{3} group will be sterically hindered by the nitro group. This. together with the increased energy required to rotate the heavier amide group may make the polymorphic change far less likely to occur in this masen Also a crystalime sample containing an approximately $56: 56$ mixture of trideuteroacetyl MNA and umlabelled MNA would not undergo the ronvereion of MNA-s to MNA-1. This behaviour", in which a deuterated analogut has a totally different physical property from its
undeuterated analogue. is unusual.

Another important aspect of the deuterated compounds is that they provide i.r. spectra which may be compared with those of the various types of MNA and are an important aid in interpreting the i.r. spectra of MNA.

```
A di=cus=im nt the factor= aftecting the ocourrence of white
    and vellow forms of ommtroametamjlidea
```

Until the wort: described in this thesis wes published no data existed in the literature concerning the orvetal structure of an oriteroacetanilide and hence comparison of the crystal structure of MNA with this type of compound is not possible. However, from a study of the yellow amd amber forms of MNA jt is possible to postulate some generelisations which are lifely to affect the stabilities of white and vellow forms.

In molecules where the amide group is intramolecularly bonded to the nitro group the gemerel Ehape is thet of a planar Eyetem and if the resulting cryctal imvolves ring -.. ring interactions along a column witm a poselbility of intercolumnar molecules meing nearly coplamar then the resultimg ervetal will be needle or rod ghaped. Buch crystals will be vellam or oramge due to the extended conjugation the to reconame interaction between the benzene ring. the amide group, the nitro groupa and the other Eubstituent group (s) n The letter could give rise to additional Etrong dipole-dipole interections which would stabilise the columar structure. It is ifkely that these factors influence the wrystal stimetures of the compounds

Abstract

The oresence of an electron withdrawing group in the 5 position redures the stability of the yellow form and four compounds bearing a 5 substituent were foumd which poseessed the ability to exist in white and yelow forms. The i. . . spectrum of the vellow and white form of each compound were different and the shitts in bande were very similar to those noted for vel 1 ow and white forms of MNA.

A possible reason for the reduced stability of the vellow forn may be the presence of electron withorawing groups in positions which would withdraw electron density from the same positions in the benzene rimgn In order to counteract this effect the groups may prefer to twist out of the plane of the benzene ring $a s i=$ found im molecules of 1,4 dinitrobenzenen 219 If the a-ritro substituent is in the ring plane then the substituent will be distorted from the plame of the ring. It is also poseible that the 5 substituent could exert an inductive effect on the a-mitero qroup whion would weaken its ability to form the intramolecular hyctrogen bond.

[^6]The rampoumds ifted in rable8.3 comtan a varimble acyl was Ghan Themaionty ot these compoums exist in the rellow form with their i.n spectra showing bands mear SESem-1 and 1760 cm-1. Howbver. two compounds. viz. the formyl derivative (F ($=H$) and the momethybutanoyl (isovalervl) derivatives could only be obtained in crystalline forms whose in r spectra suggested that the white form was present. The int. spectrum of the formyl derivative showed strong bands at $1.689 \mathrm{em-1}$ and $1710 \mathrm{cm-1}$ which might indicate that the amide group was present in z and E forms but no explanation can be offered as to the absence of a yellow form. The formation of the E (or cis) conformation is favoured by the replacement of the methyl group bv H which will not be stericially hindered by the ring $H(s) a \equiv$ much as a larger carbonyl oxygen (01). In the case of the isovaleryl derivative the intramolecularly hydrogen bonded form may be destabilised by the side chain methyl group as shown in the formula below:-

$\begin{array}{ll}\text { Fig. 8.1 } & \text { Two possible conformations of the isovaleryl } \\ & \text { derivative are shown. The atoms which are } \\ & \text { emphasised lie in one plane. In conformation } \\ & \text { A the intramolecular hydrogen bond is sterically } \\ & \text { hindered whereas in a side chain Me group } \\ & \text { lies close to the } C=0 \text { group. }\end{array}$

Severel of the miscellameous amides which are mentioned in Table 8.5 Gamat exjat in white and yellow fommesmeethey do not possess ortho nitero and anide groups. Folymorphic forms of the chloro derivatives were obteimed. These compouris had different crystalline forme but their i.r. spectra were identical.

A clear wase of vellow and white polymorphism was found in 215
the mase of the N-benaenesulphomvl derivative. Yellow and white orvstalline forms were obtamed and each form mad a different i.r. spectrum although the wavenumber of the $\mathrm{N}-\mathrm{H}$ stretchina band for the two forms was the samen

In the cases of the acetamidonitromaphthalenes the form which was readily obtained by crystallisation from solvent was the white form. Howeverg in each oasen there was clear evidence from the presence of two bands rear 1790 com-1. that two forms of tach compound were possble in the solid state but only the form heving intermolecular hydrogen bonds was obteined in a homogeneous form. Since the hydrogen attached to c(8) in the maphthalene rimg would be expected to cause sterim mindrance to both adjacent i- nito as well as $1-$ amide aroups it is predicted that the vellow forms of these Gompournds would be pelatively urnetable.

CHAPTER NINE

Experimental details

Nitration techniques used to prepare nitroacetanilides. METHOD 1

Acetvlation of primary aromatic amines.

The amine (1 g) was heated with acetic anhydride ($4 \mathrm{~cm}^{3}$) and concentrated sulphuric acid (1 drop) for So minutes. The mixture was cooled and poured into water. The resulting oil was stirred with a glass rod until crystallisation occurred and the crude acetyl derivative was recrystallised from aquequs ethanol.

METHOD 2

A solution of nitric acid (d, $1.52, b \mathrm{~cm}^{3}$) in acetic anhydride was prepared at $0^{\circ} \mathrm{C}$ and a saturated solution of the substituted acetanilide(5g) was added portionwise so that the temperature was maintained at $0^{\circ} \mathrm{C}$. The solution was kept for one hour at $0^{\circ} \mathrm{C}$ and then poured into water. The crude nitroacetanilide was collected at the pump, washed with water and recrvstallised from ethanol-water.

NETHOD 3.

The substituted acetanilides g) was dissolved in concentrated sulphuric acid and the mixture cooled to $0^{\circ} \mathrm{C}$ and a mixture of concentrated nitric acid ($10 \mathrm{~cm}^{3}$) and sulphuric acid(1S cm^{3}) was added. The mixture was kept at $0^{\circ} \mathrm{C}$ for one nour and poured into water. The crude solid nitroacetanilide was collected at the pump and recrystallised from aqueous ethanol.

Equations for METHODS 1,2 , and 3.
METHOD 1.

$$
\mathrm{RNH}_{2}+\mathrm{Ac}_{2} \mathrm{O} \longrightarrow \mathrm{RNHAC}+\mathrm{HOAC}
$$

METHOD 2.

METHOD 3.

Experimental details for the preparation of deuterated derivatives of MNA

Freparation of $N-d$ MNA.

MNA (ca 9.1 g) was boiled with $D_{2} \mathrm{O}$ for several minutes. Yellow (MNA-s) erystals form rapidly from the hot solution and were collected on filter paper after decanting the excess liquid. If the white form was required then the cyole of heating to effect solution and reprecipitation was repeated until the white form precipitated. Alternatively the hot clear solution was seeded with a trace of the white form.

Freparation of 4-methyl-2-nitroacet-d 3 -anilide.

To a mixture of acetic -d $3^{-a c i d-d}$ (2 g) [ALDFICH GOLD LABELJ and DMF (2 drops) surrounded by an ice bath, thionyl chloride (2. $4 \mathrm{~cm}^{3}$) was added and the mixture was allowed to stand for 3 minutes. A solution of 4-methyl-2-nitraaniline $(0.4 \mathrm{~g})$ in pyridine ($4 \mathrm{~cm}^{3}$) was then added dropwise. A Yellow product separated from the reaction mixture and this was recrystallised from water to yield small yellow needles. The i.r. spectrum of this product is shown in spectrum . The n.m.r. spectrum of this compound showed no peat at 2. 2e ppin which confirms the absence of the protonated form of
the acetyl group. The mass spectrum of the compound showed peats at the following m / a values 197. M+ base peak $15 s, M+$ $-\mathrm{COCD}_{2} ;$ 4. COCD_{3}. No peak was observed at $\mathrm{m} / \mathrm{z} 194$ which would correspond to an undeuterated MNA. [The mass spectrum and n.m.r. of 4-methyl-2-nitroacet-id 3 anilide were recorded By Mr. B. G. Dalgarno, Kodat: Ltd Harrow]

Reactions involved in the preparation of 4-methyl-2-nitroacet-d $\mathbf{3}^{-a n i l i d e}$

Freparation of $3,5,5-t r i d e u t e r o-4-m e t h y l-2-n i t r a a c e t a n i l i d e . ~$

The reactions which were used to prepare the titie compound include replacement of the aromatic hydrogens in pacetotoluidide by deuterium followed by a nitration in acetic anhydride.

Freparation of $2,3,5,6$-tetradeutero-4-methylacetanilide.
p-Acetotoluidide (9.2) was added to dideuterosulphumic acid (2.0 cm^{3}) [ALDFICH GOLD LAEEL] and the solution was heated to $66^{\circ} \mathrm{C}$. with exclusion of moisture for two hours. The solution was cooled, poured into water and the precipitate collected at the pump. Fecrystallisation from ethanol gave white crystals m.p. $149.5^{\circ} \mathrm{C} . \quad$ This procedure was repeated since the n.m.r. spectrum of the product revealed small peaks due to residual aromatic protons but a second treatment with deuterosulphuric acid gave a product which gave an n.m.r. spectrum which showed aromatic protons to be absent.

The product from the above reaction was adoed to a misture of concentrated nitric acid (1 drop) and acetic anhydride (4 drops) surrouncted by an ice-water mixture. Water was added
to the reaction mixture after 36 minutes and the yellow product was filtered off and recrystallised from ethamol to give yellow crytals m.p. $9 \mathrm{~S}^{\circ} \mathrm{C}$.

The product obtained showed no aromatic signals in the n.m.r. spectrum and the mass spectrum of the compound showed peaks at the following m / z values 197, M+; base peat: 155 , M-COCH2 $)+$ 109. 155-NO2. These peaks are consistent with the replacement of the three aromatic protons of MNA by three deuterium atoms. The i.r. spectrum. n.m.r. spectrum and mass spectrum showed that only a trace of aromatic protons could be detected.
[The MS and n.m.r. of this product was recorded on an AEI MS SG and Jeol 160 Mz n.m.r by Mr. D. Langton of ICI. Jealotts Hill, Erack:nell]

Freparation of the labelled acetophenone (\underline{B})

Aluminium ghloride (17.5 g) was mixed with tolueme-di8(s Em ${ }^{3}$) and carbon disulphide ($10 \mathrm{~cm}^{3}$). The mixture was stirred and cooled by an ice-water bath whilst acetic anhydride ($5 \mathrm{~cm}^{3}$) was added. After heating the mixture under reflu: for 36 minutes the reaction minture was cooled, poured into water and extracted with dichloromethane. The dichloromethane layer was washed with water ($3 x 25 \mathrm{~cm}^{3}$), filtered through phase separating paper and evaporated to give a light amber oil (4.3 g). The i.r. spectrum had a comple: system of bands near $2200 \mathrm{~cm}{ }^{-1}$ which is Eharacteristic of $C-D$ stretching bands in aromatic systems and a strong band near $1760 \mathrm{~cm}-1$ due to $\mathrm{c}=0 \mathrm{ftretching}$.

Freparation of the oxime (C)."

The ketone (2 q) was heated with Mydroxylamine hydrochloride (2 g), and sodium hydroxide (4g) in a solution of water ($15 \mathrm{~cm}^{3}$) and ethanol ($10 \mathrm{~cm}^{3}$) for 45 minutes. The rirude oxime was precipitated by acidification with hydrochloric acid and collected at the pump.

The Eerkmann rearrangement of the owime
The crude oxime was heated with the minimum of
polyphosphoric acid which would effect solution at 1 bo 0 .
After heating for 10 minutes the solution was cooled. diluted
with water and the precipitate was collected at the pump and
washed thoroughly to remove the acid. A buff solid (ca 9.8 g) was obtained which was heated with dideuterosulphurje acid in order to attempt to replace any aromatic protons: which had been introduced by the acidic conditions of the rearrangement reactions by deuterium. The inr. spectrum of this compound showed many bands which were present in the i.r. spectrum of an authentic specimen of p-acetotoluidide but the differences noted were as follows :-
(i) the compound showed a comple\% series of bands of medium intensity near 2age con-l which would be due to the $C-D$ stretching bands.
(ii) a sharp band at $1400 \mathrm{~cm}^{-1}$ present in p-acetotoluidide was missing. This identifies the band at 140 mm . 1 as due to the 4 -methvl group in p-acetotoluidide.
(iii) The strong band at $810 \mathrm{~cm}-1$, due to the out of plame bending vibrations of aromatic hydrogen atoms, was replaced by a weak peak at this wavenumber which indicates the presence of residual hydrogen atoms on the aromatic ring.

Freparation
of 4-tri deuteromethyl-3,5, \quad-trideutero-2nitroacetanilide (sDMNA).

This material was synthesised starting from perdeuterotoluene (toluene - © ${ }^{\prime}$) which is available from ALDFICH. The synthetic route involved a Friedel Crafts reaction of the labelled toluene with acetic anhydride using aluminium chloride as the catalyst. This reaction gave a labelled acetophenone (B) which was converted to its owime derivative (C). A Beckmann rearrangement of the oxime using polyphosphoric acid gave a labelled p-acetotoluidide (D) which was nitrated, using concentrated nitric acid in acetic anhyoride, to yield the required 1 abelled MNA ($6 D-M N A$).

The deuterated p-acetotoluidide (2.5 g) was added to a cooled solution of concentrated nitrit acid \{a 1.5 gem-3; 9.5 g) in acetic anhydride ($2 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. After standing at ambient temperature for 45 minutes water was added and a vellow precipitate was collected at the pump. washed with water and recrystallised from ethanol-water to give a yellow crystalline solid. The compound showed strong bands in the i.r. spectrum near 155 cm g and $1350 \mathrm{cm-1}$ whimh is consistent with the introduction of a nitro group. Some bands present in the i.r. spectrum of MNA-S such as a sharp medium band near $1150 \mathrm{~cm}-1$ which can be assigned to an in plane bending vibration of aromatic G-H and the strong band near $929 \mathrm{cm-}$ (out of plane bending of aromatic $\mathrm{C}-\mathrm{H}$), were weat. This is consistent with much of the aromatic hydrogen being replaced by deuterium.

The mass spectrum of the product showed that a mixture of MNA molecules of varying deuterium content was present. In the molecular ion reqion peaks at $m / 2$ 197.95.198.95.199.95 and 260.65 at relative abundances t.1. 13.8. 16. 3 and 6. 1 were observed and this corresponds approximately to 14% SD, Se\% 4D, 3Q. 5\% 5D, and 14% oD respectively. It is concluded that the product could only be regarded ass partially deuterated but inspite of this, the material, which could be obtained in three polymorphic forms, provided useful i.r. data.

An examination of the polymorphic forms of MNA by differential scanning calorimetry

Abstract

Three different batches of each polymorph were examined by differential scanning calorimetry (d.s.c.) using a DuFont thermal analyser to examine one batch and a Ferbin-Elmer DSC-2 differential scanning calorimeter to examine two later batches. The results presented in Table 9.1 are from the examination of the last batch which was examined on a FerkinElmer instrument.

Although the general character and shape of curves obtained from each polymorph were similar: slightly different results were obtained for each polymorph from different batches. The d.s.c. curve obtained from the amber polymorph (MNA-2) showed a small exotherm near $82^{\circ} \mathrm{C}$ followed by a melting endotherm with an extrapolated onset at $92.07^{\circ} \mathrm{C}$. When samples of the amber form were heated to approximately $80^{\circ} \mathrm{C}$ for about fifteen minutes and examined by infrared spectroscopy and by x-ray powder diffraction techniques it was clear that a phase change had occurred and now the solid sample consisted of the yellow form. When amber crystals of MNA were examined on a kofler hot-stage microscope at about $85^{\circ} \mathrm{C}$ the initially clear amber crystals become opaque and yellow and the phase change did not appear to travel along
distinct boundary fronts.

Hence it is concluded that the solid amber form changes. on heating to about $80^{\circ} \mathrm{C}$, into the yellow form. However. the melting point endotherm has a lower enthalpy change than that for the yellow form but the onset temperatures are similar. The values for the melting point endotherms show that the order of stability of the three polymorphs is: in order of increasing stabilty, MNA-2 (amber) «MNA-S (yellow) (MNA-1 (white)

The d.s.c. curves do not show one aspect of the effect of heat on MNA-3, which is easily observed on the kofler hot-stage.

This is the change of the yellow to the white form, which is seen to occur at about $90^{\circ} \mathrm{C} . \quad$ It is possible that the enthalpy change associated with this phase change is slightly endothermic and may account for the relatively low starting point for the endotherm at $74.6^{\circ} \mathrm{C}$ as well as the asymmetric nature of the melting point endotherm.

Table 9.1

Results of the d.s.c. studies

pol ymorph	amber	yellow	white
melting onset (${ }^{\circ} \mathrm{C}$)	90.64	99.69	95.94
maximum temp. (${ }^{\circ} \mathrm{C}$)	92.67	93.92	96.31
melting endotherm (calg ${ }^{-1}$)	24.81	27.57	30.52
melting endotherm (kcalmol ${ }^{-1}$)	4.82	5.35	5.93
melting endotherm (k.Jmole ${ }^{-1}$)	20.14	22.38	24.78
exothermic change			
(kcalmol ${ }^{-1}$)	0.25		
(kJmole ${ }^{-1}$)	1.05		

Fig 9.4

DSC curve of YELLOW (MNA-3) form

DSC

ChAPTER TEN

Feferences.

References

1. S. Mizushimas T. Shimanouchi, S. Nagakura, K.Kuratani, M.Tsuboi, H.Baba, and D.Fujiotia, J.Amer. Chem. Soc, $1950,72,3496$.
2. M. Tsubai, Bul1. Chem.Soc.Japan, 1949,22,215,255.
3. T.Miyazawa, T.Shimanouchi, and S.Mizushima, J.Chem.Fhys., 1956,24.498.
4. T.Miyazawa, T.Shimanouchig and S.Mizushimas J.Chem. Fhys., 1958,29:611.
5. F. B. Corey and L.Fauling. Proc. Foy. Soc., 1953, B141,16.
6. Fi.A. Russell and H. W. Thompson, Spectrochim. Acta, 1056, 8, 138.
7. R.L.Jones, J.Mol.Spec. : 1958,2,581.
8. I. Suzliki, M.Tsuboi, T.Shimanouchi, and S.Mizushima, Spectrochim. Acta, 1960,16,471-478.
9. T. Miyazawa, J. Chem. Soc. Japan, 1955, 76, 821.
10. I.Suzuki, Bull.Chem. Soc. Japang 1960, 33, 1359.
11. C.H.Smith and R.H.Thompson, J.Mol.Spectroscopy, 1972,42, 227-238.
12. I.Suzukis Bull. Chem. Soc. Japan. 1962, $35,546$.
13. L.J.Bellamy, "The Infrared Spectroscopy of Complex Molecules". Methuen, London, 1984.
14. F.E.Richards and H. W. Thompson, J. Chem. Soc.: 1947,1249.
15. H.M.Randall, F.G.Fowler: N.Fuson, and J.R.Dangl, "Infrared Determination of Drganic Structures": D. van Nostrand: New York, 1949.
16. H.Letow Jnr. and A.H.Gropp: J. Chem. Phys., 155.,21, 1621.
:7. R.D.B.Fraser and W.C.Frice, Nature; 1952, 170,490.
17. H.K.Kessler and G.B.E.M.Sttherland, J.Chem.Fhys., 195.,21,570.
18. A. Warshel, M.Levitt, and S.Lifson, J.Mol.Spectroscopy, 1970, 35,84.
19. N.E.Abbott and A.Elliott, Proc.Roy.Soc.,1956, 234A, 247.
20. D.A.Crooks, Nature, 1947,160,17.
21. J.Mann and H.W. Thompson, Froc. Foy. Soc. . 1948, 192A, 489.
22. C.H.Bamfords L.Brown, A.Elliott, W.E.Hanbys and I.F.Trotter, Proc.Roy.Soc. 1953,141B,49.
23. A. Gierer, Z.Naturforsch.: 1954, 8E,654.
24. V.V.Chalapathi and K.V.Famiah, Froc. Indian Acad. Sci., 1968, 67A, 184.
25. E.J.Forbes. K.J.Morgan, and J.Newton, J.Chem.Soc. : 1963.835.
26. M.St.C.Flett, Trans. Faraday Soc., 1948,44,767.
D.E.Hathaway and M.St. C.Flett, Trans. Faraday Soc.

1949,45,318.
A. Bryson and R.L. Werner: Austal.J.Chem. 19, 13,456.
V.C.Farmer and Fi.H.Thompson, Spectrochim. Acta, 1960,16,559.
A.G.Moritz, Spectrochim. Acta, 1960,16,1176 \& 1962,18,671.
L.K.Dyall and A.N.Hambly, Austral. J.Chem., 1958,11,513.
L.k.Dyall; Spectrochim. Acta, 1961,17,291.
28. D.Feltier, A.Fichevin, and A.Bonnin, Bull. Soc. Chim.France 1961,1619.
29. M.Gomel and H.Lumbroso. Eull.Soc.Chim.France, 1962,1203.
30. J.W.Smith, J.Chem. Soc. $1961,4760$.
31. H.E.Hallam and C.M.Jones, J.Mol.Structure, 1976, 5, 1-19 B.F.Pederson and E.Federson, Tetrahedron Letters 1965,2995.
32. L.K.Dyall and J.E.Kemp. Spectrochim. Acta, 1966,22,483.
33. T.H.Siddall III, W.E.Steward, and A.L.Marston, J. Phys.Chem. 1968,72,2135.
34. R.E.Carter: Acta Chem.Scand.: 1968,22,2643.
35. A.G.Moritz: Spectrochim. Acta, 1960,16,1175.
36. L.J.Bellamy: H.E.Hallam, and R.L. Williams, Trans. Faraday Sac.: 1958,54,1120.
37. J.W.Emsley, J.Feeney, and L.H.Sutcliffe, "High Resolution Nuclear Magnetic Fiesonance Spectroscopy". Pergamon Press, New York, 1965.
38. J.F. Bartels-Keiths and R.F. Cieciuch, Can.J. Chem.s 1968, 46, 2593.
39. H. Faulsen and K.Todt, Angew. Chem. Int.Ed. Tng. $1965,5,899$.

Chem. Ber. 1967,100,3385.
Chem. Ber. 1967,100,3.207.
Z.Anal. Chem. 1968,2J5, 30.
40. T.H.Siddall III anc W.E.Stewart, J.Mol.Spec. 1967,24,290301.
41. A.Ric ara and M.Rico. Tetrahedron Letters, 1968,5,535.
42. W.E.Stewart and T.H.Siddall III, Chem.Rev. 1976,70(5),517.
43. H.E.Hallam and C.M.Jones, J.Mol.Structure, 1970,5.1.
44. J. M. Appleton, B.D.Andrews, I.D.Rae, and B.E.Fieichert, Aust.J.Chem., 1979, 23,1667.
45. B.M.Lynch, C.M.Chen, and Y-Y. Wigfield, Canad.J.Chem., 1968,46,1141.
46. L.K. Dyall and J.E.Kemp; Spectrochim. Acta, 1966,22,483.
47. R.E.Carter: Acta Chem. Scand.: 1968,22,2643.
48. I.D.Rae, Canad.J.Chem., 1966,44, 1334.
49. A.Mannschrenck, A.Matthews, and G.Rissman, J.Mol.Spec., 1967,23, 15.
50. A.J.R.Bourn, D.G.Gillies, and E.W.Fiandall, Tetrahedron, 1964,20,1811.

5!. F.F.C.Brown, L.Fiadom, S.Sternhell, and I. D. Fiae, Canad.J.Chem., 1968,46.2577.

E2. R.E.Carter: Acta Chem. Scand. 1967:21,75.
S3. M. Zanger,W.W.Simons, A.F.Gennaro, J. Org. Chem. 1968, 33, క673.
54. H.Kessler and A.Rieker, Ann. Chem. 1967,708,57.
55. H.kessler and A.Fieker. Z.Naturforsch. 1967,22,456.
56. R.Adams. Rec. Chem. Frogr. 1949, 19.91.
57. H.Kessler, Tetrahedron, 1968,24,1857.
58. T.H.Siddall and W.E.Stewart, J. Phys. Chem. $1969,73(1), 40$.
59. B.F.Federsen and B.Federsens Tetrahedron Letters, 1965,2995.
60. H. B. Thompson and K.M. Hollberg: J.Fhys.Chem. : 1963.67,2486.

S1. H.S.Gutowsky and C.H.Holm, J.Chem.Fhys., 1956, 25. 1228.
62. I.D.Rae, Canad.J.Chem., 1967,45(1),1.

6․ M. Kondo, Eull. Chem. Soc. Japan, 1978,51(6),1905.
64. D. Sugden GRSC Part 2 Project, Slough College, 1979.

S5. I.D.Rae, Aust.J.Chem., 1978,31,1851-4.
66. W. Arugel, Z.Elektrachem., 1962,66:159.
67. C.J.Brown and D.E.C.Corbridge, Acta Cryst.: 1954:7,711.
68. C.J.Erown, Acta Cryst., 1966,21,442.
67. B.F.Pedersen and B.Federsen: Tetrahedron Letters: 1965, 34, 2995.
70. R.E.Carter: Acta Chem.Scand. 1967,21(2),75-86.
71. M. Haisa, S.Kashino.Y.Matsusaki, R.Kwai and K.Kunitomi, Acta Cryst. 1977, $\mathrm{B} 33,2455-2459$.
72. M.Haisa, S,Kashino, Y.Matsuzaki, R.Kawai, and K.kunitomi, Acta Cryst., 1977, BE3,2455-2459.
73. M.Haisa, S.Kashino, and H.Maeda, Acta Cryst., 1974, B30,2510-2512. 1976, B32, 1283-1285.
74. E.Subramanian, Z.kirist., 196s,222-234.
75. G. D.Andretti, L. Cavalca, P. Domiano, and A.Musatti, Acta Cryst.s 1968, B24,1195-1198.

```
76. S.Kashino, K.Ito, and M.Haisa, Eull.Chem.Soc.Japan,
1979.52(2),365-369.
K.Tashino, M.Kabayshi, and H.Tadokoro. Macromolecules,
1977.10,413.
M.Haisar, S.Kashino, and H.Maeda, Acta Cryst., 1974,36B,2510
                                    1976,32B,1283.
```

77. L.Leiserowitz and M. Tuval, Acta Cryst., 1978, B34, 1230-
78.
79. W.A.Denne, M.F.Mackay, J.Cryst.Mol.Struc., 1974.4.141.
80. H. D. Block,H.-D.Lockenhofs R.Allmann, Cryst.Struc. Comm.,
1975.4.77.
81. A.G.Michel, F.Durant, Acta Cryst.: 1976, B32,1574.
82. T.Ozawas Y.IItaka, M.Hirobes, T. Okamoto, Chem. Pharm. Bull.,
1974.22.2069.
83. C.Cohen-Addad, J.Lajzerowicz, J.-L. Benoit-Guyod,
A. Boucherle, Chim. Ther., 1972,7,384.
84. F.Singh, F.R.Ahmed, Acta Cryst., 1969. B25. 1901.
85. C. Bonnemer: J.A.Hamilton, L.K.Steinrauf, J.Knappe,
Biochemistry, 1965,4,240.
86. C.Cohen-Addad, Acta Cryst=, 1973, 829,157.
8t. C.Cohen-Addad, Acta Cryst.s 1973, B29,157.
87. C.Miravitlles, F.Flana; J.L.Brisansc, M.Font-Altaba;
Cryst.Struc. Comm.: 1974, 3:439.
88. N.W.Gilman, J.F.Blount R.I.Fryer, J. Org. Chem.,
1976,41,737.
89. J.P.Schaefer and L.L.Reed, Acta Cryst. : 1972, B28,1743.
90. G. Precigoux, B. Busetta: M. Hospital; Acta Cryst.,
1976, $832,943$.
91. W.R.Krigbaum, R.-J.Roe.J.D.Woods. Acta Cryst.,
1968, 824,1304.
92. F.Flana, C.Miravitlles, J.L.Erisano, M.Font-Altaba,
Cryst.Struc. Comm., 1973,2,573.
93. J.L.Brianso, C. Miravirlles: F.Flana,M.Font-Altata,
```
Cryst.Struct.Comm.: 1973,2,551.
94. M.H.J.Koch,G.Evrard, Acta Cryst. 1974,B30,237.
95. J.L.Brianso,C.Miravtlles,M.Font-Altaba, J.P.Declerc,
G.G.Germain, Cryst.Struc.Comm., 1973,2,319.
96. A.V.Hanson,D.W.Eanner, Acta Cryst. 1974,B30,2486.
97. C.S.Yoo, E.Abola, M.K.Wood, N.Sax, J.Fletcher, Acta
Cryst., 1975, B31,1354.
98. A.W.Hanson, Acta Cryst., 1972,828,672.
99. A.W.Hanson and M.Rohr1, Acta Cryst., 1972, 828,3567.
100. L.P.Zalukaev, N.A.Ignat'ev, E.I.Zavalishin,
Zh.Strukt.khim., 1975,16,237.
101. F.flana, C.Miravitlles, J.L.Erianso, M.Font-Altaba,
Cryst.Struc.Comm., 1974,3,135.
102. F.Flana,J.L.Brianso, C.Miravitlles,X.Solans,M.Font-
Altaba, D.Dideberg,J.P.Declerc, G.G.Germain, Acta Cryst.,
1976, B32,2660.
193. C.J.Brown, J.Chem.Soc.(A),1967,405.
104. G.Reck, Krist.Tech., 1975,10,511.
105. L.Kutschaesky, C.Zerbe, Krist.Tech., 1976,11,5.
106. G.Reck,H.Schmittler-Fichtner,P.Leibnitz, J.prakt.Chem.,
1973,315,483.
107. G.Reck,F.Leibnitz,J.-F.Wenzel, Kristal und Technik,
1974,9,345.
108. G.Reck and G.Bannier, Kristal und Technik, 1975,10,951.
109. G.G.Christoph, E.B.Fleischer, Acta Cryst. 1973,B29,121.
110. J.I.Brianso,C.Miravitlles, F.Flana, M.Font-Altaba,
Estud.Geol.(Madrid), 1974,30,425.
112. M.H.Koch,C.J. de Ranter, M.Folies, O.Dideberg, Acta
Cryst., 1976,B32,2529.
113. H.-C.Mez, Ber.Bunsengesellsch.Phys.Chem., 1958,72,339.
```

114. J.F.Collman, F.R.Gagne, C. A.Reed, W. T. Robinson, G. A. Rodley, Froc. Nat.Acad.Sci. U.S.A., 1974,71,1玉26.
115. K.A.Kerr, J.F.Ashmore, Stockholm Symp. Bial.Struc., 1973.91.
116. L.Kutschaesky,F.Leibnitz,J. Wenzel, Kristal und Technik; 1974.9. 605.
117. Y.K゙ai,N. Yasuckia,N.Kasai, T. Minami,
K. Yamataka, Y. Dhshiro, T.Agawa, J.Chem. Soc., (D), 1971,1532.
118. S.Faul-Fioy,H. Schenk C.H.Macgillavry, J.Chem. Soc. (D), 1969.1517.
119. M. Brufani, W.Fedeli, G.Giacomellos A.Vaciago, Experientia, 1964,20,339.
120. M.Erufani, W.Fedeli, G.Giacomello, A.Vaciago, Experientia, 1967,23,508.
121. W.T.Robinson, G.A.Rodley: G.B.Jameson: Acta Cryst., 1975, A31,549.
122. J.Haleblain and W.McCrone, J.Pham.Sci., 1969,58(8),911929.
123. E.W.Jenkins: "The Polymorphism of Elements and their Compounds": Methuen Educational Ltd.s 1973.
124. L.T. O'Connor in "Fatty Acids". Ed. K.S.Markley, 2nd. Ed. Pt. I, Interscience N.Y. 1960, 285-378.
125. N.H.Hartshorn and A.Stuart "Crystals and the Polarising Microscope", 3rd. Ed. Edward Arnold Ltd.; London, 1960,20.
126. L.Kofler and A.Kofler. "Mikro Methoden zur Kernzeichung Organisher Stoffe und Stoffe Gemische", Wagner, Innsbruck, Austrias 1954.
127. W.C.McCrone, "Fusion Methods inChemical Microscopy", Interscience, N. Y.s 1957.
W. C.MsCrone, "Physics and Chemistry of the Organic Solid State", Vol II, Ed. A.Weissberger, Interscience, N.Y., 1965,725-767.
128. A.R.Verma and P.Krishna, "Polymorphism and Folytypism in Crystals": Wiley, N.Y., 1966,7-60.
129. L. Deffet, "Repertoire Des Composes Organiques
```
Folymorphes": Desoer, Liege, 1942.
130. L.Gattermann, Ber., 1885,18,1482.
L.Gattermann, Eer., 1890,23,1733.
131. R.Schenks Z.phys.Chem., 1894,15,33; 1897,23.449.
132. K.Aliwers, Z.phys.Chem., 1894,15,33; 1897,23,449.
13z. E.C.C.Baly, W.B.Tuck and E.G.Marsden, J.Chem.Soc.,
1910,97,581.
134. A.Hantzsch. Ann, 1911,384,135; 1913,398,381.
135. A.Hantzsch, Ann.: 1932,492,65.
1こ6. A.H.R.Muller, Z.phys.Chem., 1913,86,222.
1.37. K.Schaum, Anח., 1928,462,194.
138. L.Hunter and H.D.Chaplin., Natures 1937.140,896.
139. L.Skulksi, J.Org.Chem.: 1963,28(12),3565.
140. L.Skulski: Zeszyty Naukowe Folitechnika Warszawska
Chemia, 1966,5,160-212.
```

141. D.N.Kendall, Anal.Chem., 1953,25.382.
142. R.J.Messley, Spectrochim. Acta, 1966,22,889-917.
143. G.P.Bettinetti, F.Giordano, A.La Manna, and
G. Giuseppetti, J.Pharm. Pharmac.; 1976, 28, 87.
144. R.J.Mesley and C.A.Johnson, J.Fharm. Pharmac.,
1965, 17,329.
145. R.J.Mesley and E.E.Houghton; J.Pharm. Pharmac.,
1967,19,295.
146. J.H.Chapman, J.E.Fage, A.C.Farker, D.Rogers, C.J.Sharp,
and S.E.Stanforth., J.Pharm. Pharmac., 1968,20,418-429.
147. R.J.Mesley, R.L.Clements, B.Flaherty, and K.Goodhead,
J. Fharm. Fharmac., 196日, 20,325-340.
148. B.W.Muller and M.Lagas, Fharmaceutisch Weekilad,
1979:114.449.
149. M.F.Grostic and G.E.Bronson, Applied Spectroscopy: 1961,

15(6), 157-9.
150. A.W. Baker, J. Fhys.Chem. 1957,61,450.
151. J.C.F.Schwarz "Physical Methods in Organic Chemistry", 01 iver and Boyd, 1963,57.
152. E.J.Graeber and B.Morosin, Acta Cryst., 1976,b32,310.
153. P.Frusiner and M.Sundaralingam, Acta Cryst., 1976, B32,419.
154. S.Needle, W.Kuhlbrandt, and Achari, Acta Cryst., 1976, B32,1850;
J.Kraut and L.H.Jensen, Acta Cryst., 1963,16,79.
155. A. I.Kitaigorodskii, Adv.Struct.Res.Diffr. Methods, 1970, 3, 173.
156. M.K.Kaloustian, J.Chem.Educ., 1974,S1(12),777.
157. J.Bernstien and A.T.Hagler, J.Amer.Chem. Soc., 1978, 100(3).673.
158. J.Bernstein and A.T.Hagler, Mol.Cryst.Liq.Cryst., 1979,50,223-234.
159. I.Bar and J.Bernstein, J.Phys.Chem., 1982, 86,3223-3231.

16@. J.Rernstein and G.M.J.Schmidt, J.Chem.Soc. (Perkin 2), 1972,2,951.
161. J.Bernstein, I.Bar, and A.Christensen, Acta Cryst., 1976, B32,1609.
162.
D.Y.Curtin, I.C.Paul, E.N. Duesler, T.W.Lewis, B.J.Mann, W. Shiau, Mol. Cryst.Liq.Cryst., 1979,50,25-42.
163. G.M.J.Schmidt, Pure Appl.Chem., 1971,27:647
164. M. D. Cohen and B.S.Green, Chem. in Britain, 1973,9,490.
165. J.M.Thomas, Phil. Trans.Roy.Soc., 1974,277,251.
166. I.C.Faul and K.T.Go, J.Chem.Soc. (B), 1969, 33.
167.
G.M.Parkinson, J.M. Thomas,J.O.Williams,M.J. Goringe, L. W. Hobbs, J. Chem. Soc., Perkin II, 1976,836.
168. J. Bregman, J.Leiserowitz and G.M.J.Schmidt, J. Chem. Soc. . 1964,2068.
169. J.Z.Gougoutas: Pure and Applied Chem., 1971, 27:305-325.
170. A. I.kitaigorodsky, Yu.V.Mnyukh, and Yu.A.Asadov, J. Phys.Chem. Solids, 1965, 26, 463.

Yu. V. Mnyukh, N. A. Fanifilova, N. N. Petropavlov, and N.S.Uchvatova, J. Phys.Chem. Solids: 1975, 36,127. F.A.Reynolds, Acta Cryst., 1977, A33,185.
171. P. Coppens and G.M.J.Schmidt, Acta Cryst.s 1965, 18, 62.
172. D.Y.Curtin and S.F.Byrn, J.Amer. Chem. Soc., 1969,91,6102. S.R.Byrn, "Solid State Chemistry of Drugs", Academic Fress, New York, 1982.
173. S.R.Byrn, D.Y.Curting and I.C.Faul, J.Amer. Chem. Soc.s 1972.94,890.
174. J.Swiatkiewicz and P.N.Prasad: J.Amer.Chem.Soc.a 1982,104,6913-6918.
175. G.R.Dsiraju, I.C.Paul, and D.Y.Curtin, J.Amer.Chem.Soc., 1977,99.1594.
176. B.J.Mann,E.N. Duesler, I.C.Paul and D. Y. Curtin, J.Chem.Soc. Ferkin II, 1981,1577.
177. B.J.Manns I.C.Faul, D. Y.Curtin; J.Chem.Soc.s Ferkin II, 1981,1583.
178. C.Pascard-Billys Eull.Soc.Chim.Fr. : 1962, 2293.
C.Pascard-Billy, Acta Cryst., 1962,15,519.
P.D.Cradwick and D.Hall, Acta Cryst.: 1971, B27,1979.
179. L.A.Errede,M.C.Etter, R.C.Williams, and S.M.Darnauer: J.Chem. Soc., Perkin II. 1980.2J3.
180. C.N.Sukenik, J.A.P. Bonapace, N. S. Mandel, P-Y.Lau, G. Wood, and F.G.Bergman, J.Amer.Chem. Soc., 1977,99.851.
181. R.R.Wilson, Y-S.Chen, I.C.Faul, and D.Y.Curtin, J. Amer. Chem. Soc. . 1983,105,1672-1674.
182. C.S.Chol and H.F.Boutin, Acta Cryst., 1770, B26, 1235.
183. H.H.Cady, A.C.Larsong and D.T.Cromer, Acta Cryst., 196, 15.617.
184. R.E.Cobbledick and R.W.H.Small, Acta Cryst., 1974, B30, 1918.
185. F.Goetz and T.B.Erill, J.Phys.Chem., 1979, 83, 346-346.

18s. T.B.Brill and C.D.Reese, J.Fhys.Chem., 1980,84,13761380.
187. T.B.Brill and R.J.Karpowicz, J.Fhys.Chem., 1982,86,42694266.
188. M.C.Etter and A.F.Siedle, J.Amer.Chem.Soc., 1983, 105, 641-643.
189. A.T.Hagler and J.Bernstein, J.Amer.Chem. Soc., 1978, 100(20), 6349.
190. W.C.Hamilton, Acta Cryst. 1965,18,562.
191. J.R.Holden and C.Dickinson, J.Phys.Chem., 1977,81(15).1505.
192. G.Kopfmann and R.Huber, Acta Cryst., 1968, A24, 348.
193. A.C.T.North, D.C.Phillips, and S.S.Matthews, Acta Sryst., 1968, A24,351.
194. I.J.Tickle (personal communication to J.C.Moore).
195. P.B. Braun, J,Hornstra, and J.I.Leenhouts, Philips Res.Repts. 1969,24,85.
196. J.C.Moore, A. Yeadon, and R.A. Palmer, J.Crystallogr. Spectrosc.Res., 1983, 13,279. (MNA-1; white and MNA-3; yellow)
J.C.Moore, A. Yeadon, and R.A.Palmer, J.Crystallogr.Spectrosc.Res., 1984,14(3),283. (MNA-2: amber form).
197. A.MacKay, Fractical Computing, 1981,4(9),198.
198. 'International Tables for X-ray Crystallography", Kyrioch Fress, Birmingham 1952, vol. 1.
199. G.Varsanyi, " Assignments for Vibrational Spectra of 700 benzene derivatives", Adam Hilger, London, 1974.
200. J.H.S.Green D.J.Harrison and W.Kynaston. Spectrochim.

Acta 1971,27A,807.
201. F.S.Mullit:an, J.Chem. Phys., 1955, 23, 1997.
292. E.B.Wilson. I.C.Decius and P.C.Cross. "Molecular Vibrations", McGraw-Hill, London 1955.
203. G.Varsanyi. "Vibrational Spectra of Benzene Derivatives ". Academic Fress. London. 1969.
204. M.F.Grostic and G.E.Bronson, Appl. Spectroscopy, 1961,15(6),157.
205. B.W.Muller and M.Lagas, Pharm. Weekblad, 1979.449.
206. M.J.Murray, and F.F.Cleveland, J. Amer. Chem. Soc., 1942,64,1181.
207. J.H.S.Green and D.J.Harrison, Spectrochim. Acta 1970,26A, 1925.
208. M.Rey-Lafon, M.T.Forel and C.Garrigou-Lagrange, Spectrochim. Acta 1973,29A,471-486.
209. A.Gambi, S.Giorgianni, A.Passini, R.Visinoni, and S.Ghersetti, Spectrochim. Acta 1980, 36A, 871.
210. D.Langtons GRSC Froject, Slough College, 1982.
211. F.W.Wehrli and T.Wirthling "Interpretation of Carbon-13 NMR Spectra": Heyden, Londons 1976.
212. A.Ellison, J.Chem.Educ.: 1983, $60(5), 425$.
213. E.M.Lynch. C.M.Chens Y.Wigfield. Canad.J.Chem. . 1968,46,1141.
214. M.Schofield, J.Chem.Soc., 1927,2903.
215. G.T.Morgan and G.E.Scharff; J.Chem. Soc., 1914, 105. 119.

2:6. W.J.Hickinbottoms "Reactions of Organic Compounds". Longmans: 3rd Edition, 1959.
217. F.Gay, "The Crystalline State": Dliver and Eoyd, Edinburgh. 1972. p. 231.
218. Y.Sugarawa, A.Y.Hirakawa, and M. Tsuboj, J.Mol.Spectrosc., 1984,108,206.
219. F. Di Rienzo and A.Domenicano, Acta Cryst., 1980, B36,586.

CHAFTEF ELEVEN

Appendices.

Appendix 11.1
The cell parameters for 2,4-dinitroacetanilide have been determined by D. Manners during work for a project as part fulfilment for the GRSC Pt. 2(1980) course. The work was supervised by Mr. J.C. Moore and Mr. A.Yeadon. Although the data are incomplete it was established that at least two forms for this compound existed and both crystalline forms were monoclinic.

Yellow Form

Crystal system	Monoclinic
a,b,c (A)	$9.72(2), 16.18$
	$6.12(2)$
a, B,Y (deg)	$90, \times 90,90$
Space group	$P 21 / n$

White Form

$$
\begin{array}{ll}
\text { Crystal system } & \text { Monoc1inic } \\
\text { a,b,c,(Å) } & 4.725(5), 9.72 \\
& 18.02 \\
\alpha, \beta, \gamma(\text { deg }) & 90,97,90 \\
\text { Space group } & \text { P2 type }
\end{array}
$$

Appendix 11.2

The unit cell parameters of onitroacetanilide have been determined by N.R.Sumption at Slough College of Higher Education during the GRSC Part 2 course. The work was supervised by Mr. J.C.Moore and Mr. A.Yeadon. The results were calculated from rotation and Weissenberg photographs and are as follows:-

Crystal system Monoclinic Habit Yellow, tabular
a, b, c (i) $\quad 15.61(1), 4.99(1), 11.04(1)$
$\alpha, \beta, \gamma(\operatorname{deg}) \quad 90,97.4(0.1), 90$
Space group $\quad P 2_{1} / \mathrm{n}$
Systematic
absences
$h+1=2 n$

There are no reports of the crystal structure for o-nitroacetanilide in the literature.

Mr. Sumption reported his results in the form of a project in part fulfilment for GRSC Part 2, June 1982.

Comments on the above results
The lengths of the sides of the unit cell are
similar to those for MNA-3. The b side has a relatively short distance of $4.99 \AA$ compared with that for the c side in MNA-3 of $4.039(1)$ i.

Appendix 11.3
References to some BASIC computer programs.

The following items give details of the use and sources of programs which have been used in the preparation of this thesis. All of the programs were modified to conform to SHARP BASIC (SPS025) for use on a SHARF MZ-BOK personal computer. Three types of extended basic interpreters were used :-

1. SPEED BASIC

This modified basic has additional commands available such as APPEND and RENUMBER as well as facilities for tracing errors. Data storage with SPEED BASIC is relatively fast. Supplier: -

SHARPSOFT LTD

86-90 PAUL STREET,
LONDON EC2A 4NE
2. High resolution graphics are available on the MZ-8OK if a Quantum Micros HI-RES graphics board is fitted. This gives a screen with 320×200 pixels. A modified BASIC is required viz. QUANTUM HI RES BASIC, which contains additional commands to control the high resolution graphics e.g.:-

GRAFH 0 resets high resolution.
GRAPH 1 enables high resolution.

GRAPH 6 high resolution screen dump to an Epson MX-B0FT dot matrix printer.

LINE $\times 1, y 1, \times 2, y 2$ this instruction draws a line from the point x1,y1 to x2,y2.

Supplier:-
QUANTUM MICROS,
55 WADE LANE,
MERRION CENTRE,
LEEDS LS2 BNJ
3. The third variety of EASIC: called APOLLO BAS MDD, which was used incorporates an extended BASIC interpreter. It offers high speed operation and is very similar to EBC BASIC. BAS MOD is available from

KUMA COMFUTERS,
12. HORSESHOE PARK,

HOFSESHOE ROAD, PANGBOURNE,
BERKSHIRE RG8 7JW

Frograms.

1. A program to calculate bond lengths: bond angles, torsion angles, and interatomic distances from atomic coordinates.
J.Dunitz, "x-Ray Analysis and the Structure of Organic
Molecules": Cornell University Press, 1979, page 495.
2. A program to calculate cartesian coordinates from internal coordinates .
J.Dunitz, "X-ray Analysis and the Structure of Organic Molecules": Cornell University Press, 1979, page 498.
3. The solution of simultaneous equations by the generalised inverses of matrices.
A.Mackay, Practical Computing: 1981,4(9), 108.
4. Using the transformation matrices presented in this reference it was possible to devise programs which would show molecules in one or more unit cells. An example of such a program follows this section and it shows four molecules of MNA in a unit cell. Scales perspective, and angle of view can all be varied. An outline of the unit cell can be added by incorporating the coordinates of the corners of the unit
cell and drawing appropriate 1 ines between them.
M.Shepherd, Fersonal Computer World, 1986, 3(10),57.
5. The calculation of n.m.r. spectra was accomplished by a computer program written in PASCAL by Dr. A.Ellison, Hull College of Higher Education. The program enables the positions and intensities of lines due to six interacting protons to be predicted. The program is available from Quantum Chemistry Program Exchanges Department of Chemistry -- Room 204: Indiana University, Bloomington, Indiana 47405, U.S.A.

A description of this program occurs in the Journal of Chemical Education.
A.Ellison, J.Chem.Educ.: 1983, $60(5), 425$.
6. A major part of this thesis was written and stored on cassette magnetic tape using a commercially available word processing program called WDFRRD.

WDFRO is available from
KUMA COMPUTERS,
12. HORSESHOE PARK:

HORSE SHOE ROAD, FANGBOURNE; BEFKSHIFE RG8 7JW.

Appendix 11.4
A BASIC computer program to view the contents of the unit cell of MNA-3

The program allows any scale to be adopted for the axes and will allow a perspective view. If $R Z=0$ a view from infinity is drawn.
: fem a basic program to vien the
2 REM ARRANGEMENT OF 4 MOLECMES

1060548240
3) INPLT "ROTATION ANGLES": AlPHA, BETA, GAMMA

60 gosur 300
70 ECSuF 540
30 socus dey
90 gosur 704
lee sosus say
2at EM
;97 GEM N=Number of atoms
198 REM CRYSTAL CDORDS OF ALL 4 MOLS
i99 REM IN DATA STATEMENTS 201-224
200 READ N
29! DATA 72. .7671, , 4992,.7455, . $8274, .4599,5289, .8296, .3515,4911$
202 DATA . $7857, .2987$, ,5192, $.8762, .3255, .1716, .8887, .5201, .4212$
293 DATA . 9252 , , 4944, , 2946, $8931, .5229, .5231, .9585, .6999, .4943$
204 DATA . 8338 ,. 6636 , 7418 , $8333, .7369, .8261, .7732, .6942, .9488$
205 DATA $.7362,6344, .9899, .7653, .4390, .8596,7131,3665, .8272$

207 DTTA . $7411,-.0199,1.1673 . .6563,064,1.141, .6469, .1015, .9079$
248 Dhif .6919,.1715. . $9687 . .5852 . .1084, .8989$, . $6069,-.0577,1.2497$
249 DATA , $5593,-.0356,1.2311, .6186,-.1542 .1 .393, .5551,-.2201,1.5125$

214 D47 . $2143, .712, .4848, .1238, .6735,9284, .113, .4799 ., 5788$
215 DATA , 4749, 5056, $7154, \ldots 669,0371, .4769,0415, .3992, .5997$
216 EAIG .1652., $3564, .2552 \ldots$. $1667, .2651, .1739, .2259, .3958, .1512$

218 EATH . 3538 . $5264, .6499, .3892, .4357,-0181, .4184$, , $6196,-.0974$
21? DATA . $2589,1.1199,-.1573, .3357, .994,-141, .351, .8985, .0441$

221 DATM, 4407,1, $0356,-.2311,3914,1.1562,-.393, .4449,1.2201,-.5125$
222 E4Th .2072,1.1748,--4239, ,2997,1.2411,-.521,.249,1.1123,-.3173

SOQ GEM CALCULATION OF GCRESN COORDS
604 FOR $F=1$ TO N
-05 FR:HT P

630 PRINT ICIR.: .
635 FRINT ICR. $2 ;$
644 SEX? R
350 REJURN
699 REM SCFEEN $:=30$ Y $=204$

- OU DIM SCON. S.
$710 \mathrm{~F}=32 \mathrm{a}: \mathrm{a}=200 \cdot \mathrm{yD}=10$
720 FOR $R=1$ TO N

$744 \mathrm{SC}(\mathrm{R}, 2)=\mathrm{INT}(\mathrm{TC}(\mathrm{R}, 2) * \mathrm{E} / \mathrm{YD} / \mathrm{TC}(\mathrm{R}, 4)+\mathrm{R} / 2)$
-50 METT F
355 RETURN
GUN DATA $\operatorname{Ta}, 1,2,2,3,3,4,3,5,2,6,6,7$
801 DATA $5,8,5,9,8,10,10,11,10,12$
802 DATA 12,13,12,1,1,14,14,15
g07 DATA $14,16,16,17,16,18$
804 IATA $19,20,24,21,21,22,21,23$
305 DATA $20,24,24,25,24,26,26,27$
SOU IATA $25,29,28,29,28,30,30,2$!
30^{7} DATA $30,19,19,32,32,33,32.34$
868 DATA $34,35,34,36,37,38,38,39,39,40$
840 DATA $39,41,39,42,42,43,42,44,44,45,44,46,46,47,46,48$
819 DATA $48,49,48,37,37,50,50,51,54,52,52,53,52,54$
B11 DATA 55,56,56,57,57,58,57,59,56,60,60,61, $60,62,62,63$
312 DATA $02,64,64,65,64,66,66,67,60,55,55,65,68,69,68,70$,
813 DATG 79.72.71.72
814 GRAPH 1
815 GFAPH A
920 FEAD NL
925 FOR L=: TO WL
3JC FEMD F1,22
Q4i) LINE SC(P1, 1], SC(F1,2), SC(P2,1!,SC(P2,2)
g50 NEY: :
g6e PETURN

Appendix 11.5
This simulation program shows the relative positions of MNA molecules in the MNA-3 unit cell (viewed down 2) as lines which represent the $C(7) . . . N(1)$ axes. The changes which occur in one unit cell (top left) are poked into 8 other unit cells so that the full screen shows the changes in 9 (3 x 3) unit cells. The statement LINE xl,yl,x2,y2 draws a line from $x l, y l$ to $x 2, y 2$ and the statement WIPE will delete a line.

```
100 REM A SIMULATION OF THE CHANGE
110 REM MNA-3 TD MNA-1
120 GRAPH 0:0=320
130 FDR X=0 TD 63 STEP B
140 FOR Y=0 TD 63 STEF 8
150 RESET X,Y:NEXT Y,X
160 FOR X=0 TO 7:FOR Y=0 TD 7
170 M=53248+X+(Y*40)
189 FOR Z=g TO 2
190 T=PEEK (M)
200 FOKE M+(Q*Z),T
210 FOKE M+(Q*Z)+8,T
220 FOKE M+(Q*Z)+16,T
230 POKE M+(Q*Z)+24.T
24@ POKE M+(Q*Z)+32.T
250 NEXT Z,Y,X
260 REM OUTLINES UNIT CELL OF MNA-3
270 LINE 0,0,63,0
280 LINE 63,0,63,63
290 LINE 63,63,0,63
300 LINE 0,63,0,0
310 REM C1...N1 AXES OUTLINED
320 LINE 28,45,44,61
330 LINE 63,51,50,36
340 LINE 36,19,20,3
350 LINE 0,13,14,28
360 FOR TD=0 TO 10000:NEXT
```

```
370 REM C1...N1 AXES ROTATED ABDUT N1
380 FOR J=0 TO 32
390 LINE 28,45,44-J,61
40@ WIPE 28,45,44-J,61
410 NEXT
420 LINE 28,45,12,61
430 FOR J=0 TO }3
440 LINE 63,51,50+J,36
450 WIFE 63,51,50+J,36
4 6 9 ~ N E X T
470 LINE 63,51,82,36
4 8 0 ~ F D R ~ J = 0 ~ T O ~ 3 2 , ~
490 LINE 36,19,20+J,3
500 WIPE 36,19,20+J,3
510 NEXT
520 LINE 36,19,52,3
530 FOF J=0 TD 14
540 LINE 0,13.14-J,28
550 WIPE 0,13,14-J,2B
560 NEXT J
570 FOR J=0 TO 1B
589 LINE 63,13,63-J,28
590 WIPE 63,13,63-J,28
600 NEXT J
610 LINE 63,13,45,28
620 LINE 0,0,0,63
630 LINE 63,0,63,63
640 FOR TD=1 TO10000:NEXT
650 REM ERASE MNA-3 UNIT CELLS
660 WIFE 0,0,63,0
670 WIPE 63,0,63,63
680 WIFE 63,63,0,63
690 WIPE 0,63,0,0
700 FOR TD=0 TD 10000:NEXT
710 REM QUTLINE MNA-1 UNIT CELLS
720 LINE 0,0,63,63
730 LINE 32,0,0,32
740 LINE 63,32,32,63
750 END
```

Appendix 11.6
In order to assist in the identification
of the flat face of the flat needle-shaped crystals of MNA-3, rotation photographs were obtained which showed a series of closely spaced layer lines.

A photocopy of such a rotation photograph is
shown in fig. ll.1. The unit cell axis around which rotation occurs is given by the formula 217

$$
d=n \lambda / \cos \left(\tan ^{-1} D / 2 y_{n}\right)
$$

where $d=$ the repeat distance of the unit cell axis around which rotation occurs;
$\lambda=$ wavelength of X-rays used (1.542 A)
$D=c y l i n d r i c a l$ film diameter (60 mm)
$y_{n}=$ separation of the 0 and $n t h$ layer ($2 \mathrm{xy}_{10}=59.3 \mathrm{~mm}$) The calculated values for d based on 10,8 and 6 layers are $21.97,21.95$, and 21.94 A respectively. A value of $21.95 \pm 0.05 \AA$ was adopted for d. Comparison of this value with the MNA-3 unit cell diagonals from $0,0,0$ to $1,1,0(21.97 \AA$) and $1,0,0$ to $0,1,0$ (22.26 \AA). This result led to the conclusion that the flat face of MNA was parallel to planes of Miller indices $1 \overline{1} 0$.

Fig. 11.1 A rotation photograph of MNA-3 with the needle axis of the crystal perpendicular to axis ofrotation. (this reproduction has lost its original good quality)

[^0]: * indicates significant differences between MNA-1 and MNA-3

[^1]: A second appraach to the comversion or MNA-3 to MNA-1 involves formation or a folded conformation around $N(1)$ as a pivot so that the relative position of M(1) in MNA-Z and MNA-1 remains the same.

[^2]: Interpretation of the Infrared spectrum of the yellow

[^3]: A spectrum of the vellow monoclinic form of MNA could not be obtained at 77%. The unstable monoclinic: form partially changed to the yellow triclinic form and hence a spectrum of a mixture of polymorphe was obtained. However, examination of the spectrum revealed that certain bands, particularly those associated with the Mitro group. were slightly different in the two yellow forms and this is accordance with the nitro groups in MNA-2 and MNA-3 having minor differences of conjugation with the benzene ring.

[^4]: A twisting movement of the amide group from the plane of the benzene ring would also account for the variation in -

[^5]: * the $5-C O O H$ derivatives hydrolyses very easily on grinding with KBr and a yellow form was only made on melting.
 * Different crystalline forms of the 5 -Coome were obtained by Erystallisation from either petrol or methanol. The value for $N-H$ stretching was the same in both cases but the form from methanol shows a distinct doublet: near $1760 \mathrm{cm-1}$ as well as additional differences.

[^6]: The presence of electron domating groups in the 5 position stabilises the vellow tomm ln this casen the resomance interantion between the sumstituent and the nitro oroup is fevoured if the mitro orgup is coplamer with the ring.

