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Abstract 

This paper presents an analysis of the role of input size 
and generativity (ability to produce novel utterances) in 
simulating developmental data on a phenomenon in first 
language acquisition. An existing model that has already 
simulated the basic phenomenon is trained on input sets 
of varying sizes (13,000 to 40,000 utterances). The 
ability of the model to produce novel utterances is also 
manipulated. Both input size and generativity affect the 
fits for later stages of development. Higher generativity 
improves fits for later stages, but worsens them for early 
stages, suggesting generativity is best increased as a 
function of mean length of utterance (MLU). The effect 
of training set is variable. Results are discussed in terms 
of optimal training sets for simulations, and children’s 
developing ability to produce utterances beyond the input 
they have heard.  

Introduction 
In recent years, computational models have been shown 
to successfully simulate phenomena in language 
acquisition, thereby providing evidence for the claim 
that children may acquire language largely through 
input driven learning (Cartwright & Brent, 1997; 
Redington, Chater & Finch,.1998) However, as 
Christiansen & Chater (2001) point out, one of the 
major challenges facing computational approaches to 
syntax acquisition is to develop models that map more 
directly onto the task that human language learners 
actually face, and produce output that can be more 
directly compared with the output that children produce. 
Computational models of language acquisition should 
therefore ideally learn off input that closely resembles 
the input that children are exposed to, and produce 
actual utterances as output. 
 MOSAIC (Model of Syntax Acquisition in Children) 
is a model that attempts to meet this challenge by taking 
corpora of real, child-directed speech as input, and 
learning to produce progressively longer utterances that 
can be directly compared with individual children’s 
speech at different points in development. In its present 
form, MOSAIC simulates a number of phenomena in 
syntactic development, including the Optional Infinitive 
(OI) phenomenon in English and Dutch, and Subject 
Omission in English (Croker, Pine & Gobet, 2000, 
2001; Jones, Gobet & Pine, 2000; Freudenthal, Pine & 

Gobet, 2001, 2002a, 2002b). The model is a simple 
distributional analyser which is able to produce 
utterances that were not present in the input by 
interchanging words that occur in distributionally 
similar contexts. This paper focuses on how this ability 
to produce novel utterances and the size of the model’s 
input affect the model’s fit to data from the OI 
phenomenon.  

The OI phenomenon revolves around the notion that 
children in several languages produce non-finite verbs 
in contexts where the adult grammar requires a finite 
verb form1 (Wexler, 1994). English speaking children of 
around 2 to 3 years of age for instance, produce 
utterances such as He go, or That go there. As children 
grow older, they make fewer and fewer of these 
optional infinitive errors.  While children produce such 
errors in several languages, the developmental dynamics 
of the phenomenon differ from language to language. In 
Dutch, children start out producing around 90% 
infinitive utterances, but this proportion drops to under 
20% by the time the child’s Mean Length of Utterance 
(MLU) is around three words. This large developmental 
variation in the provision of OI utterances makes Dutch 
a strong test for a model that simulates the phenomenon. 
Figure 1, which portrays the data2 and simulations for 
one of the two children reported in Freudenthal, Pine & 
Gobet (2002a) shows that MOSAIC already simulates 
the basic developmental dynamics of the OI 
phenomenon in Dutch. However, the fit for the very 
early and late stages could be improved. For the later 
stages, the proportion of non-finite utterances remains 
too high, while the ratio of simple to compound finites 
is too low3. 

                                                           
1 Verb forms are classified into non-finites and finites. Finite 
verb forms are forms that are marked for Agreement and/or 
Tense (e.g. goes, went). Non-finite verb forms do not carry 
this marking. Non-finites include the infinitive (go), the past 
participle (gone) and the progressive (going).  
2 Figure 1a deviates slightly from the data presented in 
Freudenthal et al 2002a. The data from that paper were taken 
from Wijnen et al (2001), whose analysis differed slightly 
from the analysis performed on the model. The data reported 
in Figure 1a were analysed in the same way as the model. 
3 Non-finite utterances contain only non-finite verb forms 
(That go there). Simple finites contain only finite verb forms 



 MOSAIC simulates the basic phenomenon because it 
is a performance limited distributional analyser which is 
biased towards producing phrases that have occurred in 
a sentence final position. Since MOSAIC learns slowly, 
it learns to encode progressively longer utterances. In 
Dutch, in main clauses, non-finite verb forms take 
sentence final position, whereas finite verb forms take 
second position. Due to its slow learning, MOSAIC 
starts out producing very short utterances. Since these 
utterances have occurred in sentence final position, they 
are likely to contain only non-finite verb forms. As the 
utterances that MOSAIC produces become longer, finite 
verb forms, which feature early in the utterance, start 
coming in. Hence, non-finite utterances are slowly 
replaced by simple and compound finites. 
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Fig. 1a: Data for Peter 
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Fig. 1b: Simulations for Peter 

 
This paper is aimed at investigating whether the fit 

for the later stages can be improved by a) manipulating 
the size of the input the model is trained on, and b) 
lifting constraints on the model’s ability to produce 
novel utterances. The data portrayed in Figure 1 were 
obtained by training the model on an input set of 
roughly 13,000 utterances. This constitutes the entire 
available corpus of Child Directed Speech for one child. 
In order to analyse the output in different developmental 
phases, the input was fed through the model several 
times, and output was produced after every run of the 

                                                                                           
(He walks), while compound finites contain finite as well as 
non-finite verb forms (He wants to sleep, He has walked).  

model. Training the model on larger corpora is likely to 
affect the fit, as larger samples approximate the input 
received by the child more closely. More specifically, 
smaller input sets tend to overestimate the relative 
frequency of occurrence of infrequent items (Richards, 
1987). Since (in Dutch) non-finite verb forms are less 
frequent than finite verb forms, a model trained on a 
larger input set may produce fewer non-finite 
utterances.  

Allowing the model to produce more novel utterances 
is likely to increase the proportion of finite utterances, 
since it has already been shown that the proportion of 
novel utterances explains variance in the proportion of 
non-finite utterances when controlling for MLU 
(Freudenthal, Pine & Gobet, 2002a). Systematically 
manipulating these two variables can shed light on how 
a distributional learning mechanism and its ability to 
produce novel utterances interact with the 
characteristics of the input in the simulation of 
developmental data. 

MOSAIC 
 
The basis of the model is an n-ary discrimination net 
headed by a root node. Training of the model takes 
place by feeding utterances to the network, and sorting 
them. Utterances are processed word by word. When 
the network is empty, and the first utterance is fed to it, 
the root node contains no test links. When, for example, 
the model is presented with the utterance He walked 
home, it will create on its first pass three test links from 
the root. The test links hold a key (the test) and a node. 
The key holds the actual feature (word or phrase) being 
processed, while the node contains the sequence of all 
the keys from the root to the present node. Thus, on its 
first pass, the model just learns the words in the 
utterance. When the model is presented with the same 
utterance a second time, it will traverse the net, and find 
it has already seen the word he. When it encounters the 
word walked it will also recognize that it has seen this 
word before, and will then create a new link under the 
he node. This link will have walked as its key, and he 
walked in the node. In a similar way, it will create a 
walked home node under the primitive walked node. On 
a third pass, the model will add a he walked home node 
under the he walked chain of nodes. The model thus 
needs three passes to encode a three-word phrase when 
all of the words are new. As the model sees more input, 
it will encode larger and larger phrases. If word a is 
followed by different words in different contexts, this is 
encoded by creating multiple nodes under that for word 
a. In a similar way, the model encodes what words have 
preceded a word.  

Apart from the standard test links between words that 
have followed each other in utterances previously 
encountered, MOSAIC employs generative links that 
connect nodes that are distributionally similar (have 



occurred in similar contexts). Generative links can be 
created on every cycle (after an utterance has been 
processed). Whether a generative link is created 
depends on the amount of overlap that exists between 
nodes. The overlap is calculated as the percentage of 
shared nodes above and below the target nodes. This is 
equivalent to assessing how likely it is that the two 
words are preceded and followed by the same words in 
the input. Two words that tend to occur in similar 
contexts, will share a large proportion of nodes above 
and below them. At present, the proportion of shared 
nodes needs to exceed 10% in order for two nodes to be 
linked. Since words that are followed and preceded by 
the same words are likely to be of the same word class 
(for instance Nouns or Verbs), the generative links that 
develop end up linking clusters of nodes that represent 
different word classes. The (implicit) induction of word 
classes on the basis of their position in the sentence 
relative to other words is the only mechanism that 
MOSAIC uses for representing syntactic rules.  

The main importance of generative links lies in the 
role they play when utterances are produced from the 
network. When the model produces utterances it will 
output all the utterances it can by traversing the network 
until it encounters a terminal node. MOSAIC will only 
produce an utterance when this terminal node contains 
an end marker, indicating that the final word in the 
utterance has occurred in a sentence final position. 
When the model traverses standard links only, it 
produces utterances or parts of utterances that were 
present in the input. In other words, it does rote 
production. During production, however, the model can 
also traverse generative links. When the model 
encounters a node with a generative link, it can 
substitute the contents (technically the key) of the linked 
node for the contents of the current node. As a result, 
the model is able to produce utterances that were not 
present in the input. Figure 2 gives an example of the 
production of an utterance using a generative link. 

 

 
 

Fig. 2: Producing an utterance. Because she and he have 
a generative link, they can be interchanged. The model 
can therefore output the novel utterance she sings when 

it has only seen he sings. (For simplicity, preceding 
nodes are ignored in this figure). 

 

So far, we have described the model as used in 
Freudenthal, Pine & Gobet (2001), which simulates the 
children's performance at one specific point in time.  
The model used to obtain the results portrayed in figure 
1b is an extension of this model. The main difference is 
that the extended model learns much more slowly. By 
using a slow learning rate, and iteratively feeding input 
through the model and analysing its resulting output, it 
is possible to model consecutive stages of development. 
In the previous version, a word was encoded on the first 
occasion it was seen, which resulted in a model with an 
MLU that was comparable to that of a child that has 
passed the OI stage. In the present version, the 
probability of creating a node is dependent on the size 
of the network (a measure of the linguistic knowledge 
or vocabulary size of the child), and the length of the 
phrase that is being encoded. More specifically, the 
probability of creating a node is given by the following 
formula: 

 

NCP =
*nodes − in − net *

50,000
� 
� 

� 
� 

length− phrase

 

 
It will be apparent from the formula above that the 

probability of creating a node is low if the network is 
small. As the number of nodes in the net grows, this 
probability increases. A second point to note is the 
occurrence of the length of the phrase (number of 
words) in the exponent. This has the effect of lowering 
the probability of creating nodes that encode longer 
phrases. The value 50,000 has been chosen somewhat 
arbitrarily. Its main role is to ensure that the difference 
in node creation probability for short and long 
utterances decreases as a function of the size of the net. 
As the number of nodes in the net approaches 50,000 (a 
typical number for a saturated model given the Dutch 
input used so far), the base number in the formula 
approaches one, and thus the weight of the exponent 
diminishes. One additional remark must be made about 
this formula: phrases that occurr in utterance final 
position (i.e., contain an end marker), are treated 
differently from other utterances in that their length (for 
calculation of the NCP) is decreased by 0.5. This 
constitutes an end marker bias in learning. It has been 
argued that utterance final phrases are learned more 
easily than non-utterance final phrases (Wijnen, 
Kempen & Gillis, 2001; Shady & Gerken, 1999). 

The Manipulations 
This paper focuses on how generativity (the model’s 
ability to produce novel utterances) and the size of the 
model’s input affects the fit to the data for later stages 
of development. These manipulations are discussed 
next. 



Generativity 
Generativity in the earlier model was limited in two 
ways. Firstly, the model could only traverse one 
generative link per generated utterance. Secondly, the 
model could only traverse a generative link at the 
beginning of an utterance. For the present simulations, 
these limitations were lifted, so the model could take 
multiple generative links, at any place in the utterance. 
This manipulation is likely to affect the proportion of 
non-finites since finite verbs (in Dutch) are more 
frequent, and therefore more likely to have generative 
links. Previous analyses have also shown that, when 
employing the constraints on generativity, the 
proportion of generated utterances explains variance in 
the proportion of non-finites over that explained by 
MLU.  

A specific question regarding this manipulation is 
whether the expected increase in finite utterances varies 
with MLU. Since the model is now able to traverse a 
generative link anywhere in the utterance, the potential 
number of utterances that can be generated off one rote-
learned utterance increases exponentially with the 
length of the rote-learned utterance. If there is such an 
exponential increase in the actual proportion of 
generated utterances, this is likely to decrease the 
proportion of non-finites for the later stages only. If, on 
the other hand, the increase in generated utterances 
varies linearly with MLU, the proportion of non-finite 
utterances will decrease for the early stages as well. 
This would decrease the fit for the earlier stages. 
However, the effect of the manipulation is clearly 
dependent on the characteristics of the input, and 
therefore remains an empirical issue. 

Input Size 
The previous simulations employed all the child 
directed speech that was available for the children being 
simulated. These input sets (approximately 13,000 
utterances) were then fed through the model multiple 
times. Children however, are obviously exposed to far 
greater numbers of utterances, and feeding a relatively 
small input set through multiple times is likely to 
overestimate the occurrence of low frequency items 
(Richards, 1987). In the present research input sets that 
might be more realistic in size and frequency 
distribution were created. Since the input sets that were 
used for the previous simulations consisted of all the 
available data for these children, input sets were created 
by aggregating the child directed speech for several 
children from the ‘Groningen corpus’. Two new input 
sets of 27,000, and 40,000 utterances were created. 
These input sets constitute the aggregate sets of Peter 
and Matthijs (27,000), and a random sample of 40,000 
utterances from all the seven children in the Groningen 
corpus. This sample will be referred to as the ‘Half-
Groningen corpus’. Note that the construction of large 

input sets by aggregating the data from several children 
precludes a comparison between the simulations and the 
individual children. Also, since the child directed 
speech for the different children may have different 
distributional characteristics, the manipulation is not 
merely a manipulation of input size, but one of 
variability as well. However, since larger input sets for 
individual Dutch children are not available in 
CHILDES, this is the only available method to create 
large input sets. 

The Simulations 
Simulations were run with and without the limitations in 
generativity. Thus, the model could either take only one 
link at the beginning of the utterance, or multiple links 
at any position in the utterance. The model with 
constraints was identical to the one that obtained the 
results in figure 1b. The simulations were run in a 
similar way to the earlier simulations. For Matthijs and 
Peter, the full input sets were fed through the model 
multiple times. The output sets that most closely 
matched the children’s MLU in the last stage were then 
selected for analysis. For the larger input sets, a random 
sample of 15,000 utterances was selected for every run 
of the model. This was done in an attempt to make the 
number of runs for the different simulations 
comparable. Since the sample of 15,000 utterances was 
selected randomly, the likelihood of feeding the model 
the same utterances several times decreases as a 
function of the size of the input. The number of runs 
required to train the model up to the required MLU 
ranged from 11 (Matthijs+Peter employing multiple 
links) to 17 (for Peter’s model employing one link). 

Results 
 Figure 3 shows how the two manipulations affected 
the proportion of non-finites. The MLUs for the 
different simulations ranged from 2.74 to 2.89. Figure 3 
clearly shows that the proportion of non-finites 
decreases as the constraints on generativity are relaxed, 
with the best results being obtained with the largest 
input set. The proportion of non-finites has dropped to 
24%, which is quite close to the 17% that the actual 
child produces. 

When we look at the effect of input size, however, the 
results are somewhat mixed. The model trained on 
Matthijs+Peter’s input falls in between those for Peter 
and Matthijs, suggesting that the model for 
Matthijs+Peter is an average of the two. Results for the 
larger sample are better, especially for multiple links. In 
principle however, this may be due to the fact that this 
input set is made up of the child directed speech for 
several children. Matthijs and Peter’s input sets may 
simply have a higher proportion of non-finites. Since 
the other children of the Groningen corpus have not 



been modelled separately, this explanation cannot be 
discounted.  

The decrease in the proportion of non-finite 
utterances for the models with multiple links is caused 
by the greater generativity of these models. On average, 
45% of the output of the models employing one link is 
novel. For the models employing multiple links, 62% of 
the output is novel. The proportion of generated 
utterances affects the proportion of non-finites, as novel 
utterances contain more finites. On average, 22% of the 
generated utterances are non-finites. For rote utterances 
in contrast, 64% are non-finite. 

Thus, since generated utterances tend to be finite, an 
increase in the proportion of generated utterances 
necessarily means a decrease in the proportion of non-
finite utterances.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Proportion of non-finites in the output as a 
function of input set, and number of generative 

links allowed per utterance 
 
Figure 4 displays the ratio of simple to compound 

finites for the different manipulations. Again, the results 
are somewhat mixed, but employing multiple links does 
increase the ratio of simple to compound finites for 
larger input sets. The ratio for the Half Groningen 
corpus (multiple links) is 2.45, slightly higher than it is 
for the child (1.96). 

The reason for the higher ratio of simple to compound 
finites lies in the fact that the model obtains relatively 
low proportions of non-finites at a relatively low MLU. 
Since compound finites contain (a minimum of) two 
verbs, there can be few compound finites at an MLU of 
approximately 2.8. 

Having improved the fit for the later stages, we can 
turn to the question of whether the fit for the earlier 
stages remains unaffected. It turns out that this is not the 
case. In the simulations that resulted in the best fit for 
the final stage (Half Groningen corpus, multiple links) 
the proportion of non-finites has dropped considerably, 
even at an MLU of 1.4. The reason for this early drop is 
that, when employing multiple links (and a large input 
set), the model becomes too generative early on. At an 
MLU of 1.4, the model produces 32% novel utterances, 
which tend to be finite. By comparison, Peter’s model 

using one link produces 13% novel utterances at a 
similar MLU. 

Relaxing the constraints on generativity therefore 
appears to decrease the proportion of non-finites across 
all developmental stages, rather than just in the later 
stages. There is however, a theoretically plausible way 
in which this could be remedied. Generativity at present 
is affected only by the distributional characteristics of 
the input. Using the overlap parameter that governs the 
creation of generative links, it is possible to gradually  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.4: Ratio of simple finites to compound finites in the 
output as a function of input set, and number of 

generative links allowed per utterance. 
 

increase the generativity of the model. The overlap 
parameter could be made dependent on the size of the 
network or MLU. This would result in the model 
starting out producing rote-learned utterances only, and 
only starting to produce novel utterances once a 
reasonably large vocabulary has been established.  

Conclusions 
This research focused on whether manipulations of 
input size and the ability of the model to generate novel 
utterances affect the fit of the simulations to the later 
stages of the Optional Infinitive phenomenon. Results 
regarding input size were somewhat mixed. While the 
best fits were obtained using the largest input set, 
increasing the size of the input sets did not 
unequivocally improve the fit. One possible reason for 
this may be that simulations using input sets for 
individual children were compared with simulations 
using aggregate input files. These aggregate files may 
have different distributional characteristics. In fact, the 
MLU for the largest input set was approximately 3.2 
compared to 3.8 for the smaller sets. These findings 
have implications for models of syntax acquisition 
beyond MOSAIC, as they suggest that the use of Child 
Directed Speech does not in itself guarantee high input 
representativeness. A better approach would therefore 
be to obtain larger samples for individual children. This 
has the added advantage that it is possible to compare 
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the model’s output with the simulated child. While the 
corpora for Peter and Matthijs are amongst the largest 
Dutch corpora for individual children available in 
CHILDES, we have recently obtained access to 
considerably larger German corpora (approximately 
500,000 utterances). Since German is identical to Dutch 
with respect to verb placement and its dependency on 
finiteness, we hope to address this issue in a more 
controlled manner in the future.  

Thus, while input characteristics clearly affect the 
outcome of the simulations, more rigorously controlled 
input sets are required to unambiguously ascertain the 
relation between input size and fit. 

Allowing the model to traverse multiple links during 
generation clearly improves the fit for the later stages, 
both in terms of proportion of non-finites and in terms 
of the ratio of simple finites to compound finites. For all 
simulations, the RMSEs with the children’s data 
improved considerably when allowing the model to take 
multiple links. However, this decreased the fit for the 
early stages of development. While it was suggested 
that the interaction between the generativity mechanism 
and the learning mechanism might result in an 
exponential growth of generativity, this growth appears 
to be more linear in nature. The ability to generate novel 
utterances therefore needs to be made dependent on the 
actual knowledge encoded in the net. It was argued that 
this could be achieved by having the model start out 
needing a high degree of overlap between two nodes in 
order to create a generative link, and gradually 
decreasing this overlap percentage as the model learns 
to produce longer utterances. This suggests that the 
developmental patterning of children’s use of (root) 
infinitives may be partly shaped by children’s 
increasing ability to generalise beyond the input they 
have heard. Several authors have made a similar 
suggestion (e.g. Tomasello, 2000; Marchman & Bates,  
1994). 
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