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Abstract

This study reflects a recent shift towardsthe study of
early stagef expert memory acquisitionfor chesspo-
sitions. Over the course of fifteen sessiotvg) subjects
who knew virtually nothing aboutthe game of chess
were trained to memorise positions. Increasein recall
performance and chunk sizeas capturedby power func-
tions, confirming predictions madey the templatethe-
ory (Gobet & Simon, 1996, 1998, 2000). The human
datawas comparedto that of a computersimulation run
on CHREST (Chunk Hierarchy armEtrieval STructures),
an implementation of the template theory. The model
accounts for the patterof resultsin the humandata,al-
though it underestimateshe size of the largest chunks
and the rate of learning. Evidencefor the presenceof
templates in human subjects was found.

Introduction

Therehasbeenwidespreadesearchinto experts’ remark-
able memoryfor domain-specifiomaterial.Much interest
stems from how experts apparently overcome normal
cognitive limitations, suchaslimits in short-termmem-
ory (STM). Researchhascovereda wide variety of areas,
including games,music, academicdomains,mnemonics,
andsports.In developingtheoriesof expertise focus has
beenalmostentirely centredon comparinghigh perform-
ers, suchas Grandmastergn chesswith intermediaten-

dividuals and novices. Relatively little is known, how-

ever, about the details tifie very early stagesof learning
in complex domains. This study aims at helpingoridge
this gap, both by collecting new empirical dataand by

carrying out computer simulations.

Chase and Simon’s (1973) Chunking Theory

In studyingstrongand weak chessplayersn a problem-
solving situation, De Groot (1965) found that there was
no real differencein type of heuristics used, depth of
search,or numberof positions searchedHowever,in a
recall task for briefly-exposedpositions, he found a clear
difference in performance. Masters and Grandmasters
achieved near perfect recall, whperformancedroppedoff
dramatically below Mastdevel. De Groot concludedthat
expertise is not dependanton superior information-
processingskills, but on the acquisition, over years of
dedicatedpractice,of a large amountof domain-specific
information, which can be rapidly accessedluring prob-
lem solving.

Chaseand Simon (1973) gatheredfurther experimental
dataand developedan influential theory of expertise,the
chunkingtheory. A chunk is definedas long-term mem-

ory (LTM) information that has beengroupedin some
meaningfulway, suchthatit is rememberedas a single
unit. Eachchunkwill only takeup oneslot in STM, in

the form ofa ‘label’ pointing to the chunkin LTM. Us-

ing Miller's (1956) estimate,Chaseand Simon proposed
that A2 chunks can be stored in ST{this estimatedhas
later beenrevisedto four for visual material; Zhang &

Simon, 1985, Gobet &imon, 2000).In chess,a chunk
may consist of up to 4-5 pieceshich arerelatedto each
other in any number of differemtays, suchas colour and
proximity. Therefore, while a novice manly be ableto

recall around?7 single-piecechunks,a mastercan recall
around?7 multi-piecechunks,morethan 30 pieces.Even
thoughrecall performanceof random positionsis a great
equalisetbetweenMastersand weakerplayers,the former
still maintain a small but reliable advantagever the lat-

ter. The chunkingtheoryaccountdor this superiority in

terms ofthe small patternsthat will appearby chancein

random positions (Gobet & Simon, 1998).

Chase and Simon’s (1973) study included a copy ¢ask
positions in fullview, aswell as a recall task of briefly-
presentedpositions. Glancesat the board being copied,
and latenciesgreaterthan 2 secondshetweenthe place-
ments of piecesduring recall, were usedto analysethe
size and nature of chunks. They found that the size of
chunk increasedas a function of skill level. Additional
support for the chunking theory was found in sevetadi-
ies wherethe conceptof chunkwas studiedin detail (see
Gobet & Simon, 1998, for review).

Aspects ofthe chunkingtheory wereimplementedn a
computerprogramby Simon and Gilmartin (1973), who
proposedhat LTM is accessediia a discriminationnet.
Identification of a chunkin LTM resultsin a pointer to
that chunkbeing placedin a limited-capacitySTM. Ex-
pertise requiresthe acquisition of a large databaseof
chunks, with the appropriate discrimination net.

From Chunks to Templates

Although the chunkindheory hasexplainedmany of the
phenomena discovered in expertise research (GbH28),
a few problemswere later uncoveredOne of its assump-
tions was that insufficient time is available during the
brief presentation timef a position for any LTM encod-
ing. Therefore,recall dependsonly on labelsin STM
pointing to LTM chunks. However, severalexperiments
using interfering tasks have shown that LTM encoding
doesin fact happen(e.g., Charness,1976; Gobet &
Simon, 1996).

The template theory (Gob& Simon, 1996), which is
in partimplementedn CHREST (Chunk Hierarchy and



REtrieval STructures, Gobet & Simoh998, 2000), was
proposedto accountfor these data, while keeping the
strengthsof the original chunkingtheory. The most im-
portant improvementover the chunking theory is the
presence of templates, which are larged more sophisti-
catedforms of retrieval structurethan chunks.Like tradi-
tional schemas in cognitive science, templates laasaee
that remainsunchangedanda set of slots, perhapswith
default values, whose value can be rapidly altered.
CHREST incorporates mechanisms explaining how
chunksevolve into templatesthrough extensive experi-
ence, using frequent but variable information to create
slots. The rapid encoding leaves the informasafefrom
interferencein STM, and so the template theory over-

comes the problems created by the interference studies.

A Shift to Early Learning

The importanceandinfluence of the chunking theory is
clearly evidentin the literature,andcertainly not limited
to the domain of chesslowever,the researctto datehas
beenalmostentirely focussedon the higher skill levels,
as it naturally should in the study efpertise. But surely,
when studying the acquisitionof a skill, the first few
hours of learning can bequally informing on the mecha-
nisms involved. An important shift towards the early
stages of expertise came from Fisk and Lloyd (1988)
studiednovices’ acquisitionof skilled visual searchin a
chess-likegame. They found that learning followed a
negatively acceleratinglearning curve, in which im-
provementwas very rapid at first but quickly became

much slower. They could not, of course, have seersthis

clearly by studyindater stagesof skill acquisitionalone.
The presenceof this learningcurve, which hasalso been
found in otherdomains(Rosenbloom& Newell, 1987),
could provide an explanatiasf why so many more years
of practice are needed becomea Masterthanto become
a good amateur.

In a similarstudy, Ericssonand Harris (1990) traineda
novice chessplayer to the point when she could recall
briefly-presented game positions to gtandardof a Mas-
ter player. However, performance candompositions did
not reachthat of Masters’.SaariluomaandLaine (2001),
extending Ericsson and Harris’ (1990) study, had nov-
iceslearna setof 500 positionsover the spaceof a few
months. The participants were tested intermittentith a
brief (5 s) presentationtask. They hadto recall 10 game
and 10 randompositionsin eachtestingsession.The re-
sults showeda clear improvementin percentagecorrect,
from about 15% to 40-50% for game positions. The
learning curve also looked like a powfanction, as found
by Fisk and Lloyd for skilled visual search,with the
greatest recall percentage increase withafirst 100-150
positionslearned.In addition,a slight increasewas seen
in percentage correct for random positions.

Saariluoma and Laine (2001) compared their hudea
to two computermodels. Their aim was to differentiate
betweentwo possible methodsfor constructingchunks,
both emphasisingthe flat (as opposedto hierarchical)
organisation othunksin LTM. From their simulations,
they concludedhat frequency-basedssociativemodelsfit

humandatabetterthan thosebasedon spatial proximity
of pieces.However,Gobet(2001) showsthat CHREST,
which usesa proximity-basedheuristic for chunk con-
struction, accounts for Saariluoma and Laine’s hunsa
equallywell astheir frequency-basedheuristic. CHREST
also accounts fothe subtle effect found for randomposi-
tions, which none of Saariluomaand Laine’s models
could do.

Preview of the Experiment

The presentstudy differs from SaariluomaandLaine’s in

threeimportantways. First, while their participantshad
someexperiencawvith chessprior to the experiment,our

participants were selected on the criteria thaly knew as
closeto nothing about chessas possible. Second,the

diagnostic power of Saariluomaand Laine’s results is

weakenedvy the lack of indication about how well the

participantshad learnedthe positions during the training

sessionsln the presentstudy, the participantsare tested
after every position in the learning phase. Thédpskeep
motivation going, andkeepstabson when concentration
may havefaltered.Third, presentatiorand reconstruction
of positions was done on the computer, which allows

precise and detailed data collection. In particudar, appa-
ratusrecordslatenciesin piece placementwhich can be

used to infer chunks (Gobet & Simon, 1998).

With regardto the computersimulation, the present
study is fundamentally different to Saariluoma and
Laine’s. While these authors wergerestedn comparing
generallearning algorithms, the presentstudy aims at
exploringhow well a computationalmodel that had al-
ready been welNalidatedwith experts’datacould account
for novices’ data.

Human Data

Method

Subjects

There were2 subjects,CE andJD, both femalePsychol-
ogy Undergraduates at the UniversityMdttingham,who
had never takeany interestin chessanddidn’t know the
rules. They were paid £6 per sessionand were told that
they would be paid a bonusof between£5 - £15 at the
end, depending on performance.

Materials and Stimuli

Positions, taken from a largtatabasef Masters’games,
were presented onMacintosh2cx, and subjectsusedthe
mouse to reconstructpositions. The software was the
same as thatisedby Gobetand Simon (1998),to whom
the reader is referred for additional detail.

Each sessionstartedwith a training phaseand ended
with a testing phase.During training, 20 positions were
presentedor 1.5 minutes each.All positions were after
the 20th move of Black. Of the 20 positions, 12 were
gamepositions selecteddandomlyfrom the databaseThe
remaining 8 were pairs @amepositions selectedrom 4
specific types (or ‘families’) of positions, which were
used to help induce the putative learning of templates.
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placements, omissions and commissions for game |
tions against session number. Each position could
studied for 1.5 minutes.

Twenty positionswere usedin testing, with each pre-
sented for 5 seconds. Four were ‘old’ posititaieenfrom
the trainingphase, 2 of thggameand?2 of the family po-
sitions. Four newgamepositionswere selectedandomly
from the database. A new positioras selectedrom each
of the 4 family positions usedin training. A position
from eachof 4 new families was also selected.The re-
maining 4 were random positions, created by shuffiivey
location of piecesfrom a gameposition. The order in
which the positionswere presentedn both training and
testing was randomised and differémt eachsubject,as a

control for any systematic effects of presentation order.

Procedure

At the start of both trainingnd testingthe subjectswere
presented with an empty board on which thewld famil-
iarise, or re-familiarise, themselveswith the place-
ment/removal of pieces. This also gdatem control over
whenthe first position wasto be presentedby clicking
an “OK” button, as they did with eacuccessiveosition
after reconstruction. Themgas a pausebetweenthe train-
ing and testing phases fas long asthe subjectswanted,
which was never more than 5 minutes.

puted for percentage correct against session numh
CE JD

a b r a b r

Gae | 18.1| .24 | .86% | 17.7| .32 .95¢

Human

data Red | 13.0| .10 | .16 | 12.2| .10| .13
Gare | 19.4| .19 | .71f | 28.5| .10| .66t

Model

Red | 8.7 | 18 | .35 14.2| .00| .00

Note: ¥ p <.001
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game and random positions as a function of sessit

Results

To keep the data presentation shad highlight the con-
trast with random positions, we have groujdidthe non-
random positions into a single category called ‘game’
positions, both for the human data and the simulations,
and both for training and testing.

The subjects varied greatbn the amountof time they
spent on recall in both the training and testing phases, ir




Table 2 Testing phase: Power functions (y £)acom-

puted for the size of the largest chunk against session.

CE JD

a b r? a b r?

Human | CGme | 4.2 24| 84f |5.6| 18 | . 77%

data
Rand 2.5| .23 | .54* 4.4 02 |.01

Model | G | 3.5| .28 | .86% | 5.0 .11 | .54*

Red | 24| 18 | .53* | 4.0| -.01 | .01

Note: * p<.01 Fp<.001
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that JD spent consistently more time th@B. For exam-
ple, during training, CE used consistently betw2600 s
and 3000 s, while JD used between 3000s and 4000 s.

Performance with Training Positions

Figure 1 shows the relationship between pbecentagef

correctly placedpiecesand that of errors of commission
(pieces placed incorrectly) and omission (pieces not

placed)in the training phase,over the fifteen sessions.
For both participants,a powerfunction accountsfor the

percentageorrectwell (for CE: 39 * N3, r2 = 93, p<
.001, andfor JD: 55 * N%, r?2 = .81, p<.001, where N
stands for the session number). Both subjects aszrmg-
ing above 90% corred¢bwardsthe end,and JD was often
recalling full positions, as shown by the higher average.

CE made a small percentageof commission errors
acrossthe sessionsgspeciallyat the start, leaving omis-
sions asan almostdirect reflection of the percentageor-
rect. JD mademore commissionerrorsin the first ses-
sionsthan CE. In both casespmissionswere more fre-
guent.

Performance with Testing Positions

Figure 2a showsthe percentageof pieces correctly re-

placedduring testing for the two subjects,for game and
random positions. The graph suggeststhe presenceof

power functionsfor performanceagainstsessionnumber
with game positions, but not with random positions.
This impressionis confirmedin Table 1. Figure 2a and
Table1 also showthat there was a slight improvement
for the recall ofrandompositions, althoughthis doesnot

result in statistically significant power functions.

Size of Chunks

The averagemediansize of chunkfor eachtype of posi-
tion was extractedfrom the data (counting single-piece
placements as chunks). Pieces placeslittessiomwith a
latency of less than 2 seconds were classHigdelonging
to the samechunk (Chase& Simon, 1973; Gobet &
Simon, 1998). Analysis showedthat the averagemedian
size of chunkincreasedas a function of sessionnumber,
often with a significant power function. However, the
nature of thedata,which was often highly skeweddueto
many single-piece chunks (particularly by JBjantthat
the medianwas a particularly noisy andvolatile measure
of the average chunk size.

The average size dfe largestchunkwithin a position
was amore robustmeasuremendf the increasen chunk
size. The size of the largestchunkincreasedeliably dur-
ing training, bothfor CE (7.42* N2, r? = .77, p<.001)
and JD(7.09* N% r?2 = 97, p<.001). Towardsthe end,
the averagelargestchunk containedup to 10 pieces.A
similar increase was observed for testing (Figure 3).

Table 2 shows the resultd powerfunctionscomputed
on the average size tdrgestchunk againstsessionnum-
ber, for testing Significant powerfunctionsare displayed
across all types of position, except random for JD.

Number of Chunks Recalled

Two measuresof the number of chunks recalled were
used.One measurecountedthe averagenumber of all

chunks, including single-piece chunkhe other measure
only took the average numbef chunksthat containedat

least2 or more pieces.The first measurgendedto over-

estimate theveragenumberof chunks,as placementsf

single piecesmay indicate guessing.The secondmeasure
tended to under-estimate the numbeclofinksrecalled,as
single-pieceplacementsare just as likely as not to be

valid chunks,particularly for beginnersDue to the large
numberof single chunksrecalledby JD, as comparedto



CE (probablyas a resultof guesswork)we only discuss
the total number of chunkecluding single pieces.

During training, the two subjectsshowedan opposite
pattern:CE recalledincreasinglymore chunksas a func-
tion of sessionnumber,while JD recalled increasingly
fewer. By theend, however,both wererecalling around3
chunks.Given the long presentatiortime, however,the
number ofchunksreflectsmostly subjects’strategiesand
their readiness to guess.

Testing, wherepositions are presentedor only 5 sec-
onds,offers a betterway of measuringSTM capacity,as
thereis little time to encodeinformation into LTM. As
predictedby the templatetheory, the numberof chunks
recalledduring testingby CE andJD was consistently3
or less, even when counting single piecesas chunks.
Only occasionally did either subject exceed 3 chunks.

Computer Simulations

Methods

We essentially used the same verstbetCHREST as that
described in Gobet and Sim¢2000),to which the reader
is referred for additional detail. Theweeretwo differences.
The first wasthat eye-movementeuristicsbasedon at-
tack and defencevere disabled.The secondrelatesto how
much CHREST knows aboutpiecelocation. In previous
simulations, it was assumedthat players could readily
encodethe pieceandits location as a single chunk(e.g.,
“Pawn on g4”). Here,given that we dealt with absolute
beginners,we assumedhat they had to constructsuch
chunks. Theywould first learna chunkfor “Pawn”, then
onefor the column*“g”, andfinally onefor the row “4”.
They would then combinethesebits of information by
chunking to learn the chunk “Pawn on g4”.

For the simulations, CHREST was run twice, using
the same order of positions and the same fierdraining
session as each subject (see De Groot & GAB&6, and
Gobet & Simon, 2000, for details abdiie time parame-
ters used in CHREST).

Results

We focus on the results frothe testing phase,analysing
in turn the percentagecorrect, the size and number of

chunks,andthe correspondencbetweenhumans’ chunks
and CHREST stemplates After 15 sessionsthe model
had acquired 4,772 chunks and 107 templatesfor the

simulation of CE, and 5,811 chunksand 111 templates
for the simulation of JD.

Percentage Correct

Figure 2b showsthe resultsfor the averagepercentage
correct forthe simulations,and Table 1 givesthe power-
function analysis.The overall percentagecorrect and the
fluctuations of performancefrom sessionto sessionare
reasonablysimilar to that of CE andJD, both for game
andrandompositions. With both CHREST and the hu-
man subjects,power functions accountfor the recall of
gamepositions, but not of randompositions. However,
learning was slower in CHREST in the simulatioihJD,

although, in this casgerformanceafter onetraining ses-
sion startedat a higher percentagecorrectthan with JD.
The correlatiorbetweenmodel and humandatais .80 for
the estimated, and .22 for the estimatéd

Size and Number of Chunks
Figure 3b showsthe resultsfor the size of the largest
chunk for the modeland Table 2 givesthe resultsof the
power functionsusedto fit the data. The correspondence
between human datnd modelis goodfor CE, anda bit
lessfor JD. Interestingly,the model capturesthe differ-
encesin parameterdetweenCE and JD—which is due
either to the order of positions or to the differepoetime
spent on task by the two subjedttowever,althoughthe
absolutevaluesarenot far off, the model underestimates
the size of the largerchunks,in particularwith JD. The
correlationbetweenmodelandhumandatais .99 for the
estimated, and .93 for the estimatdxd

Given its limited-capacity STM and threlatively small
numberof templatest possessesspeciallyat the early
stagesof learning, CHREST predictsthat the number of
chunks should not exceedthree. As we have seen,this
prediction was beautifully borne out by the data.

Templates

The templatesthat were formed by CHREST in the
courseof the simulation were comparedto the human
data. A search was carried outnt@tchthesetemplatesto
the groups of pieces recalled by the subjectsiefisedby
latencies.Only groupscontaining4 or more pieceswere
includedin the searchanda matchwas madeonly when
at least4 pieceswerethe samein both the templateand
group. The type®f position searchedvere thosebelong-
ing to the ‘position families’ used during the training
phase (see section ‘Material and Stimuli’).

For training, out of the totahumberof chunksrecalled
by the subjectscontaining4 or more pieces,about half
were explainedby CHREST’stemplates.During testing,
this drops to nearer 30% of the total number of chdoks
both subjects.Of the piecesaccountedfor by the tem-
plates, most of these were in the corhis is particularly
true of CE,who for the majority of templates placedno
piecespredictedto be in the slots. JD, however,placed
about 25% of the template pieces in the slots.

Discussion

The testing phaseshowedan increasein recall perform-
ance across sessions, an increase that is captyneolwver
functions for game positions. This replicatesthe nega-
tively acceleratindearning curve found by Ericssonand
Harris (1990), Fiskand Lloyd (1988) and Saariluomaand
Laine (2001), and confirms predictions made by the
chunkingandtemplatetheories.The slight, but not sig-
nificant, improvementfor random positionsis also pre-
dicted by the theory.

Another phenomenorpredictedby both theoriesis the
stability in chunk number acrosstesting sessions;the
numberof chunksrecalledwas consistently3 or below,
for both subjects.Becauseof the limits of STM, only a
certain number of chunks can be stored for recall of



briefly-presentecpositions. Evenif a templateis usedin
the later stagesof the experimentjts contentswould be
output as a single sequenceof rapid placementswhich
would not inflate the number of STM chunks.

The substantialsize of the largestchunkwas predicted
by the templatgheory, but not by the original chunking
theory. Towardsthe end of the testing sessionsthe sub-
jectswererecalling chunks containing an averageof 10
pieces,meaningthat someindividual chunkswere much
larger still. The chunking theory assumetlinkscontain-
ing at most 4-5 pieces.

Overall, the simulationsaccountedor the human data
reasonablywell, especiallywhen one considersthe fact
that no parameter of thmodelwasvariedto improvethe
fit of the simulation. The differenceswere that learning
was somewhaislower and chunks smaller than with the
human data. Power functioeapturedthe samedependent
variables in thhumansandin the simulations,although
the estimatedparameterddiffered somewhat. Templates

formed by the simulation matched a substantial nuraber

piece groupingsby the subjects.The matching method
was rather simple, however, ahdttermethodsshouldbe
developed to assess the presence of templates.

The exact methodof chunk constructioncould be an
underlyingfactor towards explaining some of the differ-
encesbetweenhumansand the model. As noted above,
CHREST first learns the piece (e.g. ‘P’=white pawn),
thenthe location horizontally (e.g. ‘Pg@’), andfinally the
exact position (e.g. ‘Pg4’). The subjectsin the present
study did not show any sign of using suchnotation, and
subjects did not hav know the nameof the piece (and
often did not), or the exactlocation. The subjectswere
probablymorelikely to recogniseshapesand patternsof
pieces, likechainsof pawns,which they both mentioned
during the courseof the experiment. However,the fact
that about50% of subjects’placementdn training were
explainedby CHREST'stemplatessuggestthat the two
types of representation are not fundamentally different.

The datafrom training highlight markeddifferencesbe-
tween the two subjects, which are reflectedamedegree
in their performanceduring testing, and are worth some
discussion.One difference is that JD made almost as
many errors of commission as errorsoofiissionnearthe
beginningof the experiment.This suggestghat shewas
guessing a lot more than C#&ho madealmostno errors
of commission. Indeed, theumberof chunksJD recalled
decreaseds a function of session(despiteher increased
performance)suggestinghat shemay have beenguess-
ing numerous,small chunks, possibly incorrectly. We
speculate that thextratime spenton recall by JD is the
result of time spent deliberating over whether she had
recalledall that sheknew. CE spentno such extra time
before moving on to the nexiosition, andso time spent
simply increasesas a function of the numberof pieces
being placed(hencethe oppositetrends betweenthe two
subjects). JD did appear b especiallyhighly motivated
to performto the best of her abilities (reflectedin time
spent and guesses).

In spite of theseindividual differences,the predictions
of the template theory proved robuwsith regardto chunk

size, STMcapacity,andthe shapeof learning.As a first
trial at comparingthe simulationdatato detailedhuman
datafor completenovices,the resultsare promising, and
suggest that the saneegnitive mechanism®operatewith
novices and experts.
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