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Abstract

This study reflects a recent shift towards the study of
early stages of expert memory acquisition for chess po-
sitions. Over the course of fifteen sessions, two subjects
who knew virtually nothing about the game of chess
were trained to memorise positions. Increase in recall
performance and chunk size was captured by power func-
tions, confirming predictions made by the template the-
ory (Gobet & Simon, 1996, 1998, 2000). The human
data was compared to that of a computer simulation run
on CHREST (Chunk Hierarchy and REtrieval STructures),
an implementation of the template theory. The model
accounts for the pattern of results in the human data, al-
though it underestimates the size of the largest chunks
and the rate of learning. Evidence for the presence of
templates in human subjects was found.

Introduction
There has been widespread research into experts’ remark-
able memory for domain-specific material. Much interest
stems from how experts apparently overcome normal
cognitive limitations, such as limits in short-term mem-
ory (STM). Research has covered a wide variety of areas,
including games, music, academic domains, mnemonics,
and sports. In developing theories of expertise, focus has
been almost entirely centred on comparing high perform-
ers, such as Grandmasters in chess, with intermediate in-
dividuals and novices. Relatively little is known, how-
ever, about the details of the very early stages of learning
in complex domains. This study aims at helping to bridge
this gap, both by collecting new empirical data and by
carrying out computer simulations.

Chase and Simon’s (1973) Chunking Theory
In studying strong and weak chessplayers in a problem-
solving situation, De Groot (1965) found that there was
no real difference in type of heuristics used, depth of
search, or number of positions searched. However, in a
recall task for briefly-exposed positions, he found a clear
difference in performance. Masters and Grandmasters
achieved near perfect recall, while performance dropped off
dramatically below Master level. De Groot concluded that
expertise is not dependant on superior information-
processing skills, but on the acquisition, over years of
dedicated practice, of a large amount of domain-specific
information, which can be rapidly accessed during prob-
lem solving.

Chase and Simon (1973) gathered further experimental
data and developed an influential theory of expertise, the
chunking theory. A chunk is defined as long-term mem-

ory (LTM) information that has been grouped in some
meaningful way, such that it is remembered as a single
unit. Each chunk will only take up one slot in STM, in
the form of a ‘label’ pointing to the chunk in LTM. Us-
ing Miller’s (1956) estimate, Chase and Simon proposed
that 7±2 chunks can be stored in STM (this estimated has
later been revised to four for visual material; Zhang &
Simon, 1985, Gobet & Simon, 2000). In chess, a chunk
may consist of up to 4-5 pieces, which are related to each
other in any number of different ways, such as colour and
proximity. Therefore, while a novice may only be able to
recall around 7 single-piece chunks, a master can recall
around 7 multi-piece chunks, more than 30 pieces. Even
though recall performance of random positions is a great
equaliser between Masters and weaker players, the former
still maintain a small but reliable advantage over the lat-
ter. The chunking theory accounts for this superiority in
terms of the small patterns that will appear by chance in
random positions (Gobet & Simon, 1998).

Chase and Simon’s (1973) study included a copy task of
positions in full view, as well as a recall task of briefly-
presented positions. Glances at the board being copied,
and latencies greater than 2 seconds between the place-
ments of pieces during recall, were used to analyse the
size and nature of chunks. They found that the size of
chunk increased as a function of skill level. Additional
support for the chunking theory was found in several stud-
ies where the concept of chunk was studied in detail (see
Gobet & Simon, 1998, for review).

Aspects of the chunking theory were implemented in a
computer program by Simon and Gilmartin (1973), who
proposed that LTM is accessed via a discrimination net.
Identification of a chunk in LTM results in a pointer to
that chunk being placed in a limited-capacity STM. Ex-
pertise requires the acquisition of a large database of
chunks, with the appropriate discrimination net.

From Chunks to Templates
Although the chunking theory has explained many of the
phenomena discovered in expertise research (Gobet, 1998),
a few problems were later uncovered. One of its assump-
tions was that insufficient time is available during the
brief presentation time of a position for any LTM encod-
ing. Therefore, recall depends only on labels in STM
pointing to LTM chunks. However, several experiments
using interfering tasks have shown that LTM encoding
does in fact happen (e.g., Charness, 1976; Gobet &
Simon, 1996).

The template theory (Gobet & Simon, 1996), which is
in part implemented in CHREST (Chunk Hierarchy and



REtrieval STructures, Gobet & Simon, 1998, 2000), was
proposed to account for these data, while keeping the
strengths of the original chunking theory. The most im-
portant improvement over the chunking theory is the
presence of templates, which are larger and more sophisti-
cated forms of retrieval structure than chunks. Like tradi-
tional schemas in cognitive science, templates have a core
that remains unchanged, and a set of slots, perhaps with
default values, whose value can be rapidly altered.
CHREST incorporates mechanisms explaining how
chunks evolve into templates through extensive experi-
ence, using frequent but variable information to create
slots. The rapid encoding leaves the information safe from
interference in STM, and so the template theory over-
comes the problems created by the interference studies.

A Shift to Early Learning
The importance and influence of the chunking theory is
clearly evident in the literature, and certainly not limited
to the domain of chess. However, the research to date has
been almost entirely focussed on the higher skill levels,
as it naturally should in the study of expertise. But surely,
when studying the acquisition of a skill, the first few
hours of learning can be equally informing on the mecha-
nisms involved. An important shift towards the early
stages of expertise came from Fisk and Lloyd (1988), who
studied novices’ acquisition of skilled visual search in a
chess-like game. They found that learning followed a
negatively accelerating learning curve, in which im-
provement was very rapid at first but quickly became
much slower. They could not, of course, have seen this so
clearly by studying later stages of skill acquisition alone.
The presence of this learning curve, which has also been
found in other domains (Rosenbloom & Newell, 1987),
could provide an explanation of why so many more years
of practice are needed to become a Master than to become
a good amateur.

In a similar study, Ericsson and Harris (1990) trained a
novice chess player to the point when she could recall
briefly-presented game positions to the standard of a Mas-
ter player. However, performance on random positions did
not reach that of Masters’. Saariluoma and Laine (2001),
extending Ericsson and Harris’ (1990) study, had two nov-
ices learn a set of 500 positions over the space of a few
months. The participants were tested intermittently with a
brief (5 s) presentation task. They had to recall 10 game
and 10 random positions in each testing session. The re-
sults showed a clear improvement in percentage correct,
from about 15% to 40-50% for game positions. The
learning curve also looked like a power function, as found
by Fisk and Lloyd for skilled visual search, with the
greatest recall percentage increase within the first 100-150
positions learned. In addition, a slight increase was seen
in percentage correct for random positions.

Saariluoma and Laine (2001) compared their human data
to two computer models. Their aim was to differentiate
between two possible methods for constructing chunks,
both emphasising the flat (as opposed to hierarchical)
organisation of chunks in LTM. From their simulations,
they concluded that frequency-based associative models fit

human data better than those based on spatial proximity
of pieces. However, Gobet (2001) shows that CHREST,
which uses a proximity-based heuristic for chunk con-
struction, accounts for Saariluoma and Laine’s human data
equally well as their frequency-based heuristic. CHREST
also accounts for the subtle effect found for random posi-
tions, which none of Saariluoma and Laine’s models
could do.

Preview of the Experiment
The present study differs from Saariluoma and Laine’s in
three important ways. First, while their participants had
some experience with chess prior to the experiment, our
participants were selected on the criteria that they knew as
close to nothing about chess as possible. Second, the
diagnostic power of Saariluoma and Laine’s results is
weakened by the lack of indication about how well the
participants had learned the positions during the training
sessions. In the present study, the participants are tested
after every position in the learning phase. This helps keep
motivation going, and keeps tabs on when concentration
may have faltered. Third, presentation and reconstruction
of positions was done on the computer, which allows
precise and detailed data collection. In particular, our appa-
ratus records latencies in piece placement, which can be
used to infer chunks (Gobet & Simon, 1998).

With regard to the computer simulation, the present
study is fundamentally different to Saariluoma and
Laine’s. While these authors were interested in comparing
general learning algorithms, the present study aims at
exploring how well a computational model that had al-
ready been well validated with experts’ data could account
for novices’ data.

Human Data

Method

Subjects
There were 2 subjects, CE and JD, both female Psychol-
ogy Undergraduates at the University of Nottingham, who
had never taken any interest in chess and didn’t know the
rules. They were paid £6 per session and were told that
they would be paid a bonus of between £5 - £15 at the
end, depending on performance.

Materials and Stimuli
Positions, taken from a large database of Masters’ games,
were presented on a Macintosh 2cx, and subjects used the
mouse to reconstruct positions. The software was the
same as that used by Gobet and Simon (1998), to whom
the reader is referred for additional detail.

Each session started with a training phase and ended
with a testing phase. During training, 20 positions were
presented for 1.5 minutes each. All positions were after
the 20th move of Black. Of the 20 positions, 12 were
game positions selected randomly from the database. The
remaining 8 were pairs of game positions selected from 4
specific types (or ‘families’) of positions, which were
used to help induce the putative learning of templates.
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Twenty positions were used in testing, with each pre-
sented for 5 seconds. Four were ‘old’ positions taken from
the training phase, 2 of the game and 2 of the family po-
sitions. Four new game positions were selected randomly
from the database. A new position was selected from each
of the 4 family positions used in training. A position
from each of 4 new families was also selected. The re-
maining 4 were random positions, created by shuffling the
location of pieces from a game position. The order in
which the positions were presented in both training and
testing was randomised and different for each subject, as a
control for any systematic effects of presentation order.

Procedure
At the start of both training and testing, the subjects were
presented with an empty board on which they could famil-
iarise, or re-familiarise, themselves with the place-
ment/removal of pieces. This also gave them control over
when the first position was to be presented, by clicking
an “OK” button, as they did with each successive position
after reconstruction. There was a pause between the train-
ing and testing phases for as long as the subjects wanted,
which was never more than 5 minutes.

CE      JD

Note:  ‡  p < .001
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(b) Simulations

Results
To keep the data presentation short and highlight the con-
trast with random positions, we have grouped all the non-
random positions into a single category called ‘game’
positions, both for the human data and the simulations,
and both for training and testing.

The subjects varied greatly on the amount of time they
spent on recall in both the training and testing phases, in

Figure 1.    Training phase: Average percentage of correct
placements, omissions and commissions for game posi-
tions against session number. Each position could be

studied for 1.5 minutes.

Table 1.    Testing phase: Power functions (y = axb) com-
puted for percentage correct against session number.

a b r 2 a b r 2

Game 18.1 .24 .86‡ 17.7 .32 .95‡
Human
data

Rand. 13.0 .10 . 1 6 12.2 .10 . 1 3

Game 19.4 .19 .71‡ 28.5 .10 .66‡
Model

Rand. 8.7 .18 . 3 5 14.2 .00 . 0 0

Figure 2   . Testing phase: Average percentage correct for
game and random positions as a function of session.
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Table 2   . Testing phase: Power functions (y = axb) com-
puted for the size of the largest chunk against session.
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Note:  *  p < .01    ‡ p < .001
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that JD spent consistently more time than CE. For exam-
ple, during training, CE used consistently between 2500 s
and 3000 s, while JD used between 3000s and 4000 s.

Performance with Training Positions
Figure 1 shows the relationship between the percentage of
correctly placed pieces and that of errors of commission
(pieces placed incorrectly) and omission (pieces not
placed) in the training phase, over the fifteen sessions.
For both participants, a power function accounts for the

percentage correct well (for CE: 39 * N.31, r2 = .93, p<
.001, and for JD: 55 * N.23, r2 = .81, p<.001, where N
stands for the session number). Both subjects were averag-
ing above 90% correct towards the end, and JD was often
recalling full positions, as shown by the higher average.

CE made a small percentage of commission errors
across the sessions, especially at the start, leaving omis-
sions as an almost direct reflection of the percentage cor-
rect. JD made more commission errors in the first ses-
sions than CE. In both cases, omissions were more fre-
quent.

Performance with Testing Positions
Figure 2a shows the percentage of pieces correctly re-
placed during testing for the two subjects, for game and
random positions. The graph suggests the presence of
power functions for performance against session number
with game positions, but not with random positions.
This impression is confirmed in Table 1. Figure 2a and
Table 1 also show that there was a slight improvement
for the recall of random positions, although this does not
result in statistically significant power functions.

Size of Chunks
The average median size of chunk for each type of posi-
tion was extracted from the data (counting single-piece
placements as chunks). Pieces placed in succession with a
latency of less than 2 seconds were classified as belonging
to the same chunk (Chase & Simon, 1973; Gobet &
Simon, 1998). Analysis showed that the average median
size of chunk increased as a function of session number,
often with a significant power function. However, the
nature of the data, which was often highly skewed due to
many single-piece chunks (particularly by JD), meant that
the median was a particularly noisy and volatile measure
of the average chunk size.

The average size of the largest chunk within a position
was a more robust measurement of the increase in chunk
size. The size of the largest chunk increased reliably dur-
ing training, both for CE (7.42 * N.21, r2 = .77, p<.001)
and JD (7.09 * N.22, r2 = .97, p<.001). Towards the end,
the average largest chunk contained up to 10 pieces. A
similar increase was observed for testing (Figure 3).

Table 2 shows the results of power functions computed
on the average size of largest chunk against session num-
ber, for testing. Significant power functions are displayed
across all types of position, except random for JD.

Number of Chunks Recalled
Two measures of the number of chunks recalled were
used. One measure counted the average number of all
chunks, including single-piece chunks. The other measure
only took the average number of chunks that contained at
least 2 or more pieces. The first measure tended to over-
estimate the average number of chunks, as placements of
single pieces may indicate guessing. The second measure
tended to under-estimate the number of chunks recalled, as
single-piece placements are just as likely as not to be
valid chunks, particularly for beginners. Due to the large
number of single chunks recalled by JD, as compared to

a b r 2 a b r 2

Game 4.2 .24 .84‡ 5.6 .18 .77‡Human
data

Rand. 2.5 .23 .54* 4.4 .02 . 0 1

Game 3.5 .28 .86‡ 5.0 .11 . 5 4 *Model

Rand. 2.4 .18 . 5 3 * 4.0 -.01 . 0 1

Figure 3   . Testing phase: average largest chunk for game
and random positions as a function of session number.



CE (probably as a result of guesswork), we only discuss
the total number of chunks excluding single pieces.

During training, the two subjects showed an opposite
pattern: CE recalled increasingly more chunks as a func-
tion of session number, while JD recalled increasingly
fewer. By the end, however, both were recalling around 3
chunks. Given the long presentation time, however, the
number of chunks reflects mostly subjects’ strategies and
their readiness to guess.

Testing, where positions are presented for only 5 sec-
onds, offers a better way of measuring STM capacity, as
there is little time to encode information into LTM. As
predicted by the template theory, the number of chunks
recalled during testing by CE and JD was consistently 3
or less, even when counting single pieces as chunks.
Only occasionally did either subject exceed 3 chunks.

Computer Simulations

Methods
We essentially used the same version of CHREST as that
described in Gobet and Simon (2000), to which the reader
is referred for additional detail. There were two differences.
The first was that eye-movement heuristics based on at-
tack and defence were disabled. The second relates to how
much CHREST knows about piece location. In previous
simulations, it was assumed that players could readily
encode the piece and its location as a single chunk (e.g.,
“Pawn on g4”). Here, given that we dealt with absolute
beginners, we assumed that they had to construct such
chunks. They would first learn a chunk for “Pawn”, then
one for the column “g”, and finally one for the row “4”.
They would then combine these bits of information by
chunking to learn the chunk “Pawn on g4”.

For the simulations, CHREST was run twice, using
the same order of positions and the same time per training
session as each subject (see De Groot & Gobet, 1996, and
Gobet & Simon, 2000, for details about the time parame-
ters used in CHREST).

Results
We focus on the results from the testing phase, analysing
in turn the percentage correct, the size and number of
chunks, and the correspondence between humans’ chunks
and CHREST’s templates. After 15 sessions, the model
had acquired 4,772 chunks and 107 templates for the
simulation of CE, and 5,811 chunks and 111 templates
for the simulation of JD.

Percentage Correct
Figure 2b shows the results for the average percentage
correct for the simulations, and Table 1 gives the power-
function analysis. The overall percentage correct and the
fluctuations of performance from session to session are
reasonably similar to that of CE and JD, both for game
and random positions. With both CHREST and the hu-
man subjects, power functions account for the recall of
game positions, but not of random positions. However,
learning was slower in CHREST in the simulation of JD,

although, in this case, performance after one training ses-
sion started at a higher percentage correct than with JD.
The correlation between model and human data is .80 for
the estimated a, and .22 for the estimated b.

Size and Number of Chunks
Figure 3b shows the results for the size of the largest
chunk for the model, and Table 2 gives the results of the
power functions used to fit the data. The correspondence
between human data and model is good for CE, and a bit
less for JD. Interestingly, the model captures the differ-
ences in parameters between CE and JD—which is due
either to the order of positions or to the difference on time
spent on task by the two subjects. However, although the
absolute values are not far off, the model underestimates
the size of the larger chunks, in particular with JD. The
correlation between model and human data is .99 for the
estimated a, and .93 for the estimated b.

Given its limited-capacity STM and the relatively small
number of templates it possesses, especially at the early
stages of learning, CHREST predicts that the number of
chunks should not exceed three. As we have seen, this
prediction was beautifully borne out by the data.

Templates
The templates that were formed by CHREST in the
course of the simulation were compared to the human
data. A search was carried out to match these templates to
the groups of pieces recalled by the subjects, as defined by
latencies. Only groups containing 4 or more pieces were
included in the search, and a match was made only when
at least 4 pieces were the same in both the template and
group. The types of position searched were those belong-
ing to the ‘position families’ used during the training
phase (see section ‘Material and Stimuli’).

For training, out of the total number of chunks recalled
by the subjects containing 4 or more pieces, about half
were explained by CHREST’s templates. During testing,
this drops to nearer 30% of the total number of chunks for
both subjects. Of the pieces accounted for by the tem-
plates, most of these were in the core. This is particularly
true of CE, who for the majority of templates, placed no
pieces predicted to be in the slots. JD, however, placed
about 25% of the template pieces in the slots.

Discussion
The testing phase showed an increase in recall perform-
ance across sessions, an increase that is captured by power
functions for game positions. This replicates the nega-
tively accelerating learning curve found by Ericsson and
Harris (1990), Fisk and Lloyd (1988) and Saariluoma and
Laine (2001), and confirms predictions made by the
chunking and template theories. The slight, but not sig-
nificant, improvement for random positions is also pre-
dicted by the theory.

Another phenomenon predicted by both theories is the
stability in chunk number across testing sessions; the
number of chunks recalled was consistently 3 or below,
for both subjects. Because of the limits of STM, only a
certain number of chunks can be stored for recall of



briefly-presented positions. Even if a template is used in
the later stages of the experiment, its contents would be
output as a single sequence of rapid placements, which
would not inflate the number of STM chunks.

The substantial size of the largest chunk was predicted
by the template theory, but not by the original chunking
theory. Towards the end of the testing sessions, the sub-
jects were recalling chunks containing an average of 10
pieces, meaning that some individual chunks were much
larger still. The chunking theory assumed chunks contain-
ing at most 4-5 pieces.

Overall, the simulations accounted for the human data
reasonably well, especially when one considers the fact
that no parameter of the model was varied to improve the
fit of the simulation. The differences were that learning
was somewhat slower and chunks smaller than with the
human data. Power functions captured the same dependent
variables in the humans and in the simulations, although
the estimated parameters differed somewhat. Templates
formed by the simulation matched a substantial number of
piece groupings by the subjects. The matching method
was rather simple, however, and better methods should be
developed to assess the presence of templates.

The exact method of chunk construction could be an
underlying factor towards explaining some of the differ-
ences between humans and the model. As noted above,
CHREST first learns the piece (e.g. ‘P’=white pawn),
then the location horizontally (e.g. ‘Pg’), and finally the
exact position (e.g. ‘Pg4’). The subjects in the present
study did not show any sign of using such notation, and
subjects did not have to know the name of the piece (and
often did not), or the exact location. The subjects were
probably more likely to recognise shapes and patterns of
pieces, like chains of pawns, which they both mentioned
during the course of the experiment.  However, the fact
that about 50% of subjects’ placements in training were
explained by CHREST’s templates suggest that the two
types of representation are not fundamentally different.

The data from training highlight marked differences be-
tween the two subjects, which are reflected to some degree
in their performance during testing, and are worth some
discussion. One difference is that JD made almost as
many errors of commission as errors of omission near the
beginning of the experiment. This suggests that she was
guessing a lot more than CE, who made almost no errors
of commission. Indeed, the number of chunks JD recalled
decreased as a function of session (despite her increased
performance), suggesting that she may have been guess-
ing numerous, small chunks, possibly incorrectly. We
speculate that the extra time spent on recall by JD is the
result of time spent deliberating over whether she had
recalled all that she knew. CE spent no such extra time
before moving on to the next position, and so time spent
simply increases as a function of the number of pieces
being placed (hence the opposite trends between the two
subjects). JD did appear to be especially highly motivated
to perform to the best of her abilities (reflected in time
spent and guesses).

In spite of these individual differences, the predictions
of the template theory proved robust with regard to chunk

size, STM capacity, and the shape of learning. As a first
trial at comparing the simulation data to detailed human
data for complete novices, the results are promising, and
suggest that the same cognitive mechanisms operate with
novices and experts.
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