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Abstract

Mobile wireless positioning has recently received great attention. For mobile wireless

communication networks, an inherently suitable approach is to obtain the parameters

that are used for positioning estimates from the radio signal measurements between a

mobile device and one or more fixed base stations. However, obtaining accurate esti-

mates of these location-dependent channel parameters is a challenging task. The focus

of this thesis is on the estimation of these channel parameters for mobile wireless posi-

tioning applications. In particular, we investigate novel estimators that jointly estimate

more than one type of channel parameters. We first perform a comprehensive critical

review on the most recent and popular joint channel parameter estimation techniques.

Secondly, we improve a state-of-the-art technique, namely the Space Alternating Gener-

alised Expectation maximisation (SAGE) algorithm by employing adaptive interference

cancellation to improve the estimation accuracy of weaker paths. Thirdly, a novel in-

telligent channel parameter estimation technique using Evolution Strategy (ES) is pro-

posed to overcome the drawbacks of the existing iterative maximum likelihood methods.

Furthermore, given that in reality it is difficult to obtain the number of multipath in

advance, we propose a two tier Hierarchically Organised ES to jointly estimate the num-

ber of multipath as well as the channel parameters. Finally, we extend the proposed ES

method to further estimate the Doppler shift in mobile environments. Our proposed in-

telligent joint channel estimation techniques are shown to exhibit excellent performance

even with low Signal to Noise Ratio (SNR) channel conditions as well as robust against

uncertainties in initialisations.
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Chapter 1

Introduction

1.1 Background and Motivation

Until recently, central issues of wireless systems have been topics like standards, band-

width, availability, or module cost. In other words, the focus was on making wireless

access commercially available. Now that wireless information is widely accessible, ad-

ditional stimuli to the discussion arise from the user and application side. It becomes

more and more clear that the next big step in wireless systems can not be expected by

upgrading the status quo, i.e. just by increasing data rate. The growing demand for

mobile Internet, and the need to create novel business and revenue models in wireless

networks have motivated wireless carriers and their partners to develop and deploy new

technology enablers for value added data service portfolios [1]. In this context, wireless

positioning based services draw significant attention.

The initial driving force behind this interest is a regulation in the United States pro-

mulgated by the Federal Communications Commission, requiring wireless carriers to

be capable of delivering the position of a wireless device (or mobile station) making

an emergency call to emergency authorities by October 2001. These requirements are

collectively known as the Enhanced 911 (E911) mandate. The details of the FCC re-

quirement and current positioning technologies on trial can be found in [2]. Similarly in

Europe, the 1999 Communications Review (COM 1999/539) set the date of 1 January

2003 for the carriers to make location information available for emergency authorities.

1
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1.1.1 Location Based Services

While location services have been driven by emergency and security requirements im-

posed on the wireless networks in the past, it is evident that the commercial demands

for location motivated products is now a major driving factor. Increasingly, application-

level software will incorporate location information into its features to fully utilise such

information once it becomes available. This lucrative market of Location Based Services

(LBS) was worth over $1.6 billion world wide in 2009, and forecast to exceed $6 billion

in 2012 [3]. Below are some key applications that illustrate the potential of LBS [4]:

• Asset tracking: Wireless location technology can assist in advanced public safety

applications, such as locating and retrieving lost children, patients, or pets. It

can also be used to track personnel/assets in a hospital or manufacturing site to

provide more efficient management of assets and personnel.

• Fleet management: Fleet operators such as police forces, emergency vehicles, and

other services like shuttle and taxi companies can make use of the wireless location

technology to track and operate their vehicles in an efficient manner to minimise

response time. In addition, mobile phone locations of drivers on the road can be

used to transform into sources of real-time traffic information to enhance trans-

portation efficiency.

• Wireless access security: Location based wireless security schemes can be devel-

oped to restricting data access to a certain physical area, thus enhancing network

security.

• Mobile advertising: Stores can use customer locations by using location specific

advertising and marketing to attract customers in certain areas.

Other applications include: navigation, electronic yellow pages, location-sensitive billing

etc; some of which is already available on the latest handset today.

In terms of system enhancement, location technologies provide wireless carriers with the

means of improving wireless communications systems design and performance. Loca-

tion information has been used to improve routing for ad hoc networks and for network

planning where radio resources are dynamically redistributed to improve coverage and
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capacity in area regularly visited by users. Location information can also play an im-

portant role in assisting handoffs between cells and in designing hard and soft handoff

schemes for wireless networks [5].

1.1.2 Wireless Positioning Technologies

Wireless positioning technologies fall into two main categories: mobile based and network

based. In mobile based positioning systems, the parameters that are used to compute an

MS’s position are measured at the MS and is either then used in the MS to calculate its

position or transferred to a central processing facility for position estimate. In network

based solutions, the same parameters are measured at the BSs and transferred to the

central facility for location determination. A significant advantage of network based

techniques is that the MS is not involved in the location finding process; thus, the tech-

nology does not require modification to existing handsets [4]. The work undertaken in

this thesis is primarily targeted at network based solutions, while it can also be adapted

to mobile based systems with minimal modification. What follows is a brief overview of

the foundations of wireless positioning technologies; numerous survey literature exists on

the subject, and the interested readers are referred to [4–16] and the references therein

for an extensive survey of different technologies and applications.

Global Positioning System (GPS) [17], a satellite based positioning system, is a popular

solution for providing location in terrestrial wireless networks. It is a proven technology

and provides high accuracy when a Line of Sight (LoS) path exists between the receiver

and at least four satellites. However, GPS is not applicable in areas where satellites are

blocked, e.g. indoors and built-up urban areas. Furthermore, the time to first fix for a

conventional GPS receiver from a “cold” start can take several minutes. Additionally,

adding GPS functionality to mobile devices can be costly and drain battery power at an

unacceptable rate [5]. In addition, GPS based solutions can only apply to new generation

of handsets and cannot be used with legacy handset devices. For the above mentioned

reasons, some wireless providers may be unwilling to embrace GPS as the sole location

technology.

Basically, a wireless positioning system consists of at least two separate hardware com-

ponents [6]: a measuring unit that usually carries the major part of the system’s “intel-

ligence”, and a signal transmitter. In network based systems, the signal transmitter is
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the mobile, while several fixed BSs takes measurements from the mobile. Three different

measurement principles are mainly used today: Direction of Arrival (DoA), Received

Signal Strength (RSS), and propagation based systems that can be divided into three

subclasses: Time of Arrival (ToA), Round Time of Flight (RToF) and Time Difference

of Arrival (TDoA). Theses are commonly referred to in positioning terms as Location

and Motion Dependent channel Parameters (LMDP).
θ
1

θ2

MS

BS2

BS1

(a) DoA

τ1

τ2

τ3

MS BS2

BS3

BS2

(b) ToA/RToF

MS

BS2

BS3

BS1

(c) TDoA

L
1

L
2

BS1

MS

BS2

(d) RSS

Figure 1.1: Positioning principles using different measuring units: DoA, ToA/RToF,
TDoA and RSS. Blue lines represents LoPs. Note: the arrows do not represent direction

of wave propagation.

Figure 1.1 illustrates the principles of each concept for the 2-dimensional case. DoA

based systems (Figure 1.1(a)), measure the angle θ, at which a signal is incident at a BS

whose position is known. Given the bearing of the incoming signal θ, a linear Line of

Position (LoP) can be formed on which the MS lies. In the 2D case, a minimum of two

such measurements are required at two BSs to form two linear LoPs whose intersection

is the estimate of the MS position. The DoA estimates can be obtained through the
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use of antenna arrays or directional antennas, hence the accuracy of position estimate

is primarily affected by the angular resolution of the antenna setup, shadowing and by

multipath reflections arriving with misleading directions [7].

In the ToA approach (Figure 1.1(b)), the time τ taken for the signal to travel from the

MS to BS is measured, since radio waves travel at a constant velocity in free space,

then the LoP is a circle representing constant distance from the BS. Because of this,

ToA measurements from the MS and three BSs are required in order to resolve the

ambiguity that only two measurements produce in the 2D case. A major issue with

the ToA concept is the requirement for precise time synchronisation of all the involved

BSs and MS. The same LoPs are present in the RToF case, where the time taken for

the signal to travel from MS to BS then back to the MS is measured. This approach

relaxes the absolute synchronisation requirement in ToA measurements, since only the

delay/processing time of the transponder (the MS) needs to be known.

TDoA (Figure 1.1(c)) determines the MS position by measuring the differences in time

between two BS and the MS. Since a hyperbola is a curve of constant time between a

point on the hyperbola and its two foci, the LoPs for TDoA are hyperbolic. Because

two BSs are required to form a single LoP, three BSs are required to generate two LoPs

whose intersection provide the location of the MS. A major advantage of this approach

is that it is only necessary to synchronise the measuring units (the BSs).

RSS systems (Figure 1.1(d)) are based on the propagation path loss of transmitted radio

waves. Similar to propagation based systems, circular LoP of constant distance can be

drawn using the free space transmission loss LB ∼ 1/d2. However, this simple equation

alone is inadequate for distance calculation in most real conditions [6]. Typically, ad-

vanced propagation models or actual measured field distributions in the area of interest

are required also.

In many instances, several different types of measurements are available that can be

used to improve an MS position estimate. The smart integration of different types of

measurements obtained from different sources to improve positioning accuracy is referred

to as hybrid positioning techniques [8]. Some simple forms of hybrid techniques are the

integration of GPS with network based positioning in assisted-GPS [9]; or using the

available serving cell information to narrow down position estimates [5].
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MS

BS1

(a) DoA/ToA

MS

BS2BS1

(b) DoA/TDoA

Figure 1.2: Hybrid positioning principles based on DoA/ToA measurements and
DoA/TDoA measurements. Blue lines represents LoPs. Note: the arrows do not

represent direction of wave propagation.

This study is particularly interested in the hybrid directional/propagational LMDP

(DoA/ToA or DoA/TDoA) fusion scenarios. The simplest form of DoA/ToA location

is classic radar, where a direction and range from a known point provide a location

estimate of the pinged target. This approach is particularly useful near the BS where

LoS propagation is more likely and the effect of angular error is reduced. It has the

additional benefit that location estimation is possible with only a single BS. This is

shown in Figure 1.2(a) where the intersection of the linear and circular LoPs from the

DoA and ToA measurements indicate position estimate of the MS. Hybrid DoA/TDoA

methods can also be implemented in which MS position lies at the intersection of the

linear and hyperbolic LoPs from the DoA and TDoA measurements. Thus, positioning

of the MS is possible with only two BSs, as illustrated in Figure 1.2(b). Needless to

say, this type of hybrid positioning is feasible only if the measuring BS is equipped with

a mechanically steered narrow beamwidth antenna or with a fixed array of antennas.

Fortunately, the utilisation of antenna arrays is already becoming widespread though

the development of Multiple Input Multiple Output (MIMO) technologies in current

and future cellular/wireless standards, e.g. 3G, LTE [18], 802.11n [19], 802.16e [20].

The straightforward approach for estimating the location of the MS using the above

LMDP is to compute the geometric intersection of the LoPs directly as shown in Figures

1.1 and 1.2. Although this is an intuitive approach for position estimation, it does

not provide an efficient data fusion mechanism, i.e. cannot utilise multiple parameter

estimates in an efficient manner [10]. In practice, the LMDP measurements include noise,
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and the LoPs do not necessarily intersect at a unique point. In such cases, the geometric

techniques do not provide any insight as which point to choose as the position of the

MS. Furthermore, in over-determined systems, where the number of measurements is

more than the minimum required, the number of intersections can increase even further.

Therefore, in practice, more advanced data fusion methods should be used. An overview

of different types of measurement fusion techniques for wireless positioning can be found

in [4, 5].

1.1.3 Challenges in LMDP Estimation

It is clear that all of the wireless positioning methods depend on combining estimates the

LMDP obtained at one or more fixed BSs, while the less accurate these estimates are, the

more advanced data fusion technique is required to compensate. Consequently, it is not

surprising that the quality of the LMDP estimates is the main controlling factor in the

performance of any wireless positioning systems. Estimating these channel parameters

has been studied in many works since it is required in many wireless system design for

online signal decoding purposes [4]. Yet, estimating the same parameters for wireless

positioning purposes is challenging for several reasons:

• Low SNR and Hearability: The strength of the signal received at each BS directly

impacts the quality of the LMDP estimates. In the case of very low SNR signals,

the ability to obtain good LMDP estimates can be significantly impaired [15].

Mobile systems tend to suffer from high multiple access interference levels that

degrade the SNR of the received signal. In highly congested wireless environments,

the interference has the potential to be a significant degrading factor in LMDP

estimates. Moreover, the ability to detect the MS signal at multiple BSs is limited

by the use of power control algorithms, which require the MS to decrease the

transmitted power when it approaches the serving BS. This in turn, decreases the

received MS signal power levels at other BSs. In rural environments where the

separation between cell cites is large, it is often difficult for the MS to be heard at

BSs other than its serving BS, unless the MS is located in a hand-off region.

• Multipath: For positioning systems, the accurate estimation of the channel param-

eters of the first arriving ray is vital. In general, the first arriving ray is assumed



Chapter 1. Introduction 8

to correspond to the most direct path between the MS and BS. However, in many

wireless propagation scenarios, the first ray is succeeded by many multipath com-

ponent that arrives at the receiver within a short time of the first ray. These

signals can combine constructively or destructively and result in the phenomenon

known as multipath or fading (possibly leading to reduced SNR) and increase the

variance of LMDP estimates. If the differences in delays between these multipath

is smaller than the pulse shape used in the wireless systems, these rays will overlap

and the system is unable to resolve the multipath.

• Number of Multipath: One common assumption in most existing research in chan-

nel parameter estimation is that the number of channel multipath is known in

advance. In practice however, this number has to be estimated first, either via

a separate mechanism or jointly with the channel parameters. Clearly, accurate

knowledge of the number of paths is essential to the performance of all estimators,

as the effects of under- or over- estimating the channel parameters is not isolated

to any one path, and will most likely influence the estimation accuracies of other

paths too.

• Line of Sight: In most urban and indoor scenarios, due to obstruction by buildings,

walls and other objects, the LoS propagation path is not always the strongest. In

some cases, it may not even be detectable with a specific receiver implementation

[16]. In these scenarios, it is not possible for the standard fusion techniques in

Figures 1.1 and 1.2 to obtain accurate position estimates from the estimates of the

non-LoS LDMP. Although in LDMP estimation, we always assume the presence

of the LoS component, the accurate estimation of an LoS in case it is weak (weak-

LoS) is rather challenging. This is due to the fact that the estimation performance

of most methods varies significantly between strong and weaker paths.

1.2 Aims and Objectives

The aim of this work is to study and develop novel channel parameter estimation meth-

ods for the application of mobile wireless positioning within future generation wireless

networks. Our objectives can be summarised as follows:
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• To study and compare the current and state-of-the-art channel parameter estima-

tion methods for use in future generation wireless networks.

• Develop novel estimators that efficiently overcome the main drawbacks of the ex-

isting approaches without increasing the computational requirement.

• Develop a robust and efficient method to jointly estimate the channel order and

the channel parameters.

1.3 Thesis Outline

The focus of this thesis is on the estimation of the LMDP for wireless positioning ap-

plications, in particular, estimators that jointly estimate more than one type of channel

parameters (i.e. ToA/DoA). These are particular useful (but not limited to) for the

hybrid positioning techniques mentioned previously, as well as for receiver design in

space-time communication systems. The rest of this thesis is organised as follows:

• In Chapter 2, we present a comprehensive critical review of some of the most recent

and popular joint channel parameter estimation techniques. Empirical analysis of

a number of key issues concerning these methods is presented.

• In Chapter 3, the damaging effects of accumulated estimation errors from brute

force interference cancellation adopted by the standard SAGE algorithm is de-

scribed. An improved SAGE algorithm employing adaptive interference cancella-

tion scheme is proposed to improve the estimation accuracy of weaker multipath.

• In Chapter 4, a novel intelligent channel parameter estimation technique based on

the application of Evolution Strategy, which overcomes many of the issues inherent

with iterative maximum likelihood methods such as SAGE is proposed.

• In Chapter 5, a two tier Hierarchically Organised Evolution Strategy is proposed

to jointly estimate the number of multipath as well as the channel parameters.

• In Chapter 6, the proposed ES method in Chapter 4 is extended to further estimate

the Doppler shift of each multipath.

• In Chapter 7, the main contributions of the thesis are summarised and possible

future works are discussed.
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1.4 Contributions

The main contributions of the thesis are briefly summarised here:

• We performed a comprehensive critical review of the most recent and popular joint

channel parameter estimation techniques based on empirical analysis. Through

simulations designed to test each of the surveyed methods in areas of particular

importance in positioning applications, we concluded that the SAGE algorithm is

a strong candidate for use in LMDP estimation.

• We proposed an improved SAGE algorithm employing adaptive interference can-

cellation to overcome a key weakness inherent with the standard SAGE algorithm

in the estimation of the weaker multipath components. Our proposed modifica-

tions enable the SAGE algorithm to be less susceptible to errors accumulated from

successive interference cancellation steps and improves the estimation performance

of weaker multipath significantly.

• We proposed a novel intelligent channel parameter estimation technique by using

an Evolution Strategy approach. Our proposed method overcomes the weaknesses

of traditional iterative maximum likelihood methods like SAGE, such as low SNR

performance, dependency on accurate initialisations and high computational com-

plexity. Through an extensive empirical analysis of the strategy parameters, we

show the proposed method is highly flexible, self-manageable, and less computa-

tionally demanding than SAGE. We also demonstrate that the proposed method

can be utilised to effectively estimate the Doppler shifts in mobile environments.

• We proposed a two tier Hierarchically Organised Evolution Strategy to jointly

estimate the number of multipath as well as the channel parameters. The proposed

method is demonstrated to be robust against errors in the initialisation of both

the channel order and channel parameters. In addition, it does not require delicate

tuning of strategy parameters.
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Chapter 2

Critical Review of Existing

Approaches

2.1 Introduction

Traditionally, channel parameter estimation methods are based on disjoint techniques.

For example, they normally estimate first the delays and, subsequently, the angle cor-

responding to each delay; an additional problem of the correct pairing of channel pa-

rameters often arises. Recently, various joint channel parameter estimation methods

emerged as potential candidate algorithms for use in the mobile terminal positioning

technology. Joint estimation of various channel parameters, particularly joint ToA/DoA

estimation, has a number of advantages [21]. Firstly, the relative estimates of time delay

measured at two or more synchronised base stations can be used in conjunction with

DoA information measured at each of them to enhance positional accuracy. Secondly,

when signals arriving from several angles are detected, the best angle to use is usually

the one that is associated with the earliest arrival time because the direct path has the

shortest propagation time. Thirdly, it is possible to exploit the difference in path time

delays to improve angle estimation accuracy and vice-versa. Finally, joint estimation

can resolve paths having identical directions or times of arrival.

The joint ToA/DoA estimation algorithms can be classified into two broad groups, based

on their development and fundamental philosophy:

12
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eigen-decomposition This type of methods rely on each parameter being estimated from

a certain eigenvalue problem, where all eigenvalue problems share the same eigenvectors

[22]. This allows the estimation problem to be posed as a joint diagonalisation of a

collection of data matrices. Such methods include the Joint Angle and Delay Estimation

(JADE) technique [23–25], and the Estimation of Signal Parameters via Rotational

Invariance Techniques (ESPRIT) [26]. One of the strict conditions imposed on these

approaches is that the antenna array must exhibit the Vandermonde structure in its

steering matrix so that the invariance equations can be formed between data across

different sub-arrays.

maximum likelihood The Maximum Likelihood (ML) method has the asymptotic proper-

ties of being unbiased [27]. This type of methods include the Expectation Maximisation

(EM) [28, 29], the Space-Alternating Generalised Expectation maximisation (SAGE)

[30, 31], and the Iterative Quadratic Maximum Likelihood (IQML) algorithm, which is

known to offer ML performance for sufficiently high SNR [32]. These methods normally

require high computational and long processing time, since they are iterative in nature.

While most of these algorithms have been applied with some success either to mea-

sured data or realistic channel models, no single comparative study of their relative

performance has been reported. The most recent comprehensive surveys are reported in

[33–35], which cover the classical array processing techniques for parameter estimation,

such as ML, Beamforming, Weighted Subspace Fitting (WSF), and MUltiple SIgnal

Classification (MUSIC). Although there exist multi-parameter approaches to most of

these algorithms, these literatures only cover single parameter estimation, and not the

joint case. A comparison between the SAGE and ESPRIT algorithms for 3D channel

sounding has been undertaken by Tschudin et al. [36] in a study which concentrated on

resolvability and multipath identification issues. However, this is not particularly rele-

vant for mobile positioning where knowledge of the accuracy of ToA and DoA estimation

is the priority.

This chapter therefore presents a critical review of the most recent joint parameter

estimation techniques, namely ESPRIT, JADE, and SAGE. We implemented the 2D

Unitary ESPRIT [37, 38], Shift Invariance-JADE (SI-JADE) [39] and SAGE algorithms

in MATLAB, and carried out Monte Carlo simulations in multipath environments. We
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focus on a number of core performance issues such as the estimation accuracy, spa-

tial/temporal resolution, multipath identification; as well as what happens when the

order of the channel model is not accurately estimated. In addition, we also analyse the

computational complexity of the algorithms with respect to the number of paths in the

channel and the number of antenna elements.

2.2 System Model

A typical wireless multipath propagation channel is illustrated in Figure 2.1, where data

symbols are modulated by a known pulse shape at the mobile device and transmitted

through the spatial multipath channel. The transmitted signal then undergoes a series

of scattering processes (namely diffraction, reflection and refraction) before arriving at

the M elements of an Uniform Linear Array (ULA) at the base station. It is assumed

in the underlying channel model that a finite number L of specular plane waves (paths)

are impinging at the receiver location.

{β,τ}
Path #1

Path
 #L

1

Rx

M

Tx

Path #l

Digital 

symbols

D1

D
2

D1>>D2

θ

Figure 2.1: Illustration of a wireless multipath environment. Each path is
parametrised by its ToA τ`, DoA θ`, and complex path attenuation β`. A total of

L path is assumed

Assuming the digital sequence {bk} is transmitted over the the wireless channel and

the response was measured using a M-element ULA, then the received signal vector
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y(t) , [y1(t), . . . , yM (t)]T at the output of the antenna array in general has the form:

y(t) =
∑
k

bkh(t− kT ) +

√
No

2
η(t) (2.1)

where T is the symbol period and the vector η(t) , [η1(t), . . . , ηM (t)]T denotes a stan-

dard M-dimensional complex Additive White Gaussian Noise (AWGN) with power spec-

tral density No/2; No is a positive constant.

Since there are assumed to be L number of paths in this specular multipath environment,

where each path is parametrised by its DoA θ`, ToA τ`, and a complex path attenuation

β`, which is assumed to be a constant within a symbol period. The channel can thus be

modelled as the M -element impulse response vector:

h(t) =
L∑
`=1

a(θ`)β`g(t− τ`) (2.2)

where g(t) is a known pulse shape function by which {bk} is modulated.

array normal

g(t)

ds
in
(θ
)

array axis

sensor 1

wavefront θ

d
sensor M sensor 3 sensor 2

2d
si
n(
θ)

(M
-1
)d
si
n(
θ)

D2

Figure 2.2: An ULA of M elements and inter-element spacing d = D2/(M − 1) along
with an impinging planar wavefront.

The M × 1 vector a(θ`) in (2.2) is known as the steering vector, which describes the

nominal array response to the source impinging on the array from the direction θ`.

Assuming that the MS is in the far-field of the receiver antenna array, i.e. the distances

D1 and D2 in Figure 2.1 obey D1 � D2; then the impinging signal on the sensor array
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is approximately a uniform plane wave, as shown in Figure 2.2. Then for the M -element

ULA with spacing d between adjacent elements, each ith sensor experiences a time delay

of

4τ =
d sin(θ)

c
(2.3)

with respect to the (i− 1)th sensor, where c ≈ 3× 108 is the speed of light. If g(t) is a

narrowband signal1 with carrier frequency fc, the time delay 4τ corresponds to a phase

shift of

4φ = 2π
d sin(θ)

λ
(2.4)

between individual antenna elements, where λ is the wavelength corresponding to the

carrier frequency fc, i.e. λ = c/fc. Hence, each element in the ULA receives a phase-

shifted version of the signal, and the steering vector a(θ`) represents the relative phase

difference between adjacent elements:

a(θ`) =



1

e−j
2π
λ
d sin(θ`)

e−j
2π
λ

2d sin(θ`)

...

e−j
2π
λ

(M−1)d sin(θ`)


(2.5)

where the first element (reference element) usually is set to have zero phase. For a range

of angles θ ∈ [−π/2, π/2], a(θ`) maintains its unambiguity provided d < λ/2. For more

widely spaced sensors, it is possible that there may exist pairs of angles θ` and θ`′ , with

θ` 6= θ`′ , such that a(θ`) = a(θ`′). This equality holds when d/λ sin(θ`) = n+d/λ sin(θ`′),

where n ∈ Z+. In such cases, the array response for a signal arriving from angle θ` is

indistinguishable from that arriving from angle θ`′ [40].

After taking N regularly spaced samples at P times the symbol rate, the received data

during each symbol period can be written as:

Y = [a(θ1), . . . ,a(θL)]


β1 0

. . .

0 βL




gT (τ1)
...

gT (τL)

+ N

= A(θ)BGT (τ ) + N (2.6)

1the standard narrowband assumption in array signal processing assumes signal bandwidth is much
smaller than the time needed to travel across the array length
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where g(τ`) = [g(tk − τ`)], k = 1 . . . N , is an N × 1 column vector containing samples of

g(t − τ`). The M × L Vandermonde matrix A(θ) = [a(θ1), . . . ,a(θL)] is known as the

steering matrix (also sometimes as the array manifold).

In order to estimate the channel parameters [β`, τ`, θ`] for ` = 1 . . . L, the following

assumptions are generally made:

• The number of sources is small. For convenience, we consider only one source in a

multipath environment, but this is no limitation.

• The number of paths is often assumed to be known. In reality, this number nor-

mally needs to be estimated. Minimum Description Length (MDL) and Akaike’s

Information Criterion (AIC) are two algorithms traditionally used for this purpose

[41].

2.3 Simulation Environment

This section describes the common simulation environment used throughout the thesis,

while non-generic simulation details can be found in individual chapters where appro-

priate. All of the simulation works are performed using the mathematical software

MATLAB [42].

The details of the channel and signal parameters used in the simulations were as follow.

The known transmitted signal g(t) employed throughout the simulations is the Raised

Cosine pulse shape of excess bandwidth 0.35. The length of the pulse shape is 8T ,

where T is the symbol period of the Raised Cosine filter. The received data in (2.6) is

observed over the interval To at the receiver using a 4-element ULA with inter-element

spacing of d = λ/2; and sampled 4 times per symbol period T . We assume horizontal

propagation only, so the term DoA refers to the azimuth direction of arrival, while all

delays estimates are normalised to the symbol period T . Unless otherwise stated, 500

Monte-Carlo simulations were performed for each test scenario and averaged to obtain

the final result. The Doppler effects were neglected2.

2Doppler estimation is addressed in Chapter 6
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2.4 The Eigen-decomposition Approach

In many practical cases, optimal techniques that require searching the solution space are

often computationally prohibitive, whereas the techniques that exploit prior knowledge

of the algebraic structures of the data matrices are often less computationally demanding.

These methods often rely on the fact that each parameter is estimated from a certain

eigenvalue problem, where all eigenvalue problems share the same eigenvectors. This

allows the posing of the problem as a joint diagnalisation problem of a collection of

data matrices [22]. This is the underlying principle of the Multidimensional-ESPRIT

algorithm, as well as numerous ESPRIT based parameter estimation methods.

Consider initially the one-dimensional problem of DoA estimation. Assuming that L

signals from far-field uncorrelated sources impinges on the array, then the M × 1 array

snapshot vector (M > L) can be written as

x(t) = A(θ)s(t) + η(t) (2.7)

where s(t) is the L × 1 vector of the source waveforms and η(t) is the M × 1 vector of

zero mean sensor noise that is assumed to be spatially white and to have equal variance

σ2 in each sensor.

Methods which exploit the algebraic structure of the data matrix generally involve the

eigen-decomposition of the autocorrelation matrix of the preceding model in (2.7)

R = E{xxH} = ASAH + σ2I (2.8)

where S = E{ssH} is the source covariance matrix. Notice that S is diagonal when

the signals are uncorrelated, non-diagonal and non-singular when the signals are par-

tially correlated, and non-diagonal but singular when some signals are fully correlated

(coherent).

Since the ensemble average in (2.8) is a purely mathematical concept, the correlation

matrix is typically estimated in practice using limited data samples as:

R̂ =
1

N

N∑
t=1

x(t)xH(t) (2.9)
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where N is the number of snapshot available, this is better known as the sample corre-

lation matrix.

Since the columns of the matrix A is different if the DoA’s are unique, and hence,

because of their Vandermonde structure, linearly independent. If S is also non-singular

then the rank of ASAH is L. Assuming

{λ1 ≥ λ2 ≥ . . . λM} and {v1,v2, . . . ,vM} (2.10)

are the eigenvalues and the corresponding eigenvectors of R, then the above rank prop-

erties imply that

1. the M − L smallest eigenvalues of R are all equal to the noise variance σ2. The

eigenvectors corresponding to these M − L smallest eigenvalues of R are called

noise eigenvectors, while the eigenvectors corresponding the L largest eigenvalues

are called signal eigenvectors.

2. the subspace spanned by the noise eigenvectors, referred to as the noise subspace

En (a M × (M − L) matrix), are orthogonal to the subspace spanned by the the

columns of the matrix A, known as the signal subspace Es (a M × L matrix).

{vL+1, . . . ,vM} ⊥ {a(θ1), . . . ,a(θL)} (2.11)

When the source waveforms are coherent (e.g. multipath), the source correlation ma-

trix S loses rank and becomes singular. In these cases, a useful pre-processing technique

known as spatial sub-array smoothing [43, 44] or the improved forward/backward averag-

ing [45–47] is often used to obtain a smoothed estimate of the R. Where each snapshot

across the entire array measurement is divided into equal sized overlapping segments

(known as a sub-array) and averaged. Hence the number of independent measurements

can be increased but at the cost of reduced array aperture to size of the sub-array.

2.4.1 ESPRIT

The ESPRIT algorithm [26] was first introduced as a search-free parameter estimation

procedure for undamped cisoids in noise. Due to its low computational complexity, it has

become one of the most widely-used high-resolution parameter estimation techniques to
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date. For classical array signal processing, the ESPRIT algorithm lessens the a priori

information requirement of complete knowledge of the array manifold {a(θ) : θ ∈ Θ},
where Θ is the field of view; by imposing a constraint on the structure of the antenna

array, known as displacement invariance, i.e. the antenna array is composed of two iden-

tical sub-arrays displaced relative to each other by a known distance and direction [48].

Although the array geometry can be arbitrary, the ULA is usually employed to reduce

the total number of elements by overlapping the two sub-arrays [41]. The locations of

the second sub-array elements are at a constant displacement from the corresponding

elements of the first sub-array. The parameter estimates are obtained by exploiting the

underlying rotational invariance of the signal subspaces spanned by two temporally dis-

placed data vectors, induced by the structure associated with the overlapped antenna

array.

2.4.1.1 1D-ESPRIT

The basis of the standard ESPRIT algorithm for DoA estimation is the so-called invari-

ance equation. Since sub-array 2 is a constant shift of the identical sub-array 1, their

steering matrices are related by a rotational operator Φ, i.e.

J1AΦ = J2A (2.12)

where J1 and J2 are the selection matrices used to choose the elements of the two

sub-arrays from the entire array; and Φ is a diagonal matrix

Φ =


ejφ1

. . .

ejφL

 (2.13)

where the exponential components φ` contains the parameter of interest. The invariance

equation relates the subset J1A via a phase rotation to J2A.

Since the signal subspace Es spans the same subspace as the columns of A, i.e.

AT = Es (2.14)
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where T is an arbitrary full rank matrix T ∈ CL×L. Replacing the exact signal subspace

Es with the estimates Ês and inserting equation (2.14) in (2.12) yields

J1ÊsT
−1Φ ≈ J2ÊsT

−1 (2.15)

Consequently, the least squares solution of

Ψ̂LS = arg min ‖ J1ÊsΨLS − J2Ês ‖2F ∈ CL×L (2.16)

has approximately the structure

Ψ̂LS = T−1ΦT (2.17)

This says that Ψ̂LS and Φ are similar and, hence, they have the same eigenvalues, which

are the diagonal elements of Φ. Hence, the eigenvalues of the solution of Ψ̂LS are the

estimates of the L phase factors ejφ` [49].

2.4.1.2 2D-ESPRIT

When multiple parameter estimates are required, it is necessary for the the steering

matrix A to become a function of multiple parameters, and the multiple estimates must

be obtained simultaneously. The 2D-ESPRIT algorithm was used to jointly estimate

the azimuth and elevation of impinging waves using a uniform rectangular array in

[37]. The resulting double Vandermonde structure of the steering matrix allows a set of

invariance equations to be formed. In the case of joint ToA/DoA estimation, the double

Vandermonde structure does not arise naturally and must be induced before applying

2D-ESPRIT.

To facilitate ToA estimation, the received data is first transformed using a discrete

Fourier transform, which maps the delays into phase shifts, followed by de-convolution
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with the known pulse shape:

Y =
[
a(ψ1) . . .a(ψL)

]
β1 0

. . .

0 βL




gT (φ1)
...

gT (φL)

+ N

= A(ψ)BGT (φ) + N (2.18)

where g(φ`) = [1, φ`, . . . , φ
N−1
` ]T , φ` = e−j(2πP/N)τ` and similarly, for a ULA with sensor

array spacing d wavelengths a(ψ`) = [1, ψ`, . . . , ψ
M−1
` ]T , ψ` = ej2πdθ` .

The subsequent extension of 1D-ESPRIT to 2D-ESPRIT is straightforward. After ap-

plying multiple dimensional smoothing the data matrix, it exhibits a multiple rotational

invariance structure, and the columns of the steering matrix A can be written as the

Kronecker products of the steering vectors from each data dimension according to [50]:

a(µ1, . . . , µR) = a(µR)⊗ . . .⊗ a(µ1) (2.19)

where R denotes the number of data dimensions. In the 2D ToA/DoA case, one

such approach is to apply the vec{} operator to Y, specifically, the general relation

vec{Adiag(b)C} = (CT ◦A)b, hence:

vec{Y} = [G(φ) ◦A(ψ)]β + n = U(φ,ψ)β + n (2.20)

where U(φ,ψ) = [u(φ1, ψ1), . . . ,u(φL, ψL)] is the combined space-time response matrix,

with entries u(φ`, ψ`) = g(φ`) ⊗ a(ψ`) and β = [β1, . . . , βL]T . Consequently, it is not

difficult to see that U(ψ,φ) now has the following double Vandermonde structure:

U(ψ,φ) =


1 · a(ψ1) 1 · a(ψ2) . . . 1 · a(ψL)

φ1 · a(ψ1) φ2 · a(ψ2) . . . φL · a(ψL)
...

... . . .
...

φN−1
1 · a(ψ1) φN−1

2 · a(ψ2) . . . φN−1
L · a(ψL)

 =


A(ψ)

A(ψ) ·Φ
...

A(ψ) ·ΦN−1


(2.21)
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where the shift-invariance between rows of the array response in (2.12) remains un-

changed in the sub-matrix A(ψ) part of U(ψ,φ) according to:

Ψ =


ej2πdθ1

. . .

ej2πdθL

 (2.22)

In addition, each M rows of U(ψ,φ) are related by the rotational operator Φ:

Φ =


e−j(2πP/N)τ1

. . .

e−j(2πP/N)τL

 (2.23)

Therefore, the following set of invariance equations can be constructed,

JψUΨ = J′ψU

JφUΦ = J′φU (2.24)

where Jψ and J′ψ selects every M − 1 rows of Y starting from the first and second row

respectively; while Jφ and J′φ selects the first and last (N−1)×M rows of Y respectively.

Similar to (2.14), a matrix E (the signal subspace) containing a basis of the column span

of U can be estimated by taking the left singular vectors corresponding to the largest L

singular values of Y. Without noise, E and U can be related through a transformation

T by:

UT = E (2.25)

where T is an arbitrary full rank matrix T ∈ CL×L. In addition, the following invariance

equations between the signal eigenvectors of the sub-arrays holds: Eψ , JψE = JψUT

E′ψ , J′ψE = J′ψUT = JψUΨT

 Eφ , JφE = JφUT

E′φ , J′φE = J′φUT = JφUΦT

(2.26)
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Then the estimation of the ψ`’s and φ`’s can be shown to be equivalent to the joint

diagonalisation problem of [51]

E†ψE′ψ = T−1ΨT (2.27)

E†φE
′
φ = T−1ΦT

hence, the eigenvalues E†ψE′ψ of must be equal to the diagonal elements of Ψ, and

similarly for Φ. The connection of the θ`’s and τ`’s is provided by the fact that they

have the same eigenvectors: the columns of T−1. Interested readers are referred to [50]

and [39] for details of joint diagonlisation methods.

2.4.2 JADE

The JADE [23–25] algorithm is a method that exploits the stationarity of the angles

and delays, as well as the independence of fading over many time-slots in a time slotted

mobile system, by combining multiple estimates of the channel impulse response over

many time slots.

Assuming samples of the estimate of the channel matrix H(n) in (2.2) to have been

already recovered from the received data, this can be performed using either blind chan-

nel estimation or employing training sequences; then applying the vec operator to Ĥ(n)

yields:

ĥ(n) = U(θ, τ )β(n) + v(n), n = 1, . . . , S (2.28)

where ĥ(n) = vec{Ĥ(n)}, and v(n) = vec{V(n)}; V(n) is the channel estimation error

during the nth symbol period.

Since the angle/delay parameters are quasi-stationary, then the space-time response

matrix U(θ, τ ) can be assumed to be time invariant over the observation interval. The

noisy channel estimates ĥ(n) can be then combined as

Ĥ = U(θ, τ )B + V (2.29)

where B = [β(1) . . .β(S)] and similarly for V.
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The final step is to estimate the parameters of interest from the estimated channel Ĥ.

Many of the well-known methods such as ML, subspace fitting, ESPRIT and MUSIC

that have been developed for DoA estimation are applicable to the JADE problem [51].

2.4.2.1 JADE-ESPRIT

JADE-ESPRIT [51–53] is one of the two closed-forms solutions of the JADE method. As

the name suggests, it is based on the 2D-ESPRIT algorithm but applied to the combined

channel estimates in (2.29) instead. Since the main principles are almost identical to

2D-ESPRIT, its details are omitted here and the interested readers are referred to the

mentioned references.

2.4.2.2 SI-JADE

Another way to introduce the shift-invariance structure required is to construct a block

Hankel matrix [54] H by stacking horizontal shifts of Ĥ(n). This is the basis of SI-

JADE method [39]. Define H(i) as the matrix formed by left shifting H by i columns.

Then a block Hankel matrix H can be formed by stacking m shifted versions of Ĥ(n) as

H = [Ĥ
(n)
(1) , Ĥ

(n)
(2) , . . . , Ĥ

(n)
(m)]

T :

H =


a(ψ1)β1[1 φ1 φ

2
1 . . .] + . . . + a(ψL)βL[1 φ1 φ

2
1 . . .]

a(ψ1)β1[φ1 φ
2
1 φ

3
1 . . .] + . . . + a(ψL)βL[φL φ

2
L φ

3
L . . .]

...
...

...

a(ψ1)β1[φm−1
1 φm1 φm+1

1 . . .] + . . . + a(ψL)βL[φm−1
L φmL φm+1

L . . .]

 (2.30)

Consequently, the Hankel matrix then has the shift-invariance structure similar to that

of (2.21):

H =


ABG

AΦBG
...

AΦm−1BG

 (2.31)

The problem is then again reduced to one that can be solved by using a two-dimensional

ESPRIT-like shift-invariance technique to separate and estimate the phase shifts. This
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in turn is the joint diagonalisation problem of

(JφH)†(J′φH) = T−1ΦT

(JψH)†(J′ψH) = T−1ΨT (2.32)

where the selection matrices Jφ and Jψ are similar to those employed in (2.24).

2.4.2.3 JADE-MUSIC

Another suboptimal approach is based on the MUSIC algorithm, which involves only a

two dimensional search. Since the true space-time channel vector u(θ, τ) is orthogonal

to the noise subspace En, hence the temporal-spatial parameter estimates can be deter-

mined by the locations of the L largest peaks in the two dimensional MUSIC spectrum

[23]:
u∗u

u∗EnE∗nu
(2.33)

where the explicit dependencies on θ` and τ` is dropped for convenience. JADE-MUSIC

was applied to estimate jointly the direction of arrival/departure and delay of a MIMO

communication system in [55].

2.5 The Maximum Likelihood Approach

Perhaps the most well-known and frequently-used model-based approach for estimation

in signal processing is the maximum likelihood technique. ML based methods tend to

be more robust and accurate. However, they have had limited application, due to the

high computational load of the multivariate non-linear maximisation problem involved.

Given that the received signal y(t) is sampled regularly N times at {t1, . . . , tN}, and

assuming the following conditions hold:

• The array manifold {a(θ) : θ ∈ Θ}, where Θ is the field of view, is known.

• The noise samples are {η(tk)} are i.i.d Gaussian random vectors with zero mean

and covariance matrix σ2IL, where σ2 is an unknown scalar.
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• The received data vector y(tk) is also an i.i.d Gaussian random vector with mean

A(θ)BGT (τ ) and covariance matrix σ2IL.

it follows that the p.d.f of the received data vector y(tk) is given by:

p
(
y(t1), . . . ,y(tN )

)
=

N∏
k=1

1

|πσ2I|e
‖e(tk)‖2/σ2

(2.34)

where

e(tk) = y(tk)−
L∑
`=1

a(θ`)β`g(tk − τ`) (2.35)

Hence, the MLE for the complete set of unknown [σ̂2, θ̂, τ̂ , β̂] is given by:

[σ̂2, θ̂, τ̂ , β̂] = arg max
σ2,θ,τ ,β

{
−NM log σ2 − 1

σ2

N∑
k=1

‖e(tk)‖2
}

(2.36)

Separate MLE of the nuisance parameters σ2 can be formed and substituted back into

(2.36) to reduce the total number parameters involved in the optimisation, therefore,

maximising (2.36) w.r.t σ2 yields

σ̂2 =
1

MN

N∑
k=1

‖e(tk)‖2 (2.37)

and substituting back into (2.36) and re-writing in matrix notation gives:

[θ̂, τ̂ , β̂] = arg min
θ,τ ,β

{
‖Y −ABG‖2

}
(2.38)

Furthermore, applying the general relation vec{Adiag(b)C} = (CT ◦A)b and maximis-

ing w.r.t β yields

β̂ = (DHD)−1DHvec{Y} (2.39)

where D , GT ◦A; which when substituted back into (2.38) yields the MLE for [θ̂, τ̂ ]

as:

[θ̂, τ̂ ] = arg max
θ,τ

‖P⊥Dvec{Y}‖2 (2.40)

where P⊥D is the orthogonal projection on the columns of D:

P⊥D = D(DHD)−1DH (2.41)
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A useful geometric interpretation of the MLE in (2.40) is that it finds the L steering

vectors that form a signal subspace that is as close as possible to vec{Y}. Closeness

is measured by the magnitude of the projection of vec{Y} onto the estimated signal

subspace [54]. However, this involves a 2L-dimensional optimisation over both θ and

τ and, hence, is computationally prohibitive even for moderate values of L. Although

the MLE in (2.40) eliminates the nuisance parameter β, it is more computationally

demanding than (2.38) when the size of D is large; hence, it is sometimes preferable to

use the MLE in (2.38) instead.

A similar MLE for joint channel parameter estimation in a multipath channel was derived

within [56] using the Fourier transformed data (where the delays are transformed into

phase shifts). The MLE of [θ̂, τ̂ , β̂] can be shown to be

[θ̂, τ̂ , β̂] = arg min
θ,τ ,β

N∑
k=1

∥∥∥y(ωk)−
L∑
`=1

a(θ`)β`g(ωk)e
−jωkτ`

∥∥∥2
(2.42)

where y(ωk) and g(ωk) are the DFTs of y(tk) and g(tk), the samples of the received

signal y(t) and delayed copies of the known narrowband signal g(t) respectively.

2.5.1 EM

The Expectation Maximisation (EM) algorithm [28, 29], formulated by Dempster et

al, is a iterative method for solving ML estimation problems in cases where there is a

many-to-one mapping from an underlying distribution to the distribution governing the

observation [57], i.e. direct access to the data necessary to estimate the parameters is

impossible.

By decomposing the observed (incomplete) data into its unobservable (complete) signal

components and then estimate the parameters of each signal components separately, then

the complex maximisation in (2.38) is de-coupled to L separate 3D ML maximisations.

Hence, the complexity of the algorithm is essentially unaffected by the number of signal

components. Larger number of components can be accommodated by increasing the

number of ML processors in parallel. At each iteration, the current parameter estimates

are used to decompose the observed data better and thus improve the next parameter

estimates.
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Define the contribution of the `th wave to the M baseband signals at output of the

antenna array as

s`(t;ω`) , [s1,`(t;ω`), . . . , sM,`(t;ω`)]
T

= β`a(θ`)g(t− τ`) (2.43)

where the vector ω` , [β`, θ`, τ`] contains the parameters of the `th wave. Then the

received signal vector y(t) , [y1(t), . . . , yM (t)]T at the output of the antenna array

reads:

y(t) =
L∑
`=1

s`(t;ω`) +

√
No

2
η(t) (2.44)

In this expression, η(t) , [η1(t), . . . , ηM (t)]T denotes a standard M-dimensional vector

valued complex AWGN with power spectral density No/2; No is a positive constant.

For the problem of estimation of signal parameters at an antenna array, the set of L

vectors s`(t;ω`) in (2.43), corrupted by a part of the additive noise, constitute a natural

set of complete-unobservable data, i.e.

x`(t) , s`(t;ω`) +

√
Noγ`

2
η`(t) (2.45)

where the non-negative parameters γ` satisfy
∑

` γ` = 1 so that the the noise vector η(t)

can be decomposed into the set {√γ1η1(t), . . . ,
√
γLηL(t)}. While the observed signal

vector y(t) at the output of the antenna arrays in (2.44) forms the incomplete data

space. It is related to the complete data according to y(t) =
∑L

` x`(t).

Since x1(t), . . . ,xL(t) are independent, the components x`′(t) are irrelevant for the es-

timation of ω`, where `′ 6= `. However x`(t) is not actually observable, it has to be

estimated first. This is done based on the observation y(t) of the incomplete data and

a previous estimate ω̂′ of ω:

x̂`(t) = s`(t; ω̂
′
`) + γ`

[
y(t)−

L∑
`′=1

s`(t; ω̂
′
`′)

]
(2.46)

where the first term is the contribution of the `th wave assuming ω` = ω′`, and the

expression within the brackets is an estimate of the noise
√

No
2 η(t) based on the hy-

pothesis that ∀` : ω` = ω′`. The wave parameters ω` can then be further estimated by
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computing the MLE based on the observation x̂`(t):

(̂
τ`, θ`

)
ML

(
x`(t)

)
= arg max

[τ,θ]

{∣∣∣z(τ, θ; x`(t))∣∣∣}
(
β̂`
)

ML

(
x`(t)

)
=

1

MTgPg
z
((̂
τ`, θ`

)
ML

(
x`(t)

)
; x`(t)

)
(2.47)

where

z
(
τ, θ; x`(t)

)
,
∫
To

g∗(t′ − τ)aH(θ)x`(t
′) dt′ (2.48)

where To is the observation interval of the received data y(t).

Steps (2.46) and (2.47) are known as the Expectation (E-step) and Maximisation (M-

step) steps of the EM algorithm. The algorithm iterates between estimating the likeli-

hood of the complete data using the incomplete data and the current parameter estimates

(E-step) and maximising the estimated log-likelihood function to obtain the updated pa-

rameter estimates (M-step). Under mild regularity conditions, the iterations of the EM

algorithm converge to a stationary point of the observed log-likelihood function, where

at each iteration, the likelihood of the estimated parameters is always increased [58].

This is known the monoticity property of the EM algorithm.

2.5.2 SAGE

The EM algorithm, which updates all of parameters simultaneously, has two main draw-

backs: 1) slow convergence 2) difficult maximisation step due to coupling when smooth-

ness penalties are used [30]. The SAGE algorithm, which is a two-fold extension of

the EM algorithm, overcomes these problems by updating the parameters sequentially

while alternating between several small hidden data spaces. The algorithm replaces the

high-dimensional optimisation process of (2.47) in the EM algorithm by several separate

low-dimensional maximisation steps, while still maintaining the basic monotonicity of

the EM algorithm, i.e. the likelihood of the estimated parameters is always increased at

each iteration [58].

Each step of the SAGE algorithm consists of estimating a subset of ω̂` = [τ̂`, θ̂`, β̂`],

while keeping the estimates of the other components fixed. The coordinate-wise update

procedure used to obtain the new estimate ω̂′′` of the wave ` given the current estimate
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ω̂′` is

τ̂ ′′` = arg max
τ

{∣∣∣z(τ, θ̂′`; x̂`(t; ω̂′))∣∣∣}
θ̂′′` = arg max

θ

{∣∣∣z(τ̂ ′′` , θ; x̂`(t; ω̂′))∣∣∣}
β̂′′` =

1

MTP
z
(
τ̂ ′′` , θ̂

′′
` ; x̂`(t; ω̂

′)
)

(2.49)

where

x̂`(t; ω̂
′) = y(t)−

L∑
`′=1,`′ 6=`

s`(t; ω̂
′
`′) (2.50)

Carrying out this updating procedure for all L components defines one iteration cycle

of the SAGE algorithm. Equations (2.50) and (2.49) are the E-step and M-step respec-

tively of the SAGE algorithm. The E-step calculates an estimate x̂`(t; ω̂
′) of the noise

corrupted version of s`(t,ω`), the contribution of the `th path to the received data, by

subtracting the estimated contribution of all waves, except the `th one, from the received

signal. This process is known as Parallel Interference Cancellation (PIC).

While the EM method can start with any arbitrary initial guess and still converge rel-

atively quickly, the convergence rate of SAGE is highly dependent on the choice of

initialisation values. Typically, the initialisation steps are based on Successive Interfer-

ence Cancellation (SIC), where the parameter vector of wave ` is obtained by removing

estimates of the interference caused by previously estimated waves from the received

signal y(t),

x̂`(t; ω̂) = y(t)−
`−1∑
`′=1

s`(t; ω̂
′
`′) (2.51)

Various enhancements have also been suggested to ensure best possible initialisation,

such as incorporating super-resolution techniques such as MUSIC to obtain accurate

initial estimates of the delays when closely-spaced multipath are present.

It is worth noting that although the standard SAGE initialisation steps require the use

of SIC, no constraint is placed on the SAGE E-step in (2.50), and both SIC and PIC can

be used interchangeably. Extensive simulations in [59, 60] have shown that PIC based

estimation is biased and causes instability in the algorithm if the estimated L is less

than the true number of dominant paths in the channel. Later on, we will demonstrate
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that neither of these approaches are well suited to certain scenarios. To summaries, the

key differences between SIC and PIC procedures are as follows:

• SIC: Estimated complete data are subject to interference from the un-removed

(`+ 1)th as well as residue components from previously estimated paths that are

not totally removed.

• PIC: Estimated complete data are subject to only the interference from the residue

component of the other L − 1 paths, as long as the model-order estimation is

accurate.

The SAGE algorithm has been extensively tested in synthetic and real environments,

with results reported in [61, 62] and [63] for the MIMO case. Results show rapid conver-

gence of RMSEs close to the corresponding CRLB values for synthetic values. The larger

the separation between two waves in terms of ∆τ , ∆θ is, the faster the convergence. The

high resolution ability of the scheme is also apparent, with it capable of separating waves

as soon as one parameter differ by more than roughly half the intrinsic resolution of the

measurement equipment. It is also noticeable that the separation ability in delays is

better than that in angle.

2.5.3 JADE-ML

Assuming that the estimation noise V in (2.29) is zero mean Gaussian and spatially

white, and that the entries of the complex fading matrix B can be modelled as unknown

deterministic quantities, the deterministic ML approach of the JADE method yields the

following minimisation problem [23]:

min
θ,τ ,B

||Ĥ−U(θ, τ )B||2F (2.52)

where the optimisation on B can be separated, and the problem is reduced to:

[θ̂, τ̂ ] = arg max
θ,τ

tr
(
PUR̂Ĥ

)
(2.53)

where PU = U(UHU)−1UH and R̂Ĥ = ĤĤH/M .
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2.6 Key Aspects and Discussions

In this section, the performance of the 2-D Unitary ESPRIT, SI-JADE [64] and SAGE

algorithms are compared in a multipath environment. The main goal of this study is

to compare their estimation accuracy of the Line of Sight (LoS) component as well as

the temporal/spatial resolution. In addition, key aspects of these algorithms, such as

their robustness to model errors, in particular, the effects of the under-estimation of the

number of paths as well as computational complexity will be addressed.

2.6.1 Special Case - Estimation of One Wave

The estimation accuracy of channel parameters can be effected by a number of factors:

the number of multipath, sampling rate, multipath resolution, multipath amplitudes and

the number of antenna elements at the receiver etc. We will look at the performance

under multipath conditions later on, here, we consider a simple ideal channel with just

one path. Our intention is to compare the algorithms’ optimum performance with just

the LoS component present, and to establish the performance gain one can get from the

use of more antenna elements in ToA/DoA estimation.
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Figure 2.3: Single-wave estimation error and standard deviation as a function of SNR.

In the first experiment, we estimated the ToA/DoA of the sole (the LoS component)

path in the channel at different SNR values. The results should provide a good compar-

ison of the optimum performances of these algorithms, without any interference from

other multipath. Figure 2.3 shows the mean error and the standard deviation of the
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errors as a function of SNR for the LoS component. All three algorithms demonstrate

comparable accuracy for DoA estimation as shown in Figure 2.3 (a). However, the su-

perior performance of SAGE for ToA estimation is clearly seen in Figure 2.3 (b), more

so at lower SNR (0dB to 5dB), where its mean error appears almost to be “unaffected”

by the change in SNR as compared to the others.

Next, we repeated the same experiment while increasing the number of antenna elements

at the receiver, i.e. M=4, 8, and 16. It is well known from array processing literature

that the angular resolution for any DoA estimation algorithm is greatly dependent on the

number of antenna elements, i.e. overall length of array. In this case, we are interested

to see what levels of improvement in estimation accuracy could be obtained from this for

both DoA and ToA. Comparisons are also made against the Cramer-Rao Lower Bound

(CRLB) for DoA estimation.

The covariance matrix Cω̂ of any unbiased estimator ω̂ , [β̂, θ̂, τ̂ ] satisfies [27]:

Cω̂ = E
[
(ω̂ − ω)T (ω̂ − ω)

]
≥ F−1(ω) (2.54)

where the n × n positive definite real matrix F(ω) is the Fisher information matrix of

ω, its elements are given as:

[F(ω)]ij = −E
[
∂2 ln p(y;θ)

∂ωi∂ωj

]
(2.55)

where the derivatives are evaluated at the true value of ω and the expectation is taken

with respect to p(y;θ).

The diagonal element
[
F−1(ω)

]
ii

of F−1(ω) is referred to as the CRLB of ω̂i, such that

if ω̂i is unbiased, then its variance is lower bounded as:

var(ω̂i) =
[
Cω̂

]
ii

≥
[
F−1(ω)

]
ii
, CRLB(ω̂i) (2.56)

an estimator which is unbiased and attains the CRLB for all ω is said to be efficient

in that it efficiently uses the data. Even if such an estimator does not exist, the CRLB

is helpful in determining the Minimum Variance Unbiased (MVU) estimator, which as
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the name suggest, its variance is uniformly less than the variance of all other unbiased

estimators.

Figure 2.4 (a) shows the mean error and standard deviation of the errors versus the

number of antenna elements. From the top figure in Figure 2.4 (a), we can see a sig-

nificant reduction in standard deviation values, as expected, in DoA estimation as the

number of antenna elements increases. From the CRLB for DoA estimation in [65] and

[31], it can be shown that the variance of DoA estimation for all three algorithms is

proportional to 1/M3. Figure 2.4 (b) shows the ratio of this improvement more clearly,

where the RMSE of the DoA estimates are plotted against SNR for every doubling of

the number of antenna elements. From which we can identify a constant reduction in

RMSE each time the number of antenna elements is doubled. This follows the same

pattern for the CRLB of SI-JADE also plotted in the same figure.

On the other hand, we also observe a slight improvement for ToA estimates as shown in

the bottom figure of Figure 2.4 (a), in fact the RMSE improves roughly as 1/M . Hence

for a ToA-based mobile positioning system, the cost of increasing the number of antenna

elements will probably outweigh the benefit it brings.

2.6.2 Multipath Resolution and Identification

To study the resolution performance (ability to distinguish closely spaced paths in both

temporal/spatial domain) of joint channel parameter estimation algorithms, it is neces-

sary to consider the joint effect of closely spaced paths in both dimensions; as suppose

to the delay or angular resolution of two paths separately.

Assume a simple 2 path channel with equal amplitude and initial equal DoA/ToA values,

i.e. {θ1 = 10◦, τ1 = 1T} and {θ2 = 10◦, τ2 = 1T}, we estimate the DoA and ToA

values of both paths as the path separation (both temporal and spatial) is increased:

{θ2 = 10◦ → 25◦, τ2 = 1T → 1.6T}. Fig 2.5, 2.6 and 2.7 shows the distributions of

the two paths for JADE, ESPRIT and SAGE respectively. From the results for JADE

and ESPRIT, we can see that an minimum separation of 0.6T in ToA is required to

achieve reasonably accurate detection of both paths when there is zero separation in

DoA; and 15◦ separation in DoA is required when both paths have the same ToA. In

fact, all cases on the main anti-diagonal exhibits reasonable detection of both paths.
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(a) DoA and ToA estimation error and standard deviation values as a function
of the number of antenna elements - M; SNR=20dB
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Figure 2.4: Single-wave estimation as a function of number of antenna elements. Each
cluster of lines in (b) shows the RMSEs of the DoA estimates at one value of M , hence

a constant reduction of RMSE can be observed every time M is doubled.

In the SAGE result, resolution ability in both domains is comparably weaker. The

resolution of conventional techniques like SAGE for delay and angle estimation is limited

by the intrinsic resolution of the measurement equipment. For cross-correlation based

ToA estimation, this is approximately limited by the inverse of the bandwidth of the

transmitted signal. While the resolution for beamforming based DoA estimation is

limited by the beamwidth of the measuring array. For a transmitted signal with symbol
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period T and M -element ULA at the receiver, these figures are ∆τ = T and ∆θ =

360◦/(πM) [31]. Hence the 15◦ separation is clearly not enough when the two paths

have the same delay.
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Figure 2.5: Distribution of JADE estimates as paths separation is increased. Starting
at top left corner, where the parameters of the two paths are identical: {θ1 = θ2 =
10◦, τ1 = τ2 = 1T}; τ2 is increased by 0.2T each time from left to right and θ2 is
increased by 5◦ each time from top to bottom. The parameters of path one remains

unchanged. SNR=15dB.

Next, we compare the algorithms’ performance in the multipath environment where the

channel contain 10 paths within a delay spread of 10T to represent a relatively strong

multipath scenario. We assess the algorithms’ ability to identify the multipath. Figure

2.8 shows the distributions of the path estimates from 50 simulations at 15dB. We can

observe similar performances in terms of identifying each of the multipath, such that

the 4 closest paths were easily visible to all three algorithms, while the remaining paths

were estimated with varying degrees of success. It is clear from Figure 2.8(a) and (b)

that JADE and ESPRIT’s estimates for these furtherest paths appear to be some what

random, in addition, a number of paths has been missed completely. On the other hand,

SAGE has produced some partially correct estimates for these paths (e.g. correct delay,

wrong angle), which is clearly evident for the 2 furtherest paths in Figure 2.8(c). In fact,

the large variance which implies the randomness in JADE and ESPRIT’s estimates can
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Figure 2.6: Distribution of ESPRIT estimates as paths separation is increased.
Starting at top left corner, where the parameters of the two paths are identical:
{θ1 = θ2 = 10◦, τ1 = τ2 = 1T}; τ2 is increased by 0.2T each time from left to right
and θ2 is increased by 5◦ each time from top to bottom. The parameters of path one

remains unchanged. SNR=15dB.

have a significant impact on the positioning accuracies if these data were used in the

positioning of a mobile device.

A principle reason for some of SAGE’s partially correctly path estimates is due to the

sequential nature in which it processes the multipath; such that the interference can-

cellation stage of the algorithm can have a negative impact on the estimation results.

In the case of a channel containing a strong LoS component, if the channel parameters

for the LoS component are not estimated very accurately, then it won’t be removed

“cleanly” from the overall data. Subsequently, the remaining contribution from the

stronger components effects the estimation accuracy of the weaker (normally further)

paths.

2.6.3 Multipath Estimation Accuracy

In this section, we are concerned with the estimation of the LoS component under multi-

path conditions. Figure 2.9 shows the estimation accuracy of the LoS component against

SNR in a multipath channel, which consists of 5 well-separated multipath with relatively
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Figure 2.7: Distribution of SAGE estimates as paths separation is increased. Starting
at top left corner, where the parameters of the two paths are identical: {θ1 = θ2 =
10◦, τ1 = τ2 = 1T}; τ2 is increased by 0.2T each time from left to right and θ2 is
increased by 5◦ each time from top to bottom. The parameters of path one remains

unchanged. SNR=15dB.

high amplitudes. It should be obvious that the relative performances of the algorithms is

different from that shown in Figure 2.3 under the one path scenario, i.e. performance of

ESPRIT/JADE has somewhat deteriorated in comparison with SAGE. It was evident in

Figure 2.8 that the estimation accuracy will degrade under multipath conditions, while

in the case for ESPRIT and JADE, widely distributed erroneous estimates are produced,

this is particularly obvious at lower SNR conditions. Hence the result in Figure 2.9 are a

direct result of these incorrect estimates. In keeping with realistic conditions, we cannot

assume any prior knowledge of the MS postilion, hence, the LoS component estimates

are calculated by always using the path with the shortest delay value at each simulation,

this is done regardless of whether another path is much closer to the actual value. In

this case, the ToA mean error (ME) and standard deviation (SD) values for SAGE are

approximately 6 and 4 times smaller respectively at 5dB. Even at 10dB, its ME and

SD values are 4 and 2 times smaller. While only in the high SNR region (>15dB), the

performance of all three methods are comparable.
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Figure 2.8: Distribution of path estimates after 50 simulations at 15dB. The circles
indicate actual multipath locations.

2.6.4 Locationing Accuracy

As mentioned previously, a major advantage of the joint estimation of ToA/DoA is that

the location of a mobile device can be estimated based on data acquired from a single

base station. In this section, we examen the potential positioning accuracy derived from

the ToA/DoA estimates of the LoS component. Using ToA/DoA estimates from 50

independent trials, we can obtain the position estimate of the MS from the intersection

of the linear and circular Lops formed by the ToA and DoA measured at the reference

BS respectively, see Figure 1.2. The Cartesian position estimate of the MS is defined as



Chapter 2. Critical Review of Existing Approaches 41

0 5 10 15 20 25 30
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

SNR (dB)

N
o
rm

a
li
se
d
M
ea
n
E
rr
o
r
|θ̂

−
θ|
/
θ

DoA estimation

 

 
2D Unitary ESPRIT
JADE
SAGE

(a) Direction of arrival

0 5 10 15 20 25 30
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

SNR (dB)

N
o
rm

a
li
se
d
M
ea
n
E
rr
o
r
|τ̂

−
τ
|/
τ

ToA estimation

 

 
2D Unitary ESPRIT
JADE
SAGE

(b) Time of arrival

Figure 2.9: Normalised mean errors in DoA and ToA estimation of the LoS com-
ponent. Entire length of vertical bar represents ±1 standard deviation. Results are

averaged over 200 independent runs.

[66]:

x̂ = xBS + cτ̂LoS cos(θ̂LoS)

ŷ = yBS + cτ̂LoS sin(θ̂LoS) (2.57)

where, c ≈ 3 × 108 is the speed of light. Without loss of generality, we can assume the

coordinate system is centred at the reference BS, i.e. xBS = yBS = 0.

Table 2.1 shows the combined standard deviations in range estimates3: σx̂+σŷ, for both

a weak LoS channel and strong LoS channel under different SNR conditions. We define

a weak LoS channel as when the LoS component is not the strongest multipath compo-

nent, this is typically observed in some urban and indoor environments where a small

proportion of the LoS component propagates through the obstruction and is marginally

detectable at the receiver. To simulate this environment, the amplitude of the LoS com-

ponent was set to approximately 1/3 of that of the strongest path. In both cases, the MS

is placed approximately 200m away from the serving BS. Employing the same method

of choosing the LoS component as in 2.6.3, we can observe that the inconsistencies of

the ESPRIT and JADE estimates under non-ideal conditions has a significant effect on

overall positioning performance. In the weak LoS channel, the ESPRIT estimates is

3since these estimators are unbiased, this is the same as combined RMSE
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unable to give “useful” position indication under any SNR conditions, while JADE is

only marginally better. The accuracy of SAGE’s estimates are good when the SNR is

high (> 10dB) in the weak LoS channel. In the strong LoS scenario, the performance

of all three estimators are comparable under high SNR conditions. However, the accu-

racy of SAGE’s estimates are good even in very low SNR conditions, where at 0dB, its

combined standard deviation is nearly 6 times less than the others.

0dB 5dB 10dB 15dB 20dB

ESPRIT 305.4m 130.9m 101.5m 72.7m 67.6m
Weak LoS JADE 262.4m 120.3m 132.5m 64.6m 10.1m

SAGE 269.7m 122.9m 21.0m 12.2m 6.9m

ESPRIT 191.4m 116.1m 49.7m 13.0m 4.8m
Strong LoS JADE 213.8m 41.2m 19.3m 9.3m 4.3m

SAGE 34.9m 15.0m 10.7m 6.4m 3.6m

Table 2.1: Combined standard deviation (σx̂ + σŷ) in range estimates using joint
ToA/DoA estimates from ESPRIT, JADE and SAGE. L = 6 for both strong and weak

LoS channels. Symbol period T = 1µs. Sampling interval = T/4.

2.6.5 Computational Complexity and Real Time Processing

In this section, our aim is to analyse each algorithm’s complexity with respect to the

number of multipath and the number of antenna elements (i.e. input data size). Here,

we measure computational complexity in terms of CPU time per Monte Carlo run of the

algorithms. It is important to stress that the magnitude, or even the order, of the CPU

execution time of each algorithm is not the emphasis of this section. Our focus is on the

relationship of the complexity to the number of paths and number of antenna elements,

since the magnitude/order of the complexity for each method is highly dependent on

code implementation, which is outside the scope of this study.

Figure 2.10 (a) shows the CPU time against the number of multipath. Unsurprisingly, a

linear relationship is shown between the execution time and path number for SAGE, since

each SAGE cycle only estimate the parameters of one path. The eigen-decomposition

approaches estimate all the paths through a joint diagonalisation approach, hence in-

creasing the number of paths has no effect on the CPU time. One might expect that

increasing the size of the channel matrix will have a significant effect on all the algo-

rithms. However, this is not the case as shown in Figure 2.10 (b), where the CPU time

is plotted as a function of antenna elements. This is because the most complicated step
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of SAGE, e.g. the cost function in (2.48), involves only matrix-vector multiplications as

supposed to matrix-matrix multiplications within that of the other two methods. In ad-

dition, the actual optimisation of the cost function (which is independent of the matrix

size) far outweighs the numerical calculation of the integral, hence an increase in matrix

size contributes little to the total CPU time.

2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

Number of multipath − L

T
im

e 
pe

r 
ru

n 
(s

ec
on

ds
)

 

 

2D Unitary ESPRIT
SI−JADE
SAGE

(a) Complexity as a function of number of multipath;
Number of antenna elements = 4

4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

Number of antenna elements − M

T
im

e 
pe

r 
ru

n 
(s

ec
on

ds
)

 

 

2D Unitary ESPRIT
SI−JADE
SAGE

(b) Complexity as a function of number of antenna
elements; Number of multipath = 5

Figure 2.10: Computational complexity comparison of the algorithms measured in
CPU time per Monte Carlo run. The focus here is on the relationship of the complexity
to the number of paths and number of antenna elements, not the magnitude or even

order.

Although typically much faster than ML based methods, the step of obtaining the sig-

nal/noise subspace ((2.25) and (2.33)) represents a barrier that prevents the on-line real-

isation of a significant proportion of eigen-decomposition based methods for large matrix

sample sizes. This step is usually achieved by the eigen-decomposition of a covariance

matrix or the singular value decomposition (SVD) of a data matrix directly. An esti-

mate of covariance matrix is obtained using the sample covariance matrix R̂ = YHY/N ,

where Y = [y(1), . . . ,y(N)]T is the M ×N snapshot of the received data. It is not dif-

ficult to see that the singular values and right singular vectors of Y are the eigenvalues

of R̂ respectively. Therefore, the signal subspace can be directly estimated from the Y

using the SVD, but nevertheless, both approaches have cubic complexity, i.e. O(n3),

for an n × n matrix, doubling input data results in 8 times more operations, such as

matrix multiplications. An eigen-decomposition requires O(M3) multiplications for an

M ×M matrix plus O((NM)2) multiplications for forming the covariance matrix. An

SVD needs at least O((NM)2 + M3) multiplications for an N ×M (N > M) matrix

[67].
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The complexity of JADE-MUSIC is a one-time O((MN)3) for the eigen-decomposition

of the covariance matrix R, plus a 2-D search with O((MN)2) per gridpoint. SI-JADE

requires only O(mMN3) operations (m is the stacking parameter), resulting from the

rank reduction of the channel matrix. JADE-ESPRIT requires O((MN)3) operations

for the most computationally-expensive step of obtaining a basis for the column span of

the space-time manifold matrix U in (2.25) [24].

None of the above is computationally efficient to update as new data arrive, and hence

they are not well suited to real-time applications where the required subspace is to be

tracked. Interested readers may refer to [68] and [69] for a thorough overview of most

of the adaptive algorithms for subspace tracking.

The EM and SAGE algorithms in their original forms are more appropriate for off-

line processing. In order to eliminate the delay in decision-making, reduce storage,

and increase the computational efficiency in real-time applications, it is desirable, and

often necessary, to process the received data in a recursive manner [70]. Many recursion-

based EM algorithms are available. A good example is given in [70] employing stochastic

approximation, while that in [71] is specific for DoA estimation. A recently proposed

recursive SAGE-inspired approach is given in [72]. The term “SAGE-inspired” is used

because the proposed algorithm updates all parameters simultaneously.

2.6.6 Robustness to Model Errors

An important aspect of these estimation algorithms is their robustness to model errors

and noise. Here, the robustness of the algorithms to the (mild) under-estimation of the

number of channel path is investigated. We examine the effects of utilising incorrect L

knowledge on the estimation accuracy of each methods. The true setup parameters are:

L = 3, with the angle, delay and amplitude: θ = [−32.5;−5; 15]◦, τ = [1.1; 2.1; 5]T ,

β = [1;β2; 0.6] where β2 = 0 → 0.6. In the experiment, the amplitude of the first and

third paths is held constant, while that of the second varies from 0 to 0.6. Hence when

β2 = 0, there are really only two paths. During the simulation, we specify the estimated

number of path to be 2. Hence a model error occurs when β2 becomes non-zero.
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Figure 2.11: Distribution of path estimates when L is underestimated. Circles indi-
cate actual multipath locations.

Figure 2.11 shows the distributions of the path estimates for each method at increasing

amplitude levels of the second path. We can clearly observe that in the case of SI-

JADE and 2D-ESPRIT, there is a strong degradation in estimation of both paths as the

amplitude of the second becomes significant, in which the deterioration in the third path

more obvious since it is the weaker path. The observed behaviour of SAGE is somewhat

different, it detects the specified number of the most significant paths, and simply ignores

the rest. Hence the estimation of both paths remains relatively unaffected when β2 is

small; as soon as β2 becomes comparable to that of the third path, then both of them

are equally likely to be picked. The order in which the paths are estimated is determined

during initialisation. The first initialisation cycle estimates the delay of the path that

gives best cost-function evaluation, and it is then followed by the initialisation of the

angle and amplitude. This path is then removed by using interference cancellation. The

next initialisation cycle picks out the delay of the path that gives the new optimum, and
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so on. This is a desirable behaviour for a real system such that a slight underestimate

of the actual number of paths should not prevent the most significant paths from being

identified correctly.
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Figure 2.12: RMSE in DoA and ToA of the first path when L is underestimated

Fig. 2.12 shows how the RMSE in the estimated ToA and DoA of the first path varies

as the amplitude of the second path increases. Notice that SI-JADE and 2D Unitary

ESPRIT are badly affected as soon as the power of the second path increases even

slightly, where we can see a 10-fold increase in RMSE when the amplitude of the second

path reaches 0.2; for both angle and delay estimates. However, only a slight degradation

is obvious in the results for SAGE.

Hence, under-estimation of the path number is much worse for SI-JADE and 2D Unitary

ESPRIT as it relies on the angle-delay subspace. This in turn depends greatly on

accurate knowledge of L. So if there are more paths than the dimensions of the computed

angle-delay subspace, the detection of certain multi-path components becomes difficult.

Another important source of model error is in the array model. The performance of

DoA detection and estimation algorithms is ultimately limited by the noise in the array

measurements and by errors in the array model [73]. In many cases, the array response

is not exactly known. Changes in weather, the surrounding environment, and antenna

location, may cause the response of the array to be significantly different from the time

it was last calibrated. When unknown factors are considered, the array model should

be parametrised not only by the DoA and ToA parameters but also some additional

calibration-dependent parameters. These may include sensor element positions, gain
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and phase offsets, mutual coupling, and element diversity. Given such a model, auto-

calibration techniques [73] are often used to estimate the unknown (nuisance) model

parameters simultaneously with the signal parameters.

2.7 Summary

We have presented a critical review of the joint parameter estimation techniques, ES-

PRIT, JADE and SAGE. Through extensive simulations in MATLAB, we have demon-

strated that: 1) for all three algorithms, a significant improvement in DoA estimation

and mild improvement in ToA estimation can be achieved as the number of antenna

element increases. 2) SAGE’s superior ToA estimation accuracy in a lower SNR en-

vironment and that it outperforms the other two algorithms in terms of ToA/DoA

estimation variance and robustness to the channel model errors. 3) SAGE’s computa-

tion complexity exhibits a linear relationship with the number of channel paths (while

ESPRIT and JADE are independent) while being unaffected by the number of antenna

elements.

We have also demonstrated certain limitations of these algorithms in the multipath envi-

ronments, where the impact of multipath was clearly seen even when channel conditions

are good. This remains as a challenging issue for parameter estimation algorithms ap-

plied in realistic channel environments. Although the SAGE algorithm exhibits strong

potential in accurate channel parameter estimations, especially for positioning appli-

cations where the accuracy of the LoS component is of essence. However, a potential

problem occurs where the effects of imprecise estimates are cascaded to other path esti-

mates through the use of interference cancellation.



Chapter 3

Improving the SAGE Algorithm

with Adaptive Interference

Cancellation

3.1 Introduction

The Space Alternating Generalised Expectation maximisation (SAGE) [30, 31] algorithm

is a well-accepted joint parameter estimation technique that has been used extensively

in channel parameter estimation and Multiple-Input-Multiple-Output (MIMO) channel

sounding scenarios [31, 36, 63]. In our previous review of joint channel parameter es-

timation techniques, the SAGE algorithm was shown to be the best performing among

other popular algorithms, including JADE and 2D-ESPRIT [74]. However, we discov-

ered that the performance of SAGE could be severely degraded by the error accumulated

from the Interference Cancellation (IC) stage as each path in the channel is estimated

sequentially. In this chapter, we propose the use of adaptive interference cancellation

to improve SAGE’s performance. We focus on applying SAGE to mobile positioning

applications using Time of Arrival (ToA) and Direction of Arrival (DoA) techniques, in

which the Line of Sight (LoS) signal component is of most importance. We study the

particular case when the LoS component in the channel is weaker than other components

where the standard SAGE algorithm has been shown to perform poorly.

48
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The SAGE algorithm estimates a radio channel’s parameters iteratively until pre-defined

criteria are satisfied, on the assumption that the channel has more than one signal path.

All the paths are processed sequentially during each iteration and, in order to estimate

the parameters of an individual path, the interference from some/all the other paths in

the channel is removed by the IC module. The path’s parameters are then estimated

from the “interference cleared” data. The contributions within the received data for this

path is then reconstructed using the estimated parameters and the IC process removes

it from the overall data before estimating the next path in the channel.

In principle, traditional IC can be performed either in serial (SIC) or parallel (PIC).

Serial cancellation removes the interference from the first path up to and excluding the

current path, hence the first path to be processed sees all of the interference from the

remaining L − 1 paths. Whereas each path downstream sees less and less as the can-

cellation progresses. On the other hand, parallel processing simultaneously removes the

reconstructed interference produced by all other paths. The standard SAGE algorithm

utilises PIC for the bulk of the processing as it is potentially quicker to converge, see

(2.50). Whereas SIC is used in initialisation to obtain initial estimates of each path one

after another, see (2.51).

Both SIC and PIC attempt to remove the reconstructed interferences completely, this

is sometimes known as brute force cancellation. In a strong multipath environment,

this can cause large errors in subsequent iterations since the interference removed can

be an inaccurate estimate of the interfering path (or paths), and errors occurring at

the IC stage for the first few paths will be accumulated and influence the process of

the paths later on. Our previous work has demonstrated that, for weaker multipath

components, the performance of SAGE degrades because of accumulated IC errors from

stronger signal paths.

Recent work [75] has shown that the performance of a similar IC stage in a Multiple

User-CDMA (MU-CDMA) system can be improved by performing partial interference

cancellation at each iteration. Partial cancellation in MU-CDMA involves multiplying

estimates of each user’s symbol by a factor less than unity before cancellation. Divsalar

et al. [76] proposed a partial cancellation approach by introducing a weight in each stage

to determine the amount of cancellation. In early cancellation stages, the reliability of

symbol detection is worse than at later stages, so the weights were increased with each
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iteration. Xue et al. [77] later proposed an adaptive version where a set of weights is

used to control the individual interferences caused by each user.

In this chapter, we extend the idea in [77] to the SAGE algorithm. Instead of attempting

to remove each interfering path completely, we take away only a portion w of each

interfering path. Since removing incorrectly estimates will add interference rather than

remove it, it is desirable to cancel a fraction of the estimated interference if a channel

parameter estimate is thought to be unreliable. We define a cost function that takes

the weights w into consideration to minimise the squared Euclidean distance between

the received signal and the weighted sum of the estimates of all paths’ signal during the

observation interval with respect to the weights. The normalised Least Mean Square

(LMS) [78] algorithm is then used to adjust the fraction of the signal from each path that

is removed in the next iteration. Monte-Carlo simulations in MATLAB are carried out to

compare the performance of the standard SAGE algorithm with the proposed adaptive

version employing adaptive IC, specifically in a weak-LoS multipath environment where

the standard SAGE is shown to perform poorly.

3.2 The Least Mean Square Algorithm

The LMS algorithm is by far the most widely used algorithm in adaptive filtering.

The main features that attracted the use of the LMS algorithm are low computational

complexity, proof of convergence in stationary environment and unbiased convergence

in the mean to the Weiner solution [79].

For a length p+ 1 finite impulse response filter with the filter input x(n) = [x(n), x(n−
1), . . . , x(n− p)]T , the filter output at the nth time sample is expressed as:

y(n) = wT (n)x(n) (3.1)

where wT (n) = [w0(n), w1(n), . . . , wp(n)]T is the time varying vector of filter coefficients.

The output error is formed as the difference between the filter output and a training

sequence d(n), i.e. e(n) = d(n)− y(n).

The LMS algorithm is a type of the steepest decent method that iteratively searches for

the optimum set of filter weights w that minimises the mean square error E{|e(n)|2} by
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recursively applying corrections according to [78]:

wn+1 = wn − µOE{|e(n)|2}

= wn + µE{e(n)x∗(n)} (3.2)

where OE{|e(n)|2} denote the partial derivatives of E{|e(n)|2} w.r.t the coefficients

w(n). While the step size µ controls the size of the incremental correction applied to

the weight vector from one iteration cycle to the next.

The LMS algorithm significantly simplifies the steepest decent approach in (3.2) by

replacing the expectation with an instantaneous sample mean. In this case, the weight

vector update equation assumes a particularly simple form:

wn+1 = wn + µe(n)x∗(n) (3.3)

3.3 Adaptive Interference Cancellation

We can define an optimal cost function in terms of the Euclidean distance between the

received signal y(t) and the weighted sum of all the estimates of all paths’ signals, i.e.

ε =

∫ To

0

∣∣∣∣∣y(t)−
L∑
`=1

w`s`(t;ω`)

∣∣∣∣∣
2

dt (3.4)

where s`(t;ω`) is the contribution of the `th path to the baseband signals at the output

of the antenna array as defined in (2.43) and w` ∈ [0, 1] is the weight for the `th

path. We try to minimise ε with a set of optimal weights w = [w1, . . . , wL]. Neither

the conventional brute force IC where ∀` : w` = 1, nor the partial IC in [75] where

w` = w`′ is the optimal solution to (3.4). However, for a suboptimal solution, a modified

cost function can be formed in the sense of LS or MSE. We will demonstrate that the

corresponding problem can be solved in a iterative manner through the LMS algorithm,

and since the SAGE algorithm is iterative in nature too, the merging of one into the

other is relatively straightforward.
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Since the LMS algorithm is based on the MSE criteria, the cost function given in (3.4)

is modified as follows:

min
w(k)

E

[∣∣∣y(t)− ŷ(k)(t)
∣∣∣2] = min

w(k)
E

[∣∣∣e(k)(t)
∣∣∣2] (3.5)

where w(k) = [w
(k)
1 , w

(k)
2 , . . . , w

(k)
L ]T is the weighting vector at the kth step. While ŷ(k)(t)

is the estimate of the received signal at the kth step, which is defined as:

ŷ(k)(t) =
L∑
`=1

w
(k)
` s`(t; ω̂

(k)
` ) (3.6)

where the estimate of the contribution from the `th path during the kth stage s`(t; ω̂
(k)
` )

is reconstructed using its parameter estimates at stage k:

s`(t; ω̂
(k)
` ) = a(θ̂

(k)
` )β̂

(k)
` g(t− τ̂ (k)

` ) (3.7)

At this stage, it is important to point out that unlike conventional LMS filtering, where

the input sequence at each stage are L consecutive samples of some known source,

the input data in this case are the set of L estimated contributions from each path,

i.e.
[
s1(t; ω̂

(k)
1 ), . . . , sL(t; ω̂

(k)
L )
]
. Moreover, each estimated contribution s`(t; ω̂

(k)
` ) is a

function of time as well as the iteration number k. Therefore, instead of using individual

time samples, we utilise the entire observation of s`(t; ω̂
(k)
` ) at each iteration (i.e. data

samples from the entire observation period To; and similarly for y(k)(t) and e(k)(t)); while

subsequent LMS iterations utilises a re-estimated observation of s`(t; ω̂
(k+1)
` ) based on

the new estimate ω̂
(k+1)
` .

With this in mind, the weighting vector can be adjusted via a normalised LMS algorithm

as follows in matrix form:

w
(k+1)
` = w

(k)
` + µ× sum

{(
S

(k)
`

)∗ �E(k)

||S(k)
` ||F

}
for ` ∈ {1, . . . ,L} (3.8)

here the gradient estimate is the sum of the elements of the Hadamard product between

the matrices
(
S

(k)
`

)∗
and E(k) ; where S

(k)
` is a M ×N matrix of the samples of the con-

tribution of the `th path duration the kth iteration, samples are taken with a sampling

period of T/P , where P is the oversampling factor. Similarly, E(k) is a M ×N matrix
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Figure 3.1: Schematic of SAGE algorithm with adaptive interference cancellation

of the samples of the error at the kth iteration in (3.5). Detailed derivation of the LMS

gradient estimate in (3.8) can be found in Appendix A.

The step size µ plays an important role in the LMS algorithm. The normalised LMS

simplifies the selection of µ by employing a time-varying step size. Subsequently, µ needs

to satisfy 0 < µ < 2 to ensure convergence in this case. Another factor that affects the

convergence rate of the LMS algorithm is its initial state. Since the LMS weights w`

determines the amount of cancellation for the `th path, therefore it should also be an

indication of the reliability of the path’s parameter estimates. A simple initialisation for

w
(0)
` would be initial path amplitude β̂

(0)
` , this is based on the assumption that parameter

estimates of the stronger paths are more reliable than weaker ones.

Finally, the brute force IC step in (2.50) can be replaced with a adaptive cancellation

approach:

x̂`(t; ω̂`
(k)) = y(t)−

L∑
`′=1,`′ 6=`

w
(k)
`′ s`(t; ω̂

(k)
`′ ) (3.9)

Figure 3.1 shows a schematic diagram of the proposed SAGE algorithm with adaptive

IC. During one iteration, a fraction of the signal of each path is removed from the re-

ceived data y(t) before estimating the channel parameters. The newly-estimated channel

parameters are then used to obtain an estimate of y(t), i.e. the sum of contributions
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from all paths. The error in the estimate of y(t) is then fed into the adaptive algorithm

to produce updated weights for the next iteration.

3.3.1 M-Step Optimisation Interval

A second modification we make to the standard SAGE algorithm changes the optimisa-

tion interval for which the M-steps in (2.49) are evaluated. For each channel parameter,

the standard SAGE algorithm obtains the current estimate by evaluating the maximi-

sations in (2.49) over a interval that is centred at the estimate from the previous step,

e.g. the ToA estimate for the `th path at the kth step τ̂
(k)
` is obtained from:

τ̂
(k)
` = arg max

τ∈
[
τ̂
(k−1)
` −φ/k,τ̂ (k−1)

` +φ/k
]{|z(•)|} (3.10)

where φ is a pre-defined constant. Estimation of θ̂
(k)
` is identical.

Notice as k increases, the search interval is narrowed which helps fine tuning as well as

eventual convergence. However, if the difference between the initialised value τ̂
(0)
` and

its actual value is greater than search window in the very first iteration, i.e.

∣∣∣τ` − τ̂ (0)
`

∣∣∣ > φ/1 (3.11)

then it is not difficult to see that unless maximum progresses are made in the direction

of the optimum within the first few SAGE iterations, then it is very difficult for the

consecutive estimates to converge to the true value; since the value of φ/k becomes

quite small after just a few iterations. It is possible to make the value of φ large enough

to accommodate cases of poor initialisations. However, widening this search window too

much is effectively disregarding the initialised data. This is another indication why the

performance of the SAGE algorithm is highly dependent on its initial state and why the

weaker paths are not well estimated.

Therefore, in difficult channel conditions, such as low SNR or high number of multipath,

where the initial channel estimates are unreliable, a much better approach is to replace

the narrowing search window of ±φ/k in (3.10) with a smaller but non-varying window

of ±φ′ instead. Provided φ′ is not chosen too large, the loss in convergence speed

is minimal. More importantly, it allows consecutive iterations certain freedom in the
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optimisation interval such that in some case, convergence to actual estimates is possible

even if initial values are poor.

3.4 Simulations

In this section, Monte-Carlo simulations were carried out in MATLAB to study the per-

formance of the proposed adaptive SAGE algorithm; comparisons are made against the

standard SAGE algorithm employing traditional brute force IC in a weak LoS multipath

environment.

3.4.1 Weakness of Brute Force Interference Cancellation

We begin with a simplified 3 paths environment to highlight the problems that incorrect

cancellation can cause in the standard SAGE algorithm. We specify the amplitudes of

the paths according to {β1 = 0.1β3 and β2 = 0.2β3}, i.e. the amplitude of the LoS

component β1 is only 10% of that of the strongest path β3. Since SAGE estimates

the parameters of each path sequentially (in decreasing order of path strength), the LoS

component in this channel will be processed last, and is expected to suffer the most from

incorrect cancellation of the other paths. Figure 3.2 shows the distributions of the final

path estimates from 100 simulations at two different SNR environment when path 2 was

poorly initialised. From the results in the standard case (left column), it is evident that

the incorrect estimation of path 2 (and subsequent removal of this path) severely effects

the estimation of the weaker LoS component; such that there were almost no correct

estimates of the LoS component (same can be said about path 2 itself). In fact, most of

the estimates for the LoS component have converged close to the strongest path, which

explains the unusually large distribution at path 3. We can observe a stark contrast in

the results of the adaptive IC SAGE (right column), where at 10dB, distributions of all

paths are clearly distinguishable.

3.4.2 Multipath Performance

Next, we compare the estimation accuracy of the two algorithms under a strong mul-

tipath environment. In the first instance, we utilise the weak LoS scenario, where the
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Figure 3.2: Distribution of final path estimates when path 2 was poorly initialised.
Open circles represent actual path locations. Parameters for the 3 paths were: {τ1 =
1.2T, θ1 = −1.5◦},{τ2 = 1.9T, θ2 = 3.0◦},{τ3 = 2.0T, θ3 = −37.6◦}. Multipath numbers

are labelled in only 1 sub-figure to reduce clutter.

amplitude of the LoS component was limited to 10% of the strongest path, to compare

the LoS component estimation accuracy of the adaptive method with the standard case.

Secondly, general multipath identification peformance is compared when the channel

contains a mixture of strong and weak multipath.

Assuming no prior knowledge of the location of the LoS component, hence choosing

the path estimate with the shortest ToA value as the LoS estimate. Figure 3.3 shows

the mean errors and standard deviation values in ToA, DoA and amplitude estimation

of the LoS component against SNR values. We can observe noticeable improvement

in ToA and DoA estimation at low SNR values, where up to 50% reduction in mean

error can be seen in both estimates at 5dB; and the same level of reduction in standard

deviation values is seen at 10dB in Figure 3.3(b). However, the biggest improvement

occurs in amplitude estimation as shown in Figure 3.3(c). This is non-surprising since

adaptive IC employing weights is analogous to iteratively applying an “correction factor”
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Figure 3.3: Mean error values of the weak LoS estimate from 100 Monte-Carlo simu-
lations. Length of vertical bar represent ±1 standard deviation of parameter estimates.

L = 8.

to the closed form SAGE estimate of the amplitude in (2.49) to enhance the amplitude

estimation.

Figure 3.4 shows the path distributions in a severe multipath environment containing

a mixture of strong and weak paths. From initial inspection, there is no significant

improvement in the adaptive method for the paths which are already identified by the

standard SAGE, such as the 2 closest paths to the BS. However, closer inspection of

the highlighted areas (circles) reveals areas of clear improvements for the much weaker

paths. The 3 red circles indicates improvements in identifying multipath, whereas the

large yellow circle shows an area of significant reduction in erroneous estimates.
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Figure 3.4: Distribution of multipath estimates from standard and adaptive interfer-
ence cancellation. L=10; SNR=15dB.

3.5 Summary

We have presented an improved SAGE algorithm employing adaptive interference can-

cellation, where a set of weights is used to control the amount of cancellation at each

iteration. These weights are obtained from the LMS algorithm, which tries to minimise

the MSE between the received signal and its estimate. Simulation results in weak-LoS

environments show considerable improvement over the standard SAGE algorithm where

brute force cancellation is employed.



Chapter 4

Joint Channel Parameter

Estimation Using Evolution

Strategy

4.1 Introduction

The fundamental approach to optimisation is to formulate a single standard of mea-

surement - a cost function that summaries the performance of a decision and iteratively

improve this performance by selecting from among the available alternatives. Most clas-

sical optimisation methods generate a deterministic sequence of trial solutions based on

the gradient or higher-order statistics of the cost function. Under regularity conditions

on this function, these techniques can be shown to generate sequences that asymptoti-

cally converge to locally optimal solutions [80]. But these methods often fail to perform

adequately when the cost function is highly non-linear or disturbed by random pertur-

bations. Furthermore, locally optimal solutions often prove insufficient for real-world

engineering problems.

Evolutionary Algorithms (EA) [80–83] are intelligent optimisation techniques based on

the model of natural evolution. These types of algorithms exploit the collective learning

process within a population of individuals, while each of the individuals represents a

search point in the space of potential solutions to a given problem. After an arbitrary

initialisation, the population evolves towards increasingly better regions of the search

59
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space by means of simulated processes of selection, mutation, and recombination. The

environment, which is the optimisation problem being solved, provides a fitness to each

of the individuals in the population. The selection process favours individuals of higher

fitness to reproduce more often than others. While new individuals are produced from

the selected individuals via recombination and mutation. Recombination allows for

exchange of information between individuals, while mutation introduces innovation into

the population.

In this chapter, we propose a new joint channel parameter estimation technique by using

an EA approach. The problem is formulated as the joint ML estimation of the channel

parameters where typically, the high dimensional non-linear cost function is deemed

to be too computationally expensive to be solved. In such cases, the performance of

traditional iterative methods is often inadequate and does not find the global optimum.

Our simulation results demonstrate the proposed method is extremely robust to errors

in initialisation and shows superior performance at low Signal to Noise Ratio (SNR)

environments. In addition, the computational complexity of the proposed method is

demonstrated to be less than that of the traditional iterative ML approach.

4.2 Evolution Strategy

Three mainstream algorithms following the EA principles can nowadays be identified

[81]:

• Evolution Strategy (ES) (Rechenberg, 1973; Schwefel, 1975)

• Genetic Algorithm (GA) (DeJong, 1975; Holland, 1975; Goldberg, 1989)

• Evolutionary Programming (EP) (Fogel et al., 1966; Fogel, 1991; 1992)

Here, we focus on Evolution Strategy and refer the interested reader to [80] and the ref-

erences within for a more detailed comparisons of the three algorithms. All of them have

clearly demonstrated their strong potential for solving complex optimisation problems

in a variety of applications [83]. Among which Evolution Strategy is shown to be the

least intricate solution given that it is able to self-adapt its core strategic parameters,

thus eliminating the tedious task of adjusting vital controlling parameters for differ-

ent conditions. In addition, no special emphasis is placed on the representation of the
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optimisation variables, hence it is particularly suited to arbitrary precision real valued

optimisation problems.

Evolution Strategy, piloted by Rechenberg in the 1960s and further explored by Schwefel

was used as a technique of evolutionary experimentation for solving complex optimisa-

tion problems, mainly within engineering domains. Rechenberg reasoned that, since

biological processes have been optimised by evolution, and evolution is a biological pro-

cess itself, then it must be the case that evolution optimises itself [84].

The basic principle of ES is to mutate a parent solution by adding random perturbations

in the hope of creating a fitter offspring. In fact, the original version of ES, named Two-

Membered ES or (1 + 1)-ES1, is based upon a population consisting of just one parent

individual, and one offspring, created by means of adding normally distributed random

numbers:

y = x +N (0, σ) (4.1)

where x and y are the parent and offspring solutions respectively. The fitter of the two

is then selected as the ancestor for the next generation.

The (1 + 1)-ES can be designated as a kind of probabilistic gradient search technique -

not, however, as a pure random or Monte-Carlo method; since the population principle

has not really been used. The population principle was introduced later in the multi-

membered ES. In the subsequent sections, any references made to ES refers only to the

multi-membered type.

An ES strives to drive a population of candidate solutions to an optimisation prob-

lem towards increasingly better regions of the search space by means of variation and

selection. The optimisation problems are typically of the type:

min
{
f(x)|x ∈M ⊆ Rn

}
(4.2)

where f : Rn 7→ R is called the objective function and the set of M feasible region. Figure

4.1 illustrates the evolution loop that is cycled through repeatedly. The parameters λ

and µ refer to the number of candidate solutions generated per generation and the

number of those retained after selection. Executing variation (recombination/mutation)

1In ES literature, the addition sign is traditionally is used denote the selection scope
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Recombination

MutationSelection

λ

λ

µ

Figure 4.1: Given a function to be minimised, randomly create a set µ of candidate
solutions of which an abstract fitness measure is applied. Then, λ > µ descendants
are generated by means of recombination and subsequently subject to mutation. Next,
µ of the fittest descendants are selected to form the parental population of the next

generation.

leads to a set of new solutions that competes - based on their fitness, for a place in the

next generation. The combined application of variation (creates necessary diversity) and

selection (force pushing quality) generally leads to improved fitness values in consecutive

populations [85].

4.3 Joint Channel Parameter Estimation

For our joint channel parameter estimation problem, we define the objective function as

the Euclidean distance between the received signal y(t) at the antenna array and the

sum of the estimates of all paths’ signals:

ε(y;ω) ,
∫ To

0

∣∣∣∣∣y(t)−
L∑
`=1

β̂`a(θ̂`)g(t− τ̂`)
∣∣∣∣∣
2

dt (4.3)

here, To is the observation period, and the combined vector of channel parameters ω ,

[ω1|ω2| . . . , |ωL] contains the channel parameters of all paths, where ω` = [β`, τ`, θ`]

contains the channel parameters for each multipath. Then, the least square estimate of

ω is the value of this vector for which ω 7→ ε(y;ω) is a minimum,

ω̂ ∈ arg min
ω
{ε(y;ω)} (4.4)

this is equivalent to the ML estimate of ω given the observation y(t). Then our objective

is to optimise for the ML problem in (4.4) by the evolution of a population of multiple



Chapter 4. Joint Channel Parameter Estimation Using Evolution Strategy 63

candidate parameter estimates ω̂, each of which is assessed according to its fitness using

(4.3). For reasons of notational simplicity, we will use the notation ωi to indicate the

ith element of the combined vector of channel parameter estimates ω in the subsequent

sections, no distinctions will be made to the type of channel parameters, e.g. τ or θ etc.

The parameter space dimension n for the minimisation problem in (4.4) is n , 3L, i.e.

there are 3 unknown channel parameters associated with each of the L paths. This is

considered to be computationally prohibitive for most practical number of paths. Up

to now, iterative ML methods such as EM and SAGE are commonly used to search for

approximate solutions to (4.4). In this work, we will show that our ES approach for

solving (4.4) directly is computationally less demanding than these iterative methods;

while at the same time does not suffer from poor initialisation and residue error problems.

4.3.1 Representation

In this thesis, instead of using the standard “comma/plus” ES notation, which can be

potentially misleading, we use the notations (µρ � λ) and (µρ ⊕ λ) to represent the

characteristics of an ES - µ number of parents produces λ offspring which are reduced

again to the µ parents of the next generation. In the reproduction process, each of the

offspring is the recombination of ρ number of parents. While the operators � and ⊕
define the survival selection scope for the next generation. In subsequent sections, it

is often necessary to refer to both type of selection scopes, in such cases, we will use

the notation (µρ • λ) to indicate an ES utilising either of the above mentioned selection

types. The proposed ES method in this thesis can be defined by the following 11-tuple:

(µρ • λ)− ES ,
(
Ψ(k), µ, λ, ρ, nσ, nφ, rec,mut, sel, γ′, γ, ϕ

)

Ψ(k) = (ψ1, . . . ,ψµ)(k) ∈ Iµ I = Rn × Rnσ+ × [−π, π]nφ candidate solutions

µ ∈ N µ ≥ 1 number of parents

λ ∈ N λ ≥ µ number of offspring

ρ ∈ N3 1 ≤ ρ ≤ µ recombination factor

nσ ∈ N 1 ≤ nσ ≤ n number of step sizes

nφ ∈ Z 0 ≤ nφ ≤ (2n− nσ)(nσ − 1)/2 number of rotation angles

rec : Iµ 7→ I recombination operator
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mut : I 7→ I mutation operator

sel : Iµ+λ 7→ Iµ|Iλ 7→ Iµ selection operator

γ′, γ ∈ R+ step length variabilities

ϕ ∈ R+ 0 ≤ ϕ ≤ π/4 correlation variabilities

Each population individual at the kth generation is represented by a vector:

ψ
(k)
j =

(
ω,σ,φ

)(k) ∈ Ψ(k), j ∈ {1, . . . , µ} (4.5)

ω ∈ Rn combined vector of channel estimates, the only part of ψ
(k)
j entering

the objective function

σ ∈ Rnσ+ step sizes (standard deviations of the Normal distribution used for

simulating mutations)

φ ∈ [−π, π]nφ rotation angles used to define the correlation between the individual

step sizes

In the proposed method, no emphasis is placed on the genetic representation of the

individuals. Hence the candidate solutions ω are directly represented by the actual

channel parameter values referred to in ES terms as object variables. The entire collection

of µ candidate solutions of the channel parameter estimates [ω(1), . . . ,ω(µ)]
T forms the

µ× n object variable part of the population matrix:

Ω =


ω(1)

ω(2)

...

ω(µ)

 =


ω(1)1 ω(1)2 . . . ω(1)L

ω(2)1 ω(2)2 . . . ω(2)L

...

ω(µ)1 ω(µ)2 . . . ω(µ)L

 (4.6)

where we have used the notation ω(j)` to represent the vector containing the jth instance

of the path `’s channel parameters. After grouping of similar channel parameter terms

and expanding becomes:

Ω =


β(1)1 . . . β(1)L θ(1)1 . . . θ(1)L τ(1)1 . . . τ(1)L

β(2)1 . . . β(2)L θ(2)1 . . . θ(2)L τ(2)1 . . . τ(2)L

...
. . .

...
...

. . .
...

...
. . .

...

β(µ)1 . . . β(µ)L θ(µ)1 . . . θ(µ)L τ(µ)1 . . . τ(µ)L

 (4.7)
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where each row2 represents one candidate solution to the minimisation problem in (4.4).

The vectors σ and φ in (4.5) are known as the strategy parameters of the individuals.

They determine the variances and its correlations of the n-dimensional Normal mutation

probability density that is used to mutate the channel parameter estimates ω. Hence,

besides representing the object variable vector, each individual may additionally include

nσ different standard deviations σi:

Σ =


σ(1)

σ(2)

...

σ(µ)

 =


σ(1)1 . . . σ(1)nσ

σ(2)1 . . . σ(2)nσ

...
. . .

...

σ(µ)1 . . . σ(µ)nσ

 (4.8)

where each row is the nσ number of standard deviations that is used to mutate each

candidate solution in the matrix Ω; and nφ different rotation angles φi:

Φ =


φ(1)

φ(2)

...

φ(µ)

 =


φ(1)1 . . . φ(1)nφ

φ(2)1 . . . φ(2)nφ
...

. . .
...

φ(µ)1 . . . φ(µ)nφ

 (4.9)

where each one of the rotational angles φi describes the correlation between 2 pairs of

standard deviations in σ(j). Therefore, each candidate solution can be associated with

up to n(n+ 1)/2 number of strategy parameters, however, this setting is rarely used.

It is intuitive that the success of our method in finding a solution close to the true

optimum is largely dependent on the choice of the mutation strengths σi. In addition,

as the solution comes closer and closer to the optimum, the mutation strength should

reduce proportionally. This phenomenon is exploited by the self-adaptive nature of our

method, where in addition to the channel parameters, these strategy parameters are nei-

ther constant nor explicitly controlled, but undergo a logarithmic-normally distributed

variation mechanism, where they are, through the same process of recombination and

mutation, evolved during the search process.

2All entries in Ω are normalised such that they are uniformly distributed between (0, 1). This makes
the subsequent processing of Ω much simpler.
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Together, the matrices Ω, Σ and Φ form the conceptual µ× (n+ nσ + nφ) population

matrix Ψ =
[
Ω|Σ|Φ

]
, where each row corresponds to one complete ES individual of the

form in (4.5). Although we have kept the channel parameters and its associated strategy

parameters as separate entities, it is still important to visualise them together as the

matrix Ψ; such that the jth row of Σ and Φ is used to mutate the jth row in Ω and

eventually, will survive/decease together.

4.3.2 Mutation

Mutation is the primary source of genetic variation in ES [86]. Given an individual

space I = Rn × Rnσ+ × [−π, π]nφ , the mutation operator mut : Iλ → Iλ is applied to all

individuals separately, hence it is sufficient to present its reduced form:

mutation: mut : I → I (4.10)

Various types of mutation based on the normal (Gaussian) distribution are used in the

proposed method. In the simplest case of uncorrelated mutation with a single step

size σ, the same distribution is used to mutate each element of the channel parameters

ωi. Mutations are realised by adding some ∆ωi to each ωi, where the ∆ωi values are

randomly drawn using the given GaussianN (ξ, σ), with the following probability density

function:

p(∆ωi) =
1√
2πσ

exp

(
− (∆ωi − ξ)2

2σ2

)
(4.11)

in practice, the mean ξ is always set to zero.

The mutation operator produces a new individual ψ′ = mut(ψ) by first mutating the

standard deviation (following a log-normal distribution3) and then modifying the channel

parameters using the newly modified probability density function characterised by σ′ :

σ′ = σ exp(γN (0, 1))

ω′i = ωi + σ′Ni(0, 1) (4.12)

whereN (0, 1) are independent random samples from the standard Gaussian distribution,

while Ni(0, 1) denotes a separate draw from the standard Gaussian distribution for each

3if x ∼ N (µ, σ2) then expx ∼ logN(µ, σ2) for x ∈ (0,+∞)
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variable i. It is clear that the mutation operator prefers small changes and due to its

symmetry it introduces no bias: the expected value is zero and the mutants ω′i are

distributed symmetrically around the parental state.
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Figure 4.2: Illustration of mutation hyperellipsoids in the case of simple isotropic
mutations with nσ = 1 (a), non-isotropic mutations with nσ = 2 (b), and correlated
mutations with nσ = 2, nφ = 1 (c). In each graphic four individuals and their ellip-
soids of equal probability density to place an offspring are shown on top of the fitness

landscape (f : R2 → R) represented by lines of equal objective function value.

The isotropic mutation operator defined in (4.12) has the advantage that it needs only

one endogenous strategy parameter for its control. Since there is only one σ, the muta-

tion step size is the same in each data dimension, see Figure 4.2 (a). However, there are

situations where it can be beneficial to have mutation vectors those surfaces of constant

density are ellipsoidal, where up to n number of standard deviations are used to mu-

tate each solution vector, and the mutation components follow the multivariate Normal

distribution:

p(∆ω) =
1

(2π)n/2(det(C))1/2
exp

(
1

2
∆ωTC−1∆ω

)
(4.13)

here, C is the positive definite and symmetric covariance matrix with the entries C =

σ2I. The mutation mechanism using n separate standard deviations then becomes:

σ′i = σi exp(γ′N (0, 1) + γNi(0, 1))

ω′i = ωi + σ′iNi(0, 1) (4.14)

where the parameters γ′ ∼ 1/
√

2n and γ ∼ 1/
√

2
√
n in (4.12) and (4.14) are known in

ES terms as the global and local learning rate respectively.
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The motivation for using nσ standard deviations is the wish to treat each dimension

differently. This is based on the trivial observation that the fitness landscape can have

different slopes in one direction than in another direction. The utilisation of multiple

step sizes allows for bigger mutations on the coordinate axis which lies closer to the

optima, see Figure 4.2 (b). The added degree of freedom provides for better flexibility,

but the increased number of parameters causes a linear increase in computational com-

plexity [84], since the mutation of each additional standard deviation requires a separate

multiplication.

Finally, in the most general case of non-zero covariances, the mutation ellipsoids may

have arbitrary orientation in the search space and can therefore adapt to any advanta-

geous direction of the search, which is useful for example in the case of narrow valleys

where an orientation of mutation ellipsoids along the valley is most appropriate, see

Figure 4.2 (c).

The axes of the mutation ellipsoids are parallel with the coordinate axes if C is a di-

agonal matrix. If, however, the other elements cij for i 6= j, the covariances of the

mutation steps sizes are non-zero, then the ellipsoids are rotated in space. The random

components ωi become mutually dependent, or correlated [87]. However, it is not advis-

able to incorporate the covariances directly into the representation and apply mutations

according to:

ω′ = ω +N (0,C) (4.15)

because it is difficult to guarantee that the coordinate system remains orthogonal or,

equivalently, the covariance matrix remains positive definite. This is why the rotation

angles φi are used to performing the rotation alignments of the mutation ellipsoids. The

covariances are given by the rotation angles φi which describe the rotations that need

to be done to transform an uncorrelated mutation vector ∆ωu to a correlated one ∆ωc.

Algorithmically, the generation of a correlated realisation ∆ωu from an uncorrelated

one ∆ωc can be achieved by multiplication of ∆ωu by nφ rotation matrices Rpq(φi), for

i = 1, . . . , nφ. Multiplication by such a matrix performs a coordinate transformation

w.r.t axes number p and q and angle φi. Since nφ rotations are needed to represent all
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correlations, the complete relation between ∆ωu and ∆ωc results as [85]:

∆ωc =

(
nσ−1∏
p=1

nσ∏
q=p+1

Rpq(φi)

)
∆ωu (4.16)

with i = 1
2(2nσ − p)(p + 1) − 2nσ + q and the rotation matrix Rpq(φi) is given by

a n × n unit matrix except for the following entries holds: rpp = rqq = cos(φi), and

rpq = −rqp = − sin(φi):

Rpq(φi) =



1 0 . . . 0

0 1

. . .

1

cos(φi) − sin(φi)

1
...

. . .
...

1

sin(φi) cos(φi)

1

. . .

1 0

0 . . . 0 1



(4.17)

An efficient way of calculating (4.16) is the multiplication from right to left, i.e. nφ

matrix-vector multiplications as suppose to nφ − 1 matrix-matrix followed by 1 matrix-

vector multiplications. However, incorporating correlated mutations increases computa-

tional complexity quadratically, in addition, for every increment in the number of mul-

tipath, the search space is tripled; hence, correlated mutations are not recommended

unless the number of multipath is small.
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The complete correlated mutation mechanism employed in our method can then be

described as:

σ′i = σi exp(γ′N (0, 1) + γNi(0, 1))

φ′j = φj + ϕNj(0, 1)

ω′ = ω +N (0,σ′,φ′) (4.18)

where N (0,σ′,φ′) denotes a realisation of a random vector distributed according to

the generalised n-dimensional Gaussian distribution with expectation 0 and covariance

matrix determined by σ′ and φ′.

Common to all of the mutation mechanisms mentioned above, it is possible for the

standard deviations σ to become practically zero by the multiplicative process and for

the rotation angles φ to leave the range [−π, π] of feasible values. To prevent both

events, the following rules should be enforced:

σ′i < εσ 7→ σ′i = εσ

|φ′j | > π 7→ φ′j = φ′j − 2π × sign(φ′j) (4.19)

Altogether, the above mutation mechanism enables the proposed ES method to evolve

its own strategy parameters during the search, exploiting an implicit link between ad-

vantageous changes of object variables and useful strategy parameters. Meaning that,

an individual, represents a good ω′ that survived selection and a good set of strategy

parameters σ′ and φ′ that proved successful in generating this good ω′ from ω. This

mechanism of self-adaptation of strategy parameters allows for an adaptation of these

parameters without the need for finding an appropriate exogenous control mechanism

[88].

4.3.3 Recombination

Although mutation is the primary search factor employed in ES, the recombination op-

erator is indispensable, too, for the strategy to self-adapt the strategy parameters prop-

erly [83]. Besides mutation, recombination also works on object variables and strategy

parameters, and different recombination operators may be used to manipulate object
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variables and standard deviations. Recombination always creates just one offspring in-

dividual per application of the operator to the parent population and is applied as often

as necessary to produce a complete offspring population.

A variety of different recombination schemes are currently used in ES, and the opera-

tors are sexual as well as panmictic. What follows is a description of the generalised

recombination operator employed in the proposed method for creating an individual

ψ̃ = rec(ψ) from the population Ψ(k) ∈ Iµ:

recombination rec : Iµ → I (4.20)

The notation (µρ • λ) is used to describe multi-recombinant ES. Here the parameter ρ

determines the number of parents that multi-combine to form one offspring. In contrast

to the biology standard, where ρ = 2, it is worth using multi-mixing, i.e. ρ > 2, for

ES applications [82]. There are two different recombination patterns - intermediate

(µρI • λ) and discrete (µρD • λ) recombination. Empirically, discrete recombination

on object variables and intermediate recombination on strategy parameters have been

observed to yield best results, and the recombination of strategy parameters has shown

to be essential for the self-adaptation mechanism to work.

Intermediate recombination is typically applied to the strategy parameters σ and φ;

descendant are produced by some kind of averaging. In (µρI •λ) strategies ρ individuals

σmν , ν = 1 . . . , ρ from the parent pool {σ1, . . . ,σµ} are chosen at random. The averaging

is simply the determination of the centre of mass:

σ̃ =
1

ρ

ρ∑
ν=1

σmν

mν = random{1, . . . , µ}

m1 6= m2 6=, . . . , 6= mρ (4.21)

where the ρ random indices mν are all unique. However, this is rather elaborate, and

a more practical version could allow “self-fertilisation” by sampling the ρ mν-numbers

from a simple random number generator.
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A special case of the (µρI •λ) strategies occurs when ρ = µ holds, i.e. there is no random

mating. This means all parents are involved in the recombination:

σ̃ =
1

µ

µ∑
m=1

σm (4.22)

hence, each offspring is generated from the centre of mass individual in (4.22) plus a

random mutation.

Discrete recombination is typically applied to the channel parameters ω; descendant are

produced by randomly choosing components from the selected individuals. An offspring

ω̃ is constructed from ρ different, randomly chosen parents ωην :

x̃ =

n∑
i=1

(eTi ωmi)ei

mi = random{η1, . . . , ηρ}

ην = random{1, . . . , µ} (4.23)

that is, the coordinate i of the ω̃-vector is given by random choice of one of the coordinate

i-values from the mates of the index set {η1, . . . , ηρ}; where ei represents the standard

unit vector basis of length n.

A special case of the (µρD•λ) strategies also occurs when ρ = µ holds, i.e. each coordinate

i of the offspring ω̃ can be chosen randomly from the entire parent population:

ω̃ =

n∑
i=1

(eTi ωmi)ei

mi = random{1, . . . , µ} (4.24)

which is sometime known as “dominant recombination”.

An example of discrete recombination of the channel parameters using ρ = 4 parents is

shown below:

ω(1) (Parent 1) ω
(1)
1 ω

(1)
2 ω

(1)
3 ω

(1)
4 ω

(1)
5 ω

(1)
6

ω(2) (Parent 2) ω̇
(2)
1 ω

(2)
2 ω

(2)
3 ω̇

(2)
4 ω

(2)
5 ω

(2)
6

ω(3) (Parent 3) ω
(3)
1 ω̇

(3)
2 ω

(3)
3 ω

(3)
4 ω

(3)
5 ω̇

(3)
6

ω(4) (Parent 4) ω
(4)
1 ω

(4)
2 ω̇

(4)
3 ω

(4)
4 ω̇

(4)
5 ω

(4)
6

Recombinant: ω
(2)
1 ω

(3)
2 ω

(4)
3 ω

(2)
4 ω

(4)
5 ω

(3)
6

(4.25)
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where the newly formed recombined offspring is made up of the dotted components

denoted by ω̇ from the pool of 4 parents in (4.25).

Since it is often the case that both recombination types are used in an ES implemen-

tation, it is an accepted convention not to specify explicitly the recombination types in

these cases, and the notation (µρ • λ) is often sufficient. While the notations (µρI • λ)

and (µρD •λ) are normally reserved for ES instances employing exclusively intermediate

or discrete recombinations types. Furthermore, when the global recombination setting is

used (ρ = µ), the recombination factor ρ is normally dropped from the notations to avoid

the potentially confusing usage of (µµ • λ). Hence, in the following work, we will often

use the simplified notation (µ • λ) to describe an ES implementation employing global

discrete recombination for channel parameters, and global intermediate recombination

for the strategy parameters.

An implementational characteristic of recombination in ES is the property to “blow up”

the population size from µ individuals in the parent population to λ individuals in the

offspring population by applying recombination λ times, this also implicitly models the

reproduction process.

4.3.4 Selection

The selection operators used in the proposed method are completely deterministic.

Schwefel distinguishes between:

(µ⊕ λ)− selection : sel⊕ : Iµ+λ → Iµ

(µ� λ)− selection : sel� : Iλ → Iµ (4.26)

where the former selects the µ best individuals out of the union of parents and offspring

to form the next parent generation, while the latter selects the µ best individuals out of

the offspring only.

Although the elitist (µ⊕λ)-selection guarantees a monotonously improving performance,

it has several disadvantages when compared to (µ � λ)-selection, which restricts the

lifespan of individuals to just one generation:
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• The (µ⊕ λ)-selection preserves (outdated) solutions and is not able to follow the

moving optimum in a changing fitness environment.

• The (µ�λ)-selection discards all parents and is therefore in principle able to leave

(small) local optima, hence is advantageous in the case of multimodal topologies.

• (µ⊕ λ)-selection hinders the self-adaptation mechanism w.r.t strategy parameters

to work effectively, because misadapted strategy parameters may survive for a

large number of generations when they cause a fitness improvement by chance.

For the above mentioned reasons, (µ ⊕ λ) selection is rarely used in ES literature, and

our proposed ES method employs (µ� λ) selection only.

Traditionally, the selective pressure in ES is very high because λ is typically much

higher than µ. The empirical investigation in [83] indicates a ratio of µ/λ ≈ 1/7 to be

optimal, where µ should not be chosen too small, e.g. a widely used setting is (15•100)-

selection. We will demonstrate later that the selection pressure can be influential to the

performance of the proposed method.

Algorithm 4.1 Outline of proposed ES method

1: k := 0
2: set

(
µ, λ, ρ ∈ {1, . . . , µ}, nσ ∈ {1, . . . , n}, nφ ∈ {0, . . . , n(n− 1)/2}

)
3: [Ω]

(0)
i,j ∈ U(0, 1) [Σ]

(0)
i,j ∈ U(0, σmax) [Φ]

(0)
i,j ∈ U(−π, π)

4: while not terminated do
5: for j = {1, . . . , λ} do

6: ψ̃
(k)
j := rec

(
Ψ(k)

)
{recombine}

7: ψ
′(k)
j := mut

(
ψ̃

(k)
j

)
{mutate}

8: ε
(k)
j := ε

(
ψ
′(k)
j

)
{evaluate fitness}

9: end for
10: Ψ(k+1) := sel

(
[ε

(k)
1 , . . . , ε

(k)
λ ],Ψ′(k)

)
{select}

11: if
∑n

i=1

[
¯[Ω]

(k)
:,i − ¯[Ω]

(k−1)
:,i

]
≤ δ then

12: Terminate
13: end if
14: ω̂(k) =

[
¯[Ω]

(k)
:,1 ,

¯[Ω]
(k)
:,2 , . . . ,

¯[Ω]
(k)
:,n

]
15: k := k + 1
16: end while

In summary, the above proposed ES method can be described by the pseudocode in

Algorithm 4.1. Recombination, mutation and selection are represented by the high-level

operators rec : Iµ → I, mut : I → I and sel : Iλ → λµ respectively; where I denotes

the space of individuals, i.e. I = <n ×<nσ+ × [−π, π]nφ .
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• Line 3: Since elements of the matrix [Ω]i,j ∈ (0, 1) represent the normalised chan-

nel parameter estimates, then we can initialise the entries of [Ω]i,j with random

samples from U(0, 1), where U(0, 1) is the standard uniform distribution between

0 and 1.

• Line 3: It follows that the mutations ∆ωi generated by (4.14) should be bounded

by −1 ≤ ∆ωi ≤ +1 for ∀i ∈ {1, . . . , n}. Since 95% of all values in a Normal

distribtuion falls under 2 standard deviations from the mean, the bound on ∆ωi can

be achieved with high probability if we initialise Σ according to [Σ]i,j ∈ U(0, σmax),

where σmax ≤ 1/2.

• Line 8: Fitness evaluations for all λ offspring should be vectorised for speed. See

Appendix B for details.

• Line 11: The termination criterion is the difference in the means of the columns of

Ω between the current and the previous generation:
∑n

i=1

[
¯[Ω]

(k)
:,i − ¯[Ω]

(k−1)
:,i

]
≤ δ;

where ¯[Ω]
(k)
:,i represents the mean of the ith column of Ω in generation k, and δ is

a predefined constant.

• Line 14: Consequently, the set of n column means is used as the final parameter

estimate once the termination criterion is met, i.e. ω̂ =
[

¯[Ω]
(k)
:,1 ,

¯[Ω]
(k)
:,2 , . . . ,

¯[Ω]
(k)
:,n

]

4.4 Simulations

In this section, simulations in MATLAB were performed to investigate the performance

of the proposed ES method in a number of scenarios where traditional methods do

not perform well. In addition, the influence of the recombination, learning rates γ, γ′,

offspring size λ and selection pressure λ/µ are analysed. Comparisons are made against

the SAGE algorithm where appropriate.

Unless otherwise stated, the proposed method was simulated using a global recombinant

non-isotropic ES with settings: µ = 15, λ = 100, nσ = n, nφ = 0 and ρ = µ; while the

results were averaged over 50 independent runs.
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4.4.1 Initialisation

In this section, we compare the level of dependence on accurate initialisation of our

method against the SAGE algorithm. This is of interest because both of these algorithms

would exhibit excellent performance if accurate initialisation is provided. However, in

reality, it is not always possible to obtain accurate initialisation.

The test channel consists of 6 strong paths. Both algorithms were initialised with the

channel parameters’ true values ± an offset, the amount of offset was increased from 20%

to 80%, e.g. if the true value of one path was [β = 1, θ = 10, τ = 0.5], then one example

of an initial value with a 20% error could be [β(0) = 1+0.2, θ(0) = 10−2, τ (0) = 0.5−0.1].

Figure 4.3 shows the distribution of SAGE and the ES estimates for four levels of errors

in initialisation. It is clear that even for strong paths (with good SNR conditions), some

degradation is evident at 20% error for SAGE. At 40% error, path estimates become very

inconsistent. While at even higher levels, some of the paths were completely undetected.

On the other hand, the performance of the ES approach is very slighly degraded with

increasing levels of initialisation errors. Even at 80% error (which is equivalent to random

initilisation), all of the paths are still clearly distinguiable. In fact, between 40% and

80% errors, the performance of the ES method is approximately the same, and no further

degradation is expected even if the amount of errors was increased more.

4.4.2 Estimation and Positional Accuracy

The performance of many existing channel parameter estimation methods is inadequate

when the amplitude of the multipath are small. Here, we investigate the performance of

the proposed method under these conditions. As well as the positional estimates derived

from the LoS measurements.

Figure 4.4 shows the estimation accuracy of the LoS component in a weak LoS channel

(where the amplitude of the LoS component is small compared to the other paths).The

proposed ES method shows a clear improvement in both estimation accuracy and con-

sistency within the low SNR range. In fact, between 0dB and 5dB, there is an 3-4 fold

reduction in standard derivations and >5 fold reduction in mean errors with the pro-

posed method. At 0dB, the ES approach exhibits a maximum mean error of just 5%,
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Figure 4.3: Distribution of SAGE and ES path estimates for different levels of errors
in initialisation. Open circles represent actual path locations. (15� 100)-ES was used.

SNR=15dB.

and maximum standard deviation of 30% across all estimates. These values are further

reduced to 2% and 12% respectively at 5dB.

Now, we can compare the potential positioning accuracies derived from the ToA/DoA

estimates of the LoS component in the weak LoS conditions. In Table 2.1, we compared

the positional accuracies of the surveyed algorithms using the standard errors in range

estimation for both strong and weak LoS channels. The same comparison between the

ES and SAGE results are shown in Table 4.2 for the weak LoS channel only, where we

can observe considerably smaller standard errors for ES at the low SNR range.

0dB 5dB 10dB 15dB 20dB

SAGE 269.7m 122.9m 21.0m 12.2m 6.9m
Weak LoS ES 79.7m 31.9m 17.6m 12.3m 6.7m

Table 4.2: Combined standard deviation (σx̂ + σŷ) in range estimates using joint
ToA/DoA estimates from SAGE and ES in a weak LoS channel.



Chapter 4. Joint Channel Parameter Estimation Using Evolution Strategy 78

−5 0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SNR (dB)

N
o
rm

a
li
se
d
M
ea
n
E
rr
o
r
|β̂

−
β
|/
β

 

 
SAGE
ES

(a) Amplitude

−5 0 5 10 15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

SNR (dB)

N
o
rm

a
li
se
d
M
ea
n
E
rr
o
r
|θ̂

−
θ|
/
θ

 

 
SAGE
ES

(b) DoA

−5 0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

SNR (dB)

N
o
rm

a
li
se
d
M
ea
n
E
rr
o
r
|τ̂

−
τ
|/
τ

 

 
SAGE
ES

(c) ToA

Figure 4.4: Estimation accuracy of the weak LoS path. Length of error bar (from
top to bottom) represent 2 standard deviation values. For comparative purposes, both
algorithms were initialised with the parameter estimates from SAGE’s own initialisation
routine. (15 � 100)-ES was used. L=6. Results at each SNR are staggered to avoid

obstruction between plots.

However, a more intuitive way of assessing the impact on the positioning accuracies is to

calculate the area enclosed by the range and DoA estimate intervals. Using some simple

geometry, we define this area as the enclosure between the 2 linear LoPs defined by the

mean DoA estimate (θ̄) ± one standard deviation (σθ) and the 2 circular LoPs defined

by the mean ToA estimate (τ̄) ± one standard deviation (στ ):

π(r2
> − r2

⊥)(θ> − θ⊥)/360 (4.27)

where r> = (τ̄+στ )cT and r⊥ = (τ̄−στ )cT denote the upper and lower range estimates;

while θ> = θ̄ + σθ and θ⊥ = θ̄ − σθ are the upper and lower bearing estimates. c is the
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speed of light. Hence, we expect the positioning estimates to be normally distributed at

the centre of the enclosure, while the entire area covers 68% of the estimates.

  100m

  200m

  300m

  400m

  500m

30

60

90

0 

SAGE
ES

(a) 0dB

  100m

  200m

  300m

30

60

90

0 

SAGE
ES

(b) 5dB

Figure 4.5: Positioning accuracies of SAGE and ES in weak LoS conditions.

Figure 4.5 shows the positional areas for 0dB and 5dB for both SAGE and ES. The black

dot represents the location of the MS while the measuring BS is located in the origin.

We can see that the large ToA bias shown in the SAGE estimates at 0dB is quite evident

in the positioning estimates, such that the centre of the enclosure is not the location of

the MS. More significantly, the 3-4 fold reduction in SD values in Figure 4.4 shown by

ES ToA/DoA estimates at 0dB and 5dB becomes a significant reduction in positioning

terms; such that the area of the enclosures in both SNR values are approximately 15

times smaller.

4.4.3 Computational Complexity

The computational complexity of the proposed method is directly dependent on the

number of offspring λ that is created. Since the fitness of each of the offspring must

be evaluated per generation, this tends to be the computational bottleneck for any ES

methods running on single CPU machines. This section compares the computational

complexity of the ES approach (using two typical offspring settings, λ = 100 and λ = 200,

and keeping µ = 15) with the SAGE algorithm.



Chapter 4. Joint Channel Parameter Estimation Using Evolution Strategy 80

Figure 4.6 shows the average CPU processing time per iteration/generation of both

algorithms as a function of the number of channel multipath. We choose not to compare

the time for convergence since the convergence rate of ES is highly dependent on a

number of external settings, such as the learning parameters γ, γ′ and the selection

pressure λ/µ [81].

We can see that the (15 � 100)-ES is typically much faster than the SAGE algorithm

when parameter space dimension is not too big (L < 16), while it remains faster when

L is large. (15�200)-ES is slower than SAGE only when L is large (L > 16), otherwise,

it is comparable to the computational complexity of SAGE.
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Figure 4.6: Computational complexities of SAGE and proposed ES method

4.4.4 Recombination

As previously mentioned, there are two popular recombination operators used in ES,

namely discrete recombination (µρD • λ) and intermediate recombination (µρI • λ). The

current trend of using discrete recombination for object variables and intermediate re-

combination for strategy parameters originates from the suggestion by Schwefel. Al-

though they are capable of applying to both objective and strategy parameters, no

theoretical or experimental criteria for how to choose an appropriate recombination for
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each have been shown [89]. In this section, we present a full overview of experimental

results according to the types of recombinations applied to both object and strategy

parameters.

By using the two recombination operators on both object variables and strategy param-

eters, we obtain four different combinations: Discrete/Intermediate (DI), Discrete/Dis-

crete (DD), Intermediate/Discrete (ID) and Intermediate/Intermediate (II); of which

the first operator indicates the recombination type used for object variables and second

for strategy parameters.

Figure 4.7 shows the average population fitness after 150 generations employing the

above mentioned four different combinations while the number of parents ρ that multi-

combine are varied from 2 (sexual) to µ (panmictic). We define average population

fitness as the average fitness of the entire population of µ candidates at each generation.

Straightaway, we notice that the choice of recombination strategy is highly critical, where

many of the different combinations will not lead to ES convergence. In fact, from the

results in DI, ID, and II, we can conclude that whenever intermediate recombination is

used (regardless of whether it is used for object or strategy recombination), a high value

of ρ is required, ideally panmictic recombination where ρ = µ. In addition, from the DI

and ID examples, it is apparent that once an appropriate level of ρ has been reached,

increasing it further has no clear benefit.

To get a better insight of these results, we look at the searching powers of different types

of recombinations. Schwefel has counted the number of different recombination results

for the above schemes, which is stated as:

Given a parent population of µ individuals with n-dimensional object variables each, the

combinatorially possible different number of recombination results of object variables is:

µ+

(
µ

2

)
(2n − 2) discrete recombination

µn panmictic discrete recombination

µ(µ+ 1)/2 intermediate recombination(
µ(µ+ 1)/2

)n
panmictic intermediate recombination (4.28)
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Figure 4.7: Average population fitness after 150 generations for all possible recombi-
nation types. L=4, SNR=15dB.

where the results for this case are shown in Table 4.3. Notice only 210 different combi-

nations are available through the use of sexual intermediate recombination, which is far

too small a search space to be of any use. On the other hand, sexual discrete recombi-

nation gives 7.8 × 105 different results, which is already much bigger than most usable

ES population sizes, such that only a small fraction of the possible results can be tested.

Hence, larger recombinant numbers is not expected to be any more beneficial.

Discrete Intermediate

ρ = 2 7.8× 105 2.1× 102

ρ = 20 4.1× 1015 7.4× 1027

Table 4.3: Number of combinatorially possible recombination results for sexual/pan-
mictic discrete/intermediate recombination given µ = 20, n = 12.
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4.4.5 Learning Rate

In this section, the influence of the learning parameters γ and γ′ is investigated. It was

reported that for a non-recombinant self-adaptive ES, the learning parameters should

be chosen as [90]:

γ′ ∼ 1/
√

2n

γ ∼ 1/

√
2
√
n (4.29)

where the constant of proportionality is relatively unrestricted. But we will show that

this is not the case for the proposed recombinant ES approach.
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Figure 4.8: Average population fitness at each generation as a function of both the
global γ′ and local γ learning parameters for L = 3 (top row) and L = 6 (bottom row).

SNR=15dB.

Figure 4.8 shows the effects of the learning parameters on the convergence of the pro-

posed method, where we have plotted the average population fitness at each generation

using various combinations of γ and γ′ values for L = 3 (top row) and L = 6 (bottom

row). We can clearly observe a region in the γγ′ space where our method does not con-

verge, in particular, when the local learning parameter γ is high. It is also apparent from

the low and medium γ settings that γ′ > γ is more preferable. From (4.14), we can see
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that the global learning parameter γ′ controls the overall amount of mutation applied

to the population, while the local parameter γ introduces variation to each individual.

Hence, a large γ compared to γ′ setting would create instability in the mutation of the

standard deviations and the convergence performance is likely to suffer.

4.4.6 Selection Pressure

In this experiment, we aim to investigate the effect of selection pressure i.e. the λ/µ

ratio on the performance of the ES approach. Figure 4.9 shows the average population

fitness during evolution for five different selection pressure settings for L = 4 (a) and

L = 6 (b). Selection pressure is varied by keeping the number of offspring λ constant

while changing the number of parents µ, as we will show in the next section that the

value of λ also affects the ES performance.

It is quite evident that in both cases (L = 4, L = 6), λ/µ ≥ 8 is required to achieve

an acceptable convergence rate, this is consistent with the recommendation based on

empirical measurements from [83]. In addition, we can also observe that during the

early generations (between 10 and 30), it is quite beneficial to have a high selection

pressure since it appears to be proportional to the rate of convergence. However, a

very high selection pressure can occasionally lead to prematurely convergence, as in

the case of λ/µ = 16, λ/µ = 20, and not necessarily towards the global optimum.

Hence, the selection pressure controls the characteristics of the ES search. Decreasing

µ emphasizes on path-oriented search and convergence velocity, while increasing µ leads

to more column-oriented search [85].

4.4.7 Offspring Size

It is well known in ES literature that the estimation performance can be improved by

increasing the offspring population size λ. Since promising areas of search space are

normally sampled repeatedly by the ES, and there are usually many similar solutions

in the population, when the population is large, the influence of noise in evaluating an

individual is very likely to be compensated by that of a similar individual [91]. Define

R∞ as the steady state residue distance of the population to the optimum solution in

the parameter space, then in the case of the non-recombinative (1�λ)-ES, R∞ has been
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Figure 4.9: Average population fitness for five different λ/µ values: λ = 300, µ =
d300/{4, 8, 12, 16, 20}e. SNR=15dB.

proven to decrease with increasing λ. For the global recombinant (µ�λ)-ES our method

utilises, a similar relationship is suggested in [92]:

R∞ ≥
√
σηN

/(λ
µ

1√
2π

exp
[
− 1

2

(
Φ−1

(
1− µ

λ

))2])
(4.30)

here, ση is the standard deviation of the fitness noise, and Φ−1 is the inverse function

to the cumulative distribution function of the standard normal variate N (0, 1), which
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tends to 1 as λ increases. The divisor term is the asymptotic progress coefficient for

large λ [93].

Figure 4.10 shows the average population fitness of the proposed ES approach using five

different offspring sizes λ for L = 4 (bottom) and L = 8 (top). Where in each case, the

selection pressure λ/µ = 10 is kept constant (hence, µ is increased accordingly with λ).
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Figure 4.10: Average population fitness for five different λ values. In each case,
selection pressure is kept constant at λ/µ = 10. SNR=15dB.

As expected, we can observe a performance gain when the offspring size is increased.

This is a useful property since one can achieve a desired accuracy of estimation by just

increasing the offspring size alone, provided the increase in computational complexity is

manageable and justified. The performance gain in the case of L = 4 is less compared

to L = 8, which suggests even the lowest setting of λ = 100 is sufficient to achieve near

optimum performance in this case, and further increments in λ is probably unjustified.

4.5 Summary

We have proposed a joint channel parameter estimation technique using an ES approach.

The proposed method is shown to be extremely robust to initialisation and low SNR
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environments. In addition, the computational complexity of the proposed method is

demonstrated to be less than that of the traditional iterative ML approach. The vast

search powers of a population based intelligent optimisation method opens the possibility

of jointly estimating other important parameters, e.g. the number of channel paths and

channel gains.



Chapter 5

Joint Detection and Estimation of

Channel Parameters Using

Hierarchically Organised

Evolution Strategy

5.1 Introduction

One common assumption in most research areas within channel parameter estimation

is that the number of channel multipath L is known a priori. However, in practice this

number must be estimated first; either by a separate mechanism or jointly estimated

with the channel parameters; the latter is sometime known as the joint detection and

estimation problem. The joint approach is considered the more optimum of the two, but

at the cost of additional computational complexity. We have demonstrated in Chapter 2

the dependence of these channel parameter estimation methods on accurate knowledge

of L, where even for small errors in L̂, the estimate of the true multipath number, can

lead to significant performance degradation. In addition, if L̂ < L, these estimation

methods will typically detect only the strongest L̂ multipath components, thus omitting

the remaining L− L̂ (weakest) paths in the process. This is clearly unacceptable if the

LoS component happens to be weak.

88
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There exists numerous research in the field of joint detection and channel parameter es-

timation, especially in the field of direction finding with active antenna array [94]. The

methods in [95, 96] jointly optimise Rissanen’s Minimum Description Length (MDL)

principle and the Maximum Likelihood (ML) estimator of the channel parameters, which

is computationally prohibitive. Sub-optimal stochastic methods based on Evolutionary

Algorithms have also been proposed, where a population with variable sized candidate

solutions are evolved through specially adapted mechanisms of recombination and mu-

tation. Within this population, candidate solutions representing the best choice of L

and the corresponding channel parameters as measured by fitness are selected for re-

production. Recombination where two parents reproduce by exchanging different sized

segments is employed in [97, 98], producing in the processes two new offspring with dif-

ferent length. While in [99, 100], the mutation process randomly add/remove bits from

each offspring. However, these approaches are unstable and could easily stagnate, since

only a limited number of candidate solutions are available at each generation, which is

shared between a number of (possibly high) problem dimensions.

In this chapter, we propose an efficient sub-optimal method of jointly detecting and

estimating the channel parameters based on Hierarchically Organised Evolution Strate-

gies. As the name suggests, the proposed method uses multiple hierarchies of ES to

simultaneously optimise for L and the channel parameters. During the evolution pro-

cess, a set of L̂ values are explored within the Upper Level Strategy (ULS); while the

Lower Level Strategy (LLS), which consists of multiple sub-populations, searches for the

channel parameters corresponding to the set of L̂ values as chosen by the upper level.

5.2 Hierarchically Organised Evolution Strategies

Multi-population Evolutionary Algorithms have been invented several times to solve

difficult optimisation problems. In the field of Evolution Strategies, Rechenberg pro-

posed the Hierarchically Organised ES, also referred to as Meta-ES or Nested ES as

early as 1978 [101]. Essentially, the ES is parallelised by dividing a large population

into several sub-populations - each of them “living” on a different process. After one or

more generations some individuals migrate to a neighbouring sub-population, or in other

words: the distributed optimisation processes exchange information during the search
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[102]. From this point onwards, we shall use the simpler term Meta-ES when referring

to Hierarchically Organised ES.

A Meta-ES can be described by generalising formally the ES bracket notation to [103]:

[
µ′ρ′ • λ′︸ ︷︷ ︸

ULS

(µρ • λ)χ︸ ︷︷ ︸
LLS

]
(5.1)

where λ′ instances of the standard (µρ • λ)-ESs in (4.5) runs independently (in parallel)

for a number of χ generations in isolation. The idea is to have these λ′ independent pop-

ulations furnished with different search properties, such as different mutation strengths,

different search spaces partitions, or other object/strategy parameters which are nor-

mally fixed in advance. After χ generations, the amount of progress that has been made

on the various populations are compared. The search properties of the most successful

µ′ρ′ populations are subject to variation, and new set of species is set up and run with

those new search properties. Thus, the evolutionary optimisation happens on two levels:

the search space of the LLS is that of the optimisation problem at hand; that of the

ULS is the search property space of the LLS. Variation and selection are used on both

levels [104].

Meta-ES has traditionally been used as an alternative to the mutative mechanism in

step length adaptation, where a single standard deviation σ is modified using two sub-

populations each utilising σ×α and σ/α respectively, where α is a pre-defined constant

normally set to α = 1.3. It has been shown that in mutative self-adaptation, opportunis-

tic individuals that make short steps are often rewarded, hampering long term progress

[104]. In other words, opportunistic individuals can increase their likelihood of short

term success by using below-optimal step lengths. The use of the isolation period χ in

between step length adaptation in Meta-ES aids long term progress rather than short

term success, since the ability of mutation strength to generate successful steps is much

easier to judge after several time steps than after a single one.
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5.3 Joint Detection and Estimation of Channel Parame-

ters

It is very difficult to perform the joint detection and estimation of channel parameters

using a standard (µ • λ)-ES with deterministic selection as defined in 4.3.4. For a

given optimisation problem in noisy environment, an ES population will converge to a

better fitness if the problem dimension is over-estimated. Figure 5.1 shows the average

population fitness as defined by (5.2) during an evolution process for different degrees

of over- and under-estimation of the number of multipath L under ideal (no noise in the

received data y(t)) and noisy conditions,

ε(y;ω) ,
∫ To

0

∣∣∣∣∣y(t)−
L′∑
`=1

β̂`a(θ̂`)g(t− τ̂`)
∣∣∣∣∣
2

dt (5.2)

where for an under-estimated problem dimension, the population consists of candidate

solutions representing case of L′ < L; similarly for the over-estimated case: L′ > L.
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Figure 5.1: Average population fitness at each generation from a standard (100�15)-
ES algorithm when the number of path is under/over estimated under ideal and noisy
conditions. The labels indicate the amount of deviation from actual number of path

(L = 3). SNR=15dB for the noisy case.

We can observe, under ideal conditions (Figure 5.1(a)), the value of ε in (5.2) is lowest

only when the correct value of L is used. In fact, if the optimisation process carried on

indefinitely, the steady state ε value when L is correct converges to zero. When y(t)

contains noise (Figure 5.1(b)), we can still observe a clear fitness distinction when L is

under-estimated, but this is not the case for over-estimation. It is not difficult to see
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that steady state ε value in the noisy case when L is correct is simply the energy of the

noise contained in y(t), i.e.
∫ To

0 |η(t)|2dt ≈ EoTo. In fact, the magnified sub-figure shows

having a higher problem dimension actually improves the steady state fitness beyond

this value. In other words, if we were to estimate L by measuring the fitness while

incrementing L̂ (initialised at a small value, i.e. L̂(0) = 1), our estimate would approach

and then surpass the actual value. More importantly, the fitness of the population

utilising the correct value of L is only the lowest for a very small proportion of the

evolution process; in this case, between 10-40.

This behaviour is a consequence of the noise associated with the fitness space, i.e. there is

noise involved in the process of evaluation of the fitness function. Hence, when evaluating

the fitness of a candidate solution x, it is not the ideal fitness f(x) that we obtain, but

a perceived fitness that is normally distributed with mean f(x) and standard deviation

σf (x) [105]. This form of noise has been termed fitness noise. Since the perceived

fitness may be different to the ideal fitness, the fitness noise is capable of deceiving the

selection mechanism as it can lead to inferior candidate solutions being selected based

their perceived fitness while superior ones are discarded [106].

Nevertheless, we can observe a few other properties which are potentially useful in the

estimation of L:

• The convergence rate of the fitness values are lower when L̂ is high; more impor-

tantly, it is much slower when L̂ is over-estimated. For the example in Figure

5.1(b), over-determined populations converged in around 40 generations compared

to 20 generations when the correct value is used.

• The improvement in steady state fitness value from increasing L̂ is substantially

reduced when L̂ becomes over-estimated.

It is possible to jointly estimate L and the channel parameters ω , [ω1|ω2| . . . , |ωL]

by observing any/all of the above mentioned properties, during the parallel execution

of Lmax copies of the standard ES, where Lmax is the pre-specified upper limit on the

number of multipath, i.e. 1 ≤ L ≤ Lmax. However, this is only feasible for very small

numbers of L. In addition, since we have no prior knowledge of the number of paths,

then conservative estimates of Lmax would need to be relatively large to guarantee one

of the executing ES algorithms will be using the correct L.
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Employing Meta-ES allows us to compare the population fitnesses of λ′ instances (1 <

λ′ < L) of the standard ES each employing a different L̂ value. Therefore, the problem

is now to formulate an evolution strategy that explores different values of L̂ while at

the same time evolving multiple populations of candidate solutions to estimate Ω; by

exchanging of information between the λ′ instances of the ES algorithm.

From initial inspection, it appears that the first property is the easiest to observe,

especially the convergence rate during the early generations. However, using only λ′

instances of the standard ES within the lower level, then the ULS must alternate the

set of L̂ values which the lower level ES explores, hence we cannot continuously observe

the fitness for any chosen set of L̂ values; only a snapshot of χ generations at a time.

After χ generations, it is possible that an entirely different set of L̂ values are chosen

for exploration. Essentially, evolving multiple ES instances for χ generations at a time,

presents us with a vertical snapshot of Figure 5.1 at regular intervals (albeit of much

fewer L̂ values, since λ′ should be relatively small). Hence provided we can navigate

through the possible L̂ values while maintaining sufficiently accurate channel parameter

estimates, it is possible to utilise the third property as a guide towards the optimum L̂

value.

While it is possible for us to utilise the standard Meta-ES approach and optimise both L̂

and σ via the ULS, as demonstrated in [103] where a [1�4(µI�λ)χ]-ES is used to adapt

both the optimal population size µ and step length σ. It is more efficient in this case to

optimise only L̂ at the upper level and keep the mutative self-adaptation mechanism at

the lower level. The reasons are three fold:

• From results in previous chapter, there were no serious issues with premature

convergence and stagnation from using mutative self-adaptation, therefore there

is no need to change the adaptation mechanism.

• Optimisation at the ULS is designed for one dimensional variables, i.e. a single

mutation strength σ only (as suppose to a separate σi for each channel parameter),

hence only isotropic mutations are possible (see previous chapter for details on

isotropic/non-isotropic mutations).

• In order to optimise for a single variable in the ULS, at least two instances of the

lower strategies are required, and a minimum of four is necessary to handle two
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variables. Hence, λ′ should be kept to a minimum to reduce the computational

burden.

Thus, our proposed joint detection and channel parameter estimation method is based on

a [1�3(µ�λ)χ]-ES, where 3 consecutive L̂ values are explored at any time. Traditional

deterministic selection based on fitness ordering in the upper level is modified to a type

of conditional selection. In the following description, certain syntax and symbols of the

LLS are identical to Chapter 4, hence will not be re-defined here.

5.3.1 Upper Level Strategy

The estimate of the number of multipath L̂ is the single parameter that is adapted by

the ULS. Thus, while the LLS faces an 3× L̂-dimensional optimisation problem, that of

the upper level strategy is one-dimensional. As a consequence, a very simple algorithm

can be used. Algorithm 5.1 shows the pseudocode of the proposed [1 � 3(µ � λ)χ]-ES

algorithm in which we explore three consecutive L̂ values, i.e. [L̂ − 1, L̂, L̂ + 1] during

each generation of the ULS. In the following descriptions, we denote Ω(k) ∈ Rµ×3L̂ and

Σ(k) ∈ Rµ×3L̂ as the matrices of channel parameter estimates and mutation strengths

at the kth ULS generation. Their structures are identical to (4.7) and (4.8), apart from

the width which is defined by L̂ instead. In addition, Ω
(k)
p , Σ

(k)
p and ε

(k)
p for p ∈ {1, 2, 3}

denotes the matrix of channel parameter estimates, matrix of mutation strengths and

average population fitness from the pth instance of the lower strategy at the kth ULS

generation respectively. The key points are summarised below:

• Our deterministic approach for exploring the L domain is based on two simple and

concrete rules for changing the current estimate of L̂.

1. Looking forward : if there is a significant improvement in fitness from the next

higher value of L̂, then it is very likely we are still under-estimating L̂, then

we should increase L̂ to the higher value and compare its neighbouring values.

2. Looking back : if over the last two L̂ increments, we have observed insignificant

fitness improvement, then we have most likely over-estimated L̂.

3. In all other cases, we cannot be certain of current estimate, we keep L̂ un-

changed and compare again after the next generation.
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Algorithm 5.1 [1� 3(µ� λ)χ]-ES

Require: 2 ≤ L̂ ≤ Lmax − 1
1: k := 0
2: Initialise

(
[Ω(k)]i,j ∈ U(0, 1), [Σ(k)]ij ∈ U(0, 0.3), L̂ ∈ U(1, . . . , L̂max)

)
3: while not terminated do
4:

[
ε

(k)
1 ,Σ

(k)
1 ,Ω

(k)
1

]
:= LLS

(
µ, λ, χ,Σ(k),Ω(k), L̂− 1

)
5:

[
ε

(k)
2 ,Σ

(k)
2 ,Ω

(k)
2

]
:= LLS

(
µ, λ, χ,Σ(k),Ω(k), L̂

)
6:

[
ε

(k)
3 ,Σ

(k)
3 ,Ω

(k)
3

]
:= LLS

(
µ, λ, χ,Σ(k),Ω(k), L̂+ 1

)
7: if ε

(k)
1 − ε

(k)
3 < ε∆ then {decrement L̂ by 1}

8: L̂ := L̂− 1
9: Ω(k) := Ω

(k)
1

10: Σ(k) := Σ
(k)
1

11: else if ε
(k)
2 − ε

(k)
3 > ε∆ then {increment L̂ by 1}

12: L̂ := L̂+ 1
13: Ω(k) := Ω

(k)
3

14: Σ(k) := Σ
(k)
3

15: else {L̂ unchanged}
16: Ω(k) := Ω

(k)
2

17: Σ(k) := Σ
(k)
2

18: end if
19: check for termination
20: k := k + 1
21: end while

This type of conditional selection is a popular approach for dealing with fitness

noise in EAs, where typically, an offspring individual is accepted if and only if its

fitness is better than that of its parents by at least a predefined threshold [91].

• In lines 4-6, three runs of the lower level (µ � λ)-ES are conducted in parallel.

The runs last for χ LLS generations each and all of them use the current mutation

strength Σ(k) and channel parameter estimates Ω(k) from the ULS as their initial

search values. One instance uses the current multipath number estimate L̂, while

the remaining two tries L̂− 1 and L̂+ 1 respectively. At the end of χ LLS genera-

tions, the final search points, mutation strengths and the fitness value of the final

search points are saved.

• In line 7-10, the fitness level of the strategies employing the lower (L̂−1) and upper

(L̂ + 1) values are compared. If the improvement in fitness from an increment of

two channel paths are less than a pre-defined criteria ε∆, which we call the upper

level fitness criteria, then it is most likely we have over-estimated L̂, and L̂ should
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be smaller. Consequently, the search parameters
[
Ω(k),Σ(k)

]
of the ULS are set

to the parameters from the ES instance with the lower L̂ value.

• In line 11-14, if the fitness gain from adding one additional path is greater than

ε∆, then it is most likely we have underestimated L̂, and that further increments

to L̂ could be beneficial. Consequently, the search parameters
[
Ω(k),Σ(k)

]
of the

ULS are set to the parameters from the ES instance with the higher L̂ value.

• The requirement at beginning of algorithm is enforced to make sure at each gen-

eration, the LLS are using three consecutive L̂ values. Hence, if the best L̂ value

becomes 1, then the strategy exploring L̂−1 is pointed to L̂+2 instead. A similar

approach is taken when p becomes L̂max, i.e. the strategy using L̂+ 1 is changed

to L̂− 2.

5.3.2 Lower Level Strategy

For a chosen number value of L̂, the lower level strategy LLS(•) (Algorithm 5.2) op-

timises for the best channel parameter estimates Ω(k), assuming a problem dimension

of 3 × L̂. The function is identical to the non-isotropic global recombinant (µ � λ)-ES

employed in Chapter 4. However, since the three instances of the LLS are all initialised

with the same set of starting search values
[
Σ(k),Ω(k)

]
, but different L̂ values, therefore

the sizes of the matrices
[
Ω(k),Σ(k)

]
must be modified according to L̂. This is shown

in lines 1-8. In Line 9, the standard (µ � λ)-ES is run for χ generations to obtain a

temporary estimate of the channel parameters.

Algorithm 5.2 Function: LLS
(
µ, λ, χ,Σ,Ω, L̂

)
1: δn := length(Σ)− 3× L̂
2: if δn > 0 then
3: remove last δn columns of Σ and Ω
4: end if
5: if δn < 0 then
6: add |δn| columns to Σ with samples drawn from U(0, 1)
7: add |δn| columns to Ω with samples drawn from U(0, 0.3)
8: end if
9: [ε′,Σ′,Ω′] := ES(µ, λ,Σ,Ω, L̂) (execute for χ generations)

10: return ε′,Σ′,Ω′
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5.4 Simulations

In this section, we investigate empirically the performance of the proposed meta-ES

method in MATLAB. Since the channel parameters are estimated via the LLS, which

is identical to the (µ � λ)-ES presented in the previous chapter, hence the estimation

performance of the channel parameters ω remains unchanged. Here, we will concentrate

primarily on the estimation of the channel multipath number L.

The proposed meta-ES method utilises two additional predefined strategy parameters

that will be influential to the estimation performance; the isolation amount χ and the

upper level fitness criteria ε∆. We will start by investigating the level of effect these

parameters have on the proposed method, this is followed by some general results in

multipath environments.

As mentioned earlier, the average steady state fitness can no longer be used as a perfor-

mance measure, since a lower fitness in this case does not necessarily equates to better

estimates. Strictly speaking, the long term behaviour of an algorithm is of utmost inter-

est in convergence analysis: One wants to know about the number of iterations that are

necessary to reach (or come close to) the optimum (or the optimiser). However, the full

dynamics of ES turns out to be intractable even in the simplest cases [107]. Fortunately,

due to its simple Markovian character, much of the dynamics of ES can be recovered by

observing statistical parameters and their expected rates of change from one generation

to another; one such performance measure is the expected quality gain [108]:

Q̄ = E
{
〈F (k)〉µ − 〈F (k−1)〉µ

}
(5.3)

which is a measure of the expected difference in fitness of the population of candi-

date solutions at consecutive time steps. Here, 〈F (k)〉µ denotes the average fitness

of µ candidate solutions at the kth generation. We can estimate Q̄ by calculating

(〈F (1)〉µ − 〈F (kend)〉µ)/kend for each run then average over multiple independent runs.

5.4.1 Choice of Upper Level Fitness Criteria

On initial inspection, the choice of the upper level fitness criteria ε∆ appears to be

central to the workings of the proposed method, since ε∆ controls the freedom in which
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the ULS explores the L̂ search space. Figure 5.2 shows the estimated quality gain and

the average final L̂ values for 3 different multipath channels as a function of ε∆. It is

not surprising that there is a strong correlation between the expected quality gain and

the average L̂ value; both are at the optimum for ε∆ < 0.2. Within the higher range

of ε∆ values (ε∆ > 0.3), it becomes increasingly difficult for the algorithm to explore

different values of L̂, and the method fails to converge to the actual value. However,

what is more significant is that the optimum range of ε∆ values are quite similar for

different problem dimensions, i.e. between 0.1 and 0.2 the proposed method works well

for all the tested L values. Hence, provided ε∆ is kept reasonably small, the proposed

meta-ES method is expected to perform well for all channel orders.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.04

0.06

0.08

0.1

0.12

Q
ua

lit
y 

G
ai

n

ε∆
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2

3

4

5

6

M
ea

n 
L 

E
st

im
at

e

L=5

L=3

L=4

optimum ε∆ range

Figure 5.2: Estimated expected quality gain (circles) and average final L estimate
(squares) as a function of ε∆. SNR=15dB

5.4.2 Effects of Isolation Period

It is well known that the isolation period χ is a critical parameter in step length adapta-

tion using Meta-ES. In these cases, chosen periods that are too short can result in sub-

optimal step lengths and the same type of problems that effect mutative self-adaptation.

Isolation periods that are too long prevent fast adaptation of the step length and slow

down convergence [101]. This issue is so important that the idea of adding another level

to the hierarchy of ES, for the sole purpose of optimising the length of isolation period,
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has been proposed in [104]. We will see that a similar role is played by the isolation

period in our proposed method.
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Figure 5.3: Normalised quality gain (circles) and average final L estimate (squares)
as a function of the isolation period χ. Actual L = 5. SNR=15dB

If we intend to vary the isolation period, the expected quality gain Q̄ must be nor-

malised prior to comparison. We define the normalised quality gain per evaluation of

the objective function as Q̄/(χλ′λ), which relates the gain in fitness to the amount of

computational effort invested to achieve it. Here, the number of objective function eval-

uations per time step is χλ′λ. The first thing we notice from Figure 5.3 is that the

normalised quality gain decreases monotonically with increasing isolation period, and

the algorithm is operating at its highest efficiency at χ = 1. However, this value of χ rep-

resent too short a time interval during which the LLS can make any significant progress

in, and the algorithm cannot converge to the correct value of L. More interestingly, once

the isolation period is greater than 1, the detection performance of the proposed method

is relatively stable; such that increasing χ from 3 to 15 has only resulted in an average

L̂ deviation of less than 0.2. Hence, the only concrete bond for the isolation period to

guarantee good L̂ estimate is χ > 1; but considering large χ values are detrimental to

the overall operating efficiency, smaller values are recommended.
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Figure 5.4: Initial and final L estimates for 50 independent runs. Initial estimates for
L̂ are integer samples drawn from U [1, 8] and U [1, 10] for L = 3 and L = 5 respectively.

SNR=15dB, ε∆ = 0.15 and χ = 5 for all cases.

5.4.3 Joint Detection and Estimation

Figures 5.4 and 5.5 show the joint detection and estimation results for 2 multipath

channels, where the number of multipath are L = 3 and L = 5 respectively. In Figure

5.4, the initialised and final L̂ values from 50 independent trials are plotted. For each
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simulation (numbered by the x-axis), its initial and final L̂ values are shown by the

vertical positions of the red squares and blue circles respectively. It is quite evident that

our method places no constraint on the initial L̂ estimates; it is able to estimate the

correct value of L regardless of the initialised values in almost all cases. Figure 5.4(b)

shows only two cases of errors in simulations No. 35 and 39, where a small under- and

over- estimation of L̂ occurred. In both channels, we have chosen L̂max - the upper limit

on the L̂ search space - to be greater than 2L. This is just to demonstrate the versatility

of the proposed method, and it is by no means a requirement. Just as important, Figure

5.5 shows that the distributions of corresponding channel parameter estimates, which

are also randomly initialised, are all close to actual. We observe two sets of slightly

erroneous data in the case of L = 5 in Figure 5.5(b), which correspond to the cases of

when L̂ was under- and over-estimated by 1 in simulations No. 35 and 39. Notice how

under-estimating L̂ is much worse since non of the 4 paths were estimated accurately;

on the other hand, over-estimation produces accurate estimates of all 5 paths, plus 1

addition random path.
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Figure 5.5: Distribution of channel parameter estimates from 50 independent runs.
Initial parameter estimates - elements of matrix Ω are samples drawn from U(0, 1) for
all cases. Circles represent actual multipath locations. SNR=15dB, ε∆ = 0.15 and

χ = 5 for all cases.

5.5 Summary

We have proposed a joint detection and channel parameter estimation method based

on Hierarchically Organised Evolution Strategies. The proposed method uses a set of
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simple deterministic rules for the adaptation of the channel multipath number in the

upper level strategy; while at the same time, multiple instances of the same non-isotropic

recombinative ES searches for the optimum channel parameter estimates within the lower

level. Empirical result shows the proposed method does not require delicate tuning of

strategy parameters, and is also highly independent on initialisation values.



Chapter 6

Doppler Estimation

6.1 Introduction

The Doppler effect due to motion is an important characteristic of the wireless channel

that has been exploited by positioning technologies for decades. In a pulsed Doppler

radar, the velocities of targets can be estimated directly by sensing Doppler frequencies.

While in an airborne radar system, where the objective is detect other aircrafts, the

Doppler frequencies are used to differentiate between unwanted echoes from slow moving

(or stationary) objects from the ground and that from a target aircraft [109].

Furthermore, it is entirely possible to estimate the position and velocity of a moving

source using only Doppler frequency measurements at several locations. Since each

receiver location experiences a slightly different Doppler shift, then multiple Doppler

shifted frequency measurements therefore provides a measure of the change in range

during the observation interval [110]. A total of 5 spatially separate measurements is

sufficient to solve for the target location (in 2 dimensional space), velocity and trans-

mission frequency (if unknown) [111]. Two application examples are in passive sonar,

where sonobuoys intercept the acoustic energy radiating from a moving source and in the

tracking of a projectile which emits a tone [112]. If the transmission frequency is known,

then 3 temporally separated measurements at a single sensor is adequate to determine

the range, velocity and direction of motion of the moving target [113].

In a hybrid positioning system, Doppler, ToA and DoA measurements at same or differ-

ent BSs can be combined to reduce the number of receivers required for a given location

103
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Figure 6.1: A wave when radiated from a point source when stationary and when
moving; Wave is compressed in the direction of motion, spread out in the opposite

direction, and unaffected in the direction normal to motion.

accuracy, and it will facilitate in the resolution of ambiguities [114]. While in a scat-

tering rich environment, the Doppler information can be used to enhance the positional

accuracy obtainable when strictly no LoS measurement is available. The authors in [115]

uses the symmetry between Doppler shifts from opposite directions to identify scatters

which lie on the same plane as MS, consequently, triangulation using these scatters are

used to estimate the location of the MS.

In this chapter, we incorporate Doppler shift into our system model and extend the

proposed ES channel parameter estimation method in Chapter 4 to jointly estimate the

amplitude, ToA, DoA and Doppler frequency of each multipath. Doppler estimation

brings additional challenges which must be addressed accordingly, furthermore, a mod-

ification to the existing ES approach is made which addresses a potential weakness of

the standard ES algorithm.

6.2 The Doppler Effect and Doppler Frequency

The Doppler effect is a shift in the frequency of a wave radiated, reflected, or received

by an object in motion. As illustrated by Figure 6.1, a wave radiated by a point source

is compressed in the direction of motion and is spread out in the opposite direction. In

both cases, the greater the object’s speed, the greater the effect will be. Only at right

angles to the motion is the wave unaffected. Since frequency is inversely proportional

to wavelength, the more compressed the wave is, the higher its frequency is, and vice

versa. Therefore, the frequency of the wave is shifted in direct proportion to the object’s
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velocity. The difference between between the transmitted and received frequencies due to

motion is known as the Doppler shift, or Doppler frequency; in the subsequent sections,

both terms are used interchangeably.

The Doppler frequency is essentially a measure of the change in the phase difference

between the transmitted and received signals [109]. At any one instance, the phase of

the received wave lags that of the transmitted wave by the transit delay τ , e.g. if τ is

1000 times the period of T of transmitted wave plus some fraction φ, then the phase

between the received and transmitted wave will only differ by a fraction of one cycle -

φ. Hence, if the transit time τ changes due to motion, then φ will change accordingly,

and the Doppler shift is proportional to the rate of change of φ.
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Figure 6.2: Parallel ray assumption. v is the speed of the mobile and ψ is the direction
of arrival of the received data relative to the direction of motion of the mobile.

Assuming the transmitted waves from the MS to the BS or a point scatterer remain

parallel for all points of the mobile route (Figure 6.2), this is approximately true for

short route length [116]. The Doppler shift results from the fact that the transmitter

or receiver movement over a short time interval ∆t causes a slight change in distance

∆d = v∆t cosψ that the transmitted signal needs to travel to the receiver. The phase

change due to this path length difference is ∆φ = 2πv∆t cosψ/λ. The Doppler frequency

is then obtained from the relationship between the signal frequency and phase:

fD =
1

2π

∆φ

∆t
= v cosψ/λ (6.1)
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where ψ is the arrival angle of the received data relative to the direction of motion, v

is the MS velocity, and λ = c/fc is the signal wavelength (c = 3 × 108m/s is the speed

of light). For |ψ| < 90◦, the MS is moving towards the BS, then the Doppler frequency

is positive; while for ψ = ±90◦, the Doppler frequency is zero; finally for |ψ| > 90◦, the

MS is moving away from the BS, the Doppler frequency will be negative.

6.3 System Model

A typical wireless mobile multipath propagation channel is illustrated in Figure 6.3,

where data symbols are modulated by a known pulse shape at the mobile device in

motion and transmitted through the spatial multipath channel. In addition to the

ToA, DoA, and path attenuation, each path is further parametrised by its Doppler shift

component fD.

{β,τ,fD}Path #1

Path
 #L

1

Rx

M

Tx

Path #l

Digital 

symbols

D1

D
2

D1>>D2

ν

ψ

θ

Figure 6.3: Illustration of a mobile wireless multipath channel environment. Each
path is parametrised by its ToA τ`, DoA θ`, Doppler shift fD = v/λ cos(ψ`) and complex
path attenuation β`. v is the speed of the mobile and ψ` is the direction of arrival of

the received data relative to the direction of motion of the mobile.

Taking into the Doppler frequency into account, we can re-write the contribution of the

`th wave to the M baseband signals at output of the antenna array as:

s`(t;ω`) , [s1,`(t;ω`), . . . , sM,`(t;ω`)]
T

= β`a(θ`) exp{j2πfD,`t}u(t− τ`) (6.2)
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where u(t) is the transmitted signal and the vector ω` , [β`, θ`, τ`, fD,`] contains the

parameters of the `th wave. Each wave is characterised by its DoA θ`, ToA τ`, Doppler

shift, fD,`, and a complex path attenuation β`. Consequently, for the joint amplitude,

DoA, ToA, Doppler shift estimation problem, the objective function becomes:

ε(y;ω) ,
∫ To

0

∣∣∣∣∣y(t)−
L∑
`=1

β̂`a(θ̂`) exp{j2πfD,`}u(t− τ̂`)
∣∣∣∣∣
2

dt (6.3)

where To is the observation period at the receiver, and the combined vector of channel

parameters ω , [ω1|ω2| . . . , |ωL] contains the channel parameters of all paths. While

the parameter space dimension now becomes n , 4L.

In the subsequent sections, we will sometimes drop the multipath subscript ` from the

Doppler shift frequency component fD,` where appropriate to improve readability.

6.4 Implementation

With the addition of the Doppler estimates fD,`, the object variables part of the popu-

lation matrix in (4.7) takes the form of:

Ω =


β(1)1 . . . β(1)L θ(1)1 . . . θ(1)L τ(1)1 . . . τ(1)L fD(1)1 . . . fD(1)L

β(2)1 . . . β(2)L θ(2)1 . . . θ(2)L τ(2)1 . . . τ(2)L fD(2)1 . . . fD(2)L

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

β(µ)1 . . . β(µ)L θ(µ)1 . . . θ(µ)L τ(µ)1 . . . τ(µ)L fD(µ)1 . . . fD(µ)L


(6.4)

where each row represent one candidate solution to the joint parameter estimation prob-

lem. The modification to the matrix of strategy parameters Σ in (4.8) is trivial.

6.4.1 Ambiguity Function

For the moment, consider only the problem of estimating the ToA and Doppler com-

ponents, one application area which considers this type of problem frequently is radar

[109, 117]. In radar parameter estimation, the estimated delay component is the round

trip time and not the ToA, but the underlying principles are the same. One important

property that arises frequently in radar signals design is the ambiguity function.
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The optimal receiver here is the correlator that performs time correlation over the ob-

servation period To between the received signal y(t) and the required signal with a form

u(t− τ)ej2πft, where τ and f are unknown non-random parameters we are trying to es-

timate. The time correlation is followed by envelop detection, whose role is to eliminate

the unknown phase term, that is,

Λ(τ, f) =
∣∣∣C(τ, f)

∣∣∣2 (6.5)

with

C(τ, f) =

∫
To

y(t)u∗(t− τ)e−j2πftdt (6.6)

The signal C(τ, f), is the result of the correlation, over the observation time To, of the

received signal y(t) with a replica of the transmitted signal u(t), with time delay τ and

frequency shift f . The signal C(τ, f) therefore appears as a surface that is dependent

on two parameters, τ and f .

Assuming the actual delay and Doppler shift are τa and fa respectively, in situations

where the noise is negligible compared to the transmitted signal, then the received signal

is reduced to:

y(t) = u(t− τa)ej2πfat (6.7)

and C(τ, f) becomes

C(τ, f) =

∣∣∣∣∣
∫
To

u(t− τa)u∗(t− τ)ej2π(fa−f)tdt

∣∣∣∣∣
2

(6.8)

Following a change of variables to bring the target to the origin:

τ ′ = τ − τa

f ′ = f − fa

and

z = t− τ + τ ′ (6.9)
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then, equation (6.8) becomes

C(τ ′, f ′) =

∣∣∣∣∣
∫
To

u(z)u∗(z − τ ′)e−j2πf ′zdz
∣∣∣∣∣
2

(6.10)

Equation (6.10) is known as the ambiguity function;1 the function inside the magnitude

signs is the time-frequency autocorrelation function of u(t), which is a measure of the

degree of similarity between a complex envelope and a replica of it that is shifted in time

and frequency [118]. To minimise potential errors in estimation, the ideal ambiguity

function is one at the origin and zeros else where e.g. a Dirac delta function at the

origin without any side lobes, however, this requires an infinite transmitted bandwidth

and an infinite observation period. Nevertheless, close approximations can be achieved

by using more sophisticated transmission signal u(t). The ambiguity function has a

number of important properties:

• The amplitude of the global maximum depends solely on the SNR and not on

the form of u(t). In contrast, the surface of C(τ ′, f ′), dependent on u(t), can

have several maxima in the presence of multipath, all of which have comparable

amplitude to the global maximum, thus creating ambiguity as to the position of

the multipath in the delay-frequency plane [117].

• The shape of the surface C(τ ′, f ′) will determine the system resolution capability.

The narrower the correlation peaks, the easier it is to discriminate between the

multipath.

• The ambiguity function has a dual symmetry with respect to the time axis τ ′,

and Doppler frequency axis f ′. The volume under the surface circumscribed by

C(τ ′, f ′) and the origin is equal to one for normalised u(t). This means the dis-

turbance caused by a multipath is constant throughout the time-Doppler plane.

The only available flexibility is to define u(t) in such a way as to minimise this

disturbance in certain areas of the plane.

Consider the sequence of rectangular pulses shown in Figure 6.4. It is characterised

by the pulse duration T , the inter-pulse spacing Tp, and the total number of pulses K.

1sometimes referred to as Woodward’s ambiguity function because of his pioneering work with it
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Figure 6.4: Rectangular pulse train

This sequence is frequently used in radar and sonar systems as it is easy to generate,

the optimum receiver is easy to implement and the parameters can be varied to match

different operating conditions [118].

By employing coded pulse sequences such as a rectangular pulse train for our transmitted

signal u(t), it is possible to control the width of the major peak in both directions of

the ambiguity function [109]. This is shown in Figure 6.5 using an approximate contour

representation of C(τ ′, f ′).

• We can decrease the width of the major peak in the frequency domain by increasing

Ta (or K).

• We can decrease the width of the major peak in the time domain by decreasing T

(corresponds to an increased bandwidth).

However, employing constant repetition signals of this type has the disadvantage of

including subsidiary peaks caused by the periodic structure. Although the distances

between these side peaks can be controlled using parameters of a(t) as shown in Figure

6.5, a much better alternative is to suppress their amplitudes by either using non-uniform

repetition rates or pseudo-random binary sequences of ak to modulate the signal a(t).
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Figure 6.5: An approximate contour plot (centred at the origin) for a pulse train.
The dark shaded areas indicate where C(τ ′, f ′) is significant. In the light shaded area,

C(τ ′, f ′) is small. In the unshaded area C(τ ′, f ′) is zero.

6.4.2 Finite Data Length

One important issue regarding the joint estimation of temporal and frequency domain

parameters is the processing of the received data. Since a shift in frequency is equivalent

to a continuous shift in the phase of the wave in propagation, thus detection of Doppler

shift is easier if the received data is observed over a large time period, i.e. Doppler reso-

lution ∝ observation interval. On the other hand, ToA resolution is largely determined

by the symbol period and sampling rate, and not directly effected by the length of the

observation interval. Hence, in order to accurately estimate both the ToA and Doppler

frequency, it is necessary to closely sample the received data over a large observation

period.

Considering the average pedestrian and vehicular speeds, the observation span at the

receiver can be in the region of a few milliseconds during which the LMDP will remain

approximately constant, e.g. even for a mobile device travelling at 100kph (28ms−1), its

change in position is only approximately 17cm during a time interval of 6ms. Therefore,

if possible, it is desirable to observe the received signal continuously over this time period

to maximise Doppler resolution as well as the effective SNR. However, even at a modest

sampling rate, observing continuously over a few milliseconds requires the storage and
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subsequent processing of a large amount of data (sampling at 20MHz over 6ms creates

120× 103 bits of data).

In this chapter, the received data is sampled based on the scheme in [31] where it is

observed over a window consisting of I regularly spaced time intervals of duration Ta

each. The spacing between the centres of two consecutive observation intervals is denoted

by Tf , where Tf > Ta. Hence, the observation duration and the observation span are ITa

and (I − 1)Tf + Ta respectively. The reason why the received signal is not continuously

observed, i.e. Tf = Ta, is that the absolute Doppler frequency of the impinging waves

is considerably smaller than the inverse of the burst duration. Hence, selecting Tf > Ta

makes it possible to increase the observation span, which leads to an enhancement of the

Doppler resolution, while limiting the growth of the observation duration and therefore

of the amount of measured data to be stored. By the Sampling Theorem 1/Tf must be

larger than twice the maximum occurring Doppler frequency, while I must be confined

in such a way that the observation span is smaller than the time interval during which

the parameters of the waves remain approximately constant.

In Figure 6.6, we plot the observed objective function in (6.3) of a single path channel

as a function of its ToA and Doppler frequency estimates, for three different observa-

tion duration and spans. In (a), the received data is continuously observed for 0.32ms,

producing 6400 samples as a result; however, the observation span is not long enough to

provide sufficient Doppler resolution in order to detect the correct Doppler frequency.

Ideally, the observation span should be the same as the time duration for which the

channel parameters are assumed to be approximately constant; but observing continu-

ously for such a long period will inevitably produce a large number of samples, as shown

in (b). Finally in (c), I = 4 regularly spaced observations of duration Ta = 0.08ms

were taken, a spacing of Tf = 2ms between consecutive observations ensures that the

observation span is same as in (b) while the observation duration remains unchanged.

Hence, sufficient Doppler resolution is achieved using the minimum number of samples.

In all three cases, the received data is sampled at 20Mhz, and the DoA is assumed to

be known.
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(b) Observation duration - 6.1ms, Observation
span - 6.1ms, 122000 samples
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(c) Observation duration - 0.32ms, Observation
span - 6.1ms, 6400 samples

Figure 6.6: Plot of objective function as a function of ToA and Doppler frequency for
a single path channel. DoA is assumed to be known. Actual parameters are: τ = 5T

and fd = 125Hz. SNR=5dB

6.4.3 Bounded Mutations

In standard mutative self-adaptive ES, a complete offspring is produced by the addition

of a normally distributed mutation component zi to the recombinant parent individual

according to:

ω′i = ωi + zi

zi ∼ σiNi(0, 1) (6.11)

naturally, the amount of mutation is controlled by the mutation strengths σi, which

are normally at their largest in the beginning of the evolution process. Therefore, a

certain proportion of the offspring are likely to be placed outside the search limits during

this period. This is shown in Figure 6.7, where the percentage of the invalid offspring
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immediately following mutation at each generation for shown for 4 different initial σi

values.
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Figure 6.7: Percentage of invalid offspring during the early generations for 4 different
initial σi values.

The standard ES approach to deal with these invalid offspring is to map the offending

offspring back to the value of the bound:

∀i : ωi = max
{
ω⊥,min

{
ω>, ωi

}}
(6.12)

such that all values are bounded within ω⊥ ≤ ωi ≤ ω> as desired. Since we have

normalised the values of ωi using the pre-defined values of τmax, θmax etc, then the lower

ω⊥ and upper ω> limits here are 0 and 1 respectively.

However, applying the cap in (6.12) to any invalid offspring is not ideal for two reasons:

• The lower ω⊥ and upper ω> bounds are normally chosen in such a way that

no multipath parameters are expected to lie outside (or even close) these limits,

hence, mapping invalid estimates back to these extreme values will not produce

much superior estimate!

• Self-adaptation in ES is based on the indirect link between the parameter estimates

and its associated mutation strength, i.e. a good estimate implies the mutation
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strength that helped to create it must also be good. However, in cases when the ac-

tual parameter are in fact located near either of the bounds, then an offspring that

over-stepped the boundary which is then subsequently mapped back to the bound-

ary will likely to be select for reproduction; which means the mutation strength

associated with this offspring (which is likely to be too big, since it created an

invalid offspring) will also be selected.

Therefore, we propose to include the following additional bound which operate on the

applied mutations zi ∼ N (0, σ2
i ) prior to the caps in (6.12). The idea is to keep the

number of invalid offspring in the early iteration as small as possible so that the “quality”

of the population is high, at the same time not modifying the p.d.f of the applied

mutations:

ωi + zi < ω⊥ 7→ zi = −zi

ωi + zi > ω> 7→ zi = −zi (6.13)

hence, the signs of any component ∀i : zi that will mutate an offspring to outside the

search boundary are reversed. The p.d.f of zi dictates that small mutations are much

more likely to occur than larger ones, which means that the probability of a negated

mutation shifting the offspring outside the opposite boundary is relatively small, e.g.

p(ωi + zi > ω>) > p(ωi− zi < ω⊥). In addition, by modifying the sign and not the value

of zi, we have not altered its distribution, since p
(
zi = z′

)
= p
(
zi = −z′

)
.

6.5 Simulations

The performance of the proposed joint amplitude, ToA, DoA, Doppler shift estimation

method have been assessed by means of Monte Carlo simulations. The transmitted signal

u(t) consists of a periodically repeated burst signal a(t), i.e. u(t) =
∑∞

i=−∞ a(t − iTa).
The burst signal is of the form a(t) =

∑K−1
k=0 akp(t− kTp), where [a0, . . . , aK−1] denote

the known binary sounding sequence (taking values ±1 with equal probability) of length

K and the rectangular shape pulse respectively. The pulse shape during Tp is related to

Ta according to Ta = KTp. We have elected to sacrifice the time resolution capability

somewhat by choosing T = Tp; this is done to reduce simulation time by using a lower

sampling frequency and still maintain a reasonable pseudo-random sequence length K.
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We use a ULA which comprises of M = 4 equi-distance elements with a spacing of

λ/2. The pseudo-noise sounding sequence consists of K = 80 rectangular pulse p(t)

with symbol period Tp = 1µs. Hence the duration of each repeated burst of sounding

sequence is Ta = 80µs. At the BS, the received data is sampled at an interval of

Ts = 50ns for a duration of Ta seconds at a time, while the interval between successive

observations is Tf = 2ms. I = 4 such intervals are normally taken, hence giving an

effective observation interval of To = 6.1ms.

Unless otherwise stated, the proposed ES method is initialised according to: [Ω]ij ∈
U [0, 1]; [Σ]ij ∈ U [0, 0.3];

6.5.1 Special Case - Estimation of One Wave

In this section, we present some empirical analysis on the convergence time of the pro-

posed method in a single path channel, to be specific, we are interested in the effect

of the quality of initial estimates on convergence. But first, we investigate the possi-

ble gain in performance from introducing the proposed bounded mutations step to the

standard ES method. The effects of reducing the number of invalid offspring on the ES

performance can be seen in Figure 6.8, where the RMSE values for all the parameter

estimates are shown at each generation in a single path channel. Hence, by keeping the

number of invalid offspring to a minimum in the early generations (0% in this example,

but not always possible), we have ensured that the number of potentially good offspring

is high, and the algorithm is able to reach convergence significantly quicker.

We ascertained in Chapter 4 that a key benefit of the ES method is its ability to conver-

gence to optimum estimates regardless of the initial state. In this experiment, we try to

get some insight on the effects of initial values on the convergence time of the proposed

method. Since the convergence rate of ES is highly dependent on the selection pressure

λ/µ and the mutation learning rates γ and γ′, our primary interest here is the relative

performances when the initial conditions vary, so these parameters are kept constant

here. The effects of selection pressure λ/µ have been discussed in Chapter 4.

Figure 6.9 shows the RMSE values for all parameter estimates at each generation based

on initial estimates containing 20%, 40% and 60% errors. It is worth nothing here
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Figure 6.8: RMSE values for all channel parameter at each generation for bounded
and unbounded mutations. SNR=10dB. L = 1.

that the magnitude of the errors are not important, since the same levels of errors will

have very different performance effects under vary channel conditions. Hence, it is more

informative to consider them simply as good, average and poor operating conditions.

We can observe that under good conditions (red dotted lines), SAGE is capable of

convergence under < 20 iterations. This concurs with the results in [31] when the

mulipath are well resolved. Under the same conditions, the convergence rate of ES is

unable to match that of SAGE, there are numerous reasons for this. As the extrinsic

property of ES suggests, even when the current population lies near the vinicity of

the optimum, a significant proportion of offspring produced via mutations will not be

towards the direction of the optimum at each generation, hence rate of progress is

somewhat sacrifised for space exploration. In addition, the initial mutation strength is

a fixed parameter that is often chosen to be large as possible while not generating too

many samples which lie outside the search range, regardless of how good the starting
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Figure 6.9: RMSE values for all channel parameters at each iteration number based
on initial estimates with 20% error (dot), 40% error (dash), and 60% error (solid).

Red-SAGE, Blue-ES. L=1. SNR=10dB.

point might be. Of course, if it is possible to know in advance how accurate the initial

values are, one could adjust the initial mutation strength accordingly to reduce degree

of divergence from the initial value, but this is clearly not possible. However, this type

of ideal operating conditions are very rarely observed in real life.

We should explain here why the ToA result for SAGE under good conditions appears

to be considerably better than all others (red dotted lines in Figure 6.9 (c)). Since we

have used a relatively low sampling frequency, it is not possible for the estimators to

achieve ToA estimation with very high precision. In fact, differences in delay which are

less than 0.05Tp here are indistinguishable and the steady state RMSE values attained

by the ES ToA estimates are already the lowest possible. The number precision in which

the optimiser in SAGE operates is not limited, hence the SAGE ToA estimates appears

to be improving indefinitely in this case. Had we used a very small lower bound on
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the mutations in our ES method, we would observe the same thing; but this is of no

particular benefit.

When more errors are introduced in the initial estimates, convergence rate of SAGE

declines dramatically (red dashed lines), this is particularly noticeable in the DoA and

Doppler estimates, in addition, there is also a significant increase in the steady state error

of its amplitude and ToA estimates. At this point, we have reached a limit at which

the standard SAGE algorithm can tolerate in initial errors. Upon further increases, it

is obvious that a non-convergence state has been reached (red solid lines).

On the other hand, under the same conditions, the proposed ES method exhibits very

little differences in convergence time (blue lines), i.e. the differences in convergence

time for all 3 test scenarios spans less than 10 iterations. In addition, in conformance

with previous results in Chapter 4, the same steady state estimation error is obtained

regardless of initial conditions. These are particularly useful properties since it is possible

to obtain consistent result from the proposed method under a variety of conditions

without the need to fine tune control parameters.

6.5.2 Multipath Performance

In this section, the performance of the proposed ES method is analysed in a multipath

environment, we start by comparing the estimation accuracy of the LoS component with

the SAGE algorithm under good operating conditions. As previously mentioned, it is

not possible to obtain good estimation results from SAGE unless reasonably accurate

initialisations are provided, hence this section makes comparisons against the SAGE

algorithm under good operating conditions, where accurate initialisation is available for

a number of strong specular multipath.

Figure 6.10 shows the normalised mean errors and standard deviations in DoA and

Doppler estimates of the LoS component. We can observe that even under these ideal

conditions, where the estimation performance of SAGE is quite good (single digit per-

centage of errors at the low SNR range), a performance gain in the proposed method

can still be observed. Where roughly 1/4 reduction in both mean error and standard

deviations can be seen at 0dB.
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Figure 6.10: Normalised mean errors in DoA and Doppler estimates of the LoS
component. (10� 50)-ES. L = 3

Of course, the real advantage of ES as demonstrated previously is its total independence

from initialisation, even for high dimensional problems. Figure 6.11 shows the distribu-

tions of the ToA, DoA and Doppler estimates from the proposed ES method in a strong

multipath channel using random initialisations, where all 6 multipath are contained in

a delay spread of ∼ 3 symbol periods. On the x-axis, the ticks and labels indicates the

actual values of the channel parameters in all three sub-figures. Straight away, we can

observe the proposed method exhibits excellent resolution capabilities, such that all 6

components are clearly distinguishable in each of the parameter domains. Multipath

which closely resides in any single parameter dimension are resolved with ease, as shown

by the the two DoA components which differ by only 1 degree, as well as the group of

three Doppler frequencies that span only 13Hz.

6.6 Summary

In this chapter, we have extended our work in Chapter 4 to incorporate mobility in our

system and presented a joint amplitude, ToA, DoA, Doppler shift estimation method

based on the ES algorithm. A bounded mutation mechanism is introduced to reduce

the number of invalid offspring produced at each generation. Simulation result shows

by keeping the number of invalid offspring at a minimum, a significant gain in conver-

gence is possible compared to standard ES algorithm. In comparisons with the SAGE
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Figure 6.11: Distributions of ToA, DoA and Doppler estimates using random initial-
isation for (15 � 100)-ES in a strong multipath channel. The x-axis labels indicates

position and value of actual channel parameters. SNR=20dB. L=6.

algorithm, the proposed method is shown to have superior estimation accuracy as well

as better immunity from poor initialisation. Finally, excellent resolution capabilities of

the proposed method is demonstrated in a strong multipath environment.



Chapter 7

Conclusion

In the next generation of communications networks, the telecommunications applications

require various types of context information of the environments, persons, and devices

to offer flexible and adaptive services in wireless networks. Applications that exhibits

location aware intelligence offers significantly improved quality of service to the mobile

subscriber, as well as enhanced safety, security, and operational efficiency to the location

context dependent business and organisations. In this context, accurate, reliable and

real-time mobile wireless positioning technologies are required, of which the estimation

of location dependent channel parameters is an integral part of the positioning process.

Due to the unique nature of wireless positioning using mobile signal measurements, small

errors in parameter estimation typically leads to large errors in final position estimates.

Consequently, the estimation algorithms adopted by wireless positioning systems must

provide accurate parameter estimates, even under challenging conditions. It is clear

that methods which jointly estimates more than one type of channel parameters have

significant advantages in comparison to traditional techniques, not only they are capa-

ble of resolving multipath which are closely spaced, the availability of multiple channel

parameters at each base station enables the utilisation of various emerging hybrid and

fingerprinting positioning techniques. The intelligent joint parameter estimation tech-

niques discussed in this thesis are highly robust and accurate methods which are strong

candidate for the application of wireless mobile positioning.
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7.1 Summary of Contributions

The main focus of the work in this thesis has been on the intelligent joint estimation

techniques of location dependent channel parameters. The main contributions of this

thesis are:

• A comprehensive critical review of the current and most popular methods for the

joint estimation of location dependent channel parameters was given. Empirical

analysis on a number of key issues such as estimation accuracy, multipath resolu-

tion, computational complexity and model error handling have been addressed.

• An adaptive interference cancellation technique has been proposed to improve

the performance of the SAGE algorithm under low SNR and/or weak multipath

conditions, where traditionally, the performance of the standard SAGE algorithm

is poor due to the nature of the brute force interference cancellation approach.

Simulation results shows the proposed method is less susceptible to residual errors

accumulated from interference cancellation and the estimation accuracy of the

weaker multipath are significantly improved.

• An intelligent joint channel parameter estimation technique based on the applica-

tion of Evolution Strategy is proposed. Being a type of an Evolutionary Algorithm,

the proposed method utilises a population of candidate solutions to simultaneously

search for the maximum likelihood estimates of the concerned channel parame-

ters. The proposed ES method is shown to overcome some key weaknesses such as

low SNR performance and dependency on initialisation of the traditional iterative

maximum likelihood solutions like SAGE, while also being less computationally

demanding (under certain conditions). A comprehensive empirical analysis of the

tuning parameters relating to the proposed method demonstrates its flexibility as

well as its ability to be self manageable.

• A two tier Hierarchically Organised Evolution Strategy is proposed to jointly es-

timate the number of multipath as well as the channel parameters. The proposed

method utilises the lower level strategies to jointly estimate the channel parameters

while the upper level performs conditional selection of the lower levels to search

for the channel order. The proposed method is shown to be highly independent of
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initial states (for both channel parameters and channel order), while at the same

time insensitive to tuning parameters.

• The proposed ES method was also extended to further estimate the Doppler shift

of each multipath. During which a modified mutation bound was introduced to

reduce the number of invalid offspring produced in the standard ES algorithm. The

proposed changes improve the convergence rate of the standard ES significantly

under certain conditions.

7.2 Future Work

Further research can be carried out building on the work presented in this thesis. The

following are some of the areas which deserve attention in future research.

• The true potential of Evolution Strategies cannot be realised unless it is subject

to parallel implementations. Evaluation time of the objective function tends to

be the most computationally demanding step in any EA, and being a totally in-

dependent operation, significant gains in computation time can be expected if the

evaluations of offspring can be somewhat parallelised. A brief overview of EA

parallelisation architecture is given in [83]. Although the implementations of our

proposed intelligent estimation techniques are vectorised wherever possible, it is

by no means an efficient parallel implementation.

• We noticed that the convergence rate of ES remains almost unaffected by the qual-

ity of initial estimates. This is undesirable if the channel conditions are good and

accurate initialisations are available. Since ES estimation and convergence perfor-

mance are both directly related to the population (µ) and offspring (λ) sizes, it

makes sense to adopt a mechanism of adjusting these values dynamically depend-

ing on current conditions. A recent example is proposed in [119] for operation in

noisy environments, where offspring size is increased when the algorithm struggles

to make significant progress. A similar strategy can be applied directly in good

conditions to maximise convergence.

• Our intelligent channel parameter estimation methods proposed in this thesis could

easily be adapted to perform other channel parameter estimation, e.g. channel
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impulse response, delay spread, channel coherence time, etc. In particular, a most

useful application is the task of joint channel order and channel estimation, where

our proposed joint detection and estimation meta-ES method in Chapter 5 is an

ideal candidate.

• Conventional positioning techniques can be viewed as a two-step procedure: pa-

rameter measurement followed by position estimation. These approaches have the

disadvantage of making a premature decision on an intermediate parameter (e.g.

TDoA) in the first step, thus discarding useful information. A better approach

would use the principle of least commitment: preserve and propagate all the in-

termediate information to the end and make an informed decision at the very last

step [120], hence solving the positioning problem directly in a single step. This

approach essentially attempts to find the point in space which yields maximum

energy, which due to the high dimensional optimisation involved, has had limited

use to date.

• Although many positioning devices and services are currently available, it is still

necessary and challenging to develop an integrated and seamless positioning plat-

form to provide a uniform solution for different network configurations. If suc-

cessful, the integration of different positioning systems within various networks

would enable a continuous delivery of location context information spanning vast

distances. Much work remains to be done in this area of system inter-operability.



Appendix A

Derivation of LMS Gradient

Estimate

The method of steepest decent is used to find the vector w(k) , [w
(k)
1 , . . . , w

(k)
L ] at time k

that minimises the quadratic function E
[∣∣e(k)(t)

∣∣2]. The error function e(k)(t) is defined

as the difference between the received signal y(t) and its estimate at the kth step:

e(k)(t) = y(t)−
L∑
`=1

w
(k)
` s`(t; ω̂

(k)
` ) (A.1)

where s`(t; ω̂
(k)
` ) is the estimated contribution to the received data from the `th path at

the kth step and ω̂
(k)
` , [β̂

(k)
` , τ̂

(k)
` , θ̂

(k)
` ] is the vector of channel parameter estimates of

the `th path at the kth step.

Instead of solving for (A.1) directly, a coefficient update equation of the form [78]

w(k+1) = w(k) + ∆w(k) (A.2)

is used, where, ∆w(k) is a correction that is applied to the coefficients w(k) to form a

new set of coefficients w(k+1). The key is then to control ∆w(k) such that the sequence

of corrections should decrease the mean square error E
[∣∣e(k)(t)

∣∣2]. In the method of

steepest descent, each correction involves taking a step in the direction of maximum

descent down the quadratic error surface. Mathematically, this direction is given by the

gradient, which is the vector of partial derivatives of E
[∣∣e(k)(t)

∣∣2] w.r.t. the coefficients
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w(k):

∇E
[∣∣e(k)(t)

∣∣2] =


∂E

[∣∣e(k)(t)∣∣2]
∂w1

...

∂E

[∣∣e(k)(t)∣∣2]
∂wL

 (A.3)

Finally, the LMS algorithm simplifies the steepest decent method by using one-point

sample mean, and the expectation requirement can be relaxed. Assuming w(k) is com-

plex, then the gradient vector is the derivative of
∣∣e(k)(t)

∣∣2 w.r.t. w∗(k). Writing in

matrix notations, the partial derivative for the `th component is:

∂

∂w∗`

{
M∑
m=1

N∑
n=1

E(m,n)E∗(m,n)

}

=
∂

∂w∗`

{
M∑
m=1

N∑
n=1

[
Y(m,n)−

L∑
`=1

S`(m,n)w`

][
Y∗(m,n)−

L∑
`=1

S∗` (m,n)w∗`

]}
we drop the indices m and n for now to reduce clutter

=
∂

∂w∗`

{[
YY∗ −Y

L∑
`=1

S∗`w
∗
` −Y∗

L∑
`=1

S`w` +
L∑
`=1

S`w`

L∑
`=1

S∗`w
∗
`

]}

=
∂

∂w∗`

{[
−Y

L∑
`=1

S∗`w
∗
`︸ ︷︷ ︸

F

+

L∑
`=1

S`w`

L∑
`=1

S∗`w
∗
`︸ ︷︷ ︸

�

]}

Partial derivatives ofFand� :

F′ =
∂

∂w∗`

{
−Y

[
S∗1w

∗
1 + . . .+ S∗`w

∗
` + . . .+ S∗Lw

∗
L

]}
= −YS∗`

�′ =
∂

∂w∗`

{
L∑
`=1

S`w`

[
S∗1w

∗
1 + . . .+ S∗`w

∗
` + . . .+ S∗Lw

∗
L

]}
=

L∑
`=1

S`w`S
∗
`

CombiningF′and�′and applying summation gives:

=
M∑
m=1

N∑
n=1

[
−YS∗` +

L∑
`=1

S`w`S
∗
`

]

=
M∑
m=1

N∑
n=1

[
− S∗`

(
Y −

L∑
`=1

S`w`

)]

=

M∑
m=1

N∑
n=1

[
− S∗` (m,n)E(m,n)

]
for ` = 1, . . . , L

(A.4)
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Vectorisation of Fitness

Evaluations

Without parallel implementations, a computationally efficient method of evaluating the

fitness values for all λ offspring is by vectorising the computation of the for loop in

Algorithm 4.1. The computational bottleneck here is the summation of the estimates of

all paths in (4.3):

ŷ =
L∑
`=1

β̂`a(θ̂`)g(t− τ̂`) (B.1)

which is evaluated λ times for each ES generation.

Define GES as the λL×N matrix formed by stacking the delayed pulse shape samples

according to:

GES ,
[
g
(
τ

(1)
1

)
, . . . ,g

(
τ

(λ)
1

)∣∣∣g(τ (1)
2

)
, . . . ,g

(
τ

(λ)
2

)∣∣∣ . . . ∣∣∣g(τ (1)
L

)
, . . . ,g

(
τ

(λ)
L

)]T
(B.2)

where τ
(j)
` represents the jth candidate solution for the ToA of the `th path.

Similarly, define BES as the λL×N matrix of all candidate amplitudes according to:

BES ,
[
β

(1)
1 , . . . ,β

(λ)
1

∣∣∣β(1)
2 , . . . ,β

(λ)
2

∣∣∣ . . . ∣∣∣β(1)
L , . . . ,β

(λ)
L

]T
(B.3)

with each 1×N vector β
(j)
` , (β

(j)
` 1N )T ; where β

(j)
` represents the jth candidate solution

for the amplitude of the `th path.
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Finally, by stacking all the candidate array responses into a λML×λL matrix according

to:

AES ,



a
(
θ

(1)
1

)
. . .

a
(
θ

(λ)
1

)
a
(
θ

(1)
2

)
. . .

a
(
θ

(λ)
2

)
. . .

a
(
θ

(1)
L

)
. . .

a
(
θ

(λ)
L

)


(B.4)

where θ
(j)
` represents the jth candidate solution for the DoA of the `th path. The sparse

representation of AES should be used in practice to reduce storage requirement.

Then, the evaluations of ŷ in (B.1) for all λ offspring in matrix notation are contained

within the product:

ŶES = AES

(
BES �GES

)
(B.5)

which can be extracted with ease using built-in Matlab functionalities.
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