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ABSTRACT 

 
Traditional Chinese medicine has developed for several thousands of years and 

accumulated an abundant amount of human pharmacological information and experience 

as a large potential resource in drug discovery and development. Panax ginseng C. A. 

Meyer and Rhodiola rosea are both popular herbs worldwide and have many potential 

pharmacological effects including adaptogenic, antistress, and vasodilating, anticancer 

and anti-inflammatory. To improve the isolation and separation effect of the two 

traditional Chinese herbs for quantity and quality control herbal products in general, 

Separation and purification techniques using high performance counter-current 

chromatography (HPCCC) are widely applied for this purpose. High performance 

counter-current chromatography (HPCCC) is a form of liquid liquid chromatography 

with the higher “g” ” field, which the Brunel Institute for Bioengineering (BIB) team 

have developed to process scale. It would provide not only more rapid and high 

throughout isolation and purification process of crude sample, but also relatively simply 

volumetric and linear scale-up between all scales instruments. 

A rapid and convenient method for the separation and purification of five ginsenosides 

from crude sample of Panax ginseng by high-performance counter-current 

chromatography was successfully developed. One gradient method in normal phase 

mode was applied for the first separation step for the isolation of ginsenosides using a 

Spectrum CCC (73 ml coil volume, 1.6 mm bore) with an EtOAc/BuOH/aqueous 5mM 

ammonium acetate solvent system. The composition ratio of mobile phase changed from 

3.5:0.5:4 (v/v) to 2.5:1.5:4 (v/v). Ginsenosides Rd, Rg1 and Rb1 were separated in less 

than 120 minutes with purities of 96.3% and 98.6% yield, 88.5% and 95.8% yield, 

93.7% and 97.4% yield respectively and ginsenosides Rb2 and Rb3, Re and Rc were co-

eluted. The final retention of stationary phase was 77.6%. Methylene 

chloride/methanol/aqueous 5mM ammonium acetate/isopropanol (6:3:4:3, v/v/v) solvent 

system was used for the isocratic separation of ginsenosides Re and Rc in the second 

separation step. The ginsenosides Rb2 and Rb3 have similar structures and properties as 

they are isomers and their aglycone moieties both belong to the same 20 (S) – 

protopanaxadiol. They were difficult to isolate using this solvent system. The purity of 

ginsenosides Re and Rc was assessed by HPLC–DAD to be 97.5% with 98.2% recovery 

and 92.6% with 96.3% recovery. These purified ginsenosides was identified using 

commercial reference standard on the HPLC and MS. 
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A simple and efficient high-performance counter-current chromatography method for 

the simultaneous separation and purification for quantity and quality of the two 

biological compounds salidroside and tyrosol from Rhodiola rosea extract has been 

developed and scale up for the first time. The experiment were conducted initially by 

sample concentration, sample loading volume and flow rate study at analytical scale 

using a Mini HPCCC (17.7 ml coil, 0.8 mm bore) with a new MTBE/butanol 

/ACN/water (4:2:4:10 v/v/v) solvent system. Then linearly scaled up to the Midi-

HPCCC (923 ml coil volume, 4.0 mm bore). Midi-HPCCC runs produced 28.2mg 

(purity 93%) of salidroside and 13.1mg (purity 96.5%) of tyrosol from the 1000mg 

crude Rhodiola rosea extract. with the throughput scaled up 50 times. The results 

demonstrate that HPCCC operating at the high flow and high “g” field is a reliable 

strategy for linear scale-up from analytical-scale high-throughput screening to 

preparative-scale. 
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                     ABBREVIATIONS 

 

APCI   Atmospheric pressure chemical ionization 

BECCC   Back-extrusion counter current chromatography 

BIB   Brunel Institute for Bioengineering 

CAD   Charged aerosol detection 

CCC   Counter current chromatography 

CE   Capillary electrophoresis 

ChMWat   Chloroform/methanol/water 

CPC   Centrifugal partitioning chromatography 

DAD         Diode-array detection 

DNA          Deoxyribonucleic acid 

DMWI           Methylene chloride/methanol/water/isopropanol 

DuCCC        Dual countercurrent chromatography 

EBuWat        Acetate/butanol/water 

EECCC        Elution-extrusion counter current chromatography 

ELSD          Evaporative light scattering detection 

ELISA           Enzyme-linked immunosorbent assay 

ESI          Electrospray ionization 

F C           Flash chromatography 

FT-ICR        Fourier transform ion cyclotron resonance 

G C             Gas chromatography 

HEMWat        Hexane/ethyl/acetate/methanol/water 

HPCCC        High performance counter-current chromatography 

                       (Brunel based CCC operating at higher g level and higher flow rate than HSCCC) 

HPMAE        Microwave-assisted with high pressure extraction 

HPTLC         High-performance thin-layer chromatography 

HPLC          High-performance liquid chromatography 

HILIC           Hydrophilic interaction chromatography 

HHP             Hydrostatic pressure extraction 

HSCCC          High speed counter-current chromatography 

IT               Ion trap 

KD            Partition coefficient 

LC            Liquid chromatography 

LOD          Limits of detection 

LOQ             Limits of quantification 

Lr               Linear range 

MAE            Microwave-assisted extraction 

MTBE           Methyl tert-butyl ether 
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M S             Mass spectrometry 

MPLC           Medium pressure liquid chromatography 

MEKC          Micellar electrokinetic chromatography 

MEEKC         Microemulsion micellar electrokinetic chromatography 

NMR         Nuclear magnetic resonance 

PAD            Pulsed amperometric detection 

PLE            Pressurized liquid extraction 

PPD          20(S) – protopanaxadiol 

PPT          20(S) – protopanaxatriol 

PTFE            Polytetrafluoroethylene 

PHWE          Pressurized hot water extraction 

Q                Quadrupole 

QqQ             Triple quadrupole 

R E             Reflux extraction 

RSD            Relative standard deviation 

SD                Standard deviation 

SE              Soxhlet extraction 

Sf         Stationary phase retention 

SFE        Supercritical fluid extraction 

TCM        Traditional Chinese medicine 

terAcWat    t-butylmethylether/acetonitrile/ water  

terBuAcWat     Methyl tert-butyl ether /butanol/acetonitrile/water 

TLC           Thin layer chromatography 

TSP             Thermospray 

TOF             Time-of-flight 

UPLC           Ultra performance liquid chromatography 

UE              Ultrasonic extraction 

UV              Ultraviolet  

 

 

 

 

The following abbreviations have been used to ease representation in phase system composition:  

 

 CHCl3         Chloroform  

CH3COONH4     Ammonium acetate 

CH3COOH     Acetic acid 

CF3COOH      Trifluoroacetic acid 

EtOAc          Ethyl acetate 

HCOOH        Formic acid 
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KH2PO4              Monopotassium phosphate 

MeCN        Acetonitrile 

MeOH      Methanol 

NH4OH         Ammonium hydroxide 
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1.1 Aims and objectives 

 
 

1. Development of new counter-current chromatography (CCC) methods for separation 

of ginsenosides from Panax ginseng  

 

2. Development of quantitative and qualitative liquid chromatography method for 

Rhodiola rosea 

 

3. Investigation of Scale-up of analytical HPCCC to preparative HPCCC for rapid 

purification of salidroside and tyrosol from crude sample Rhodiola rosea. 

  

 

1.2 Panax ginseng 

 

1.2.1 Panax Ginseng Historical and botanical background 

 

Panax ginseng is a Chinese herb that has been commonly used for over thousands of years as a key herb in 

Chinese traditional medicine. It was first recorded as the “king of the herbs” in the Chinese herbal textbook 

(Shen Nong Ben Cao Jing) in the 300 B.C and is currently widely applied as a medicine gloablly due to its 

clinic efficacy. There are several different Panax species in the world, the most studies of ginseng usually have 

been carried out in P. ginseng C. A. Meyer (Chinese or Korean ginseng) and P. quinquefolius (American 

ginseng), the other P. notoginseng (Tienchi or Sanchi), P. vietnamensis (Vietnamese ginseng) and P. japonicus 

(Japanese ginseng) are not popular but more and more researcher attach importance to them recently. The name 

of genus Panax is derived from the Greek which means “all heal”. While the name of ginseng is derived from 

the Chinese name rensen, because its root shape looks like a man. The other common names include five fingers 

or seng. Traditionally, ginseng root can be classified into white ginseng and red ginseng based on the different 

drying processes. White ginseng is prepared by air drying after peeling and red ginseng is prepared by the steam 

at 98 - 100 ºC without peeling. Recently, another black ginseng has been reported to enhance its preservation 

and biological effects, which has been processed by the steaming at 120 ºC temperature under high pressure [1]. 

It has been shown that ginseng berry or fruit and leaf also contain distinct bioactive constituents [2]. The 

aboveground and root of P. ginseng are shown in Figs. 1.2.1.1 and Fig. 1.2.1.2, respectively. 
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Fig 1.2.1.1 Aboveground parts of Panax ginseng                 Fig 1.2.1.2 Roots of Panax ginseng. 
 

 

 

1.2.2 Chemistry 

  
 
To date more than 100 chemical entities from ginseng species have been reported [3]. The active chemical 

entities found in most ginseng species include saponins, polysaccharides, peptidoglycans, polyacetylenic 

alcohols, polyynes and volatile oils [4, 5]. Ginseng saponins are commonly called ginsenosides, which have a 

triterpene dammarane skeleton with various sugar moieties such as glucose, maltose, fructose, and saccharose. 

But the basic skeleton is similarly composed of 17 carbon atoms in a four ring structure. The property of 

ginsenosides depended on the different type and number of sugar moieties attached to the C-3 and C-20 

positions [6]. Currently, more than 100 ginsenosides have been extracted and separated from Panax species and 

classified into the four types of aglycone moieties: the 20(S) – protopanaxadiol including Rb1, Rb2, Rb3, Rc, 

Rd, Rg3, Rh2, Rs1 and malonylginsenoside Rb1, Rb2, Rc and Rd, the 20(S) – protopanaxatriol including Re, 

Rf, Rg1, Rg2, Rh1, ocotillol-type including ginsenosides F11 [7] and oleanolic acid including ginsenosides Ro 

(Fig 1.2.2.1). Ginsenosides are considered the major active compounds of ginseng and often used as the quality 

standards to identify the ginseng species and ginseng drug in the market. Polysaccharides have proved that they 

have the various biological activities used in drug by the Modern pharmacological experiments. Most of them 

can be isolated from the leaves, roots or fruits of Panax ginseng [8, 9]. Volatile oils are also the other 

ingredients of Panax ginseng. One experiment showed that 36 terpenoids were identified from the volatile oil in 

the radixes of Panax ginseng at the age of 3 years by comprehensive two-dimensional gas chromatography [10].  
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         c)   ocotillol-type 

 
 
 
 
 
                                                                                                                                                         
        

 

 

 

 

 

  

                                                              GinsenosideRo                                                                                                                                          

        d) Oleanolic acid                                        R=GlcUA2-Glc                                                                                                                                      

 

 Fig 1.2.2.1 Main structures of ginsenosides including a) protopanaxadiol, b) protopanaxatriol, c) ocotillol 

acid, d) oleanolic acid.                                                                                                                                                                                                        

 

1.2.3 Adaptogenic Effects of Panax ginseng  

 

Panax ginseng has traditionally been used for thousand years in China as an important tonic herb to strengthen 

the whole body immune capacity and promote longevity. According to the traditional Chinese medicine theory, 

panax ginseng can restore the vitality and energy with increasing Qi in the body and restore the body’s dynamic 

balance of Ying and Yang to treat fatigue and weakness. In 1969, Brekhman first introduced the term adaptogen 

to describe these tonic effects of ginseng [11].These adaptogenic effects are described as promoting resistance 

to physical and biological stress coming from  different environment conditions. They increase the body’s 

physical and mental ability to stay the healthy and help the body to recover from illness by itself. The concept of 

adaptogen was formally established by Russia researcher between 1950 and 1960[12] and  defined the term of  

adaptogen as a substance that had the non-specific effect in its pharmacological properties and builds up the 

body function and improve the anti-stress capacity of an organism to adapt to environmental factors.[13]. One 

report pointed out panax ginseng improved the capability of oxygen uptake in the elderly and greatly increased 
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the logic arithmetic and improved mental health in normal people [14]. Some of these effects were also 

described by  Pieralisi et al. [15] .Adaptogenic actions of panax ginseng are significantly enhanced in the 

human subject when the organism suffered the influence of the different external environments. In the animal 

model, Panax ginseng was shown to  increase the ability of resistance to X-irradiation, viral and tumor load, 

temperature stress, hyperbaric hyperoxia and physical exercise [16, 17]. 

 

1.2.4 Pharmacological effects of panax ginseng 

 

It is reported that the saponins, also called ginsenosides, are the major active components in panax ginseng. 

Most pharmacological actions of panax ginseng are attributed to them [18]. Pharmacological effects of the 

panax ginseng have been reviewed by Anoja S et al.[19]. Furthermore, the pharmacology of ginsenosides was 

reviewed by Leung & Wong [20]. Pharmacological effects of panax ginseng have been demonstrated that 

ginsenosides had cognitive and anti-cancer effect in the cardiovascular and immune systems. 

 

Cardiovascular Effects of Panax Ginseng 

Scott et al. described  ginsenosides Rb1 and Re as having depressant action on cardiomyocyte contraction 

through a NO-mediated mechanism [21]. The cardiac depression associated with the ginseng-induced NO-

mediated vasodilatation should favour a reduced after-load for the heart and benefit cardiac pump function [22]. 

 

Cognitive effects of Panax Ginseng 

Mook-Jung et al. described that the use of herbal medicine, particularly ginseng can improve cognitive 

performance and this study has shown its enhancing effect on learning and memory in aged and brain damaged 

rodents [23]. Experiments with animals have demonstrated the psychomotor effects of ginseng. Petkov et 

al.,[24] showed that oral administered ginseng, at a dose of 20 mg/kg for 3 days, improved learning and 

memory in rats performing a maze task. 

 

Anticancer activities 

Saponin and non-saponin compounds have been reported to show cytotoxic activities against various kinds of 

cancer cell lines in culture. Lee et al. [25] previously reported that an acidic polysaccharide from panax ginseng 

inhibited the incidence of benzopyrene-induced autochthonous lung tumors in mice through activating multiple 

effector arms of the immune system. This property may contribute to its effectiveness in the immune prevention 

and immunotherapy of cancer.Kim et al. [26] investigated the effect of 11 ginsenosides on cell proliferation of 

prostate cancer cell lines and found Rg3 and Rh2 inhibit DNA synthesis in prostate cancer cells 

 

1.2.5 Panax ginseng extractions for experimental studies 

 

Efficient sample preparation can improve extraction efficiency, especially for Panax ginseng which contains 

more than 100 different ginsenosides, and improve the target compounds purification and separation. To date, 

different solvents and methods have been applied for the extraction of Panax ginseng. Panax ginseng are 
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traditionally made by using water, alcohol or and alcohol-water mixture as solvents in the industry. However, 

for research purposes, a variety of solvents have been employed to extract active components including 

methanol, 70%  methanol, acetonitrile, water, hexane , acetone and diethyl ether and 50% ethanol. Among 

various solvent systems, 100% methanol has better extraction efficiency than water or 70% aqueous methanol 

extraction [27]. Extraction solvent and extraction volume are very important to achieve high recovery [28].  

 

Soxhlet extraction (SE) [29], reflux extraction (RE) [30], ultrasonic extraction (UE) [31] and shaking extraction 

[32] have been applied for extraction of ginsenosides from Panax ginseng as conventional methods. Recently, 

some modern extraction methods have been performed such as Microwave-assisted extraction (MAE) [33], 

Microwave-assisted with high pressure extraction (HPMAE) [34], Supercritical fluid extraction (SFE) [35], 

pressurized liquid extraction (PLE) [36] and pressurized hot water extraction (PHWE) [37]. The advantages of 

the new exaction methods contribute to easy operation, low cost solvent, speed and high efficient [38].  Table 

1.2.5.1 lists the characteristics of nine different extraction techniques. Each has advantages and disadvantages. 

 

Table 1.2.5.1 Characteristics of nine extraction techniques for saponins from ginseng plant materials 

 

Technique   key technology                  Advantage                 Disadvantage 

 

SE      Soxhlet extractor            High efficiency, low cost        Very low speed 

RE      Heating                   Easy operation, low cost         Low efficiency, low speed    

UE      Ultrasound                Easy operation, low cost         Low efficiency, low speed 

SAE     Mechanical shaking         High efficiency, Easy operation    Hard automation 

                                  Low cost 

MAE    Microwave                Easy operation, high speed        Hard automation  

                                  Low cost 

HPMAE  High pressure             Easy operation, high speed       Hard automation 

         with microwave            Low cost 

  

SFE     Supercritical fluid            High speed, easy automation      Hard operation, high cost                             

PLE     High pressure               High speed, easy automation      Hard operation 

PHWE   High pressure and hot water    Low cost, easy automation,       Hard operation 

                              

Abbreviations: SE: Soxhlet extractor; RE: heat extraction; UE: ultrasound extraction; SAE: shaking-assisted 

extraction; MAE: microwave-assisted extraction; HPMAE: high pressure MAE; SFE: supercritical fluid 

extraction PLE: pressurized liquid extraction; PHWE: pressurized hot- water extraction; 

 

 
 
 
 
 

1.2.6 Separation and purification methods of Panax ginseng 

 

Many techniques can be used for the isolation and analysis of natural products. Separation and detection are the 

main steps in this process. Separation of Panax ginseng saponins is employed by Thin layer chromatography 

(TLC) or high-performance thin-layer chromatography (HPTLC); High-performance liquid chromatography 

(HPLC), Hydrophilic interaction chromatography (HILIC) or Ultra Performance Liquid Chromatography 

(UPLC); Flash chromatography (FC); medium pressure liquid chromatography (MPLC);  gas chromatography 

http://www.answers.com/topic/chromatography
http://www.answers.com/topic/chromatography
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(GC); capillary electrophoresis (CE) and counter current chromatography (CCC). Among these techniques, 

liquid chromatography is still the popular main technique for the Panax ginseng separation. A comparison of 

different separation methods for ginseng analysis is given in Table 1.2.6.1 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2.6.1 Advantages and disadvantages of other analytical techniques compared to CCC 

Technique                Advantage                                Disadvantage 

 

TLC        Multiple sample analysis in one plate            Low revolution, accuracy and repeatability             

            Simplicity, versatility and high velocity,                 Length of separation is limited 

 

            Sensitivity and simple sample preparation   

              

GC         High selectivity, high sensitivity                       Limit polar and non-volatile compounds 

          High separation efficiency                           Relative complex operation 

 

FC         Rapid, low cost and flexibility                        Low revolution 

    

MPLC      Lower cost, higher sample loading                   Low revolution 

           High throughput. 

 

HPLC      Speed of analysis, excellent resolution                   Particulates not tolerated 

           High sensitive, robust technique                       Undesirable interaction with stationary phase 

 

HILIC      Suitable for hydrophilic molecules                     Peak broadening 

           Weak interaction with stationary phase                  Short column lifetime 

 

UPLC      Highly efficient separation                            Back-pressure increase 

           Reduced analytical time                                      

 

CE        Small sample volume                              Low relative sensitivity  

         Short separation time                               Low reproducibility   

                                                          Low sample loading     

                                                          Poor concentration detection 
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CCC      Versatile technique, cross contamination unlikely           Lower efficiency,  

        High sample loading, economical                       Difficult optimisation 

        Predictable and reproducible                           Labour intensive operation 

        Particulates or crude sample accepted                    Narrow polarity range 

                              

Abbreviations: HPTLC: high-performance thin layer chromatography; GC: gas chromatography; FC: Flash 

chromatography MPLC: medium pressure liquid chromatography HPLC: high-performance liquid 

chromatography; HILIC: hydrophilic interaction liquid chromatography; UPLC: ultra-performance liquid 

chromatography; CE: electrophoresis; 

 

 

 

 

 

 

1.2.6.1 Thin layer chromatography (TLC) 

 

Thin layer chromatography technique is a common and convenient method of determining the quality of herbal 

products. The main advantages of TLC are its ease of use, versatility, speed, specific sensitivity, low cost and 

simple sample preparation. Thus to now, TLC is still employed for the identification and analysis of the herbal 

medicines by the United States Pharmacopoeia and European Pharmacopoeia [39]. A reversed-phase TLC 

method is applied for analyzing multiple components of crude drugs containing ginseng, red ginseng and so on. 

Ginsenoside-Rg1 is identified as a single spot separated from the sample solution using the sodium 

sulphate/acetonitrile/methanolsolution (10:7:3) instead of the chloroform/methanol/water solution (13:7:2) [40] 

to avoid the harmful reagents. Glensk et al. [41] developed a graft-TLC method of resolution of saponins from a 

ginseng preparation using MeOH/ H2O (70:30, v/v) solution and CHCl3/MeOH/H2O (70:30:4, v/v/v) solution.  

 

A method different from the standard TLC also has been developed for analysis of the ginseng species. It is 

HPTLC with the high performance conditions. The advantages of HPTLC compared with the TLC are speed, 

sensitivity and low solvent consumption. It also can be apply for the quantitative analysis of ginseng saponins. 

A new high-performance thin-layer chromatography (HPTLC) method combining an automatic TLC sampler 

and scanner has been employed for quantification of seven major ginsenosides in different ginseng species and 

identifies their sources [42]. Vanhaelen-Fastre et al. [43] developed a successful method for simultaneous 

determination of the six major ginsenosides in Panax ginseng roots with HPTLC after detection with thionyl 

chloride, the disadvantage of TLC or HPTLC are low resolution, accuracy and repeatability.                                                                                                                                  

 

 

1.2.6.2 Medium pressure liquid chromatography (MPLC) 

 

Medium-pressure liquid chromatography (MPLC) is one of the efficient methods for the preparative separation 

for nature products. It was developed from the low-pressure liquid chromatography and the separation under 

medium pressure by using  smaller particle size, which improves the efficiency of separation and provide more 
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choices for the stationary phase. These separation methods are now usually used in combination with the other 

common preparative tools such as open-column chromatography, flash chromatography, LPLC or preparative 

high performance liquid chromatography (HPLC) [44]. Compared with the low pressure and high pressure 

liquid chromatography, the typical pressure of MPLC is 5-20 bar, the other two are 1-5 bar and more than 20 bar 

respectively. MPLC has big advantages which allow higher loading capacities and higher throughput resulting 

in increasing compound purity compared with flash chromatography. It also can provide faster separations and 

higher resolution of compounds because its column design and packing of material with lower particle size 

under pressure enhances separation quality [45]. MPLC has been employed for the ginseng sample preparation 

due to its lower cost, higher sample loading and higher throughput. Cheng et al. [46] used the NP-MPLC 

method with a 460mm×36mm I.D. column under  gradient elution mode to enrich and purify the ginsenoside 

Ro from panax ginseng in the first pre-treatment process, and then the enriched sample was further purified by 

HPCCC. The result showed that 61mg with 96.0% purity ginsenoside Ro was obtained from 100mg sample 

after a single CCC run in the end.  

 

1.2.6.3 Flash chromatography 

 

Flash chromatography is also a medium pressure chromatography technique based on optimized pre-packed 

columns with a high flow rate of solvent. Flash chromatography normally uses the smaller silica gel particles 

and air pressure to push the solvent through the column leading to reducing the separation time and therefore 

separation time could take less than 10-15 minutes. Furthermore, the solvent system should be chosen that Rf of 

the desired compound was in between 0.15 – 0.35 based on its polarity, most preferably 0.35, and there are two 

sample loading methods for the flash column including wet loading and dry loading [47]. Thus, it is a rapid, low 

cost and flexibile chromatography. As a type of preparative liquid chromatography, Flash chromatography used 

to apply for the sample preparation and separation of organic compounds. Kim et al [48] performed the Diaion 

HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC 

methods to isolate the ginsenoside Rb1 and Rg1 as standard reference materials for good manufacturing 

practice (GMP) based quality control.  

  

 

1.2.6.4 High-performance liquid chromatography (HPLC), hydrophilic interaction LC (HILIC) and 

ultra-performance LC (UPLC) 

 

 
High-performance liquid chromatography (HPLC) is an advanced and ideal technology of liquid 

chromatography used in separating the complex mixture compounds of panax ginseng because it is easy to use, 

fast, high accuracy and precise and is not limited by the volatility or stability of the sample compound. The 

other main advantage of HPLC is that many detectors can be coupled with it such as UV, DAD, ELSD, MS, 

MS-MS, PAD and NMR, which can be widely applied for analyses ginsenosides of different complexity from 

the Panax ginseng. In general, analysis of ginsenosides by HPLC is usually performed with standard 150 or 250 

mm ×4.6 mm C18 columns under gradient elution mode using the reversed-phase conditions. Acetonitrile and 

water with buffer such as KH2PO4 buffer or CH3COONH4 buffer are often used for the mobile phase. Hu et al. 

[49] systematically investigated the retention behaviour of seven major neutral ginsenosides of Panax ginseng 

http://www.answers.com/topic/chromatography
http://www.answers.com/topic/liquid-chromatography
http://www.answers.com/topic/liquid-chromatography
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with RP-HPLC and developed one novel HPLC method as above for the quantitative analysis of ginsenosides in 

eight batches of ginseng samples from different sources. Recently, more than 100 new saponins have been 

isolated from various parts of Panax plants and most of them are separated by the HPLC method coupled with 

different detectors [50] 

 

Hydrophilic interaction chromatography (HILIC) is an alternative approach to effectively separate small polar 

compounds and ionisable solutes. In HILIC, the polar analytes are separated by passing aqueous– organic 

mobile phases across a polar stationary phase such as silica, amino, cyano and diol causing solutes to elute in 

order of increasing hydrophilicity which is opposite to that of RPLC [51]. Bonfill et al. [52] described one 

HILIC method with a diol column using a mobile phase consisting of aqueous orthophosphoric acid and 

acetonitrile (MeCN) for the separation and quantitative determination of ginsenosides in panax ginseng 

preparations under isocratic mode. Shorter analysis time (20min) and better resolution were achieved, but 

ginsenosides Rg1 and Re are still hard to separate individually.Thus, Quiming et al [53] developed one HILIC 

method to investigate the retention of ginsenosides on a poly(vinyl alcohol) (PVA) bonded stationary phase. The 

percentage of MeCN in the mobile phase, the column temperature and the flow rate are the key factors that 

affect the retention behavior of ginsenosides on the PVA-bonded column and better resolution were obtained by 

optimisation. 

 

UPLC is an other ideal approach for the chromatographic separation of ginseng species. It uses smaller packing 

(less than 2 µm particle) columns and operated at higher pressures (up to 15,000 psi). Compared with traditional 

HPLC method, the advantages of UPLC are providing a higher peak capacity, greater resolution, increased 

sensitivity and higher speed of analysis [54]. UPLC coupled with MS detector and MS
2 
or carried out with ESI, 

TOF or QqTOF instruments are developed for the the analysis of ginseng saponins in metabolomic 

fingerprinting[55,56],quality control [57] and biological samples [58]. The main disadvantages of UPLC are the 

higher backpressure of the system and the solvent cost compared to conventional HPLC.  

 

1.2.6.5 Gas chromatography (GC) 

 

 

Gas chromatography has always been the sensitive method of choice for analyzing essential oils or volatile 

compounds [59]. GC has big advantages of high selectivity, high sensitivity and high separation efficiency on 

the analysis of many active volatile components from herbal medicines. Sample preparation as the first step in 

GC analysis of saponins in Panax ginseng is very important due to the efficiency of detection. Most GC method 

used for capillary columns with dimensions of 30 m×0.25 mm×0.25 µm. For detection, the flame ionization 

detector (FID) is extremely popular due to its detector range. GC coupled with the MS can provide the 

advantage of both chromatography and structure of the compound information [60]. In addition, GC-MS 

coupled with a chemometric resolution method has commonly been used for the analysis of volatile compounds 

in Panax ginseng.  Richter et al.[61] used the GC-MS method to investigate the volatile constituents of the 

roots of Panax ginseng. Three sesquiterpene hydrocarbons have been isolated from the essential oil and their 

structures identified by MS and NMR. The GC method has also been applied for the screening of pesticides in 

the ginseng extracts. In order to achieve the speed and efficient, GC has been combined with MS/MS, HR-
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TOF)/MS (high resolution time-of flight) also are described [62]. Recently, a new two-dimensional 

comprehensive GC (GC ×GC) method has been introduced to employ in the analysis of the Panax ginseng 

extracts. This technique promotes the resolution and sensitivity by using two GC columns [63]. Shellie et al. 

[64] used the comprehensive GC ×GC-FID and GC ×GC -qMS method for analysis of Asian and American 

ginseng. Qiu et al. [65] employed the 2-D GC (GC×GC) coupled with TOF/ MS method to characterize and 

quantify the chemical composition of volatile oil in the radixes of Panax ginseng at different ages. Thirty-six 

terpenoids were successfully identified. However, the most serious disadvantages of GC are that it is not 

convenient for its analysis of the samples of polar and non-volatile compounds and the samples must be 

thermally stable to prevent degradation when heated.  

 

 

 

    

1.2.6.6 Capillary electrophoresis (CE) and Micellar electrokinetic chromatography (MEKC) and 

microemulsion EKC (MEEKC) 

 
 

Capillary electrophoresis was introduced in early 1980s as a powerful analytical and flexible separation 

technique. It provides an efficient way to identify the complexity of a sample and can deal virtually every kind 

of charged sample components ranging from simple inorganic ions to orgnic. Due to the absence of charge in 

ginsenosides, capillary electrophoresis (CE) was applicable. Therefore, micellar electrokinetic chromatography 

(MEKC) and microemulsion EKC (MEEKC) have been introduced to use for the isolation of neutral ginseng 

saponins, because MEKC allows the separation of neutral, charged, and ionic, acidic and basic compounds. 

Advantages of MEKC are high efficiency, fast analyses, and a powerful flexibility in rapidly tuning or changing 

the running buffer composition and subsequently the selectivity of the separation [66]. A method with Micellar 

electrokinetic chromatography (MEKC) was developed for analysis of ginsenosides Rb1, Rb2, Re, Rc, Rf,Rd 

and Rg1 in a Panax ginseng extract .Seven major ginsenosides were successfully separated in less 20min better 

than the normal HPLC method [67]. Cao et al. [68] employed a novel on-line preconcentration technique 

combining dual sweeping for analysis of ginsenoside Rf, ginsenoside Rg1, and ginsenoside Re with nonionic 

MEKC and achieved a high separation efficiency. In addition, MEKC method was also successfully applied for 

the the pharmaceutical quality control of Panax notoginseng [69]. Compared to MEKC, MEEKC can enhance 

solubilization capacity and explore migration window for various compounds, which provided reducing sample 

pre-treatment steps, unique selectivities and higher efficiencies [70]. Cao et al improve their method using 

MEEKC combining complex formation and acetonitrile (ACN) sweeping to separate and detect the 

ginsenosides Rf, Rb2 and Re with selectivity and efficiency [71]. 

   

 

1.2.6.7 Counter-current chromatography (CCC) 

 

Liquid–liquid isolation techniques such as high-speed counter-current chromatography (HSCCC) and 

centrifugal partition chromatography (CPC) depend on the partition of a sample between two-phase solvents 
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system. As methods with high efficiency, high recovery and low cost that are easy to scale-up, HSCCC and CPC 

have been used in preparative separation of ginseng saponins [72- 77]. The separation of ginsenosides Rf, Re, 

Rd, Rb1, Rc, Rb2 and Ro by HSCCC has already been reported recently. Several papers have been published on 

the preparation of ginsenosides and notoginsenosides from Panax ginseng or notoginsen by CCC. Qi et al. [72] 

have successfully separated ginsenosides Rf, Re, Rd and Rb1from the panax ginseng with a salt/containing 

solvent system and flow step-gradient by using HSCCC coupled with ELSD. Furthermore, Cheng et al. [73] 

have developed a two–step counter-current chromatography method for the preparation of ginsenosides Re, 

Rb1, Rc and Rb2 from Panax ginseng, using two different solvent systems combined with ELSD based on Qi’s 

previous study. The first separation step was applied for the classical CCC mode while the EECCC mode was 

used in the second separation step. Cheng et al. [74] also first chromatographed and separated the ginsenoside 

Ro from Panax ginseng by a combination of normal phase medium-pressure liquid chromatography (NP-

MPLC), which was initially used to enrich ginsenoside Ro and was further purified by HPCCC. In addition, in 

2003, Du et al. performed HSCCC to successfully separate ginsenosides Rb1, Re, Rg1 and notoginsenoside R1 

from the Panax notoginseng [75]. Later HPCCC coupled with an evaporative light scattering detector (ELSD) 

was introduced for the separation of ginsenoside Re, ginsenoside Rg1, ginsenoside Rd and ginsenoside Rb1by 

Cao et al. [76]. After the success of this approach, it has been more widely used in the separation of 

ginsenosides. Ha et al. [77] applied this method (HSCCC coupled with ELSD) to separate less polar 

ginsenosides such as Rg3, Rk1, Rg5 and F4 from Korean red ginseng. In addition, the solvent systems 

containing chloroform have been replaced by other chlorinated solvent systems such as methylene chloride-

methanol-water since 2004 [78], or alternatively by adding another alcohol such as isopropanol [77]. Although 

the chloroform-methanol-water solvent system is suitable for separation of glycoside compounds, the use of 

chloroform will bring about the risk of contamination of the environment. Qi performed methylene chloride–

methanol–5mM aqueous ammonium acetate–isopropanol (6:2:4:3 v/v/v) solvent system to separate 

ginsenosides Rf, Re, Rd and Rb1 [72]. Cheng performed methylene chloride–methanol– water–isopropanol 

(6:2:4:3, v/v/v) and n-hexane–n-butanol–0.1% formic acid (0.7:3:4 v/v), two different solvent systems, to 

separate ginsenosides Re, Rb1, Rc and Rb2, and ethyl acetate–isopropanol–0.1% formic acid (3:1:5 v/v) solvent 

system for the separation of ginsenosides of Ro [72, 73]. N-hexane–n-butanol–water (3:4:7 v/v) and methylene 

chloride–methanol–water–isopropanol (6:6:4:1 v/v/v) were used as the two-phase solvent system of the HSCCC 

separation in Du’s and Ha’s papers [75, 77], respectively. Only Cao used the chloroform -methanol-2-butanol-

water (5:6:1:4 v/v/v/v) and ethyl acetate – 1-butanol-water (1:1:2 v/v/v) solvent system to separate saponin 

(2003) [76]. For this reason, the chloroform-methanol-water-isopropanol (4:3:2:1 v/v) solvent system is not the 

optimal selection of solvent system for the separation of ginsenosides. Furthermore, compared with the different 

HSCCC methods of separation of ginsenosides, only 120 minutes of separation time was needed for Midi-

HPCCC in Qi’s method and 160 minutes of separation time each for two steps of CCC separations in Cheng’s 

method [72,73]. Finally, macroporous adsorption resin applied for separation and purification of 20(S)-

protopanaxtriol(PPT) and 20(S)-protopanaxdiol (PPD) type ginsenosides from Panax ginseng extract is 

recommended  preparation method used for separation of ginsenosides, because it was commonly used for 

enriching compounds such as saponins from Chinese herbs and  this was used as a general method of 

preparation of saponins in Chinese Pharmacopoeia [79]. Zhao et al. [80] has developed a novel method for the 

separation of two types of ginsenosides (PPD and PPT) combining macroporous resin adsorption with 
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microwave assisted desorption. Qi also used the macroporous resin for the preparation of the crude sample of 

Panax ginseng prior to HPCCC separation [72]. As one of the conventional column separation technologies for 

ginsenosides, macroporous resin  is a useful method for separation and purification of 20(S)-protopanaxtriol 

(PPT) and 20(S)-protopanaxdiol (PPD) type ginsenosides as they have different adsorption forces to resin, 

which can be subsequently eluted with different concentrations of organic solvent, such as methanol. Table 

1.2.6.7.1 summarizes recent applications of CCC to isolation of saponins from Panax ginseng products. 

Notoginsenoside R1 and ginsenosides Ro, Rb1, Rg1, Re, Rf, Rd, Rg3, Rg5, Rk1and F4 have been isolated by 

CCC. Table 1.2.6.7.2 summarizes the characterization of HPCCC for the separation of ginsenosides from Panax 

ginseng products. 

 

 

 

Table 1.2.6.7.1 Separation of ginsenosides from panax ginseng products by CCC 

 

Material     Solvent system (volume ratio)    Detection      Target        compound Isolation efficiency        Reference 

 

P. ginseng,    CH2Cl2–MeOH–NH4OAc–iPrOH  ELSD   Ginsenosides Rf, Rd,     11.0, 10.7 , 13.4 and 13.9 mg of Rd,  72 

root          (6 : 2 : 4 : 3)                          Re, and Rb1            Rf, Re and Rb1 from 480 mg 

                                                                       enriched by macroporous resin 
 

 

P. ginseng,   EtOAc–iPrOH–0.1% formic        ELSD   Ginsenoside Ro         61 mg Ro from 100 mg enriched     74  

 root        acid in H2O (3 : 1 : 5)                                           sample by normal-phase MPLC 

 

P. notoginseng, Hex–n-BuOH–H2O (3 : 4 : 7)      TLC    Ginsenosides Rb1, Re, Rg1 157, 13, 56, and 17 mg of Rb1, Re   75 

Root                                               and notoginsenoside R1   Rg1 and R1 from 283 mg MeOH 
                                                          extract of five tablets 

P. notoginseng, CHCl3–MeOH–2-BuOH–H2O             Ginsenosides Rg1, Rd, Re           NA                  76 

Root        (5 : 6 : 1 : 4), EtOAc–nBuOH–H2O  ELSD   Rb1 and notoginsenoside R1 

          (1:1:2)                                 

Red P. ginseng, CH2Cl2–MeOH–H2O–iPrOH      ELSD   Ginsenosides Rg3, Rk1    32.2, 26.6, 28.6 and 8.1 mg of Rg3,  77 

steamed root    (6 : 6 : 4 : 1)                          Rg5 and F4             Rk1, Rg5 and F4 from 350 mg 

                                                                         enriched fraction by RP-C18 column  

 
 

P. ginseng,   Hex–n-BuOH–0.1% formic        ELSD   Ginsenosides Re, Rb1, Rb2  76.1mg,137.0mg, 58.8mg and 85.1mg    73   

    Root    acid in H2O(0.7 : 3 : 4)                    Rc                     of Re,Rb1, Rc and Rb2 from 1440 mg 

         CH2Cl2–MeOH–NH4OAc–iPrOH                                   enriched by macroporous resin 

                (6:2:4:3) 

 

Abbreviations: Hex: n-hexane; BuOH: butanol; CH2Cl2: dichloromethane; MeOH: methanol; NH4OAc: 

ammonium acetate; iPrOH: isopropanol; CHCl3: chloroform; EtOAc: ethyl acetate. ELSD: evaporative light 

scattering detection; UV: ultraviolet. RP: reversed-phase; MPLC: medium-pressure liquid chromatography, 

TLC: thin-layer chromatography 

 

 

Table 1.2.6.7.2 Characterization of CCC for separation of ginsenosides from Panax ginseng products 

CCC machine coil   volme   tube   β value  sample loop  rpm    flow rate      run time  type of  Ref No 

                ml      mm              ml                 ml/min        min     CCC 

Analytical milli     0.4     1.6     0.56       NA       1800   flow step gradient 140    HPCCC  72 
                                                               0.5~0.75~1                                                                                                                            
Preparative midi   912     4.0      NA       20       1250   flow step gradient 140    HPCCC  72 
                                                              20~50~100                                                                          
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Analytical midi     33      0.8    0.52-0.86   0.8      1400      1.0           70    HPCCC  74 

Preparative midi   903     4.0    0.64-0.81   20       1400      30            70    HPCCC  74       

Multilayer coil     385     2.6      NA       NA        650      2.5                  HSCCC  75 

Analytical multi    35      0.8    0.4-0.72    NA        1800      1.0         80-300   HSCCC  76 

Preparativemulti   230     1.6    0.5-0.75    NA        800      2.0           300    HSCCC  76 

Preparative       325     1.6    0.5-0.75    NA        800       1.3           400   HSCCC  77 

Analytical midi     33      0.8    0.52-0.86   NA       1400      1.5           150    HPCCC  73 

preparative midi   903     4.0    0.64-0.81   NA        1250   flow step gradient 140    HPCCC  73 

                                                                20~50~100                   

                                                                                                                                       

Abbreviations:   β is the ratio of the coil radius r to the revolution radius R 

 

 

 

1.2.7 On-line detection methods 

 

Correct detection techniques application for the analysis of Panax ginseng after separation is also a very 

important step as Panax ginseng contains many complex bioactive ginsenosides. On-line detection methods 

include ultraviolet (UV), diode-array detection (DAD), evaporative light scattering detection (ELSD), 

fluorescence, charged aerosol detection (CAD), Pulsed amperometric detection (PAD), mass                                                                                              

(MS) and ELISA. Also different detectors can be combined together to get more information of the target 

compounds. Table 1.2.7.1 compares the advantages and disadvantages of the various methods. 

 

Table 1.2.7.1 Characterization of detection methods for Panax ginseng analysis 

 

   Method              Advantage                      Disadvantage                Ref No  

 

UV/DAD             Low cost, wide linear range          Middle sensitivity             83, 84, 85, 86, 87  

                    Good precision 

ELSD               Good precision,speed               Poor sensitivity, narrow range  91,92,93,94,95,96    

                    Low cost           

Fluorescence          High sensitivity, wide linear range     Unavailable to structure       101,102,103 

CAD                Good precision, easy operation       Middle sensitivity             104,105,106 

  PAD                 High sensitive, repeatable,         Narrow range               107,108,109,110 

High selective, 

MS                  High sensitivity, powerful to structure  Expensive, hard operation     124,125,126,127 

ELISA               High sensitivity, low cost             Low precision, narrow range   132,133,134,135,136 

                              

Abbreviations: UV/DAD: ultraviolet or diode-array detection; ELSD: evaporative light scattering detection; 

CAD: charged aerosol detection; PAD: Pulsed amperometric detection; MS: mass spectrometry; ELISA: 

enzyme-linked immunosorbent assay. 

 

 

1.2.7.1 Ultraviolet (UV) or diode-array detection (DAD) 
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UV detection is the most popular and common method among the different techniques for the detection of 

Panax ginseng. It is cheap and easy to operate. But the UV absorption of most saponins of Panax ginseng is not 

strong with poor sensitivity and causes the high level of baseline noise during the analysis process, the detection 

of UV is usually set at 198-205 nm [81,82],  using at 203 nm, most main saponins of ginseng can give 

relatively satisfatory result [83-85]. DAD has also been used for the analysis of Panax ginseng due to the 

accuracy, precision and reproducibility, the main disadvantage is also poor sensitivity to saponins. The 

combined use of HPLC-DAD-ELSD has been shown to be suitable for detection of the multiple and complex 

analytes in Panax ginseng [86], five constituents of FZS, namely baicalin, ferulic acid, and ginsenosides Rg1, 

Re, and Rb1, were identified based on their retention times. HPLC-UV/DAD coupled with MS method was 

employed for simultaneous determination of flavonoid, saponins and polyacetylenes in Folium ginseng and 

Panax ginseng with pressurized liquid extraction and promoted the identification and quantification of 

compounds in ginseng [87]. 

 

 

1.2.7.2 Evaporative light scattering detection (ELSD) 

 

 

Due to the weak UV absorption of ginsenosides, the main problems encountered in performing UV analyses of 

Folium ginseng is poor sensitivity [88], ELSD works by measuring the light scattered from the solid solute 

particles remaining after nebulization and evaporation of the mobile phase [89].It is a mass detection method 

which is based on LC column effluent nebulization into droplets by the nebulizing gas, The sensitivity of ELSD 

detection typically ranges from 10 to 100ng [90]. The advantage of ELSD is that it can provide a stable baseline 

with high sensitivity compared with the UV and it can modified by the different volatile mobile phase such as 

NH4OH, HCOOH,CH3COOH, CF3COOH to obtain the information of the targets [91,92]. The flow rate of the 

nebulizer gas and the drift tube temperature are the main factors of the ELSD [93, 94]. 

 

The ELSD can provide a stable baseline even with gradient elution and has firstly been successfully applied to 

the analysis of ginsenosides in Asian ginseng in 1996 by Park et al. [91]. Ginsenosides Rb1, Rb2, Rc, Rd, Re, 

Rf, Rg1, Rg3 and Rh in white and red Asian ginseng (Panax ginseng) were identified by HPLC-ELSD using the 

a LiChrosorb NH2 column and gradient elution. S.W. Kwon, et al [95] developed the HPLC-ELSD method for 

the determination of less polar ginsenosides in processed ginseng including ginsenosides F, Rg , Rk and Rs used 

a C-bonded silica column with a reversed-phase gradient elution. W. Li, et al, used the HPLC-ELSD method to 

successfully quantitate 24(R)-pseudoginsenoside F11 in North American ginseng. This method also used 

reverse-phase column withacetonitrile and water as the mobile phase [96]. Wan et al. [92] developed a HPLC-

ELSD method with pressurized liquid extraction (PLE) to qualitatively and quantitatively determine twelve 

major saponins (notoginsenoside R1, pseudo-ginsenoside F11, ginsenosides Rg1, Re, Rf, Rb1, Rg2, Rc, Rb2, 

Rb3, Rd, and Rg3 ) from the three Panax ginseng, Panax quinquefolius, and Panax notoginseng of the Panax 

genus. The ELSD was found to be rapid, relatively inexpensive and accurate. ELSD is used when a compound 

has no UV absorbance or a weak UV absorbance or the absorbing wavelength of the target compound is 

unknown. Although the sensitivity of ELSD is not better than MS/MS analysis, it is preferable to the UV. Thus 

it can be used to quantitate any ginsenoside of ginseng in principle. But ELSD is not available for the volatile 

solutes and it’s signal measurement is direct from sensor which can limit the sensitivity and stability of the 
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detector, because this type of measurement has inherent sensor noise and drift [97]. Also the ELSD has 

significant limitations in dynamic range and the nature of calibration curves [98]. 

 
1.2.7.3 Fluorescence 

 
Fluorescence is one of the most sensitive detection methods for HPLC analyses. It affords greater sensitivity to 

sample concentration due to the fluorescent light being measured against a very low light background [99]. 

Fluorescence detection methods with HPLC have been applied for the analyses ginsenosides of Panax ginseng 

as a supplement of the UV and ELSD detection methods. Because UV detection has poor sensitivity to 

ginsenoside and the ELSD detection method has limitation of ginsenosides Rg1, Rd and Re reported as 50, 40, 

65 ng, respectively [100]. A new HPLC method with fluorescence detection has been described for the analysis 

of ginsenosides Rb1, Rb2, Re, Rd and Rg1 in Panax ginseng and Panax notoginseng, The detection limit for the 

ginsenoside Rg1 was found to be about 130ng [101] and the detection limits for the ginsenoside Rg1 using 

TBAQ, CAQ or AQ as a photoreagents were found to be 35 ng, 50 ng and 50 ng, respectively [102]. Shangguan 

et al. [103] developed a novel, reliable and sensitive pre-column derivatization method for fluorometric 

detection for ginsenosides Rb1 and Rg1, The detection limits of ginsenosides Rg and Rb 1 were 2.0 ng and 1.0 

ng. Thus the detection limits of ginsenosides with fluorescence detection methods can be improved. 

 

1.2.7.4 Charged aerosol detection (CAD) 

 

Charged aerosol detection (CAD) is a new universal detector similar to ELSD, a mass-dependent detector based 

upon innovative technology. It has been developed to be used to determine compounds with weak UV 

absorption and low content at the same time. The main advantages of a CAD detector include better sensitivity 

than the ELSD system, a dynamic range of up to 4 orders of magnitude, ease of use and constancy of response 

factors [104]. Like ELSD, CAD is also employed for the analysis of saponins. Seven saponins, notoginsenoside 

R1, ginsenosides Rg1, Re, Rb1, Rg2, Rh1, and Rd in Radix et Rhizoma Notoginseng were successfully 

determined and quantified by using the HPLC-DAD method for the first time [105]. In addition, compared with 

UV and ELSD, the response and the sensitivity of most saponins in Radix et Rhizoma Notoginseng by CAD are 

both higher than that of others. Wang et al. [106] made a comparison of the literature of LC-CAD, LC-UV and 

LC-ELSD for simultaneous determination of seven major triterpenoid saponins in Panax ginseng including 

ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rb3 and Rd based on the sensitivity, linearity and reproducibility. The 

CAD is somewhat more sensitive than UV and ELSD for ginsenosides detection. The linearity of CAD is 

somewhat better than that of ELSD but both linearities are poorer than UV. For reproducibility, the CAD has a 

close reproducibility to UV but over ELSD. Therefore, although CAD is not considered a perfect detector for 

the analysis of saponins, it is still the alternative selection due to its remarkable sensitivity, ease of operate, and 

its outstanding performance on reproducibility. 

 

     

1.2.7.5 .Pulsed amperometric detection (PAD) 

 
 

Pulsed amperometric detection (PAD) is an electrochemical detection method that measures the positive 

potential produced by carbohydrate oxidation on a gold electrode, allowing the direct detection of carbohydrates 
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at low pico-mol levels, while PAD allows direct analysis of non-derivatized substrates at low p mol levels [107]. 

HPAEC-PAD has been used for the quantitation of carbohydrates in natural samples due to its strong anion-

exchange properties [108]. Thus a new PR-HPAEC-PAD method with reversed-phase C-18 column was 

developed for analysis of polar ginsenosides in ginseng [109]. Eight different polar ginsenosides were separated 

completely in 50 min with PAD under NaOH alkaline conditions and this method has proved sensitive, 

repeatable, and selective without the pretreatment step. The same research group later used the RP-HPLC-PAD 

method to successfully separate six non-polar ginsenosides (Rh1, Rh2, Rg2, Rg3, Rg5 and Rk1) in 6-year-old 

red ginseng, 4-year-old red ginseng and hairy root of 4-year-old red ginseng [110]. Nonpolar ginsenosides 

efficiently extracted by ethyl acetate were well separated in 40 min. but the previous two methods have several 

problems such as long time taken for analysis and peaks overlap. Lee et al. [111] described a direct 

determination method for polar and non-polar ginsenosides in red ginseng with the Kinetex C-18 column using 

PR- HPAEC-PAD without pretreatment or extraction steps and enabled highly sensitive analysis within 1 h. It 

also had a high selectivity, high sensitivity, and good reproducibility 

 

1.2.7.6 Mass spectrometry (MS) 

 

Mass spectrometers (MS) hyphenated with LC chromatography technology have been successfully applied to 

the analysis and identification of saponins for some years. HPLC-MS and GC-MS are mostly used for the 

quality of Panax ginseng samples. Frit-fast atom bombardment (FRIT-FAB) [112,113] and thermospray (TSP) 

[114] interfaces connecting with HPLC once used to be employed for the qualitative analysis of Panax ginseng, 

but have been replaced by atmospheric pressure chemical ionization (APCI) [115,116] and electrospray 

ionization (ESI), [117,118], in ginseng analysis, because they have good reproducibility. Quadrupole (Q) [119] 

ion trap, (IT) [120] time-of-flight (TOF) [121,122] and Fourier transform ion cyclotron resonance (FT-ICR) 

[123] have been reported to be used as the mass analyzer for the analysis of Panax ginseng. Quadrupoles are 

easer and cheaper mass analyzers compared to other mass analyzers. Ion trap can be employed in the MS/ MS 

without any other mass analyzer. Time-of-flight mass analyzer has a good accurate analysis with high resolution 

but is expensive. Fourier transform ion cyclotron resonance mass analyzers are also similar to TOF. In order to 

promote the accuracy of compound structure information, multi-stage MS has been developed to be applied for 

the analysis of ginseng. Ji et al. performed the HPLC–MS/MS with negative ionisation mode to successfully 

quantify ginsenosides Rb1, Rb2, Rc, Re, Rf, Rd and Rg1 from Panax ginseng and Panax quinquefolius [124]. 
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Also HPLC–MS/MS with positive ion mode was used for the determination of ginsenosides Rb1, Rb2, Rc, Re, 

Rf, Rd and Rg1 from Asian and American ginseng [125]. Multi-stage MS has also been employed for the 

quantification of ginsenoside Rf and 24(R) pseudoginsenoside F11 [126, 127] in the Asian and American 

ginseng. Ginsenoside Rf was found only in Asian ginseng. Whilst 24(R) pseudoginsenoside F11 was found in 

the American ginseng. Many mass analyzers are also hyphenated for the requirement of analysis of ginseng 

such as triple quadrupole (QqQ) [128] quadrupole ion trap (Q-IT) [129] quadrupole time-of-fight (Q-TOF) 

[130] or ion trap time-of-flight (IT-TOF) [131]. 

 

 

1.2.7.7 .Enzyme-linked immunosorbent assay (ELISA) 

 

ELISA is a simple, sensitive, rapid and reliable biochemical assay system for quantitation of antigens and 

antibodies. MAbs are often used. In the earlier experiments, Fukuda et al. [132] prepared the MAb against the 

major active component, ginsenoside Rb1 for use with ELISA for the qualitative analysis of ginsenosides Rb1 

as a marker component of Panax ginseng, immunoaffinity concentration and Western blotting for the 

determination of ginsenosides in the crude drug of Panax species and traditional Chinese herbal medicines. But 

the western blotting method has not t been applied for small molecules, a new Staining Method for ginsenosides 

called Eastern Blotting with ELISA has been developed for the require and applied for the study of ginsenosides 

Re,Rb1,Rg1,Rd and Rc [133-137]. In addition, Morinaga et al. [138] also employed the ELISA method for 

determination of total ginsenosides used ginsenosides Re as a standard. The advantages of the ELISA method 

compared with the HPLC method contribute to its effective cost-performance, speed, sensitivity, and ease of 

use.  

 

 

1.3 Rhodiola rosea 

1.3.1 Historical and botanical background 

Rhodiola rosea, also known as Arctic root or Golden root, is a member of the Crassulaceae family. It grows at 

high altitudes above sea level. As an herb, it grows about 2.5 feet high and has yellow flowers. Rhodiola rosea is 

a perennial herbaceous plant distributed in southwest China, including Yunnan and Sichuan provinces as well as 

in Tibet. It also grows primarily in dry sandy ground at high altitudes in the arctic areas of Europe [139]. For 

centuries, Rhodiola rosea has been used in the traditional medicine of Russia, Scandinavia, and other countries. 

In China, it was first used by Tibetans for maintaining body health and treating various diseases in AD 760. As a 

traditional herbal remedy, Rhodiola rosea has been used by Tibetans in many ways such as clearing heat in the 

lungs, eliminating toxins from the body, treating various epidemic diseases, edema of limbs, traumatic injuries 

and burns [140]. It also has the direct effects of central nervous system, endocritic system and assists the body 

in excellent balance situation. It has been also reported that it plays a role in attenuating the mental fatigue 

caused by voyage [141]. On the whole, Rhodiola rosea has been shown to have a significant effect on the 
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treatment of cardiovascular and cerebrovascular diseases, such as coronary heart disease, hypertension and 

menopausal syndrome. The aboveground and root of Rhodiola rosea are showed in Figs. 1.3.1.1 and Fig. 

1.3.1.2, respectively. 

                             

 

Fig 1.3.1.1 Aboveground parts of Rhodiola rosea.              Fig 1.3.1.2 Roots of Rhodiola rosea 

1.3.2 Chemistry 

Based on the investigations by Saratikov et al. and Kurkin & Zapesochnaya  [142,143], the compounds of the 

Rhodiola rosea are classified into six groups: Phenylpropanoids (rosavin, rosin, rosarin); Phenylethanol 

derivatives (salidroside, tyrosol); Flavanoids (rodiolin, rodionin, rodiosin, acetylrodalgin, tricin); Monoterpenes 

(rosiridol, rosaridin); Triterpenes (daucosterol, beta-sitosterol) and Phenolic acids (chlorogenic and 

hydroxycinnamic, gallic acids). Salidroside and tyrosol have been both found in all species of Rhodiola and 

identified significant bioactivity, which can be selected as the standardization of quantity and quality the 

Rhodiola species [144]. Fig.1.3.2.1 shows the Salidroside and tyrosol chemistry structure. 

 

Rohloff [145] reported that 86 compounds were identified from the essential oil of Rhodiola rosea L. dry 

root including monoterpene hydrocarbons (25.40%), mono-terpene alcohols (23.61%) and straight chain 

aliphatic alcohols (37.54%). n-Decanol (30.38%), geraniol (12.49%) and 1,4-p-menthadien-7-ol (5.10%).   

 

                         

a) Structures of salidroside                        b) Structures of tyrosol 

  

                Fig 1.3.2.1 Structures of salidroside (a) and tyrosol (b) 
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1.3.3 Pharmacological effects of Rhodiola rosea 

1.3.3.1Adaptogenic and anti-stress effect 

 

Rhodiola rosea was also recommended as an adaptogen by Russian researchers similar to Panax ginseng and 

Eleutherococcus senticosus due to its ability to resist the stress related conditions and relieve the body fatigue 

[146]. Spasov, et al. [147] described that the Rhodiola rosea SHR-5 extract can improve the attention and 

relieve the stress of foreign students during a stressful examination period and also SHR-5 extracts can show 

significant improvement in physical fitness, mental fatigue and neuro-motor tests. 

 

1.3.3.2 Cardioprotective effects 

 

Cardioprotective effects are one of the important Pharmacological effects of Rhodiola rosea. Wang et al. [148] 

observed the effects of salidroside on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes and 

found that salidroside can promote 3H-glucose up-take. Kucinskaite et al. [149] also found they can prevent the 

heart system from stress and arrhythmias, and possess some antioxidant activity. It may provide a new insight 

into the mechanism of cardioprotection. Thestudy of Zhang et al [150] observed that salidroside has protective 

effect against hypoxia-induced cardiomyocytes necrosis and apoptosis by increasing HIF-1α expression and 

subsequently up-regulating VEGF levels. 

 

 

1.3.3.3 Anti-inflammatory effects 

 

Rhodiola rosea roots contain a rich amount of polyphenols including flavonoids and tannins, which have proved 

to show a significant anti-inflammatory activity. Pooja et al [151] investigated and determined that the tincture 

extract of Rhodiola rosea roots can inhibit some enzymes relating to inflammation and the effect depended on 

the concentrations. Panossian et al. [152] also summarized the pharmacological effects of Rhodiola rosea not 

only including the adaptogenic effect such as anti-stress and anti-fatigue effect, but also including an 

antioxidant effect, antidepressive and anxiolytic effects and life-span increasing effect on the human or animal 

models. 

 

1.3.4 Separation and purification methods of Rhodiola rosea 

As previously described Pharmacology of the Rhodiola rosea, the Salidroside (rhodioloside), the additional 

salidroside-like glycoside compounds (rhodiolin, rosin, rosavin, rosarin, and rosiridin), and tyrosol contribute to 

the bioactivity of Rhodiola rosea [153]. Many separation methods have been applied for the purification and 

analysis of the active constituents in R.rosea. Liquid chromatography (LC) still plays a significant role in the 

separation and isolation of polar compounds of R.rosea such as HPLC coupled with UV [154-157] and MS 

[158-162].Generally, reversed-phase mode and C18 columns are recommended for use because of the high 

throughput [10]. HPLC coupled with MS has been proved to be a more advanced method for the determination 
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and identification of complex compounds in natural herbs with high sensitivity. Atmospheric pressure chemical 

ionization (APCI) [153] and electrospray ionization (ESI) [159,162] coupled with LC/MS are both commonly 

employed for the identification of the flavonoids, phenylalkanoids and monoterpenoids in Rhodiola rosea, while 

Tolonen et al. [160] performed with APCI and ESI to optimize the ionization process for the analysis of the 

main active compounds from Rhodiola rosea extracts and make a comparison study of them. The ESI had the 

best sensitivity compared to APCI. The multi-stage MS method with LC was used for the quantification of 

salidroside in biological fluids due to its more specificity and sensitivity [163].  

 

TLC, as an easy and rapid method, also was used for the separation of the Rhodiola rosea [164] especially for 

HPTLC [165], It is becoming a routine analytical technique because of its low operating cost, high sample 

throughput. Recently, a new rapid resolution liquid chromatography (RRLC) method has been developed for 

qualitative and quantitative analysis of six major bioactive compounds in Rhodiola rosea [166]. The big 

advantages of RRLC are high speed with high resolution and low analysis costs; the whole analysis time was 

finished in 8 min with baseline separation. Therefore, RRLC is an attractive alternative to conventional HPLC 

technique with high sample throughput and fast analytical speed. 

 

      

In addition, Capillary electrophoresis (CE) is an effective tool for the separation of polar natural compounds 

with high speed and low solvent consumption. Compared with LC method, CE method can eliminate the 

contamination from the silica column and organic solvent which could be a potential risk for humans. It has 

been successfully used to separate five active compounds from extracted Rhodiola rosea including salidroside, 

tyrosol, rhodionin, gallic acid and ethyl gallate in 7 min with the high effciency [167]. Furthermore, Cui et al. 

[168] developed the same method for simultaneous determination of tyrosol and salidroside in three different 

Rhodiola species, both target compounds were separated within 15 min. 

 

For industrial applications, adsorption chromatography using macroporous resins was introduced for preparative 

separation and purification of salidroside [169], rosavin [170] and oligomeric proanthocyanidins [171] from the 

Rhodiola rosea for its easy operation, low cost, high efficiency and easy regeneration. The big advantage was it 

was suitable for large scale industrial production compared with other separation technology. The HD-200 resin 

is the best medium for the Rhodiola rosea separation based on the optimization of the main four parameters: the 

volume, concentration, bed height and flow rate of loading sample. 

 

High-speed counter-current chromatography is a liquid-liquid chromatography with high efficiency and high 

recovery that are easy to scale–up, because it is a liquid liquid partition chromatography without solid support 

matrix and eliminates irreversible adsorption of the sample onto the solid support. It has not been widely 

employed for the preparative isolation and purification of Rhodiola species with only two studies found in the 

literature as follows: Li & Chen [172] performed HSCCC with a two- phase solvent system composed n-

butanol–ethyl acetate–water (2:3:5, v/v) for achieving salidroside at 98% purity in a one step separation with 

isocratic elution. Another HSCCC method was also used to purity salidroside with two steps separation [173]. 

Ethyl acetate–n-butanol–water (1:4:5, v/v) and chloroform–methanol–isopropanol–water (5:6:1:4 v/v/v) were 

selected as solvent system for the first run and second run, respectively. Totally the separation yielded 
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salidroside at 98% purity by the HPLC analysis. During the HSCCC procedure, the selection of a suitable 

solvent system for the separation of salidroside is the most important step, which may be estimated to be 80% of 

the work [173]. 

 

Sample preparation and extraction is the crucial first step in the analysis of herbs. It can clear up the impurities 

from the crude herbs and enrich the desired components for the next quality control. There are various methods 

for extracting active compounds like salidroside and tyrosol from the Rhodiola species such as solid-phase 

extraction (SPE) [163,164], liquid extraction [174,175] reflux extraction (RE) [176], ultrasonic extraction (UE) 

[176], and microwave-assisted extraction (MAE) [177]. Each exaction method has its own advantages and 

limitations. For example, reflux extraction is more efficient than ultrasonic extraction with high extraction 

yields of six active constituents from Rhodiola.L but with much time [176]. MAE can reduce the extraction time 

and organic solvent but with moderate yield [177]. A new high hydrostatic pressure extraction (HHP) [178] 

method was introduced to apply for the exaction of salidroside from Rhodiola sachalinensis and has been 

compared with Soxhlet extraction, reflux extraction and other methods. The result showed that the extraction 

ratio of salidroside was up to 0.401% in 3 min with HHP, which was much better than 0.302% in 120 min with 

reflux extraction and 0.288% in 30 min with Soxhlet extraction.    

 

1.4 CCC application for preparation and isolation of Chinese herb 

medicine 

 

1.4.1 Successful CCC application for preparation and isolation of Chinese herb 

medicine 

 

In the past decades, several conventional separation methods, such as thin-layer chromatography (TLC), gas 

chromatography (GC), high-performance liquid chromatography (HPLC), have been used for the isolation and 

purification of components from TCM. Later, some advanced technologies were introduced to promote the 

separation efficiency of the TCM including Hydrophilic Interaction Chromatography (HILIC), Microemulsion 

EKC (MEEKC) and so on. However these methods were associated with some disadvantages: they were tedious 

and time consuming and require multiple chromatographic steps and is not widely employed in the TCM field 

[179]. CCC, which was based on liquid-liquid distribution chromatography, eliminates irreversible adsorption 

of samples on solid support with conventional column and provides better recovery of the sample. This method 

is proposed in order to develop a modern chromatographic separation and preparation technology since 1980 by 

Ito [180]. Afterwards it was introduced into China as one effective and advantage chromatography for the 

separation of TCM by Zhang due to its sustained high recovery, productivity and low cost. The CCC method 

was appealing for the separation of TCM compared with other technologies because of the highly reduced 

sample loss. Therefore, CCC has been successfully employed in the fields of purification and separation, 

especially extraction and separation of active components from TCM. Liu et. al. [179] reviewed about 60 

research articles of CCC relative to the separation of TCM: 60 different compounds flavonoids, alkaloids, 

coumarins and phenols were purified and analysed by CCC. It was also proven that CCC could be a feasible and 
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cost-effective method in the development of the fingerprint of TCM [181]. Later, Sutherland and Fisher [78] 

comprehensively reviewed about 198 journal papers on the separation and purification of bioactive ingredients 

from TCM using CCC including 108 herbs. 363 compounds were successfully isolated including 89 flavonoids 

accounting for about 25% of the 363 compounds, 57 polyphenols accounting for about 15.7%, 56 alkaloids 

accounting for about 15.4%, 45 terpenoids accounting for 12.6% and other active compounds such as 

glycosides, saponin and amides. With the high rapid development of CCC technology and hyphenated 

techniques such as pH-dependent CCC techniques [182,183],  Elution-extrusion (EECCC) and back-extrusion 

(BECCC) [184,185], multi- channel (MC-CCC) [186], two-dimensional (2D-CCC) and liquid-liquid-liquid 

three-phase (LLL-TP-CCC) techniques [187,188],  interfacing CCC with MS [189-192], interfacing CCC with 

ELSD [193,194], combination of HSCCC technique with ESI-MS- MS[195] and combination of HSCCC with 

HPLC-PDA-MS [196], CCC has a more and more significant role in the separation and purification of TCM in 

the future . 

 

 

 

1.4.2 Basic theory of countercurrent chromatography 

 

CCC Columns 

 

Countercurrent chromatography is a liquid –liquid chromatography without the solid support matrix, which 

provide many unique advantages including large sample loading, less solvent consumption and no solid 

absorption. There are two common typical liquid-liquid columns: hydrodynamic and hydrostatic column. The 

hydrostatic column is made of a series of chambers or channels fixed circumferentially round a rotor, which can 

be rotated around a singe-axis toproduce the constant gravity field. The stationary phase is held in the each 

chamber or channel and the mobile phase was passed through the rotating seal with cascade mixing. Also the 

mobile phase is flowed in ascending mode if it is the less dense phase or in descending mode if it is the dense 

phase. The hydrostatic pressure will build up and accumulates relative to the number of chambers, the height of 

each chamber and the “g” field times [197]. Thus the Hydrostatic CCC, also named Centrifugal Partition 

Chromatography, make the two immiscible solvent phases contact in the each chamber or channel with quiet 

and the changes in characters of two phase system and the mobile phase flow rate are hardly affected the 

Stationary phase retention. But the disadvantages are the pressure limitation and less efficient separation with 

rotating seal [198]. The hydrodynamic column is made of a continuous piece of tube twined a column, which 

isrotated in a planetary two-axis gyration to produce the variable gravity field. The stationary phase is held 

along the length of tube with stratified approach and the mobile phase was passed through the stationary phase 

with spiral way affected by Archimedean screw effect without rotating seal. The heavy phase is used to occupy 

one end of tube called “tail” and the light phase gathers the other end of tube called “head”. Thus, there are two 

elution modes in the hydrodynamic column: if the mobile phase is lower phase it is better pumped from “head” 

to “tail” and if it is upper phase it is better pumped from “tail” to “head”. The two elution ways both can achieve 

the high retention level during the rotation process. Fig 1.4.2.1 shows the schematic view of the liquid motion in 

CCC columns. A – Hydrostatic columns or CPCs.  B –Hydrodynamic columns. The J-Type coil planet 
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centrifuge is the typical instrument performed on the separation. It provides the planetary motion which caused 

the mobile phase continues elution and unique hydrodynamic motion of two phases within the rotating column. 

Fig 1.4.2.2 shows the schematic drawing of the rotating coil in a hydrodynamic CCC instrument equipped with 

planetary gear.  
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Fig 1.4.2.1 Schematic view of the liquid motion in CCC columns: A – Hydrostatic columns or CPCs. B –

Hydrodynamic columns [Berthod, 199] 
 

 

 
 
 
 
 
 

- 
 
 
Fig1.4.2.2 Schematic drawing of the rotating coil in a hydrodynamic CCC instrument equipped with planetary 

gear. [Ito, 200] 
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Partition coefficient 

In counter current chromatography, retention of a solute only relies on the partition coefficient of the solute. It is 

the ratio of solute distributed between the two solvent phases mutually equilibrated. Usually it is calculated as 

the ratio between the amount of solute in the stationary phase and that of the mobile phase, as it is expressed in 

the conventional liquid chromatography. The partition Coefficient, KD, is calculated as below: 

 

   KD=Cs/Cm                                      (Equation 1) 

 

Where Cs is the concentration of the sample component in the stationary phase and Cm is the concentration of 

the component in the mobile phase. Target compounds suitable for CCC are characterized by a KD included 

between 0.5 and 1.0. Any values lower or higher the optimal range will adversely affect the resolution 

proportionally. In addition, although a higher KD value will contribute to better resolution it will also result in 

broader peaks with a longer elution time [199]. 

 

Simple mechanism 

 

 

The only parameter included in the retention equation, reported below, is the liquid–liquid partition ratio (KD) of 

the solute in the biphasic liquid system, which is used to perform the CCC separation. 

 

   VR = VM + KD VS                                 (Equation 2) 

 

Where, as mentioned above, KD is partition coefficient of the solute (if only one solute form is involved), and 

VM and VS, respectively, the mobile and stationary phase volumes inside the CCC apparatus. VM refers to the 

hold-up volume in HPLC [201]. 

The solid support is absent, so the column volume VC is expressed as following: 

 

   VC = VM + VS                                    (Equation 3) 

 

The column volume can be either given by the manufacturer or measured. Equation 2 can be then written as 

below: 

 

   VR = VC + (KD – 1) VS                             (Equation 4) 

 

This last expression shows that solute partitioning between the two liquid phases and VS are the only parameters 
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acting on solute retention. 

 

Retention factor 

 

 

Most of the equations applicable in CCC (classical equations also used for LC) are briefly recalled here, 

pointing out the specificity of the liquid stationary phase. 

 

The solute retention volume is derived from equations 2 or 4. VS, the liquid stationary phase volume, can be 

used in LC, and therefore in CCC, in order to express all its parameters. The retention factor is expressed as 

following [199]: 

  

   k = (VR – VM)/VM = KD VS/VM                      (Equation 5) 

 

The separation factor, which is used in order to compare the retention factors of two different peaks, 1 and 2, is 

calculated as below: 

 

   α= k2/k1 = KD2/KD1                              (Equation 6) 

 

The suitable α value should be bigger than 1.5: in this case the two different peaks are separated individually 

[199].   

 

Resolution 

 

 

The quality of the separation is used for measuring the peak resolution. A 1.5 resolution value means that two 

adjacent peaks are separated with a baseline return. A resolution factor lower than 1.5 means there is some peak 

overlap. Resolution factors higher than 1.5 means there is space between the two peaks. It is expressed as the 

ratio of the distance between the two peaks to the average peak width, Wb, at the baseline [199] 

 

   RS =2 (VR2 – VR1)  [ (wb1 + wb2)]                  (Equation 7) 

 

Resolution depends on two factors, the peak widths and the peak separation. The efficiency of the column 

determines the peak widths, and in CCC is a function of the mass transfer and mixing. These are affected by the 

parameters such as flow rate; rotational speed and tube bore [202]. Peak separation depends on the nature of the 

stationary and mobile phase. 

 

The chromatographic efficiency can be expressed using N, the theoretical plate number as 

 

   N = 16 (VR/wb)
2
                                  (Equation 8) 

It is defined as the ability of a column to keep the concentration bands of the solutes as narrow as possible. 

According to the above equations, the peak resolution equation in CCC is established as following: 
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Retention  

 

In CCC system the volume of stationary phase is not steady, due to the liquid nature of the stationary phase 

[199]. The retention of the stationary phase, Sf expressed as the volume of stationary phase retained in the 

column over the parameters in countercurrent chromatography (CCC) and it is used for the derivation of the 

column efficiency, peak resolution and solute retention. 

 

       Sf = VS/VC                                   (Equation 10) 

 

Sf regardless of the properties of the single CCC machine permits the comparison of stationary-phase retention 

capabilities of different CCC apparatuses. The retention of the stationary phase (Sf) is dependent on three 

classes of parameters or variables: active parameters: the mobile phase flow rate, rotation speed, and 

temperature; nonactive parameters : the geometrical parameters of the instrument, such as the revolution radius 

R, β-value (where β is the ratio of the coil radius r to the revolution radius R), tubing diameter, and tubing 

material; and the physical properties of the two-phase system: density and viscosity of each phase and 

interfacial tension between the two phases [199]. 

 

The influences of operation conditions and apparatus parameters on the retention of the stationary phase have 

been studied by many researchers. [203,204]. A constant observation with different HSCCC apparatus is that Sf 

increases with the centrifuge rotation speed and decreases with the flow rate [205]. Du et al.have shown that Sf 

decreases proportionally to the square root of the mobile phase flow rate: Sf = A - B F  [206], Wood et al. 

[207] have shown that this relationship can be explained by considering the coil planet centrifuge as a constant 

pressure pump, and using the Hagen–Poiseuille equation under the assumption that the mobile phase flow is 

laminar, as follows: 
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Where µm is the viscosity of the mobile phase; L is the length of the column and P  is the hydrodynamic 

pressure drop, d is the diameter of the column, and F is the flow rate of the mobile phase.  

He & Zhao[208] have proposed a mathematical model to describe the influences of operation conditions 

physical properties (density difference, viscosity, and interfacial tension), and instrument parameters (tube 

diameter, revolution radius) on the retention of the stationary phase, by building on the flow behaviour of the 

two phases in the coiled column, laminar flow or droplet flow. They have shown that Sf decrease proportionally 

to the square root of the mobile phase flow rate to the rotational speed: Sf =A-B


F
.  

 

The influences of physical properties of two-phase solvent systems on the retention of the stationary phase have 

also been experimentally researched by many authors [209, 210]. Parameters such as the polarity of solvent, 

density, and viscosity difference of the two phases, settling time, interfacial tension, and capillary wavelength 

have been considered.  

 
 

Choice of the Solvent System 

 

The choice of the solvent system is a key factor for determining a successful separation because it plays a 

critical role on the solute KD values [211]. However, this is time consuming and it is preferable to start with the 

right solvent due to more than 187 solvent systems were reported in the separation and purification of natural 

products and a total of 20 different solvents were used.  Four solvents, i.e., n-hexane, EtOAc, MeOH, and 

water, comprised 74% of individual solvents used to create solvent systems such as the popular n-hexane-

EtOAc-MeOH-water (HEMWat) solvent system [212]. Sutherland & Fisher also summarised chlorinated 

systems and alkane/alcohol systems were the most popular solvent system used for the CCC separation of TCM 

till 2007[78]. Therefore, a suitable solvent system selection approach should be developed to use for a desired 

counter current separation. Many publications have shown how to optimize the choice of the solvent [213,214]. 

There are some ideal ways to select the suitable solvent system. First searching for the similar solvent system 

used for the target compounds or compounds with similar chemical structures such as MBE, HEMWat and 

Arizona liquid system can be applied for the test. [211].They recommends chloroform–methanol–water or less 

polar n-hexane–ethyl acetate–methanol–water mixture solvent system as the first attempt to find a suitable 

solvent system by modifying the relative proportions of each constituent solvent. The search based on the 

polarities and the KD values of the sample. In the case of the hexane-containing system, n-butanol can be added 

if the sample is more hydrophilic [214]. In addition, a similar approach has started with a mixture of n-heptane–

ethyl acetate–methanol–water 1:1:1:1 and ending with ethyl acetate–water 1:1 for polar compounds or n-

heptane–methanol 1:1 for less polar samples [215]. In addition, application of GUESSmix also is logical 

method to test and select the right solvent system during the selection of the solvent system process [216]. A 

suitable two-phase solvent system has to reach the following five requirements: 1) the settling time of the 

solvent system is less than 30 seconds, 2) The suitable partition coefficient (KD) value of the target compounds, 

which is between 0.5 and 2. If the KD is less than 0.5, the elution time is tiny result in low resolution; If KD is 

bigger than 2, the elution time is longer and the peaks become wide. Meantime, the separation factor between 

any two peaks should be bigger than 1.5. [213]. 3) In order to save solvent cost, the volume of upper phase and 
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lower phase is better equal, 4) Satisfactory retention of the stationary phase. 5)  The choice of solvent systems 

should be considered the compatible with the detector. For example, solvents that absorb strongly in the UV are 

normally avoided when UV detectors are employed 

 

 

 

 

 

1.4.3 The advantages of CCC 

 

Counter-current chromatography benefits from a number of advantages when compared with the more 

traditional liquid solid separation methods: (1) no irreversible adsorption; (2) total recovery of sample loaded ; 

(3) tailing minimized; (4) low risk of sample denaturation; (5) low solvent consumption; (6) low cost. It uses 

significantly less solvent than HPLC (7) Crude samples tolerated. Dirty samples are accepted. Very little prior 

clean-up is necessary. (8) High sample loading. (9) Easy scale up . Another advantage of CCC is enough 

flexibility to exchange the mobile phase and stationary flow direction based on the different requirements. With 

these advantages, CCC is very popular as a purification tool for natural products, and especially in the bioassay-

guided fractionation of plant-derived compound  

 

1.4.4 Main CCC separation methods 

 

As we know, CCC is an all liquid chromatographic technique without the solid support. It has aunique 

characteristic that the two phase system can exchange different directions with different elution ways, which not 

only separate one single compound using one solvent system. There are different elution modes and methods 

developed to separate more complex compounds from the natural herbs and improved the isolation effective and 

shorten the separation time. Stepwise elution, Gradient Elution [217-220], pH-gradient [221-223] elution-

extrusion (EECCC [224] and back-extrusion (BECCC) [225] have been successfully employed in the separation 

of natural product. Cross-axis counter current chromatography (Cross-axis CCC)[226], dual countercurrent 

chromatography (DuCCC) [227], pH zone refining countercurrent chromatograph [228], two-dimensional CCC 

(2D-CCC) [229], Multi-channel CCC (MC-CCC)[230] and Dual-flow CCC [231] also have been developed for 

the quality of separation.  

 

1.4.5 Coupling techniques of CCC 

 

On-line detect methods also can be applied for use with the CCC technique currently.  Most of them are based 

on UV detectors. Recently some hyphenated techniques such as evaporative light scattering detectors (ELSD), 

mass spectrometers (MS) and diode array detectors (DAD) are widely used with the HSCCC due to the high 

sensitivity and high efficiency.  
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In the procedure of separating natural compounds using HSCCC, a UV detector is widely used as the data 

acquisition device, but the chemicals should show strong UV adsorption. Evaporative light scattering detector 

(ELSD), as a alternative detector, can detect the poor absorption of light UV and it does relate to the 

concentration of the sample not to their optical feature [232]. Furthermore, compared with the MS, ELSD can 

easy combine with the CCC and successfully apply for the separation of ginsenosides [72, 76, 77], Therefore, 

ELSD is employed more and wider for the drug discovery. But the limitation of the ELSD method was only 

suitable for non-volatile compounds. Mass spectrometers (MS) are the technique of choice for solute 

identification with excellent sensitivity and specific detection. However, there were initially some difficulties 

with this hyphenated technique such as high back pressure of MS system, high noise in MS and the effluent 

from the CCC column is not always stable. These shortcomings have now been overcome by using an HPLC 

pump plugging in at the interface junction to protect the CCC column [233] or the frit interface which reducing 

the high back pressure [234] and T-split tee for reducing the effluent velocity and sample amount introduced 

into MS [235]. Thus, it became an ideal tool in the quantitative and qualitative study of natural drug discovery. 

Moreover, with the development of research, the combination of HSCCC technique with MS, diode array 

detectors (DAD), charged aerosol detector (CAD), Fourier transform infrared spectroscopy (FTIR), and other 

new kinds of detectors can increase the ability of HSCCC in the future.  

 

1.4.6 Optimization of Operational Parameters of CCC 

 

In addition to solvent system selection, the optimization of operational parameters of CCC is a prerequisite for 

effective countercurrent separation. In general, flow rate, rotational speed, temperature, sample concentration 

loading and sample loading volume are the parameters to be optimized. As we known, slower flow rates may 

give better resolution and good retention of stationary phase, but they may also lengthen the time of the 

experiment excessively. Conversely, fast flow rates shorten experimental times but are more likely to be the 

cause of insufficient resolution and loss of stationary phase. Therefore, the flow rate should be fast enough to 

ensure a sufficient resolution in a reasonable amount of time. Normally, larger capacity instruments require and 

support faster flow rates than smaller capacity instruments. For the typical HSCCC with rotation at 75 g, the 

recommended flow rates are as follows: 5–6 ml/min for a preparative column with 2.6mm i.d. PTFE tubing; 2–3 

ml/min for a semi-preparative column with 1.6mm i.d. PTFE tubing; and 1 ml/min for an analytical column 

with 0.85–1.0mm i.d. PTFE tubing [236]. For preparative scale separation, the typical flow rate is in the range 

of 1-3ml/min. But for the HPCCC with high g level, it is achievable to maintain high stationary phase retentions 

at high flow rates with a higher rotational speed. It has enabled a tenfold increase in mobile phase flow rate 

while maintaining the required stationary phase retention to ensure resolution. High flow rate also can increase 

the mobile phase move in the time interval between mixing waves in the column resulting in greater change in 

solute concentration of mobile phase and achieve the large mass transfer rate[237]. Thus, the HPCCC can 

shorten the separation time and improve the throughput of samples. It is possible with pumps that work at 50 

mL/ min to easily process up to 200 g of crude material per day and potentially up to 400 g at the preparative 

scale. Furthermore, it was now possible to develop robust analytical-scale instruments, using small-bore 

columns, so that milligram quantities of compound could be processed. While, the HSCCC was impossible for 
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the analytical scale because at low g-level the wall effects of small-bore columns affected the partitioning 

mechanism [238].  

 

In general, a faster rotational speed increases the stationary phase retention volume, because stationary phase 

retention is not only depended on the qualitative properties of the solvent system in use but also increases with 

gravitational field force. Increasing the rotational speed can lead to the improving g level with the apparatus and 

resolution of samples. In addition, higher rotational speed can probably produce higher interfacial area where 

the mass transfer occurs and shorten the time interval between mixing steps in the column. Finally, the mass 

transfer rate will increase and improve the resolution of samples [237]. Therefore, a separation should be run at 

highest rotational speed possible. Also the rotational speed should be consistent with the instrument design and 

not put too much of a strain on the bearings, seals, and tubing.   

 

The column temperature affects KD values, the retention of the stationary phase and the mutual solubility of the 

two-phase system. Moreover, high temperature can lead to a decrease in fluid viscosity and degrade some 

samples that are volatile. Therefore, temperature control of the columns of CCC is essential [211].  

 

Usually, the concentration of the sample dissolved in the stationary phase or both phases was considered an 

important factor for the separation using HSCCC [236]. Based on one review[239], the range from 0.5 to 2 

mg/ml is the typical main sample loading values at analytical scale. Zhao and He suggested that the sample load 

concentration increases exponentially with column volume [240], which showed the potential possibility on 

future CCC scale-up. Thus, the injected sample size must be considered based on the HSCCC column size, the 

apparatus performance and the solubility of the sample in the solvent system [211]. But the solubility of 

samples is not a limiting factor any more in HPCCC because the sample can be injected onto the column in 

either the mobile, stationary, or a mixture of both phases without affecting the performance of the 

chromatography.The problem of large sample in HSCCC sometimes is the stationary phase loss, but the 

HPCCC can provide high sample recovery and high-loading capacity. Sutherland et al . [241] found that the 5% 

of the Milli CCC column volume was the optimum percentage of the column volume loaded because the 

resolution dropped off quickly when sample volumes exceeded 5%. Also the sample concentration was 

increased and selected until the resolution fell below 1.5, because a high concentration in a low volume was 

better than low concentration in a high volume is better at preserving the resolution. The other advantage of 

HPCCC is quickly and predictably scalable to produce sufficient quantities of the pure ingredients required, 

because it was discovered that scale up was simply volumetric and linear between all scales developed [242]. 

Lijuan Chen et al. [243] have developed a rapid separation approach using high-capacity high-speed counter-

current chromatography to isolate and purify honokiol and magnolo and scaled up at analytical scale to 

preparative scale. The optimization of the solvent selection process, sample concentration loading, sample 

loading volume and flow rate was systematically studied using analytical high-capacity HSCCC. Wood et al. 

[244] and Sutherland et al. [245] investigated on the counter-current chromatography separation scale up from a 

5.4 ml analytical column to pilot scale with 4.6L column and 18L column each. Recently Hacer Guzlek et al. 

[246] have developed a novel model to predict the elution profile of a CCC column from scratch using 

instrument and operational parameters only. This model not only predicted the solute retention time, peak width, 
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and peak resolution with accuracy but also estimated several process parameters such as mobile phase flow rate, 

rotational speed of the column and β-value. 

  

Therefore, the higher stationary phase retention of high performance counter current chromatography 

instruments allows higher mobile phase flow rates and thence shorter cycle times to be used without loss of 

resolution for a given separation. Now that HPCCC machines are available, high throughput separations can be 

achieved across the whole range of polarity.  

 

 

1.4.7 A generic practical approach of purification and analysis for the natural products 

 

Traditional Chinese medicines (TCMs) are very popular and acceptable in the world for enhancing the whole 

body immunity with little toxic effect on the treatment of disease. The goal of TCM is not only curing the 

diseases but also rebuilting the energy balance of the body to resist them. Thus, the TCM is like a complex 

system with many different bioactive constituents or toxic compounds. In order to achieve the desire 

compounds from a chosen TCM, developments of effective technologies of separation and analysis in TCM are 

a very important objective. Compared to other liquid-liquid techniques, CCC is an advantageous and suitable 

technique for the separation and purification of active compounds from TCM due to the high recovery, low cost 

and high throughput. However, the variety of different types of CCC instruments used for the separation of 

TCM compounds and the large number of the two phase solvent systems employed for CCC cause the operation 

process of separation to be very complicated which is limiting the wide application of CCC for natural products. 

Thus, a novel generic practical approach to separation and analysis for CCC separation of TCM should be 

established and developed for quality and quantity of the active compounds in TCM. The Fig.1.4.7.1 provides a 

generic CCC separation approach from raw material to pure compound. The following provides an overview of 

the main consideration and practical steps in the CCC separation of natural products. 

 

When considering how to approach liquid chromatography of a natural product material such as traditional 

Chinese medicine, the first consideration is which desired target compounds you want to isolate from the natural 

products, whether known or unknown, simple or complex. Thus, sample preparation is the first important step 

in the quality control and analysis of TCMs. Many sample preparation techniques have been developed for the 

extraction and enrichment of the desire compounds from natural herbs such as solvent extraction, ultrasound 

assisted extraction, microwave assisted extraction and high pressure exaction. The selection of the sample 

extraction methods is due to the property of the TCM and the effect of the procedure. Basically, the solvent 

extraction method assisted with ultrasound is widely used for the preparation of TCM because it is simple and 

effective in general. But the number and type of extraction solvents determine the range of polarity of the 

resulting crude extract, which is the main determination of its chromatographic behavior in the countercurrent 

separation. The bioassay-guided fractionation and chemical or metabolomic analysis procedure for the next step 

are to assay a wide range of sample constituents for a particular biological activity to target the bioactive 

compounds or discover new natural products with novel structures and resolving highly complex mixtures. 

Thus, some pre-isolation methods can be applied for eliminating the major known compounds which do not 
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have the bioactivity in order to concentrate and purify the extract sample. These methods include the liquid-

liquid extraction, macroporous resin chromatography and silica gel column chromatography. Once the target 

compounds are identified, the choice of solvent system for the CCC is another crucial step in the separation 

protocol which can occupy up to 80% of the total work of countercurrent separation. The selection of the 

appropriate solvent system follows principles which have already been discussed such as proper partition 

coefficient of compounds in the “sweet spot” [247], good retention of stationary phase volume and 

compatibility with the detection process. In addition, the simplicity of a shake-flask experiment in the selection 

of solvent system can not only help find the proper solvent system but also reliably predict the countercurrent 

chromatographic behaviour of target compound. With the development of CCC instruments with a greater 

analytical capacity, the analytical CCC apparatuses will take place of the shake flask experimentation to adjust 

the solvent system composition and proportions to select the suitable solvent system [248]. In general, solvent 

system selection so far has been an empirical process involving significant elements of experience. After a 

solvent system has been selected, the next decision is whether to perform the separation with the hydrophilic 

phase as mobile phase or stationary phase. The majority of CCC separations of TCM are performed with the 

hydrophilic phase as the mobile phase for the follow reasons. 1) Hydrophilic phase as mobile phase has the low 

risk of the affect on the detector, 2) the higher stationary phase retention in hydrodynamic system using the 

lower phase as mobile phase [236]. Of course, the decision to use normal or reverse mode is often determined 

by the K value of solute. Different CCC elution and method can be employed for the separation of TCM 

considered with the characters of target compound in the two phase solvent system and the natural feature of 

solvent system in the CCC instrument. Furthermore, the selection of CCC separation methods should consider 

the simple, effective method with a corresponding short separation time and low laboratory costs. Detection in 

CCC is also critical. On-line detection is desired for shortening the separation time using CCC, so hyphenated 

CCC techniques have been developed. The three main types of hyphenation are: CCC-UV/ELSD (Evaporative 

Light Scattering Detector), CCC-HPLC-DAD (Diode Array Detector) and CCC-MS (Mass Spectrometry). 

During the operation of CCC separation, several chromatographic parameters such as flow rate, rotational 

speed, column volume and sample loading can be optimized to improve the resolution and reduce the retention 

time of compounds. Also the fact that the KD value of a compound in a given solvent system is independent of 

the chromatographic run [249,250] which means that chromatographic runs can be optimized to elute the target 

compound in either the classical elution or extrusion step. Following the above approach to the CCC separation 

of TCM, most of target compounds can be separated and purified in one run but still some bioactive compounds 

can not be isolated individually because of the complexity of the TCM samples. In this case, a further 

purification will be employed for the second separation procedure to get pure compounds by using preparative 

liquid chromatography, common column chromatography or a second CCC separation, as detailed below in 

Fig.1.4.7.1: 
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Fig.1.4.7.1 A generic practical approach of purification and analysis for the natural products 

 

 

 

1.5 Huge potential application for isolation and separation of traditional 

Tibetan medicine 

 

1.5.1 The growth of interest in Tibetan herb medicine 

 
As a typical medicine system, traditional Tibetan medicine has developed for several thousands of years and has 

rich human pharmacological information and experience to form an integrated theory system. It has been 

successfully practised in treatment of plateau diseases. Tibetan herbs also have been considered huge as the 

largest potential natural resource of herbs. 2294 kinds of Tibetan medicine resources in China, including 1,006 

kinds of plants, 448 kinds of animals and 840 kinds of minerals, play an important role in the application of 

Tibetan herbal medicine [251]. Compared to the traditional Chinese herbs, there are two apparent differences 

between them. Firstly, using many minerals and animals refined with plants can produce a special effect on 

stroke, paralysis, nerve damage, heart disease and other incurable diseases compared to other traditional 

medicine Secondly, the unique environment of Tibet such as higher attitude, cold plateau and longer sunshine 

makes the Tibetan herbs more effective, less pollution and higher quality than other traditional Chinese herbs 

[252]. Fig1.5.1.1 shows the different species number of traditional Tibetan herbs and traditional Chinese herbs 

[251], [253]. It shows that the total amount of traditional Tibetan herbs is less than that of traditional Chinese 

herbs, but the percentage of mineral in total Tibetan herbs is 37% much bigger than 1% of that in traditional 

Chinese herbs. Therefore, a rapid growth in the research of Tibetan herb medicine is occurring in China with 

986 Tibetan herb research papers published from 2000 to year 2007 [254],  In contrast, only 271 papers were 

published in the 11 years from 1989 to 1999 (Fig. 1.5.1.2 ). The Figure showed that the growth of the research 

of Tibetan herb medicine in China was vey slow between 1989 and 1999 because there were only 271 papers 

published in the 11 years. It was probably significant that research of Tibetan herb medicine just had not been 

explored in China. But from 2000 to 2007, there were 986 Tibetan herb medicine papers published and it was 

very rapid growth in the 8 years, which occupied 78.44% of the total amount of papers. It indicated that people 

have got to know the importance of natural production for their health, especially for the Tibetan herb medicine, 

it gradually became a hot research topic of TCM in China now. 
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   Fig 1.5.1.1.Different species number of traditional Tibetan herbs and traditional Chinese herbs.[251,253]                                                           

                                                              

Table 1.5.1.1 shows that the situation of the corresponding author’s cooperation in the papers from 1989 to year 

2007. From the year 2003, the co-authors in the papers are mostly greater than 3 number which show that 

collaboration has started to become the main form of research for Tibetan medicine, authors have begun to 

have the cooperative consciousness in the research. However, only 69 papers were published by the 6 co-

authors or more, which occupied 5% of the total amount of papers. It showed that the cooperation is still small 

and need to further strengthen collaboration in the future. Table 1.5.1.1 also shows that in total there are 

different authors named on 1257 Tibetan medicine papers. The single author was only occupied 38% in the all 

papers, which suggests that large research groups are mainly active in the Tibetan medicine studies. 

.  

Figures 1.5.1.3 and 1.5.1.4 show the geographical distribution of Tibetan medicine papers in China. 313 papers 

did not indicate the publication agencies, and the remaining 944 papers were published by the 28 provinces. 764 

papers were published from Qinghai, Sichuan, Gansu, Xizang, Beijing, Shandong province, accounting for 81% 

of the total number of papers, which shows the six provinces that carry out the core area of the Tibetan 

medicine studies. Strangely there was virtually nothing from Shanghai, possible because the geography location 

is far away from the Tibetan herbs resources. Conversely, because of the location, Qinghai, Sichuan, Gansu 

provinces and Xizang region have a rapid growth in the Tibetan medicine studies. 

 

The Fig 1.5.1.5 shows that the affiliation of the corresponding authors which have published more than 20 



 56  

papers. Northwest Institute of Plateau Biology and Qinghai institute of drug control are the top two 

organizations producing the highest number of publications per year, a total of 109, accounting for 9% of the 

total amount of papers. In addition, according to the table 1.5.1.2,  11 higher education institutions with 212 

papers account for 17% of the total amount of papers show that the higher education institutions have given the 

adequate attention on the Tibetan medicine research and became a major force in the study. Next, five 

research institutes with 148 papers, accounting for 11.77% of the total amount of papers; three medical 

organizations with 64 papers accounting for 5% of the total amount of papers. It suggests that education and 

scientific research have begun into the forefront of Tibetan medicine; next one is the health care 

 

 

 

              

 

Fig 1.5.1.2 The growth of the number of journal papers published of the Tibetan medicines china from 1989 to 

2007 [254] 
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Table 1.5.1.1 The corresponding author’s cooperation in the Tibetan medicine papers review in China from 

1989 to 2007 data from Bianbaciren [254] 

 

 

 

 

  
 

 

 

 

 

 

 

 
 

 

Year 
1 2 3 4 5 6 7 8 9 

Group 

of 

Author 

Number 

of 

Papers 

1989 1 7         8 

1990 2 6         8 

1991 3 11         14 

1992 3 10         13 

1993 1 8         9 

1994 4 12 1        17 

1995 11 17  2       30 

1996 17 11         28 

1997 22 25 1 1    1   50 

1998 19 21         40 

1999 17 38         55 

2000 34 29 3        66 

2001 45 26 31        102 

2002 40 18 38        96 

2003 42 20 27 10 13 3 1 2  1 119 

2004 67 16 17 6 10 9 1 2  2 130 

2005 50 30 18 16 16 7 2   1 140 

2006 38 27 26 20 14 8 3    136 

2007 65 40 33 20 12 15 9 1 1  196 

Total 481 372 195 75 65 42 16 6 1 4 1257 
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Fig 1.5.1.3 Pie chart showing geographical distribution of Tibetan medicine papers review in China from 1989 

to 2007, data from Bianbaciren [254] 
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Fig. 1.5.1.4 The map showing the geographical distribution of Tibetan medicine research review in China 

from 1989 to 2007 
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Fig 1.5.1.5 The affiliation of the corresponding authors which have published more than 20 Tibetan medicine 

papers from 1989 to 2007, data from Bianbaciren [254]. Abbreviations: NIPB: Northwest Institute of Plateau 

Biology; QIDC: Qinghai institute of drug control; SCU: Sichuan University; QHNU: Qinghai Normal 

University; SWU: Southwest University for Nationalities; QHMC: Qinghai Medical College; QHTH: Qqinghai 

Hospital of Tibetan; QHU: Qinghai University; TU: Tibet University.    
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Table 1.5.1.2 The affiliation of the corresponding authors which have published more than 10 Tibetan medicine 

papers from 1989 to 2007 

 

Affiliation 
Total 

papers 

Northwest Institute of Plateau Biology 67 

Qinghai institute of drug control 42 

Sichuan University 31 

Qinghai Normal University 25 

Southwest University for Nationalities 25 

Qinghai Medical College 23 

Qqinghai Hospital of Tibetan 22 

Qinghai University 22 

Tibet University 21 

Tibet Autonomous Regional Hospital 18 

Introduction of Qinghai High Altitude Medical Research Academy 17 

Chengdu University of TCM 15 

Qinghai Nationalities College 14 

Beijing Tibetan Hospital 13 

Lanzhou University 13 

Lanzhou Medical College 13 

Lanzhou Institute of Chemical Physics 12 

Qinghai Cardiovascular Disease Specialized Hospital 11 

Central University of Nationalities 10 

Sichuan Academy of Chinese Medicine Sciences 10 
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1.5.2 Huge potential application for CCC to traditional Tibetan medicine 

 

Traditional Tibetan medicine is becoming more and more of a potential source of the natural drug discovery in 

the world. A survey conducted as part of this thesis from some 92 papers [255-346], published from 2008 to 

2009, summarized the latest research on the purification and analysis of traditional Tibetan medicine. All the 

papers are from the VIP medicine journals database. 55 Tibetan herbs are reported and more than one hundred 

compounds were separated by the modern isolation technology and method. In addition, four main methods of 

analysis and separation are widely used for the 55 Tibetan herbs. They are HPLC (43%), Silica Gel Column 

(25%), GC-MS (13%), TLC (8%) (Fig 1.5.2.1), respectively. However, only one English Journal paper has been 

published for using CCC to isolate active compounds from the Tibetan herbs. Compared with the other 

conventional chromatography methods, for example, GC–MS is suitable for analysis of volatile substances and 

high precision, but with limited application, HPLC is of high precision. But HPLC requires complicate 

pretreatments of samples and TLC is suitable for the analysis of complex and dirty samples, fast and easy to 

operate but poor precision. CCC is a kind of liquid–liquid partition chromatography without any solid matrix, 

which eliminates irreversible adsorption of samples on solid support in the conventional chromatographic 

column. It has been successfully applied to analysis and separation of various natural products, especially for 

polar substances such as flavonoid, alkaloid and polyphenols. It’s successful use for the purification and 

separation of traditional Chinese medicine is strong evidence that CCC has many advantages and capacities for 

the crude sample. Therefore, the CCC can obviously be more suitable for analysis and separation in the Tibetan 

herb with the advantages and also can be the biggest challenge in modernizing the Tibetan herbal medicine in 

the future. 

 

        

 

Fig. 1.5.2.1 Pie chart showing methods of the analysis and separation used in 92 papers review from 2008 to 

2009  
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1.6 Conclusion 

 

Based on the previous literature review, Panax ginseng and Rhodiola rosea are both typical traditional Chinese 

medicines characterized by high pharmacy efficiency. Also they are treated as popular adaptogens for many 

years and play an important role in the world drug market due to their anti-stress,anti-fatigue and 

cardioprotective effects. Many research and studies focus on the fields of pharmacological mechanism, 

pharmacokinetics and clinical pathology. Development of high effective, recovery, speed and selectivity 

methods of isolation and purification from Panax ginseng and Rhodiola rosea is still a big challenge as they are 

multi-component system, containing more than hundred chemical constituents. Many separation technologies 

have been investigated for the isolation of different ginsenosides from the ginseng species and salidroside and 

tyrosol from the Rhodiola species, because all of them are considered the main contribution to the active 

effects.TLC, HPLC or HILIC, gas chromatography (GC), multidimensional chromatography, capillary 

electrophoresis (CE) and counter current chromatography(CCC) are all introduced to perform the separation of 

ginsenosides, salidroside and tyrosol coupled with different on-line detection methods including UV,  DAD,  

ELSD, CAD, PAD, MS, ELISA and fluorescence. A comparison of these studies show the different advantages 

and limitations of each method and demonstrate that the CCC technology has huge advantages for separation of 

ginsenosides, salidroside and tyrosol due to no solid absorption, large sample loading and less solvent 

consumption. Different CCC separation of methods for ginsenosides and salidroside are also investigated 

according to the main parameters such as solvent system selection, target compounds yielding and elution 

mode. Most of them have the big disadvantage of a long time spent on the separation process leading to huge 

amount of solvent consumption, according to the literature review. Thus, development of gradient method for 

separation of ginsenosides with CCC is necessary for reducing the separation time in this project. Among 

several of CCC methods, gradient method is the first time used for the separation of ginsenosides by HPCCC in 

this project for improving the efficacy of separation and makes a comparison study to previous methods. 

Ultimately, this work investigates the feasibility of CCC as an alternative to separation and purification of 

ginsenosides. In addition, only two papers have been published for using CCC to separate Rhodiola species in 

the literature review. A simple and efficient CCC method for simultaneous quantification and quality of 

salidroside and tyrosol compounds in the Rhodiola rosea has been developed and validated for the first time in 

this project. The developed method could be suitable for use as a tool for quality assurance and determination of 

adulteration of the crude drug. Moreover, different CCC columns are investigated on the ability of scale-up 

from an analytical Mini-HPCCC to a preparative Midi-HPCCC for the separation of salidroside and tyrosol to 

evaluate a feasibility study with industry on separation process for the drug market. This project are carried on 

and supported with the CCC research group team in Brunel University. They have the biggest advantages 

compared with other research teams as they are equipped with different advanced CCC apparatus from Mini to 

Maxi size of HPCCC associated instrument operation and establish an advanced bioprocess centre to perform 

liquid-liquid dynamic extraction technology. Based on the previous discuss, HPCCC was selected for the 

projects because it offers various advantages for the following reasons: 1) It could provide higher “g” fields to 

be competitive with rapid processes like HPLC; 2) there is high sample recovery and high-loading capacity; 3) 

it is a multistage high resolution liquid–liquid dynamic extraction process; 4) isolated compounds can be 

recovered at high concentration requiring less solvent extraction compared to other chromatography [243]. Also 
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varied technologies of choice for CCC are provide d and applied for the separation process with Dynamic 

Extractions Ltd. Therefore, the aim and objects of these projects are following as: 

1) Develop an appropriate solvent system for the separation of the majority of different polar ginsenosides 

from the Panax ginseng with HPCCC technology and set up a high effective and rapid gradient method for 

separation of different main ginsenosides from the Panax ginseng; 

2) Develop a simple and efficient high performance liquid chromatographic method for the simultaneous 

quantification of the two biological compounds salidroside and tyrosol from the crude sample of Rhodiola 

rosea and a rapid and high-throughput HPCCC purification method has developed for the large-scale 

preparation of the salidroside and tyrosol from Rhodiola rosea using step-flow gradient CCC.  

3) Investigate on scale- up process from analytical HPCCC to the preparative HPCCC for rapid purification of 

salidroside and tyrosol from crude sample Rhodiola rosea and set up a preliminary research on predictable 

and linear scale-up process from the current laboratory scale technology to industrial process scale using 

HPCCC.   

 

These projects make use of these advantages of HPCCC to improve the separation and purification on natural 

products and modernizes traditional Chinese and Tibetan medicine. 
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2.1 Introduction to the ginsenosides 

 

  
Panax ginseng (Panax ginseng C.A.Meyer, Araliaceae) has been traditionally used as an expensive and precious 

medicine in Asian countries for more than 2000 years. The triterpenoid saponins, called ginseng saponins or 

ginsenosides, are the major active constituents responsible for their adaptogenic, antidiabetic and anti-

inflammatory activities in Panax ginseng and till now more than 100 different ginsenosides have been isolated 

and separated and shown to have different pharmacological effects. Among them, seven major ginsenosides, 

including Rb1, Rb2, Rb3, Rc, Rd, Re, and Rg1, represent approximately 90% w/w of total ginsenosides in 

Panax ginseng. Ginsenosides Rb1, Rb2, Rb3, Rc and Rd are 20(S)-protopanaxadiols (PPDs) and ginsenosides 

Re and Rg1 are 20(S)-protopanaxatriols (PPTs). The difference between PPTs and PPDs is the presence of 

carboxyl group at the C-6 position in PPDs [3], which relative to the different pharmacological properties. Due 

to the fact that Panax ginseng is a very popular phytomedicine used all around the world, a huge quantity of 

work has been carried out during the last 30 years in order to develop analytical methods for the identification, 

quantification and quality control of ginsenosides in raw plant materials, extracts and marketed products[.  

 

2.2 Aims  

   

In order to take traditional Chinese medicine to a higher level and utilize it on a large scale, it is both necessary 

and interesting to find the bioactive components in the traditional drugs by modern scientific techniques and to 

use them as leading compounds for new drug design. In this chapter, our aims are to search a new method to 

separate and purify known and unknown bioactive ginsenosides from the crude Panax ginseng in a single or 

two step separation and develop a gradient method to isolate the known ginsenosides and use the results to 

screen bioactive compounds in order to service the new drug design.   

 

2.3 Methods for separation and purification of ginsenosides 

 

 
Many techniques can apply for the isolation and analysis of ginsenosides from nature products. TLC or HPTLC; 

HPLC, HILIC or UPLC; Flash chromatography(FC); medium pressure liquid chromatography (MPLC);  gas 

chromatography (GC); capillary electrophoresis (CE) and counter current chromatography (CCC) are typically 

used for the separation of ginseng saponins. Among these techniques, liquid chromatography is still the most 

popular technique for ginseng separation, particularly counter-current chromatography technology. CCC is a 

developing liquid-liquid separation method with many advantages compared with other separation techniques. 

According to the literature review chapter one, six  papers have illustrated the large scale separation of 

ginsenosides by CCC [72-77], they have one common advantage that coupled with the ELSD for separation of 

ginsenosides since Ginsenosides are dammarane saponins that exhibit very poor ultraviolet (UV) absorbance 

due to their lack of chromophores, while ELSD allows the detection that measures the scattered light generated 

by the non-volatile particles of analytes produced by nebulization into droplets of the effluent. It has been 

known to be a universal, non-specific detection method that can provide a stable baseline even with gradient 
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elution. But it is limited in its usefulness by the requirement for volatile mobile phases only. In addition, the use 

of macroporous resin in the extraction and preparation of crude sample [73, 74, 75, and 77] is a useful method 

for the separation and enrichment of ginsenosides as they have different adsorption forces to resin, which can be 

subsequently eluted with different concentrations of organic solvent, such as methanol. The ginsenosides PPT 

and PPD of crude sample can be separated and prepared following CCC separation with higher purity.  

Furthermore, the different elution modes used in the separation of ginsenosides such as flow step gradient [72], 

elution-extrusion [73] can shorten the separation time to 140 minutes and 160 minutes respectively. It also 

increases the resolution of peaks without loss of retention of stationary phase. This has to be compared to the 

other methods used by Cao et al. [76], where the whole separation time are 300 minutes and 500 minutes which 

cost much time and a solvent use resulting in limited uptake of their applications by industry. In addition, the 

selection of solvent system in their methods which contain chloroform will bring about the risk of 

contamination on health and the environment. Thus, chloroform was replaced by other chlorinated solvents such 

as methylene chloride [77] for the separation of ginsenosides of Korean red ginseng, where four less polar 

ginsenosides such as Rg3, F4, Rk1 and Rg5 were successfully isolated. However, their process took 400 

minutes for the separation as it was using the slower HSCCC system.  The use of heat in the extraction 

procedure has been shown to degrade the thermally unstable malonyl-ginsenosides into the corresponding 

neutral ginsenosides. 

 

Based on the above advantages and disadvantages, the aim of this work was to develop a more efficient gradient 

method combining two CCC steps with two different solvent systems for the preparation of ginsenoside Re, 

Rg1,Rb1, Rc Rb2,Rd and Rb3 from ginseng to shorten the separation  time and reduce the solvent cost. 

Chloroform/methanol/water (ChmWat) and ethyl acetate–n-butanol–water (EBuWat) solvent systems with salt 

will be employed for this study due to their improved retention of stationary phase and reduction in 

emulsification.   

 

2.4 Experimental method and materials 

 

2.4.1 Apparatus 

 

One scale of HPCCC instrument was used in this study. A Semi Preparative DE Spectrum was from Dynamic 

Extractions (Slough, UK). The DE Spectrum had two coils of 73ml and 70.5ml with 1.6mm bore tubing. It has a 

rotational speed range from 0-1600 rpm. Samples were analysed by a Waters 2695 high performance liquid 

chromatography (HPLC) instrument equipped with 2996 photodiode array detector (Waters, USA). 

Chromatography data were collected using Empower Pro workstation (Waters, USA).  An Alltima C18 column 

(250×4.6mm i.d., 5µm, Alltech, USA) and a Phenomenex Luna C18(2) (150×4.6mm i.d., 5μm, Phenomenex, 

USA) were supplied for the HPLC analysis. An ion trap tandem mass spectrometer (Agilent Corp., USA) was 

employed to analyze and identify fractions from the HPCCC separation. 
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2.4.2 Chemicals 

 

Panax ginseng exact (C.A. Meyer) was supplied by Guangzhou Xiangxue Pharmaceutical Co., Ltd. 

(Guangdong, China). The ginsenosides Rg1, Re, Rb1, Rb2, Rb3 Rd and Rg3 standards were from Guangzhou 

Xiangxue Pharmaceutical Co., Ltd. (Guangdong, China).  All analytical grade solvents (methylene chloride, 

methanol, and isopropanol), ammonium acetate for the HPCCC separation and HPLC grade acetonitrile for 

HPLC analysis were supplied by Fisher Chemicals (Loughborough, UK). Deionised water was prepared by a 

Millipore waterpurification system (Watford, UK) 

 

2.4.3 Sample preparation 

 

Approximately 10mg powdered Panax ginseng was accurately weighed into a 50-mL conical flask, and 10 ml 

of 100% methanol was added. The suspension was sonicated for 30 min, and the sample solution was filtered 

through a 0.45 μm filter and used as the test solution for the quantitative analysis of ginsenosides in Panax 

ginseng. 

. 

2.4.4 Measurement of partition coefficient and settling time 

 
 
6ml of each selected solvent system were first prepared and equilibrated in test tubes. An equal volume of upper 

and lower phases (600μl) was then dispensed into a HPLC vial with a pipette. This was repeated three times. 

Later the HPLC vials were put in a water bath at 30ºC for 15 min. Meanwhile, 6mg of crude extract was 

weighed and added to each phase system. The HPLC vial was shaken vigorously and put back in the water bath 

until equilibrium had been established in both phases. Equal volumes (400 µl) of upper and lower phases were 

each then transferred into separate HPLC vials and evaporated to dryness under vacuum at 25 ºC, respectively. 

The residues were dissolved in 1 ml methanol and analysed by HPLC at 203nm. The partition coefficient (KD) 

of a particular compound in reversed-phase mode was calculated as the ratio of peak area in the upper 

(stationary) phase to the lower (mobile) phase.  The partition coefficient was defined as KD = Aupper /Alower , 

where Aupper and Alower were ginsenoside HPLC peak areas in the upper and lower phases respectively 

 

The settling time, which is highly correlated with the retention of stationary phase, was expressed as the time 

for a clear layer between the two phases to be formed when each phase was mixed in the appropriate ratios. 

 

2.4.5 Preparation of the two-phase solvent systems and sample solution 

 
 
Two solvent systems composed of ethyl acetate–n-butanol–5mM aqueous ammonium acetate(3.5:0.5:4 v/v) 

solvent system and ethyl acetate–n-butanol– 5mM aqueous ammonium acetate (2.5:1.5:4 v/v) solvent system 

were used for the first step separation of ginsenosides with gradient elution. Methylene chloride–methanol–

water–isopropanol (6:3:4:3 v/v/v) was used for the second step CCC separation with iscroatic elution. All 

solvent systems used in this study were made by mixing organic solvents in a separator funnel. After vigorous 
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shaking, solvents were left to settle till both phases would become transparent and, therefore, equilibrated. Then 

the two phases were separated shortly before HPCCC separation. 

 

The sample solution is usually prepared by dissolving the sample mixture in the upper and/or lower phase to be 

used for separation. When the sample is small and the target component has a low KD value, the sample will be 

dissolved in the mobile phase. However, it is better to dissolve the sample in a solvent mixture consisting of 

equal volumes of both upper and lower phases for the following reasons: if a large amount of sample is 

dissolved in a one phase solvent, the physical properties of the two-phase solvent system is altered and in an 

extreme case a single phase can be formed. Injection of this sample into the separation column would result in a 

detrimental loss of the stationary phase and bad resolution would be observed. This can be prevented by 

dissolving the sample into a mixture of both phases. Also, when the sample mixture contains multiple 

components with a wide range of polarity, the use of the two phase system can minimize the volume of the 

sample solution, hence improving the peak resolution. 

 

In contrast to HPLC, CCC permits relatively large amounts of sample to be injection without seriously affecting 

the peak resolution. Generally, the volume of sample is one-tenth of the capacity of the column volume. Too 

much volume of injection of sample will result in a loss of retention of the stationary phase. The sample 

solution was prepared by dissolving the ginseng extraction (60 mg) in 5 ml of the two phases of the solvent 

system being used for the HPCCC separation  

 

 

2.4.6 HPCCC separation procedure 

 
 
In this study, an experimental prototype J-type coil planet centrifuge high-performance semi-preparative 

instrument originally supplied by Dynamic Extractions ltd, 890 Plymouth Road, Slough, was provided by 

Brunel Institute from Bioengineering, Brunel University. This machine has a rotor radius of 85 mm, tubing bore 

of 1.6mm and two bobbins (columns) with a total capacity of 143 ml. It was one type of semi-preparative 

instrument. The Spectrum can rotate up to a speed of 1600rpm (241×g), has a typical flow range of 0.5–10 

ml/min and a mean β value of 0.79. A manual sample injection valve was used to introduce the samples into the 

column. This HPCCC unit has semi- preparative column wound on each separate bobbin. The semi-preparative 

columns are 70.5ml and 73ml (143.5ml total) capacity with 1.6mm bore PTFE tubing. In this study, the 73 ml 

column was used. When one column was used, the other unused column was filled with 50:50 methanol/water 

to maintain balance. A series of biphasic mixtures was prepared and was thoroughly equilibrated in a separator 

funnel by repeated vigorous shaking and degassing at room temperature. In each HPCCC preparative separation 

run, the coil was filled with the stationary phase. Then the mobile phase was pumped into the column at a flow 

rate of 2 ml/min with a centrifuge rotation speed of 1600 rpm at 30 ˚C. When hydrodynamic equilibrium was 

established, the sample solution was injected into the coil through a 3.66 ml sample loop. The equilibration 

point of the system was determined when no more stationary phase was eluted (hydrodynamic equilibration). 

The retention volume of the system could then be calculated by subtracting the volume of stationary phase 

eluted at the end of the equilibration process and dead volume from the total volume of the system. The effluent 
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from the tail end of the column was continuously monitored with a UV detector and the retention of the 

stationary phase relative to the total column capacity was computed from the volume of the stationary phase 

collected from the column after the separation was completed. Peak fractions were collected into test tubes with 

a sampler controller for analysis by HPLC. 

 

 

2.4.7 Measurement of stationary phase retention (Sf) 

 
 

2.4.7.1 Measurement of dead volume (VD) of HSCCC  

 

 According to the theory of CCC [207, 347], the volume of stationary phase retained in the column plays an 

important factor in getting high-resolution efficiency. The volume of stationary phase (Vs) in the coil system can 

be expressed as a fraction (Sf) or percentage of the column volume (Vc) as follows: 

  Sf =Vs/Vc or Vs/Vc×100%                                     (Equation 12) 

Total system volume (Vsv) =Vc+Vin+Vout=Vs+Vm+Vin+Vout.  Where Vc= Vs+Vm          (Equation 13) 

Vm - the active mobile phase volume in the coil. 

Vin-the volume in the inlet leads 

Vout-the volume in the outlet leads 

Dead Volume (VD) is defined as the volume in the inlet and outlet leads and the coil feed pipes. The volume of 

the coil feed pipes is usually very small. VD can be expressed as  

          VD= Ve-Vm   Ve - the eluted volume of mobile phase                  (Equation 14) 

Vsv is usually measured by determining the increase in weight when the column is filled with water and then 

blowed it out using regulated N2 supply.  

So, if the VD can be measured, it is possible to get a value for the retained volume of stationary phase (Vs) by 

subtracting the measured volume eluted (Ve) from the system volume (Vsv)   

Vs=Vsv-(Vm+Vd) =Vsv-Ve                                        (Equation 15)  

Wood has observed that there is a relationship between the stationary phase eluted and the square root of mobile 

phase flow, which can be expressed as equation [207] 

              Ve=Vd+AQm
1/2                                                                              

(Equation 16) 

It is obtained by incrementally increasing the mobile phase flow until a new equilibrium is reached and plotting 

the new eluted volume of stationary phase against the square root of the flow. The intercept at Qm=0 gives the 

value of VD and any value above this gives the volume of mobile phase in the coil at any given flow in excess of 

this value. In our case, the VD was measured by this method. 

 

2.4.7.2 Measurement of Sf
   

    
According to the equations Vm= Ve-VD                                                      (Equation 17)

 

                            

    

Vs

Vc

*100*100*100
Vsv-Ve

Vc
=
Vc-Vm

Vc
Retention (SF % )==

        
             

(Equation 18) 
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2.4. 8 HPLC analysis and identification of HPCCC fractions 
 

 

Based on the investigation of retention behavior of ginsenosides in HPLC (result are shown in Section 2.5.1), 

two HPLC methods were developed and optimazed for this study. The first method was used for the analysis of 

crude sample and pooled fractions. HPLC separation was carried out on an Altima C18 column (250×4.6mm 

i.d., 5µm) at 25 ˚C with a binary mobile phase consisting of 5mM aqueous ammonium acetate (solvent A) and 

acetonitrile (solvent B) at a flow rate of 1.0 ml/min. The gradient elution program was as follows: 0–15 min, 

hold 21% B; 15–69 min, 21–38.1% B. For rapid screening of HPCCC fractions the first HPLC method was 

shortened from 69 to 40 min by using a Phenomenex Luna C18 (2) (150×4.6mm i.d., 5µm) column and 

adjusting the gradient to: 0–12 min, hold 30% B, 12–40 min, 30–60% B. Temperature and flow rate were kept 

the same as for the first HPLC method. All HPLC analysis was done with DAD detection at 203 nm. 

  

Identification of the purified compounds was performed using LC-MS/MS system API 3000 (Linac
TM

) 

consisting of a mass spectrometer equipped with a triple quadrupole system and electro spray ionization (ESI). 

The system has been optimized for working in positive and negative mode, scan time was 0.2 s. The analysis of 

the fraction was carried out using a using a Grace Luna C-18 (100 ×4.6 mm 5.0µm) column the experiment was 

performed using a binary mobile phase composed of water solvent and Acetonitrile solvent B, the following 

gradient elution program was used: 0-30 min, 50-90% B. 

 
NMR spectra were recorded on an AV400 FT-NMR and AV600 FT-NMR, respectively operating at 400 MHz 

and 600 MHz for 1H. The 1H and 13C chemical shifts are referenced to SiMe4 using the residual protio 

impurities of the deuterated methanol solvent. 

  

 

2.5 Result and discussion 

 

2.5.1 HPLC retention behavior of ginsenosides 

 
 
The effect of the acetonitrile concentration in the mobile phase on the retention values of six ginsenosides was 

investigated. The relationships between the concentration of organic solvent in the mobile phase and the 

logarithm of the partition coefficients (logKD) of PPT ginsenosides Rg1 and Re; PPD ginsenosides Rb1, Rb2, 

Rc,  and Rd;  respectively, were illustrated in Fig 2.5.1.1.1 and Fig 2.5.1.1.2.which indicated a linear 

relationship between the log KD and the concentration of acetonitrile. This is consistent with Snyder’s linear-

solvent-strength model [348]. 

 

log KD = logkw–Sφ                                                              (Equation 19) 

 

Where kw is the extrapolated value of KD for water as the mobile phase (for which φ= 0), φ is the volume 

fraction of the organic solvent in the mobile phase, and S is a constant for a given solute when only φ varies. 
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2.5.1.1 Effect of Concentration of acetonitrile of mobile phase 

 

The ginsenosides Rg1 and Re have similar properties and structures, both carrying the same (20S)-

protopanaxatriol aglycone moiety. The curves of these two ginsenosides nearly overlap (Fig 2.5.1.1.1), which 

indicates a very small difference in their retention times. Therefore, it would be difficult to entirely separate 

these ginsenosides using C18 RP-HPLC. Furthermore, when the concentration of acetonitrile in the mobile 

phase was greater than 23%, the partition coefficient of Rg1 was less than 7 and under these conditions Rg1 and 

Re couldn’t achieve baseline separation with either isocratic or gradient elution. Besides, the curves intersected 

at approximately 26% acetonitrile, demonstrating that changes in the ratio of the mobile phase would lead to a 

reversal of the elution sequence of Rg1 and Re. The same phenomenon is acheived with regard to separating Rd 

from Rb1, Rb2, and Rc (Fig 2.5.1.1.2). 

      

      

Fig 2.5.1.1.1 Effect of concentration of acetonitrile in mobile phase on the retention values of PPT 

ginsenosides Rg1 and Re 

 

       
 

 
Fig 2.5.1.1.2 Effect of concentration of acetonitrile in mobile phase on the retention values of PPD ginsenosides 

Rc, Rb1, Rd and Rb2 
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2.5.1.2 Effect of pH value of mobile phase 

 

 

The effect of the pH value of mobile phase on the partition coefficient KD of ginsenosides is shown in Fig 

2.5.1.2.1. The retention values of the ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd barely changed with an 

increase in the pH value of the aqueous phase from 2.5 to 7.0. However, the retention time of acid ginsenosides 

could be markedly influenced by the pH change due to the ionization of the –COOH group. Increasing the pH 

of the mobile phase favored the generation of polar -COO−, resulted in a decrease in the retention times and 

distortion of the peak shape [349].  

 

          
          

 
 Fig 2.5.1.2.1 Effect of pH value of mobile phase on the logarithm of partition coefficient of ginsenosides 
 

 

2.5.1.3 Effect of Ionic strength of mobile phase 

 

 

The effect of the ionic strength of the mobile phase on the partition coefficient of six ginsenosides was 

subsequently studied by adding specific amounts of NaCl to the aqueous phase (Fig 2.5.1.3.1). The retention 

times of the ginsenosides Rg1, Re, Rb1, Rb2, Rc and Rd remained substantially constant but were slightly 

shortened with increasing concentrations of ions in the mobile phase. One explanation for these phenomena is 

that NaCl in the mobile phase causes hydration, which leads to a decrease in the number of free water molecules 

and an increase in the ratio of the organic phase, thereby decreasing the retention time of neutral ginsenosides.  
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Fig 2.5.1.3.1 Effect of ionic strength of mobile phase on the logarithm of partition coefficient of ginsenosides 

 

Based on the above discuss, if the concentration of acetonitrile in the mobile phase was greater than 23%, the 

ginsenoside Rg1 and Re were hard to separate. However, if the starting concentration of acetonitrile is too low, a 

longer elution time would be required. In this study, the gradient program was set to start with isocratic elution 

at acetonitrile 21% for 15 min and increase to 38.1% over 69 min with a linear gradient. Using this elution 

program, baseline separation of Rg1 and Re was achieved. 

 

The retention values of neutral ginsenosides in Panax ginseng are not sensitive to the pH value or ionic strength 

of the mobile phase. However, acidic ginsenosides were largely affected by the properties of the mobile phase. 

Addition of salts to the mobile phase was helpful in prolonging the retention time and obtaining a good peak 

shape [349]. Therefore, 5mM ammonium acetate salt was selected and added to the mobile phase to ensure a 

suitable pH and ionic strength.  

 

Thus, a new HPLC method were established for quality control of ginsenosides from Panax ginseng. Seven 

ginsenosides Rg1, Re, Rc, Rd, Rb1, Rb2, Rb3 and Rd were successfuly separated (the result was shown in the 

Section 2.5.4.1). The method was: HPLC separation was carried out on an Altima C18 column (250×4.6mm 

i.d., 5µm) at 25 ˚C with a binary mobile phase consisting of 5mM aqueous ammonium acetate (solvent A) and 

acetonitrile (solvent B) at a flow rate of 1.0 ml/min. The gradient elution program was as follows: 0–15 min, 

hold 21% B; 15–69 min, 21–38.1% B.  

 

 

 2.5.2 Selection of solvent system for the separation of ginsenosides in HPCCC 

 

 
A critical step in achieving a successful separation of saponins by CCC was the selection of suitable two phase 

solvent systems. The target compounds must have an appropriate partition coefficient (KD) between 0.5 and 2.0. 

From the literature review, many different solvent solvents have been found for the separation of saponins such 
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as hexane/butanol/water [75], chloroform/methanol/water (ChMWat) [76], methylene 

chloride/methanol/water/isopropanol [72,73,77] and methyl t-butyl ether/acetonitrile/butanol/water [350] 

solvent systems. ChMWat solvent system has been widely used CCC and these solvent systems are suitable for 

the separation of polar saponins [351].  

 

 

2.5.2.1 Selection of solvent system for the first step separation of ginsenosides in HPCCC 

 

 

1) Ethyl acetate–n-butanol–0.1% formic acid solvent system 

 

In this case, as most of the ginsenosides were medium polar or polar compounds, they were hard to dissolve in 

non-polar solvents but dissolved easily in water or other appropriate polar solvents. Therefore, solvent systems 

based on n-heptane or n-hexane could not be used for the separation of ginsenosides as they have large KD 

values in normal-phase mode and take a long time to elute. Ethyl acetate/n-butanol/water (EBuWat) solvent 

systems solvent system targets compounds of moderate to hydrophilic polarity. The general organization of the 

solvent system family can be described as organic/organic modifier/water. In this case, the alcohol, butanol, is 

considered to be an organic modifier since it is miscible with ethyl acetate, but only somewhat miscible with 

water. Shake tests showed the major components could almost partition into two layers with this solvent system. 

On the other hand, the addition of crude sample into the EBuWat solvent system can cause emulsification, 

which potentially leads to stripping of the stationary phase from the column and loss of separation efficiency. 

But the addition of acid or salt in the solvent system can suppress the emulsification. In addition, the solvent 

system with some acid solubility shortens the settling time and improves the retention of the stationary phase 

since these acidic analytes have two molecular forms, protonated (-COOH) and deprotonated (COO−), each 

having a different KD value, they form a broader peak when partly ionized [213]. Therefore, the use of an acidic 

modifier to the solvent system is recommended and the ethyl acetate/n-butanol/0.1% aqueous formic acid 

solvent system was selected as the two phase solvent system for the first step separation of ginsenosides. The 

results were given in Table 2.5.2.1.1 and the effect of ethyl acetate/butanol ratio in EBW with 0.1% formic acid 

solvent system on logarithmic KD of ginsenosides is shown in the Fig 2.5.2.1.1. 

 

Table 2.5.2.1.1 KD values of ginsenosides with different ratios of EBWsolvent system addition of 0.1% formic 

acid (v/v)  

 

KD value of EBF(4:0:4 v/v) with acid 30ºC KD average α 

Rb2 0.003  

Rc 0.005 1.7 

Rd 0.009 1.8 

Rb1 0.021 2.3 

Re 0.069 3.3 

Rg1 0.089 1.0 

 

KD value of EBF(3:1:4 v/v) with acid 30ºC KD average α 

Rb1 0.22  

Rb2 0.34 1.5 

Rb3 0.45 1.3 
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Rc 0.60 1.3 

Re 1.25 2.9 

Rg1 1.74 1 

Rd 2.10 1.2 

 

KD value of EBF(2.5:1.5:4 v/v) with acid 30ºC KD average α 

Rb1 0.47  

Rb2 0.75 1.6 

Rb3 0.97 1.3 

Rc 1.05 1.1 

Re 2.11 2 

Rg1 2.68 1.3 

Rd 3.95 1.5 

 

KD value of EBF(2:2:4 v/v) with acid 30ºC KD average α 

Rb1 0.68  

Rb2 0.96 1.4 

Rb3 1.15 1.2 

Rc 1.23 1.1 

Re 2.32 1.9 

Rg1 3.02 1.3 

Rd 4.13 1.5 

 

KD value of EBF(1:3:4 v/v) with acid 30ºC KD average α 

Rb1 3.29  

Rb2 5.18 1.6 

Rb3 8.43 1.6 

Rc 9.64 1.1 

Re 11.35 1.2 

Rg1 13.59 1 

Rd 22.72 2 

   

KD value of EBF(0:4:4 v/v) with acid 30ºC KD average α 

Rb1 7.00  

Rb2 10.93 1.6 

Rb3 10.78 1 

Rc 15.63 1.5 

Re 17.72 1.1 

Rg1 19.35 1.1 

Rd 48.82 2.5 

 
The α refers to separation of peaks on the elution order (ginsenoside Rb1&Rb2, ginsenoside Rb2&Rb3, etc.) 
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Fig 2.5.2.1.1 The effect of ethyl acetate/butanol ratio in EBW with 0.1% formic acid solvent system (v/v) on 

logarithmic KD of ginsenosides 

 

From the ethyl acetate–n-butanol–0.1% aq formic acid solvent systems in Figure 2.5.3.1.1, the solubility of 

ginsenosides in the upper organic phase increased as the ratio of n-butanol increased and that of ethyl acetate 

decreased, leading to an increase of the KD values because ginsenosides were well dissolved in the butanol. If 

either the organic or aqueous phases were chosen to be the mobile phase, changing the ratio of butanol against 

ethyl acetate will result in fast elution of all constituents. According to the literature, the best KD for good 

resolution is between 0.5 and 2.0. Also the separation facto (α) should be bigger than 1.2, Hence, the ethyl 

acetate/n-butanol/0.1% aqueous formic acid (2:2:4 v/v) solvent system and ethyl acetate/n-butanol/0.1% 

aqueous formic acid (2.5:1.5:4 v/v) solvent system can provide a separation of most of the target compounds 

and was selected as the solvent system for the first step separation of ginsenosides. 

However, the result of the separation of ginsenosides using such solvent system in HPCCC showed that the 

dynamic KD value of ginsenosides are not consistent with their static KD value with the tube test (result showed 

in Section 2.5.3.1.2). This could be caused by the acid environment leading to ginsenosides hydrolyzing in the 

water and decomposing during the tube test procedure. In order to investigate the effect the acid has on the 

partition of ginsenosides three phase systems were selected: 1) ethyl acetate–n-butanol–0.1% aqueous formic 

acid solvent system (2.5:1.5:4 v/v), 2) ethyl acetate–n-butanol–water solvent system alone and 3) ethyl 

acetate/n-butanol/5mM ammonium acetate salt solvent system (2.5:1.5:4 v/v). The partition coefficients of 

ginsenosides by HPLC for these phase systems were repeated three times and a comparison study performed. 

Table 2.5.2.1.2 - 2.5.2.1.4 showed the KD values of ginsenosides in the above three phase systems. It indicated 

that the standard deviations of KD values of most target ginsenosides in EBW (2.5:1.5:4 v/v) solvent system and 

EBW (2.5:1.5:4 v/v) solvent system with 5mM ammonium acetate salt were less than 10%, which indicated the 

results were accurate and reliable, but the standard deviations of KD values of most target ginsenosides in EBW 

(2.5:1.5:4 v/v) solvent system with 0.1% formic acid were bigger than 20%. Besides, the comparison study with 

HPLC area of target ginsenosides between EBW (2.5:1.5:4 v/v) solvent system with acid and EBW (2.5:1.5:4) 
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solvent system with 5mM ammonium acetate salt has further verified that acid environment lead ginsenosides 

to hydrolyze and decompose particularly in the KD value measurement process. Because it clearly showed that 

the HPLC area of target ginsenosides in the upper phase of the two solvent systems kept constant with the three 

repeat times, which were showed in the Fig 2.5.2.1.2 and Fig 2.5.2.1.4. On the contrary, the HPLC areas of 

target ginsenosides in the lower phase of the two solvent systems have performed the different result. The 

HPLC areas of target ginsenosides in the lower phase of EBW (2.5:1.5:4 v/v) solvent system with addition 0.1% 

formic acid varied with big different values in the three repeat times (Fig 2.5.2.1.3 v/v), while the HPLC areas 

of target ginsenosides in the lower phase of EBW (2.5:1.5:4) solvent system with addition of 5mM ammonium 

acetate salt (Fig 2.5.2.1.5) were still consistent in the three tests. This phenomenon only happened in the 

aqueous phase (lower phase) with the formic acid but did not happen in the organic phase (upper phase) and 

aqueous phase without acid solute. This phenomenon also happened in the other solvent system with the 

addition of acid solute. Therefore, it indicated that the acid environment was not suitable for the separation of 

ginsenosides. Moreover, it was also established that the emulsification could be suppressed by the addition of 

ammonium acetate and what could easily been removed by re-suspending the fraction in acetone during the 

HPCCC fraction analysis. Therefore, the ethyl acetate–n-butanol–water solvent system with addition of 5mM 

ammonium acetate salt was used for the first step separation of ginsenosides. 

 

Table 2.5.2.1.2 Average KD value of ginsenosides in EBW (2.5:1.5:4 v/v) solvent system addition of 0.1% 

formic acid with three times tube test 

 

EBW with acid(2.5:1.5:4 v/v)  Average KD of three times SD 

Rb1 0.47 11.75 

Rb2 0.75 17.95 

Rb3 0.97 23.22 

Rc 1.05 24.22 

Re 2.11 21.91 

Rg1 2.68 21.91 

Rd 3.95 38.09 

 

 

Table 2.5.2.1.3 Average KD value of ginsenosides in EBW (2.5:1.5:4 v/v) solvent system with three times tube 

test 

 

       EBW (2.5:1.5:4 v/v)  Average KD of three times SD 

Rb1 0.48 9.37 

Rb2 0.76 8.70 

Rb3 0.66 24.00 

Rc 1.51 7.22 

Re 2.67 8.68 

Rg1 2..67 8.68 

Rd 3.28 16.88 
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Table 2.5.2.1.4 Average KD value of ginsenosides in EBW (2.5:1.5:4 v/v) solvent system addition of 5mM 

ammonium acetate salt with three times tube test 

 

EBW with salt(2.5:1.5:4 v/v) Average KD of three times SD 

Rb1 0.77 1.53 

Rb2 1.18 4.73 

Rb3 1.33 7.63 

Rc 1.80 4.06 

Re 1.87 15.28 

Rg1 2.35 15.28 

Rd 4.00 19.87 
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Fig 2.5.2.1.2, HPLC chromatograms of ginsenosides in upper phase of EBW (2.5:1.5:4 v/v) with addition of 

0.1%formic acid solvent system with three repeat times  
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Fig 2.5.2.1.3 HPLC chromatograms of ginsenosides in lower phase of EBW (2.5:1.5:4 v/v) with addition of 

formic acid solvent system with three repeat times  
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Fig 2.5.2.1.4 HPLC chromatograms of ginsenosides in upper phase of EBW (2.5:1.5:4 v/v) solvent system with 

addition of 5mM ammonium acetate salt with three repeat times test 
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Fig 2.5.2.1.5 HPLC chromatograms of ginsenosides in lower phase of EBW (2.5:1.5:4 v/v) with addition of 

5mM ammonium acetate salt with three repeat times 

 

2) Ethyl acetate–n-butanol–water solvent system addition of 5mM ammonium acetate salt 

 

Several EBW solvent system with additions of 5mM ammonium acetate solvent systems were tested for the 

separation of ginsenosides. Table 2.5.2.1.5 shows the KD values for different ratios of EBW solvent systems. 

The effect of ethyl acetate/butanol ratio in EBW with 5mM ammonium acetate solvent system on logarithmic 

KD of ginsenosides is shown in the Fig 2.5.2.1.6. It shows the partition coefficients of ginsenosides increase as 

the ratio of n-butanol increases. According to the literature, the best KD for good resolution is between 0.5 and 

2.0. Hence, the ethyl acetate/n-butanol/5mM aqueous ammonium acetate (2:2:4 v/v) solvent system and ethyl 

acetate/n-butanol/5mM aqueous ammonium acetate (2.5:1.5:4 v/v) solvent system can provide suitable KD 

values to most of the target ginsenosides, which are between 0.5 and 2.0 or close to 0.5 and 2.0  and the 

partition coefficients indicate that the component ginsenosides Rb1, Rb2 and Rb3 would be easily the first to 

elute when the concentration of butanol was low. The component Rc, Re, Rg1 and Rd would be the last to elute 

in the reverse phase mode. However, partition coefficient study also indicated these two solvent systems still 

can not cover all the polarity range of ginsenosides making it hard to separate ginsenosides Rb2, Rb3, Rc, Re 
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and Rg1.Thus, applying for the gradient solvent system is necessary for the separation of ginsenosides.     

 

Table 2.5.2.1.5 KD values of ginsenosides with different ratios of EBWsolvent system with addition 5mM 

ammonium acetate  

 

KD value of EBW(4:0:4 v/v) with salt 30ºC KD average α 

Rb1 0.00  

Rb2 0.00 0 

Rb3 0.00 0 

Rc 0.00 0 

Re 0.01 0 

Rg1 0.01 1.0 

Rd 0.00 0 

 

KD value of EBW (3:1:4 v/v) with salt 30ºC KD average α 

Rb1 0.18  

Rb2 0.28 1.5 

Rb3 0.29 1.0 

Rc 0.42 1.4 

Re 0.49 1.1 

Rg1 0.60 1.2 

Rd 1.05 1.75 

 

KD value of EBW (2.5:1.5:4 v/v) with salt 30ºC KD average α 

Rb1 0.77  

Rb2 1.18 1.5 

Rb3 1.33 1.1 

Rc 1.80 1.4 

Re 1.87 1.0 

Rg1 2.35 1.3 

Rd 4.00 1.8 

 

KD value of EBW (2:2:4 v/v) with salt 30ºC KD average α 

Rb1 1.64  

Rb2 2.77 1.7 

Rb3 2.94 1.1 

Rc 3.96 1.4 

Re 4.27 1.1 

Rg1 5.44 1.3 

Rd 6.60 1.3 

 

 

KD value of EBW (1:3:4 v/v) with salt 30ºC KD average α 

Rb1 3.01  

Rb2 4.73 1.5 

Rb3 5.03 1.1 

Rc 6.30 1.3 

Re 7.45 1.2 

Rg1 11.25 1.5 

Rd 20.29 1.8 
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KD value of EBW (0:4:4 v/v) with salt 30ºC KD average α 

Rb1 5.10  

Rb2 7.65 1.4 

Rb3 8.55 2.5 

Rc 10.97 1.3 

Re 12.41 1.2 

Rg1 15.76 1.4 

Rd 35.33 2.3 

         
The α refers to separation of peaks on the elution order (ginsenoside Rb1&Rb2, ginsenoside Rb2&Rb3, etc) 

 

 

    

 
Fig 2.5.2.1.6 The effect of ethyl acetate/butanol ratio in EBW with 5mM ammonium acetate solvent systems on 

the logarithmic KD value for ginsenosides 

 

 
3) Ethyl acetate–n-butanol–water solvent system addition of 5mM ammonium acetate salt gradient 

selection 

 

Based on the literature review in chapter 1, gradient elution can be employed for the separation of ginsenosides 

with CCC because it is a practical way to reduce the separation time. The ease of optimization with gradient 

HPLC compared to sequential isocratic optimization suggested that this was the route to take with CCC. Indeed, 

gradient CCC (either linear or step) is possible and is likely to have significant potential. The importance of 

gradient separation is the ability to cover the entire polarity range in one single run and shorten the elution time. 

The solvent gradients were selected based on the KD values of target compounds, settling time and phase ratio. 

Also these solvent systems should retain high stationary phase retension in the HPCCC due to gradient elution 

easily leading to loss of much stationary phase. Based on the previous partition coefficient study, EBW 

(3.5:0.5:4 v/v) and EBW (2.5:1.5:4 v/v) solvent system with 5mM ammonium acetate were selected as the 

solvent system for the gradient elution. They can provide the satisfactory KD values for the target ginsenosides 
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when the ratio of ethyl acetate to butanol decreases from the 3.5/0.5 to 2.5/1.5. The ginsenoside Rd will elute 

first and the ginsenoside Rb1 will elute last. Both KD values of them are between 0.5 and 2.0 (1.16 and 1.30), in 

addition, both solvent systems have fast settling time with the 1:1 phase ration which ensure the high retention 

of stationary phase in the column, which prevent the loss of much stationary phase. Both of the KD values of 

ginsenosides, setting time, phase ratio and Sf value in these two EBW solvent systems in normal phase mode are 

shown in Table 2.5.2.1.6.    

 
Table 2.5.2.1.6 Comparison of KD of ginsenosides, setting time, phase ratio and Sf value with two different ratio 

of EBW solvent systems addition of ammonium acetate (v/v) in normal phase mode  

 

E-B-W addion 

of  ammonium 

acetate (Ratio of 

volume) 

Rb1 

KD 

value 

Rb2 

KD 

value 

Rb3 

KD 

value 

Rc 

KD 

value 

Re 

KD  

value 

Rg1 

KD  

value 

Rd 

KD 

value 

Setting 

time 

(sec) 

Phase 

ratio 

3.5:0.5:4 

8.28 4.51 4.07 2.77 2.63 2.08 1.16 

 

20 

 

1:1 

2.5:1.5:4 

1.30 0.85 0.75 0.56 0.53 0.43 0.25 

 

   20 

 

1:1 

 

 

 
2.5.2.2 Selection of solvent system for the second step separation of ginsenosides in HPCCC 

 

Ethyl acetate/butanol/5mM aqueous ammonium acetate solvent system is a good solvent system for separation 

of ginsenosides. Ginsenoside Rb1, Rg1 and Rd could be well separated from each other, but this solvent system 

could not separate ginsenosides Rb2, Rb3, Re and Rc (result was showed in section 2.5.3.1.4). Though 

ginsenosides coexist in the extract and cover a wide range of polarities, the target ginsenosides are medium 

polar and polar compounds. The EBW solvent system generally is suitable for the separation of hydrophobic 

components and ginsenosides are more easily dissolved in the polar solvents. Hence, another solvent system 

was needed for the second step separation of ginsenosides in HPCCC. Chloroform-methanol-water solvent 

system has been widely used in CCC and is suitable for separation of glycosides compounds such as flavonoids 

glucosides and ginsenosides [351]. However, in recent years, this solvent system has been avoided for 

environmental reasons. Other chlorinated solvents, such as methylene chloride, can replace chloroform due to 

its high solvating power and its high density. In addition, butanol or isopropanol are usually added to the 

ChMWat solvent system to adjust the polarity [351]. Because most of ginsenosides are easy dissolved in them, 

also the ammonium acetate can be used for suppressing the sample emulsification and increased the retention of 

the stationary as it changed the density and viscosity of the two phases. Thus, methylene 

chloride/methanol/water/isopropanol solvent system with ammonium acetate was selected as an alternative 

CCC solvent system for the second step separation of ginsenosides. Table 2.5.2.2.1 shows the KD values of the 

ginsenosides in methylene chloride/methanol/water/isopropanol (6: x: 4:3 v/v/v) with ammonium acetate 

solvent systems when the ratio of methanol was increased from 1 to 3. The Fig 2.5.2.2.1 also describes the KD 

values varation with the ratio of methanol in the methylene chloride/methanol/water/isopropanol (6: x: 4:3 v/v/v) 

with ammonium acetate solvent systems. 
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Table 2.5.2.2.1 KD values in methylene chloride/methanol/water/isopropanol (6: x: 4:3 v/v/v) solvent 

systems with addition 5mM ammonium acetate when the ratio of methanol was varied for different 

ginsenosides with reversed phase mode    

Ratio of 

methanol 

Rb1 

KD value 

Rb2 

KD 

value 

Rb3 

KD 

value 

Rc 

KD 

value 

Re 

KD  

value 

Rg1 

KD  

value 

Rd 

KD 

value 

1 13.69 5.94 5.78 4.13 3.16 2.07 1.41 

2 7.54 8.93 8.80 6.28 5.20 3.59 1.62 

3 5.49   3.10 2.90 2.40 1.67 1.29 0.74 

 

   

Fig 2.5.2.2.1   Effect on the logKD value of the content of methanol in the DMWI (6: x: 4:3 v/v/v) solvent 

system with addition 5mM ammonium acetate for ginsenosides 

 

 

For these solvent systems, most of the ginsenosides were easy dissolved in the methanol rich layer and thus KD 

value of ginsenosides increased dramatically with the ratio of methanol composition increasing to 2, but the KD 

value of ginsenosides fell dramatically when the proportions of methanol composition continued to reach 3. It 

showed that the methanol composition has various effects on the partition coefficients of ginsenosides. The 

retention of stationary phase is relative to the settling time of the two phases in the tube test [213]. If the settling 

time is less than 20 seconds, this selected solvent system would provide the good retention of stationary phase. 

Table 2.5.2.2.2 shows the effect of methanol content on settling time for DMWI solvent system. It indicates that 

the DMWI (6:3:4:3 v/v/v) solvent system could be chosen to separate the ginsenosides due to its shortest 

settling time. 

  . 
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Table 2.5.2.2.2 The effect of solvent ratio on settling time for DMWI solvent systems with addition 5mM 

ammonium acetate (v/v/v)  

 

 

DMWI MeOH 

Phase Ratio 

 (up/lp v/v) 

Settling 

Time(sec) 

6:1:4:3 1 1.2:1 45 

6:2:4:3 2 2:1 30 

6:3:4:3 3 1.6:1 25 

 Isopropanol   

6:2:4:2 2 1.25:1 40 

6:2:4:3 3 2:1 40 

6:2:4:4 4 1.6:1 50 

 

Also most of the ginseosides are more easily dissolved in the isopropanol-rich layer than the methanol-rich one 

when the isopropanol content increased.  Thus the KD value of ginsenosides decreased with the proportion of 

isopropanol volume increasing from 2 to 3 and the KD value of ginsenosides fell dramatically when the 

proportion of isopropanol volume reached 4. It shows that the isopropanol content has a big effect on the 

partition coefficients of ginsenosides. Table 2.5.2.2.3 shows the KD values of the ginsenosides in methylene 

chloride/methanol/water/isopropanol (6: 2: 4: y v/v/v) with ammonium acetate solvent systems when the ratio 

of isopropanol was increased from 2 to 4. The Fig 2.5.2.2.2 also describes the KD values variation with the ratio 

of isopropanol in the methylene chloride/methanol/water/isopropanol (6: 2: 4: y v/v/v) with ammonium acetate 

solvent systems. But if the ratio of isopropanol composition increases more than 4, the two phase systems will 

become a single phase. It further indicated that the DWMI (6:3:4:3) solvent system can be chosen for the 

second step separation of the ginsenosides of Re, Rc and Rb2, Rb3 fractions, which were obtained from the first 

step separation using EBW solvent system with 5mM ammonium acetate in HPCCC.  

  

 

Table 2.5.2.2.3 KD values in methylene chloride/methanol/water/isopropanol (6:2:4: y v/v/v) solvent system 

with addition 5mM ammonium acetate when the ratio of isopropanol was varied for different ginsenosides with 

reversed phase mode 

    

Proportion of  

isopropanol 

Rb1 

KD value 

Rb2 

KD 

value 

Rb3 

KD 

value 

Rc 

KD 

value 

Re 

KD 

value 

Rg1 

KD 

value 

Rd 

KD 

value 

2 10.10 9.35 8.42 7.47 5.74 4.24 1.78 

3 7.54 8.93 8.80 6.28 5.20 3.59 1.62 

4 5.28    3.02 2.46 2.07 1.43 1.23 0.58 
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Fig 2.5.2.2.2 Effect on the logKD value of the content of isopropanol in the DMWI (6:2:4: y v/v/v) solvent 

system with addition 5mM ammonium acetate for ginsenosides 

 

 

2.5.3 HPCCC separation of ginsenosides  

 

2.5.3.1 Application of E-B-W addition of formic acid solvent system in reverse phase isocratic elution for 

separation of ginsenosides in Spectrum 

 

Similar to HPLC, HSCCC can also be classified into normal phase and reverse phase elution modes. Normal 

phase elution is defined when the less polar phase is used as the mobile phase and reverse phase is defined when 

the more polar phase is used as the mobile phase. Generally, we label normal phase mode as tail to head (T-H) 

and reverse phase mode as head to tail (H-T) when the upper phase is normally organic and the lower phase is 

aqueous phase. As most of ginsenosides are medium or polar compounds, they are easily eluted out using the 

reverse phase mode as head to tail which gives a good retention of stationary phase compared to the normal 

phase mode. The reverse phase mode was chosen to use in this study. The solvent system E-B-W with the 

addition of formic acid was found to be the first solvent system for the isolation and purification of ginsenosides 

from the Panax ginseng exact. The comparison of KD of ginsenosides with two different ratio of EBW (2:2:4 

v/v) and EBW (2.5:1.5:4 v/v) addition of formic acid solvent systems is shown in the Table 2.5.3.1.1. 
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Table 2.5.3.1.1Comparison of KD value of ginsenosides with two different ratios of EBW with addition of 

formic acid solvent system (v/v) 

 

E-B-W 

addition of 

formic acid 

(Ratio of 

volume) 

Rb1 

KD 

value 

Rb2 

KD 

value 

Rb3 

KD 

value 

Rc 

KD 

value 

Re 

KD  

value 

Rg1 

KD  

value 

Rd 

KD 

value 

2:2:4 0.68 0.96 1.15 1.23 2.32 3.02 4.13 

2.5:1.5:4 0.47 0.75 0.97 1.05 2.11 2.68 3.95 

 

In both of the above two solvent systems (Table2.5.3.1.1), the stationary phase retention was more than 70% 

percentage, and the partition coefficients indicated that the ginsenosides Rb1, Rb2, Rb3  and Rc were easily to 

be first eluted when the concentration of ethyl acetate was high. The ginsenosides Re, Rg1 and Rd would be last 

eluted in the reverse phase mode. 

 

 

 

 

 

Fig.2.5.3.1.1 HPCCC Chromatograms of ginsenosides using ethyl acetate/n-butanol/0.1% aq formic acid 

(2.5:1.5:4 v/v) solvent system. Experimental conditions: Coil volume: 73 ml; the reversed phase mode; Rotation 

speed: 1600 rpm; Flow rate: 2.0 ml/min; Sample volume: 5 ml; Sample concentration: 12mg/ml; Derction of 

motor: Reverse. DAD detector wavelength: 203 nm 
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Fig 2.5.3.1.2 The fractogram of ginsenosides with EtOAc/BuOH/Water with 0.1% formic acid (2:2:4 v/v) 

solvent system using DE-Spectrum. Experimental conditions: Column volume: 73 ml; the reversed phase mode; 

Rotational speed: 1600 rpm; Flow rate: 2.0 ml/min; Sample loop volume: 3.66 ml; Sample concentration: 

12mg/ml. The Sf was 74% 
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Fig 2.5.3.1.3 The fractogram of ginsenosides with EtOAc/BuOH/water with 0.1% formic acid (2.5:1.5:4 v/v) 

solvent system using DE-spectrum. Experimental conditions: Coil volume: 73 ml; Stationary phase: Organic 

phase; Mobile phase: Aqueous phase; Rotation speed: 1600 rpm; Flow rate: 2.0 ml/min; Sample loop volume: 

3.66 ml; Sample concentration: 12mg/ml; The Sf was 75.3% 
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From the above CCC chromatograms of ginsenosides use a DAD detector, as the UV absorption of most 

saponins of Panax ginseng are not strong enough to effectively be detected resulting in a high level of baseline 

noise during the analysis process (Fig 2.5.3.1.1). Thus, all of the fractions of the CCC separation were analyzed 

by HPLC and a fractogram plotted to investigate the different ginsenosides separated with different ratios of 

ethyl acetate and n-butanol in the EBuWat solvent systems.The fractogram plot of the Spectrum CCC run with 

ethyl acetate/n-butanol/0.1%formic acid (2:2:4 v/v) system (Fig 2.5.3.1.2) and ethyl acetate/n-

butanol/0.1%formic acid (2.5:1.5:4 v/v) system (Fig 2.5.3.1.3) showed the target compounds Rb1 and Rd were 

separated individually with the purity of 92.5% and 95.7%, 90.3% and 95% respectively. The other 

ginsenosides (Rb2, Rb3, Re, Rg1 and Rc) were co-eluted with low purity. Besides, both dynamic KD values of 

target ginenosides in the two solvent systems (Table 2.5.3.1.2) were not consistent with their static KD value 

measured in the tube test. The results were shown in the Table 2.5.3.1.2 and Table 2.5.3.1.3. This was probably 

caused by the acid environment which leads the ginsenosides to hydrolyze and decompose. Also some acid 

ginsenosides include four malonyl derivatives of the ginsenosides Rb1, Rb2, Rc, and Rd of the Panax ginseng 

sample extraction were relatively unstable and are readily hydrolyzed to the corresponding ginsenosides Rb1, 

Rb2, Rc, and Rd during acid environment [352]. This phenomenon was discussed and verified that the solvent 

system with acid environment was not suitable for the separation of ginsenosides using HPCCC (result was 

showed in the section 2.5.2.1) 

 

Table 2.5.3.1.2 KD value of ginsenosides compounds from EtOAc/BuOH/water with 0.1% formic acid (2:2:4 

v/v) solvent system 

 

 

      EBF(2:2:4) KD value test  Static KD Dynamic KD 

Rb1 0.68 1.49 

Rb2 0.96 2.39 

Rb3 1.15 2.86 

Rc 1.23 3.54 

Re 2.32 4.02 

Rg1 3.02 5.13 

Rd 4.13 6.31 

 

 

 

Table 2.5.3.1.3 KD value of ginsenosides compounds from EtOAc/BuOH/water with 0.1% formic acid 

(2.5:1.5:4 v/v) solvent system 

 

 

EBF(2.5:1.5:4) KD value test  Static KD Dynamic KD 

Rb1 0.47 0.83 

Rb2 0.75 1.31 

Rb3 0.97 1.60 

Rc 1.05 2.15 

Re 2.11 2.22 

Rg1 2.68 2.95 

Rd 3.95 4.11 
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2.5.3.2 Application of E-B-W addition of ammonium acetate solvent system in reverse phase isocratic 

elution for separation of ginsenosides in Spectrum 

 

In order to prevent the ginsenosides from hydrolyzing and decomposing during the separation process, 

ammonium acetate was selected as an additive to the solvent system. Also it could suppress emulsification. The 

ethyl acetate/n-butanol/5mM aqueous ammonium acetate (2:2:4 v/v) solvent system and ethyl acetate/n-butanol/ 

5mM aqueous ammonium acetate (2.5:1.5:4 v/v) solvent system were collected for the separation of 

ginsenosides in HPCCC. The separation conditions were: EtOAc/BuOH/water (2:2:4 v/v) and (2.5:1.5:4 v/v) 

solvent systems with 5mM ammonium acetate, respectively, a reversed-phase mode, a rotation speed of 1600 

rpm, a flow rate of 2.0 ml/min and temperature at 30◦C. Table 2.5.3.2.1 showed the KD values of ginsenosides 

in the two EBW solvent systems with ammonium acetate and the initial stationary phase retention value 

respectively. Both of their stationary phase retention values were 75.4% and 77.4%, which were higher than the 

previous solvent systems and provided the better separation of ginsenosides in the Spectrum. The effects of 

mobile phase flow rate and revolution speed on separation were also investigated. Ginsenoside Rb1 and Rb2 

could not be separated with a high flow rate. Similarly, reducing the flow rate could improve the resolution and 

stationary phase retention; however, the total time for separation would be greatly increased. Finally, a flow rate 

of 2 ml/min with a revolution speed of 1600 rpm was optimized for the experiment. 

 

Table 2.5.3.2.1 Comparison of KD value of ginsenosides with two different ratios of EBW solvent systems with 

addition of ammonium acetate (v/v)  

 

E-B-W addion of  

ammonium 

acetate (Ratio of 

volume) 

Rb1 

KD 

value 

Rb2 

KD 

value 

Rb3 

KD 

value 

Rc 

KD 

value 

Re 

KD  

value 

Rg1 

KD  

value 

Rd 

KD 

value 

2:2:4 
1.64 2.77 2.94 3.96 4.27 5.44 6.60 

2.5:1.5:4 
0.77 1.18 1.33 1.80 1.87 2.35 4.00 
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Fig 2.5.3.2.1 The fractogram of ginsenosides with EtOAc/BuOH/water with 5mM ammonium acetate (2:2:4 

v/v) using DE-Spectrum. Experimental conditions: Column volume: 73 ml; the reversed phase mode; Rotational 

speed: 1600 rpm; Flow rate: 2.0 ml/min; Sample loop volume: 3.66 ml; Sample concentration: 12mg/ml; The Sf 

was 75.4%. 

 

 

 

 

Fig 2.5.3.2.2 The fractogram of ginsenosides with EtOAc/BuOH/water with 5mM ammonium acetate (2.5:1.5:4 

v/v) using DE-Spectrum. Experimental conditions: Column volume: 73 ml; the reversed phase mode; Rotational 

speed: 1600 rpm; Flow rate: 2.0 ml/min; Sample loop volume: 3.66 ml; Sample concentration: 12mg/ml; The Sf 

was 77.4%. 
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The fractogram plot of the Spectrum CCC run with ethyl acetate–n-butanol–water with 5mM ammonium 

acetate (2:2:4 v/v) solvent system (Fig.2.5.3.2.1) and ethyl acetate–n-butanol–water with 5mM ammonium 

acetate (2.5:1.5:4 v/v) solvent  system (Fig.2.5.3.2.2) showed that the target compounds Rb1 and Rd were 

separated individually with the purity of 92.8% and 95.1%, 90% and 95.6% respectively. The ginsenosides Rb2, 

Rb3, Rc and Re were overlapped and hard to separate individually. Ginsenoside Rg1 could achieve 87.6% and 

86% purity but with the low yields of 56% and 48% respectively. Therefore, a new gradient method with ethyl 

acetate–n-butanol–water with 5mM ammonium acetate solvent system was developed to optimize the 

separation of ginsenosides in Spectrum.  

 

2.5.3.3 Application of E-B-W addition of ammonium acetate solvent system in normal phase gradient 

elution for separation of ginsenosides in Spectrum 

 

The separation conditions were: a normal phase mode, a rotation speed of 1600 rpm, a flow rate of 2.0 ml/min 

and temperature at 30◦C. Fig 2.5.3.3.1 showed the gradient elution of ginsenosides with the mobile phase (upper 

phase)changing from EBW=3.5:0.5:4 to 2.5:1.5:4. It clearly shows that Rd, Rg1 and Rb1 can be separated 

individually, while Re and Rc, Rb2 and Rb3 were still co-eluted and were hard to be separated. The whole run 

time was less 120 minutes. This gradient elution can shorten the elution time. The Sf was 77.6%, which was 

better than the isocratic elution. Therefore, all the fractions were divided into five parts as follow: part 1 

included ginsenoside Rd with the purity of 96.3% and 98.6% yield, part2 includes ginsenoside Rg1 with the 

purity of 88.5% and 95.8% yield; Part 3 included ginsenoside Re and Rc with the purity of 65.8% and 30.7%; 

part 4 included ginsenosides Rb2 and Rb3 with purity of 86.3%; part5 was column content including ginsenoside 

Rb1 with purity 93.7% and 97.4% yield. It yielded 1.60 mg of Rd, 1.14 mg of Rg1, 7.66 mg of Re and Rc, 2.12 

mg of Rb2 and Rb3 and 1.89 mg of Rb1. The methylene chloride–methanol–water–isopropanol solvent system 

will be used for the second step separation of fractions of part 3 and part 4.  

 

 

Gradient programme:  

A-upper phase of EBW with 5mM ammonium acetate (3.5:0.5:4 v/v) solvent system  

B-upper phase of EBW with 5mM ammonium acetate (2.5:1.5:4 v/v) solvent system  

 

Min         A %                        B%  

2             100                         0 

102           0                         100 
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Fig 2.5.3.3.1 The fractogram of ginsenosides using gradient from EBW with 5mM ammonium acetate 

(3.5:0.5:4 v/v) to EBW with 5mM ammonium acetate (2.5:1.5:4 v/v) using a DE-Spectrum. Experimental 

conditions: Normal phase mode: lower phase of EBW with 5mM ammonium acetate (3.5:0.5:4 v/v) as 

stationary phase, upper phase of EBW (3.5:0.5:4 v/v) with 5mM ammonium acetate (solvent A) and upper 

phase of EBW (2.5:1.5:4 v/v) with 5mM ammonium acetate (solvent B) as mobile phase. Linear gradient: 0-2 

min, hold 100% A; 2-102 min, 100%-0% A. Flow rate: 2.0 ml/min; Coil volume: 73 ml; the normal phase 

mode; Rotation speed: 1600 rpm; Sample loop volume: 3.66 ml; Sample concentration: 12mg/ml; The Sf was 

77.6%. 

 

 

 

2.5.3.4 Application of DMWI (6:3:4:3 v/v/v) addition of ammonium acetate solvent system in normal 

phase isocratic elution for the second separation of HPCCC fractions of part 3 and part 4 from the first 

step sparation 

 

The density of methylene chloride is greater than that of water. In this solvent system, the methylene chloride is 

the lower phase and aqueous the upper phase. When the ratio of methylene chloride/methanol/water/isopropanol 

(v/v/v) is 6:3:4:3 and lower phase (methylene chloride-rich layer) was used as the mobile phase, target 

compound of ginenoside Re and Rc could be separated individually. Fig 2.5.3.4.1 showed the separation of 

ginsenosides in this elution mode. It indicates that ginsenosides Re and Rc were separated completely with the 

purity of 97.5% and 98.2% yield, 92.6% and 96.3% yield respectively . It yielded 1.76 mg of ginsenoside Re 

and 1.28 mg of ginsenoside Rc. But the fraction part 4 (Rb2 and Rb3) still was not separated using this solvent 

system due to they had similar structures.Thus; the next work is searching for an other solvent system to 

separate the ginsenosides Rb2 and Rb3.   
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Fig 2.5.3.2.2.1 The fractogram of part 3 (ginsenoside Re and Rc) with methylene 

chloride/methanol/water/isopropanol with 5mg/ml ammonium acetate (6:3:4:3 v/v/v) on Mini HPCCC. 

Experimental conditions: Coil volume: 17.7 ml; the normal phase mode; Rotation speed: 2100 rpm; Flow rate: 

0.5 ml/min; sample loop volume, 0.43ml, Sample concentration: 14 mg/ml; The Sf was 81%. 

 

 

 

 

2.5.4 Analysis and identification of HPCCC fractions 

 
 

2.5.4.1 HPLC analysis of HPCCC fractions of crude Panax ginseng 

 

  

Five fractions of ginsenoside Rd, Rg1, Rb1, Re and Rc were collected after the HPCCC separation of crude 

Panax ginseng sample extraction and combined after HPLC analysis. 1.60 mg of ginsenoside Rd, 1.14 mg of 

ginsenoside Rg1, 1.89 mg of ginsenoside Rb1, 1.76 mg of ginsenoside Re and 1.28 mg of ginsenoside Rc were 

obtained, with the purity of 96.3% and 98.6% yield, 88.5% and 95.8% yield, 93.7% and 97.4% yield, 97.5% 

and 98.2% yield, 92.6% and 96.3% yield respectively. The HPLC chromatograms of the crude sample (C) and 

standards (D) are shown in Fig 2.5.4.1.1. The HPLC chromatogram of purified target peaks is shown in Fig 

2.5.4.1.2. The targets have the same HPLC retention time as the standards. 
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. 

Fig 2.5.4.1.1 The HPLC chromatogram of crude Panax ginseng sample (C) and standards (D). The column was 

an Alltima C18 column (250mm×4.6mm i.d., 5.0µm). Column temperature was 25
◦
C; solvent A: water; solvent 

B: acetonitrile; elution gradient were as follows: The gradient elution program was as follows: 0–15 min, hold 

21% B; 15–69 min, 21–38.1% B, flow rate was 1 mL/min.  
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Fig 2.5.4.1.2.HPLC chromatogram of HPCCC fractions of ginsenoside Rd, Rg1, Rb1, Rc and Re using mobile 

phase consisting of water (solvent A) and acetonitrile (solvent B) at a flow rate of 1.0 ml/min. The gradient 

elution program was as follows: 0–15 min, hold 21% B; 15–69 min, 21–38.1% B, flow rate was 1 mL/min. 
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2.5.4.2 Identification of HPCCC fractions by LC-MS/MS and NMR 

 

 

These analyses were performed by Mr.Federico at Kingston University. For the analysis of LC-MS and LC-

MS/MS a mass spectrometer connected to a HPLC system (API 3000 LC/MS/MS), using a Grace Luna C-18 

(100 ×4.6 mm 5.0µm) column was used, the experiment was performed using a binary mobile phase composed 

of water solvent and Acetonitrile solvent B, the following gradient elution program was used: 0-30 min, 50-90% 

B. The fraction analyzed by mass spectroscopy was Rg1 and the mass spectrometer data of ginsenoside Rg1 

were 802.2.0 [M+H], 824.4 [M+Na] 784.2 [M-H2O] and 622.1 [M-Glucose] as follow Fig 2.5.4.2.1. Other 

peaks were observed in the chromatogram due to impurities present in the column, however an analysis of blank 

solution was performed and impurity peaks was still observed. The other spectrometric datas of the fractions of 

ginsenosides Rb1, Rc, Re and Rd were given as: ginsenoside-Rb1, m/z: 1109.2 [M+H]; ginsenoside-Rc, m/z: 

1080.2 [M+H]; ginsenoside-Re, m/z: 947.8 [M+H]; ginsenoside-Rd, m/z: 946.8 [M+H]. The molecular ions and 

fragments agreed with the corresponding ginsenoside in the literature [353]. Besides, the target fractions have 

the same HPLC retention time as the standards in the LC-MS analysis. Thus, the ginsenosides Rg1, Rb1, Rc, Re 

and Rd separated from HPCCC are identified.  

 

 
  Fig 2.5.4.2.1 The mass spectrum data of HPCCC fraction ginsenoside Rg1 

 

 

NMR was attempted for the structure identification of HPCCC fractions from crude Panax ginseng sample due 

to they were separated individually by HPCCC according to the data of HPLC analysis. However, because of 

the small amount of each fraction, it was not possible to get the satisfactory result from 2D-NMR analysis. 
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2.6 Conclusion 

 
As ginsenosides easily emulsify when they are dissolved in organic solvents, two solvent systems have been 

successfully developed and applied for the two step separation of ginsenosides using HPCCC. It is first time to 

verify that ginsenosides are unstable in an acidic environment and using an inorganic salt for suppressing 

sample emulsification. The salt chosen was ammonium acetate which is easily volatile and can be precipitated 

in warm acetone for pure sample recovery.  

 

In addition, one study systematically investigated the retention behavior of six neutral ginsenosides Rg1, Re, 

Rb1, Rb2, Rc and Rd with RP-HPLC. The effects of solvent, pH value and ionic strength of the mobile phase, 

were investigated using an Altima C18 column. Based on the ginsenosides retention characteristics, the 

concentration of acetonitrile and the gradient of the mobile phase needed to maintain the baseline separation of 

the major neutral ginsenosides in Panax ginseng were eastablished. Furthermore, the ionic strength of mobile-

phase was necessary to achieve good resolution of the neutral ginsenosides. According to the above results, a 

new HPLC method has developed for the quality control of Panax ginseng. The separation of seven 

ginsenosides was successfully eastablished from the crude sample. 

 

The gradient elution and classical isocratic elution of HPCCC were combined for the preparation of 

ginsenoside-Rd, Rg1, Rb1, Re and Rc from Panax ginseng with two different solvent systems. A simple 

screening solvent system was successfully developed to select solvent gradients for CCC separation. The study 

indicated that the settling time is a key parameter to ensure retention of the stationary phase in the column. 

Ethyl acetate/butanol/water (3.5:0.5:4 v/v) and ethyl acetate/butanol/water (2.5:1.5:4 v/v) solvent system 

addition of 5mM ammonium acetate salt solvent system were applied for the first step separation of 

ginsenosides from Panax ginseng with gradient elution. This established gradient method not only successfully 

separate three ginsenosides Rd, Rg1 and Rb1 in a short time by HSCCC, but also retained higher stationary 

phase retention (77.6%) compared with other CCC methods.  Ginsenosides Re and Rc were separared in a 

second step separation by HPCCC with isocratic elution using methylene chloride/methanol/water/isopropanol 

(6:3:4:3 v/v/v) solvent system. All fractions collected were analyzed by HPLC, and the structures of these 

compounds were characterized by ESI-MS/MS. Based on the developed method, 1.60 mg of ginsenoside Rd, 

1.14 mg of ginsenoside Rg1, 1.89 mg of ginsenoside Rb1, 2.12 mg of ginsenosides Rb2/Rb3, 1.76 mg of 

ginsenoside Re and 1.28 mg of ginsenoside Rc were obtained from 43.92 mg crude sample extraction , with 

purity of 96.3% and 98.6% yield, 88.5% and 95.8% yield, 93.7% and 97.4% yield, 86.3% and 81.7% yield, 

97.5% and 98.2% yield, 92.6% and 96.3% yield respectively. The ginsenoside Rg1 was first time reported to 

separate and identify from the Panax ginseng. The gradient method efficacy was significant when it was applied 

for wide range of polarity compounds. Moreover, the current solvent system was used as an example and it 

provided a new sight for selecting solvent gradients for CCC to purify compounds from the natural products. 

The two-step CCC separation strategy was proved to be suitable for the separation of complex compounds from 

herbal medicines with great advantages. 
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CHAPTER 3  

 

Separation and quantitative 

determination of salidroside and 

tyrosol from Rhodiola rosea with 

high-performance counter-current 

chromatography 
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3.1 Aim 
 
Rhodiola rosea is a perennial herbaceous plant distributed in southwest China, including Yunnan and Sichuan 

provinces as well as the Tibetan Autonomous region. As a traditional herbal remedy, Rhodiola rosea has been 

used by Tibetans in many ways such as clearing heat in the lungs, eliminating toxins from the body, treating 

various epidemic diseases, edema of limbs, traumatic injuries and burns [354]. Salidroside and tyrosol are the 

most active ingredients of Rhodiola rosea [355]. Our purpose in the Project is developing a simple and precise 

method for the qualitative and quantitative analysis of the active compounds of Rhodiola rose by CCC. 

Salidroside and Tyrosol are the main target compounds for separation by HPCCC 

 

3.2 Experimental Method and Materials 
 

3.2.1 Apparatus 
 
 Two scales of HPCCC instrument were used in this study: A) An analytical Mini-CCC from Dynamic 

Extractions (Slough, UK).This instrument has a coil of 17.7mL with 0.8mm bore tubing and extra coil volume 

of 0.39 ml. The revolution radius or the distance between the column axis and central axis of the centrifuge (R) 

for this column is 50mm with a β value varying from 0.68 at the internal terminal to 0.79 at the external 

terminal. A maximum speed was 2100rpm (240×g). A rotation speed of 2100 rpm was use in our study. B) The 

preparative HSCCC instrument was the Midi-DE centrifuge. It is also a “J” type coil planet centrifuge but has 

been improved with a quieter drive system capable of controlling rotation speed up to 1400 rpm (240×g) and 

temperature between 25 ºC and 35 °C. The preparative column had coil volume of 455mL with 4mm bore 

tubing. The distance between the column axis and the central axis of the centrifuge for these columns was 11cm 

and the βvalue ranges were 0.64–0.8. A rotation speed of 1250 rpm was setin our study. Samples were analyzed 

by a Waters 2695 high performance liquid chromatography (HPLC) instrument equipped with 2996 photodiode 

array detector (Waters, USA). Chromatography data were collected using Empower Pro workstation (Waters, 

USA). A Gemini C18 column (150 × 3.0 mm; 5 μm particle size) was supplied for the HPLC analysis 

 

3.2.2 Chemicals and standards 
 
Rhodiola rosea was purchase from the Tibet herbal company, Qinghai (Qinghai, China). The salidroside and 

tyrosol standards were from Sichuan Provincial Administration of Food and Drugs (Sichuan, China). All 

analytical grade solvents (methylene chloride, methanol, butanol, and isopropanol), ammonium acetate for the 

HPCCC separation and HPLC grade acetonitrile for HPLC analysis were supplied by Fisher Chemicals 

(Loughborough, UK). Deionised water was prepared by a Millipore water purification system (Watford, UK). 

 

 

3.2.3 Preparation of crude sample 
 
The objective of this study is to establish a method permitting the simultaneous determination of the salidroside 

and tyrosol from the roots of Rhodiola rosea. Sample preparation is the first important step in the experiment, 

previous investigation of Rhodiola rosea sample preparation showed that reflux exaction was more efficient 
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than ultrasonic extraction with high extraction yields but needed much more time [176] and that the high 

hydrostatic pressure extraction (HHP) [178] method was best but not an easy operation. Thus, the ultrasonic 

extraction method with methanol was selected as our sample preparation method due to its ease of operation 

and time saving. In addition, the ultrasonic extraction temperature, the duration of ultrasonic extraction, the 

ratio of methanol to water and the ratio of raw material to methanol solvent were the four main variables that 

influenced the yields of extracts. This sample extraction experiment has four variables at different settings 

leading to carry out many experiments. In order to get the best extraction effect of salidroside and tyrosol from 

the crude sample and saving time, an orthogonal L9 (3
4
) test design was used for optimization of the extraction 

conditions as orthogonal design was used can generate a data set of several factors without testing every 

combination of factor levels. Therefore, four variables at 3 different settings were selected for the ectraction 

experiment and only 9 experiments need to be carried out to replace the initial 81 experiments with the same 

result. The samples of Rhodiola rosea were ground into powder and dried at 60 ºC. The accurately weighed 

powder (2.00 g) was placed in a 50 mL flask at room temperature, dissolved with different proportions of 

methanol solution and sonicated with different time periods and temperatures based on the orthogonal design. 

Subsequently the filtrate was evaporated and the residue was washed with methanol several times.The methanol 

extraction was transferred to 50 mL volumetric flask and diluted to 50 ml with methanol. A 1ml sample solution 

was taken to 10ml volumetric flask and dilute to 10ml with methanol. Prior to HPLC analysis, the sample 

solution was passed through a 0.45 µm membrane filter. 

 

3.2.3.1 Preparation of standard curve 

 

Accurately weighed standards of salidroside and tyrosol (4.0mg) were placed in a 50 mL volumetric flask at 

room temperature, dissolved and sonicated with 20 mL of 100% methanol for 30 minutes, and then diluted to 50 

ml with methanol. Linearity was established by injection of 3 µL, 5 µL, 7 µL, 9 µL, 11 µL, 13 µL of the 

standard of salidroside solutions of six different injections with six replicates and 2µL, 4 µL, 6 µL, 8µL, 10 µL, 

12 µL of the standard of tyrosol solutions. Calibration graphs were plotted subsequently based on linear 

regression analysis of the integrated peak (Y) versus injection amount (X µg).  

 

 

 

3.2.3.2 Orthogonal L9 (3
4
) test design 

 

 

The variables levels for the orthogonal L9 (3
4
) test design are shown in the Table 3.2.3.2.1. According to the 

extraction effect of salidroside, four variables of extraction were selected: the ultrasonic extraction temperature, 

the duration of ultrasonic extraction, the ratio of methanol to water and the ratio of methanol solvent to raw 

material, each variable has three different levels. 9 experiments were carried out following the orthogonal L9 

(3
4
) test design table (Table 3.2.3.2.2) to find out the best parameters for extraction.  
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   Table 3.2.3.2.1 Orthogonal design L9 (3
4
) variables level of salidroside and tyrosol extraction 

 

  level 

variables 

1                  2                    3 

A: ultrasonic extraction temperature（ºC） 20                 40                   60 

B: duration of ultrasonic extraction（min） 10                 30                   60 

C: ratio of methanol to water (%) 10                 50                   90 

D:ratio of sample to methanol solvent（g/ml） 1:10              1:20                 1:30 

 

 

 

 

Table 3.2.3.2.2 Orthogonal design L9 (3
4
) table of salidroside and tyrosol extraction 

 

variables 

level 

number of 

expriment 

A(ºc）         B(min）         C(%)             D (g/ml）      salidroside 

1                2                3                  4           content 

                                                         mg/g 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

1(20)           1(10)                 1(10)           1(1:10)        

1(20)           2(30)                 2(50)           2(1:20)        

1(20)           3(60)                 3(90)           3(1:30)        

2(40)           1(10)                 2(50)           3(1:30)        

2(40)           2(30)                 3(90)           1(1:10)        

2(40)           3(60)                 1(10)           2(1:20)        

3(60)           1(10)                 3(90)           2(1:20)        

3(60)           2(30)                 1(10)           3(1:30)        

3(60)           3(60)                 2(50)           1(1:10)        

 

 

 

3.2.4 Selection procedure of solvent system 
 
The CCC technique uses a two-phase solvent system made of a pair of mutually immiscible solvents, one used 

as the stationary phase and the other as the mobile phase. The use of two-phase solvent systems allows one to 

choose solvents from an enormous number of possible combinations. The selection of this two-phase solvent 

system for the target compounds is the most important and first step in CCC. Moreover, a suitable partition 

coefficient (KD) of target compound in the two-phase solvent systems is most important as well because a KD 

value of close to one is generally considered to be the ideal system for separating that compound with optimal 

resolution. The partition coefficients KD =CU/CL, where CU is the solute concentration in the upper phase and 

CL, that of the lower phase. The main purpose in this experiment is to find suitable solvent systems with KD 

values of the target compounds salidroside and tyrosol in the appropriate range (0.5≤ KD≤2.0.). Therefore, it is a 

critical and important step to find the suitable solvent system for the separation of salidroside and tyrosol from 

the crude sample. Four kinds of solvent system selected to test the partition coefficient for the target 

compounds. HEMWat solvent systems were selected as the first solvent system to test. 

 

1, The HEMWat solvent systems comprised of heptane/ethyl acetate/methanol/butanol/water (Table 3.2.4.1). A 

set of HEMWat solvent systems (No1 –No28) is arranged from the top to the bottom according to a decreasing 

order of the polarity of their organic phases (Table 3.2.4.1). When the polarity of the target compounds are 

unknown, the search first start at No17 heptane/ethyl acetate/methanol/water (1:1:1:1, v/v/v), because their 
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volume ratio are equal .A set of solvent systems is arranged from the top to the bottom according to a 

decreasing order of the hydrophobicity of their organic phases. No2, 5, 7, 8, 12, 17, 22, and 27 have been 

selected systematically to test the KD value as comparison. 

 

2. The terAcWat solvent systems comprised of the methyl tert-butyl ether /acetonitrile/water (Table 3.2.4.2) 

No7 with 0.1%TFA in water, No7 and No7 with 1% NH3OH in water have been selected to test the target 

compounds KD value because the No7 solvent system shows the more hydrophilic effect of organic phase. Their 

solvent pH values are increasing gradually. (Table 3.2.4.3)  

 

3. In order to adjust the range of the methyl tert-butyl ether/ acetonitrile/water solvent system family to include 

more hydrophilic compounds, a solvent system family was developed by adding butanol as a fourth solvent 

based on the ratio of methyl tert-butyl ether / acetonitrile/water(4:6:10) (Table 3.2.4.4 ). 

 

4. The ChMWat solvent systems comprised of the chloroform/methanol/water, which is suitable for the polarity 

compounds such as Salidroside and Tyrosol. Butanol or isopropanol solvent also usually added to the ChMWat 

solvent system to adjust the polarity of solvent system (Table 3.2.4.5).  

 

 

Table 3.2.4.1 System numbering and solvent composition of the Heptane / EtOAc / MeOH/ Butanol/ Water 

(v/v/v) solvent system 

 

 

   

No   
Heptan

e 
EtOAc MeOH Butanol Water 

1   0 0 0 5 5 

2   0 1 0 4 5 

3   0 2 0 3 5 

4   0 3 0 2 5 

5   0 4 0 1 5 

6   0 1 0 0 1 

7 More 1 19 1 0 19 

8 Polar 1 9 1 0 9 

9   1 6 1 0 6 

10   1 5 1 0 5 

11   1 4 1 0 4 

12   1 3 1 0 3 

13   2 5 2 0 5 

14   1 2 1 0 2 

15   2 3 2 0 3 

16   5 6 5 0 6 

17 Entry 1 1 1 0 1 

18 Point: 6 5 6 0 5 

19   3 2 3 0 2 

20   2 1 2 0 1 

21   5 2 5 0 2 
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22   3 1 3 0 1 

23   4 1 4 0 1 

24   5 1 5 0 1 

25 Less 6 1 6 0 1 

26 Polar 9 1 9 0 1 

27   19 1 19 0 1 

28   1 0 1 0 0 

 

 

 

 

Table 3.2.4.2 System number and solvent composition of the methyl tert-butyl ether/acetonitrile/ water (v/v) 

solvent system  

 

 

No MTBE ACN Water 

1 10 0 10 

2 9 1 10 

3 8 2 10 

4 7 3 10 

5 6 4 10 

6 5 5 10 

7 4 6 10 

   

A set of solvent systems is arranged from the top to the bottom according to a decreasing order of the 

hydrophobicity of their organic phases 

 

 

 

Table 3.2.4.3 pH value of No7 of terAcWat solvent systems with TFA, NH4OH, respectively 

 

 

terAcWat solvent systems PH 

MTBE-ACN-Water+0.1%TFA 2.07 

MTBE-ACN-Water 7.29 

MTBE-ACN-Water+1%NH4OH 10.38 

  

 

 MTBE-A-W: Methyl tert/butyl ether /Acetonitrile/Water (2:3:5 v/v) 

 MTBE-A-W+0.1%TFA: Methyl tert/butyl ether / Acetonitrile/Water+0.1%Trifluoroacetic acid (2:3:5 v/v) 

   MTBE-A-W+1%NH3OH: Methyl tert-butyl ether –/Acetonitrile/Water+1%NH3H2O (2:3:5 v/v) 
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Table 3.2.4.4 System number and solvent composition of the methyl tert-butyl ether /butanol/acetonitrile/ water 

(v/v/v) solvent system  

 

 

No MTBE Butanol ACN Water 

1 4 2 4 10 

2 4 4 2 10 

 
 

Table 3.2.4.5 System number and solvent composition of the methylene chloride/methanol/water/isopropanol 

(v/v/v) solvent system 

 

No Methylene chloride Methanol Water Isopropanol 

1 5 6 4 1 

2 5 6 4 2 

3 5 5 4 1 

4 6 6 4 1 

5 6 2 4 3 

6 6 3 4 3 

 

 

3.2.5 Measurement of partition coefficient and settling time 
 
In the present study, the partition coefficients (KD) for the target compounds were measured by HPLC as 

follows. Each selected solvent systems were prepared and equilibrated in a test tube. An equal volume of upper 

and lower phases (600μl) was then dispensed into a HPLC vial with a pipette. Approximately 6mg of crude 

sample was dissolved in equal volumes of aqueous and organic phases respectively.. After the distribution 

equilibrium was established, an equal volume of upper and lower phases (400µL) each was transferred into a 

separate vial and solvents removed at 30 ºC under vacuum conditions. Then 1ml of 100% methanol was added 

to solubilise the remaining contents of the vial. Afterwards, both upper (aqueous phase) and lower (organic 

phase) were analyzed separately by HPLC. The partition coefficient was defined as KD = Aupper/Alower, where 

Aupper and Alower were target compound HPLC peak areas in the upper and lower phases respectively 

 

The settling time, which gives an indication of how well the stationary phase is retained in the column, was 

expressed as the time for a clear layer between the two phases to be formed when each phase was mixed in the 

ratios. 

 

3.2.6 Preparation of two-phase solvent system and sample solution 

 
 

A solvent system was used for the CCC separation. Each component of the solvent systems was added to a 

separatory funnel and thoroughly equilibrated for 30 min at room temperature. The upper phase and the lower 

one were separated and degassed by sonication for 30 min shortly before use. Sample solutions were prepared 

by dissolving 20.0mg crude sample in 400µl mobile phase (lower phase) of the solvent system 
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3.2.7 CCC separation procedure 

 
 
The solvent system, containing the chosen ratios of methylene chloride, methanol, water and isopropanol was 

prepared, equilibrated and separated shortly before CCC separation. 20mg of crude sample was dissolved in 

400µL of mobile phase (lower phase). In each HPCCC preparative separation run, the coil was filled with the 

stationary phase (upper phase) in the head to tail mode. Then the mobile (lower) phase was pumped into the coil 

at a flow rate of 0.5 mL/min with a centrifuge rotational speed of 1600rpm at 25 ˚C. When hydrodynamic 

equilibrium was established, the sample solution was injected into the coil through a 0.43mL sample loop. The 

eluent was continuously monitored by connecting the tail outlet of the coiled column with Waters 996 

photodiode array detector. Each peak fraction was collected according to the elution profile and analyzed by 

HPLC. After the separation was completed, retention of the stationary phase was measured by collecting the 

column contents by forcing them out of the column with pressurized nitrogen gas. 

 

 

3.2.8 HPLC analysis and identification of HPCCC fractions 

 
 
The HPLC system consisted of a Waters Alliance 2695 HPLC system, equipped with a 996 photodiode array 

detector (Waters Corp., Milford, MA, USA). A computerized data station was equipped with Waters Empower 2 

software. A Gemini C18 column (150 × 3.0 mm; 5 μm particle size) from Phenomenex was used as the 

stationary phase and the temperature was maintained at 50°C. The mobile phase consisted of acetonitrile 

(0.05% phosphoric acid) (C) and water (0.05% phosphoric acid) (D), at a flow rate of 0.5 mL/min. Analysis was 

performed using the following gradient elution: 5% C /95% D to 19% C /81% D/for 30 min then hold for 5 min. 

Each run was followed by a 5 min wash with 98% C and an equilibration period of 15 min. The detection 

wavelengths were from 190 to 400 nm. The purified Salidroside and Tyrosol were identified using commercial 

reference standard on HPLC. 

 

3.3 Results and discussion 

 
 

3.3.1 Method validation 

 
 
The analytical method described above was used to analyze the Rhodiola rosea samples. This method was 

validated for its specificity, linearity, precision, and accuracy, limit of detection (LOD) and limit of 

quantification (LOQ) with the following results.The retention times and the UV spectra of the eluted 

components from the samples agreed well with those of the standards indicating the identity and purity of the 

peaks eluted from the samples. Therefore, the specificity of the method was validated. 

 

For quantification of salidroside and tyrosol, calibration curves were constructed and tested for linearity. The 

plot of peak area (Y) against the concentration (X, µg) was evaluated using linear regression analysis. The 
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regression equations and correlation coefficients (R
2
) of salidroside and tyrosol were derived as Y=5*10

6
X-

13606 (n=6, R
2
= 0.9998, 0.024-0.104µg) and Y=9*10

6
X (n=6, R

2
 = 0.9992, 0.016-0.096 µg), respectively. The 

limit of detection (LOD), defined as the lowest sample concentration which can be detected (S/N > 3), was 2.25 

ng for salidroside and 1.41ng for tyrosol, and the limit of quantification (LOQ), defined as the lowest sample 

concentration which can be quantitatively determined with suitable precision and accuracy (S/N > 10), was 7.52 

ng for salidroside and 4.70 ng for tyrosol (R.S.D < 10%). The regression equations, correlation coefficients, and 

linear ranges for the salidroside and tyrosol are shown in Table 3.3.1.1. The limits of detection (LOD) and 

quantification (LOQ) were determined at a signal-to-noise ratio (S/N) of 3 and 10. The results are also 

summarized in Table 3.3.1.1. 

 

Table 3.3.1.1 Calibration curves, linear range, limit of detection, limit of quantification (n = 6) and system 

precision data (n = 5) for the standards of salidroside and tyrosol 

 

Compounds              Salidroside                        Tyrosol 

Linear regression
a
        y=5*10

6
x-13606                   y=9*10

6
x                                                                              

Lr
b
 µg                0.024-0.104                  0.016-0.096 

R
2                                   

0.9998
                                                

0.9993 

LOD
c
 ng              2.25                          1.41      

LOQ
d
 ng              7.52                          4.70         

Peak area
e
          490052±5744                  969849±11555 

RSD%                1.19                          1.17 

 

a: In the regression equation, the X value is the concentration of analytes (µg); the Y value is the peak area 

b: Linear range (µg) 

c: Limit of detection (ng) 

d: Limit of quantification (ng) 

e: Mean ± SD 

 

 

Orthogonal design L9 (3
4
) experiment result and analysis 

 

Table 3.3.1.2 Orthogonal design L9 (3
4
) table and results of salidroside and tyrosol extraction 

row 

level 

number of expriment 

A (ºc）      B (min）         C (%)             D (g/ml）      salidroside 

 1              2                 3                 4            content 

                                                         mg/g                 

1 

2 

3 

4 

5 

6 

7 

8 

9 

The mean 1 

The mean 2 

The mean 3 

Range(Rj) 

 Sj 

1(20)           1(10)                 1(10)           1(1:10)       11.5 

1(20)           2(30)                 2(50)           2(1:20)       23.3 

1(20)           3(60)                 3(90)           3(1:30)       28.4 

2(40)           1(10)                 2(50)           3(1:30)       16.0 

2(40)           2(30)                 3(90)           1(1:10)       15.3 

2(40)           3(60)                 1(10)           2(1:20)       19.4 

3(60)           1(10)                 3(90)           2(1:20)       21.4 

3(60)           2(30)                 1(10)           3(1:30)       14.1 

3(60)           3(60)                 2(50)           1(1:10)       8.30 

21.1          16.3              15.0          11.7       T=157.7 

16.9          17.6              15.9          21.4                           

14.6          18.7              21.7          19.5                          

6.50          2.40              6.70          9.70 

6.90          1.20              8.30          16.2       ST=32.7 
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Table 3.3.1.3 Analysis of variance with orthogonal L9 (3
4
) test design of salidroside and tyrosol extraction 

Variance 

source 
Sj fj 

j

j

S

f
 F=

j e

e

S S

fj f
 Significance 

A 6.9 2 3.4 5.67 F0.10(2,4)> FA>F0.25(2,4) 

B 1.2 2 0.6 1  

C 8.3 2 4.15 6.92 F0.05(2,4)> FC>F0.10(2,4) 

D 16.2 2 8.1 13.5 F0.01(2,4)> FD>F0.05(2,4) 

e 1.2 2 0.6   

 

From the range value in Table 3.3.1.2, it showed that the Rj value order effect on parameters of salidroside 

extraction order is D (9.7) > C (6.7) > A (6.5) > B (2. 4), hence, the effect on parameters of salidroside 

extraction order is D > C > A > B, the best parameters arranged as: D2 C3 A1 B3. Thus, the best parameters of 

sample extraction are following as: the ratio of raw material to methanol solvent: 1:20, the ratio of methanol to 

water: 1:9, the ultrasonic extraction temperature: 20 ºC and the duration of ultrasonic extraction: 60 minutes. It 

was also validated that the ratio of raw material to methanol solvent and the ratio of methanol to water were the 

most significance parameters of the salidroside and tyrosol extraction according to the analysis of variance with 

the orthogonal L9 (3
4
) test. The result is shown in the Table 3.3.1.3. The significant test result shows the FD is 

13.5 based on the above F test. It is bigger than the F0.05 (2, 4), which is 6.94, but less than the F0.01 (2, 4), which 

is 18. Thus, FD can be expressed as: F0.01 (2, 4)> FD>F0.05 (2, 4), Similarly, The FC can be expressed as F0.05 (2, 

4)> FC>F0.10 (2, 4) and F0.10 (2, 4)> FA>F0.25 (2, 4). It was demonstrated that factor D or the parmater of the ratio 

of raw material to methanol solvent has the highest significant in this experiment, which is consistent with the 

perivous experiment result. Therefore, this method for salidroside extraction is validated. 

 

Stability of extraction process experiment 

In order to investigate the reproducibility of the optimized extraction process, the extraction process experiment 

was validated by injecting a pulverized samples solution six times to analyze the content of salidroside and 

tyrosol from the Rhodiola rosea sample 1.0 g pulverized samples of Rhodiola rosea were extracted as describes 

above and repeated 6 times. The RSD value of the retention time and peak areas were used to evaluate 

precision. The result is shown in Table 3.3.1.4. The results of the experiments are equal to or better than any 

other group of orthogonal experimental, indicating that the optimized extraction process is stable and feasible. 

       

Table 3.3.1.4 result of stability experiment of salidroside and tyrosol extraction process 

No Salidroside mg/g Tyrosol mg/g 

1 
31.20 13.78 

2 
31.62 13.95 

3 
30.86 13.95 

4 
31.89 14.02 

5 
31.19 13.48 

6 
31.16 13.54 

Average 31.32 
13.79 

RSD% 1.18 1.67 
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Recovery  

 

The recovery tests were studied by spiking a known quantity of the two references to 0.2 g of the pulverized 

samples of Rhodiola rosea. Weight accurately six parts of Rhodiola rosea sample, each part was 0.2g. Then, 

1mg standards of salidroside and tyrosol respectively were added. The samples were then extracted and 

analyzed as described above. The recovery values were obtained by comparing the results from samples and 

fortified samples. As a result, the recoveries of salidroside were satisfactory between 98.9–101.57% with RSD 

1.02% for all analytes. The recoveries of tyrosol were satisfactory between 95.95–100.18% with RSD 1.82% for 

all analytes. The results are shown in the Table 3.3.1.5 and Table 3.3.1.6  

 

 Table 3.3.1.5 Recovery of salidroside from Rhodiola rosea sample (n=6) 

 

Added ug/g Founded  ug/g Recovery % Mean of recovery% RSD% 

1000 988.99 98.90   

1000 998.87 99.89   

1000 1014.94 101.49 100.46 1.02 

1000 1015.68 101.57   

1000 1001.52 100.15   

1000 1007.42 100.74   

 

 Table 3.3.1.6 Recovery of tyrosol from Rhodiola rosea sample (n=6) 

 

Added ug/g Founded  ug/g Recovery % Mean of recovery % RSD% 

1000 960.47 96.05   

1000 959.50 95.95   

1000 1001.80 100.18 97.96 1.82 

1000 986.68 98.67   

1000 995.17 99.52   

1000 974.10 97.41   

 

 

 

Precision 

 
The precision of the chromatographic system was validated by injecting a mixed reference solution six times 

during one day. The RSD value of the retention time and a peak area was used to evaluate precision. The data 

showed a high precision of the system with an RSD <3%. The results are also shown in Table 3.3.1.1  

 

The method precision was evaluated by intra-day and inter-day tests. Intra-day experiments were performed by 

replicate analysis of six aliquots of the same sample within one day. Inter-day tests were carried out on three 

consecutive working days in the same way as intra-assay experiments with newly prepared mobile phase and 

samples. The RSD of intra- and inter-day precision was less than 2% for all compounds. The precision of the 

analytical method was excellent. The results are shown in Table 3.3.1.7 

 

Table 3.3.1.7 Intra-day (n = 6) and inter-day (n = 6) precision of the standards of Salidrosides and Tyrosol 

. 

Analytes Peak area  RSD% 

Intra-day Inter-day 

Salidrosides 1.54 1.89 

Tyrosol 1.11 1.24 
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3.3.2 Selection of two-phase solvent system 

 

3.3.2.1 HEMWat solvent systems 

 

Table 3.3.2.1.1 show the KD value result for the salidroside and tyrosol compounds using HEMWat solvent 

systems, the KD values in ethyl acetate/butanol/water (4:1:5 v/v)  and ethyl acetate/butanol/water (4.5:0.5:5 v/v) 

solvent system are better than others, which signify the salidroside and tyrosol compounds easy distribute to the 

organic phase. The KD value of salidroside and tyrosol compounds between ethyl acetate/butanol/water solvent 

system with ratio of 4:1:5 and 4.5:0.5:5 could be in the appropriate range 0.5 to 2.0. If the partition coefficient is 

slightly off from the appropriate range, it can be adjusted upwards by modifying the HEMWat number to 

become more polar and downwards by making the HEMWat number more hydrophobic. The search should be 

continued until a suitable range of KD values for all of the compounds of interest are obtained. But the next 

search for the ethyl acetate/butanol/water solvent system with ratio of 4:1:5 to 4.5:0.5:5 is unsuccessful for the 

both salidroside and tyrosol compounds.      

 

Table 3.3.2.1.1 KD value of Salidroside and Tyrosol compounds from HEMWat solvent systems 

 

Heptane/EtOAc/MeOH/Butanol/Water      

solvent systems  (v/v/v/v) 
SKD TKD 

0:1:0:4:5 2.71 9.51 

0:4:0:1:5 2.08 5.37 

0:4.5:0:0.5:5 0.130 1.712 

1:19:1:0:19 0.018 1.24 

1:9:1:0:9 0.044 1.41 

1:3:1:0:3 0.007 0.614 

1:1:1:0:1 0.0137 0.0656 

3:1:3:0:1 0.0024 0.0049 

19:1:19:0:1 0.0004 0.0011 

 
SKD stands for Salidroside KD, TKD stands for Tyrosol KD. 

 

3.3.2.2 terAcWat solvent system 

 

The terAcWat solvent system targets compounds of moderate hydrophobic to hydrophilic polarity, If the target 

compound distributes more to the aqueous phase of butanol/water in the EBuWat solvent system , the search 

can apply the terAcWat solvent system and even add some acids such as TFA or some base such as NH4OH to 

modify the pH value of the terAcWat solvent system. Since these acidic analyses have two molecular forms, 

protonated (COOH) and deprotonated (COO−), each having a different KD value, they form a broader peak 

when partly ionized. Therefore, the use of an acidic modifier to the solvent system is recommended. Also, 

adding the acid (typically 0.1% TFA) to the solvent system often substantially shortens the settling time, 

improving retention of the stationary phase. Moreover, No.7 of terAcWat solvent system (MTBE/ACN/Water 

4:6:10 v/v) is the biggest of the hydrophilic and polarity. Therefore, No.7 terAcWat solvent system 

(MTBE/ACN/Water 4:6:10 v/v) and No.7 terAcWat solvent system (MTBE/ACN/Water 4:6:10 v/v) with 

0.1%TFA in water and No.7 terAcWat solvent system (MTBE/ACN/Water 4:6:10 v/v) with 1% NH4OH in 

water have been selected to test the target compounds KD value. The KD values of salidroside and tyrosol 
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compounds from the three solvent systems were showed in the Table3.3.2.2.1. It indicates that the three solvent 

systems are suitable for separation of tyrosol but not suitable for the separation of salidroside due to their KD 

values was less than 0.5. 

 

Table 3.3.2.2.1 KD value for Salidroside and Tyrosol compounds from different pH value of No.7 terAcWat 

solvent system (MTBE/ACN/Water 4:6:10 v/v) 

 

terAcWat solvent systems SKD TKD 

MTBE/ACN/Water+0.1%TFA 0.184 1.55 

MTBE/ACN/Water 0.274 1.62 

MTBE/ACN/Water+1%NH3OH 0.23 2.1 

 
 SKD stands for KD of salidroside, TKD stands for KD of tyrosol. 

 

Thus, in order to find a suitable solvent system for separation of both salidroside and tyrosol compounds, 

butanol can be added in based on the No.7 terAcWat solvent system (MTBE/ACN/Water 4:6:10 v/v) to adjust 

the hydrophilic polarity of organic phase due to the butanol is considered to be an organic modifier since it is 

miscible with t-butylmethylether, but only somewhat miscible with water. In general, KD increased as the ratio 

of n-butanol relative to acetonitrile increases. Based on the KD value of salidroside and tyrosol compounds 

from MTBE/ Butanol/ACN/Water (v/v/v) solvent systems (Table 3.3.2.2.2), the solvent system 

MTBE/Butanol/ ACN /Water (4:2:4:10 v/v/v) is suitable for separation of salidroside and tyrosol only the KD 

value of tyrosol is little bigger than 2.0. 

  

 

 

Table 3.3.2.2.2 KD value of salidroside and tyrosol compounds from MTBE/ Butanol/ACN/Water (v/v/v) 

solvent systems 

    

No MTBE Butanol ACN Water SKD TKD Settling time 

1 4 2 4 10 0.55 2.45 15s 

2 4 4 2 10 0.53 2.82 15s 

 

 
3.3.2.3 Methylene chloride–methanol–water–isopropanol solvent system 

 

 

DMWI(5:6:4:1 v/v/v) with 5mg/ml ammonium acetate solvent system was selected as the two phase solvent 

system for the separation of Salidroside and Tyrosol compounds according to the literature review. Based on the 

result of Table 3.3.2.3.1, KD value of tyrosol is available for the CCC separation. Increasing or decreasing the 

ratio of methanol composition result in increasing the KD value of both salidroside and tyrosol compounds, but 

it is hard to adjust both the KD values of salidroside and tyrosol compounds between 0.5 to 2.0. However, 

increasing the proportion of isopropanol to 2 as DMWI (5:6:4:2 v/v/v) solvent system can decrease the KD value 

of salidroside and tyrosol compounds to between 0.5 to 2.0 due to the compounds being well dissolved in the 

lower isopropanol layer of the two phase system. However, the retention of stationary phase (upper phase) with 

DMWI (5:6:4:2 v/v/v) solvent system using analytical Milli-CCC was too low to get the good separation result 

since the increasing the isopropanol composition to the solvent system resulted in increasing the viscosity of the 

two phases. Therefore, DMWI (5:6:4:1 v/v/v) with 5mg/ml ammonium acetate solvent systems were selected to 
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test the KD value of salidroside and tyrosol. 

 

Table 3.3.2.3.1 KD value of Salidroside and Tyrosol compounds from methylene 

chloride/methanol/water/isopropanol (v/v/v) with 5mg/ml ammonium acetate solvent systems 

 

No 
Methylene 

chloride 

Methanol 
Water Isopropanol 

S KD T KD Settling 

time 
Ratio 

1 5 6 4 1 3.15 1.42 20s 1:1 

2 5 6 4 2 1.69 1.10 45s 2:1 

3 5 5 4 1 4.84 1.73 18s 1:1 

4 6 6 4 1 5.45 1.87 15s 1:1 

5 6 2 4 3 3.50 0.96 40s 2:1 

 
 

 

3.3.3 HP CCC separation of salidroside and tyrosol 

 

 
3.3.3.1 Analytical HPCCC 

 

  
3.3.3.1.1 Application of terAcWat (4:6:10) solvent system in reversed phase isocratic elution for 

separation of salidroside and tyrosol 

 

According to the previous discussion of terAcWat solvent system, terAcWat (4:6:10 v/v) solvent system can be 

selected as solvent system for the separation of salidroside and tyrosol. In this reverse phase elution mode, 

organic phase was chosen to be stationary phase and aqueous phase to be mobile, According to the partition 

coefficients in shake tests, polar compounds will first be eluted. In this elution mode, salidroside and tyrosol can 

be easily eluted. Fig.3.3.3.1.1 showed that salidroside eluted so fast in 40 minutes because the KD value of 

salidroside was only 0.274 less than 0.5, tyrosol eluted between 60 to 80 minutes, which was consistent with the 

tube test. The Sf% was 66%. HPLC analytical results showed that the purities of components salidroside and 

tyrosol could reach 85% and 88%.Table 3.3.3.3.1.1.1 showed the initial Sf, purity and yield of salidroside and 

tyrosol in the Mini HPCCC separation with reversed phase mode. 

 

Table 3.3.3.1.1.1 the initial Sf, purity and yield of salidroside and tyrosol with reversed phase mode in the Mini 

HPCCC separation using MTBE/ACN/water (4:6:10, v/v) solvent system.  

 

 Compound Purity % Yield % Sf % 

Salidroside 85  99  66 

Tyrosol 88  98   
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Fig 3.3.3.1.1.1 Separation chromatograms of the crude sample Rhodiola rosea extract in Mini HPCCC. 

Separation conditions were: coil volume 17.7ml; sample loop volume 0.43ml; Solvent system, 

MTBE/ACN/water (4:6:10, v/v) solvent system ; reversed phase model ; flow-rate, 0.50 ml/min; revolution 

speed, 2100 rpm; temperature at 25ºC; sample concentration , 50mg/ml; The Sf was 66%. 

 

 

 
 

Fig 3.3.3.1.1.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola 

rosea extract in the Mini-HPCCC centrifuge. Separation conditions were: coil volume 17.7ml,sample loop 

volume 0.43ml; Solvent system, MTBE/ACN/water (4:6:10, v/v) solvent system ; reversed phase model ; flow-

rate, 0.50 ml/min; revolution speed, 2100 rpm; temperature at 25ºC; sample concentration, 50mg/ml; The Sf was 

66%. 
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3.3.3.1.2 Application of methylene chloride/methanol/water/isopropanol (5:6:4:1 v/v/v) solvent system 

with 5mg/ml ammonium acetate in normal phase isocratic elution for separation of Salidroside and 

Tyrosol 

 

DMWI solvent systems is very popular solvent system for separation of polar compounds from natural 

production by HSCCC, This type of system is particularly good for the fractionation of root extracts as it 

provides a good solubility for saponin-like compounds and a gradual polarity change between phases can be 

obtained by varying the methanol ratio or isopropanol ratio in the system. The normal phase elution mode can 

prevent the sample wash off and fast target compounds elution in the low resolution. Fig 3.3.3.1.2.1 showed the 

tyrosol eluted between 40 to 60 minutes with good sharp peak. But the salidroside eluted in long time case the 

peak broad. The Sf% was 88%. HPLC analytical results showed that the components salidroside and tyrosol are 

not very pure and their purities were 79 % and 83%, respectively. The results are shown in the Fig 3.3.3.1.2.2, 

which was the fractogram of fractions from the separation of crude sample of Rhodiola rosea in Mini HPCCC. 

Also the table 3.3.3.1.2.1 showed the initial Sf, purity and yield of salidroside and tyrosol in the Mini HPCCC 

separation with normal phase mode. 

 

Table 3.3.3.1.2.1 the initial Sf, purity and yield of salidroside and tyrosol with normal phase mode in the Mini 

HPCCC separation using methylene chloride/methanol/water/isopropanol (5:6:4:1, v/v/v) solvent system.  

 

Compound Purity % Yield % Sf % 

Salidroside 79 99 88 

Tyrosol 83 98  

 

 

 

 

 
                                                                                                                                                                                                                                                                                                                                        

 Fig 3.3.3.1.2.1 Separation chromatograms of the crude sample Rhodiola rosea extract in Mini HPCCC. 

Separation conditions were: coil volume 17.7ml; sample loop volume 0.43ml; Solvent system, methylene 

chloride/methanol/water/isopropanol (5:6:4:1, v/v/v); normal phase model ; flow-rate, 0.50ml/min; revolution 

speed, 2100 rpm; temperature at 25ºC; sample concentration, 50mg/ml; The Sf was 88%.  
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Fig.3.3.3.1.2.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola 

rosea extract in the Mini-HPCCC centrifuge. Separation conditions were: coil volume 17.7ml,sample loop 

volume 0.43ml; Solvent system, methylene chloride/methanol/water/isopropanol (5:6:4:1, v/v/v); normal phase 

model; flow rates, 0.5 ml/min; revolution speed, 2100 rpm; temperature at 25ºC; sample concentration, 

50mg/ml; The Sf was 88%.  

 

3.3.3.1.3 Application of MTBE/Butanol/ACN/Water (4:2:4:10 v/v/v) solvent system in reversed phase for 

separation of Salidroside and Tyrosol 

 

Based on the KD study result of the MTBE/Butanol /ACN/water (4:2:4:10 v/v/v) solvent system, adding butanol 

to terAcWat solvent system can help to increase the hydrophilic polarity of organic phase, which would lead to 

an increase of KD value of target compounds. Also the settling time of this solvent system is only 15 seconds, 

shorter than other potential solvent systems, which would provide more satisfactory retention of the stationary 

phase. Fig.3.3.3.1.3.1 shows that salidroside and tyrosol eluted fast in 90 minutes with good resolution. The Sf 

% was 60%. HPLC analytical results (Fig.3.3.3.1.3.2) showed that the purities of salidroside and tyrosol 

components could reach 92 % and 95%, respectively. Table 3.3.3.1.3.1 showed the Sf, purity and yield of 

salidroside and tyrosol with reverse phase mode. Also the normal phase mode has been investigated in the Mini-

HPCCC with the same separation conditions. Fig3.3.3.1.3.3 showed that the tyrosol and salidroside eluted in 70 

minutes. The Sf % was 70%, which was better than the reversed phase mode. But the purities of tyrosol and 

salidroside were 83% and 90% (Fig.3.3.3.1.3.4), respectively, because the compound tyrosol eluted faster than 

other peaks. Table 3.3.3.1.3.2 showed the Sf, purity and yield of salidroside and tyrosol with the normal phase 

mode.   
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Table 3.3.3.1.3.1 the initial Sf, purity and yield of salidroside and tyrosol with reversed mode in the Mini 

HPCCC separation using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system. 

 

 Compound Purity % Yield % Sf % 

Salidroside 92  98  60 

Tyrosol 95  98   

 

 

 

 
 

 

Fig.3.3.3.1.3.1. Separation chromatograms of the crude sample Rhodiola rosea extract in Mini-HPCCC 

centrifuge with the reversed phase mode. Separation conditions were: coil volume 17.7ml; sample loop volume 

0.43 ml; Solvent system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow-rate, 0.5ml/min; 

revolution speed, 2100 rpm; temperature at 25ºC; sample concentration, 50mg/ml; The Sf was 60%. 
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Fig.3.3.3.1.3.2 The fractogram of the crude sample of Rhodiola rosea obtained with the reversed phase mode in 

the Mini-HPCCC centrifuge. Separation conditions were: coil volume 17.7ml,sample loop volume 0.43ml; 

Solvent system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow rates, 0.5 ml/min; revolution 

speed, 2100 rpm, temperature at 25ºC; sample concentration, 50mg/ml; The Sf was 60%. 
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Table 3.3.3.1.3.2 the initial Sf,, purity and yield of salidroside and tyrosol with normal phase mode in the Mini 

HPCCC separation using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system. 

  

 

 

 

 

 

Fig.3.3.3.1.3.3 Separation chromatograms of the crude sample Rhodiola rosea extract in Mini HPCCC with the 

normal phase mode. Separation conditions were: coil volume 17.7ml; sample loop volume 0.43 ml; Solvent 

system,  MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow-rate, 0.5ml/min; revolution speed, 

2100 rpm, temperature at 25ºC; sample concentration, 50mg/ml; The Sf was 70%. 

 

 
 

Fig.3.3.3.1.3.4 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola 

rosea extract in the Mini-HPCCC centrifuge with the normal phase mode. Separation conditions were: coil 

volume 17.7ml,sample loop volume 0.43ml; Solvent system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) 

solvent system; flow rates, 0.5 ml/min; revolution speed, 2100 rpm, temperature at 25ºC; sample concentration, 

50mg/ml; The Sf was 70%. 

 Compound Purity % Yield % Sf % 

Salidroside 83  98  70 

Tyrosol 90   98   
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Generally, based on the above discussion of the separation of salidroside and tyrosol using three solvent system 

by Mini-HPCCC, system MTBE-Butanol –ACN-Water (4:2:4:10) was an appropriate system with short 

separation time and higher resolution. Also the purities of the two compounds were higher than other solvent 

system. In addition, using the reversed phase mode with this solvent system can achieve a better result than the 

normal phase mode. Therefore, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system was finally chosen 

for the separation of salidroside and tyrosol from the R.rosea sample. The normal phase mode was abandoned in 

this study.  

 

3.3.3.2 Scale-up to preparative Midi-HPCCC 

 

As there is approximately a 25×capacity between the analytical (17.7mL coil volume) and preparative (912 ml 

coil volume) HPCCC columns, a linear scale-up would result using a 20mL sample loop volume, loading of 

1000 mg of crude material and a 12 mL/min mobile phase flow rate. In addition, as the Midi column (72.7m) is 

longer than the Mini one (35.2m), a better resolution can be achieved. When this purification procedure was 

transferred to the preparative Midi-HPCCC instrument, the separation at 12 ml/min took nearly 4 hours. Five 

peaks eluted with 120 min intervals between them. In order to shorten the separation, the flow rate was 

increased up to 50 mL/min. This led to a 70min run with better resolution of target peaks. This is typical for 

wide columns when higher flow rate in HPCCC can lead to better mixing and better separation. Hence, the 

combination of both flow rates as a step flow gradient was applied to achieve a reasonable purification (Fig 

3.3.3.2.1). At the beginning of the separation, the Midi-HPCCC column was equilibrated at 12 mL/min to 

maintain as high as possible stationary phase retention. After 66 min of separation when the first target 

compound of peak eluted from the column, the flow rate was ramped up to 50 mL/min to elute the second target 

compound. 

The rotor was stopped at 120 min and the column contents were pumped out with pressure air. All HPCCC 

fractions were collected and analyzed as described below in Section 3.3.4 and the fractogram of the separation 

of salidroside and tyrosol in Midi HPCCC was shown in the Fig 3.3.3.2.2. A summary of scale-up conditions 

from the analytical to preparative CCC is listed in Table3.3.3.2.1. The table3.3.3.2.2 showed the initial Sf, purity 

and yield of salidroside and tyrosol in the Midi HPCCC separation with reversed phase mode 

 

Table 3.3.3.2.1 Summary of scale-up parameters from analytical to preparative HPCCC using 

MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system. . 

 

Instrument type Crude sample 

mass (mg) 

Flow rate 

(ml/min) 

“g” field Rotational speed 

(rpm) 

Analytical Mini 

HPCCC 

21.5 0.5 240 2100 

Preparative Midi 

HPCCC 

1000 12-50 240 1400 
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Table 3.3.3.2.2 The initial Sf, purity and yield of salidroside and tyrosol in the Midi HPCCC separation with 

reversed phase mode and step flow gradient using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system. 

 

 Compound Purity % Yield % Sf  % 

Salidroside 93  97 72 

Tyrosol  95  98   

 

 

 

Fig 3.3.3.2.1 Separation chromatograms of the crude sample Rhodiola rosea extract in Midi HPCCC. 

Separation conditions were: coil volume 912.5ml; sample loop volume 20 ml; Solvent system, 

MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow-rate, step flow gradient: 1–66 min at 12 

mL/min, 66–120 min at 50 mL/min; revolution speed, 1400 rpm, temperature at 25ºC; sample concentration, 

50mg/ml; The Sf was 72%. 
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Fig 3.3.3.2.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Midi HPCCC. Separation conditions were: coil volume 912ml, sample loop volume 20 ml; Solvent 

system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow-rate, step flow gradient: 1–66 min at 

12 ml/min, 66–120 min at 50 ml/min; the reversed phase mode; revolution speed, 1400 rpm; temperature at 

25ºC; sample concentration, 50mg/ml; The Sf was 72%. 

  

According to Table 3.3.3.2.1, with the same ‘g’ level maintained, the crude sample mass was scaled up 47 times, 

which is great due to the fact that the Midi column is 2-fold longer and 5-fold wider than the Mini column. 

Scale-up from an analytical to a preparative process proved to be successful. The chapter 4 will discuss the 

details of separation parameters from analytical to preparative HPCCC.     

 

 

3.3.4 Analysis and identification of HPCCC fractions 

 

All fractions were collected each minute and analysed according to the description in Section 3.2.8. The volume 

of stationary phase eluted was measured for each run mode as a check on the retention of the stationary phase. 

 

Fractions of target peaks from the Mini-HPCCC in Fig. 3.3.3.1.3.2 were collected and combined after HPLC 

analysis. 0.63 mg of salidroside and 0.35 mg of tyrosol were obtained, with purities of 92% and 95%, 

respectively. Fractions of target peaks from the Midi-HPCCC in Fig. 3.3.3.2.2 were collected and combined 

after HPLC analysis. 28.2 mg of salidroside and 20.6 mg of tyrosol were obtained, with purities of 93% and 

95%, respectively. The HPLC chromatogram of the crude sample, standards and the purified target peaks is 

shown in Fig. 3.3.4.1. The purified salidroside and tyrosol have the same HPLC retention time as the standards 

(Fig 3.3.4.1). 
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Fig.3.3.4.1. HPLC chromatogram of crude sample Rhodiola rosea (A), standards (B) and targets(C-D). The 

column was a Gemini C18 column (150 × 3.0 mm; 5 μm particle size). Column temperature was50°C; The 

mobile phase consisted of acetonitrile (0.05% phosphoric acid) (C) and water (0.05% phosphoric acid) (D), at a 

flow rate of 0.5 mL/min. Analysis was performed using the following gradient elution: 5% C /95% D to 19% C 

/81% D/for 30 min then hold for 5 min. Each run was followed by a 5 min wash with 98% C and an 

equilibration period of 15 min. The detection wavelengths were from 190 to 400 nm; flow rate was 0.5 mL/min.  

 

 

 

 



 122  

3.4 Conclusion 

 

In this study, by optimizing the extraction, separation and analytical conditions, a simple and efficient high 

performance liquid chromatographic method for the simultaneous quantification of the two biological 

compounds salidroside and tyrosol from the crude sample of Rhodiola rosea has been developed and validated 

for the first time. Orthogonal L9 (3
4
) test design was used for extraction of crude sample Rhodiola rosea to 

optimize extraction parameters.The crude sample extraction was performed with the ratio of raw material to 

methanol solvent 1:20, the ratio of methanol to water1:9, the ultrasonic extraction temperature 20 ºC and the 

duration of ultrasonic extraction 60 minutes. Based on the calibration curves test, the contents of salidroside and 

tyrosol in the crude sample extraction were 31.32 mg/g and 13.79 mg/g, respectively. The optimized method 

provided good linear relation (R
2
 > 0.9992 for the two target compounds), satisfactory precision (RSD values 

less than 1.24%) and good recovery (the recoveries of salidroside were satisfactory between 98.9–101.57% with 

RSD 1.02% and the recoveries of tyrosol were satisfactory between 95.95–100.18% with RSD 1.82%). The 

limit of detection (LOD) was 2.25 ng for salidroside and 1.41ng for tyrosol. The developed method has been 

successfully applied to analysis and quality control salidroside and tyrosol of Rhodiola rosea. 

 

To optimise the separation of salidroside and tyrosol, a new solvent system MTBE/butanol/ACN/water 

(4:2:4:10 v/v) has been successfully developed and applied for the first time in the separation of salidroside and 

tyrosol from the crude Rhodiola rosea extraction by high-performance counter-current chromatography 

(HPCCC). HPCCC also can provide an easy scale-up from analytical to predictable preparative process with 

high throughput. A rapid and high-throughput HPCCC purification method has been developed for the large-

scale preparation of the salidroside and tyrosol from Rhodiola rosea using step-flow gradient CCC. The linear 

scale-up was performed from an analytical Mini-HPCCC to a preparative Midi-HPCCC. All fractions collected 

were analyzed by HPLC. 28.2 mg of salidroside and 20.6 mg of tyrosol were successfully achieved from the 

1000 mg crude sample extraction, with the purity of 93% and 97% yield, 95% and 98% yield respectively. 

Therefore, the separation and analytical method developed can be used for the quantitative and qualitative 

control of Rhodiola rosea sample and contribute to the modernization of Tibetan herbal medicine.  
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CHAPTER 4  

Scale-up process for rapid 

purification of salidroside and 

tyrosol with high-performance 

counter-current chromatography 
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4.1 Introduction 

 

Counter-current chromatography (CCC) is considered as an efficient tool for separation and purification of 

bioactive constituents from various sources. The advantages of this technology over HPLC including higher 

loading capacity, less solvent usage, high sample loading, ease of scaling up to manufacturing stage and 100% 

recovery are well documented [197, 356]. More importantly, it has been developed to the stage that it can be 

predictably scaled up from analytical to preparative scale and it has the big potential of the industrial scale up in 

the future. CCC can not only develop a generic high-resolution purification process that is as rapid as HPLC 

analysis, but also can be linearly scaled up from laboratory to industry scale. Some papers have been published 

for the research on the scale-upon of the CCC. Ito & Bhatnagar [357] have demonstrated unit-gravity slowly 

rotating coil devices could be suitable for large-scale CCC separations. Sutherland et al.[358] have used  

different applications to verify the versatility from 50 mg to 5g capacity separations using one coil in Quattro 

CCC. Later, they have performed a preliminary review of the scale-up of CCC [359] and they found it to be 

linear and predictable [360]. They have demonstrated that there were three major variables affecting the scale-

up process including the rotation speed, flow rate and tubing bore and they found the retention increases 

predictably with rotational speed and tubing bore. Also, retention can be sustained using larger bore tubing for 

much higher linear flow rates than for the smaller bore devices. Hence, it will be possible to predict the 

appropriate operating conditions for separation on a given partition coefficient but it was difficult to predict how 

good the separation would be [361]. In 2005, Sutherland et al. [356] reviewed the scale-up process of CCC 

toward the industry and described that great scale-up factors can be achieved based on tubing cross-sectional 

area if only considering the stationary phase volume retention. Ignatova et al. [362] have investigated two 

variables of the rotor radius and the tubing bore affecting the scale-up from pilot to process. It was shown there 

was very little difference in retention and resolution as rotor radius increases at constant bore when tubing bore, 

β-value and helix angle are kept constant and the tubing bore results show that good retention is maintained as 

bore increases and resolution only decrease slightly. Wood et al. [244] have performed an analytical J-type 

counter-current chromatography (CCC) separation using a 5.4 ml column to scale up to the Maxi column with 

4600 ml. The scale up factor is 850 based on an 850 increase in both the column volume and mobile phase flow 

rate. The identical chromatograms and similar separation time for both scales demonstrates that high-

performance CCC (HPCCC) is linearly scalable. Scale-up process also investigated on the separation of natural 

herbs with CCC. Peng, el al.[363] have investigated the critical parameters including sample concentration, 

sample volume and flow rate on an analytical Mini-DE HPCCC system  and  successfully scaled up to a 

preparative TBE 300A HSCCC system with different gravitational force based on the same retention. Six 

bioactive compounds were separated individually from the Triperygium wilfordii Hook.f.  

 

Although High-Speed Counter-Current Chromatography (HSCCC) is considered as an efficient tool for 

separation and purification of bioactive constituents from various sources, the traditional HSCCC is described 

as a typical separation which can take many hours. In addition, linear scale-up from analytical to predictable 

preparative process with high throughput is limited by the low gravitational force and flow rates. Recently a 

new generation of HPCCC coil planet centrifuges developed by Dynamic Extractions (DE) at higher “g” fields 
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(240g) than conventional HSCCC (60-80g) enable higher flow rates to be used so that separation times are 

minutes rather than hours whilst maintaining resolution and elution times. The benefits of the HPCCC were not 

only possible to provide milligram quantities of compound separation process but also provide relative simply 

volumetric or linear scale-up between all scales instruments [364]. Lijuan Chen et al.[365] have developed a 

rapid separation approach using high-capacity HSCCC to isolate and purify honokiol and magnolol from Houpu 

and successfully rapid scale-up from the analytical Mini-DE centrifuge with 18 ml column to the Maxi-DE 

centrifuge with 4600 ml column with the optimized parameters obtained rapidly at analytical scale.Yuan Yuan 

et al.[366] have used three different HPCCC instrument columns (4.7ml, 17.2ml and 915.2ml) to investigate on 

the linear scale-up process for purification of compounds from S. tamariscina. Five biflavonoids and an 

apigenin-diglucoside were obtained with the throughput scaled up 50 times. Sutherland et al. [241] have further 

demonstrated that scale-up process from test tube distribution ratios combined with sample loading studies 

performed at the analytical scale can be feasibility transferred directly and predictably to process scale. 

Therefore, this chapter used the isolation of salidroside and tyrosol from Rhodiola rosea exact as an example to 

demonstrate how to achieve rapid and predictable linear scale-up processes in both normal and reversed phase 

high performance counter-current chromatography with three different columns. 

 

4.2 Experimental method and materials 

 

4.2.1 Apparatus 

 

4.2.1.1 Mini-HPCCC centrifuge  

 

The analytical Mini-CCC was from Dynamic Extractions (Slough, UK). This instrument has a coil of 17.7mL 

with 0.8mm bore tubing and extra coil volume of 0.39 ml. The revolution radius or the distance between the 

column axis and central axis of the centrifuge (R) for this column is 50mm with a β value varying from 0.68 at 

the internal terminal to 0.79 at the external terminal. The Mini-CCC can rotate up to a speed of 2100rpm 

(246×g) and has a typical flow range for most organic/aqueous phase systems of 0.5–2 mL/min for a separation. 

 

4.2.1.2 Spectrum –DE centrifuge 

 

The Spectrum –DE centrifuge (Dynamic Extractions, Slough, UK) has a rotor radius of 85 mm, tubing bore of 

1.6mm and two bobbins (columns) with a total capacity of 143 ml. It was one type of semi-preparative 

instrument. The Spectrum can rotate up to a speed of 1600rpm (241×g), has a typical flow range of 0.5–10 

ml/min and a mean β value of 0.79. 

 

 

 

 

 



 126  

4.2.1.3 Midi-HPCCC centrifuge 

 

The Midi-CCC centrifuge (Dynamic Extractions, Slough, UK) has a rotor radius of 110mm, tubing bore of 

4mm and two bobbins (columns) with a total capacity of 912.5 ml. The Midi can rotate up to a speed of 

1400rpm (241×g), has a typical flow range of 10–100 ml/min and a mean β value of 0.75 where β is the ratio of 

planet to rotor radius. 

 

4.2.1.4 High performance liquid chromatography (HPLC) 

 

The HPLC equipment used was a Waters 2695 high performance liquid chromatography (HPLC) instrument 

equipped with 2996 photodiode array detector (Waters, USA). Chromatography data were collected using 

Empower Pro workstation (Waters, USA). A Gemini C18 column (150 × 3.0 mm; 5 μm particle size) was 

supplied for the HPLC analysis 

 

4.2.2 Reagents and materials 

 

Rhodiola rosea was purchased from Tibet herbal company of Qinghai (Qinghai, China). The Salidroside and 

Tyrosol standards were from Sichuan Provincial Administration of Food and Drugs (Sichuan, China). All 

analytical grade solvents (Methyl tert-butyl ether, acetonitrile, and butanol) for the HPCCC separation and 

HPLC grade acetonitrile for HPLC analysis were supplied by Fisher Chemicals (Loughborough, UK). 

Deionised water was prepared by a Millipore water purification system (Watford, UK). 

 

4.2.3 Preparation of crude sample 

 

The crude sample was prepared as described in the previous study (Section 3.2.3); the dried Rhodiola rosea 

(100g) was pulverized into small pieces and mixed with 2 L of 90% aq methanol to sonicate for 60 minutes at 

20ºC. The extract solution was filtered and filtrate was evaporated at 30ºC to dryness under reduced vacuum. 18 

g of brown powder was obtained for HPCCC purification. 

 

4.2.4 Solvent system preparation 

 

The two-phase solvent systems were tested and selected based on the KD values of the main compounds in the 

crude sample. A terAcWat solvent system containing methyl tert-butyl ether, butanol, acetonitrile and water 

in a volume ratio of 4:2:4:10 was used for the salidroside and tyrosol separation. This system is hydrophilic. 

The solvent mixture was thoroughly equilibrated in a separation funnel at room temperature. 

 

4.2.5 High-performance HSCCC separation procedure 

 

The separation procedure was carried out as follows: the stationary phase of Methyl tert/butyl 

ether/butanol/acetonitrile/water (4:2:4:10 v/v/v) system was pumped into the separation column while it was 
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stationary. The centrifuge was then set to run at the required speed and the mobile phase then pumped into the 

system at a constant flow rate in the head to tail elution mode for a reversed-phase separation, but in the tail to 

head elution mode for a normal-phase separation. Note that the upper phase was used as the stationary phase 

and the lower phase as the mobile phase in the reversed-phase mode; on the contrary, the lower phase was the 

stationary phase and the upper phase was the mobile phase in the normal-phase mode. When hydrodynamic 

equilibrium was achieved a known concentration of crude sample was injected into the coil. The temperature 

was held at 25 °C, and the effluent from the end of the column was monitored with an UV detector at 270 nm. 

Fractions were collected each minute, evaporated to dryness and the residue dissolved in methanol for 

subsequent HPLC analysis 

 

4.2.6 HPLC analysis and identification of HPCCC fractions 

 

All fractions were collected and analysed according to the description in Section 3.2.8. The volume of 

stationary phase eluted was measured for each run mode as a check on the retention of the stationary phase. The 

latter was also analysed by HPLC. 

 

4.3 Results and discussion 

4.3.1 Parameters optimization on analytical HPCCC 

 

This work was performed on Mini analytical HPCCC. In each run, the upper phase (stationary phase) was 

pumped into the coil. Then, the rotor was rotated at 2100 rpm, and at the same time, the lower phase was 

pumped through the column at selected flow rate. After hydrodynamic equilibrium was established in the 

column, the sample solution of crude extract was injected through the valve. The effluent was monitored with a 

2996 photodiode array detector at 270nm. The temperature was set at 25 °C. Each peak was collected by 

starting collection approximately halfway up the rising part and stopping half way down each falling part. Each 

fraction was evaporated under reduced pressure and dissolved by methanol for HPLC analysis. 

 

4.3.2 Flow rate study 

 

The relationship between flow rate and stationary phase retention was reported by Du et al. in 1999 [206]. It 

was the first to show that the stationary phase retention (Sf) has a linear relationship to the square root of the 

mobile phase flow rate: Sf=A-B
CF . It meant the stationary phase retention will reduce with the flow rate 

increase. Lower stationary phase retention will lead to the lower resolution [367]. In order to find the suitable 

flow rate for the separation of salidroside and tyrosol using Mini analytical HPCCC , the flow rate was initially 

set at 0.5 ml/min and then flow rate was increased to 1.0 ml/min, the retention of stationary phase was recorded 

in each run. 

The HPCCC chromatograms at two flow rates are shown in Fig. 4.3.2.1 A and B. The fractogram of these with 

0.5ml/min and 1.0ml/min flow rate are shown in the Fig.4.3.2.2 and Fig.4.3.2.3. Table 4.3.2.1 and Table 4.3.2.2 
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showed the initial Sf, purity and yield of salidroside and tyrosol at the 0.5ml/min and 1.0ml/min. Separation 

conditions were: reversed-phase mode; rotation speed, 2100 rpm; sample concentration, 50 mg/ml; sample loop, 

0.43 ml. The whole elution time was 90 minutes at 0.5ml/min and 60minutes at 1.0 ml/min with stationary 

phase volume retentions of 60 % and 43%, respectively. Flow rates higher than 1.0ml/min caused stationary 

phase retention decrease result in the lower resolution, both of two compound purities decreased with the flow 

rate increasing and therefore 0.5 ml/min was chosen for sample concentration optimization. 

 

Table 4.3.2.1 The initial Sf, purity and yield of salidroside and tyrosol in the Mini HPCCC separation with 

reversed phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system at the 0.5 ml/min flow 

rate  

  

 Compound Purity % Yield % Sf % 

Salidroside  92  98  60 

Tyrosol  95  98   

 

Table 4.3.2.2 The initial Sf, purity and yield of salidroside and tyrosol in the Mini HPCCC separation with 

reversed phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system at the 1.0 ml/min flow 

rate  

 

 Compound Purity % Yield % Sf  % 

Salidroside  86  98  43 

Tyrosol  93  98   

 

 

 

 

  

Fig 4.3.2.1 Comparison of chromatograms of the crude sample Rhodiola rosea extract obtained at flow rates of 

0.5 ml/min (A) with 60% Sf and 1.0 ml/min (B) with 43% Sf using a coil volume of 17.7 ml in the Mini-
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HPCCC centrifuge. Separation conditions were: coil volume 17.7ml,sample loop volume 0.43ml, Solvent 

system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; reversed phase model ; revolution speed, 

2100 rpm, temperature at 25ºC; sample concentration , 50 mg/ml. 
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Fig 4.3.2.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in the Mini-HPCCC centrifuge at flow rates of 0.5 ml/min. Separation conditions were: coil volume 

17.7ml; sample loop volume 0.43ml; Solvent system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent 

system; reversed phase model ; revolution speed, 2100 rpm; temperature at 25ºC; sample concentration, 50 

mg/ml; The Sf was 60%.  
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Fig 4.3.2.3 The fractogram of the separation of Salidroside and Tyrosol from the crude sample Rhodiola rosea 

extract in the Mini-HPCCC centrifuge at flow rates of 1.0 ml/min. Separation conditions were: coil volume 

17.7ml; sample loop volume 0.43ml; Solvent system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent 

system; reversed phase model; revolution speed, 2100 rpm; temperature at 25ºC; sample concentration, 50 

mg/ml; The Sf was 43%.  

 

4.3.3 Sample concentration loading study 

 

The first sample loading study focused on increasing sample concentration to the highest value possible before 

either resolution was lost or the sample precipitated. Fig. 4.3.3.1 showed a single run on the Mini-HPCCC with 

0.43 ml injected samples at 10 mg/ml, 30 mg/ml, 50 mg/ml and 70 mg/ml, respectively. The separation 

conditions were: MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system, a reversed-phase mode, a rotation 

speed of 2100 rpm, a flow rate of 0.5 ml/min and temperature 25ºC. The fractograms of 50mg/ml and 70 mg/ml 

are nearly the same, indicating that the sample solution had reached saturation. The target compounds can 

achieve good resolution and reproducible results. On the other hand, the resolution of salidroside and stationary 

phase volume retention values were 1.4, 60% and 1.2, 60% for 50 mg/ml and 70 mg/ml concentration, 

respectively. Since increasing the concentration had little effect on both resolution and stationary phase 

retention, 50 mg/ml was chosen as the optimum concentration. 
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Fig 4.3.3.1 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Mini-HPCCC with 10 mg/ml, 30 mg/ml, 50 mg/ml and 70 mg/ml sample concentration. Separation 

conditions: Solvent system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow rates, 0.5 ml/min; 

reversed phase model; revolution speed, 2100 rpm; temperature at 25ºC. 
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4.3.4 Sample volume loading study 

 

With the maximum concentration established at 50 mg/ml, the next stage of the sample loading study involved 

increasing the sample volume as much as possible. The fractogram of these (Fig.4.3.4.1 and Fig.4.3.4.2) show a 

single run on the same Mini- HPCCC with the same operating conditions as given in Section 4.3.3 except that 

the sample concentration was held at 50 mg/ml and the sample volume increased from 0.43ml (2.5% of coil 

volume) to 0.86 ml (5% coil volume). Table 4.3.4.1 and Table 4.3.4.2 show the Sf, purity and yield of 

salidroside and tyrosol at the 0.43ml and 0.86 ml of sample loop. It can be seen that as the sample volume 

increased the salidroside peak started to merge with the follow peak while the peaks remained resolved, because 

there was loss of retention leading to resolution decreased between peaks when the sample loop volume 

increased from 2.5% to 5%. In addition, the purities of the salidroside and tyrosol both decreased with the 

sample loop volume increased. Sutherland et al. [241] also have found the sample loading of high concentration 

with a low volume was better than low concentration with a high volume because the latter can cause the peaks 

to become much broader and the resolution decrease. In this case, the retention decreased from 60% with 0.43 

ml sample loop to 55% with 0.86 ml sample loop. Also the two target compound purities decreased with the 

sample loop volume increasing. Therefore, the sample volume was chosen to 2.5% of the coil volume in this 

study. 

                                                                                                                                                                                                                                                                                                                 

 

Table 4.3.4.1 The initial Sf, purity and yield of salidroside and tyrosol in the Mini HPCCC separation with 

reversed phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system with 0.43 ml sample 

loop 

  

 Compound Purity % Yield % Sf  % 

Salidroside  92  98  60 

Tyrosol  95  98   

 

 

Table 4.3.4.2 The initial Sf, purity and yield of salidroside and tyrosol in the Mini HPCCC separation with 

reversed phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system with 0.86 ml sample 

loop 

 

 Compound Purity % Yield % Sf  % 

Salidroside  88  98  55 

Tyrosol  92.7  98   
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 Fig 4.3.4.1 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Mini HPCCC with 0.43 ml sample loop. Separation conditions were: coil volume 17.7 ml; Solvent 

system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow rates, 0.5 ml/min; revolution speed, 

2100 rpm; temperature at 25ºC; sample concentration, 50 mg/ml; The Sf was 60%  
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Fig 4.3.4.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Mini HPCCC with 0.86 ml sample loop. Separation conditions were: coil volume 17.7ml; Solvent 
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system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; flow rates, 0.5 ml/min; revolution speed, 

2100 rpm; temperature at 25ºC; sample concentration, 50 mg/ml; The Sf was 55% 

 

4.3.5 Linear scale-up from Mini-HPCCC to Spectrum in reversed phase mode 

 

All parameter optimization and sample loading studies were performed on the short coil of 17.7 ml capacity on 

the Mini- HPCCC for further scale-up. There are different ways to scale-up including linear and volumetric 

scale-up. The first is called linear scale-up. It is based on cross sectional area of a CCC column and applied to 

columns with different length. Stationary phase retention has the linear relationship with the mobile phase flow 

rate. Wood et al. [368] showed that the volume of mobile phase (Vm) present in a CCC column is proportional to 

the square root of the mobile phase flow rate, which means the mean cross sectional area of the column is also 

proportional to the square root of the mobile phase flow rate. Hence, Wood et al. [244] found the liner scale-up 

in CCC was based upon increasing to cross sectional area of the column and the liner scale–up factor is equal to 

the square of the mean cross sectional area scale-up factor, which meant the liner scale–up factor was equal to 

the square of ratio of two different column diameter, if the elution time was same during the scale-up process. 

    

Fristly, the separation was scaled up from Mini HPCCC (17.7 ml coil volume) to semi-preparative Spectrum 

(143 ml coil volume) for verifying and optimising the scale-up parameters. A summary of scale-up conditions 

from the analytical to preparative CCC is listed in Table 4.3.5.1. All operating conditions remained the same 

except flow rate, sample volume and rotation speed which were scaled up according to the following rules: (1) 

flow rate was scaled up in proportion to the change in the square of bore diameter when the length columns 

were not same, because the scale–up factor was relative to the cross-sectional area of the column bore (with 

respective bore diameter of 0.8 mm and 1.6 mm, this was 4:1 giving in rounded terms a flow rate of 2 ml/min. 

(2) the sample volume was chosen 2.5% of the 143 ml coil volume of the Spectrum, which can provide good 

stationary phase retention and high purity of target compounds (a sample volume of 3.35 ml for the Spectrum, 

loading of 168 mg of crude material). (3) Rotation speed was chosen to generate the same “g” value of 240 g as 

Mini HPCCC, which would give a Spectrum speed of 1600 rpm. It was noted that these scale-up settings gave 

the same retention time for the KD = 1 elution point. All other parameters remained the same. The separation 

was run in reversed phase to achieve the good purity of target compounds as shown in Fig. 4.3.5.1 Also the 

fractogram was shown in the Fig.4.3.5.2 Table 4.3.5.2 showed the initial Sf, purity and yield of salidroside and 

tyrosol in the Spectrum separation with reversed phase mode. 

  Table 4.3.5.1 Summary of scale-up parameters from analytical to preparative HPCCC 

 

 

 

 

 

 

* “g” field and tubing bore data come from Brunel official webside (http://www.brunel.ac.uk/bib/bioprocess-engineering/scale-up) 

 

Instrumen

t   type 

Scale-up 

factor 

Crude sample 

mass   (mg) 

Flow rate 

(ml/min) 

“g” field Tubing bore 

(mm) 

Column 

length (m) 

Rotation 

speed 

(rpm) 

Mini 1 21.5 0.5 240 0.8 35.2 2100 

Spectrum 4 167.5 2 240 1.6 71.4 1600 

Midi 6 1000 12-50 240 4.0 72.7 1400 
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Table 4.3.5.2 The initial Sf, purity and yield of salidroside and tyrosol in the Spectrum separation with reversed 

phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system.  

  

 Compound Purity % Yield % Sf  % 

Salidroside  93  98  80 

Tyrosol  95  98   

 

 

 

Fig 4.3.5.1 Separation chromatograms of the crude sample Rhodiola rosea extract in the Spectrum centrifuge 

with reversed phase mode. Separation conditions: coil volume 143ml; sample loop volume 3.35 ml; Solvent 

system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v); flow-rate, 2 ml/min; revolution speed, 1600 rpm; 

temperature at 25ºC; sample concentration, 50 mg/ml; The Sf was 80% 
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Fig 4.3.5.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Spectrum with reversed phase mode. Separation conditions were: coil volume 143ml; Solvent system, 

MTBE/butanol/ACN/water (4:2:4:10, v/v/v); flow-rate, 2ml/min; revolution speed, 1600 rpm; temperature at 

25ºC; sample concentration, 50 mg/ml; The Sf was 80. 
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In the CCC, there are two major measures of prime importance in Countercurrent Chromatography (CCC): 

retention of the stationary phase and the resolution. The former reflects the hydrodynamic equilibrium of a 

given phase system and the latter can be used as a measure of the process efficiency in mixing and settling 

terms. The Sf value can be varied with the rotation speed and flow rate. Increasing the flow rate leads to the 

decreasing of the stationary phase retention. Also the Sf has a proportional relationship with the rotation speed. 

In this study, the three different HPCCC instruments can generate the same 240 g field at the max rotation speed 

and provide the same Sf value at a suitable flow rate. Hence, if the K and Sf remain the same in the scale-up 

process, the target compounds should elute at the same number of column volumes. So the elution time of 

compounds could be predicted. Since the retention volume (VR) of the compounds may be predicted using the 

elution volume of the solvent front (VSF) and the total column capacity (VC) by the following equation [213]: 

VR = VSF + KD (VC − VSF)                                (Equation 20) 

 

The VSF contains dead volume and retained volume of the mobile phase (VM) in the coil. If the dead volume is 

small, it could be ignored and Equation (20) could be written as: 

 

VR = VM + KD (VC − VM)      VR = VC + (KD – 1) VS           (Equation 21) 

 

After VM was replaced by VC −VS, it could be rewritten as: 

 

VR = VC [1 + (KD − 1) Sf]                                   (Equation 22) 

 

Therefore, once the KD and Sf remain the same, the elution volume of compounds could be predicted by 

 

VR = N VC                                               (Equation 23) 

N express the number of column volumes, it could be obtained through the experiment on analytical HPCCC. 

 

4.3.6 Volumetric scale-up from Spectrum to Midi-HPCCC in reversed phase modes 

 

There is approximately a 6×capacity between the Spectrum (143ml coil volume) and preparative Midi HPCCC 

columns (912ml coil volume) as their length of these columns were same both near 72m. A volumetric scale-up 

to Midi could be set up based upon increases of both cross-sectional area and column length [244]. The flow 

rate scale-up factor was same as the column volume scale up; it would result in a 20ml sample volume, loading 

of 1000 mg of crude material and a 12 ml/min mobile phase flow rate. However, when this purification 

procedure was transferred to the preparative Midi-HPCCC instrument, the separation at 12 ml/min took nearly 4 

h (results are not shown). Two of peaks eluted with 160 min interval between them. In order to shorten the 

separation, the flow rate can be increased without loss of much stationary phase and the resolution. This is 

typical for wide bore columns when higher flow rate in HPCCC can lead to better mixing and better separation. 

Therefore, two different flow rates (4 ml/min and 8 ml/min) were investigated on the separation of Spectrum 

and their chromatograms and fractogram are shown respectively in Fig. 4.3.6.1-Fig. 4.3.6.4. Also the Table 
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4.3.6.1 and Table 4.3.6.2 showed the initial Sf, purity and yield of salidroside and tyrosol in the Spectrum 

separation with reversed phase mode at flow rate 4 ml/min and 8 ml/min. With the flow rate increasing from 

2ml/min to 4 ml/min and 8 ml/min, the retention dropped from the 80% to 79% and 62% leading to the loss of 

the both compound purity and peaks resolution, but the purity of tyrosol dropped little compared with the loss 

purity of salidroside and the separation time of tyrosol will be short in 60 minutes with the 8 ml/min flow rate. 

On the other hand, high flow rate can improve the sample mixing in the column with the wide bore resulting in 

good separation. Hence, the combination of both flow rates (2ml/min and 8ml/min) as a step-gradient was 

applied to achieve a reasonable purification in the Spectrum and volumetric scale-up to the Midi HPCCC with 

6×capacity (Fig. 4.3.6.5 and Fig. 4.3.6.6). At the beginning of the separation, the Midi-HPCCC column was 

equilibrated at 12 ml/min to maintain as high as possible stationary phase retention. After 66 min of separation 

when the salidroside eluted from the column, the flow rate was increased up to 50 ml/min to elute the tyrosol 

compound. The rotor was stopped at 120 min and the column contents were pumped out with organic mobile 

phase at 200 ml/min. All HPCCC fractions were collected and analysed. The table 4.3.6.3 shows the Sf, purity 

and yield of salidroside and tyrosol in the Midi HPCCC separation with reversed mode. 

 

Table 4.3.6.1 The initial Sf, purity and yield of salidroside and tyrosol in the Spectrum separation with reversed 

phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system at flow rate 4 ml/min 

 

 Compound Purity % Yield % Sf  % 

Salidroside  91.4  98  79 

Tyrosol  94.4  98   

 

 

 

 

Fig 4.3.6.1 Separation chromatograms of the crude sample Rhodiola rosea extract in Spectrum at flow rate 4 

ml/min.  Separation conditions: coil volume 143 ml; sample loop volume 3.35 ml; Solvent system, 

MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; reversed phase model; revolution speed, 1600 rpm; 

temperature at 25ºC; sample loop, 3.35ml; sample concentration, 50 mg/ml; The Sf was 79% 
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Fig 4.3.6.2 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Spectrum at flow rate 4 ml/min. Separation conditions were: coil volume 143 ml; Solvent system, 

MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; reversed phase model; revolution speed, 1600 rpm, 

temperature at 25ºC; sample loop, 3.35ml; sample concentration, 50 mg/ml; The Sf was 79% 

 

 

Table 4.3.6.2 The initial Sf, purity and yield of salidroside and tyrosol in the Spectrum separation with reversed 

phase mode using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system at flow rate 8 ml/min 

 

 Compound Purity % Yield % Sf  % 

Salidroside 89.8  98  62 

Tyrosol  95  98   
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Fig 4.3.6.3 Separation chromatograms of the crude sample Rhodiola rosea extract in Spectrum at flow rate 8 

ml/min. Separation conditions: coil volume 143ml; sample loop volume 3.35 ml; Solvent system, 

MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; reversed phase model; revolution speed, 1600 rpm; 

temperature at 25ºC; sample loop, 3.35ml; sample concentration, 50 mg/ml; The Sf was 62% 
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Fig 4.3.6.4 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Spectrum at flow rate 8 ml/min. Separation conditions were: coil volume 143ml; Solvent system, 

MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system; reversed phase model ; revolution speed, 1600 rpm, 

temperature at 25ºC; sample loop, 3.35ml; sample concentration, 50 mg/ml; The Sf was 62% 

    

Table 4.3.6.3 The initial Sf, purity and yield of salidroside and tyrosol in the Midi HPCCC separation with 

reversed phase mode and step flow gradient using MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system  

 

 Compound Purity % Yield % Sf  % 

Salidroside 93  97 72 

Tyrosol  95  98   
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Fig 4.3.6.5 Separation chromatograms of the crude sample Rhodiola rosea extract in Midi HPCCC. Separation 

conditions were: coil volume 912 ml; sample loop volume 20 ml; Solvent system, MTBE/butanol/ACN/water 

(4:2:4:10 v/v/v) solvent system; reversed phase model; flow-rate, step flow gradient: 1–66 min at 12 ml/min, 

66–120 min at 50 ml/min; revolution speed, 1400 rpm, temperature at 25ºC; sample concentration, 50 mg/ml; 

The Sf was 72% 

 

 

 

Fig 4.3.6.6 The fractogram of the separation of salidroside and tyrosol from the crude sample Rhodiola rosea 

extract in Midi HPCCC. Separation conditions were: coil volume 912 ml, sample loop volume 20 ml; Solvent 

system, MTBE/butanol/ACN/water (4:2:4:10 v/v/v) solvent system (4:2:4:10, v/v/v); flow-rate, step flow 

gradient: 1–66 min at 12 ml/min, 66–120 min at 50 mL/min; reversed phase model; revolution speed, 1400 rpm, 

temperature at 25ºC; sample concentration, 50 mg/ml; The Sf was 72% 
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4.4 Conclusion 

 

The linear and volumetric scale-up of Rhodiola rosea separation from analytical to preparative HSCCC 

instruments have been successfully demonstrated. The process was first developed on the analytical Mini-

HPCCC and then linearly scaled up to the semi-preparative Spectrum, and later volumetrically scale up to the 

Midi-HPCCC. Also the separation parameters including selection of solvent system, sample concentration, 

sample loading volume and flow rate were optimized on analytical HPCCC, and flow rate step gradient elution 

was also tested on high gravitational force HPCCC. Then optimized parameters were successfully scaled up 

from analytical HPCCC to preparative HPCCC. The study involved the use of three different insurements with 

columns of increasing volume: 17.7 ml, 143ml and 912.5 ml. After the optimization and scale-up in reversed 

phase mode, two main compounds of salidroside and tyrosol were obtained with a high throughput scaled up. 

Midi-HPCCC runs produced 28.2mg (purity 93%) of salidroside and 13.1mg (purity 96.5%) of tyrosol. The 

results demonstrate that HPCCC operating at the high flow and high “g” field is a reliable strategy for linear 

scale-up from analytical-scale high-throughput screening. Further linear CCC scale-up using the Maxi-DE 

centrifuge will be investigated in due course. 
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5.1 Summary 

 

The work detailed within this thesis demonstrates the simple, rapid and efficient separation of different polarity 

active compounds from crude sample of traditional Chinese medicines (TCMs) by HPCCC. Two traditional 

Chinese medicines Panax ginseng and Rhodiola rosea were investigated in this thesis to show HPCCC is an 

advantageous and suitable technique for the separation and purification with the high recovery, low cost and 

high throughput. This fundamental separation work has allowed the determination of the required critical 

operating parameters. Furthermore the scale-up ability of HPCCC has been demonstrated. Positive indications 

have been seen that further future optimisation would allow HPCCC purified samples the potential to approach 

industry standard. Two step separation procedures were applied for the separation of ginsenosides from the 

Panax ginseng to achieve a satisfactory isolation and purification. A rapid orthogonal L9 (3
4
) test design was 

used for optimizing the preparation of the Rhodiola rosea sample to enrich salidroside and tyrosol compounds 

for further HPCCC separation and purification. Four parameters of extraction were optimised including the ratio 

of raw material to methanol solvent, the ratio of methanol to water, the ultrasonic extraction temperature and the 

duration of ultrasonic extraction. In order to quality control Panax ginseng and Rhodiola rosea, both simple and 

efficient HPLC methods have been developed and demonstrated in this thesis. 

 

Key to a successful separation by HPCCC is the choice of phase system employed. A simple screening solvent 

system was successfully developed to select solvent gradients for separation of ginsenosides. Ethyl 

acetate/butanol/water (3.5:0.5:4 v/v) and ethyl acetate/butanol/water (2.5:1.5:4 v/v) solvent systems with 

addition of 5mM ammonium acetate salt were selected as the solvent system for the first step gradient 

separation. Three ginsenosides Rd, Rg1 and Rb1 were separated in 120 minutes with high stationary phase 

retention. Methylene chloride/methanol/water/isopropanol (6:3:4:3 v/v/v) solvent system was selected for the 

second step separation, ginsenosides Re and Rc were sucessfuly separated with high purity. On the other hand, 

three solvent systems were investigated for the isolation of salidroside and tyrosol using HPCCC. The 

systematic and logical selection solvent system approach was firstly to search published papers for suitable 

solvent systems for similar chemical structures or identical compounds. If these solvent systems were not found, 

the new solvent system would be developed and tested based on the known solvent systems by a series of 

empirical processes. A HPLC analytical method was developed to tolerate the phase system, allowing the 

respective partition coefficients (KD) of the target compounds within phase systems to be calculated. A new 

solvent system of MTBE/Butanol/ACN/Water solvent system with 4:2:4:10 ratio has been successfully 

developed and applied for the first time in the separation of salidroside and tyrosol from the crude Rhodiola 

rosea extraction. 

  

Different CCC elution processes and methodology can be employed for the separation of TCM based on the 

nature of target compound in the two phase solvent system and the natural behaviour of solvent system in the 

CCC instrument. A rapid gradient method was used for the first time for the first step separation of ginsenosides 

from the Panax ginseng. It was demonstrated it was an efficient method to purify compounds from natural 

products with a wide range of polarities. In addition, several chromatographic parameters such as flow rate, 
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rotational speed and sample loading were optimized to improve the resolution and shorten the separation time 

during both the isolation and purification process of Panax ginseng and Rhodiola rosea. 

  

Linear and volumetric scale-up were investigated on the three HPCCC instruments for purification of 

salidroside and tyrosol compounds from Rhodiola rosea. The process was first investigated on the analytical 

Mini-HPCCC and then linearly scaled up to the preparative Midi-HPCCC. The separation parameters including 

selection of solvent system, sample concentration, sample loading volume and flow rate were optimized on 

analytical Mini-HPCCC. Furthermore, three different flow rates (2ml/min, 4ml/min and 8ml/min) were 

investigated on the Spectrum and established a step-flow gradient model to achieve a reasonable purification of 

salidroside and tyrosol compounds.Then optimized parameters and step-flow gradient model were successfully 

scaled up to preparative Midi-HPCCC. 

 .     

5.2 Conclusion 

 

Panax ginseng and Rhodiola rosea are both typical traditional Chinese medicines characterized by high 

pharmacological effects. Also they are treated as popular adaptogens for many years and play an important role 

in the world drug market due to their anti-stress, anti-fatigue and cardioprotective effects. Many separation 

technologies have been investigated for the isolation of different ginsenosides from the Panax species and 

salidroside and tyrosol from the Rhodiola species such as thin layer chromatography (TLC), high-performance 

thin-layer chromatography (HPTLC), high-performance liquid chromatography (HPLC), gas chromatography 

(GC); capillary electrophoresis (CE) and counter current chromatography (CCC). Two developing isolation and 

purification methods of HPCCC were investigated, one for Panax ginseng, one for Rhodiola rosea, and 

demonstrated that HPCCC technology has huge advantages on separation and purification of ginsenosides from 

Panax ginseng, salidroside and tyrosol from the Rhodiola rosea because of no solid absorption, large sample 

loading, high g force, vigorous mixing and sufficient stationary phase retention. 

 

A HPLC method has successfully been optimized for the quality control of Panax ginseng based on the 

retention behavior of ginsenosides with RP-HPLC. The effects of solvent, pH value and ionic strength of the 

mobile phase were investigated and demonstrated. This optimized method using gradient elution with 

ammonium acetate salt and acetonitrile for simultaneous determination of several ginsenosides in ginseng 

samples was established. Baseline separation of the seven polar ginsenosides Rg1, Re, Rb1, Rb2, Rb3, Rc and 

Rd in Panax ginseng was achieved within 70 minutes. This optimized HPLC technique may serve as a valuable 

tool for analysis of Panax ginseng and related herbs from Panax plants. 

 

A simple solvent screening solvent system was successfully developed to select solvent gradients for CCC 

separation of ginsenosides based on the KD values, settling time and phase ratio. The study indicated that the 

phase ratio is a key parameter to ensure retention of the stationary phase in the column. The model was applied 

toward the first step separation of ginsenosides from Panax ginseng and successfully developed a rapid gradient 

method for the separation of ginsenosides with high stationary phase retention (77.6%). 1.60 mg of ginsenoside 
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Rd, 1.14 mg of ginsenoside Rg1, 1.89 mg of ginsenoside Rb1 and 2.12 mg of ginsenosides Rb2/Rb3  were 

obtained from 43.92 mg crude sample extraction, with the purity of 96.3% and 98.6% yield, 88.5% and 95.8% 

yield, 93.7% and 97.4% yield, 86.3% and 81.7% yield respectively. The model efficacy was significant when it 

was applied for different solvent systems. Furthermore, 1.76 mg of ginsenoside Re and 1.28 mg of ginsenoside 

Rc were obtained from the second step separation with the purity of 97.5% and 98.2% yield, 92.6% and 96.3% 

yield respectively.  

 

There are three published papers regarding separation of ginsenosides from the Panax ginseng using HPCCC 

methods [72-74] discussed in detail in the literature review, Chapter 1 and in Tables 1.2.6.7.1 and 1.2.6.7.2. The 

method described in this thesis was demonstrated to be more advantageous compared to those methods. Firstly, 

it was at that time the first gradient method for the separation of ginsenosides from Panax ginseng using 

HPCCC, shortened the separation time to 120 minutes. Conversely, Qi et al.and Cheng et al.’s methods [72, 73] 

took 140 minutes even using a flow step gradient method. Another HPCCC method spent near 70 minutes to 

separate only one ginsenoside Ro [74]. Secondly, in our studies no pre-purification was used for the preparation 

of the crude sample Panax ginseng compared with these three methods, yet we achieved relatively high purities 

of target ginsenosides (ginsenosides Rd with purity of 96.3%, ginsenosides Rg1 with purity of 88.5%, 

ginsenosides Rb1 with purity of 93.7%, ginsenosides Rb2/Rb3 with purity of 92.3%, ginsenosides Re with purity 

of 97.5% and ginsenosides Rc with purity of 92.6%). By contrast, solid chromatography was initially used to 

enrich and purify ginsenosides in all of the other three methods such as macroporous resin [72, 73] and 

medium-pressure liquid chromatography [74]. Finally, six different polar ginsenosides (Rd, Rg1, Rb1, Rb2/Rb3, 

Re and Rc) were successfully isolated and purified using a two step HPCCC separation method compared to the 

four ginsenosides (Rf, Rd, Re and Rb1) separated in Qi’s method [72], four ginsenosides (Re, Rb1, Rb2 and Rc) 

in Cheng’s method [73] and one ginsenoside (Ro) in other Cheng’s method [74]. 

 

In addition, there were also three published papers for the separation of ginsenosides using the HSCCC methods 

[75-77]. Compared to those HSCCC methods, our current HPCCC method achieved a rapid separation process 

and high sample recovery because the HPCCC can provide higher “g” field level than HSCCC. Most of the 

HSCCC methods spend more than 300 minutes for the whole separation of target ginsenosides [76, 77]. 

Furthermore, no pre-purification was used for the preparation of crude sample Panax ginseng in our current 

method described in this thesis compared to those HSCCC methods. In these HSCCC methods, Ha et al.’s 

method also used solid chromatography (reversed-phase C18 open column) to enrich target ginsenosides and the 

purity of all of them was more than 95% [77]. Du’s HSCCC method was for the separation of traditional 

Chinese medicine tablet not for the crude sample [75]. Only Cao et al. [76] did not use pre-purification for the 

preparation of her crude sample, but provided no detail of purity and yield of target ginsenosides. Finally, it is 

possible to note that these three HSCCC methods were used for the separation of Panax notoginseng [75, 76] 

and Korean red ginseng [77], not for Panax ginseng. 

 

After completing the writing of this thesis, two other papers for the separation of ginsenosides from the Panax 

ginseng using the HSCCC method have been sourced [369,370]. They also have used pre-purification for the 

sample preparation. Shehzad et al. employed macroporous resin following a two step extraction from the crude 
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sample Panax ginseng to purify the ginsenosides-protopanaxadiol (PPD) and protopanaxatriol (PPT) from the 

ginseng extract [369,370]. In addition, they use conventional HSCCC methods for the separation of PPD and 

PPT ginsenosides [369] and developed a one step gradient method for the separation of eight ginsenosides from 

Panax ginseng to shorten the separation time [370], but both of the separation times were still more than 400 

minutes and much longer than our 120 minutes described earlier with no pre-purification. Also this one step 

gradient method did extra separation of ginsenoside Rh1, Rf and Rb2 from the ginseng extraction and they are not 

acknowledge that isomers Rb2 and Rb3 co-elute as the method described in this thesis did.  Moreover, the 

solvent gradients selection in Shehzad’s method [370] were based on the three-stage screening process, which 

was more complex compared to the simple solvent screening selection described in this thesis. 

 

Therefore, based on the above discussion, this two-step HPCCC separation strategy and the gradient method 

proved that they were rapid and high efficient methods for the separation of complex compounds from herbal 

medicines with great advantages and this novel method could allow us to search for selecting solvent gradients 

for CCC to purify compounds with a wide range of polarity from natural products. In addition, there was 

evidence that an acidic environment solvent system was unsuitable for the separation of ginsenosides as it easily 

leads ginsenosides to hydrolyze and decompose.  

 

A simple, accurate and rapid HPLC method has also been established and validated to quantify and be used for 

the quality control of Rhodiola rosea, which provided good linear relation (R
2
 > 0.9992) for the two target 

compounds salidroside and tyrosol. There was also satisfactory precision (RSD values less than 1.24%) and 

good recovery. The recoveries of salidroside were satisfactory between 98.9–101.57% with RSD 1.02% and the 

recoveries of tyrosol were satisfactory between 95.95–100.18% with RSD 1.82%. The limit of detection (LOD) 

was 2.25 ng for salidroside and 1.41ng for tyrosol. 31.32 mg/g of salidroside and 13.79 mg/g of tyrosol were 

quantified from the crude sample extraction. The developed method could be suitable for use as a tool for 

quantity and quality assurance and determination of the Rhodiola species. 

 

A simple and fast orthogonal L9 (3
4
) test design was successfully used and validated for the extraction of a 

crude sample of Rhodiola rosea to optimize extraction parameters. Only 9 experiments replaced the initial 81 

experiments to achieve the best extraction parameters. The crude sample extraction was performed with the 

ratio of raw material to methanol solvent 1:20, the ratio of methanol to water1:9, the ultrasonic extraction 

temperature 20 ºC and the duration of ultrasonic extraction 60 minutes. This effective method may be used as a 

valuable tool for the industrial application for the extraction of natural herbs or plants. 

 

A rapid step-flow gradient method was established for the first time for the large-scale preparation of 

salidroside and tyrosol from Rhodiola rosea by HPCCC and successfully achieved high-throughput purification 

of target compounds. Previously there had been only two published papers regarding the separation of 

salidroside using HSCCC technology as described in the literature review, Chapter 1 [172, 173]. The method 

described in this thesis demonstrates that it has many advantages over these previous publications for the 

separation of salidroside and tyrosol. Firstly, it was the first time that salidroside and tyrosol had been 

simultaneously separated from a Rhodiola rosea extract using HPCCC (the other two methods were only for the 
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separation of salidroside using HSCCC). Secondly, due to using HPCCC and flow step gradient, the whole 

separation time for the salidroside and tyrosol was less than 100 minutes with the Midi-HPCCC in our study. In 

contrast, in the other two methods, Li & Chen [172] performed HSCCC for a one-step separation of salidroside 

in 150 minutes and Han et al. [173] used HSCCC for two-step separation of salidroside in 160 minutes. Thirdly, 

based on the scale-up study, 28.2 mg of salidroside and 20.6 mg of tyrosol were successfully achieved from the 

1000 mg crude sample Rhodiola rosea extraction using the Midi-HPCCC described in this thesis. While, 32 mg 

of salidroside was achieved from the 250 mg crude sample Rhodiola sachalinensis extraction in Li & Chen’s 

method [172] and 3.66 mg salidroside was achieved from the 200 mg crude sample Rhodiola crenulata 

extraction in Han et al.’s method [173]. In addition, these two HSCCC methods were not used for the separation 

of crude sample Rhodiola rosea.  

  

Scale-up study was investigated on the three HPCCC instruments including the Mini (17.7 ml, coil volume), 

Spectrum (143 ml, coil volume) and Midi (912 ml, coil volume). Linear and volumetric scale-up model were 

demonstrated. The process was first investigated and optimized on the analytical Mini-HPCCC based on the 

purity, yield and resolution of salidroside and tyrosol compounds, and then linearly scaled up to the preparative 

Midi-HPCCC. Four optimized separation parameters were selected on analytical HPCCC including selection of 

solvent system (MTBE/Butanol/ACN/Water phase system with 4:2:4:10 ratio), sample concentration (50 

mg/ml), sample loading volume (2.5% of coil volume) and flow rate (0.5 ml/min). 

  

Therefore, based on the above discussion, a rapid and high-throughput HPCCC purification method has been 

successfully developed and demonstrated. Salidroside and tyrosol were successfully extracted with a respective 

purity and yield of 93% and 97% for salidroside and 95% and 98% for tyrosol. The crude sample mass was 

scaled up 47 times, which is impressive due to the fact that the Midi column is 2-fold longer and 5-fold wider 

than the Mini column. Also preliminary research on the CCC scale-up process from the laboratory scale 

technology to industrial scale was set up. 

  

In conclusion, all the aims and objectives outlined in Chapter one have been met. This work has indicated that 

Panax ginseng and Rhodiola rosea separation and purification by HPCCC was efficient for the quantitative and 

qualitative control and contributes to the modernization of TCM. 

 

 

5.3 Future work 

 

Future work is required to eastablish a more integral and efficient solvent system screening model for the 

selection of solvent gradients. My research study was based on the KD values, settling times and phase ratio, 

which was good for individual gradients in CCC separation. However, these parameters are easily affected by 

changing the mobile phase composition. Besides, it is difficult to maintain stationary phase retention in the CCC 

column with the gradient elution. Therefore, it is necessary to establish a solvent system screening model for the 

gradient separation of TCM by CCC. Another area of future work is searching for the suitable solvent system 

for the separation and purification of ginsenoside Rb2 and Rb3, because they are isomers with the similar 
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structures and property and their aglycone moiety both belong to the same 20 (S)–protopanaxadiol. Furthermore, 

the purified salidroside and tyrosol compounds require the HPLC–ESI-MS/MS system and NMR spectra to 

identify their structures and verify the purity achieved from the CCC separation, because the mass spectrometry 

can provide a powerful analytical ability to detect and quantify very limited amount of compounds and also 

identify their chemical structures based on the ionization of a molecule. Finally, Further linear CCC scale-up 

study will be investigated on the Maxi-DE centrifuge (4.5 L and 18 L capacity) for the isolation and purification 

of Panax ginseng and Rhodiola rosea to match the industry requirement and develop a high productivity and 

high flow through process at an industrial scale.  
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Appendix 

 

The presentation of aspects of this thesis at various conferences is detailed: 

 

1) CCC 2010, Lyon, France, Jul 2010 (Poster) 

Tibetan Herbal Medicines: the challenge for counter current chromatography (CCC) 

 

2) Research Student Poster Conference 2011, Brunel University, London, UK, Mar 2011 

(presentation) 

 

Separation of salidroside and tyrosol from Rhodiola rosea roots by counter current 

chromatography (CCC) 

 

3) Research Student Poster Conference 2011, Brunel University, London, UK, Mar 2012 

(presentation) 

 

Ginsenosides purification by high-performe counter current chromatography (HPCCC) 

 

4) CCC 2012, Hangzhou, China, Aug 2012 (Poster) 

Separation of six ginsenosides from panax ginseng using high-performance counter-current 

chromatograph (HPCCC) 
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