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ABSTRACT

The focus of this thesis is in the development and application of a normative

framework for handling both variability and uncertainty in making decisions using

economic evaluation. The framework builds on the recent work which takes an

intuitive Bayesian approach to handling uncertainty as well as adding a similar

approach for the handling of variability.

The technique of stratified cost effectiveness analysis is introduced as an innovative,

intuitive and theoretically sound basis for consideration of variability with respect to

cost effectiveness. The technique requires the identification of patient strata where

there are differences between strata but individual strata are relatively homogenous.

For handling uncertainty, the normative framework requires a twofold approach.

First, the cost effectiveness of therapies within each patient stratum must be assessed

using probabilistic analysis. Secondly, techniques for estimation of the expected

value of perfect information should be applied to determine an efficient research plan

for the disease of interest. For the latter, a new technique for estimating EVPI based

on quadrature is described which is both accurate and allows simpler calculation of

the expected value of sample information. In addition the unit normal loss integral

method previously ignored as a method of estimating EVPPI is shown to be

appropriate in specific circumstances,

The normative framework is applied to decisions relating to the public funding of the

treatment of osteoporosis in the province of Ontario. The optimal limited use criteria

would be to fund treatment with alendronate for women aged 75 years and over with



previous fracture and 77 years and over with no previous fracture. An efficient

research plan would fund a randomised controlled trial comparing etidronate to no

therapy with a sample size of 640. Certain other research studies are of lesser value.

Subsequent to the analysis contained in this thesis, the province of Ontario revised

there limited use criteria to be broadly in line with the conclusions of this analysis,

Thus, the application of the framework to this area demonstrates both its feasibility

and acceptability.

The normative framework developed in this thesis provides an optimal solution for

decision makers in terms of handling uncertainty and variability in economic

evaluation. Further research refining methods for estimating information value and

considering other forms of uncertainty within models will enhance the framework.

ii



Contents

Index of Tables and Figures vii
Acknowledgements I' x
Publications Relating to Thesis xii

Chapter 1. Introduction 1

Chapter 2. Variability and Uncertainty 5

2.1 Introduction 5
2.2 Variability 5

2.2.1 Definition 5
2.2.2 Previous Recommendations Related to Variability in Economic

Analysis 6
2.3 Uncertainty 9

2.3.1 Definition 9
2.3.2 Previous Recommendations Related to Uncertainty in Economic

Analysis 11
2.4 Conclusion 16

Chapter 3. Handling Variability in Economic Analysis 18

3.1 Introduction 18
3.2 Framework for Stratified Cost Effectiveness Analysis 19

3.2.1 Introduction 19
3.2.2 Defining the Framework 20
3.2.3 Consideration of EfficiencylEquity Tradeoffs 22
3.2.4 Impact of Non-adherence 24

3.3 Example of a Stratified Cost Effectiveness Analysis 25
3.3.1 Case Study 25
3.3.2 Stratification of the Potential Patient Population 26
3.3.3 Benefits from Stratification 28
3.3.4 EfficiencylEquity Tradeoffs 32
3.3.5 Impact of Non-adherence 32

3.4 Conclusions 38

Chapter 4. Handling Uncertainty in Economic Evaluations 42

4.1 Introduction 42
4.2 Case Study 43
4.3 Defining Cost Effectiveness within Probabilistic Analysis 45
4.4 Representing Uncertainty in Economic Evaluations 51

4.4.1 Introduction 51
4.4.2 The Cost Effectiveness Plane and Scatter Plots 52
4.4.3 Credible Intervals 54
4.4.4 Cost Effectiveness Acceptability Curves 60

iii



4.5 Estimating the Expected Value of Perfect Information 64
4.5.1 Introduction 64
4.5.2 Mathematical Derivation of EVPPI 69
4.5.3 Methods of Estimating EVPPI.. 70
4.5.4 Analysis 79
4.5.5 Results 80
4.5.6 Conclusions 82

4.6 Alternate Methods for Assessing Parameter Importance 85
4.6.1 Introduction 85
4.6.2 Methods 87
4.6.3 Assessment of Techniques 96
4.6.4 Results 97
4.6.5 Conclusions 106

4.7 Determining Value of Sample Information and Optimal Sample Size 109
4.7.1 Introduction 109
4.7.2 Expected Value of Sample Information 111
4.7.3 Determining Optimal Sample Size 113
4.7.4 Application to Case Study 113

4.8 Conclusions 115

Chapter 5. Economic Evaluation for Treatments to Prevent Osteoporotic Fractures .... 123

5.1 Introduction 123
5.2 Background to Osteoporosis 124
5.3 Previous Guidelines for Economic Evaluations related to Osteoporosis 126

5.3.1 Introduction 126
5.3.2 Group for the Respect of Ethics and Excellence in Science 126
5.3.3 WHO Collaborating Centre 127
5.3.4 Tosteson and Colleagues 127
5.3.5 OMERACT 128
5.3.6 Summary of Recommendations 142

5.4 Review of Previous Economic Evaluations 143
5.4.1 Introduction 143
5.4.2 Review of Studies 145

5.5 Conclusion 151

Chapter 6. Economic Model of Osteoporosis in Canada 153

6.1 Introduction 153
6.2 Model Structure 153
6.3 Transition Probabilities 159

6.3.1 Introduction 159
6.3.2 Probability of Developing Osteoporosis 162
6.3.3 Probability of Admission to LTC 162
6.3.4 Probability of Fracture 163
6.3.5 Mortality Rates 166

6.4 Costs 166
6.4.1 Introduction 166
6.4.2 Hip Fractures 167
6.4.3 Vertebral Fractures 168
6.4.4 Wrist Fractures 168

iv



6.4.5 Long Term Care 169
6.5 Utilities 169
6.6 Treatment Specific Parameters 171

6.6.1 Data Requirements 171
6.6.2 Effect of Therapy on Risk of Fractures 171
6.6.3 Benefit of therapy beyond Therapy Duration 172
6.6.4 Continuation with Therapy 176
6.6.5 Cost of Therapies 177

6.7 Quality of the Economic Model.. 177
6.8 Analytical Framework 178
6.9 Discussion 182

Chapter 7. Stratified Cost Effectiveness Analysis of Treatment for Osteoporosis in
Canada 184

7.1 Introduction 184
7.2 Background 185
7.3 Analysis Plan 186

7.3.1 Net Benefit Gain from Stratification 186
7.3.2 Net Benefit Loss from Restricted Stratification 189
7.3.3 Impact of Leakage 189
7.3.4 Impact of Budget Constraints 190
7.3.5 Comparison of Optimal Limited Use Criteria with Revised Limited

Use Criteria 191
7.4 Results 192

7.4.1 Net Benefit Gain from Stratification 192
7.4.2 Net Benefit Loss from Restricted Stratification 196
7.4.3 Impact of Leakage 199
7.4.4 Impact of Budget Constraints 201
7.4.5 Comparison of Optimal Limited Use Criteria with Previous Limited

Use Criteria 203
7.5 Impact of Analysis 206
7.6 Discussion 207
7.7 Conclusion 209

Chapter 8. Value of Information Analysis for the Treatment of Osteoporosis 211

8.1 Introduction 211
8.2 Methods for the Analysis of Information Value 212

8.2.1 Steps Involved in Determining Optimal Sample Size 212
8.2.2 Estimating EVPPI 213
8.2.3 Estimating Population EVPPI.. 214
8.2.4 Estimating the Costs associated with Specific Research Projects 218
8.2.5 Eliminating Studies with No Information Value 220
8.2.6 Estimating Optimal Sample Size for Studies 221

8.3 Results 223
8.3.1 EVPPI for Individual Parameters and Parameter Sub-groups 223
8.3.2 Population EVPPI for Individual Parameters and Parameter Groups 226
8.3.3 Estimating the Costs associated with Specific Research Projects 228
8.3.4 Eliminating Studies with No Information Value 230
8.3.5 Estimating Optimal Sample Size for Studies 233

v



8.4 Further Analysis 243
8.4.1 Impact of Uncertainty on Optimal Sample Size 243
8.4.2 Impact of Changes to the Design of Clinical Trials 246
8.4.3 Randomised Trial of No Therapy, Etidronate and Alendronate 248

8.5 Conclusions 250

Chapter 9. Conclusions 255

9.1 Introduction 255
9.2 The Normative Framework 256
9.3 Application of the Normative Framework 258
9.4 Methodological Advances within the Thesis 260
9.5 Furtehr Work Required 262
9.6 Closing Remarks 265
Appendix A: Cost Effectiveness Acceptability Curves with Multiple Treatment

Options 267
Appendix B: Effect of Choice of Probability Distribution on Uncertainty within

Economic Analysis 273
Appendix C: Abstract accepted for Presentation at the 2004 Meeting of the

Society for Medical Decision Making 277
References 278

vi



Index of Tables and Figures

Table 3.1:

Table 3.2:

Table 4.1:
Table 4.2:

Table 4.3:
Table 4.4:

Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 5.1:

Table 5.2:

Table 5.3:

Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 7.1:

Table 7.2:

Table 7.3:

Table 8.1:
Table 8.2:
Table 8.3
Table 8.4
Table 8.5:
Table 8.6:

Table 8.7:

Table 8.8:

Incremental Costs, Life Years and Net Benefit for t-Pa Compared to
Streptokinase per Patient 27
Stratification of Patient Population Based on Maximizing Net Benefit
............................................................................................................ 31
Probability Density Functions for Input Parameters 47
Base Results of Economic Evaluation of Entacapone in Comparison
with Usual Therapy 49
Estimates of EVPPI Based on Alternative Formulations 81
Estimates of EVPPI Based on Alternative Formulations and Number
of Replications 83
Raw Scores for Each Input Parameter by Importance Measure 98
Rank Ordering of the Importance of Parameters 98
Calibrated Importance Scores for Each Input Parameter by Method 99
Complexity of Importance Measures 101
Recommendations for Economic Evaluations of Osteoporosis
Interventions 144
Summary of Economic Evaluations for Treatments of Postmenopausal
Women with Osteoporosis 146
Quality of Published Economic Evaluations of Osteoporosis
Interventions 150
Parameter Estimates: Population Based Data 156
Parameter Estimates: Sample Data 157
Parameter Estimates: Treatment Specific Data 158
Meta Analysis for the Risk Reduction in Fractures 173
How Methodological Issues are Addressed within the ModeL 179
Expected Lifetime Costs and QAL Ys by Age, Fracture History and
Treatment Strategy 193
Average Lifetime Costs and QAL Ys by Treatment Strategy without
Stratification 195
Average Lifetime Costs and QAL Ys by Treatment Strategy Stratified
by Fracture History 200
EVPPI for Individual Parameters and Parameter Sub-groups 224
Assumed Features of Potential Study Designs 227
Population EVPPI for Potential Study Designs 229
Costs of Potential Study Designs 231
Maximum Possible Net Benefit from Potential Study Designs 232
Optimal Sample Size and Maximum Net Benefit of Sample
Information 235
Probability Density Functions for Parameters Relating to Information
Value from Etidronate Trial 244
Optimal Sample Size and Maximum Net Benefit of Sample
Information for the Etidronate Clinical Trial 247

vii



Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:
Figure 4.7:
Figure 4.8:

Figure 4.9:
Figure 4.10:

Figure 4.11 :

Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:

Figure 6.1:
Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 7.1:

Figure 7.2

Figure 7.3:

Figure 7.4:

Figure 7.5:

Proportion of Patients for whom t-Pa is Optimal by Threshold Value
............................................................................................................ 29
Net Benefit of Stratification by Threshold Value by Stratification
Basis 30
Net Benefit Loss from Restricted Stratification Bases by Threshold
Value 33
Net Benefit Loss from Indiscriminant Leakage by Level of Leakage
and Threshold Value of a Life Year 35
Net Benefit Loss from Discriminant Leakage by Level of Leakage
and Threshold Value of a Life Year 37
Design of Markov Model for Evaluation of Entacapone 46
Cost Effectiveness Plane 53
Scatter Plot of Incremental Costs and QALYs with Treatment with
Entacapone 55
Three Dimensional Histogram of Incremental Costs and QALYs with
Treatment with Entacapone 56
Iso Probability Contour Plot of Incremental Costs and QALYs with
Treatment with Entacapone 57
Incremental Net Benefit of Entacapone Compared with Usual Care 59
CEAC for Entacapone in Comparison with Usual Care 62
Cost Effectiveness Frontier for Evaluation of Entacapone and Usual
Care 65
EVIU for Analysis of Entacapone 67
Impact of Expected Value and Standard Deviation of INB on Global
EVPI 72
Cumulative Density Functions of UMILD and CCONSM for INB <0
and >0 92
Responsiveness of Importance Measures to Changes in A. 103
EVSI for Potential Studies by Sample Size 116
Optimal Sample Size for Potential Studies 117
Relationship between Parameters and Optimal Sample Size for the
Utility Study 119
Design of Decision Model 155
Effect of Failure to Calibrate Model on the Annual Probability of Hip
Fracture for Community Dwelling Women 161
Rates of Hip Fracture by Age, Country and Final Date of Population
Sample 164
Expected Value of Outcome Parameters Based on a 75 Year-old
Woman with Previous Fracture as a Function of Number of
Replications 180
Distribution of New Claimants (n=115 426) from the Ontario Drug
Benefit Plan for Bisphosphonates in 2001 187
Incremental Costs and QAL Ys for Bisphosphonates Compared to No
Therapy for Each Strata 195
Age Cut Offs for Restricted Access to Alendronate by Value of a
QALy 197
Percentage of Women for whom Alendronate is Optimal by Value of
a QALY 197
Net Benefit from Stratification by Value of a QAL Y 198

viii



Figure 7.6: Net Benefit Loss from Restricted Stratification by Value of a QALY
.......................................................................................................... 200

Figure 7.7: Break Even Level of Leakage Required for Switch to Alendronate
Being Unavailable for all Women by Value of a QAL Y 202

Figure 7.8: Health Care Budget with Current Prescribing and Revised Prescribing
under New Limited Use Criteria by Value of a QALY 202

Figure 7.9: Drug Budget with Current Prescribing and Revised Prescribing under
New Limited Use Criteria by Value of a QALY 204

Figure 7.10: Net Benefit Loss Arising from Imposition of Constraint on Drug
Budget 204

Figure 7.11: Net Benefit Gain from LUC Based on Stratified Analysis and Revised
LUC from ODB Compared to Previous LUC 205

Figure 8.1 EVSI and Cost of Sample Information for Etidronate Trial by Sample
Size 235

Figure 8.2 EVSI and Cost of Sample Information for Alendronate Trial by
Sample Size 236

Figure 8.3 EVSI and Cost of Sample Information for Cohort Study Examining
Benefit beyond Treatment by Sample Size 238

Figure 8.4 EVSI and Cost of Sample Information for Case Control Study of the
Relative Increase in Fracture Risk given Previous Fracture by Sample
Size 240

Figure 8.5 EVSI and Cost of Sample Information for Cohort Study Assessing the
Proportion of LTC Stay Attributable to Fracture by Sample Size ... 242

Figure 8.6 EVSI and Cost of Sample Information for Cohort Study Assessing the
Proportion of Hip Fracture Patient aged 75-84 Admitted to LTC by
Sample Size 242

Figure 8.7 Frequency Count for Optimal Sample Size for Etidronate Clinical
Assuming Data are Uncertain 245

Figure 8.8 Frequency Count for Net Benefit of Sampling for Etidronate Clinical
Assuming Data are Uncertain 245

Figure 8.9 Effect of Number of Sites Participating in Clinical Trials on Optimal
Sample Size and Net Benefit of Sample Information 249

Figure 8.10 EVSI and Cost of Sample Information for Trial including Etidronate,
Alendronate and No Therapy by Sample Size 251

Note: For all tables and figures, data reported are from original analysis for
this thesis unless stated otherwise.

ix



Acknowledgements

I must acknowledge the support and encouragement from many friends, colleagues
and family members. Without your assistance over the past four years this thesis
would never have finally materialised! In particular, I wish to acknowledge the
following:

To my family for their constant support and love over what has not always been an
easy four years. To my kids for their patience and their constant questions about
what a thesis is. To my wife Sheila for her constant love, encouragement and support
even when she was at her lowest ebb. Special thanks for checking chapters as they
appeared.

To my colleagues in Ottawa and elsewhere for their words of encouragement and
support. To my own students who have inspired me to get this thesis complete even
if I often failed to heed the advice I gave them. Special thanks go to Kathryn
O'Grady for her meticulous proof reading of the final draft.

To Jeremy Oakley for his assistance in statistical notation with respect to Chapter 4
and to the anonymous referees who have commented on the various papers which
have formed the basis of certain sections within this thesis.

To all my friends at the Health Economics Research Group who have made me feel
welcome during my frequent visits over the past four years and have provided many
pertinent comments when I have presented the content of this thesis.

To the University of Ottawa and the Ottawa Health Research Institute for their
support in terms of financial backing and time. Special thanks go to George Wells
and Andreas Laupacis.

Finally, I wish to give the most praise to my supervisors, Martin Buxton and Bernie
O'Brien for their constant help. Martin has helped me in so many ways over the
course of this thesis as well as encouraging me to commence these studies in the first
place. Bernie O'Brien has given me great support and friendship over my time in
Canada and it is to his memory that this thesis is dedicated.

x



Publications Relating to Thesis

A number of papers have been published which cover material within this thesis.
They are outlined below in terms of the specific Chapter to which they relate.

Chapter 2

Two papers where I have been sole author outline the case for basing decision
making on the expected value for incremental net benefit and criticise the WHO
recommendations for probabilistic analysis.

Coyle D. (2003) Determining the optimal combinations of mutually exclusive
interventions: a response to Hutubessy and colleagues. Health Econ, vo112,
pp 159-62.

Coyle D. (2003) WHO's better not best: appropriate probabilistic uncertainty
analysis. Int J Technol Assess Health Care, Vol 19, pp 540-5.

Chapter 3

The framework for stratified cost effectiveness analysis and the initial analysis using
data from the Mark et al. was published in Health Economics. I was the principal
author and I am grateful for comments from my supervisors acting as co-authors.

Coyle D, Buxton MJ, O'Brien B. (2003) Stratified cost-effectiveness analysis:
a framework for establishing efficient limited use criteria, Health Econ, vol.
12, pp. 421-7.

Chapter4

The case study used to demonstrate the framework for the handling of uncertainty
was published in 2003 and I was the principal author. Co authors provided clinical
expertise and conducted data collection.

Coyle D, Barbeau M, Guttman M, Baladi J-F (2003). The economic
evaluation of pharmacotherapies for Parkinson's disease treatment.
Parkinsonism Relat Disord, vol. 9, pp. 301-7.

The use of the quadrature method for estimating EVPPI was first suggested in a
poster presentation at the 2001 Society for Medical Decision Making. I was the
principal author. Co authors provided clinical expertise and conducted data
collection.

Coyle D, Barbeau M, Baladi JF. (2001) Bayesian economic analysis of
treatment with entacapone for Parkinson's Disease patients in Canada.
Meeting of the Society of Medical Decision Making.

The review of alternate measures of parameter importance was published in the
Journal of Clinical Epidemiology. The analysis in the published paper has been
revised slightly for the thesis and the conclusions are similarly modified. Iwas the
principal author for this paper and Iam grateful for comments from my supervisors
acting as co-authors.

xi



Coyle D, Buxton MJ, O'Brien Bl. (2003) Measures of importance for
economic analysis based on decision modeling. 1 Clin Epidemiol, vol. 56,
pp.989-97.

Chapter 5

I was responsible for the development of the OMERACT guidelines for economic
evaluations of treatments for osteoporosis and was principal author of the published
report. My co author provided assistance in developing these guidelines.

Coyle D, Tosteson ANA. (2003) Towards a reference case for economic
evaluations of osteoporosis treatments. 1 Rheumato, vol. 68, pp. 31-36.

Chapter 6

I am solely responsible for the development of the economic model for osteoporosis
detailed in Chapter 6. The model was first developed in 2000 and previous versions
of the model have been used in three previous publications. Co authors provided
clinical expertise and research support.

Coyle D, Lee KM. (2002) Evidence based economic evaluation: how the use
of different data sources can impact results. In: Donaldson C, Mugford M,
Vale L. (eds.) Evidence Based Health Economics, London, BMJ Books.

Coyle D, Cranney A, Lee KM, Welch V, Tugwell P. (2001) Cost
effectiveness of nasal calcitonin in postmenopausal women: use of Cochrane
Collaboration methods for meta-analysis within economic evaluation.
Pharmacoeconomics, vol. 19, pp. 565-75.

Waldegger L, Cranney A, Man-Son-Ring M, Coyle D. (2003) Cost-
effectiveness of hip protectors in institutional dwelling elderly. Osteoporos
Int, vol. 14, pp. 243-50.

The utility values used in the economic model were derived from an Ottawa based
study. The study was the basis of a master's thesis for which I was the thesis
supervisor.

Cranney A, Coyle D, Pham BA et al. (2001) The psychometric properties of
patient preferences in osteoporosis. J Rheum, vol. 28, pp. 132-7.

xii



Chapter 1.

Introduction

Given the scarcity of health care resources, it is necessary to demonstrate that new

therapies provide value for money in comparison with other potential interventions.

Economic evaluation provides an analytical framework for assessing the costs and

benefits of interventions thus providing information to facilitate decisions relating to

resource allocation.

In interpreting the results of economic evaluation based on decision analysis,

decision makers must consider two related but diverse issues: variability in results

between potential patients and uncertainty in results for particular patients. The

focus of this thesis is in how analysis should be conducted to permit decision makers

to optimally consider these issues.

Hutubessy and colleagues (2001) argue that "little or no attention is paid to the

question of how decision makers should interpret the results where uncertainty levels

interlap". (p473). However, several articles have addressed the interpretation of

results under uncertainty (Claxton et al. 2001, Felli and Hazen 1999, Meltzer 2001).

A number of these articles have highlighted the irrelevance of focusing on inference

with respect to such decisions within a public health care system. Such articles have

proposed Bayesian approaches to deal with such issues which highlight the need to

consider both the optimal treatment choice and the value to be obtained from further

information (Claxton et al. 2001, Felli and Hazen 1999).
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In contrast, to the recent work in considering uncertainty within economic analysis

based on decision analysis, there have been few careful considerations of the concept

of variability. Most developments in this area have focussed on the handling of

variability in economic evaluations based within randomised controlled clinical trials

(Hoch et a1. 2002).

In this thesis a normative framework is developed for handling both variability and

uncertainty in making decisions using economic evaluation. A normative

framework relates to what decision makers ought to do given the circumstances

facing them. Within this thesis, it is the decision maker with responsibility for

making reimbursement decisions over new technologies which is considered. Thus,

the normative framework relates to how such decision makers should deal with

uncertainty and variability. The framework allows for other decision makers to not

act optimally. The framework builds on the recent work which takes an intuitive

Bayesian approach to handling uncertainty as well as adding a similar approach for

the handling of variability.

In Chapters 2, 3 and 4 the normative framework is developed. In Chapter 2,

definitions of the concept of uncertainty and variability are provided. In addition, a

brief review of previous guidance on how they can be handled is conducted. In

Chapter 3 a framework is developed for handling variability in economic evaluation.

In this chapter, the methods for conducting stratified cost effectiveness analysis are

developed and illustrated through a case study. In Chapter 4, the framework for

handling uncertainty is developed. The framework is consistent with an intuitively

2



Bayesian approach to the consideration of uncertainty. The optimal treatment choice

is assumed to be the treatment with the highest net benefit with further focus on the

value of information to be obtained from refining parameter estimates within the

economic evaluation. Methods for eliciting estimates of the expected value of

perfect information are reviewed as are other methods of determining parameter

importance from other disciplines.

The rest of the thesis involves the application of the normative framework to

treatment decisions relating to the management of osteoporosis in Canada. Chapter 5

provides a review of previous economic evaluations in this area as well as a review

of previous guidance for the conduct of these evaluations. In Chapter 6, details of an

economic model for the evaluating treatment choices in Canada for osteoporosis are

provided. Chapter 7 reports the methods and results of a stratified cost effectiveness

analysis for the management of osteoporosis. Analysis is conducted to assess the

optimal treatment choice for osteoporotic women in Canada based on their age and

fracture history. The analysis presented in this chapter was the basis for a recent

revision to reimbursement criteria for osteoporotic women in the province of

Ontario. In Chapter 8, a formal value of information analysis is conducted to

determine an efficient research plan relating to osteoporosis management. All

potential research studies are considered and those with potential information value

are identified. Ultimately, the greatest information value was found to relate to the

conduct of randomised trials of therapies.

Chapter 9 presents the conclusions of this thesis. The normative framework is

reviewed and argued to be applicable. The innovative features contained within the

3



thesis are highlighted and future areas of research are identified. The application of

the framework to the management of osteoporosis demonstrates that even for

complex disease processes application of the framework is feasible and the

information provided by analysis can improve the efficiency of both health care

provision and research funding.
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Chapter 2.

Variability and Uncertainty

2.1 INTRODUCTION

In this chapter, formal definitions of uncertainty and variability are provided. In

addition current practice with respect to the handling of these concepts within

economic analysis are provided.

2.2 VARIABILITY

2.2.1 Definition

In economic analysis, traditional sensitivity analysis often fails to distinguish

between first order uncertainty (variability) and second order uncertainty (knowledge

uncertainty) (Hoffman and Hammonds 1994). Knowledge uncertainty (henceforth

uncertainty) relates to the lack of confidence in a parameter estimate due to lack of

knowledge and is discussed further in Section 2.3.

Variability relates to the randomness in the population. Unlike uncertainty,

variability cannot be reduced through further information. Rather, variability is best

handled by stratifying the population into more homogeneous groups. Thus,

variability is of importance with respect to policy decisions in that economic analysis

can facilitate stratification of potential recipients of treatment into two distinct

populations; those for which therapy is cost effective and those for which it is not.
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Variability can occur within all input parameters within an economic analysis. For

example, clinical effectiveness can vary by the number of prevalent risk factors

(Klotzbuecher et al. 2000), costs may vary by place of residence (Wiktorowicz et al.

2001) and utilities may vary by age or cultural grouping (Cranney et al. 2001a, Coyle

et al. 1999).

In statistical terms, variability relates to the standard deviation in the estimate of a

single parameter which is the square root of the expectation of the square of the

difference between an individual value and the expected value. As variability is

inherent in a population it can-not be reduced. Rather, by splitting a sample into

smaller groupings with similar characteristics the standard deviation within these

groups will be smaller.

2.2.2 Previous Recommendations Related to Variability in Economic Analysis

2.2.2.1 Introduction

In this section, the extent to which there has been previous guidance on handling

variability in economic analysis is ascertained'. Two forms of documents were

reviewed: first, national guidelines for the conduct of economic analysis which may

or may not have an explicit link to decision making; secondly, leading textbooks and

other guidance statements for the conduct of economic analysis.

2.2.2.2 National Guidelines for the Conduct of Economic Analysis

A review of published literature identified nine national guidelines for the conduct of

economic evaluation.

I The review is not comprehensive but is designed to provide insight to the extent to which issues of
heterogeneity have been recognized as important.
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Of the nine identified, four ignore the issue of heterogeneity', In addition, the

Australian guidelines for economic analyses submitted by the pharmaceutical

industry recognise that the cost effectiveness of an intervention will vary by the

indication for which it is used and that analysis should be conducted for all

indications (Commonwealth Department of Human Services and Health 1995).

However, there is no recognition that cost effectiveness can vary within a specific

indication.

Two guidelines propose limiting consideration of heterogeneity in cost effectiveness

to sub-groups for which there is a clinical rationale for any differences. National

Institute of Clinical Excellence guidance to manufacturers making submissions to

technology appraisals explicitly addresses the issue of what is an acceptable sub-

group analysis (NICE 2001i. NICE limits such analysis to sub-groups where there

is "a sound biological a priori rationale" and only "where there is evidence that

clinical effectiveness or cost-effectiveness may vary between such groups". The

Canadian Coordinating Office of Health Technology Assessment (CCOHT A)

guidelines for pharmacoeconomic analysis present the argument for conducting sub-

group analysis within a traditional frequentist statistical framework (CCOHTA

1997). It is argued that sub-group analyses should only be presented if such sub-

groups were identified within a clinical study protocol and then again only if the

economic analysis by sub-group was "statistically sound".

2 The four guidelines, which ignore heterogeneity were: guidelines for economic analysis proposed by
the pharmaceutical industry in the USA (Clemens et at. 1995), guidelines funded by the Spanish
Ministry of Health and Consumption (Rovira and Antonanzas 1995), Italian guidelines proposed by
the Centre for Health Economics at the Mario Negri Institute (Garattini et al. 1995) and guidelines
developed for use by the province of Ontario in Canada (Detsky 1993).

3 Newer NICE (2004) guidelines developed since the publication of many papers relating to this thesis
are discussed in Chapter 9.
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Only, two guidelines explicitly recognise the need to conduct analysis for different

sub populations. In the Dutch guidelines developed by the Health Insurance Council,

it is recommend that analysis be conducted for populations which have "differences

in effectiveness, costs and/or other parameters" (Ziekenfondsraad 1999). Similarly,

Belgian guidelines proposed by the Belgian Society of Epidemiology (BSE)

recommend that analysis be conducted for groups with "differential effectiveness,

costs or preferences" (BSE 1995).

Thus, existing national guidelines differ in the extent that variability in cost

effectiveness is considered. Certain guidelines explicitly state the need to conduct

analysis for subpopulations. However, none of the available guidelines discuss the

concurrent handling of uncertainty and variability. Nor, do the guidelines provide an

explicit framework for handling variability.

2.2.2.3 Other Forms of Guidance

In the textbook by Drummond and colleagues, the issue of variability in cost

effectiveness across the potential patient population is mentioned only briefly

(Drummond et al. 1997). In discussing the critical assessment of published studies, it

is noted that studies may present results across a range of patient characteristics. No

further comment is given relating to the conduct and interpretation of such analysis.

Drummond and Jefferson (1996) have provided guidelines for the reporting of

economic evaluations aimed at authors and peer reviewers. These have been adopted
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by the British Medical Journal and by other peer reviewed clinical journals. The

guidelines do not provide any advice with respect to heterogeneity in outcomes.

The report of the Panel on Cost Effectiveness in Health and Medicine convened by

the US Public Health Service provides a more detailed discussion of handling

variability in economic analysis (Gold et al. 1996). In the section relating to the

target population of a cost effectiveness analysis, it is noted that there may be both

"effectiveness" and "cost" sub-groups. "Effectiveness sub-groups" are identifiable

groups for which the effectiveness of an intervention is likely to vary. Similarly,

"cost sub-groups" are identifiable groups for which the cost of an intervention is

likely to vary. It is noted that analysis by sub-groups may be of more use to decision

makers though the lack of precision involved in such analyses should be considered.

The role of modeling in the analysis of sub-groups is noted.

The report of the ISPOR Good Research Practices Task Force contains an explicit

recommendation in relation to heterogeneity within a study population (Weinstein et

al. 2003). The report states that errors can occur in the interpretation of the results of

a study if heterogeneity is ignored. The recommendation of the report is that "when

appropriate, modelled populations should be disaggregated according to strata that

have different event probabilities, quality of life and costs."

2.3 UNCERTAINTY

2.3.1 Definition

Uncertainty relates to the lack of confidence in a parameter estimate due to lack of

knowledge. Knowledge uncertainty can be addressed through better measurement;
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although further knowledge may not lead to less uncertainty for either or both the

input parameter and the outcome measure. Knowledge uncertainty unlike variability

can be represented by probability distributions.

Uncertainty can occur with any parameter within a decision model. Uncertainty over

the expected value of an input parameter will lead to uncertainty over the expected

values of outcomes within an economic analysis: uncertainty propagation. Reduced

uncertainty around input parameters will thus reduce the uncertainty around

outcomes.

Uncertainty around the expected value of an input parameter can be expressed by the

standard error of the population mean - which is equivalent to the standard deviation

divided by the square root of the sample size. Thus, if the standard deviation remains

constant over the sample of interest increasing sample size will reduce the standard

Thus, given the uncertainty around input parameters, decision makers must deal with

uncertainty over the expected values of interest and hence the relative cost

effectiveness of treatment alternatives.

4 However, it should be noted that if the parameter of interest is truly heterogeneous then increasing
the sample size will lead to false inference in that the expected value will be assumed appropriate for
the whole population.
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2.3.2 Previous Recommendations Related to Uncertainty in Economic Analysis

2.3.2.1 Sensitivity Analysis

Traditionally, in economic analysis, analysis of uncertainty has focussed on the use

of deterministic sensitivity analyses". In such analysis the value for one or more

parameters is changed and the effect on the outcome of the interest (e.g. the

incremental cost effectiveness ratio) is assessed. Deterministic sensitivity analysis

can take a number of forms (e.g. simple analysis, analysis of extremes and threshold

analysis) though the basic methods are consistent.

There have been three major criticisms of the use of deterministic sensitivity

analysis.

First, the choice of variables and the subsequent range of values to apply

deterministic sensitivity analysis appears subjective. There appears to be little

theoretical or statistical basis to make such decisions and in a complex model the

number of potential analyses may be excessively large.

The second major concern relates to how such analyses can be interpreted. The

principal focus of analyses appear to be to assess the "robustness" of the base study

result. However, robustness also has no objective meaning and decision makers are

provided little guidance on the interpretation of such analyses.

The final concern with deterministic analyses is that they can provide a biased

estimate of the outcomes of interest especially when the relationship between input

, A substantial number of reviews of the use of sensitivity analysis have been published and it was felt
unnecessary to repeat such an exercise (e.g. Briggs et a1. 1994, Briggs 2(00)
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parameters and outcomes are non linear (Thompson and Graham 1996).

Deterministic sensitivity analysis ignores this issue.

Thus, given the concerns above there has been increasing interest in the use of

probabilistic sensitivity analysis. Uncertainty around parameters can be represented

by probability distributions. Probabilistic methods such as Monte Carlo simulation

techniques use the probability distributions for parameters rather than point estimates

to estimate the expected values of outcomes and their dispersion (Doubilet et al.

1985). Methods for assessing cost effectiveness within probabilistic analysis are

detailed in Section 4.3.

2.3.2.2 Theoretical Frameworks for Handling Uncertainty

When making any investment decision, an individual generally has to consider the

competing concepts of expected value and risk (O'Brien and Sculpher 2000).

Individuals make decisions not solely on the expected returns but with allowance for

the costs of risk bearing, a function of risk attitude, associated with each option.

Thus, decisions will differ across individuals based on their different estimates of

expected returns and differences in their risk attitude.

In traditional clinical decision making, decisions are based on classical statistical

inference which takes an extreme position with respect to the trade off between

uncertainty and expected value. Rather than ignoring the level of uncertainty and

basing the decision on expected value, statistical inference places more weight on the

level of risk associated with the decision than on the expected benefits to be

obtained. Decisions are based on the ability to reject a null hypothesis. Inference is
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often based on the adoption of a type 1 error rate of 5%: i.e. a requirement that the

risk of falsely rejecting the null hypothesis is less than 5%.

Many have suggested that methods for considering uncertainty in clinical decision

making can be applied to decisions based on economic analysis. In defining a null

hypothesis, a test statistic is required. Incremental net benefit (INB) has been

suggested as an appropriate test statistic for assessing statistical significance within

economic evaluation (Stinnett and Mullahy 1998, Zethraeus et al. 2003a)6. Thus, a

null hypothesis may relate to the INB of a new therapy compared to current practice

being less than or equal to O. If the expected value of the INB of the new treatment

is positive with the probability of a negative INB being greater than 5% then the null

hypothesis could not be rejected and the new treatment would not be considered

optimal. A role for hypothesis testing within economic evaluation has been

suggested by several authors (e.g. Huninck et a1.1998, Briggs 2000, Zethraeus et al.

2003a)

Stochastic league tables, an alternate approach to considering uncertainty in decision

making, has been developed by the World Health Organization (WHO) (Hutubessy

et al. 2001, Baltussen et al. 2002). This approach requires the adoption of Monte

Carlo simulation analysis to identify the probability that a certain program will be

included in an optimal mix given the uncertainty around the program's expected

costs and benefits. Those programs with the highest probability of inclusion should

be funded. However, it has been demonstrated that this methodology can lead to

potential inefficiencies arising through the dependence of such probabilities on

6 Methods for estimating incremental net benefit are discussed in section 4.3.
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decisions relating to other programs and the failure to consider the opportunity costs

of obtaining increased health benefits. In the example cited by WHO, it is possible

that the "optimal" mix of interventions neither maximizes incremental net benefit nor

falls within the desired budget constraint (Coyle 2003a, 2003b)

Despite the preponderance of articles relating to either statistical inference or

confidence intervals and cost effectiveness analysis, there are convincing arguments

to ignore such concerns when making allocative decisions under uncertainty. Arrow

and Lind (1970) in their seminal article provide three potential positions with respect

to whether public investment decisions should be consistent with private decisions in

their consideration of risk alongside expected returns.

The first position is that within a public investment decision risk should be

considered as it is in private decisions and that the costs of risk bearing should be

considered with respect to the trade off with expected return. The second position is

that governments should ignore risk in decision making as governments make a great

number of investment decisions and thus is able to pool risks across these decisions.

The third position is that individual and societal preference for risk are not necessary

consistent and governments should determine a national policy with respect to risk

preference for public investment decisions.

The first and second positions have been shown to lead to the same decision making

criteria - that is that public investment decisions should be made based solely on

expected returns (Arrow and Lind 1970). This occurs due to the negligible costs of

risk bearing with respect to public investment decisions.
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Claxton and Posnett (1996) further developed these arguments specifically in relation

to determination of optimal treatment choice. They argued that if the objective of the

health care system is to maximize health gain then decisions over optimal treatment

choice should be made solely on the basis of the expected value of the net benefits

from treatment. The rationale behind this argument is that a choice must be made

between the treatments available - hence the treatment which has the highest

expected returns should be chosen. This is further justified in that the opportunity

costs associated with basing the decision on expected values are symmetrical.

Acceptance of the relevance of expected value decision making does not preclude the

need to consider uncertainty within economic analysis of health interventions. This

may preclude any role for hypothesis testing in determining optimal treatments.

However, consideration of uncertainty is important for determining which further

information should be collected to facilitate a reconsideration of this decision at a

further date (Claxton and Posnett 1996, Felli and Hazen 1998).

The position taken within this thesis is broadly in line with that of Claxton and has

been argued to be consistent with a Bayesian approach to decision making (O'Hagan

and Luce 2003). Uncertainty over input parameter values will be handled by

conducting probabilistic analysis through the use of Monte Carlo simulation. The

optimal treatment choice will be based on expected values with uncertainty over the

incremental net benefit being considered in terms of the value of further information.
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The position is normative rather than positive as it reflects what decision makers

ought to consider rather than what they may actually consider. Thus, techniques for

determining the optimal trade off between uncertainty and expected returns such as

portfolio theory are not considered further (O'Brien and Sculpher 2000).

2.4 CONCLUSION

The focus of this chapter has been to both define uncertainty and variability in the

context of economic evaluations of health technologies as well as highlight how they

have been handled previously. Despite their major differences previous analyses and

guidelines have tended to argue for both concepts to be considered similarly through

the conduct of sensitivity analysis.

The normative framework developed in Chapters 3 and 4 recognises the inherent

differences between uncertainty and variability. In Chapter 3 a framework for the

explicit consideration of variability is developed whereby analysis is stratified by

patient characteristics. In Chapter 7, this framework is applied to an economic

evaluation of treatments for osteoporosis.

In Chapter 4 a framework for the explicit consideration of uncertainty is developed.

Despite the argued irrelevance of statistical inference with respect to economic

evaluation, methods for representing the degree of uncertainty within an economic

evaluation have been developed. In Chapter 4, these are discussed and illustrated

using a case study outlined in Section 4.2. In further sections of Chapter 4, methods

for determining the value of further information are detailed and demonstrated. In
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Chapter 8, methods for assessing the value of information within stratified analysis

(as defined in Chapter 3 and applied in Chapter 7) are discussed.
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Chapter 3.

Handling Variability in Economic Analysis

3.1 INTRODUCTION

In Chapter 2, variability was defined as the lack of homogeneity in outcomes

amongst a target patient population. Thus, the answer to the question "Is this

treatment cost-effective?" will usually be "It depends" because the economic value is

conditional upon who receives what therapy and under what circumstances.

Governments and other payers for health care have recognized that gaining a better

understanding of the heterogeneity between eligible patients in terms of effectiveness

and cost, provides a basis for restricting technologies to specific patients.

Restrictions may be based on clinical evidence and possibly economic evidence.

For example, in the Canadian province of Ontario, the government can reimburse a

new medicine onto the public formulary in the category of "limited use" where

physicians are required (but not legally bound) to prescribe the drug only for patients

who meet certain clinical or demographic criteria (Laupacis 2002)7• Therefore the

intent of a Limited Use Criteria (LUC) policy is to restrict the public subsidy of a

medicine to a sub-group of those patients for whom it is licensed with the aim of

improved value for money. Similar reimbursement policies can be found in the UK

with the National Institute for Clinical Excellence (Rawlins 2004) and in Australia

with the Pharmaceutical Benefits Advisory Committee (Glasziou and Mitchell 1996).

7 In Ontario. 20 out of 37 drugs newly listed in provincial formularies between March 1999 and
February 200 1 were subject to limited use criteria.
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The focus of this chapter is the derivation of a normative framework for handling

variability in economic analysis. As a normative framework, the focus will be on

what decision makers ought to do given potential heterogeneity; rather than how

decision makers currently consider this issue. Section 3.2 contains the major focus

of the chapter; the development of a framework which can be used to define and

quantify the efficiency gains from stratification inherent in Limited Use Criteria

(LUC) based upon heterogeneity between patients in terms of costs, outcomes or

both (Coyle et al. 2003a)8. In Section 3.3, the framework is applied to a previously

published study to demonstrate the potential efficiency gains from stratification.

3.2 FRAMEWORK FOR STRATIFIED COST EFFECTIVENESS

ANALYSIS

3.2.1 Introduction

In Chapter 2, a review of current guidance on the conduct of economic analysis

found little consideration of appropriate methods for considering variability in

economic analysis. The report of the ISPOR Good Research Practices Task Force

contains the most explicit recommendation (Weinstein et al. 2003)9. However, the

report does not contain a detailed discussion of appropriate methods for conducting

such analyses'",

8 The framework I have developed for handling variability was originally presented to the UK Health
Economics Study Group in 2001 and has subsequently been published in Health Economics (Coyle et
al. 2003a). I am grateful to the constructive comments made on previous versions of the framework
especially by my supervisors, by Dr John Brazier and by anonymous referees for the journal.

9 Note, that the report of the task force post dates the original HESG paper where the framework
outlined in this section was first introduced and the electronic pre publication of the framework.

10 Published articles do often contain recognition of the need to consider variability. For example,
Kuntz and Goldie (2002) and Zaric (2003) both comment that a major assumption within a Markov
model is that the population under consideration is homogenous. However, a framework for handling
heterogeneity has not been provided.
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The framework detailed in this section uses the concept of net benefit (Stinnett and

Mullahy 1998) to identify the optimal stratification of patients, and to allow the

quantification of the potential gains from stratification. The framework developed in

this chapter can be referred to as stratified cost effectiveness analysis (Coyle et al.

2003a).

The framework allows for consideration of circumstances whereby the net benefit

gains may not be fully realized and allows calculation of the associated net benefit

loss. The first circumstance is where elements of a proposed efficiency-based

stratification for LUC (e.g. age, gender) may be contested on grounds of equity. The

second circumstance is the practical problem of the extent to which health care

providers will adhere to the LUC and only prescribe to those patients where net

benefit is positive. This can be referred to as leakage.

In Section 3.3, an application of the framework is conducted using data from a

published example to illustrate how gains in net benefit from stratification can be

calculated. The application will illustrate how the proposed framework permits an

estimation of net benefit loss associated both with the imposition of different equity

constraints and alternate levels of leakage.

3.2.2 Defining the Framework

Consider the situation where there is a new treatment available (t1) for a particular

condition where the traditional treatment (t2) is still available. Thus, we wish to

determine for which groups of patients, the use of t1 is cost effective.

20



Etl is defined as the expected value of health benefits (e.g. QALYs) from treatment t1

and CII as the expected value of costs. The net monetary benefit for t1 is defined as:

NB,} =,,1, * E,} - C,}

where
,,1,= a decision maker's maximum willingness to pay for a unit of health benefit

Incremental net benefit (INB) for tl when compared to t2is defined as:

Now the cost and/or effectiveness of treatments can vary by particular patient

characteristics (e.g. age, gender, risk). Consider the situation where cost and

effectiveness can vary by two factors: j 0=1,2 ... J) and k (k=I,2 ... K). Patients can

thus be described as belonging to one of J*K specific strata defined by their

characteristics relating to j and k. Define NBjk11as the net monetary benefit of

treatment t1 for the jkth cohort which can be defined as:

The incremental net benefit (INB) for tl when compared to tz for treating patients in

the jkth cohort is defined as :

INB·k =,,1,*(E·k -E·k )_fC·k -C·k )
J 'h }I} J '2 ~} I, } 12

By taking summation over the jk cohorts weighted by the potential number of

patients in each cohort (njk) we can define Total Net Benefit (TNB) for tl when

compared to t2as:
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TNB" ="" INB jk * n)'k/2 L..JL..J 'h
j k

The incremental net monetary benefit statistic is used in preference to incremental

cost effectiveness ratios because it allows calculation of the monetary values of gains

and losses from alternate limited use criteria (LUC), In the situation where TNBtl

>0, without stratification the optimal treatment choice would be to treat patients with

tl, However, an efficient LUC would limit treatment with tl to those cohorts where

the expected value of the incremental net monetary benefit was positive,

The total net benefit (TNBs(jk» when restricting therapy to those cohorts where

INB>O can be expressed as follows:

TNB s (jk) = IIINBjk'/'2 *njk v ;
j le

where s = stratifica tion

where INB),/c > 0
'1'2

Therefore, the net benefit gain from stratification (~sTNB) will be equivalent to the

negative of the sum of the population weighted net benefit in the cohorts where net

benefit is negative,

LiS TNB = TNB s(jk ) - TNBt}

= - LLINB jkl}12 * n jk
j k

V,'k where INB,'k < 0
1}12

3.2.3 Consideration of EfficiencylEquity TradeotTs

In addition to a desire for efficiency in the provision of health care treatments,

decision makers may have concerns over the access to treatment and the distribution
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of health outcomes. Thus, decision makers may have to consider both efficiency and

equity when considering an appropriate allocation of resources.

The framework outlined above permits the explicit consideration of a trade-off

between equity and efficiency by determining the opportunity cost of an equity

position. The more bases for stratification the greater the opportunity for efficiency

gains!':

TNB s(jk) ~ TNB s(j) ~ TNB

Thus, if decision makers reject stratification based on a certain criterion for equity

reasons, there will be an associated opportunity cost which can be expressed as a

reduction in net benefit. The loss in total net benefit can be defined as ~ETNB: the

opportunity cost of considering equity. Based on the above, where cost effectiveness

is assumed to vary by two factors U and k), the loss from not stratifying on the basis

of k and only stratifying on the basis of j can be expressed as follows

LIETNB = TNB s(jk) - TNB s(j)

If a decision maker chooses not to stratify based on one patient characteristic, then

~ETNB is the decision maker's minimum willingness to pay for equal access to the

therapy regardless of this characteristic: the opportunity cost of equity with respect to

this characteristic.

11 This of course assumes that the process of stratification is costless. Obviously the requirement to
obtain data for stratification and the need to repeat analyses for all strata comes at increased costs and
at some point such costs may outweigh the benefits from stratification.
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3.2.4 Impact of Non-adherence

LUC are argued to be a "rigid" method for influencing the use of health technologies

(Laupacis 2002). However, for this to be true, criteria must be adhered to. LUC

though are rarely strictly enforced. Often a physician honour system exists whereby

when prescribing therapy, physicians must state whether a patient meets the required

criteria for reimbursement. This can lead to physician non adherence with LUC.

This is referred to as leakage.

The framework above assumes adherence to the LUC. For LUC based on a strict

efficiency criterion, leakage will necessarily reduce the net benefit from

stratitlcation'". If we define leakage (ljk) as the proportion of patients who receive

treatment in each cohort where net benefit is negative (INBjktlt2<O),then the total net

benefit from stratification given leakage (TNBs(jk)1L) will be:

TNB s(jk) I L =I I INB jk
'
}'2

j k
tj j'k where INBj'k > 0

'}12

+ ~ ~ I 'k * INB 'kL..J L..J j j '}'2
j k

tj j'k where INBj'k < 0
'}'2

Thus, the net benefit loss from leakage (~LTNB) is:

JLTNB = TNBs(jk) -TNBs(jk)IL

=-III jk * INB jk
'
}12

j k

12 The previous sections follow the aims of the thesis by presenting a normative framework for
decision makers. Thus, in the proposed framework decision makers faced with health care funding
decisions are assumed to act rationally. However, it should be noted that other decision makers such
as individual physicians and patients have interests which may conflict with those of the decision
maker. The impact of behaviours associated with such interest should be considered within the
framework. Such interests can lead to non adherence to limited use criteria as considered in this
section.
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Given the existence of leakage, there may be an alternative stratification basis (sl(jk»

which will return a higher net benefit (TNBs1(ik)IL):

This can occur when the loss from leakage is substantively greater than the net

benefit gain from a particular patient cohort.

In applying the estimate of leakage in practice, it would be necessary to specify a

prior probability distribution for leakage proportions in each of the negative net

benefit cohorts. Leakage can take different forms. Leakage can be indiscriminant;

when physicians prescribe therapy regardless of the LUC; and discriminant; when

the probability of leakage is greater for strata which are close to meeting the criteria

and smaller for strata which are more distant. Discriminant leakage can be either

accidental due to difficulties in assessing LUC or deliberate'", The form of leakage

will influence the net benefit gained from stratification and will affect the likelihood

that any revised stratification bases will be optimal.

3.3 EXAMPLE OF ASTRA TIFIED COST EFFECTIVENESS ANALYSIS

3.3.1 Case Study

In the previous section a framework for considering variability within economic

analysis is outlined. To illustrate the impact of stratification policies, data are used

from a published economic study of thrombolytic treatments for acute myocardial

infarction (Mark et a1. 1995). The study compared streptokinase which was the then

13 Practitioners may be willing to prescribe therapy to patients who almost meet the criteria because
they envision the benefits to these patients are greater than for those who are more distant. They may
also be willing to prescribe to patients when they believe the potential penalties from failing to adhere
may be minimal.
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standard of care with tissue plasminogen activator (t-PA). The incremental cost per

life year gained (K'Ek) of t-PA for all patients was $32 678 though this estimate

varied by both patient age and location of infarction (anterior or inferior). Table 3.1

details the eight age and infarct location cohorts and their associated incremental

costs and incremental life years for t-PA compared to streptokinase. For this

illustrative example we assume a patient population with 100 patients in each age-

location cohort due to the absence of data on the actual distribution of patients. In

practice, the actual distribution of patients must be taken into account".

3.3.2 Stratification of the Potential Patient Population

Ultimately, each of the potential cohorts will be classified as belonging to one of two

strata; those for whom a therapy is cost-effective and those for whom it is not. The

cost effectiveness of t-PA for each cohort is expressed in terms of INB. This is

derived as follows:

where

J = 1 for inferior infarct, 2 for anterior infarct

k = 1 for age <40, 2 for age 41-60,3 for age 61-75, 4 for age >75

njk = number of patients in the jk" cohort in the candidate population of users of

this treatment

IEjkt_PA = incremental life-years gained per patient in the jkth cohort when treated

with t-PA rather than streptokinase

ICjkt-PA = incremental cost ($) per patient in the jkth cohort, when treated with t-PA

rather than streptokinase

14 If the actual numbers are unknown then this must be treated as stochastic.
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Table 3.1: Incremental Costs, Life Years and Net Benefit for t-Pa Compared

to Streptokinase per Patient

Location-Age Incremental Incremental Net Monetar~ Benefit($) Eer Eatient
Cohort Life-Years Cost ($) (A=$25 000) (/..=$50 000) (A=$100 000)

Gained
Inferior <40 0.014 2845 [21451 1444

Anterior <40 0.023 2845 -2270 '"16941 543

Inferior 41-60 0.038 2845 -18941 944 958

Anterior 41-60 0.057 2845 7 2859

Inferior 61-75 0.102 2845 -293 2259 7362

Anterior 61-75 0.138 2845 608 4060 10965

Inferior >75 0.175 2845 1533 5911 14667

Anterior >75 0.212 2845 2459 7763 18371

Average 0.095 2845 -471 1902 6649

')...= alternative monetary values of life years gained.
Shaded cells relate to cohorts with negative net benefit where treatment with t-PA is
not optimal.

Source: Costs and life years gained - Mark et al. (1995)
Incremental net benefit - original analysis
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A = threshold (maximum) monetary value of life-year, which is assumed constant

over each cohort"

3.3.3 Benefits from Stratification

Analysis follows the framework outlined in Section 3.2.1. Table 3.1 presents the

mean net monetary benefit of therapy for each cohort of 100 patients based on a

monetary value of a life year of $25000, $50000 and $100 000. The optimal LUC

will vary by the monetary value of a life year (A). In this example, the proportion of

patients for whom t-PA is optimal increases as the threshold increases (Figure 3.1).

However, this is dependent on the location of each cohort on the cost effectiveness

The optimal LUC assuming a threshold of $50 000 is to give therapy only to patients

with an anterior infarction aged over 40 and patients with an inferior infarction aged

over 60. The gain in total net benefit (L\sTNB) from adopting this LUC is $478237

(the population weighted sum of all cohorts with negative net benefits'") (Table 3.2).

This is equivalent to the opportunity loss of a policy whereby all patients received

this therapy.

Figure 3.2 depicts L\sTNB over alternative thresholds for the monetary value of a unit

of effect ()..). In this example. IlsTNB peaks at the incremental cost per life-year

IS One could allow A. to vary by cohort. For instance, society may have a higher preference for health
benefits for the young than the old. Thus, A. may differ by the strata's age profile.

16 Consider if there was a cohort where treatment is cost saving and less effective. In this instance, as
A. increases, the cost effectiveness of treatment within this cohort will fall.

17 ~sTNB = - [ (0.014 + 0.023+ 0.038)*$50 000 - ($2845 + $2845 + $2845) ] * 100
= $478 237
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Figure 3.1: Proportion of Patients for whom t-Pa is Optimal by Threshold

Value
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Figure 3.2: Net Benefit of Stratification by Threshold Value by Stratification
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Table 3.2: Stratification of Patient Population Based on Maximizing Net

Benefit

Threshold Stratification Basis Optimal Cohorts Percent sub Net benefit
optimally gain from
treated Stratification

$25,000 Age and location >75 inferior 0% 459938
>60 anterior

Location only None 37.5% 0
Age only >60 12.5% 430613
None None 37.5%

$50,000 Age and location >60 inferior 0% 478237
>40 anterior

Location only All 37.5% 0
Age only >60 12.5% 477535
None All 37.5%

$100,000 Age and location >40 0% 198714
Location only All 25% 0
Age only >40 0% 198714
None All 25%

Based on 100 patients per cohort
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gained from t-PA over the whole patient population with kinks occurring at the

incremental ratio for specific patient cohorts.

3.3.4 EfficiencylEquity Tradeoffs

A decision maker could potentially have equity concerns relating to stratifying on the

basis of age or concerns relating to stratifying on the basis of disease (i.e. infarct

location)". Thus, it may be necessary to consider the opportunity cost from failure to

stratify based on such concerns.

Table 3.2 presents the loss in net benefit of adopting restricted stratification bases

incorporating only one of the risk factors assuming a value of $50 000 for a life year.

Stratification based on location of infarct only would lead to a net benefit loss

compared to the optimal stratification basis of $478237 over the total patient

population with an optimum policy of giving therapy to all patients. Stratification

based on age only would lead to a net benefit loss compared to the optimal

stratification basis of $702 over the total patient population with an optimum policy

of giving therapy to all patients aged over 60. The loss in net benefit from restricted

stratification varies significantly by the threshold value of a life year (Figure 3.3).

3.3.5 Impact of Non-adherence

3.3.5.1 Analysis

Two separate analyses were conducted to demonstrate the impact of leakage on the

net benefit gain from stratification. First, analysis focused on indiscriminant leakage,

by assuming leakage is equally likely to occur for all patients for whom therapy is

18 Note. that the net benefit loss associated with failing to stratify by both age and infract location due
to equity concerns is equal to $478237. the net benefit from stratification.
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Figure 3.3: Net Benefit Loss from Restricted Stratification Bases by

Threshold Value
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not cost effective. Secondly, analysis focused on discriminant leakage, by assuming

leakage is restricted to "neighbouring cohorts ..19• In reality, leakage is likely to be a

combination of both forms.

3.3.5.2 Indiscriminant leakage

The net cost of indiscriminant leakage was calculated by assuming that a percentage

of patients in all cohorts, where treatment was not cost effective, would receive

therapy. The sensitivity of the net cost to both the level of leakage and the threshold

value for a life year was assessed.

With a threshold value of a life year of $50 000 the net cost of indiscriminant leakage

assuming a 10% level of leakage was $478232°. The net cost of indiscriminant

leakage is linear by the level of leakage and falls as the threshold value of a life year

increases (Figure 3.4)21

Indiscriminant leakage can result in an optimal policy whereby therapy is denied to

all patients. This can occur when the loss of net benefit from cohorts where

treatment is not cost effective is greater than the net benefit in cohorts where

treatment is cost effective. For example, if the threshold value of a life year was $20

000, the optimal stratification policy would be to allow t-Pa for patients aged over

70. The net benefit from such a stratification would be $206 000 (without

19 That is, leakage is assumed to occur only for patients who just miss the cutpoint for therapy.

20 6LTNB = - 0.1 '" [ INB aged 41.60. Inferior infarction + INB aged S40. inferior Infarction + INB aged S40. anterior infarction ] '"

100

= - 0.1 '" [- 944 - 2145 - 1694 ] '" 100 = $47823

21 This is because for all cohorts therapy is more effective. Thus as A. increases the net benefit for each
cohort increases. Hence, the consequences of leakage falls.
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Figure 3.4: Net Benefit Loss from Indiscriminant Leakage by Level of

Leakage and Threshold Value of a Life Year
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stratification t-Pa would not be cost effective). However, if indiscriminant leakage

was 25%, the net benefit loss from leakage would be $241000. Thus, net benefit

loss from leakage outweighs any gains from stratification and the optimal policy

would be not to give t-Pa to any patients. The likelihood of this occurring will

increase the greater the level of leakage and the lower the threshold value.

3.3.5.3 Discriminant leakage

For discriminant leakage, base analysis assumed that for each location of infarction,

10% of patients in the age group which is younger than the youngest for which t-PA

is optimal would receive t_PA22• Based on a threshold of $50000, leakage as

hypothesized above would lead to a net benefit loss (~LTNB) of $26378 (TNB of

$451 858 rather than $478 237)23.

With discriminant leakage, ~LTNB varies by the cost effectiveness threshold as well

as by the hypothesized level of leakage (Figure 3.5). ~LTNB is linear with respect to

the level of leakage. However, ~LTNB does not have a monotonic relationship with

A. As A increases, ~LTNB peaks at the leER for individual cohorts. This occurs

because at values just below an leER for a cohort the net benefit loss from

individuals in that cohort receiving therapy will be minimal, as therapy is almost cost

effective. For values just above the leER, net benefit will rise as the cohort to which

therapy may leak will be comparatively less cost effective to treat.

22 For example. with a threshold of $50000. it is cost-effective to restrict therapy to patients with an
inferior infarction who are aged over 60. Thus under the assumption given, 10% of patients with an
inferior infarction who are aged 41-60 are assumed to receive t-Pa.

23 aLTNB = - 0.1 * [ (!NB aaed 41.60, iDferior iDfarclion + !NB aaed~. anterior infarction] * 100

=-0.1 * [-944-1696] * 100

= $26 378

36



Figure 3.5: Net Benefit Loss from Discriminant Leakage by Level of Leakage

and Threshold Value of a Life Year
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The case study demonstrates the situation where in the presence of discriminant

leakage a revised stratification basis may be optimal. Based on a threshold value of

$50 000, a revised stratification basis whereby only patients aged over 60 regardless

of infarct location would reduce 6LTNB to $10 068 and would be considered optimal

with a total net benefit of $468 16924• This is because the net benefit of treating

patients aged 41-60 with an anterior infarct ($700) is substantively less than the net

benefit loss from leakage in the neighbouring cohort ($16 940).

3.4 CONCLUSIONS

Variability within economic analysis has tended to be ignored by authors of

textbooks or guidelines relating to economic analysis. Consequently, few economic

analyses in health care currently include a systematic consideration of the effects of

heterogeneity between patients in terms of costs, effects or both.

In this chapter, a normative framework for considering variability within economic

analysis is described. The framework allows full consideration of the variability

between groups. Based on the principle of net benefit maximization, and allowing

decision makers to consider alternative money values for units of effectiveness, the

framework allows identification of the optimal criteria for restricting the use of

technologies by identifying those groups for which therapy is of positive net benefit.

24 aLTNB = [- 0.1* !NB aged 41-60. inferior infarction + 0.9 * INB aged 41-60. anterior infarction] *100

=[-0.1*-944 +0.9*7] * 100

= $10068
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Optimal cohorts for therapy could be determined based on the incremental cost per

QAL Y of therapy compared to usual care for each cohort. However, an important

advantage of the framework is that it permits quantification of the efficiency gains

obtained from stratification as well as quantifying the opportunity costs of non-

adherence and consideration of any equity efficiency trade offs. Although many

studies report results in the form of incremental ratios, the net benefit statistic can

easily be estimated assuming that incremental costs and outcomes are reported in a

disaggregated form.

Defining strata for reimbursement is one approach to heterogeneity in cost-

effectiveness data, but it should be recognized that stratification of study data on

costs and effects has a risk of misclassification as sample size within cells is reduced.

Further sampling can reduce uncertainty about parameter values within strata and

differences between strata. The value of such further information can be assessed by

estimating expected values using probabilistic analysis and applying methods

described in detail in the following chapter. However, the decision to acquire more

information may be considered as independent from decisions relating to

optimization based on current knowledge.

The concept of leakage is introduced and explored within the analysis of the case

study where assumptions were made concerning the level and type of leakage. In

reality, the extent of all forms of non-adherence are likely to be unknown and to

some degree random. Thus, leakage could be represented by a random variable

which may represent decision makers' prior beliefs. Results can be updated as
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further information is made available with the potential for revisions to the limited

use criteria.

In this chapter, there is no discussion concerning what are and are not suitable

grounds for the stratification of patients. In theory, if there were no costs associated

with stratification and enforcing LUC then it would be optimal to incorporate all

criteria by which the cost effectiveness of treatment varies. However, stratification

will not be costless and the feasibility of applying and enforcing LUCs based on

multiple characteristics may be limited.

Concerns for equity may limit the acceptance of LUC based purely on concerns for

efficiency although this should be addressed by considering the trade off between

efficiency gains and such concerns. However, there may be criteria for which there

are no equity objections with respect to stratification but inclusion of these within a

limited use policy may be either too problematic or too costly.

Others have raised ethical objections to the use of cost effectiveness analysis as the

sole basis for making allocative decisions relating to health care (Department of

Health 2001, Hadorn 1992). Methods for weighting health benefits have been

suggested as a basis for allowing for equity concerns with respect to resource

allocation (Bleichrodt 1997, Dolan 1998, Williams 1997). However, the methods

proposed require the ability to determine an appropriate weight for equity concerns

within a decision maker's utility function. The framework detailed in this chapter

allows decision makers to focus on a more explicit value judgment: is the

opportunity cost of equitable access justified?
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In conclusion, the framework detailed in this chapter provides an intuitive solution to

the issue of restricted access to therapy, which will allow maximization of efficiency

gains as well as considerations of both equity and non-adherence. The framework is

normative and permits maximization of net benefit as an objective function with or

without equity concerns acting as a constraint.
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Chapter 4.

Handling Uncertainty in Economic Evaluations

4.1 INTRODUCTION

In Chapter 2, the concepts of uncertainty and variability were defined. In Chapter 3,

a normative framework for considering variability in economic analysis was

proposed and illustrated by application to a published economic analysis. In this

chapter, I will address methods for handling uncertainty.

The chapter focuses on outlining the theory and logic behind analysing uncertainty

within economic analysis illustrated by a simple case study. The proposed

framework is based on two fundamental questions that face decision makers when

making decisions under uncertainty:

- Given knowledge uncertainty what is the optimal treatment choice for each

patient group?

- Given uncertainty propagation into outcomes of interest, what further

information should be collected to reduce the potential opportunity costs of

uncertainty".

With respect to the former question, in Chapter 2 it was argued that decisions on

funding health care interventions should be based solely on the expected value of the

2S The opportunity cost of making a decision under uncertainty can be defined as the product of the
probability that a decision maker chooses one therapy when another therapy is superior (Type 3 error)
and the net benefit gain that would have been derived if the superior treatment was chosen. This is
equivalent to the expected value of perfect information which is discussed in detail in Section 4.5.
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net benefits of individual treatment options. However, despite the argued irrelevance

of statistical inference with respect to economic evaluation as discussed in Chapter 2,

methods for representing the degree of uncertainty within an economic evaluation

have been developed. In Sections 4.3 and 4.4, these are described and illustrated

using a case study outlined in Section 4.2.

The major focus of this chapter relates to the latter question, concerning further

information requirements. In Section 4.5, alternate methods for estimating the value

of perfect information concerning parameters are described. These methods can be

complex and potential simpler methods adopted in other disciplines are discussed in

Section 4.6. In Section 4.7, methods for determining the value of further information

are detailed and demonstrated.

4.2 CASE STUDY

In this section, details of the case study used to illustrate methods for handling

uncertainty in economic evaluation based on decision models are detailed. The case

study is an evaluation of entacapone for the treatment of advanced Parkinson's

disease (Coyle et a1. 2003b).

Parkinson's disease is a chronic, progressive neurodegenerative disorder (Aminoff

1998). Usual care for Parkinson's disease is based on levodopa (L-dopa), the

precursor of dopamine (Rivest et a1. 1999). Approximately 50% of Parkinson

patients experience reductions of motor control after five years of levodopa therapy

(Lang and Lozano 1998).
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Increasing the dose of levodopa to overcome this often leads to adverse events in the

form of dyskinesias, hallucinations and confusion (Lang and Lozano 1998). Newer

agents have been developed that further preserve levodopa in the periphery by

inhibiting catechol-O-methyl transferase (COMT) metabolism (Rivest et al. 1999).

Entacapone is a reversible inhibitor of COMT recently licensed for the treatment of

patients with advanced Parkinson's disease (Brooks et al. 2000). Thus, the analysis

focused on the cost effectiveness of entacapone as an adjunct to treatment with

levodopa.

The analysis was performed through a Markov model developed within an Excel

spreadsheet with Crystal Ball enhancement to allow Monte Carlo Simulation (MCS)

(Crystal Ball 2000, Doubilet et al. 1985). The analysis was based on SOOO

replications: i.e. SOOOestimates of the costs and QALYs associated with each

treatment option were obtained by randomly sampling from each uncertain

parameter's probability distribution.

Severity of Parkinson's disease was measured by the proportion of "off" time, a

measure of the existence of motor fluctuations: the greater the off time, the less

severe symptoms. The Markov model assumed three distinct states; mild/moderate

disease (>2S% "off" time per day), severe disease (:s 2S%"off" time per day) and

death. A cut-off point of 2S% "off" time was chosen as this is associated with both a

significant decrease in utility and a substantial increase in costs (Palmer et al. 2000).

All patients were assumed to be in the severe state at onset of treatment (Figure 4.1).

For patients receiving entacapone, transition probabilities were required for

improvement from severe to mild/moderate disease, progression from mild/moderate
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to severe disease and death. For patients receiving usual care only progression from

severe disease to death was required

Analysis compared usual practice with and without the inclusion of entacapone.

Usual therapy was assumed to include levodopa used in combination with other anti

Parkinsonian medication. The model was based on a 6 month cycle. A five-year

time horizon was chosen, which is relevant for a chronic disease like Parkinson's

disease. All outcomes were discounted at 5%. Analysis was taken from the

perspective of the health care system.

Input parameters and their associated probability distributions are detailed in Table

4.1. Drug costs were assumed fixed. The probability of mortality during each cycle

was obtained from national population data and was also assumed fixed. This was

felt justified as death rates were based on a large population size with little standard

error and as they were based on population data the ability to obtain further

information would be limited.

4.3 DEFINING COST EFFECTIVENESS WITHIN PROBABILISTIC

ANALYSIS

In this section, the algebraic formatting used to describe methods for handling

uncertainty is detailed. This is followed by definitions of relevant outcomes for

assessing cost effectiveness within probabilistic analysis.
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Figure 4.1: Design of Markov Model for Evaluation of Entacapone
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Subsequent Cycles

a. Entacapone

1st Cycle

Subsequent Cycles

b. Usual therapy

Note: Variable definitions are provide in Table 4.1
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Table 4.1: Probability Density Functions for Input Parameters

Parameter Mean Probability Density
Function

Probabilities
Improvement from severe PIMPROVE 0.324 Beta (61,27)
disease to mild disease with
therapy
Progression from mild PPROGRESS 0.183 Beta (11, 49)
disease to severe disease
Probability of mortality PMORT 0.032 Fixed
Utilities
Mild disease UMILD 0.75 Normal (0.75,0.03)
Severe disease USEVERE 0.64 Normal (0.64, 0.03)
Costs - mild disease
Consultations CCONSM 949 Normal (949, 189.25)
Hospital care CHOSPM 1148 Normal (1148, 287)
Additional health care CADDM 283 Normal (283, 70.75)
Costs - severe disease
Consultations CCONSS 2934 Normal (2934, 733.5)
Hospital care CHOSPS 2567 Normal (2567, 641.75)
Additional health care CADDS 578 Normal (578, 144.5)
Drug Costs
Usual Care CDRUGU 546 Fixed
Inclusion of entaca~one CDRUGE 1313 Fixed
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Let X = {XI, ..... , Xd} be the set of uncertain input variables, and T (tl, ... te) be the set

of treatment options. An individual parameter within X is depicted by Xi. Within X,

parameters can be grouped into parameter sub-sets; a sub-group of parameters is

depicted by Xi. In both instances XC denotes the complement set of input parameters:

i.e. all members of X other than Xi or X?6.

Etl is the expected value of health benefits (e.g. QALYs) from treatment tl based on

X and Ctl is the expected value of costs. Expectations are based on data obtained

from the Monte Carlo simulation (Doubilet et al, 1985).

Consider the case of two treatments tl and t2. The cost effectiveness of a treatment

(tl) compared to an alternate treatment (t2) can be presented in terms of the

incremental cost per unit of health benefit (lCER). Based on the output from a MCS,

the ICER is the ratio of the expected values of incremental costs and incremental

benefits; not the expected value of the ratio (Stinnett and Paltiel 1997).

In the evaluation of entacapone, the incremental health care costs of entacapone were

$1 200 with an incremental QAL Y gain of 0.07 (Table 4.2). This leads to an

incremental cost per QALY gained (ICER) of $17300.

The net benefit approach to depicting the cost effectiveness of a treatment option has

been argued to have distinct advantages over the traditional ICER (Zethraeus et al.

26 Consider the case where there are four parameters (x" X2. X3. '4). A sub-group of parameters Xi
may be defined as comprising XI and X2. XC the complement of Xi will comprise X3 and '4.
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Table 4.2: Base Results of Economic Evaluation of Entacapone in

Comparison with Usual Therapy

Entacapone Usual
Therapy

Incremental
Analysis

Costs
QALYs
ICER
Net Benefit (A = $50000)

$52900
2.57

$51 700
2.50

$75800 $73500

$1200
0.07
$17300
$2300
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2003a, Stinnett and Mullahy 1998). Net benefit can be expressed in terms of net

health benefits or net monetary benefits (Claxton and Posnett 1996). The net

monetary benefit (henceforth NB) of a treatment defined in monetary terms is simply

the difference between the expected effects and expect costs with effects weighted by

the value of a unit of health benefit (A.). Thus, the expected net monetary benefit for

an individual treatment is defined as:

NBt} = ,.1* Et} - Ct}

Incremental net benefit (INB) can be calculated as the difference in net benefit

between two treatment choices.

INBtJf2 =A*(Et} -Et2 )-(Ct) -Ct2)

t* is defined as the optimal treatment choice. By definition, INB will be positive for

the comparison between t* and any other potential treatment option.

For the base analysis, the !NB of entacapone assuming a threshold value of a QAL Y

of $50 000 was $2 300.

It is important to note that A. has two distinct interpretations. First, it can be

interpreted as the shadow price of a unit of health benefit given a constrained budget

(B). Thus, if we assume that the objective function of the decision maker is to

maximise health benefit, the baseline decision is to choose the treatment with the

highest expected net benefit (t*).

NBt• =maxt Ex (NBt1)
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Secondly, A can be interpreted as the value society places on a unit of health benefit.

Within a constrained health care budget, it may not be feasible to fund all

interventions with a positive INB. Hence, the optimal decision will be to choose the

treatment with the highest expected net benefit (t*) within the budget constraint.

NBt* =maxt Ex (NBt I )ICt < B

For this chapter, the first interpretation of A is adopted. This is consistent with the

interpretation of many authors who espouse Bayesian methods for handling

uncertainty (e.g. Claxton and Posnett 1996, O'Hagan and Luce 2003, Felli and

Hazen 1999). In Chapter 6, the impact of adopting the latter interpretation of A is

assessed.

The INB statistic allows the use of standard methods for determining statistical

inference (Zethraeus et al. 2003a). However, the relevance of statistical inference for

optimal decision making was questioned in Chapter 2. A further and potentially more

important advantage is that NB allows adoption of a Bayesian approach to CEA in

that the uncertainty around the cost effectiveness of treatment can be used to assess

the value of collecting further information (O'Hagan and Luce 2003, Claxton and

Posnett 1996).

4.4 REPRESENTING UNCERTAINTY IN ECONOMIC EVALUATIONS

4.4.1 Introduction

The normative framework adopted in this thesis requires that for decisions to be

optimal in terms of maximising health benefits, decision makers should be concerned

solely with the expected value of outcomes. However, several authors have
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suggested methods for representing uncertainty concerning what is the optimal

course of action. These methods are detailed in this section and their potential role in

assisting decision makers discussed.

4.4.2 The Cost Effectiveness Plane and Scatter Plots

Figure 4.2 depicts the cost effectiveness plane (Black 1990, Briggs and Fenn 1998).

The plane represents the four potential results of an economic evaluation with the x

axis representing incremental effects (QALYs) and the y axis representing

incremental costs. The right hand or east half of the plane is associated with an

effective treatment, whilst the upper or north half is associated with a more costly

treatment option. The results of an evaluation can be placed in each of the four

quadrants of the plane and can be characterized in terms of cartography (NW, NE,

SE, SW) (Figure 4.2).

A scatter plot which involves plotting the incremental cost and incremental effect

from each replication associated with each treatment option against one reference

treatment (usually the least effective treatment) is a simple two dimensional means of

graphically presenting the uncertainty over the results of a CEA. (Hunink et al.

1998). Scatter plots illustrate the degree of dispersion of the results based on the

MCS and the probability that a specific treatment option could be placed in any of

the four quadrants. Hence scatter plots are an empirical representation of the joint

distribution of incremental costs and benefits.

Alternative graphic presentations have been suggested that are more complex

visually (Hunink et al. 1998). A three dimensional histogram presents incremental
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Figure 4.2: Cost EffectivenessPlane
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benefits and incremental costs on the x and y axes with the frequency of

combinations of costs and effects on the z axis. This requires grouping categorically

to allow determination of frequency counts. An iso-probability contour plot is two

dimensional but similar to the three dimensional histogram in that the plane is shaded

to represent the relative frequency of combinations of costs and effects.

Figure 4.3 is a scatter plot of the incremental costs and QAL Ys associated with

entacapone obtained from each replication of the MeS. Figures 4.4 and 4.5 are a

three dimensional histogram and an iso-probability contour plot of the same data.

Eighty-one percent of replications are in the NE quadrant of the plane representing

an incremental cost and incremental gain in QALYs; 18.4% of replications are in the

SE quadrant representing cost savings alongside a gain in QALYs; 0.5 % of

replications are in the SW quadrant representing cost savings with a loss in QALYs;

and, 0.04 % of replications are in the NW quadrant representing an incremental cost

with an associated loss of QALYs.

The benefits from graphically presenting the result of a MeS are unclear. A scatter

plot presents the distribution of costs and effects and allows a visual representation

with respect to decision uncertainty. However, given the arguments in favour of

basing decisions on expected values, there are unlikely to be any additional benefits

from such presentations.

4.4.3 Credible Intervals

In recent years, there have been a large number of articles concerned with methods

for estimating confidence intervals for leERs based on data from randomized
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Figure 4.3: Scatter Plot of Incremental Costs and QALYs with Treatment

with Entacapone
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Figure 4.4: Three Dimensional Histogram of Incremental Costs and QALYs

with Treatment with Entacapone
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Figure 4.5: Iso Probability Contour Plot of Incremental Costs and QALYs

with Treatment with Entacapone
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controlled trials (e.g. Briggs et al. 1999, Chaudhary and Stearns 1996, Willan and

O'Brien 1996). These methods have mainly focused on a frequentist approach to

statistical inference. In addition, the methods are unsuitable for the analysis of data

derived from MCS.

Credible intervals (Cl) are analogous to confidence intervals but represent a Bayesian

approach for estimating the probability that a treatment is cost effective given the

available data (Spiegelhalter 2000, O'Hagan and Stevens 2002). The uncertainty

from the Monte Carlo exercise can be depicted by a credible interval assuming the

output of the MCS can be rank ordered (Briggs 2000). For example, a 9S% credible

interval is defined by the z.s" and 97.Sth percentile of the distribution of outcomes.

For a MCS with SOOOreplications, this corresponds to the 12Sth and 487Sth ranked

replication.

The derivation of the 9S% credible interval for the INB of a treatment is

straightforward and will vary by A.. Figure 4.6 depicts the expected value for the INB

of entacapone and the associated 9S% credible interval for values of A. between $0

and $100 000. Note, that the expected value of net benefits is of course linear in A. but

the credible interval is not. For A. equal to $SO000 the !NB of entacapone is $2 300

(95% Cl, -$1 600 to $7 300). Hence, based on the traditional rules of statistical

inference, the null hypothesis could not be rejected and entacapone would not be

considered optimal.

A credible interval for an ICER can only be estimated if the results of the MCS do

not fall in both the SW and NE quadrant. This is because the ICERs from a MCS can
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Figure 4.6:
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not be ranked if they fall in both quadrants. For illustration consider the following

scenario. Assume two replications from a MCS, one where the incremental cost is

$5 and the incremental benefit is 5 and another where the incremental cost is -$5 and

the incremental benefit -5. One cannot rank order these replications without first

knowing the value of a unit of benefit (i.e. if the unit of benefit is worth more than 1

then the former is ranked ahead of the latter, if not vice versa).

In the evaluation of entacapone, replications fall in all four quadrants and therefore a

credible interval for the ICER can not be given.

In frequentist statistics, confidence intervals are recognised as a fundamental

component of statistical inference (Altman et a1. 2000). Given the requirement that

optimal decisions be based solely on expected values, the role for credible intervals

in economic evaluation is unclear and may have a very limited role as a summary

statistic for depicting the level of uncertainty.

4.4.4 Cost Effectiveness Acceptability Curves

Cost effectiveness acceptability curves (CEAC) have been argued to provide a more

intuitive way of presenting the uncertainty around the cost effectiveness of

treatments than traditional confidence or credible intervals (van Hout et al 1994,

Briggs and Fenn 1998). A CEAC provides a graphical representation of the

percentage of replications from the Monte Carlo simulation where the net benefit

(NB) of a particular therapy (ld) is optimal (i.e. has the greatest NB of all treatment

options (T» given a range of values for A) (Fenwick et al. 2001, Briggs 2000,

Lothgren and Zethraeus 2000, O'Hagan and Stevens 2002). The curve is presented

60



with an x-axis representing values of A and a y-axis representing the proportion of

replications from the MCS where NB is positive. The height of a CEAC at each

value of A, can be interpreted as the probability that the treatment is cost effective

given the available evidence (Fenwick et al. 2001, O'Hagan and Stevens 2002).

CEACt j (A) = p(NB (t j' X) = maxr{NB( T, X})

In a two treatment model, a CEAC will report the percentage of replications where

one treatment is optimal, the complement of this percentage is the percentage of

replications where the other treatment is optimal. In a multiple treatment model, the

CEAC curve for each treatment can be represented on one graph (the sum of the

height of all curves at each value of A will be 1). In this instance, the yaxis

represents the proportion of replications where each treatment is associated the

maximum NB (Fenwick et al. 2001).

Figure 4.7 depicts the CEAC for entacapone based on values of A between $0 and

$100 000.

A CEAC need not rise monotonically as A increases. The shape of the CEAC is

determined by the dispersion of the results of the MCS across the cost effectiveness

plane. Replications in the NW quadrant do not contribute to the height of the curve

as, regardless of the value of A, therapy would never be cost effective given it is both

costly and ineffective. In the SE quadrant, therapy is both effective and cost saving

Thus, the contribution of the replications in the SE quadrant is constant regardless of

the value of A. The contribution of replications in the NE quadrant increases as A
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Figure 4.7: CEAC for Entacapone in Comparison with Usual Care
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increases, whilst the contribution of replications in the SW quadrant decreases as A

decreases.

Thus, the boundaries of a CEAC are determined by the proportion of replications

within the SE and NW quadrants; and the shape of the CEAC is determined by the

relative contributions of the SW and NE quadrant. A curve, which monotonically

increases as A increases, occurs only when either there are no replications in the SW

quadrant or the contribution of the NE quadrant increases at a greater rate than the

contribution of the SW quadrant declines for all relevant threshold values. The latter

is the case with treatment with entacapone as the curve does rise monotonically for

values of A less than $100000. For more extreme values the curve falls.

There are several problems with the use and interpretation of a CEAC particularly

when more than two treatment options are being considered. If we accept that

decision makers should make decisions solely on the expected values associated with

each treatment option then the practical role of a CEAC appears negligible. The

skewness of the distribution of net benefit may mean that therapies that are optimal

based on expected values will not necessarily be the optimal treatment choice for the

majority of replications. For the evaluation of entacapone, if A was equal to $18 000,

entacapone should be considered cost effective with an expected net benefit of $52.

However, at this value of A, entacapone is cost effective in only 48% of replications.

Problems with the interpretation of a CEAC are exacerbated when multiple treatment

options are considered. This is discussed further in Appendix A in relation to the

treatment of osteoporosis

63



An alternate but related approach to the CEAC is that of the cost effectiveness

acceptability frontier (CEF) (Fenwick et al. 2001). The CEF presents, for each value

of A., the proportion of replications which show the optimal treatment choice as

optimal.

CEF{;")= p{NBt* =maxT{NB(T,X})

Figure 4.8 depicts the CEF for the treatment choice between entacapone and usual

care. For values of A. below the ICER of $17 300, the CEF represents the probability

usual care is cost effective and for values above the ICER, the CEF represents the

probability that entacapone is cost effective. Note when A. equals $17 300, the CEF

features a vertical line, a result of the lack of symmetry in the distribution of net

benefit. This further illustrates the skewness of the distribution of net benefit and

highlights how a CEF or a CEAC cannot be used to determine an optimal treatment

choice.

4.5 ESTIMATING THE EXPECTED VALUE OF PERFECT

INFORMATION

4.5.1 Introduction

Value of information analysis provides a framework for analysing uncertainty within

economic analysis, by focussing on the value of reducing uncertainty through further

information (Dakins et al. 1994). Such analysis adopts a Bayesian approach to

sensitivity analysis (Felli and Hazen 1998, 1999). Within value of information

analysis, there are two specific concepts to consider, the expected value of including

uncertainty (EVIU) and the expected value of perfect information (EVPI).
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Figure 4.8: Cost Effectiveness Frontier for Evaluation of Entacapone and

Usual Care
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EVIU measures the difference in net benefit if the optimal treatment choice is based

on a deterministic model rather than a probabilistic model (Morgan and Henrion

1990). EVIU represents the value of conducting a probabilistic analysis over and

above consideration of further research. EVIU will vary by A. If we accept that a

probabilistic model provides the true estimate of the expected value of NB then

EVIU will be non zero for values of Awhere the optimal treatment choice will be

different based on the results of the deterministic and probabilistic analyses. Given

that we can not determine EVIU until conducting probabilistic analysis, the practical

application of EVIU, other than further demonstrating the benefits of probabilistic

analysis, is unclear.

For the evaluation of entacapone, the ICER from a deterministic model is $18 900.

Thus for values of Abetween $17 300 and $18 900 the EVIU will be non zero

(Figure 4.9). For all other values of AEVIU is zero.

Much of the focus of value of information analysis published in the health economics

literature has been on the estimation of EVPI. EVPI is a measure of the reduction in

opportunity loss associated with obtaining perfect information (no uncertainty) on a

parameter and can be seen as a measure of decision sensitivity (Claxton and Posnett

1996, Felli and Hazen 1998, 1999). EVPI can be expressed as the product of the

probability of a change in what is the optimal treatment and the average change in

INB as a result of such a change.

o
EVPI = fI( INB ).INB dINB

-(11

66



Figure 4.9: EVIU for Analysis of Entacapone
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Based on the results of a MCS, EVPI can be expressed as follows:

EVPI = Ex [maxt (NBt)] - NBt*

EVPI can be calculated for all parameters within a model (global EVPI).

Alternatively, EVPI can be calculated for a partial set of input parameters (Xi or Xi.).

This is termed the expected value of partial perfect information (EVPPI). Parameters

for which the decision over optimal treatment is sensitive will have higher EVPPI,

although for all parameters EVPPI will vary substantially by f...

In this section, alternate methods for estimating EVPPI are described and applied to

input parameters from the case study detailed in Section 4.2. Three of these methods

have been described in the literature and applied to economic models (Claxton et al.

2001, Brennan et al. 2002a, Felli and Hazen 1998, 1999). One method has been used

as a measure of global EVPI but has not previously been used as a measure of EVPPI

(Claxton and Posnett 1996). The final method is comparable to one of the previously

used methods but is argued here to be computationally more efficient (Coyle et al.

2003b).

EVPI and EVPPI are the most a decision maker should be willing to pay to alleviate

uncertainty about input parametens)". To estimate the optimal sampling frame for

each individual and sub-set of parameters requires estimation of the expected value

of sample information (EVSI) and the cost of sampling. This is discussed in detail in

Section 4.7.

27 This requires the simplifying assumption that the parameter(s) of interest is not pertinent to other
treatment choices.
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4.5.2 Mathematical Derivation of EVPPI

EVPPI for an individual parameter Xi is defined as:

EVPPI Xj = E Xj [maxt Ex IXi (NBt Ixi )] - NBt*

EVPPI for a sub-group of parameters Xi is defined as:

EVPPI Xi = Ex i [maxt Ex IXi (NBt I Xi )]- NBt*

EVPPI cannot be solved in a closed form. Thus, all methods of estimating EVPPI

require integration using either Monte Carlo simulation or quadrature'". In the

following sections five different proposed methods of estimating EVPPI are outlined.

The first two methods described are appropriate only in specific circumstances

relating to the characteristics of the probability density functions of input parameters

and their relationship with INB. In many instances the requirements required for

these methods are not met and hence the methods are inappropriate for calculating

EVPPIs for all input parameters. This is especially the case for Markov models/".

Hence, it is necessary to adopt more complex methods, which can be applied in the

general case. Three such methods are described. Two of these methods are based on

the mathematical definition of EVPI and involve solving double integrals, neither of

which are in closed form. The inner or nested integration involves estimating the

incremental net benefit with different fixed values of Xi. The outer integration then

determines EVPPI through integration across the probability density functions for Xi.

An alternate method has been suggested which involves avoidance of the second

28 Quadrature (or numerical quadrature) refers to numerical methods for estimating the area under the
curve for functions which cannot be solved through integration. Common methods of numerical
quadrature are the trapezoidal rule and Simpson' s rule.

29 In a Markov model. interactions of variables are compounded. For example. a transition probability
may be used for multiple cycles. Thus. the relationship between outcomes and the transition
probability will be non linear.
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integral by assuming Xi is constrained to its expected value. This method is not based

on the mathematical definition of EVPPI.

4.5.3 Methods of Estimating EVPPI30

4.5.3.1 Unit Normal Loss Integral Method

EVPI can alternately be described as the integral of the loss function (the probability

density function for INB where INB<O) multiplied by the loss itself.

o
EVPI = ff( INB ).INB dINB

-OJ

If the uncertainty around INB is normally distributed then there is a simple

mathematical formula for the derivation of global EVPI (Chilcott et al. 2003a,

Claxton and Pas nett 1996). This approach is outlined as follows:

1. Derive a standardized distance D as the expected value of INB (!lINB) less the

break even point (Le. INB = 0) divided by the standard deviation of INB (OINB).

D = JiINB -0
ulNB

2. Estimate the unit normal loss integral (UNLI) for the standardized distance.

UNLI (L(D» is the probability density of D within a standard normal distribution

(fCD)minus the product of D and 1 minus the cumulative density of D within a

standard normal distribution (FCD».

L(D)= f(D) - D(1- F(D) )

The probability density of a standard normal distribution is defined. However, the

cumulative density of a standard normal distribution is not solvable in closed form.

30 I am grateful to Jeremy Oakley from the University of Sheffield for statistical advice relating to this
section particularly with relation to notation.
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Estimates of the cumulative density can be obtained based on quadrature from either

statistical tables or using standard statistical or spreadsheet software.

3. EVPI can now be estimated as the product of the standard deviation of INB

and UNLI for the standardized distance.

EVPI = a/NB *4 D)

Consider a scenario where INB is normally distributed with an expected value of

$1000 with a standard deviation of $1000. EVPI can be calculated as follows.

D = 1000-0 =1
1000

41 )=0.083

EVPI = a/NB *4D ) = $83

Varying both the expected value and the standard deviation of INB confirms two of

the fundamental principles relating to EVPI (Chilcott et a1. 2003a). First, EVPI will

be greater the greater the uncertainty around the mean. Secondly EVPI will be

greater the lower the expected value of INB (Figure 4.10).

A recent review of the use of modeling in research prioritization, found no examples

of where the EVPPI has been estimated using the unit normal loss integral method

(Chilcott et a1. 2003a). Recent work in estimating EVPPls has ignored this method,

primarily due to the focus on situations where the distribution of INB is non-normal.

71



Figure 4.10: Impact of Expected Value and Standard Deviation of INB on

Global EVPI
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However, in situations when the global EVPI can not be estimated through L(D), it

may still be an appropriate method for calculating EVPPls for parameter(s).

INB may be non-normally distributed and the relationship between INB and some

parameters may be non linear. However, consider a parameter (Xi)which is both

linear in incremental net benefit and normally distributed. The relationship between

the parameter and net benefit can be expressed as

INB =a+ P,xi

This equation can be estimated through two Monte Carlo simulations. First, hold (Xi)

constant at 0 and estimate INBlxi=O with all other parameters (XC) random.

Secondly, hold (Xi)constant at 1 and estimate INBlxi=l with XC random using the

same random seed as previously. By definition:

a= INBI(Xi = 0)
f3 = [INBI(Xi = 1)]- [INBI(Xi = 0)]

The EVPPI for Xican be calculated by deriving a normal distribution for INB, which

represents the uncertainty around INB propagated by Xigiven the uncertainty around

other parameters.

UINB
Xj

= P*UXj

f..lINBx·D = IX,
I UINBx;

EVPPlxj = UINBxj * L( DXj )
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From the above, one can also derive EVPPls for a sub-set of parameters which have

the same desired properties. Consider the situation where Xi represents a sub-set of

X of size j in which all parameters are normally distributed and have a linear

relationship with INB. The relationship between the parameters and INB can be

expressed as:

INBXj =a+ LPi «x,
i=J..j

and can be estimated through j+ 1 Monte Carlo simulations using the same random

seed and alternate fixed values of Xi.

The EVPPI for Xi can now be derived as follows:

IlINBX' = a+ LPi * IlXi
I

i=l ...j

(11NBx· I = 1._L(~*(1xi fV,-l...)
f.JINBx·

D - IX· -
I (11NBx. I

EVPIXj = (11NBx. *4 DXi )
I

4.5.3.2 Single MCS Method

When incremental net benefit is not normally distributed, global EVPI can be

estimated through the conduct of a single MCS (Felli and Hazen 1998, 1999). This

requires the following steps.

1. Conduct a MCS by sampling from the probability density functions for all

parameters.
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2. Calculate the mean net benefits for each treatment option and identify the

optimal option as that with the maximum net benefits.

3. For each replication within the MCS calculate the difference between the net

benefits of the optimal treatment and the maximum net benefits across all

treatments.

4. Global EVPI is the expected value from step 3.

Felli and Hazen have shown that, if INB is multi-linear in x-, EVPPI for Xi can be

estimated by repeating the steps for estimating Global EVPI with XC fixed at their

expected value" .

EVPPlx; =Ex;lmaxt {NBtlxC =E(xc)lNB*

1. Conduct a MCS by sampling from the probability density functions of the

parameters of interest (Xi) with all other parameters fixed at their expected

value (Xc= E(XC».
2. For each replication within the MCS calculate the difference between the net

benefits of the optimal treatment as previously identified and the maximum

net benefits across all treatments.

3. EVPPI is the expected value from step 2.

This method can also act as a proxy for EVPPI if INB is not multi-linear in x.

31 INB is multi-linear in XCif all parameters within XChave a linear relationship with !NB.
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4.5.3.3 Two Stage MCS Method

Brennan, Chilcott and colleagues amongst others have suggested a method of

calculating EVPPIs which involve solving both the inner and outer integration

through a two stage Monte Carlo simulation (Brennan et al. 2002a, 2002b, Chilcott et

al. 2003a). This is conducted as follows:

1. Single values are randomly selected from the probability density functions of

the parameters of interest (Xi).

2. The parameters of interest are fixed at the values selected in step 1, and the

NB for all treatment options is estimated by conducting MCS by sampling

from the probability density functions of all other parameters (XC).

3. For each simulation conducted in step 2, the net benefit of the optimum

therapy from the base analysis is subtracted from the maximum net benefit

over all therapeutic options.

4. Steps 1-3 are repeated numerous times with different sets of values for the

parameters of interest.

5. EVPPI is then the expectation of values obtained from repeating step 3.

4.5.3.4 Quadrature Method

A second method rooted in the mathematical definition of EVPPI, has been

suggested which requires fewer repeat simulations than the two stage MCS method

(Coyle et a1. 2003b, Coyle et a1. 2001b). Instead of a two stage Monte Carlo

simulation, the outer integration across the probability density functions of Xi can be

achieved through numeric quadrature.

Estimating the EVPPI of Xi would require the following approach:
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1. A set of values is determined for the parameter of interest. The values should

be equally spaced across the individual's parameters probability function with

a high degree of coverage.

2. For each value of the parameter chosen in step 1, the NB for all treatment

options is estimated by conducting MCS by sampling from the probability

density functions of all other parameters (XC).

3. For each simulation conducted in step 2, the net benefit of the optimum

therapy from the base analysis is subtracted from the maximum net benefit

over all therapeutic options.

4. Each estimate from step 3 is weighted by the probability density for the

specific value of the parameter.

5. EVPPI is then estimated by integrating across the probability density function

using Simpson's rule32.

Note, that in step 1, the greater the number of values chosen and the higher the

degree of coverage the more precise the estimate of EVPPI. In the following

sections 101 different values of each parameter are used and values cover at least

99.99% of the probability density function.

The same approach can be used to estimate the EVPPI of Xi of size j.

32 Simpson's rule is a method of numerical quadrature: i.e. it allows estimation of the area under a
curve of a specified formula. Simpson's rule requires specifying an upper and lower value for X(xu
and XI). The interval between Xuand XIis divided into n smaller intervals of equal length (h): h = (xu -
xl)/n. Under the formula for Simpson's rule, the area under the curve (S) can be defined as:

s = ~ .[j(xl)+ 4 f(XI+h)+ 2f(XI+2h)+ 4 f(X1+3h ) •••••• + 2f(XI_2h)+ 4 f(XI+h)+ f(xu)]
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1. A set of values is determined for all parameters of interest Xi. The values

should again be equally spaced across the parameters probability density

function with a high degree of coverage.

2. For each possible set of values for the parameters chosen in step 1, the NB for

all treatment options is estimated by conducting MCS by sampling from the

probability density functions of all other parameters (XC).

3. For each simulation conducted in step 2, the net benefit of the optimum

therapy from the base analysis is subtracted from the maximum net benefit

over all therapeutic options.

4. Each estimate from step 3 is weighted by the product of the relevant density

of the probability function of one of the parameters of interest.

5. The values obtained from step 4 are integrated across the parameter's

probability density function using Simpson's rule.

6. Steps 4 and 5 are repeated for each variable until a final value is obtained.

4.5.3.5 Difference Method

In an evaluation of treatments for Alzheimer disease, Claxton and colleagues adopted

an alternative formulation whereby the EVPPI for Xi can be estimated by the

difference between global EVPI given uncertainty in all parameters and global EVPI

when Xi is fixed (Claxton et a1. 2001). Similar methods have been used in an

evaluation of management strategies for urinary tract infection (Fenwick et a1. 2000).

The method suggested by Claxton and others defines EVPPI as follows:
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EVPPlx. =EVPI-EVP11[Xi =E(Xi)]

EVPPII[~i = E(X;)]= EXlxj [maxt {NB(t,X)Xi = E(X;)}]

+max, [Exix i {NB (t,X)X i = E(X i)}]

Thus the approach involves the following.

1. Estimate Global EVPI as described in Section 4.5.2.

2. Estimate the NB for all treatment options by conducting MCS by keeping the

parameters of interest (Xi) fixed at their expected values and by sampling

from the probability density functions of all other parameters (XC).

3. Calculate the expected value over all replications of the net benefit of the

optimum therapy subtracted from the maximum net benefit over all

therapeutic options.

4. EVPPI is the difference in the values obtained in step 1 and step 3.

4.5.4 Analysis

Analysis focuses on estimating the EVPPI for each parameter within the decision

analysis. The difference, quadrature and two stage MCS methods are used to

estimate EVPPI for all parameters within the model. For cost and utility parameters,

which are linear in !NB and are assumed normally distributed, EVPPI was also

estimated by the UNLI method. As!NB is linear in all parameters except

PPROGRESS, the single MCS method was only an appropriate method for

PPROGRESS33•

33 Variable definitions are provided in Table 4.1.

79



In addition to single parameters, EVPPI is estimated for two sets of parameters;

utilities (UMILD and USEVERE) and probabilities (PPROGRESS and

PIMPROVE).

The number of MCS conducted will affect the accuracy of the predicted EVPPI due

to the associated Monte Carlo error. For the base analysis all Monte Carlo

simulations involved 5 000 replications. To assess the accuracy of each method with

respect to Monte Carlo error, analysis was repeated for a sub set of parameters

(utility and transition probabilities) using an extreme number of replications (5

million).

4.5.5 Results

Table 4.3 compares the estimates of EVPPI for each parameter and set of parameters

based on the alternative methods". The difference method gave substantially

different values from the other methods and can be dismissed as a true measure of

EVPPI. The other four methods gave broadly similar values for EVPPI for most

parameters. PPROGRESS had the highest EVPPI, followed by utility parameters

and PIMPROVE. Cost parameters had little information value.

The values obtained from the UNLI and quadrature methods were more similar than

from the two stage MCS method, suggesting that the quadrature method may be a

more efficient general method of estimating EVPPI.

34 Note, that in the conduct of MCS, two specific issues have to be addressed with respect to the
uncertainty around individual input parameters; the degree of uncertainty as characterized by the
assumed variance and the shape of the uncertainty as characterized by the form of the probability
density function. Appendix B addresses the impact on the case study of the latter choice on estimates
of INB, global EVPI, EVPPI and the shape of the CEACC. Analysis found that INB and EVPI did not
vary substantially by the shape of the probability density function but EVPPI did.
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Table 4.3: Estimates of EVPPI Based on Alternative Formulations

Method of Estimation
Single MCS Difference Quadrature Two Stage UNLI

MCS
Single Qarameters
PIMPROVE N/A 28.80 0.69 0.48 N/A
PPROGRESS 5.91 39.88 6.48 6.49 N/A
UMILD N/A 44.07 2.64 2.49 2.68

USEVERE N/A 43.56 2.65 2.28 2.68

CCONSM N/A 3.54 < 0.001 0 < 0.001

CHOSPM N/A 3.09 <0.001 0 < 0.001

CADDM N/A 0.46 <0.001 0 < 0.001

CCONSS N/A 33.70 0.23 0.31 0.23

CHOSPS N/A 23.03 0.04 0.01 0.04

CADDS N/A 0.22 < 0.001 0 <0.001

Sets of Qarameters
Probabili ties 20.21 65.06 24.55 20.63 N/A
Utilities N/A 77.54 25.36 25.31 25.47

Note: Variable definitions are provided in Table 4.1
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Table 4.4 compares the estimates of EVPPI from the four methods based on 5000

and 5 million replications. The values obtained from using 5 million replications

differ modestly from analysis based on 5000 replications suggesting that, in this

instance, a MCS based on 5000 replications may be sufficient. The results from the

UNLI, quadrature and two stage MCS are very similar confirming that each method

is estimating the same variable with the difference being error with respect to integral

measurement.

4.5.6 Conclusions

The estimation of EVPPI for parameters and sub sets of parameters is an essential

component in the analysis to identify the value of obtaining further information given

decision making under uncertainty. In addition, EVPPI has been argued to be a

theoretically correct measure of the sensitivity of a study's results (Felli and Hazen

1998, 1999). However, to facilitate such usage, EVPPI has to be accurately

measured.

In this section, five alternate methods for estimating EVPPI have been identified,

described and applied to the case study outlined in Section 3.2. All measures are

subject to Monte Carlo error. As the number of replications used to estimate EVPPI

increase, appropriate method for the estimation of EVPPI will converge to the same

value.

The difference method proposed by Claxton and colleagues is clearly an

inappropriate method for estimating EVPPI. The difference method is not rooted in

the mathematical definition of EVPPI. However, it had been argued that if the
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Table 4.4: Estimates of EVPPI Based on Alternative Formulations and

Number of Replications

Method of Estimation
Single MCS Quadrature Two Stage UNLI

MCS
PIMPROVE r = 5000 N/A 0.69 0.48 N/A

r = 5 million N/A 0.71 0.56 N/A
PPROGRESS r = 5000 5.91 6.48 6.49 N/A

r = 5 million 6.55 6.52 6.55 N/A
UMILD r = 5000 N/A 2.64 2.49 2.68

r = 5 million N/A 2.52 2.52 2.52
USEVERE r = 5000 N/A 2.65 2.28 2.68

r = 5 million N/A 2.52 2.55 2.52

Based on a threshold value for a QALY of $50 000.

Note: Variable definitions are provided in Table 4.1
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relationship between a parameter and the outcome of interest is not markedly non

linear then the difference method would be a suitable means to estimate EVPPI

(Claxton et al 2001). The results from this study dispute this proposition as there is a

substantial difference in values obtained from this and the other methods. Thus, this

method is demonstrated empirically to be an inappropriate measure of EVPPI.

The single MCS and UNLI methods are computationally efficient methods of

estimating EVPPI. However, they are only appropriate for estimating EVPPI in

specific limited circumstances relating to the mathematical relationship between

input parameters and !NB.

The quadrature and two stage MCS methods can be considered general methods for

estimating partial EVPPI as they can be applied in all circumstances. The methods

are comparable. By increasing the number ofMCS used, both methods would return

similar values converging to the true value of EVPPI. Both methods are

computationally complex. However, based on the methods used in this study the

quadrature method may be considered more computationally efficient.

The conclusion reached is that where appropriate EVPPI should be estimated using

either the single MCS or UNLI method. When neither of these methods is

appropriate, the quadrature method can be used. However, the quadrature method is

computationally complex. To reduce the complexity required in estimating EVPPI it

may be useful to conduct provisional analysis to identify parameters for which there

is likely value in obtaining further information. In the following section, methods for

identifying the importance of parameters to the uncertainty around outcomes are
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considered as potential means of screening parameters for consideration of a full

value of information analysis.

4.6 ALTERNATE METHODS FOR ASSESSING PARAMETER

IMPORTANCE

4.6.1 Introduction

In the previous section, calculation of EVPPI was identified as the first stage in

estimating the value of information for parameters and sub-sets of parameters. In

addition, EVPPI is a theoretically correct measure for determining the importance of

parameters in terms of their contribution to the uncertainty around outcomes of

interest.

In this section, the concept of importance analysis is introduced and discussed with

respect to alternate methods for acting as a screening mechanism'". Methods are

detailed and applied to the case study described in Section 4.2.

Analysis of the relative importance of input parameters on the reliability of systems

is a key aspect of safety analysis (Cheok et al. 1998, Levitin and Lisnianski 1999,

Eisenberg and Sagar 2000). Importance analysis involves the use of techniques to

determine how different input parameters contribute to the uncertainty over

outcomes of interest (Eisenberg and Sagar 2000, Saltelli et al. 2000). Such analyses

are common in other disciplines where probabilistic models are used to determine the

expected values of outcomes of interest. Techniques used to assess parameter

35 Much of this section has been published in the Journal of Clinical Epidemiology (Coyle et al.
2003c). I am grateful for comments received from anonymous referees as well as the input of my
supervisors.
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importance are called importance measures and involve ranking input parameters by

their contribution to uncertainty.

Importance analysis differs from standard sensitivity analysis where the aim of the

analysis is to address the degree of uncertainty around an outcome measure (Briggs

et al. 1994). Instead, the focus of importance analysis is to identify quantitatively

those parameters which contribute most to the uncertainty. This can be argued to be

more pertinent to decision makers in that it addresses decisions that have to be taken;

i.e. given the evidence available what is the most appropriate action and what further

information should be collected.

Probabilistic methods such as Monte Carlo simulation techniques have been

identified as suitable bases for the conduct of importance analysis, in that the

techniques allow for the estimation of the likelihood of various output values based

on a wide number of sets of input parameters generated by sampling from their

probability density functions (Magnusson et al. 1996, Saltelli et al. 2000, Helton

1993).

Alternative methods for identification of the importance have been applied to models

dealing with uncertainty relating to decisions addressing a wide spectrum of public

and private policy issues - e.g. health interventions, nuclear safety, fire safety,

radioactive waste (Magnusson et al. 1996, Helton 1993, Eisenberg and Sagar 2000,

Hamby 1995, Baker 2002). Few of these measures have been considered in

economic analysis. This section reports the results of applying a range of importance

measures to the case study detailed in Section 4.2 (Coyle et al. 2oo3b).
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If the focus of analysis is merely to identify those parameters which impact decision

uncertainty and not to determine an optimal research strategy then importance

measures that are shown to provide a similar ranking of parameters as EVPPI may be

useful. However, this is a non optimal approach to analysis as it is contrary to the

normative framework adopted. However, given the complexity required in

calculating EVPPI, alternate measures of importance may be useful as alternate

methods of screening parameters: i.e. identify those parameters contributing most to

decision uncertainty for which further analysis of EVPPI is desirable. Techniques

must then give similar rankings of parameters and be computationally efficient.

Thus, the objective of this section are as follows:

- To describe alternate measures of parameter importance

- To compare the rankings of parameters based on each technique

- To assess the computational efficiency of each method in terms of the

number of MCS required and the need for complex statistical analysis.

- To identify potential measures which may act as a screening method for

further VOl analysis

4.6.2 Methods

4.6.2.1 Identification and Classification of Importance Measures

A thorough review of the literature using databases such as Medline and HealthStar;

internet free text searching and hand searching of relevant journals and articles

relating to health economics, risk assessment, safety analysis and environmental

appraisal was conducted to identify potential importance measures.
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4.6.2.2 Correlation Coefficients

Use of correlation based measures is one of the most common forms of importance

analysis. Many studies have adopted simple correlation coefficients; either Pearson

correlation coefficient or Spearman rank correlation (Magnusson et al. 1996, Saltelli

et al. 2000, Hertwich et al. 1999, Huijbregts al. 2000).

Spearman rank correlation (Rs) has been shown to be more appropriate than Pearson

correlation when non linear relationships between input parameters and outcomes

exist which is generally the case with Markov models (Hofer 1999). R, is simply the

Pearson correlation coefficient calculated on rank transformed data (Saltelli et al.

2000, Hamby and Tarantola 1999). For a single input parameter x., Rs is defined as:

aR = rx;,rlNB
s

(}' r x, U r INB
I

where

rx. = xi rank transformed
I

rm» = INB rank transformed

R, can be estimated for all parameters through a single Monte Carlo simulation by

the following.

; =1- 6D
s R3_R

where
R

D = L {rxn - rlNB n f
n=1

n = nth replication

R = number of replications
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When there is a high degree of correlation between input parameters it is preferable

to use partial measures of correlation. Measures are calculated as above, after

eliminating any correlations with other variables (Hofer 1999, Saltelli et al. 2000).

In the example used to compare each of the methods, it is assumed that there are no

correlations between input parameters so partial measures are not used.

4.6.2.3 Variance Based Measures

Ranking input parameters by their contribution to the variance of the outcome has

been a commonly suggested measure of parameter importance (Magnusson 1996,

Baker 2002, Cullen 1995, Iman and Helton 1988, Bartell et al. 1986). The

contribution to variance (CV) can be estimated through repeated Monte Carlo

simulation and is defined as proportion of the variance of the outcome explained by

the input parameter (Saltelli et al. 2000).

2 2 IalNB -aINB Xi
CV( xi }> 2

alNB

This is calculated as follows:

1. The variance of INB is estimated by conducting MCS by sampling from the

probability density functions of all parameters (X).

2. A set of values is determined for the parameter of interest. The values should

be equally spaced across the individual's parameters probability function with

a high degree of coverage.

3. For each value of the parameter chosen in step 1, the variance of INB is

estimated by conducting MCS by sampling from the probability density

functions of all other parameters (XC).
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4. Each estimate from step 3 is weighted by the probability density for the

specific value of the parameter.

5. The variance of INB conditional upon Xi, is then estimated by integrating

across the probability density function using Simpson's rule.

6. Contribution to variance is estimated based on the formula.

4.6.2.4 Regression Coefficients

Regression coefficients have been suggested as possible measures of parameter

importance (Helton 1993, Cullen 1995, Iman and Helton 1988). Given that the

absolute coefficients are a function of the relative magnitude of the parameter, it is

necessary first to standardize coefficients. Standardization can be conducted through

estimation of standardized regression coefficients (SRC) or rank regression

coefficients (RRC). RRCs are the regression coefficients (~i)obtained from a

regression analysis based on rank transformed data (Saltelli et al. 2000). SRCs are

the coefficients from a regression analysis weighted by the ratio of the standard

deviations of the input parameter and incremental net benefit (Saltelli et al. 2000,

Morgan and Henrion 1990).

(1x.
SRC( Xi ) = Pi. -'-

UlNB

where

Pi is obtained from the linear regression: [NB = a+LPi 'Xi

4.6.2.5 Probability Based Measures

A technique referred to as generalized sensitivity analysis has been used in

environmental appraisal (Saltelli et al. 2000, Spear and Hornberger 1980, McKenna

and Arnold 1998, James et al. 1996, Choi et al. 1999). The technique compares two
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cumulative distribution functions for a single input parameter'". Parameter

importance is measured by the maximum vertical distance between the two density

functions (maximum separation distance (MSD)) defined as:

MSD( Xi ) = maxk [ p( Xi < klINB < 0) - p( Xi < klINB ~ 0 )]

This can be measured from the results of a single MCS sampling from the probability

density functions of all parameters (X).

1. Divide the results of the MCS into 2 data sets A and B: where INB >0 and

INB<O.

2. For each value (k) within the range of values of Xi, calculate the proportion of

A where Xi is less than the value (the cumulative density).

3. Repeat step 2 for B.

4. For each value within the range of values of x., calculate the absolute

difference between the cumulative densities for A and B.

5. The MSD is the maximum value from step 5.

The difference between the two density functions will be larger for parameters which

have a major impact on INB compared to those with minimal impact. Figure 4.11

shows the cumulative density functions dichotomized by INB for UMILD and

CCONSM.

36 Birnbaum importance and Fussell Vesely importance are measures commonly used in
environmental appraisals and have been recognized as an appropriate measure of parameter
importance for the assessment of safety of nuclear reactors (Birnbaum 1969, Fussell 1975, Cheok et
al. 1998). Both techniques are concerned with identifying those components of a system whose failure
are most important with respect to system failure. However, both measures require that both input
parameters and outcomes are binary. Generalized sensitivity analysis is equivalent to these techniques
in the analysis of continuous data.
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Figure 4.11: Cumulative Density Functions of UMILD and CCONSM for INB
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4.6.2.6 Elasticity Based Measures

Elasticity (E) is a measure of the change in the value of the outcome to a change in

the value of an input parameter (Lipsey et al. 1999). Such measures have also been

classified as normalized local sensitivity measures (Saltelli et al. 2000, Eisenberg and

Sagar 2000).

dINB ~Xicx·=--·--
I dx, /-lINB

The level of elasticity at a single value, point elasticity, is an inappropriate measure

of importance, as it does not incorporate the level of uncertainty around the input

parameter; nor does it reflect that elasticity will vary over the range of values of an

input parameter (Steen and Erikstad 1996). Thus, it is necessary to consider both the

uncertainty around the input parameter and the associated variability in elasticity.

Two alternative measures of elasticity have previously been employed as importance

measures; actual elasticity coefficients (AEC) and absolute relative overall sensitivity

(AROS). AEC is the product of the point elasticity associated with an input

parameter and its coefficient of variation (Steen and Erikstad 1996).

AEC = e * (1Xi = dINB. (J Xi

Xi /-l dx. INB
Xi l

Both point elasticity (E) and AEC can be calculated without MCS. However, AEC

does not allow for the variability in elasticity over the range of the input parameter.

Nuitjen has considered various methods of assessing parameter importance by

elasticity based measures within an economic analysis of selective serotonin reuptake

inhibitors (SSRI) use (Nuitjen 1999, Nuitjen and Hardens 1997). First, Nuitjen and

Hardens (1997) considered two concepts point and range sensitivity. Point
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sensitivity is simply the elasticity at the base value for each input parameter. Range

sensitivity equals the ratio of the absolute difference in outcome based on the

minimum and maximum values of an input parameter and the expected value of the

outcome.

Nuitjen (1999) further refined range and point sensitivity by incorporating

probability distributions in the calculation of AROS. AROS involves estimating the

responsiveness of outcome to values for the input parameters by linear regression

analysis. The coefficient from the regression analysis is then used to estimate

elasticity across the range of the input parameter and an overall elasticity measure is

calculated through quadrature. Thus, dINB/ dx, is assumed fixed for all values of Xi,

though E will vary by x..

Although already technically complex, AROS requires the assumption that the

relationship between input parameters and outcomes are linear. An alternative

approach does not require this restrictive assumption (Coyle et al. 2003b). The

elasticity coefficient (BC) for a parameter is defined as the expectation of elasticity

over the input parameter.

sa xi)= Ex; (ex;)

This can be estimated through multiple MCS and numerical quadrature as follows:

1. A set of values is determined for the parameter of interest. The values should

be equally spaced across the individual's parameters probability function with

a high degree of coverage.
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2. For each value of the parameter chosen in step 1, INB is estimated by

conducting MCS by sampling from the probability density functions of all

other parameters (XC).

3. From step 2, E is calculated

4. Each estimate from step 3 is weighted by the probability density for the

specific value of the parameter.

5. EC is then estimated by integrating across the probability density function

using Simpson's rule.

4.6.2.7 Entropy

Entropy (H) is a measure of the degree of dispersion of values for an outcome

measure (Krzykacz-Hausmann 2001, Kapur 1989). Entropy is the negative of the

expectation over a parameter of the product of the probability density of the

parameter and the log of the probability density. For INB this is defined as :

H( [NB) = -E1NB[f( [NB ).log( f( [NB))]

As INB is continuous and need not take any identifiable form of probability density

function, probability density has to be estimated empirically. For the example used

to illustrate these techniques, the entropy of INB was estimated as follows:

1. INB estimates from the base MCS were grouped into INB categories (INBc)

with a width of $250 (e.g. 0 < INB < 250,250 < INB < 500, ).

2. The probability that INB (p(INBc)) will fall into each category is estimated

based on the proportion of replications in each category from the base MCS.

3. Entropy is the negative of the sum of the product of p(INBc) and log

(p(INBc)) for all categories where p(INBc) >0.
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The mutual information (MI) or relative entropy between two variables is defined as

the difference between the entropy of INB as estimated above and the entropy of

INB conditional on Xi (H(INBlx;)) (Felli and Hazen 1998).

MI X; = H ( INB ) - H ( INBIXi )

where
H( INBlxi)= Ex; [-ElNBV( INBlxi.log( f( INBlxi ))]]

H ( INBlxi ) can be estimated as follows:

1. A set of values is determined for the parameter of interest. The values should

be equally spaced across the individual's parameters probability function with

a high degree of coverage.

2. For each value of the parameter chosen in step 1, a MCS is conducted

sampling from the probability density functions of all other parameters (XC).

3. Based on the results of the MCS, a conditional estimate of entropy is

estimated as above.

4. Each estimate from step 3 is weighted by the probability density for the

specific value of the parameter.

s. H(INBlx;) is then estimated by integrating across the probability density

function using Simpson's rule.

4.6.3 Assessment of Techniques

The following techniques were applied to the case study: rank correlation,

standardized regression coefficient, contribution to variance, maximum separation

distance, elasticity coefficient and mutual information. In addition, a proxy measure
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of EVPPI through use of the single MCS method is considered for all parameters

(not just those linear in net benefit) 37.

Techniques were assessed by the relative importance of each input parameter

compared to EVPPI (as measured by the quadrature method) and by their

computational efficiency. Comparison of the importance of parameters was by both

the rankings of input parameters and a calibrated importance score with a scale of 0

to 100. A score of 0 is the minimum possible score for each technique. A score of

100 is given to the maximum absolute score over all parameters for each technique.

Analytical complexity was assessed in terms of the number of Monte Carlo

simulations required, the complexity of data manipulation and the requirement for

additional statistical software.

For those methods which were shown to give similar rankings as EVPPI and were

computationally efficient, further analysis explored the impact of alternate values of

A. on parameter importance. Base analysis related to a value of A. of $50 000.

4.6.4 Results

4.6.4.1 Importance of Individual Parameters

Table 4.5 reports the raw scores for each importance measure for each input

parameter. Table 4.6 reports the ranking of each input parameter by each measure.

Table 4.7 reports the calibrated scores by each importance measure.

37 For all variables except PPROGRESS the single MeS method gave different values than the
quadrature method. This confirms that the single MeS method is only a proxy method of estimation
in most cases.
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Table 4.5: Raw Scores for Each Input Parameter by Importance Measure

Input EVPPI j Proxy Rs SRC MSD EC MI CV
Parameter EVPPI2

PIMPROVE 0.69 0.69 0.35 0.37 0.25 5.01 0.02 0.16
PPROGRESS 6.48 5.91 -0.53 -0.53 0.38 7.20 0.05 0.30
UMILD 2.64 3.18 0.37 0.41 0.32 76.92 0.02 0.14
USEVERE 2.65 2.87 -0.39 -0.42 0.30 41.42 0.02 0.17
CCONSM 0.00 0.00 -0.11 -0.11 0.12 0.55 0.00 0.01
CHOSPM 0.00 0.00 -0.15 -0.13 0.11 0.67 0.00 0.02
CADDM 0.00 0.00 -0.04 -0.03 0.07 0.16 0.00 0.00
CCONSS 0.23 0.42 0.33 0.32 0.29 1.79 0.02 0.11
CHOSPS 0.04 0.04 0.29 0.28 0.23 1.49 0.01 0.09
CADDS 0.00 0.00 0.07 0.07 0.05 0.32 0.00 0.01
j EVPPI based on quadrature method
2 EVPPI based on single MCS method

Note: Variable definitions are provided in Table 4.1

Table 4.6: Rank Ordering of the Importance of Parameters

EVPPI tInput Parameter Proxy Rs SRC MSD EC MI CV
EVPPI2

PIMPROVE 4 4 4 4 5 4 3 3
PPROGRESS 1 1 1 1 1 3 1 1
UMILD 3 2 3 3 2 1 4 4
USEVERE 2 3 2 2 3 2 2 2
CCONSM 8 8.5 8 8 7 8 8 8
CHOSPM 7 8.5 7 7 8 7 7 7
CADDM 10 8.5 10 10 9 10 10 10
CCONSS 5 5 5 5 4 5 5 5
CHOSPS 6 6 6 6 6 6 6 6
CADDS 9 8.5 9 9 10 9 9 9
t EVPPI based on quadrature method
2 EVPPI based on single MCS method

Note: Variable definitions are provided in Table 4.1
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Table 4.7: Calibrated Importance Scores for Each Input Parameter by

Method

Input EVPPI i Proxy Rs SRC MSD EC MI CV
Parameter EVPPI2

PIMPROVE 10.6 11.7 65.7 69.3 64.8 6.5 47.1 54.3
PPROGRESS 100 100 100 100 100 9.4 100 100
UMILD 40.7 53.8 70.9 76.8 83.6 100 46.5 48.4
USEVERE 40.9 48.6 74.3 79.3 78.8 53.9 50.8 55.5
CCONSM 0.0 0.0 21.7 19.9 31.1 0.7 2.1 4.4
CHOSPM 0.0 0.0 28.0 24.9 28.8 0.9 4.3 7.7
CADDM 0.0 0.0 7.5 5.8 19.2 0.2 0.0 0.4
CCONSS 3.6 7.1 62.4 61.9 76.0 2.3 33.2 37.5
CHOSPS 0.6 0.7 54.8 53.5 60.4 1.9 25.1 29.8
CADDS 0.0 0.0 13.8 12.7 14.2 0.4 0.0 2.1
IEVPPI based on quadrature method
2 EVPPI based on single MCS method

Note: Variable definitions are provided in Table 4.1
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EVPPI, proxy EVPPI, rank correlation and standardized regression coefficients all

have a similar ranking with PPROGRESS as the most important parameter followed

by the two utility parameters followed by PIMPROVE and then all cost parameters.

Maximum separation distances gave a similar ranking for the first three parameters

but with different rankings for all other parameters. The other three methods gave

different rankings for the first four parameters.

As well as divergences in ranking there are significant divergence in terms of the

calibrated importance scores between each method. Rank correlation, standardized

regression coefficients and maximum separation distances gave similar calibrated

scores. However, none of these methods gave similar calibrated scores to EVPPI.

EVPPI and proxy EVPPI gave similar calibrated scores.

4.6.4.2 Complexity

Table 4.8 details the relative complexity of each of the techniques considered.

Complexity of EVPPI depends on the appropriate method for each particular input

parameter. For this analysis, estimates of EVPPI using the quadrature method were

used. Under this method calculation of EVPPI is complex and computationally

efficient methods for screening parameters may be desirable.

Of the other methods, rank correlation is less complex requiring only simple analysis

of data from the initial simulation which could be conducted easily within an Excel

spreadsheet. Maximum separation distances and standardized regression coefficients

can also be calculated within Excel though this requires complex data manipulation.

Both these techniques are simple if data is transferred to a more advanced statistical
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Table 4.8: Complexity of Importance Measures

Number of Complexity of Additional Replications
Replications data statistical required for
Reguired maniQulation software * case stud~

ImQortance
Measures
Rank correlation r Simple No 5000
Standardized r Simple Preferable 5000
regression
coefficient
Maximum r Simple Preferable 5000
separation distance
Elasticity coefficient r*m*k Complex No 5050000
Partial contribution r*m*k +1 Complex No 5050001
to variance
Expected reduction r*m*k +1 Complex No 5050001
in entropy
EVPPI
UNLI 2*r*k Complex No 100000
Single MCS r*k Simple No 50000
Difference method 2*r*k Simple No 100000
Two stage MCS r*r*k Simple No 250000000
Quadrature method r*m*k Complex No 5050000

k = uncertain parameters (for case study k =10)
r = replications within a MCS (for case study r =5000)
m = sample values for input parameter of interest for quadrature (for case study
m=lOl)

*Additional to Excel or other spreadsheet based software
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package such as SPSS. Other techniques require repeat Monte Carlo simulations.

Contribution to variance, elasticity and entropy require calculating expected values

over each input parameter. This involves a significant number of repeat Monte Carlo

simulations using a range of fixed values of each input parameter. These techniques

also require an extensive degree of data manipulation after the conduct of the

simulations.

4.6.4.3 Impact of A.

Given the relative values from the importance measures and their relative

complexity, elasticity coefficients, partial contribution to variance and entropy are

unlikely to be efficient methods for screening variables for estimation of EVPPI.

Figure 4.12 demonstrates the variability in both rankings and values for the following

measures over a range of threshold values: EVPPI, proxy EVPPI, rank correlation,

standardized regression coefficients and maximum separation distances.

As expected, for all input parameters the raw values for EVPPI peak at the value of

the ICER. The ranking of parameters by EVPPI varies by A with cost parameters

being relatively more important the lower the value of A. Similar findings occur with

respect to analysis using the single MCS method for estimating a proxy EVPPI.

For all other methods, the ranking of each parameter varies by A similarly to EVPPI.

However, none of the methods demonstrate a similar peak in relative importance

around the leER.
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Figure 4.12: Responsiveness of Importance Measures to Changes in A
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4.6.5 Conclusions

The degree of uncertainty around parameter estimates within economic decision

models generally leads to uncertainty propagation whereby an expected value of net

benefits of a therapy is estimated but the true value is unknown. Thus, it is necessary

when interpreting the results of the analysis not just to determine what is the optimal

treatment choice given the information available; but also to assess the relative

importance of parameters based on their contribution to such uncertainty.

Techniques for assessing the importance of parameters (importance analysis) have

been adopted in other disciplines but only few have been considered in terms of their

relevance to economic analysis.

The appropriateness of each measure of importance needs to be assessed in terms of

how results can be interpreted. Such appropriateness must be assessed in the context

of the problem facing the decision maker. If it is accepted that the uncertainty that

we are interested in is the probability of making an incorrect decision and the

consequences of such a decision, then measures of importance that focus on the

dispersion of the outcome measure may be inappropriate. One could have a high

degree of correlation between a parameter and the outcome but there may be minimal

risk of making a wrong decision. Similarly, for most of the techniques, there is

difficulty in interpreting what a specific score means in terms of the need for

obtaining further information. Thus, the importance scores and rankings do not

necessarily help in determining which further information would be the most

efficient use of scarce resources. EVPPI is the only technique which directly

considers the value from further information.
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EVPPI requires intricate analysis which may be computationally inefficient for

complex models. Hence, methods of assessing parameter importance which are

more efficient may be useful as a screening mechanism for identifying parameters

for which computation of EVPPI is warranted.

In the second part of this chapter, several different techniques for importance

analysis were identified and applied to an economic model to determine their

suitability as a screening mechanism. The measures differ in terms of how they

measure the uncertainty in the outcome of interest. Correlation coefficients,

regression coefficients, measures of variance and entropy focus on the degree that the

input variable is responsible for the dispersion in the outcome variable. Elasticity

looks at the responsiveness of outcome to changes in the value of an input parameter.

Maximum separation distances focus on the uncertainty concerning the optimal

decision based on the outcome measure. Thus, differences in rankings should be

expected and the measures which were closest in terms of importance scores were

generally similar in how they characterized uncertainty.

Analysis confirms that the importance of specific input parameters varies by a

decision maker's threshold value of a QALY. It is clear that both the values and

ranking obtained from importance will vary by the threshold employed. Thus, the

calculation of EVPPI becomes more complex given both the lack of transparency

and the lack of consistency in decision making relating to a threshold value.

Analysis must be presented over a range of potential thresholds to allow

determination of the optimal research design.
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Measures differ in terms of their analytical complexity. Some techniques are

relatively simple requiring only the analysis of a base Monte Carlo simulation.

However, other techniques require multiple repeat simulations. Analytical

complexity should not be considered a hindrance to the use of appropriate

techniques. However, the need to conduct analyses for a wide range of threshold

values suggests that simple methods of assessing importance may be of use in

refining the scale of analysis required with respect to determination of EVPPI and

subsequently the expected value of sample information (EVSI). That is, simple

techniques, which return relative values consistent with EVPPI, may be used to

identify a sub-set of parameters for the conduct of a full analysis.

For a technique to be an appropriate method for identifying parameters for which a

full value of information analysis would be appropriate, the technique must provide

relative rankings consistent with EVPPI and be computationally efficient. The last

criteria effectively eliminates elasticity coefficients, partial contribution to variance

and entropy from consideration. Maximum separation distances, rank correlation

and standardized regression coefficients reported similar parameter rankings to

EVPPI. However, for these measures there were substantive differences in the

calibrated importance score for each parameter compared to EVPPI. Furthermore,

none of the measures showed a similar peak in importance around the leER. Given

that the relative importance of parameter uncertainty should be greater the more

uncertain the optimal decision, this is a major concern with regards to the relative

value of these methods as screening mechanisms.
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A proxy measure of EVPPI based on the single MCS method provided scores similar

to EVPPI. This method is computationally efficient and appears to be the most

appropriate method for identifying parameters for which formal calculation of

EVPPI is required.

In conclusion, EVPPI is the theoretically correct method for determining parameter

importance and is a necessary component to the determination of an efficient

research design. The other measures identified have neither an equally appropriate

theoretical basis nor practical application. For complex models where there are a

significant number of uncertain input parameters, screening to identify parameters

which should be subject to more complex analysis of uncertainty may be desirable.

The single MCS method for estimating EVPPI is the most appropriate screening

mechanism.

4.7 DETERMINING VALUE OF SAMPLE INFORMATION AND

OPTIMAL SAMPLE SIZE

4.7.1 Introduction

In previous sections in this chapter the methods for determining EVPI and EVPPI

have been discussed. Following from this, it is necessary to illustrate how such

concepts can facilitate determination of the optimal sample size for further studies.

The traditional basis for determining sample size for studies comparing two groups is

the avoidance of type 1 and type 2 error. Type 1 error is the probability of

incorrectly concluding that there is a difference between groups when no difference

exists. Type 2 error is the probability of concluding there is no difference between
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groups when one does exist. In determining sample size based on avoidance of such

errors, it is necessary to specify two parameters: a (the maximum acceptable Type 1

error) and P (the maximum acceptable type 2 error). Sample size is thus a function

of the desired level of power (1- P) and significance (1- a).

An optimal approach to determining sample size would be to maximize the return on

the investment in further information. Thus, there are several problems with the

traditional basis of determining sample size. Traditional sample size calculations

ignore the following factors which can be seen as determinants of the return from

generating further information:

- The level of available information: the greater the available information the

less further information required

- The potential population affected by the intervention: the greater the potential

population the more value from further information

The incremental cost of the intervention: the greater the incremental cost the

less value in obtaining further information

The costs of obtaining sample information: the greater the cost of sampling

the less value in obtaining further information

Value of outcomes: the greater the value placed on the outcomes of treatment

the greater the value of sample information

Lifetime of intervention: the longer the new information will be useful in

determining optimal treatment choices, the greater the value of information

- Uptake of intervention: the greater the probability that physicians or patients

will choose to adopt the treatments considered, the more value in further

information
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An alternate level of error is Type 3 error: the probability of adopting one treatment

when another treatment should be preferred. EVPI is simply the product of the

probability of type 3 error and the consequences of such error. In the following

section the link between EVPI, EVPPI and the expected value of sample information

(EVSI) is established and methods of determining optimal sample size for further

research illustrated by application to the case study summarized in Section 3.2.

4.7.2 Expected Value of Sample Information

4.7.2.1 Definition of EVSI and MVSI

EVPPI is the opportunity cost of making decision based on the current uncertainty

concerning a specific parameter or sub set of parameters. Collecting further sample

information can reduce such uncertainty and thus reduce the opportunity cost. The

reduction in opportunity cost can be referred to as the expected value of the sample

information (EVSI). Thus, the EVSI of a sample with size s (EVSIs) is defined as:

EVSI s = EVPPI - EVPPlls

The expected value of sample information will increase as the sample size increases

and will tend towards EVPPI as the sample size tends towards infinity. The marginal

value of sample information (MVSI) can be defined as the increment to EVSI for one

additional sample:

MVSl = EVSI s+ 1 - EVSl s

MVSI will tend towards 0 as sample size tends towards infinity.

111



4.7.2.2 Estimation of EVSI

The expected value of sample information can be estimated as follows (Ades et al.

2004):

1. Estimate EVPPI based on current data

2. For a sample size s simulate data collection based on current knowledge

3. Update probability distribution(s) for input parameter(s) by combining prior

(original) data with simulated sample data

4. Estimate EVPPIls based on updated distribution

5. Repeat steps 1 - 4 a number of times (5000)

6. Estimate expected value of EVPPIls

7. EVSI is the result of the subtraction of the value from step 1 and the value

from step 6

8. Repeat steps 1 - 7 for various s.

EVPPI can be estimated using methods outlined in Section 4.5.3. Estimates of

EVPPIls require combining prior data with simulated data to obtain posterior

probability density function(s). In certain instances updating of density functions are

straight forward as data are conjugate: i.e. the prior data and the data from the

research study can be combined". In other instances updating is more complex and

requires the use of specific software such as WinBugs. Within the analysis of the

case study, simple updating was possible due to the use of conjugate distributions.

38 Conjugacy requires that a posterior distribution for the parameter can be obtained by both the prior
data and the data from the research study using simple mathematical calculations. Methods for
updating density functions follow the methods outlined by Ades and colleagues (2004).
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4.7.3 Determining Optimal Sample Size

In the previous section, methods of estimating the EVSI per patient were outlined.

By weighting EVSI by the discounted incremental number of patients (n) who will

receive treatment based on the new decision we can determine population EVSI.

The optimal sample size (s*) for the study will be the point where the return on

sampling is the greatest. This will be where the difference between population EVSI

and the cost of sample information (CS) is greatest. This is an equivalent condition to

where the marginal cost of sample information (MC) is equal to MVSI.

si* = maxs (EVSI * n - CS) = sl(MVSI * n = MC)

4.7.4 Application to Case Study

4.7.4.1 Background

In Section 3.2, the economic analysis of entacapone in the treatment of Parkinson's

disease was summarised. In Section 3.4, the methods for estimating EVPPI were

applied to the data used in this study. The case study is now used to demonstrate the

methods for estimating EVSI .

4.7.4.2 Potential Study Designs

Three potential study designs are considered. First a costing study could be

conducted where by Parkinson's patients with mild and severe disease are identified

and their resource use is monitored over a 6 month period. A utility elicitation study

could be conducted whereby patients with mild or severe Parkinson's disease are

recruited and are asked to conduct a utility exercise. Finally, a clinical cohort study

can be conducted whereby a proportion of patients with severe Parkinson's disease

are given entacapone. These could be followed up at six months to determine the
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proportion improving to mild disease. At 12 months, those who had improved would

be followed up to see the proportion progressing to severe disease".

The cost of each potential study must be considered based on similar studies

conducted previously. For the cost study, the cost per patient recruited is assumed to

be $100. The same cost is assumed for the utility study. For the more complex

clinical cohort study a cost of $300 per patient enrolled is assumed".

In addition to the cost of the studies, before estimating the optimal sample size for

potential studies, it is necessary to estimate the use of the treatment: i.e. the patient

population which is subject to the opportunity cost of making the decision under

uncertainty discounted to present values (n)41. This is a function of the incidence of

the disease in question (n) (i.e. the potential annual population), the percentage of

incidence cases which will receive the treatment (u) (the uptake of treatment), the

length of time the treatment will be used before being replaced by a newer treatment,

the lifespan of the research (1S)42and the relevant discount rate (r):

u*n
pop = L-___,-

t=O ... T (1+ rY'

The annual incidence of severe Parkinson's disease in Canada is approximately 2600

cases. It is assumed that 50% of patients will receive entacapone and that it will be

39 For the cost and utility studies, the UNLI method is used to estimate EVPI. For the clinical cohort
study the quadrature method is used.

40 In reality, the cost of research is more complex in that it will include both fixed and variable costs.
In chapter 8, a more complex model for the costs of research are considered.

41 Note, that in this and later examples the variables used to determine the cost of sample information
and the patient population affected are assumed fixed. This is unlikely and these parameters should be
considered uncertain and probability density functions could be specified. Thus. the optimal sample
size will be the expected value of s* based on a MCS sampling from these distributions. This is
considered further in Section 8.4.

42 Note, that for the case study it is assumed that research results can be obtained instantaneously.
However, the time required to conduct research will limit the lifespan. This is considered in chapter 8.
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given to patients for a period of five years before being replaced by a new product.

Based on an annual discount rate of 5% the discounted incremental number of

patients is 5910.

4.7.4.3 Optimal Sample Size

Figure 4.13 demonstrates how EVSI for each of the potential study designs increases

as s increases. The optimal sample sizes for the studies are 28 for the costing study,

170 for the utility study and 200 for the cohort study (Figure 4.14).

Sensitivity analysis was conducted to determine the responsiveness in optimal

sample size for the utility study to changes in the annual incidence of disease, the

uptake of treatment, the life span of treatment and the cost of sampling. The

relationship between parameters and the optimal sample size is non linear (Figure

4.15). Results seem particularly sensitive to assumptions concerning the uptake of

research information and the annual incidence of patients. Thus, if there is

uncertainty around these parameters further MCS is warranted.

4.8 CONCLUSIONS

Most previous recommendations with respect to handling uncertainty within

economic analysis have tended to focus on the conduct of sensitivity analysis which

focuses on the robustness of a study's results to changes in parameter values. Such an

approach ignores the underlying decision uncertainty which a decision maker must

contend with.
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Figure 4.13: EVSI for Potential Studies by Sample Size
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Figure 4.14: Optimal Sample Size for Potential Studies
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Figure 4.15: Relationship between Parameters and Optimal Sample Size for

the Utility Study
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In Chapter 2, it was argued that decision makers should solely be concerned with the

expected value of outcomes when basing decisions over the optimal treatment

choice. Thus, in considering uncertainty it is necessary to obtain precise measures of

expected values and the recommended approach is that of probabilistic analysis

based on Monte Carlo simulation. This does not however mean that further

consideration of the uncertainty over a decision is irrelevant. Rather further focus

when handling uncertainty should be on what further information it is justified to

collect.

The focus of this chapter has been on conducting a full analysis of uncertainty

pertaining to a straightforward economic analysis of treatment for Parkinson's

disease. In Section 4.2, the case study was introduced. In Section 4.3, appropriate

methods of determining expected values of outcomes related to cost effectiveness

were presented. In addition, methods for presenting the level of uncertainty over cost

effectiveness are described, applied to the case study and evaluated in terms of their

contribution to optimal decision making.

The rest of the chapter relates to determination of an optimal research plan given the

uncertainty over the value of therapy within the case study. In Section 4.4,

appropriate methods for estimation the value of information were identified. Of the

five measures considered, two are appropriate for all input parameters, two are

appropriate in specific circumstances and a further measure is wshown to be

inappropriate. Given the complexity of certain measures, the focus of Section 4.5

was to identify potential screening measures to simplify the process with respect to

identifying an optimal research plan. Although certain measures performed
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adequately, the single MCS method for estimating EVPPI was shown to be the most

suitable screening measure for identifying parameters with information value. In

Section 4.6, an optimal research plan for the case study was identified.

The chapter provides a full description of a normative framework for consideration

of uncertainty. First, methods for assessing cost effectiveness given uncertainty are

described and applied. In determining the optimal treatment choices for specific

patients, uncertainty around input parameters should be characterised by probability

density functions, with the expected value of outcomes of interest estimated through

Monte Carlo simulation. Secondly, a framework for assessing the value of further

information is derived and applied. The framework requires estimation of the

expected value of perfect information, the expected value of sample information and

the potential cost of future research projects.

The remainder of this thesis is concerned with the application of the framework for

handling both variability and uncertainty to a complex economic analysis of

treatments for osteoporotic women. Chapters 7 and 8 report analysis where

consideration of variability and uncertainty are considered simultaneously to allow

identification of both an appropriate limited use strategy for osteoporotic medications

as well as an optimal research plan. Before this, it is necessary first to identify

appropriate methods for the conduct of economic analysis in osteoporosis (Chapter

5) and secondly to describe in detail the design of the economic model of

osteoporosis used in this analysis (Chapter 6).
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Chapter 5.

Economic Evaluation for Treatments to Prevent

Osteoporotic Fractures

5.1 INTRODUCTION

The objective of Chapters 6, 7 and 8 of this thesis is to conduct a full economic

analysis relating to alternative treatment options for osteoporosis based on the

normative framework outlined in Chapters 3 and 4. The focus of the analysis is to

determine which treatments are optimal for which patients (an analysis of variability)

and to determine what further research is optimal (an analysis of uncertainty). In

Chapter 6, a decision model developed to conduct the analysis is described in detail.

In Chapter 7, a stratified cost utility analysis is conducted whereby the optimal

treatment choice is identified for different cohorts of patients. Finally, in Chapter 8,

a value of information analysis is conducted to ascertain which further research

projects are worthwhile.

In this chapter, the focus is on issues relating to the conduct of economic evaluation

for treatments to prevent osteoporotic fracture. Section 5.2 contains a brief

background to osteoporosis and the available treatment options to prevent fractures.

Section 5.3 contains a review of recent guidelines related to the conduct of economic

evaluations relating to osteoporosis. Section 5.4 provides a detailed review of

existing evaluations of the cost effectiveness of osteoporosis treatments. The review
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of existing guidelines provides guidance on how to conduct the required study and,

in addition, can be used to determine the quality of existing studies.

5.2 BACKGROUND TO OSTEOPOROSIS

Osteoporosis is a systemic skeletal disease characterized by low bone mass, micro-

architectural deterioration of bone tissue, leading to increased bone fragility and a

consequent increase in fracture risk (Consensus Development Conference 1993).

The most common clinical manifestations of osteoporosis are fractures of the hip,

vertebrae or wrist. Approximately 30% of postmenopausal females have

osteoporosis according to the World Health Organization (WHO) definition of

osteoporosis (Kanis et al. 1994, WHO Study Group 1994). There is evidence of

excess mortality associated with a hip fracture which has been estimated to be around

20% (Cooper 1993). However, mortality post fracture is a function of age with

evidence of an exponential increase (Papadimitropoulos et al. 1997).

A Canadian study estimated that the health care costs associated with osteoporosis in

Canada were $465 million with an additional $563 million for long term care

facilities and $279 million for chronic care hospitals (Goeree et al.1996). Thus,

therapies which reduce the risk of sequelae associated with osteoporosis may be

attractive in that their costs may be partly offset by reducing this burden.

For rheumatologists, osteoporosis is an important disease given that many patients

are at increased risk of developing osteoporosis due to the effects of inflammation

from their disease, and use of corticosteroids. The focus of treatments for

osteoporosis is the prevention of fractures. There are now more therapeutic options
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available to treat osteoporosis and many agents are under investigation. The

potential costs of drug therapy for the prevention and treatment of osteoporosis

represent a considerable burden to those who are paying for them - consumers, third

party payers, governments.

The major drug class used in Canada for the prevention of osteoporotic fractures in

postmenopausal women are bisphosphonates'Y'". Bisphosphonates act by changing

the balance between osteoblasts (bone building cells) and osteoclasts (bone-eroding

cells). Bisphosphonates slow down the osteoc1asts by binding to the surface of bones

allowing the osteoblasts to work more effectively. This results in increasing bone

mass (density) and thus reduces the risk of fractures (Fleisch 1993).

Three different bisphosphonates are licensed for the treatment of osteoporosis in

Canada: etidronate, alendronate and risedronate (Canadian Pharmacists Association

2001). The typical daily dose for alendronate and risedronate are 10 mg and 5 mg

respectively. Etidronate is taken cyclically; in that a 400 mg tablet is taken every day

for two weeks (14 days) followed by two-and-a-half months (76 days) of calcium

supplements (500 mg). The calcium supplements are included in the prescription

package. This cycle is repeated four times annually. All drugs should be taken with

43 Focus on postmenopausal women is justified on three counts. The incidence of osteopororis and the
risk of fracture for women with osteoporosis is greater the older the women; thus treatments solely
related to fracture prevention are unlikely to be cost effective if targeted at pre or peri menopausal
women. In previous evaluations of hormone replacement therapies for menopausal women the impact
of the inclusion of fracture prevention has been minimal (e.g. Coyle et al. 2003d). For analysis
specific to the Canadian health care system, treatment of osteoporosis prior to age 65 is unlikely to be
covered by the drug formularies of the provincial ministries.

44 Hormone replacement therapy (HRT) had been a commonly prescribed treatment for osteoporosis.
However, given the continued evidence concerning the side effects associated with its use, HRT is no
longer recommended solely for the treatment of osteoporosis and its use in this area has fallen
dramatically.
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water and there are similar restrictions relating to the time gap between taking

therapy and eating.

In 2002, the Ontario Drug Benefit formulary allowed the prescribing of etidronate to

all osteoporotic women covered by the provincial drug benefit program 45 (Ontario

Ministry of Health and Long Term Care 2002). The use of alendronate and

risedronate was restricted to women who had failed on previous treatments (Le.

etidronate)". However, the Ontario Drug Benefit Formulary (ODB) had as an

objective the revision of the prescribing guidance to more fully reflect the relative

costs and benefits of each treatment option.

5.3 PREVIOUS GUIDELINES FOR ECONOMIC EVALUATIONS

RELATED TO OSTEOPOROSIS

5.3.1 Introduction

Four separate reports providing guidance on the conduct of economic evaluations of

treatments specific to osteoporosis have been identified.

5.3.2 Group for the Respect of Ethics and Excellence in Science

A 1997 report from the Group for the Respect of Ethics and Excellence in Science

provided recommendations for evaluation of drugs registered for the prevention of

treatment of osteoporosis (Dere et al. 1998). The group consisted of leading health

economics and clinicians. However, details of the process by which

45 The program provides drug benefits to seniors (65 years of age and older) and families on social
assistance.

46 Failure was characterized by either failure to maintain bone density after 1 year, failure to tolerate
or incidence of fracture
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recommendations were made were not provided. Major recommendations related to

the need for modeling, the adoption of a long term time horizon, the need to include

jurisdiction specific data on costs and epidemiology, inclusion of long term costs

associated with fractures and the incorporation of quality of life effects.

5.3.3 WHO Collaborating Centre

The World Health Organization provided similar recommendations on the conduct of

evaluation in osteoporosis (WHO Collaborating Centre 1999). The group consisted

of leading clinicians with some overlap with the previous report. Details of the

process of reaching consensus were not provided. Most of the recommendations are

generic to all economic evaluations not just those relating to osteoporosis.

Osteoporosis specific recommendations related to the inclusion of long term costs,

the need to estimate age specific fracture rates, the need to consider any ongoing

benefit of treatment after treatment is stopped and the need to base economic models

on the reduction in fractures rather than intermediate outcomes such as bone mineral

density.

5.3.4 Tosteson and Colleagues

Tosteson and colleagues identified eight methodological challenges in the conduct of

economic analyses in osteoporosis (Tosteson et al. 2001a). The group comprised

leading health economists and clinicians and was funded by both the National

Institutes of Health and Proctor & Gamble Pharmaceuticals. The methods for

reaching consensus were not provided.
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Recommendations relating to each challenge were as follows: a preference for

fracture based studies rather than bone mineral density (BMD) based modeling; the

need to include health states incorporating all impacts of disease and treatment; the

need to include mortality following fracture; the need to account for the costs of long

term care; the need to include health utilities; the need to model any benefit beyond

therapy; the need to validate a model by ensuring it is calibrated (Le. replicates

population incidence and prevalence rates); and the need to include data specific to

the population under consideration.

5.3.5 OMERACT

5.3.5.1 Introduction

The final guidance document relates to the recommendation of a reference case for

economic evaluations in osteoporosis which was developed as part of the

OMERACT initiative (Coyle and Tosteson 2003)47. The OMERACT initiative is an

international collaboration interested in defining appropriate outcome measurement

in the area of rheumatology. A major focus of this initiative has been to establish

reference cases for evaluations in different clinical areas (Maetzel et al. 2003). At

the 2000 and 2002 conferences, progress was made towards developing a reference

case for economic evaluations in osteoporosis. Issues relating to the conduct of

economic evaluations were identified and recommendations on appropriate methods

for dealing with these issues were obtained by debate between leading clinicians and

health economists working in this area.

47 I was the lead author on the report of the reference case and was involved in all stages of its
development. The report reflects the consensus views of those participating in the process. Given the
methods adopted in developing the guidance and my role in its development, recommendations from
this report are provided in greater detail.
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Recommendations were divided into two categories; those for which consensus

emerged and those for which further debate was required. For the latter tentative

recommendations were made.

5.3.5.2 Issues of Consensus

Issues which were identified as having a consensus recommendation were as follows:

Study Purpose and Population

Studies should report patient characteristics relevant to the evaluation of therapies for

osteoporosis. Important characteristics include age and whether the patient had

previous fracture; both strong predictors of the baseline risk of fracture

(Papadimitropoulos et al.1997, Klotzbuecher et al. 2000). If possible, studies should

incorporate a stratified analysis where the costs and benefits of therapies are

estimated for alternate patient profiles (Coyle et al. 2003a).

Clinical Data

The effectiveness of therapies should be based on efficacy data from clinical trials.

Where possible, evaluations should be conducted based on the results of meta

analysis rather than single trials as this limits the potential for bias (Coyle and Lee

2002). When conducting such analyses, attention should be given to the use of bone

mineral density t-scores for trial inclusion. Baseline rates of fractures and mortality

should be obtained from relevant population databases for the geographical location

for which the analysis is being conducted (Papadimitropoulos et al. 1997, Jacobsen et

al. 1990, Johnell et al. 1992).
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Resource Use

Evaluations should consider the costs of drug therapies including health care costs

associated with monitoring of drug therapies (e.g., additional health care provider

visits) and/or managing treatment-emergent side-effects. In addition, both the acute

and long-term costs associated with fracture should be included in analyses. If any

extraskeletal effects of the treatment are documented, then related resource use

should be included in the analysis.

Discounting

Future costs and benefits should be discounted adopting a discount rate accepted by

the jurisdiction to which the study is aimed: e.g. 0, 3 and 5% (CCOHT A 1997, Gold

et al. 1996).

Source of Study Funding

There has been concern over the potential bias from studies funded by the

pharmaceutical industry (Hillman et al. 1991, Kassirer and Angell 1994). However,

it is unlikely that sufficient economic studies could be produced without industry

funding. Therefore, in addition to a statement on funding source, authors of industry-

sponsored studies must demonstrate their independence in the conduct and reporting

of the economic evaluation. Only studies that were conducted under contracts that

allowed for their independence over all aspects of study design, analysis,

interpretation and reporting of results should be considered for publication.
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5.3.5.3 Issues of Debate

The following issues were identified as ones which were still open to debate. For

each, the tentative recommendation from the OMERACT report is provided:

Study Perspective

Where possible, studies should adopt the societal perspective. The impact of

adopting a societal perspective will be dependent on whether the productivity losses

associated with informal caregivers are deemed appropriate to include. Treatment of

osteoporosis is ostensibly for patients who are past working age. Thus, if costs

related to informal caregivers are excluded, evaluations incorporating costs to both

the health care and social care sectors should be accepted as close approximations to

the societal perspective (Goeree et al. 1996). However, if informal caregiver costs are

included their incorporation may lead to lower cost effectiveness ratios than from a

health care perspective.

Recommendation

Studies should at least adopt a perspective incorporating costs to the health and

social care systems. Analysts should be encouraged to adopt the societal perspective

and further studies should be conducted to estimate informal caregiver costs.

Basis of Modeling Osteoporosis Outcomes

Previous models used in conducting economic analysis in osteoporosis can be

categorized as either age-specific fracture incidence based models or BMD based

models (Tosteson et al. 200la, Zethraeus et al. 2003b). To model treatment

effectiveness, fracture incidence-based models directly apply the relative risk
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reduction for therapy reported in clinical trials to baseline age-specific fracture

incidence rates in the population of interest.

Relative risk reductions from randomized controlled trials usually are reported

separately for vertebral and non-vertebral fracture sites. However, for different non-

vertebral fractures the proportion of fractures attributable to osteoporosis varies

substantively which infers that the relative risk reductions from therapy will vary by

the location of non-vertebral fractures (Melton et a1. 1997). In addition, there are

substantive differences in the costs, mortality and quality of life effects associated

with fractures (Coyle et a1. 2001a). Thus, for economic analysis it is necessary to

obtain relative risk reductions for specific fracture sites; vertebral, wrist, and hip.

BMD based models use epidemiological evidence to parameterize fracture incidence

as a function of BMD and age. A caveat to this approach is that the evidence

provided in epidemiological studies linking BMD changes to fracture risk often

reflect cross-sectional population differences and may not be valid for interpreting

the likely effect of longitudinal BMD differences observed in clinical trials.

Thus the BMD based approach is more complex than the fracture-incidence based

approach and has a greater potential of error. However, they have been attractive in

that previously trials of osteoporotic therapy tended to focus on detecting differences

in BMD rather than a decline in fracture rates. As evidence of reduction in fractures

has become required by regulators the need for BMD based models is less clear

(Committee for Proprietary Medicinal Products 2001). Furthermore, for newer

osteoporotic treatments such as bisphosphonates it is unclear that a BMD level
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obtained through treatment will be associated with the same level of fracture risk if it

occurred without treatment (Cummings et al. 2002) Ultimately, for economic

modeling and clinical trials planning purposes it would be desirable to develop a

comprehensive model that could accurately predict fracture on the basis of both

BMD changes and markers of bone resorption and formation.

Recommendation: We propose thatfuture economic analyses of interventions for

osteoporosis follow previous recommendations by adopting fracture based models

(Tosteson et al. 2001a, WHO Collaborating Centre 1999). In addition, we propose

that relative risks should be obtained for at least the three primary fracture sites and

should be based on symptomatic fractures.

Mortality Following Fracture

There is convincing evidence of mortality post hip fracture (Cooper et al. 1993, Cree

et al. 2000). However there is less convincing evidence of a mortality effect

associated with vertebral fracture (Cooper et al. 1993, Kado et al. 1999).

Recommendations: We propose that economic evaluations in osteoporosis should

incorporate a mortality effect associated with hip fractures and where possible such

data should be based on the specific geographical location for which the study is

conducted. For mortality following vertebral fractures we recommend analysis can

be conducted with or without such effects and reiterate that further clinical research

is needed in this area.
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Long Term Care Admission Post Hip Fracture

Hip fractures are associated with increased admission to long term care facilities

though this will vary by country due to differences in the availability and funding of

such care (Cree et al. 2000). However, it is unclear whether prevention of fractures

will reduce admission to such facilities or merely delay it. A population-based study

from Olmsted County, Maine, USA suggests that savings due to nursing home stays

averted through hip fracture prevention are likely to be overly optimistic (Leibson et

al. 2002).

Recommendation: We propose that studies should incorporate data on long term

care admission specific to the geographical location for which the study is

conducted. Furthermore, we propose that analysis should be conducted based on

two assumptions: that all future long term care costs can be attributed to fracture;

and that only the costs of LTC in the first year post hip fracture are assumed to be

directly attributable to fracture. The latter can be seen as a more conservative

assumption that will bias against effective therapies. Further research addressing

fracture-attributable length of stay in long term care is needed.

Lack of Head to Head Trials

Within economic evaluation, the cost effectiveness of therapies is assessed relative to

other available interventions. The choice of comparator therapy is a major

determinant of the results of an analysis. Existing guidelines tend to differ modestly

in their preferred choice of comparator - however, they tend to favour adoption of

usual practice as at least one of the comparators.

134



A major limitation in the conduct of economic analyses however, is the lack of head

to head trials comparing the therapies of interest. This problem exists primarily as a

result of the requirement for placebo controlled trials with respect to the licensing of

pharmaceuticals. Thus, if we wish to compare treatment options, it is necessary to

estimate the relative effects of treatments through synthesis of placebo controlled

trials. The Australian guidelines for pharmacoeconomics disallow any claim of

superiority for a pharmaceutical based on synthesis of trials (Commonwealth

Department of Human Services and Health 1995). Other guidelines tend to have less

rigorous positions with respect to this issue allowing comparisons through carefully

designed synthesis.

Recommendation: We propose that head to head comparisons can be made

through careful synthesis of similarly designed trials and application of model-based

economic evaluation techniques. However, we also recommend that pharmaceutical

manufacturers be encouraged to conduct head to head trials.

Incorporating Extraskeletal EtTects

In addition to their impact upon osteoporotic fractures, therapies may have

extraskeletal effects. Depending on the therapies under consideration within an

analysis, the importance of such effects will vary. Thus, the selection of health states

to include in model-based economic evaluations of osteoporosis treatment is one that

warrants careful consideration. Until recently, postmenopausal hormone replacement

therapy, a treatment with widely recognized beneficial (e.g. reductions in

menopausal symptoms and protection against colorectal cancer) and harmful (e.g.,

increases in breast cancer, thromboembolic events) extraskeletal effects, was a
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mainstay for osteoporosis prevention and treatment. Thus, model-based analyses for

postmenopausal hormone replacement therapy required explicit attention to health

states related to these extraskeletal effects. Failure to include the full complement of

health states likely to be affected by a therapeutic agent could produce misleading

economic evidence. For example, a treatment that reduced hip fracture incidence by

90%, but increased breast cancer incidence by 50% may appear as a great success

unless the harms were appropriately modeled. For other therapies, incorporation of

extraskeletal effects will have minimal effect on analysis. For example, with

bisphosphonates a possible adverse effect is an increased risk of gastrointestinal

problems which can be alleviated by discontinuation of therapy or improved

adherence. Such effects can be considered by accurate modeling of treatment

discontinuation rates.

Recommendations: We propose that infuture studies, analysts consider the impact

of therapies on extraskeletal effects and incorporate these as necessary to accurately

assess the incremental cost-effectiveness of alternative treatments. Such effects

should be incorporated adopting methods consistent with those discussed with

respect to fractures.

Benefit beyond Therapy

There is evidence that patients experience continued reductions in the risk of fracture

after stopping therapy (e.g. Tonino et al. 2000). Previous studies have assumed that

a patient will experience continued benefit in terms of fracture reduction over a time

period equal to therapy duration; although, it is assumed that magnitude of benefit

will decrease linearly over this period (Tosteson et al. 2001a, Zethraeus et al. 2003b).
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However, evidence of continued benefit comes from studies where the follow up of

patients has been for no more than two years post treatment curtailment (Toni no et

al. 2000).

Recommendation: We propose that future studies should conduct multiple

analyses based on assumptions relating to benefit to be obtained beyond therapy

duration. As a minimum. analysis should be based on assuming no benefit beyond

treatment and a decline in benefit in terms offracture reduction over a time period

equal to either therapy duration or a period up to two years.

Model Validation

Model validation should focus on calibration; that is that the model replicates all

population estimates for each individual parameter (Kuntz and Weinstein 2001).

This is necessary because in certain instances, the specific data required for modeling

are unavailable though sufficient data are available for the interpolation of such

parameters. For example, age-specific mortality (excluding mortality post fracture)

may be unavailable, though age specific all cause mortality and age specific

mortality post fracture is available. Thus, a model should be calibrated such that the

combination of mortality rates post fracture and mortality rates without fracture

replicates age specific all cause mortality. Failure to replicate models can lead to a

major overestimation of the benefits of treatment.

Recommendation:

calibrated.

We propose that for future studies, all models are fully
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Compliance with Therapy

Consideration of patient compliance raises four specific issues to consider; the

measurement of compliance versus continuation; how to measure compliance; how

soon do patients obtain benefits of treatment given non compliance; and compliance

beyond the duration of clinical trials.

It is generally much easier to measure whether patients have obtained prescriptions

for medication rather than whether they have taken medications correctly. This is the

distinction between continuation and compliance. The difference between these

concepts should be recognized within an economic evaluation where the analyst

often models continuation for lack of complete data on compliance. When clinical

trials results are reported on an intention-to-treat basis, it is noted that estimates of

treatment efficacy are likely to already accommodate the impact of treatment non-

compliance.

Estimating compliance levels is problematic. Two distinct forms of approach are

available; prescription based records and patient based reports. Prescription based

records typically involve the use of administrative databases from health care

insurers - for instance the Ontario Drug Benefit (ODB) Program's database can be

used to estimate compliance with therapies at 6 and 12 months. These can be seen as

measures of patient's continuation with therapy though this need not infer

compliance. Alternatively, therapy use can be estimated through such measures as

pill counts and diaries though again these need not be accurate measures.
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There is a potential for clinical trials evidence on continuation to be more optimistic

than what is found in routine clinical practice. Therefore, clinical trials evidence

should be augmented with real world patient compliance information whenever

possible. For example, a recent paper on early osteoporosis treatment

discontinuation among women initiating treatment with low bone mineral density

showed self-reported rates of discontinuation of approximately 1 in 4 for

postmenopausal hormone therapy and 1 in 5 for raloxifene and alendronate (Tosteson

et al. 2003).

Thus, it is necessary in economic evaluation to be concerned over when the benefits

of therapy are likely to commence. In clinical trials reporting fracture reductions by

year of study, there is clear evidence that for many therapies treatment effect begins

within 1 year of therapy (Harris et al. 1999).

Most clinical trials of therapies for osteoporosis are conducted over a short period of

time: 2-3 years. As duration of therapy can be longer than trial duration it is

necessary to model the effects of therapy beyond the period for which efficacy data

are available. Generally, previous studies have adopted the same relative risks of

fractures beyond the trial duration. This seems justified given that there is evidence

of continued benefits from therapies up to 7 years duration (Tonino et al. 2000).

Recommendations: In all evaluations, some empiric measure of compliance

should be used, though sensitivity analysis based on different rates of treatment

continuation is required. We recommend that for economic evaluations in

osteoporosis, that it is assumed that for individuals taking therapy for less than 1
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year no treatment effect is obtained but for individuals taking therapy for at least 1

year the full treatment effect is obtained. Furthermore, we recommend that for

therapy taken beyond the duration of trials that benefits are assumed to continue to

the same extent.

Incorporation of Utilities

The principal impact of the sequelae of osteoporosis is the detriment in the quality of

life of individuals who suffer a symptomatic fracture. For economic evaluation this

is best incorporated by obtaining utility values for the specific fracture health states.

Typical health states will relate to the fractures modeled within the analysis; hip

fracture, wrist fracture and vertebral fracture as well as a "normal health" state

relating to the absence of fracture (Cranney et al. 2001a). With respect to utility

measurement there are two specific areas where there exists a lack of consensus; the

duration of quality of life effects associated with fracture; and what should be the

preferred approach for obtaining utility weights.

Previous studies have typically assumed that the quality of life effects of vertebral

and wrist fractures are limited to the first year post fracture. However, for hip

fractures the quality of life effects may be longer lasting. In addition, previous

model-based economic evaluations have typically assumed that the "worst" post-

fracture health state is that associated with hip fracture. However, recent evidence

has challenged this assumption by findings of lower health utility among persons

with hip and vertebral fracture relative to those with hip fracture alone (Tosteson et

al.2001b).
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There are several methods of obtaining societal utility values for osteoporotic health

states (Torrance and Feeny 1989, Tosteson and Hammond 2002). Direct utility

elicitation methods, such as the standard gamble and time trade off, can be adopted

by developing health state scenarios for osteoporotic health states and obtaining

utility values for these scenarios from the general public. Alternatively, an indirect

approach to health state valuation can be undertaken by having osteoporotic patients

complete a standardized utility questionnaire, which has been linked through

construction of a scoring algorithm to societal health state values (Brazier et al.

2002). One study that considered effect of health state utility values on the cost-

effectiveness of an intervention that reduced hip fracture incidence by 50% suggested

that the two approaches could result in qualitatively different results (Gabriel et al.

1999).

Recommendations: In economic evaluations in osteoporosis, two distinct quality

of life weights should be adopted for all fractures: one relating to the first year post

fracture and a second relating to long term effects (this may for some fractures be

equivalent to normal health). Indirect elicitation has the advantage of providing

societal health state values to the full range of outcome health states experienced by

individuals with osteoporosis. It is recommended that analysts treat all utility values

with caution and conduct appropriately detailed sensitivity analysis.

Accommodating Uncertainty

Previous recommendations for sensitivity analysis for studies in rheumatoid arthritis

suggest that the minimum requirement should be for simple one way analysis of the

major clinical, costs and quality of life parameters (Maetzel et al. 2003). There have
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been considerable developments in the methods of analyzing uncertainty in

economic analysis (e.g. Briggs et al. 2002, Felli and Hazen 1999). Given the wide

range of uncertainty concerning many parameters within an osteoporosis based

economic evaluation, more advanced techniques for sensitivity analysis should be

explored. Monte Carlo simulation techniques can both identify those variables that

have major impact in the results of analyses and provide a more accurate expression

than simple deterministic analysis of the expected value of outcomes of interest

(Doubilet et al. 1985, Thompson and Graham 1996). Such techniques are more

easily conducted through the development of appropriate analytical software.

Recommendation: As a minimum economic analysis in osteoporosis should adopt

simple univariate and multivariate sensitivity analysis. However analysts should be

encouraged to adopt advanced methods for analyzing uncertainty with preference for

the use of Monte Carlo simulation techniques.

5.3.6 Summary of Recommendations

Defining standards for economic evaluations in osteoporosis should improve the

quality of future studies and facilitate comparisons between studies. This should

ultimately allow more efficient health care provision in this disease area. Each of the

guidelines described are steps towards defining such standards.

The guidelines are remarkably consistent in their recommendations for the conduct

of studies. The only substantive difference between them is the extent to whether a
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particular issue is covered within the guideline. There are no apparent issues in

which the guidance from one report is inconsistent to guidance from another.

Table 5.1 provides a summary of the recommendations regarding each issue raised in

the conduct of studies. Recommendations are based on the content of the previous

guidelines. For some issues the recommendations represent the consensus of all the

guidelines, whilst for others they represent the recommendations of the specific

guidelines which covered this issue. In the following section, these recommendations

are used to determine the quality of existing studies and as a template for the

economic model described in Chapter 6.

5.4 REVIEW OF PREVIOUS ECONOMIC EVALUATIONS

5.4.1 Introduction

This section reports the findings of a review of economic evaluations of osteoporosis

treatments for post menopausal women48. Studies were identified through an

electronic search in MEDLINE, EconLit and Current Contents for economic

evaluations in the area of osteoporosis using the keywords: cost-benefit analysis,

cost, cost-analysis, osteoporosis, and fractures. The search was supplemented by

searching the reference list of relevant studies and by a complementary internet

search. In addition, studies were identified from previously published review articles

(Cranney et al. 1999, Zethraeus et al. 2003b, Sculpher et al. 1999).

The following data were extracted from studies:

- Country of origin

48 Studies focusing solely on hormone replacement therapy were excluded given the role for this
therapy in the management of osteoporosis has diminished.
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Table 5.1: Recommendations for Economic Evaluations of Osteoporosis

Interventions

RecommendationMethodological Issue

Time horizon

Study perspective

Modelling fractures

Data sources

Mortality following
fractures

Long term care
admission post
fractures

Head to head
comparisons

Extraskeletal effects

Model should incorporate long term effects: preferably
adopting a lifetime horizon.

Perspective should be at least that of the health care system.

Models should use age-specific fracture incidence with
treatment effects modelled using relative risk reductions
derived from meta analysis of RCTs.

Data should be specific to the population of interest.

At minimum should incorporate attributable mortality
following hip fracture.

Consider two extremes; that all future long term care costs
are attributable to fractures and that only first year costs are
attributable.

Can be achieved through careful synthesis of similarly
designed trials.

All effects which will impact cost effectiveness should be
included.

Benefit beyond therapy Consider two extremes: that there is no benefit beyond
therapy and that benefit is maintained.

Model validation

Compliance with
therapy
Utility values

Accommodating
variability

Accommodating
uncertainty

Study funding

All models should be fully calibrated.

Empiric measures of discontinuation should be used.

Utility values should be used to facilitate cost utility analysis.

Analysis should be conducted for patients with different
characteristics. Stratified analysis is encouraged.

At a minimum, univariate and multivariate sensitivity
analysis. Probabilistic analysis is preferred.

Source of study funding should be stated as should
investigator independence and any potential further conflict
of interest.

Source: Synthesis of Coyle and Tosteson (2003), Dere et al. (1998), Tosteson
et al. (2001) and WHO Collaborating Centre (1999)
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- Treatment comparators

- Study design (type of model or clinical trial)

- Patient characteristics

- Form of analysis (cost minimization, cost effectiveness or cost utility)

- Outcome measure

- Summary of results and conclusions

In addition, each study was assessed in terms of how they measured up to the

recommendations detailed in Table 5.1.

5.4.2 Review of Studies

Table 5.2 is a summary of all identified economic evaluations of therapies for

osteoporosis. Fifteen studies were identified; 5 from the UK, 3 Canadian, 2 each

from Sweden and Denmark, and 1 each from the USA, Italy and Norway. Eight

studies were cost utility analyses whilst the other seven were cost effectiveness

analysis with hip fracture (4), vertebral fractures (2) and risk ratios (1) as outcome

measures. Studies were published over a ten year period from 1994 to 2003; with six

studies published in the first five year period and nine in the latter period.

Of the 15 studies, 12 included a bisphosphonate as a comparator. Of these 9

included alendronate, 2 included risedronate and 6 included etidronate. The

cocnlusiosn of the studies including bisphosphonates were not consistent.

Alendronate appears to be cost effective compared to etidronate in two studies

(Coyle et a1. 2001, Best et al. 1998). However, in two other studies the opposite

conclusions were reached (Aursnes et a1. 2000, Visentin et a1. 1997). In the only
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study comparing risedronate to another bisphosphonate (alendronate); risedronate

was cost effective.

When drawing conclusions from the published studies it is necessary to consider that

the overall quality of studies when assessed against the 15 recommendations for

good practice from the previous section was poor (Table 5.3). The highest quality

study was the recent UK NHS HTA report on osteoporotic treatments (study #11 in

Table 5.3) where 13 of the 15 desired standard were met (Kanis et al. 2002).

However, the study failed to both explicitly provide head to head comparisons

between therapies and to model discontinuation rates based on actual data50.

In other studies, the number of standards met ranged from 1 to 11. Only one study,

adequately allowed for drug discontinuation (Rosner et al. 1998). Other

recommendations which were rarely met related to adequate modeling for fractures

(only 3 studies), modeling head to head comparisons (3) and incorporating benefit

beyond therapy (3). Given the lack of quality of studies, it is difficult to assume that

they provide any substantive evidence towards assessing the cost effectiveness of

bisphosphonates for the Canadian situation.

Three studies did not include a bisphosphonate as a comparator focusing on calcium

with or without vitamin D (Bendich et al. 1999, Torgerson et al. 1995, Willis et al.

2002). In all studies calcium was found to be both effective and cost saving. Of the

so In the analysis detailed in Chapters 7 and 8 all 15 recommendations for the conduct of studies are
met and in addition analysis incorporates a full consideration of uncertainty and variability through
adoption of the normative framework as detailed in Chapters 3 and 4.
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12 studies assessing the cost effectiveness of bisphosphonates, 9 included

alendronate, 6 included etidronate and 2 included risedronate.

Both risedronate studies found the drug was cost effective. In one Canadian study,

risedronate was dominant over alendronate and had an acceptable ICUR when

compared to no therapy (Grima et al. 2002). In a UK study, risedronate was found to

be dominant over no therapy (Iglesias et al. 2002). However, both studies had major

problems relating to the methods for modeling fractures with and without therapy.

Five studies compared alendronate to etidronate. Two found etidronate to be more

cost effective (Rosner et al. 1998, Visentin et al. 1997) whilst two other studies found

alendronate to be more cost effective (Coyle et al. 2001a, Best et al. 1998). It was

difficult to derive any meaningful interpretation from the one remaining study

(Aursnes 2000).

5.5 CONCLUSION

In this chapter previous guidance for conducting economic analysis in osteoporosis

were identified and summarized. The guidance documents were remarkably

consistent in their coverage leading to fifteen recommendations concerning good

practice. These recommendations relate to issues generic to all economic evaluations

such as the lack of head to head studies, statements relating to study funding and

analysis of uncertainty and variability. In addition, the recommendations include

issues specific to economic evaluations of osteoporosis such as the modelling of

fractures rather than bone mineral density and in the inclusion of mortality and long

term care admissions post fracture.
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A review of published economic evaluations identified 15 studies relating to the

management of osteoporosis in postmenopausal women. Twelve of these studies

included a bisphosphonate as a comparator. However, the paucity of good quality

studies concerning the cost effectiveness of bisphosphonates in the management of

osteoporotic women highlighted the need to conduct a full economic evaluation from

the Canadian context. In the following chapter, a model designed to conduct such an

evaluation is outlined. The model facilitates analysis which adheres to the

recommendations for good practice contained in Table 5.1. In Chapters 7 and 8 the

results of the evaluation are presented adhering to the normative framework for

handling uncertainty and variability outlined in Chapters 3 and 4.
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Chapter 6.

Economic Model of Osteoporosis in Canada

6.1 INTRODUCTION

Given the assumed benefit of bisphosphonates in reducing fractures, there was a need

to assess the cost-effectiveness of treating osteoporotic women with bisphosphonates

in the Canadian context. In Chapter 5, existing guidance for conducting economic

analysis of osteoporotic therapies was reviewed. In addition, a review of published

economic analyses found that previous studies had many methodological failings.

The objective of the latter half of this thesis is to conduct a full economic analysis of

treatment options for osteoporosis adopting the normative framework outlined in

Chapters 3 and 4. In this chapter an economic model of osteoporosis in Canada

developed for this thesis is described. The model adheres to the recommendations

described in the previous chapter.

6.2 MODEL STRUCTURE

A decision analytic model for osteoporosis was developed for this thesis". The

model reflects the natural history of women with osteoporosis incorporating the

SI Previous versions of the model have been used with respect to number of published papers for
which in all cases I have been the principal author for the economic analyses (Coyle and Lee 2002.
Coyle et al. 2001a. Waldegger et al. 2(03). The Coyle et al. (2001a) paper is reviewed as part of
chapter 4. The Coyle and Lee (2002) paper uses the analysis from the earlier paper to highlight issues
relating to the conduct of economic analysis. The Walldeger et al. (2003) paper uses the original
model to determine the cost effectiveness of hip protectors specific to the elderly population within
long term care.
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sequelae associated with osteoporosis (e.g. fracture) and also the transition of women

both in terms of the development of osteoporosis, history of fracture and residential

status (Figure 6.1). The model uses the most recentl y available data relevant to the

Canadian population. Given the chronic nature of osteoporosis the model is a

Markov model with a 1 year cycle length.

The probability of a woman experiencing a hip, wrist or vertebral fracture is assumed

to be dependent on three factors; age, osteoporotic status and previous history of

osteoporotic fractures (Papadimitropoulos et al. 1997, Marshall et al. 1996,

Klotzbuecher et al. 2000). Both hip and vertebral fractures are associated with excess

mortality and hip fractures are also associated with increased admission to long term

care facilities (LTC) (Papadimitropoulos et al. 1997, Kado et al. 1999, Cree et al.

2000). In addition, the probability of hip fracture and the probability of mortality post

hip fracture increases if a women resides within LTC (Papadimitropoulos 2000).

Thus, within the model it is necessary to distinguish between women on the basis of

whether they have a history of fracture and whether they are living in the community

or LTC. Based on these dichotomies; there will be different age specific transition

probabilities for fracture (hip, wrist and spine) and associated risks of mortality from

fracture (hip and spine only).

The model is populated with relevant transition probabilities and estimates of the

costs and utilities associated with each health state (Tables 6.1, 6.2 and 6.3). Input

parameters estimated through sample information rather than population estimates

are represented by a probability density function based on their expected value and
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Figure 6.1: Design of Decision Model

No fracture No fracture

Hip fracture Hip fracture

Wrist fracture Wrist fracture

Vertebral fracture

a. Fractures

Non osteoporotic

Osteoporotic - no
fracture history

Osteoporotic - no
fracture history

Osteoporotic -
fracture histor

Osteoporotic -
fracture history

b. Osteoporotic status

living in long
term care

Community
dwelling

living in long
term care

c. Residential Status
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Table 6.1: Parameter Estimates: Population Based Data

Parameter Estimate
Annual probability of death: all cause Age specific

Probability of mortality post hip fracture: community 0.010*e O.084*age

Probability of mortality post hip fracture: long term care 0.055*e o.on*age

Annual probability of hip fracture: community 0.0578*e O.096*age

Annual probability of hip fracture: long term care 73.99*e O.049*age

Annual probability of vertebral fracture

Annual probability of wrist fracture

Proportion of vertebral fractures requiring
hospitalization

Proportion of women residing in LTC

Proportion of women who are osteoporotic

Utility value for no current fracture

50-59
60-69
70-79
>80

0.000543
0.000899
0.001920
0.004383

50-59
60-69
70-79
>80

0.000814
0.003152
0.004021
0.004380

60-69
70-79
>80

0.30
0.38
0.45

65-69
70-74
75-79
80-84
>85

0.68%
1.57%
4.19%
10.71%
29.93%

50-59
60-69
70-79
>80

0.06
0.182
0.27
0.421

65-69
70-74
75-79
80-84
>85

0.86
0.83
0.79
0.70
0.55

Source: Sources provided in text.
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Table 6.2: Parameter Estimates: Saml!le Data
Parameter Estimate Probability Density

Function
Probability of admission to LTC post 65-74 0.056 Beta (5,85)
hiP fracture 75-84 0.166 Beta (26, 131)

>85 0.298 Beta (25, 59)

Relative risk of fracture for reduction in BMD 1.5 Lognormal (1.5, 1.03)
equi valent to one standard deviation of the
young adult mean

Relative increase in risk of fracture for 1.32 Lognormal (1.32, 1.14)
osteoporotic women with previous fracture

Relative risk of mortality post vertebral fractures 1.16 Lognormal (1.16, 1.06)

Attributability of long term care post fracture to 0.5 Beta (1, 1)
fracture

Cost of hip fracture
Women living in the community 65-74 22124 Normal (22 124,2936)

75-84 27801 Normal (27 801,2562)
>85 27301 Normal (27 301, 3 241)

Women moving to LTC 65-74 43459 Normal (43459, 13 875)
75-84 49136 Normal (49 136,3899)
>85 48636 Normal (48 636, 4 122)

Women who remain living in LTC 65-74 15699 Normal (15 699, 8497)
75-84 21376 Normal (21 376,5374)
>85 20876 Normal (20 876,4 184)

Women who die following fracture 15498 Normal (15 498, 1 432)

Cost of wrist fracture 275 Normal (275, 69)

Cost of vertebral fracture
ambulatory 128 Normal (128, 32)
hospitalized 4646 Normal (4646, 1 162)

Utility values
hip fracture 0.536 Normal (0.536, 0.037)
wrist fracture 0.976 Normal (0.976, 0.022)
vertebral fracture 0.674 Normal (0.674,0.046)

Source:
Note:

Sources provided in text.
Beta distributions depicted by number of events and non events;
normal and lognormal distributions by mean and standard error of the
mean.
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Table 6.3: Parameter Estimates: Treatment Specific Data

Parameter Estimate Probability Density
Function

Annual cost of drug therapy
alendronate $730.59 Fixed
etidronate $189.72 Fixed
risedronate $692.49 Fixed

Continuation rates with therapy
alendronate 0.65 Beta (65, 35)
etidronate 0.57 Beta (57, 43)
risedronate 0.62 Beta (62, 38)

Coefficient for benefit beyond therapy 0 Normal (0, 1)
curtailment (0= linear decline)

Relative reduction in hip fractures
alendronate 0.465 Lognormal (0.465, 1.29)
etidronate 0.945 Lognormal (0.945, 2.32)
risedronate 0.739 Lognormal (0.739, 1.13)

Relative reduction in wrist fractures
alendronate 0.551 Lognormal (0.551, 1.27)
etidronate 0.818 Lognormal (0.818, 1.74)
risedronate 0.658 Lognormal (0.658, 1.27)

Relative reduction in vertebral fractures
alendronate 0.439 Lognormal (0.439, 1.16)
eti dron ate 0.443 Lognormal (0.443, 1.18)
risedronate 0.665 Lognormal (0.665, 1.11)

Source:
Note:

Sources provided in text and Table 6.4.
Beta distributions depicted by number of events and non events;
normal and lognormal distributions by mean and standard error of the
mean.
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the associated uncertainty. The probability density functions represent the likelihood

of alternative population estimates for the parameters of interest.

As with the case study in Chapter 4, both drug prices and input values obtained from

population rather than sample data are assumed fixeds2• The model is developed

within a Microsoft Excel 2000 spreadsheet incorporating the Crystal Ball software

enhancement to facilitate Monte Carlo simulation (Crystal Ball 2000). The Monte

Carlo simulation (MCS) involves obtaining several outcome estimates by re-running

the model employing different values for each data input randomly selected from that

variable's probability density function (Doubilet et al. 1985).

6.3 TRANSITION PROBABILITIES

6.3.1 Introduction

Given the structure of the model outlined above, the following transition

probabilities are required to allow a simulation of progression through the model:

- Probability of developing osteoporosis specific to a woman's age

- Probability of being admitted to LTC specific to a woman's age

- Probability of hip, wrist and spine fracture specific to a woman's age,

residential status, osteoporotic history and treatment.

- Probability of mortality with and without fracture specific to a woman's age

S2 Drug prices are assumed fixed as they represent the true cost of drug acquisition at the time of
analysis. Population data are assumed fixed for two reasons. First, as they are based on population
data it is unclear what the value of finding out the need for further information when such data cannot
be obtained. Secondly, when data are based on population data any uncertainty around such inputs
would be minimal.
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In certain instances, the required data are unavailable. For example, in the model age

specific rates of hip fractures for community dwelling woman are required for three

classifications of women: non osteoporotic women, osteoporotic women without

previous osteoporotic fracture and women with previous osteoporotic fracture.

However, alternative data parameters are available which allow computation of the

necessary parameters through calibration of the model (Kuntz and Weinstein 2001).

The underlying age specific rate of hip fracture in the community is known. In

addition, the relative risk of fracture for women who are osteoporotic compared to

those who are not and the relative risk of fracture for osteoporotic women given a

previous osteoporotic fracture versus no previous fracture are known. If the model

merely involved weighting the underlying rate by the two relative risks this would

lead to a major overestimate of the rate of fracture in the community (Figure 6.2).

Over-estimation would occur for two reasons. First, given that a large proportion of

the fractures in the community occur in osteoporotic women with or without

previous fracture the rate for women with no such risk factors will be substantially

lower than the estimate from the whole population. Secondly, a proportion of

osteoporotic women will have previous fracture; thus the relative risk of having a

fracture when osteoporotic without fracture will be lower than the estimate available

which compares osteoporotic women with and without fracture to non osteoporotic

women.

Calibration involves adjusting the estimates of data such that the population data

available is reproduced. In this instance failure to adjust the underlying rates of

fracture would bias results in favour of active treatment as the underlying rates of
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Figure 6.2: Effect of Failure to Calibrate Model on the Annual Probability of

Hip Fracture for Community Dwelling Women
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fractures would be over-estimated which in tum would lead to an over-estimate in

the number of fractures avoided and the subsequent costs and outcomes'".

6.3.2 Probability of Developing Osteoporosis

The Canadian Multicentre Osteoporosis Study (CaMos) has reported the prevalence

of osteoporosis by age in the Canadian population (Tenenhouse et a1. 2000).

Prevalence for the age ranges 40-49, 50-59,60-69, 70-79, 80 plus were 1.3%,6.0%,

18.2%,27.0% and 42.1 %. From these, it is possible to calibrate the model through

adopting transition rates which lead to replication of the prevalence rates obtained

from the CaMos study.

6.3.3 Probability of Admission to LTC

Age-specific transition rates for admission to LTC for women after occurrence of hip

fracture were obtained from a study of hip fracture patients in Edmonton Alberta

(Cree et a1. 2000). Analysis was based on 338 patients who lived in the community

prior to fracture and who survived the immediate period post fracture. The rates of

admission to LTC following fracture for patients aged 65-74, 75-84 and 85 plus were

5.6% (n=90), 16.6% (n=157) and 29.8% (n=184) respectively. Probability density

functions for these variables assume a beta distribution based on the number of

patients within each age cohort.

Estimates of the probability of residing in LTC (Le. prevalence) are available for

fiscal year 1993/94 based on data from Statistics Canada (Papadimitropoulos 2000).

For age groups 65-69, 70-74, 75-79,80-84 and 85+ the probabilities of residing in

53 The impact of failure to calibrate on the results of this analysis will be presented at the 2004
meeting of the Society of Medical Decision Making (Appendix C).
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LTC were 0.68%, 1.57%,4.19%, 10.71% and 29.93%. Thus, the model is calibrated

by adopting transition rates which allow replication of the probabilities of residing in

LTC.

6.3.4 Probability of Fracture

The probability of hip fracture for women both living in the community and in LTC

were derived from data for 1993/94 from both the Canadian Institute of Health

Information and Statistics Canada (Papadimitropoulos et al. 1997, Papadimitropoulos

2000). The age specific risk of fracture per 100000 community dwelling women

was 0.578 * eO.096*age.For women living in LTC the age specific risk was higher:

73.99 * eO.049*age. 54,55

Vertebral fracture rates were based on data from the Manitoba Health Services

Insurance Plan for the years 1981 to 1984 (Hu et al. 1996). The study used data to

derive age specific estimates for the rate of vertebral fracture. The study

incorporated both ambulatory and hospital care of vertebral fractures. The annual

rates of vertebral fracture per 100 000 women aged 50-59,60-69, 70-79 and 80 plus

were 54.3,89.9, 192, and 438.3 respectively.

The probability of wrist fractures in the total population was derived from the same

sources as used for vertebral fractures but for the dates 1986-1990 (Coyle et al.

S4 Given the paucity of data on women aged over 95. the risk of fracture was assumed to be constant
above95.

ss Other studies have found a similar exponential increase in hip fractures with age although this is the
only published study for Canada (Figure 6.3). The Canadian figures are consistent with other studies.
Estimated rates of hip fracture before aged 75 are slightly higher than the median but after age 75.
estimates are closer to the median reported rates.
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Figure 6.3: Rates of Hip Fracture by Age, Country and Final Date of

Population Sample
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2001a). The annual rates of wrist fracture per 100000 women aged 50-59,60-69, 70-

79 and SOplus were 81.4, 315.2,402.1 and 43S.0 respectively.

Within the model it is necessary to adjust the fracture rates to allow estimation of the

age specific risk for women based on their osteoporotic status. From a meta analysis

of prospective cohort studies, the relative risk of fracture for one standard deviation

decrease (based on the distribution of bone mineral density for young health adult

women) was 1.5 (Marshall et al. 1996). Assuming the BMD for Canadian

osteoporotic women is on average 1.45 standard deviations below that of non-

osteoporotic women (Tenenhouse et al 2000). The relative risk of fracture based on

the prevalence of osteoporosis is estimated as 1.51.45.From analysis of the fracture

rates in the placebo groups of the Fracture Intervention Trial, the relative risk of

fracture for an osteoporotic woman given a previous fracture is 1.32 (Black et al.

1996, Cummings et al. 1995i6•

Simply weighting the age-specific probability of fracture by these relative risks will

lead to an over-estimate of the rate of hip fracture in each residential status category.

Similarly, weighting the probability of hip fracture for osteoporotic women without

fracture will be lower than the estimate from the Marshall study as a high proportion

of women with osteoporosis have previous fracture. Thus, rates for the baseline risk

of fracture in the population are imputed which allow replication of the age-specific

probability of fracture in the population as a whole as well as allowing replication of

relative risks associated with previous fracture history and osteoporosis.

56 The Fracture Intervention Trial was a major clinical trial of the impact of alendronate on
osteoporotic fracture. The trial was stratified by previous fracture history and comparison of fracture
rates in the trial were used to determine the relative risk of fracture with previous fracture.
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6.3.5 Mortality Rates

Mortality rates immediately post hip fracture for Canadian women were obtained

from the same study as the probability of hip fracture (Papadimitropoulos et al. 1997,

Papadimitropoulos 2000). The age specific mortality rates per 100 000 community

dwelling women following fracture were 0.010 * eO.084*age.For women living in LTC,

the relevant formula is 0.056 * eo.on*age.57

Canadian mortality rates immediately post vertebral fracture are unavailable. The

results of a US prospective cohort study of 9704 women aged over 65 were used

within the model (Kado et al. 1999). Within this study, the relative risk of mortality

one year post vertebral fracture was 1.16.

Age specific all cause mortality rates for women are available for Canada for 1990-

1992 (Statistics Canada 1995a). The model was calibrated by adopting age specific

mortality rates for women without fracture which allow replication of the age

specific all cause mortality rates for the whole Canadian woman population, given

the effect of hip and vertebral fracture on mortality and their respective incidences.

6.4 COSTS

6.4.1 Introduction

Costs for each particular state within the decision model were estimated. The model

adopts the perspective of the health and social care system in that the costs of health,

social services and long term care are included. The analysis will approximate

~7Given the paucity of data on women aged over 95, the risk of death following hip fracture was
assumed to be constant after 95.

166



results from a societal perspective in that the productivity losses associated with

informal care post fracture have been shown to be minimal (Goeree et a1. 1996)

6.4.2 Hip Fractures

The first year cost of the health care resources associated with the treatment of a hip

fracture comprises immediate acute care, rehabilitation and institutionalization.

Costs associated with hip fracture beyond one year are discussed in Section 6.4.5.

Estimates were based on a study of the costs of hip fracture for 504 patients in

Hamilton, Ontario (Wiktorowicz et al. 2001). Costs for individual patients were

estimated through a review of patient hospital records linked with data from

community services and long term care facilities. The coefficients from a

multivariate analysis are used to estimate the mean costs for each sub-group for

survivors post hip fracture. The costs for patients for whom death is attributable to

fracture is provided directly and is assumed to be the same for all age groups

($15498).

The probability density function for the cost of hip fractures is assumed to take a

normal distribution with the standard error of the mean for each sub-group based on

the standard deviation for all survivors adjusted by the sample within each sub-

group. For deaths post hip fracture the function is based on the actual mean and

standard error for this group.
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6.4.3 Vertebral Fractures

For women with vertebral fracture, the proportion requiring hospitalization varies by

age: 40%, 30%, 38% and 45% for ages 50-59, 60-69, 70-79 and 80 plus respectively

(Hu et al. 1996).

The costs per inpatient stay for women with vertebral fractures treated on an

inpatient basis were obtained from analysis of data from the Ontario Case Costing

project for one teaching hospital and seven community hospitals (Ontario Case

Costing Initiative 2000). The mean cost per hospitalized fracture patient was $4646

inflated to 2001 Canadian dollars. The cost of treating vertebral fractures on an

ambulatory basis is estimated to be $128 based on the estimated resource use

obtained from a survey of Canadian physicians (Ontario Ministry of Health and Long

Term Care 2001, Goeree et al. 1996).

Following Briggs and colleagues (2002), when the degree of uncertainty is unknown,

the probability density functions for costs are assumed to form a normal distribution

with a standard error equivalent to a fixed percentage of the mean value. For the

costs of a vertebral fracture treated in hospital or treated as an outpatient the standard

error was assumed to be equivalent to 25% of the expected value.

6.4.4 Wrist Fractures

Wrist fractures are assumed to be exclusively treated on an ambulatory basis. The

cost of treating wrist fractures was estimated to be $275 calculated on the same basis

as vertebral fractures (Ontario Ministry of Health and Long Term Care 2001, Goeree

et al. 1996). As with the costs of vertebral fractures, the probability density function
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was assumed to be a normal distribution with a standard error of the mean equivalent

to 25% of the expected value.

6.4.5 Long Term Care

The annual cost of long tenn care is assumed to be the difference between the annual

costs following hip fracture for those staying in the community and those being

admitted to long term care ($21 335). The model only incorporates the incremental

costs of long term care occurring post hip fracture. It should be noted that although a

patient may be admitted to long term care not all the stay may be attributable to hip

fractures as the patient may have been admitted over time for other causes. Thus, the

proportion of long term care stay attributable to fracture is assumed unknown with a

mean of 0.5 (Beta 1,1) where 0 means only the first year post fracture is attributable

and 1 means all of the subsequent long term care stay is attributable'". The two

extremes of this distribution are equivalent to the scenarios recommended within the

OMERACT reference case discussed in the previous chapter (Coyle and Tosteson

2003). Thus, the model adopts an assumption that the true proportion is uncertain

and lies between these extremes.

Utility values were required for the following health states: normal health, hip

fracture, wrist fracture, vertebral fracture. In addition these values are age adjusted

to allow for the decline in utility with age.

S8 A beta distribution of (1. 1) is characterized by a horizontal line where all probabilities are equally
likely.
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Values for normal health and fractures were estimated by direct elicitation from a

sample of postmenopausal women (Cranney et al. 2001a)59. Preference scores for all

health states were obtained through use of a visual analogue scale. In addition, both

preference scores and utility values were obtained for the women's current health

through the use of both a visual analogue scale and the standard gamble approach.

Utility values for all health states were based on transforming preference scores

based on estimating the power function relationship between preference scores and

utility values for the study sample based on the data relating to current health

(Torrance et al. 1995).

Health states describe the acute effects of fracture. Thus it is necessary to allow for

the improvements in health status over time. Utility values for spine and wrist

fractures are assumed to improve linearly so that the individual will be restored to

normal health for their age group by the year end. Thus the total disutility from spine

and wrist fractures will be half the difference between the utility value for normal

health and fracture. For hip fracture, utility is assumed to improve linearly so that

the individual will be restored to normal health for their age group by the end of the

second year.

Utility decline by age is incorporated using data for women from the Canadian

National Population Health Survey (Statistics Canada 1995b). The average age of

respondents to the osteoporosis utility exercise was 55-59. Thus, the utilities for

fracture states are converted to age specific utilities as by the following example:

59 The study was conducted in Ottawa, Canada and was part of the MSc thesis of Ann Cranney for
which I was supervisor.
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U ·z· Utility70-74 U ·Z·
tt ity spine fracture aged 70-74 = .. * tt ity spine fracture

UtllltySS-S9

= 0.83 *0.77 =0.74
0.86

Within the model the uncertainty around utility values is represented by a normal

distribution with mean and standard errors derived from the utility elicitation

exercise.

6.6 TREATMENT SPECIFIC PARAMETERS

6.6.1 Data Requirements

To facilitate the economic evaluation of treatment interventions, the model requires

estimates of the following parameters for each of the therapies considered:

- Fracture specific relative risk reductions during therapy

- Benefit of therapy beyond therapy duration

- Continuation rate for therapy

- Monthly treatment costs

6.6.2 Effect of Therapy on Risk of Fractures

The effect of alternative bisphosphonates on the risks of fractures were derived from

data from a meta analysis of randomized controlled clinical trials (Cranney et al.

2001b, 2002a, 2002b, 2002c). The meta analysis included randomized controlled

trials of at least one year duration. Trials had to be of postmenopausal women with

osteoporosis defined by prevalent fractures or low bone density (>2 standard

deviations below the young adult mean).
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The published meta analysis reports the relative risk of a woman having a vertebral

or non vertebral fracture over the duration of the trial. For economic analysis, it is

necessary to determine the decrease in the number of fractures not the number of

women experiencing a fracture as well as distinguishing between wrist and hip

fractures. In addition, as the model adjusts for actual compliance with therapy

(rather than compliance in a trial setting) the relati ve risk reduction needs to relate to

number of years of therapy and not number of years in the trial. Thus, each trial was

reviewed and data was extracted based on the number of fractures and total years of

therapy. Analysis focused on identifying the proportional risk reduction attributable

to therapy for three specific fractures: hip, wrist and vertebral (Table 6.4).

6.6.3 Benefit of therapy beyond therapy duration

There is evidence that patients experience continued reductions in the risk of fracture

after stopping therapy though follow up of patients has been for no more than two

years post treatment curtailment (Tonino et al. 2000, Tosteson et al. 2001a). This

analysis follows previous studies by assuming a linear reduction of benefit after the

curtailment of therapy for all bisphosphonates though this benefit is restricted to a

period of up to two years.

To incorporate uncertainty concerning the decline of benefit post treatment, the rate

of decline of benefit was modeled as an exponential function where 0 represents a

linear benefit, -m represents no decline over the two year period and +m represents

no benefit post curtailment. This can be expressed by the formula:
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(
3 - TStop Je

r

RR fracture = 3 • RRtreatment

Tstop = years since curtailment of therapy

RRfracture = relative risk of fracture

RRtreatment = relative risk of fracture on therapy

r = the rate of decline of benefit after curtailment, =0 for a linear reduction in benefit

Uncertainty around the rate of decline of benefit was characterized by a normal

distribution (1l=0, o =1). The extremes associated with the distribution correspond to

the two scenarios suggested by the WHO Collaborating Centre (1999); that all

benefit is lost immediately or that the relative risk of fracture remains as estimated in

the trial. Thus, as with the attributable fracture of long term care stay (Section 6.4.5)

the model adopts an assumption that the true proportion is uncertain and lies between

these extremes.

6.6.4 Continuation with Therapy

Retention rates for bisphosphonates were estimated using data from the Ontario Drug

Benefit Scheme. Data related to claimants new to each drug over a period from July

1999 to June 2001. One year retention rates were obtained for each drug based on

the proportion of claimants new to the drug that continued on therapy after one year.

Rates for alendronate, risedronate and etidronate were 65%, 62% and 57%

respectively. Thus, continuation with therapy is assumed to decline yearly based on

the observed retention rates. Duration is assumed to be no more than seven years in

line with the maximum follow up of patients in clinical trials (Tonino et a1.2000).
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However, it should be noted that based on the above the proportion of patients who

are likely to be continuing with therapy at seven years will be between 2 and 5%.

Despite the large sample sizes (n=115 426) used to estimate retention rates,

uncertainty is assumed to be high as observed data relate to the first twelve months

on therapy. Thus, to more accurately reflect the uncertainty concerning long term

continuation with therapy, continuation rates were characterized by beta distributions

with a presumed sample size of 100.

6.6.5 Cost of therapies

The costs of alendronate, etidronate and risedronate were obtained from the Ontario

Drug Benefit Plan (Ontario Ministry of Health and Long Term Care 2002).

Pharmacy mark up and dispensing fees were obtained from local pharmacies. The

yearly cost of alendronate was estimated to be $730.59 based on a dosage of 10 mg

once daily incorporating a 10% mark up and a $6.41 dispensing fee. The yearly cost

of etidronate based on a dosage of 200 mg twice daily for 14 days in a three month

cycle was estimated to be $189.72. The yearly cost ofrisedronate based on a dosage

of 5 mg once daily was estimated to be $692.49. Costs of drug therapies are

assumed fixed.

6.7 QUALITYOF THE ECONOMIC MODEL

The previous chapter included a review of guidance on the conduct of economic

evaluation in osteoporosis. Four guidance documents were identified (Coyle and

Tosteson 2003, Tosteson et a1. 2oo1a, Dere et a1. 1998, WHO Collaborating Centre

1999). Based on the recommendations within these documents, fifteen
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methodological issues of importance with respect to economic models for

osteoporosis were identified. The economic model of osteoporosis outlined above

corresponds to the recommendations made for each of these issues as outlined in

Table 6.5.

6.8 ANALYTICAL FRAMEWORK

The model is designed to allow the conduct of a cost utility analysis. Analysis

presented in Chapter 7 and 8 is conducted from the perspective of a provincial

ministry of health. The model adopts a lifetime horizon with costs and benefits

discounted at 5% per annum (CCOHTA 1997). All costs are presented in terms of

2001 Canadian dollars. The model estimates expected values for costs and QALYs

for 62 patient cohorts characterized by the patient's age (65-95) and fracture history

(no previous osteoporotic fracture and previous osteoporotic fracture).

Analysis is conducted through Monte-Carlo simulation whereby estimates of

outcomes are obtained by repeated sampling from the probability distribution of

input parameters. Larger numbers of replications provide more stable estimates of

expected values. The decision model is complex given that costs and effects are

modeled for 62 patient cohorts. Thus, it takes approximately 1 Y2 hours for each

1000 replications. Based on the uncertainty over the expected value of various

outcomes, simulations with 3000 replications are argued to be appropriate (Figure

6.4). The adoption of the Monte Carlo simulation facilitates an optimal treatment

choice as it provides a more accurate expression of the expected value of outcomes
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Table 6.5: How Methodological Issues are Addressed within the Model

Methodological Issue How addressed

Model incorporates all long term effects with a lifetime
horizon

Time horizon

Study perspective

Modelling fractures

Data sources

Mortality following
fractures

Long term care admission
post fractures

Perspective is that of the health care system

Model uses age-specific fracture incidence with
treatment effects modelled using relative risk reductions
from a meta analysis of RCTs

All data are specific to Canada except the relative risk
reductions and the risk of mortality post vertebral
fracture

Model includes attributable mortality following hip and
vertebral fracture

Analysis assumes that attributable long term care is
uncertain but is bounded by all future long term care
costs being attributable to fractures and that only first
year costs being attributable

Head to head comparisons Is achieved through synthesis of similarly designed
trials.

Extraskeletal effects

Benefit beyond therapy

Model validation

Compliance with therapy

Utility values

Accommodating
variability
Accommodating
uncertainty

Study funding

All effects which impact cost effectiveness are included.
No significant adverse effects associated with
bisphosphonates

Analysis assumes that benefit beyond therapy is
uncertain but bounded by there being no benefit beyond
therapy and that benefit is maintained for a period of up
to two years post discontinuation.

Model is fully calibrated replicating all population data

Discontinuation rates based on Ontario Drug Benefit
formulary data

Utility values vary by fracture state and age

Analysis is stratified by age and fracture history.

Probabilistic analysis is conducted to determine optimal
therapies and to determine optimal future research.

Study is not funded by industry and is part of PHD
thesis: previous funding for the development of the
model has been given by Merck Canada and Novartis
Canada

179



Figure 6.4: Expected Value of Outcome Parameters Based on a 75 Year-old

Woman with Previous Fracture as a Function of Number of Replications
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of interest than deterministic analysis given the uncertainty propagated by parameter

estimates (Thompson and Graham 1996).

As per previous chapters, cost effectiveness can be expressed in terms of both the

incremental cost per QAL Y (ICER) gained and the incremental net monetary benefit

(INB) (Stinnett and Mullahy 1998). The focus of the analysis will be to determine an

optimal prescribing policy with respect to which treatments would be appropriate for

which patients (Chapter 7)60. Value of information analysis will determine optimal

research designs aimed to reduce decision uncertainty (Chapter 8).

6.9 DISCUSSION

In this chapter, a decision model which facilitates an economic analysis of treatment

options for the prevention of osteoporotic fractures is detailed. The model adheres to

the 15 recommendations for the conduct of such analyses detailed in Chapter 5. The

model incorporates Canadian data on the risks, costs and disutilities associated with

osteoporotic fractures. The model allows the conduct of both probabilistic analysis

through the specification of probability density functions for relevant input

parameters and stratified analysis based on a woman's age and previous fracture

history.

In Chapter 7, the results of the stratified analysis are presented. The results are based

on expected values obtained form the probabilistic analysis. The chapter contains

recommendations relating to the appropriate limited use criteria for the

reimbursement of bisphosphonates within Ontario. In Chapter 8, a value of

60 The same data source used for estimation of continuation rates on therapy is used to determine the
prior breakdown of current claimants receiving bisphosphonates by age and drug (see Figure 7.1).
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information analysis is presented whereby, the uncertainty concerning the individual

parameters within the decision model is considered and an optimal plan for further

research relating to such uncertainty is identified.
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Chapter 7.

Stratified Cost Effectiveness Analysis of Treatment for

Osteoporosis in Canada

7.1 INTRODUCTION

In Chapter 3 a framework for handling variability with respect to the economic

evaluation of health care interventions was identified. Variability relates to the lack

of homogeneity in outcomes amongst the target patient population. The framework

provides an intuitive approach to handling such heterogeneity through stratified cost

effectiveness analysis. Stratified analysis can assist in determining appropriate

limited use criteria for interventions. Through stratified analysis patients are placed

into groups which are more homogenous with respect to cost effectiveness. The

results of a stratified analysis facilitate the development of limited use criteria (LUC)

which allow technologies to be restricted to specific patient populations.

In Chapter 5, recommendations for the conduct of economic analysis in osteoporosis

were identified. In Chapter 6, a decision model for the conduct of economic

evaluations in osteoporosis for Canada was described in detail. This chapter presents

the results of a stratified cost effectiveness analysis for the treatment of osteoporosis

by bisphosphonates using this model. In Section 7.2, the background to the conduct

of the analysis and its subsequent use in decision making is provided. In Section 7.3,

the methods of the analysis are detailed. In Section 7.4, the results are presented.
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7.2 BACKGROUND

In Canada, individual provinces have the responsibility for determining the level that

prescription drug costs are subsidized for different individuals and which

prescription drugs are subsidized. In Ontario, provincial drug coverage is controlled

by the Ministry of the Health and Long Term Care through the Ontario Drug Benefit

Formulary (ODB) (Ontario Ministry of Health and Long Term Care 2002).

Coverage is provided both for elderly (aged over 65) and for low income families.

Decisions on which drugs are covered within the provincial formulary are taken

through consideration of recommendations made by the Drug Quality and

Therapeutics Committee (DQTC) which comprises both clinicians and pharmacists

(Laupacis 2002). The DQTC considers both clinical and economic evidence

provided by the pharmaceutical company requesting coverage of their product

(Ontario Ministry of Health and Long Term Care 2000). Most drugs are given

limited access whereby drug costs are covered based on criteria more restrictive than

that for which the drug is licensed61,62 (Ontario Ministry of Health and Long Term

Care 2004).

In January 2003, of the three bisphosphonates licensed for the treatment of

osteoporosis only etidronate was unrestricted with respect to coverage through the

Ontario Drug Benefit Fonnualry (Ontario Ministry of Health and Long Term Care

2002). Access to alendronate and risedronate was restricted to individuals who were

categorized as failures with respect to therapy with etidronate. Failure was based on

either an increase in bone mineral density (BMD) after 2 years with etidronate, the

61 Between 1999 and 200 1, 20 of 37 drugs approved for coverage through the Ontario Drug Benefit
Formulary were subject to criteria more restrictive than the products licensing.
62 This process is more formal than that of the National Institute of Clinical Excellence in the UK.

185



incidence of a clinical fracture or failure to tolerate etidronate. There was general

recognition for the need to revise the limited use criteria for bisphosphonates. A

previous version of the following analysis was instrumental in the revisions adopted

in the spring of 2003 (Ontario Ministry of Health and Long Term Care 2003). The

following analysis incorporates further enhancements to the model though the

conclusions and recommendations are similar to the original analysis.

7.3 ANALYSISPLAN

7.3.1 Net Benefit Gain from Stratification

Analysis uses the Canadian Economic Model for osteoporosis outlined in Chapter 5.

The model is used to deri ve expectations for the lifetime cost and QAL Ys associated

with each of four treatment options; no therapy, etidronate, alendronate and

risedronate. Expected values are obtained through Monte Carlo simulation with

3000 replications.

Analysis is conducted for 62 strata for osteoporotic women determined by both age

(31 age groups from 65 to 9563) and previous history of osteoporotic fracture (no

previous fracture and previous fracturej'", The number of women in each strata who

are potential patients were derived through examination of the Ontario Drug Benefit

Formulary data for 2001 (Figure 7.1). The majority of women were treated with

etidronate (74%) with an almost equal split between women aged over 75 (48%) and

under 75 (52%).

63 Analysis is restricted to women aged over 65 as this is the cut off age for all to receive benefits
under the Ontario Drug Benefit Formulary. Only a relatively small number of women under 65 who
receive social assistance may require treatment for osteoporosis.

64 Other bases of stratification could have been considered. For instance, the risk of hip fracture is
greater for women who consume a high degree of alcohol. It was decided that this was an unlikely
basis from which to discriminate amongst potential patients. The two bases chosen were practical.
acceptable and had the greatest degree of literature demonstrating a link with fractures.
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Figure 7.1: Distribution of New Claimants (n=115 426) from the Ontario

Drug Benefit Plan for Bisphosphonates in 2001

Rised.

75+

Age Treatment

Source: Ontario Drug Benefit Formulary data for 2001
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The net benefit gain from stratification is determined based on the methods outlined

in Chapter 2. First, the net benefit for each stratum was estimated for a range of

values of A.

where
t = treatment option
j = 0 if no previous fracture, 1 if previous history of fracture
k = age (range from 65 to 95)

For each value of A, the optimal treatment strategy (t*) was identified assuming there

was no stratification:

TNB =I INRlj! *njk
j=O.l k=65.66 ..95

TNBI> =maxi (TNBt)

where
n = number of women in each strata

With stratification, the optimal treatment strategy for each strata (tjk*) were identified

and the total net benefit (TNBsjk) derived.

NBljk> = maxi (NBjkt)

TNRsjk = INRljk> »,
j=O,l k=65,66 ..95

From the above, optimal limited use criteria for each treatment option were derived

for alternate values of A, by determining the optimal treatment choice (that which

maximizes net benefit) for each of the 62 strata.

The total net benefit gain from stratification (~s TNB) for each value of Awas thus:
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IlsTNB = TNB'jk - TNB,.

7.3.2 Net Benefit Loss from Restricted Stratification

Stratification could be restricted to either only a woman's age or their fracture

history. This could occur either for logistical reasons, in that it may be difficult to

enforce stratification using a particular basis, or for concerns for equity. Restriction

of stratification to only age or fracture history can lead to a net benefit loss (IlETNB).

For example, the net benefit loss from restricting stratification to fracture history

only could be estimated as follows:

IlETNB = TNBSjk - TNBsJ
where

TNBsJ = Imaxt (NBjt)*.nj
j=O.l

The net benefit loss was estimated for alternate values of A. for both restricting

stratification to age only and to fracture history only.

7.3.3 Impact of Leakage

Analysis of leakage focused solely on indiscriminant leakage'",

If, under certain values of A., a bisphosphonate was the optimal treatment choice

without stratification, leakage can not lead to a change in the optimal limited use

criteria - rather leakage would lead to a reduction in the net benefit gain from

6S No a priori hypotheses relating to discriminant leakage were considered.
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stratification. Thus, for those values of A,analysis focused on the net benefit loss

from leakage (~LTNB) given different levels of leakage (Z).

~LTNB = 'rJNB'lk' - NB,. }Z.njk
j=O.1 k=65.66 ..95

However, for values of Awhere no therapy was the optimal treatment choice without

stratification, it is possible that leakage may be such that the optimal limited use

criteria would be to deny treatment to all strata. That is, the net benefit loss from

leakage will be greater than the net benefit gain from allowing limited access to

therapy. Thus for those values of A, a threshold level of leakage is identified which

corresponds to the level of leakage required to make such a reverse in decision

optimal: i.e. where the net benefit loss from leakage is equivalent to the net original

net benefit gain from stratification.

I (NB'lt' - NB,. }n jk
1*= j=O,1 k=65,66 ..95

TNBSjk

7.3.4 Impact of Budget Constraints

The analysis above assumes that if the optimal limited use criteria required an

increase in either the overall health care budget or the budget of the Ontario Drug

Benefit Formulary then this would be acceptable given the increase in net benefit.

However, if the budget for either health care in total or for drugs alone is fixed then

an appropriate LUC should maximize the net benefit gain from stratification subject

to the relevant budget constraint.

The current lifetime osteoporosis related health care and drug expenditures in

Ontario for patients newly prescribed bisphosphonates was estimated by taking
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prescribing rates from the Ontario Drug Benefit Formulary and forecasting

expenditures with the decision model. These costs were assumed to be the relevant

budget constraints for health care (Bs) and drugs (Ba),

Thus, analysis identified the maximum net benefit gain from stratification based on

these constraints (TNBsIB) and the net benefit loss arising from enforcement of the

budget constraint (~BTNB).

~Bh TNB = TNBsjk - TNBsjklBh

~Bd TNB = TNBsjk - TNBsjklBd

7.3.5 Comparison of Optimal Limited Use Criteria with Revised Limited Use

Criteria

Analysis described above focused on the net benefit gain from using stratification in

determining an optimal prescribing policy compared to no stratification. However,

the Ontario Drug Benefit Formulary LUC for bisphosphonates at the beginning of

2003 was not based upon either of these frameworks. Thus, further analysis

examined the net benefit gain (LisTNBI2003) when comparing the current prescribing

practice to the optimal limited use criteria determined by the analysis in Section

7.3.1.

AsTNBI2003 = TNBsj/( - TNB2003

TNB2003 = Ln jkt * NB jkt
j=O.1 k=6S.66 ..9S 1=1,2,3

where
t = treatment (1 = alendronate, 2 = etidronate, 3 = risedronate)
n jkt = number of women newly prescribed drug under the ODB formulary
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7.4 RESULTS

7.4.1 Net Benefit Gain from Stratification

Table 7.1 details the expected values for the lifetime costs and QALYs associated

with all four treatment strategies for each of the 62 strata.

Table 7.2 provides the expected values for lifetime costs and QAL Ys for each

treatment strategy if the strategy was given to all patients: i.e. the expected values

from Table 7.1 are weighted by proportion of patients in each stratum. Etidronate is

dominated by both alendronate and no therapy whilst risedronate is dominated by

alendronate. If the value of a QAL Y is less than $37 000 then without stratification

no therapy is the optimal treatment choice, otherwise alendronate is optimal (Table

7.2).

Figure 7.2 presents the incremental costs and QAL Ys from each of the three

bisphosphonates compared to no therapy for all strata. For alendronate and

risedronate, the incremental costs of treatment are smaller for older patients and for

patients with previous fracture whilst the incremental QAL Ys gained tend to be

larger for both groups'", For etidronate, the higher the risk of fracture the higher the

incremental costs and the lower the incremental QAL Ys.

For all strata, alendronate and no therapy dominate etidronate and alendronate

dominates risedronate. Thus, for all values of A. the optimal limited use criteria will

include only alendronate or no therapy. At a value of A. of $50000, the optimal

stratification would be to restrict alendronate to women with previous fracture aged

66 Note that for the oldest patient groups, incremental QAL Ys begin to decrease by age as the capacity
to gain from avoided hip fractures falls.
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Table 7.1: Expected Lifetime Costs and QALYs by Age, Fracture History

and Treatment Strategy

a. Previous fracture history

Aee No Theranv Alendronate Etidronate Risedronate
Costs QALYs Costs QALYs Costs QALYs Costs QALYs

65 $6,193 9.490 $7,436 9.497 $6,650 9.488 $7,387 9.493
66 $6,390 9.173 $7,609 9.180 $6,857 9.170 $7,572 9.176
67 $6,592 8.846 $7,783 8.853 $7,070 8.843 $7,759 8.849
68 $6,800 8.510 $7,958 8.518 $7,290 8.506 $7,950 8.514
69 $7,013 8.164 $8,133 8.173 $7,517 8.160 $8,144 8.168
70 $7,232 7.808 $8,306 7.818 $7,752 7.803 $8,341 7.812
71 $7,456 7.471 $8,475 7.482 $7,999 7.466 $8,537 7.476
72 $7,688 7.126 $8,636 7.138 $8,262 7.l21 $8,735 7.l32
73 $7,931 6.773 $8,793 6.786 $8,544 6.767 $8,935 6.779
74 $8,187 6.412 $8,934 6.426 $8,858 6.405 $9,133 6.418
75 $8,458 6.041 $9,062 6.056 $9,205 6.033 $9,333 6.048
76 $8,516 5.704 $9,060 5.721 $9,286 5.696 $9,358 5.712
77 $8,566 5.360 $9,047 5.378 $9,359 5.351 $9,374 5.369
78 $8,609 5.010 $9,023 5.029 $9,426 5.000 $9,381 5.019
79 $8,647 4.651 $8,988 4.672 $9,488 4.641 $9,379 4.661
80 $8,680 4.283 $8,940 4.304 $9,545 4.272 $9,368 4.293
81 $8,702 3.999 $8,881 4.022 $9,597 3.987 $9,346 4.009
82 $8,726 3.710 $8,811 3.734 $9,655 3.698 $9,318 3.722
83 $8,756 3.417 $8,734 3.442 $9,724 3.404 $9,290 3.429
84 $8,797 3.117 $8,643 3.143 $9,818 3.103 $9,260 3.129
85 $8,853 2.806 $8,539 2.834 $9,943 2.792 $9,230 2.819
86 $8,706 2.642 $8,320 2.672 $9,813 2.626 $9,038 2.656
87 $8,543 2.483 $8,087 2.514 $9,665 2,466 $8,831 2.497
88 $8,365 2.329 $7,840 2.362 $9,501 2.311 $8,609 2.344
89 $8,171 2.180 $7,577 2.215 $9,317 2.162 $8,371 2.196
90 $7,956 2.037 $7,298 2.074 $9,109 2.018 $8,112 2.054
91 $7,715 1.900 $6,996 1.938 $8,873 1.880 $7,829 1.918
92 $7,442 1.768 $6,669 1.807 $8,601 1.747 $7,516 1.786
93 $7,129 1.642 $6,313 1.682 $8,283 1.621 $7,166 1.661
94 $6,759 1.522 $5,917 1.562 $7,902 1.501 $6,767 1.541
95 $6,306 1,408 $5,473 1.446 $7,423 1.387 $6,301 1.426
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h. No previous fracture

Aee No Theraov Alendronate Etidronate Risedronate
Costs QALYs Costs QALYs Costs QALYs Costs QALYs

65 $5,010 9.517 $6,299 9.522 $5,435 9.515 $6,224 9.520
66 $5,167 9.200 $6,435 9.206 $5,600 9.198 $6,369 9.203
67 $5,327 8.874 $6,572 8.881 $5,770 8.872 $6,517 8.877
68 $5,492 8.539 $6,709 8.546 $5,944 8.536 $6,667 8.542
69 $5,661 8.194 $6,845 8.202 $6,124 8.191 $6,819 8.198
70 $5,835 7.838 $6,979 7.847 $6,310 7.835 $6,973 7.842
71 $6,009 7.503 $7,108 7.512 $6,503 7.499 $7,124 7.507
72 $6,189 7.159 $7,229 7.169 $6,707 7.155 $7,274 7.163
73 $6,376 6.806 $7,347 6.817 $6,926 6.802 $7,426 6.811
74 $6,572 6.446 $7,451 6.457 $7,168 6.440 $7,576 6.451
75 $6,779 6.076 $7,545 6.088 $7,434 6.070 $7,725 6.082
76 $6,824 5.739 $7,539 5.753 $7,497 5.733 $7,742 5.746
77 $6,863 5.396 $7,524 5.411 $7,555 5.389 $7,750 5.403
78 $6,896 5.046 $7,499 5.062 $7,608 5.038 $7,752 5.053
79 $6,926 4.688 $7,465 4.704 $7,657 4.680 $7,746 4.6
80 $6,951 4.320 $7,421 4.337 $7,701 4.311 $7,732 4.328
81 $6,963 4.036 $7,363 4.054 $7,738 4.027 $7,704 4.045
82 $6,975 3.747 $7,295 3.767 $7,779 3.738 $7,672 3.757
83 $6,991 3.454 $7,222 3.475 $7,828 3.444 $7,638 3.464
84 $7,014 3.154 $7,136 3.176 $7,895 3.143 $7,601 3.164
85 $7,047 2.843 $7,040 2.867 $7,983 2.831 $7,562 2.854
86 $6,924 2.679 $6,855 2.704 $7,876 2.666 $7,400 2.691
87 $6,789 2.520 $6,658 2.545 $7,755 2.506 $7,225 2.532
88 $6,642 2.365 $6,450 2.392 $7,620 2.351 $7,038 2.378
89 $6,481 2.217 $6,230 2.245 $7,470 2.201 $6,837 2.230
90 $6,304 2.073 $5,995 2.103 $7,300 2.057 $6,620 2.087
91 $6,105 1.935 $5,742 1.966 $7,107 1.918 $6,382 1.950
92 $5,881 1.802 $5,469 1.834 $6,884 1.785 $6,121 1.817
93 $5,623 1.675 $5,173 1.707 $6,623 1.657 $5,829 1.690
94 $5,319 1.554 $4,845 1.586 $6,309 1.536 $5,499 1.569
95 $4,951 1.437 $4,480 1.467 $5,916 1.420 $5,115 1.451
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Table 7.2: Average Lifetime Costs and QAL Ys by Treatment Strategy

without Stratification

RisedronateNo Therapy Alendronate Etidronate
Lifetime Costs
QALYs

ICER versus no
Therapy

$7,310
5.991

$7,908
6.007

$8,018
5.983

$8,163
5.998

$112600$37 000 Dominated

Note: Data are obtained by weighting the expected value of costs and QALYs for

each cohort in Table 7.1 by the proportion of claimants in each cohort.

Figure 7.2 Incremental Costs and QAL Ys for Bisphosphonates Compared to
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75 or greater and for osteoporotic women without previous fracture aged 77 or

greater (Figure 7.3). For all other women, no therapy will be optimal. The greater the

value of f.., the younger the cut off age point for access to alendronate (Figure 7.3).

Hence, the greater the value of f.., the greater the proportion of women for whom

alendronate should be made available (Figure 7.4).

Figure 7.5 shows that at a value of f.. of $50 000, the net benefit from stratification is

$24.9 million when compared to the optimal policy without stratification which

would be to make alendronate available to all women. The net benefit from

stratification varies by f.. with a peak at $37 000 (Figure 7.5). For low values of f.., no

therapy will be optimal for most women thus there is little value from stratification.

Similarly for high values, alendronate will be optimal for most women.

7.4.2 Net Benefit Loss from Restricted Stratification

In the previous section, analysis assessed the net benefit gain from stratification by

both age and fracture history. In this section analysis focuses on the net benefit loss

by restricting stratification to either age or fracture history.

If stratification was restricted to fracture history only then there are four potential

stratification bases although only three are likely given the above results'". The

incremental cost per QAL Y for alendronate versus no therapy is $25 900 for women

with previous fracture and $42 200 for women without previous fracture. Thus, if A.

was less than $25 900, it is not optimal for any women to receive alendronate. If A.

67 The four potential bases are alendronate available to no women, alendronate restricted to those with
previous fracture only, alendronate restricted to women with no previous fracture and alendronate
available to all. Obviously given the increased benefit of alendronate for women with previous
fracture, it is unlikely that a policy of restricting alendronate to only women with no fracture history
would be optimal.
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Figure 7.3: Age Cut Oft'sfor Restricted Access to Alendronate by Value of a

QALY
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Figure 7.5: Net Benefit from Stratification by Value of a QALY
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was valued between $25 900 and $72 900, it is optimal for women with previous

fracture to receive alendronate (Table 7.3). For values of Agreater than $72 900 it is

optimal for all women to recei ve alendronate.

Given the quite different limited use criteria arising from restricting stratification to

fracture history only, there is a significant net benefit loss (Figure 7.6). If A were

equal to $50 000, the net benefit gain from stratification is $6.5 million representing

a net benefit loss of $18.4 million.

There is less impact when restricting stratification to age only. For example, if A

were equal to $50 000, the optimal limited use criteria when stratifying by age only

is to restrict alendronate to women aged 75 or greater. Thus, the impact of not

stratifying by fracture history is that alendronate would now be available for women

aged 75 or 76. The net benefit loss from the revised stratification basis is $130 000.

7.4.3 Impact of Leakage

For values of A more than $37 000, the impact of leakage would be to reduce the net

benefit gain from stratification. For example, if A were equal to $50 000 and the

level of leakage was 10%, the net benefit loss from leakage is $2.49 million ($24.9

million *10%).

For values of A less than $37 000, there is the potential that leakage may lead to a

revised stratification bases whereby alendronate would not be made available to any

women. This occurs when the bet benefit gain from making alendronate within a

small number of strata is less than the loss from leakage to other strata.
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Table 7.3: Average Lifetime Costs and QALYs by Treatment Strategy

Stratified by Fracture History

No TheraJ2i: Alendron ate Etidronate Ri sedronate
No previous fracture

Lifetime Costs $6 103 $6965 $6695 $7089
QALYs 6.701 6.713 6.695 6.706

ICER versus no $72900 Dominated $177600
Therapy

Previous fracture
Lifetime Costs $7,877 $8,351 $8,640 $8,667
QALYs 5.657 5.675 5.648 5.666

leER versus no $25900 Dominated $92700
Thera

Figure 7.6: Net Benefit Loss from Restricted Stratification by Value of a

QALY

en $25
e

~
:i

$5

.. ................. ... ... ..

11472900:
corresponds to
ICER for patienls
wth no pre~ous
fracture history

$20
..,,.,,

$15

$10 ,,

11=$25900:
corresponds to
ICER for patients
.. Ih prEMOUS
fracture history

$O~--~~~~~~~==~~==~~--~==~~~==~==~~~~
$0 $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $80,000 $90,000 $100,000

Threshold Value of a QAL Y

Stratification basis -Age ••• Fracture history

200



For example, if Awas equal to $20000, the net benefit gain from stratification is

$17.6 million. The incremental net benefit for no therapy versus alendronate in those

strata where no therapy is optimal is $38 million. Thus, if the level of leakage is

greater than 46% then a policy of not allowing alendronate to any women becomes

optimal'".

This break even point for the level of leakage is greater the value of A(Figure 7.7).

7.4.4 Impact of Budget Constraints

Based on the incidence rates for prescribing bisphosphonates and the estimated costs

from the decision model, the lifetime osteoporosis related health care and drug costs

associated with individuals newly prescribed bisphosphonates would be

$600.4 million and $41.8 million respectively.

The health care costs associated with the optimal limited use criteria will increase as

the value of Aincreases as it becomes optimal to provide alendronate to more and

more women. However, given the higher health care costs associated with the

prescribing of etidronate, the costs associated with the use of optimal limited use

criteria will be less than under current prescribing. Thus, a budget constraint based

on current overall health expenditure on osteoporosis will not impact the optimal

limited use criteria (Figure 7.8).

The drug costs associated with the optimal limited use criteria will increase as ')..

increases as it will become optimal to provide alendronate to more and more women.

68 AITNB = 0.46'" $38 million = $17.46 million = TNBsjk'
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Figure 7.7: Break Even Level of Leakage Required for Switch to Alendronate

Being Unavailable for all Women by Value ofa QALY
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Figure 7.8: Health Care Budget with Current Prescribing and Revised

Prescribing under New Limited Use Criteria by Value of a QALY

J $600

1$500

...... .- .

For II .... of A. "" heaIIh
care budget wil be IowaI will
stallicalon COfT'IlII'ed _, lie
pnMOUB _ 01 ~lJre

$100

........................... -- ....

$400

$300

$200

$O+-----~----~-----,------r-----~-----.----~------r_----~----~
$0 $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $60,000 $90,000 $100,000

Threshold Value for a QALV

••• Budgetwith NewLUC -Current Budget

202



Given the higher drug costs of alendronate compared to etidronate, at A. greater than

$39 000, the forecasted drug budget would be greater than the current drug budget

(Figure 7.9).

If a budget constraint was introduced, then if A. was greater than $39 000, the optimal

LUC would not be dependent only on whether the net benefit of alendronate was

greater than zero. The focus of the LUC would be to maximize the return in the form

of net benefit but within the prevailing budget constraint. For example, if A. was

equal to $50 000, the optimal LUC would lead to a drug budget of $43.7 million.

Thus, to remain within the budget constraint of $41.8 million a revised optimal LUC

would be required. In this scenario the optimal LUC would be to restrict alendronate

to women with previous fracture aged 75 and over and with no previous fracture

aged 79 and over. Thus, the net benefit from stratification will be lower than without

any budget constraint ($24.7 million compared to $24.9 million). This net benefit

loss from the imposition of a budget constraint increases as A. increases as more and

more patients for whom alendronate is optimal without a budget constraint are

allowed access (Figure 7.10).

7.4.5 Comparison of Optimal Limited Use Criteria with Previous Limited Use

Criteria

Figure 7.11 illustrates the potential net benefit gain if the Ontario Drug Benefit

Formulary adopted a LUC based on the stratified analysis to replace the LUC in

place at the beginning of 2003. The net benefit gain if A. was equal to $50 000 would

be $93 million with the gain increasing the greater the value of A..
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Figure 7.9: Drug Budget with Current Prescribing and Revised Prescribing

under New Limited Use Criteria by Value of a QAL Y
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Figure 7.11: Net Benefit Gain from LUC Based on Stratified Analysis and

Revised LUC from ODB Compared to Previous LUC
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7.5 IMPACT OF ANALYSIS

Subsequent to an initial report of the above analysis (Coyle 2002), Ontario Drug

Benefit Formulary revised the LUC for bisphosphonates in the spring of 200369• The

revised LUC were as follows:

- Unrestricted access to etidronate

- Access to alendronate and risedronate allowed for women categorized as

failures with respect to therapy with etidronate; with failure as defined

previously.

- Access to alendronate and risedronate allowed for women who met two of the

three following criteria

o A BMD more than three standard deviations below the young adult

mean

o A previous osteoporotic fracture

o Aged 75 and above

The final criteria allows for increased access to alendronate and risedronate as

alternate therapies to the use of etidronate. It is not possible to obtain an accurate

measure of the net benefit gain from the adoption of the revised LUC given that it is

unclear what the relative proportions of patients is who will meet the additional

criteria. To explore this issue, the following assumptions relating to the potential

market share of each bisphosphonate were made.

69 A report prepared by me based on an abstract presented at the 2003 Medical Decision Making
conference was part of a submission by Merck and Co. Canada seeking revised LUC for alendronate.
Based on this submission. the LUC for bisphosphonates within the ODB formulary were revised.
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- For all women who met the additional criteria for access to alendronate and

risedronate, it was assumed that the market share for each bisphosphonate

was equal.

- For all women who did not meet the additional criteria for access to

alendronate and risedronate, it was assumed that the market share remained

as previously.

- For cohorts it was assumed that 10% of women had a BMD less than 3

standard deviations below the young adult mean (Tenenhouse et al. 2000).

Clearly, the above assumptions can at best be considered tentative. Under these, the

net benefit gain from the revised LUC was $26 million, if A. was equal to $50 000,

with the gain increasing linearly the higher the value of A. (Figure 7.11). However,

the revised LUC is inefficient when compared to the optimal LUC as defined by the

stratified analysis, with a reduction in net benefit of $57 million when A. equals

$50000.

7.6 DISCUSSION

Previous to 2003, the use of bisphosphonates within the Ontario Drug Benefit plan

was restricted through limited use criteria which led to etidronate comprising 74% of

bisphosphonates covered. However, a meta analysis suggested there was limited if

any benefit from the use of etidronate in terms of the prevention of fractures

(Cranney et al. 2001a). Given this and additional evidence relating to alendronate

and risedronate (Cranney et al. 2002a, 2002b), an economic analysis assessing the

cost effectiveness of bisphosphonates became desirable.

207



A stratified analysis found that regardless of the value for A, an optimal LUC will

involve a proportion of women having access to alendronate with the rest having no

access to therapy. Adoption of the optimal LUC as defined by the stratified analysis

would lead to substantial health and economic benefits over the previous LUC. If A

was equal to $50 000, the net benefit gain from such a change would be $93 million.

Adoption of the LUC based on stratified analysis may be problematic for decision

makers. This would require two major changes to policy relating to

bisphosphonates. First, only one bisphosphonate would be made available for

prescribing compared to the current three; albeit two are subject to restricted access.

This may be considered a violation of physician autonomy; even though the therapy

which is available is both the most effective and most expensive. Secondly,

imposition of the LUC would result in a group of osteoporotic women having no

access to therapy.

Given such concerns, it is maybe unsurprising that the revised Ontario Drug Benefit

Formulary LUC are not wholly consistent with the results of this analysis. For all

women, at least one bisphosphonate is made available for prescribing and women at

high risk of fracture have unrestricted access to all three bisphosphonates. However,

the revised LUC should lead to a move towards greater prescribing of alendronate

and risedronate relative to etidronate.

The overall net benefit gain from the revised LUC will be unknown until data

demonstrating the change in prescribing patterns are available. Tentative analysis

suggests that noticeable gains in net benefit should be realized though these will be
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substantially less than that which would be achieved from the LUC based strictly on

the results of the stratified analysis.

7.7 CONCLUSION

In this chapter, the framework developed in Chapter 3 has been applied to the

prescribing of bisphosphonates for the prevention of fractures in Canadian women.

A stratified economic analysis was conducted using the Canadian Economic Model

of Osteoporosis developed for this thesis and described in detail in Chapter 6.

Analysis estimated the lifetime costs and QALYs associated with three different

therapies for the prevention of osteoporotic fractures as well as a strategy involving

no therapy for 62 cohorts based on a woman's age and previous history of fracture.

Analysis found that, an optimal LUC will involve a proportion of women having

access to alendronate with the rest having no access to therapy. The proportion of

women for which alendronate is optimal increases, the greater the value of A, with

alendronate use more cost effective for older women with previous fracture.

Further analysis examined the impact of both equity considerations and leakage on

the net benefits to be gained from stratification. Analysis found that equity concerns

relating to restricting access to therapy on the basis of age would have a significant

effect on net benefit. Further analysis found that leakage could have substantial

impact on net benefit and may lead to it being optimal to make all therapaies

unavailable to patients.
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The above analysis is based on the expected values of outcome generated through

Monte Carlo simulation. This is the optimal method for determining an efficient

allocation of resources. Consideration of the uncertainty over the optimal policy is

appropriate for determining which future research is worthwhile. This is the focus

for the following chapter.

210



Chapter 8.

Value of Information Analysis for the Treatment of

Osteoporosis

8.1 INTRODUCTION

In Chapter 4, appropriate methods for handling uncertainty in input parameter values

were identified. Uncertainty relates to lack of knowledge concerning a specific

parameter. Given the potential for non linear relationships between input parameters

and outcomes, probabilistic analysis based on Monte Carlo simulation is necessary to

identify optimum therapies based on the expected values of costs and outcomes.

There are opportunity losses arising from making decisions based on uncertain

information which are a result of the potential for type 3 error. Thus, the principal

focus of further analysis relating to uncertainty should be to determine for which

parameters the collection of further information is justified.

In Chapter 4, the expected value of perfect partial information (EVPPI) was

identified as the theoretically correct method for determining parameter importance

and is a necessary component to the determination of an efficient research design. An

approach for screening parameters was developed and methods for the estimation of

optimal research design were described.

The focus of this chapter is to determine an efficient research plan relating to the

treatment of osteoporosis. Analysis was conducted using a decision model for the
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conduct of economic evaluations in osteoporosis for Canada described in Chapter 6.

The results of the stratified analysis using this model were detailed in the previous

chapter.

In Section 8.2, the methods adopted for the analysis are described and detailed in the

form of the specific steps required. In Section 8.3, the optimal research plans for the

potential research studies are identified. In Section 8.4, sensitivity analysis is

conducted relating to the impact of uncertainty around features of a particular study

design and the impact of alternate study designs.

8.2 METHODS FOR THE ANALYSIS OF INFORMATION VALUE

8.2.1 Steps involved in determining optimal sample size

Throughout Chapter 4, methods for estimating parameter importance and the value

of further research are described and an approach to applying this to studies is

developed. The approach can be outlined as a series of 5 steps:

1. Estimate EVPPI for indi vidual parameters and parameter groups

2. Estimate population EVPPI for individual parameters and parameter groups

3. Estimate the costs associated with specific research projects

4. Eliminate studies where the minimal costs of research are greater than

population EVPPI

5. For potential studies which are not eliminated estimate the optimal sample

size.

Each of these steps is now discussed in detail.

212



8.2.2 Estimating EVPPI

In Chapter 4, 5 methods for identifying EVPPI were presented (Claxton et al. 2001,

Brennan et al. 2002a, 2002b, Felli and Hazen 1998, Coyle et al. 2003c, Chilcott et al.

2003a). One method was dismissed as being an incorrect formulation of EVPPI

(Claxton et al. 2001). Two methods were identified as being appropriate only in

specific circumstances relating to the form of uncertainty around parameters and the

relationship between incremental net benefit (Felli and Hazen 1998, Chilcott et al.

2003a). The two final methods were shown to be appropriate measures in all

circumstances though both were computationally complex (Brennan et al. 2002a,

2002b, Coyle et al. 2003c).

Given the complexity and the number of uncertain parameters within the model, a

screening mechanism is adopted as outlined in Chapter 4. A proxy value for EVPPI

for all parameters and parameter groups are estimated using the single MCS method

outlined in Section 4.4.3.2 (Felli and Hazen 1998). This method requires the

following:

1. Conduct a MCS by sampling from the probability density functions of the

parameters of interest (Xi) with all other parameters fixed at their expected

value (Xc= E(XC».
2. For each replication within the MCS calculate the difference between the net

benefits of the optimal treatment as previously identified and the maximum

net benefits across all treatments.

3. A proxy for EVPPI is the expected value from step 2.
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Within the osteoporosis model, there are 62 distinct analyses of cost effectiveness:

one for each of 62 population strata. By definition, the EVPPI per patient for an

individual parameter or group of parameters will be the sum of EVPPI for each of the

62 strata weighted by the proportion of pertinent patients in each strata.

EVPPIxj = LEVPPIX.ik * Pjk
j=O.1.k=65.66 ..95

where
p = proportion of patients in each strata
j = 0 if no previous fracture, 1if previous history of fracture
k = age (range from 65 to 95)

EVPPI is estimated using the single MCS method for all 36 individual stochastic

parameters in the model. In addition, EVPPI is estimated for the following 7

parameter sub-groups given the likelihood that data for each group could be collected

within a single study design:

- The relative risk of hip, spine and wrist fracture for each therapy (3 groups)

- The cost of hip fracture by patient outcome and age

- Utility weights for hip, spine and wrist fractures

- Continuation rates for alendronate, etidronate and risedronate

- Age specific rates of admission to LTC following hip fracture

The list of parameter sub-groups is not exhaustive but is limited to the most likely

research designs.

8.2.3 Estimating Population EVPPI

In the previous section the methods for estimating EVPPI are outlined. EVPPI is an

estimate of the opportunity loss on a per patient basis. To estimate the value of
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perfect information across all potential patients, EVPPI needs to be weighted by the

potential patient population which will be affected by the research design.

The potential patient population is a function of three parameters: the number of

patients who could be affected annually; the duration for which the research is

meaningful and the likely uptake of research.

In this study, the number of future patients whose treatment could be affected as a

result of further research is assumed equi valent to the number of incidence cases of

prescribing of bisphosphonates. For the province of Ontario this is estimated to be

74848 based on data for 2001. For the base analysis, this figure is assumed fixed

given that it is based on actual population data.

However, it should be noted that there is uncertainty around the appropriateness of

such an estimate. For certain parameters within the decision model, the value of

information may be limited to only Ontario (e.g. costs of fractures). However, for

some parameters, more precise estimates may have value for patients and decision

makers elsewhere. For example, the results of a clinical trial may reduce uncertainty

in decision making for Ontario but, in addition, will reduce uncertainty for many

other jurisdictions. The appropriateness of including such factors on the decision

over optimal research design will be determined by whether decision makers place

any value on reducing decision uncertainty outside of their jurisdiction 70.

70 For this chapter, analysis is restricted to assuming only benefit to patients within the province of
Ontario. Clearly, including a wider basis for patients will increase the return from research leading to
higher optimal sample sizes.
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Consideration of the duration of time for which research can be considered

meaningful (the lifespan of research) allows for the fact that the impact of research

will become limited over time as different therapeutic options become available. For

instance, refining our estimates of the effectiveness of etidronate will have no value

once etidronate is no longer considered an appropriate option for treatment. For the

base analysis it is assumed that the lifespan of research will be up to 10 years from

the time of the current decision 71. This estimate reflects the rate of licensing of new

therapeutic options in this clinical arean.

Many previous analyses of information value have failed to further adjust for the

duration of time required for the research and the subsequent revision of any LUC. If

a clinical trial takes up to 4 years to produce the desired information and leads to a

policy change, then the potential lifespan of the research will be limited (in this

example from 10 years to 6). For each potential research design. the time between

commencement and a revision of LUC is estimated and where appropriate assumed

to vary by sample size. The impact of shorter research duration (e.g. faster trial

recruitment) is examined in Section 8.4.

The final factor which influences the population weighting is the uptake of any

subsequent change in policy following the research. Under the scenario developed,

an initial decision on the appropriate limited use criteria will be made based on

current evidence. Subsequent evidence may lead to a revision of the criteria. If the

71 For the base analysis, it is assumed that the lifespan of research is known and fixed. However, in
reality this is unlikely. Thus, in section 8.4 the impact of assuming that variables are unknown is
explored. For lifespan uncertainty is represented by a triangular distribution bounded by 7 and 13
years.

72 For different clinical areas the lifespan of research may vary. For areas for which there is rapid
progress in the development of therapeutic alternatives the lifespan of certain research may be quite
short.
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research does not or can not have the potential to lead to a revision there is by default

no value to the information: i.e. the only value from information arises from the

potential to revise the original decision.

The thesis adopts a normative framework for the decision makers who decide on

which therapies should be reimbursed for which patients. However, as in the case of

leakage discussed in Chapter 3, the thesis does not take the position of assuming that

other decision makers such as individual clinical practitioners will be normative in

their behaviour. Thus, not all practitioners may be willing to change their

prescribing practice when revised criteria are put in place.

For the base analysis, it is assumed that the majority (75%) of practitioners will

change according to any revised criteria". This is assumed to be constant for all

types of research but it is possible that compliance with new criteria will be a

function of the nature of research which influenced any changes and the nature of

any changes 74.

Given the above, the proxy value for population EVPPI based on the single MCS

method can be estimated as follows:

73 In section 8.4.1. uncertainty around this estimate is represented by a beta distribution with alpha
=30 and beta = 10.

74 Practitioners may be more likely to comply with changes based on new trial evidence which implies
it is cost effective to treat a greater number of patients than evidence of falling costs in treating
fractures which implies it is cost effective to treat a lesser number.
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(11)popEVPPI = EVPPI *u *n * L - L_ 1+ r y" _ 1+ r Ydy,,-O...u-t ( ) yrO ...drrun-J ( )

where
u = uptake of revised LUC by practitioners

n = annual number of potential patients affected by LUC
Is = lifespan of research
dmin = minimum duration of research

8.2.4 Estimating the costs associated with specific research projects

In the previous section, the methods for estimating the population EVPPI for a

specific parameter were described. Population EVPPI is the maximum benefit which

could be obtained from research information. Thus, to determine the optimal sample

size for a given research project, it is necessary to provide an estimate of the

associated costs of the project.

Costs will vary by study sample size. However for any research project there will be

fixed costs associated with start up costs relating to the study design and

implementation stages and finishing costs relating to the analysis and presentation of

study data.

In Canada, research budgets funded through the Canadian Institutes of Heath

Research and other peer reviewed funding agencies are underestimates of the true

cost of conducting research. Budgets exclude both the costs of developing research

and the substantial time commitments of study investigators and co investigators

which are not covered by funders. For this analysis, time commitments are assumed

to be quantifiable as a fixed annual cost. In addition it may be necessary to include
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the costs of revising the economic analysis with the new information and updating

policy with respect to the treatments evaluated.

The research costs will be partially determined by the rate by which participants can

be recruited into a study as well as the time required to start up a study. The slower

the recruitment to the study, the less the discounted cost per case and the lower the

discounted finishing costs. However, this is likely to be outweighed by the higher

investigator costs due to the longer study duration. Similarly, the longer the duration

of time required to start up the study, the greater the cost of investigator's time.

Thus, for each potential research study", the following parameters are required to

allow estimation of research costs:

- start up costs (csu)

- time required for start up (dsu)

- costs per sample (cease)

- finishing costs (Cfin)

- time required for finishing (dfin)

- analysis and policy costs (cap)

- time required for analysis and policy revision (dap)

- annual recruitment rates (ARR)

- duration of follow up of patients (dflup)

- annual costs relating to research administration and investigator time (cannual)

- discount rate (r)

75 Potential research studies are limited by focusing on those with non negligible EVPPI.
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The total research costs (TC) as a function of the sample size (s) can be estimated as

follows:

TC = C + ~ cannual +ARR * C * (1- d )+ ~ ceau * ARR + (c fin + Cap)
S su z: ()y case su c: ( )y ( v'

y=O •...d-J 1+ r y=J .... d-J-djin 1+ r 1+ r

where

s
d = -- + d jlup + dsu + d fin + dap

ARR

8.2.5 Eliminating studies with no information value

For each potential research project, a minimum sample size (Smin) can be estimated

which reflects the minimum for which it will be practical to conduct the research

project. In the previous section, methods for estimating the costs of research projects

with different sample sizes were detailed. Thus, the total cost for the minimum

sample size can be estimated as:

C C * ARR (c + C )TC = C + ~ annual +ARR * c * (1_ d )+ ~ case + ~ fin ap
Smin su c: (1)y case su c: (1 )Y (1 )dmin-J

y=O .... dmin-J + r y=l .... dmin-J + r + r
where

d rriJn = ~~ + d jlup + d su + d fin + d ap

The population EVPPI which is estimated as in Section 8.2.3 can be seen as the

maximum value that can be obtained from research. Thus, if the population EVPPI

is less than the minimum cost of research a proposed research project can not have

any information value. Thus, it is desirable to eliminate potential research projects

where the maximum net benefit from sampling (NBSmax) is negative:

NBSmax = popEVPPI - TCsmI•
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8.2.6 Estimating optimal sample size for studies

The previous four sections detail a method for reducing the number of potential study

designs for which it is necessary to conduct value of information analysis. Once

these steps are conducted a reduced number of study designs will be considered and

the optimal sample size for each study design identified based on the methods

outlined in Chapter 4.

Estimation of optimal sample size for each study involves the following steps:

EVPPI is estimated for relevant parameters based on current data using the

quadrature method. This involves the following:

1. A set of 101 values is determined for each parameter of interest. The values

are equally spaced across the parameters probability function with a high

degree of coverage (>99.99%).

2. For each value of the parameter chosen in step 1, the NB for all treatment

options is estimated by conducting MCS by sampling from the probability

density functions of all other parameters (XC).

3. For each simulation conducted in step 2, the net benefit of the optimum

therapy from the base analysis is subtracted from the maximum net benefit

over all therapeutic options.

4. Each estimate from step 3 is weighted by the probability density for the

specific value of the parameter.

5. EVPPI is then estimated by numerically integrating across the probability

density function.

Data collection from a hypothetical study with sample size s is simulated based on

current knowledge. This requires the following:
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1. Draw a sample from the prior distribution of each of the parameters of

interest.

2. Use this sample to create a new distribution which relates to a single

participant in the potential study.

3. Sample from this distribution".

4. The probability distribution(s) for input parameter(s) is updated by combining

prior (original) data with simulated sample data.

5. EVPPIls is estimated based on the updated distribution. This requires merely

re-estimating EVPPI as in step 1 by changing the probability density for

parameter values as outlined in step 4.

6. Steps 1 - 4 are repeated a number of times (3000) to allow estimation of the

expected value of EVPPlls

LEVPPllsr
EVPPIls = ..:..;r=:..:..:I.=.3000"""- _

3000

7. The population expected value of sample information (popEVSI) is the result

of the subtraction of the value from step 1 and the value from step 6 weighted

by the number of future patients potentially affected by the research

popEVSl. = (EVPPl- EVPP1Is)' u' n 'Cl=,,-dl +'r)'" - "];._, (I+Ir)" )

where
u = uptake of revised LUC by practitioners
n = annual number of potential patients affected by LUC
Is = lifespan of research
d s = duration of research given sample size s

76 For example for a beta distribution the first step involves randomly sampling a probability value
from the beta distribution. The second step involves deriving a binomial distribution with the
probability value as sampled above and with s number of trials. The third step involves simulating a
study with sample size s from this binomial distribution.
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8. Steps 1 - 6 are repeated for various s.

The optimal sample size (s*) is the sample size which maximizes the difference

between the EVSI and the cost of sample information

s* = maxs (popEVSIs - TCJ

8.3 RESULTS

8.3.1 EVPPI for Individual Parameters and Parameter Sub-groups

Table 8.1 presents the proxy estimates for EVPPI all individual parameters with non

zero EVPPI and for the 7 identified sub-groups. The following are the major

findings:

- The highest EVPPI relates to obtaining further information on the

effectiveness of etidronate in preventing hip fracture ($215.92); followed by

the same information for alendronate ($19.63).

- For both etidronate and alendronate, there is little additional value in

obtaining further information on the prevention of wrist and spine fractures

highlighting that further research if conducted could focus on only collecting

information concerning hip fractures.

- The EVPPI for further information relating to risedronate is minimal ($0.05).

- The EVPPI for individual cost parameters are zero whilst the EVPPI for all

cost parameters relating to hip fractures is small ($0.08).

- The EVPPI for utilities is similar to the EVPPI for the utility of hip fracture

($0.08). This suggests that there may only be only value in refining the latter

variable.
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Table 8.1: EVPPI for Individual Parameters and Parameter Sub-groups

Individual parameter EVPPI per
patient

RR of hip fracture with etidronate compared to no therapy
RR of hip fracture with alendronate compared to no therapy
Proportional reduction in benefit after stopping therapy
RR of fracture with previous fracture compared to
osteoporosis without fracture
Proportion of LTC stay post hip fracture attributable to hip
fracture
Rate of admission to LTC post hip fracture for women aged
75-84
RR of hip fracture with osteoporosis compared to no
osteoporosis
Disutility associated with hip fracture
RR of hip fracture with risedronate compared to no therapy
RR of spine fracture with etidronate compared to no therapy
RR of spine fracture with alendronate compared to no
therapy
RR of spine fracture with risedronate compared to no
therapy

Parameter group

RR of hip, wrist and spine fractures with etidronate
compared to no therapy
RR of hip, wrist and spine fractures with alendronate
compared to no therapy
Rate of admission to LTC post hip fracture for women for
all age groups
Disutility associated with hip, wrist and spine fracture
Costs of hip fractures by age and outcome
RR of hip, wrist and spine fractures with risedronate
compared to no therapy
Annual continuation rates for etidronate, alendronate and
risedronate

$215.92
$19.63
$5.02
$1.56

$1.19

$0.28

$0.19

$0.08
$0.05
$0.05
$0.05

$0.05

$216.14

$19.65

$0.28

$0.08
$0.05
$0.05

$0.05

EVPPI for all individual parameters not listed equals $0.
RR = relative risk
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- The EVPPI for the rates of institutionalization post hip fracture is similar to

the EVPPI for just the rate for women aged 75-84 ($0.28). This again

suggests that there may only be only value in refining the latter variable.

- Individually, continuation rates have no further information value whilst

collectively the EVPPI is low ($0.05).

- There may be value in obtaining further information relating to the relative

risk of fracture with previous history (EVPPI = $1.56), the benefit beyond

curtailment of therapy (EVPPI=$5.02) and the proportion of LTC attributable

to fractures (EVPPI=$1.19).

Given these findings it is necessary to evaluate the value of information relating to

the following parameters.

- Relative risk of hip fracture on etidronate

- Relative risk of hip fracture on alendronate

- Relative continuation of benefit after stopping therapy

- Relative risk of having a fracture associated with a previous fracture

- Proportion of long term care stays attributable to hip fracture

- Rate of admission to long term care after hip fracture for women aged 75-84

- Relative risk of fracture associated with osteoporosis

- Disutility associated with hip fracture

- Annual continuation rates with therapy for alendronate, etidronate and

risedronate

- Costs associated with hip fractures by age and patient outcome.
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8.3.2 Population EVPPI for Individual Parameters and Parameter Groups

In Section 8.2.2, parameters relating to the number of potential patients for whom

research may affect their future care were identified. The annual number of patients

affected was 74848, the lifespan of research was 10 years and the uptake of any new

LUC was 75%. Thus, the total number of potential patients is 561 300 undiscounted

and 455 141 undiscounted.

To determine the population EVPPI for each parameter(s) identified in the previous

section it is necessary to revise the total number of potential patients by allowing for

the minimum time for which research can be conducted and change policy. For each

pertinent parameter and parameter group the following information was estimated

- minimum sample size (Smin)

- time required for start up (dsu)

- time required for finishing (dfin)

- time required for analysis and policy revision (dap)

- annual recruitment rates (ARR)

- duration of follow up of patients (dflup)

The minimum duration of research for each of the 10 potential studies and the study

design are presented in Table 8.2. Potential research projects can be characterised as

clinical trials (for relative risks associated with treatments), case control studies (for

relative risks associated with risk factors), cohort studies (for utilities, costs and

transition probabilities) and analysis of administrative data (for continuation rates).

Clinical trials are likely by their nature to have the greatest study duration whilst

analysis of existing data will have the lowest.
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The different minimum durations will lead to different potential patient populations

with regards to the impact of the research studies. By weighting the EVPPI per

patient by the potential patient population we can estimate the maximum value for

each research study (Table 8.3). The findings of this are similar to that of EVPPI per

patient in that the highest value is for the conduct of clinical trials of etidronate

($51.8 million) and alendronate ($4.7 million) with little value for studies of hip

fracture costs ($19000) and utilities ($34 000) and for continuation rates($22 000).

8.3.3 Estimating the costs associated with specific research projects

The next step in evaluating the value of further information was to determine the

costs associated with specific research projects related to each parameter. The

minimum costs for the research project must be less than the population EVPPI for

the particular parameter(s) for there to be potential for information value.

The minimum costs for each specific research project was calculated based on the

data described in the previous section plus the following data relating to the costs of

conducting and using research:

- start up costs (csu)

- costs per sample (cease)

- finishing costs (Cftn)

- analysis and policy costs (Cap)

- annual costs relating to research administration and investigator time (Cannual)
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The above parameters were estimated based on discussion with other researchers and

through using prior experience being a member of the Canadian Institutes of Health

Information Health Services and Evaluation Committee (Table 8.4).

8.3.4 Eliminating studies with no information value

The final step before assessing the optimal sample size for potential studies is to

eliminate any study which has no information value: i.e. the minimum costs of

research are greater than the maximum benefit (population EVPPI).

Table 8.5 details the maximum net benefit from sample information for the ten

potential studies. Six studies have a positive maximum net benefit and are subject to

analysis to identify optimal sample size:

- RR of hip fracture with etidronate compared to no therapy

- RR of hip fracture with alendronate compared to no therapy

- Proportional reduction in benefit after stopping therapy

- RR of fracture with previous fracture compared to osteoporosis without

fracture

- Proportion of LTC stay post hip fracture attributable to hip fracture

- Rate of admission to LTC post hip fracture for women aged 75-84

For the other four studies, the minimum cost of research exceeds population EVPPI

signifying there is no value in further research:

- RR of hip fracture with osteoporosis compared to no osteoporosis

- Disutility associated with hip fracture

- First year costs of hip fractures by age and outcome
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- Annual continuation rates for etidronate, alendronate and risedronate

These four studies have the lowest population EVPPI. For the RR of hip fracture

with osteoporosis compared to no osteoporosis, this is primarily because of the

relative lack of uncertainty over this parameter. For others, this is a result of either

the low incidence of hip fractures (costs and disutilities) or the relatively low

correlation between the parameter and the estimate of net benefit (continuation

rates).

8.3.5 Estimating optimal sample size for studies

8.3.5.1 Relative risk of hip fracture with etidronate compared to no therapy

Further information relating to the relative risk of hip fracture with etidronate is

assumed to come from a randomized controlled trial comparing etidronate to no

therapy. Value of information analysis was conducted to assess the optimal sample

size for such a trial with the objective of maximizing the net benefit of sample

information.

To simulate the conduct of the trial and its results, the methods outlined in section

8.2.6 were used. The annual risk of hip fracture without treatment was assumed to

be that of the control group in the FIT trial; 0.63% (Beta (a=40, ~=6285)) (Black et

al. 1996, Cummings et al. 1998). The relative risk of hip fracture with etidronate was

that assumed in the base model (J.l=O.945,0=2.32).

Thus, to simulate the trial, a patient receiving no therapy is assumed to have an

annual risk of hip fracture depicted by a binomial distribution with risk of event
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equivalent to a sample value from the beta distribution. For a patient receiving

etidronate the risk of hip fracture is characterized by a binomial distribution with risk

of event equivalent to the sample value from the beta distribution weighted by the

sample value from the lognormal distribution.

Figure 8.1 depicts the cost of sample information and EVSI by potential sample size

for the clinical trial. EVSI is shown to rise significantly with information from the

first few patients within a trial. For sample sizes greater than 650 EVSI is shown to

fall as the value obtained from additional patients is less than the net benefit loss

arising from the delay in obtaining information. The optimal sample size for the

clinical trial is 640 patients with a net benefit of sample information of $43.6 million

(Table 8.6).

8.3.5.2 Relative risk of hip fracture with alendronate compared to no therapy

Value of information concerning the relative risk of hip fracture with alendronate

was assessed adopting the same methods as for etidronate above. The baseline risk of

hip fracture is again assumed to be that of the control group in the FIT trial and the

relative risk of hip fracture with alendronate is that assumed in the base model

(~=0.465, 0=1.29).

Figure 8.2 depicts the cost of sample information and EVSI by potential sample size

for the clinical trial. EVSI is shown to rise almost linearly by sample size up to a

sample of 800 patients. For sample sizes less than 220, a trial would not be

worthwhile as the value of information will be less than the costs of the trial given

the fixed start up and finishing costs. For sample sizes greater than 950 EVSI is

234



Figure 8.1 EVSI and Cost of Sample Information for Etidronate Trial by

Sample Size
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Table 8.6: Optimal Sample Size and Maximum Net Benefit of Sample

Information

Parameter(s) Study Optimal Net Benefit
Design Sample from Sample

Size Information
RR of hip fracture with etidronate Clinical 640 $43.6 million
compared to no therapy trial
RR of hip fracture with alendronate Clinical 800 $1.0 million
compared to no therapy trial
Proportional reduction in benefit after Cohort 350 $150000
stopping therapy study
RR of fracture with previous fracture Case 0 0
compared to osteoporosis without fracture control
Proportion of LTC stay post hip fracture Cohort 40 $510000
attributable to hip fracture study
Rate of admission to LTC post hip fracture Cohort 0 0
for women aged 75-84 study

RR of hip fracture with etidronate Clinical 750 $37.1 million
compared to no therapy and with trial
alendronate comEared to no theraE~
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shown to fall as the value obtained from additional patients is less than the net

benefit loss arising from the delay in obtaining information. The optimal sample size

for the clinical trial is 800 patients with a net benefit of sample information of $1.0

million (Table 8.6).

8.3.5.3 Proportional reduction in benefit after stopping therapy

Further information relating to the reduction in benefit after stopping therapy was

derived by assuming a cohort study whereby information would be obtained from

each patient on the proportional reduction in benefit.

Information from each potential patient was simulated by drawing from a lognormal

distribution derived from the original distribution (Normal (Jl=O, cr=l) assuming the

initial sample size was uncertain (uniform distribution between 0 and 2000).

Figure 8.3 depicts the cost of sample information and EVSI by potential sample size

for the cohort study. EVSI is shown to rise progressively but decline for sample

sizes greater than 750. The optimal sample size for the cohort study is 350 with a net

benefit of sample information of $150000 (Table 8.6).

8.3.5.4 Relative risk of fracture with previous fracture compared to osteoporosis

without fracture

It was assumed that further information relating to the relative risk of patients having

a fracture given a previous fracture compared to patients with osteoporosis without

previous fracture could be obtained from a case control study.
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Figure 8.3 EVSI and Cost of Sample Information for Cohort Study

Examining Benefit beyond Treatment by Sample Size
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Data for the case control study was simulated from data from the FIT trial which was

the original source of the relative risk data. Binomial distributions for patients with

and without previous fracture were obtained by drawing from the original beta

distributions from the FIT trial. Simulated data from the binomial distributions were

combined with original beta distributions to facilitate a posterior estimate of the

relati ve risk.

Figure 8.4 depicts the cost of sample information and EVSI by potential sample size

for the case control study. Although EVSI is shown to rise progressively at no point

does EVSI exceed the cost of sample information. Thus, there is no value in

obtaining further information on this parameter.

8.3.5.5 Proportion of LTC stay post hip fracture attributable to hip fracture

The prior estimate for the proportion of long term care stay attributable to hip

fracture was based on limited information and was assumed to be uninformative

(Beta «1=1, P=l)).

Further information on this parameter was assumed to come from a cohort study

where estimates of the parameter for each subject were obtained from drawing from

a binomial distribution with the expected value obtained from drawing from the

original beta distribution.

Given the uncertainty concerning this parameter it is not surprising that there is

substantial value to be obtained from the first samples within a cohort study but the
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Figure 8.4 EVSI and Cost of Sample Information for Case Control Study of

the Relative Increase in Fracture Risk given Previous Fracture by Sample Size
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marginal value of sample information declines quickly (Figure 8.5). The optimal

sample size for the cohort study is 40 with a net benefit of $510 000 (Table 8.6).

8.3.5.6 Rate of admission to LTC post hip fracture for women aged 75-84

The prior estimate for admission to LTC post hip fracture for women aged 75-84 was

obtained from a cohort study (Beta (a=26, ~=131».

Further information on this parameter was assumed to come from a cohort study

where estimates of the parameter for each subject were obtained from drawing from

a binomial distribution with the expected value obtained from drawing from the

original beta distribution. The posterior distribution is characterized by the sum of

the number of women who were admitted to long term care in both cohort studies,

and the sum of the number of women who were not admitted.

Figure 8.6 depicts the cost of sample information and EVSI by potential sample size

for the proposed study. Although EVSI is shown to rise progressively at no point

does EVSI exceed the cost of sample information. Thus, there is no value in

obtaining further information on this parameter.
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Figure 8.5 EVSI and Cost of Sample Information for Cohort Study Assessing

the Proportion of LTC Stay Attributable to Fracture by Sample Size
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8.4 FURTHER ANALYSIS

8.4.1 Impact of uncertainty on optimal sample size

In Section 8.3.5.1, the optimal sample size was determined for a randomized

controlled trial estimating the relative risk of hip fracture with etidronate compared

to no therapy. Optimal sample size was 640.

For this base analysis it was assumed that parameters relating to both trial design and

costs (csu,dsu,Cease,Clio,dlio,Cap,dap,ARR, dflup,Caooual)and potential patient

population (u, n, Is) were known and thus fixed. In reality these parameters are

uncertain 77. Simple univariate sensitivity analysis confirms that these parameters

have a non linear relationship with the optimal sample size. Thus, there is the

potential that the expected value of the optimal sample size given the uncertainty

around these parameters will be different than the optimal sample size based on the

parameter's expected value.

To explore this issue further, probability density functions were assumed for each of

the parameters (Table 8.7). For parameters relating to duration, triangular

distributions were assumed. For parameters which were proportions, beta

distributions were assumed. All other parameters were assumed to take the form of

normal distributions.

Figures 8.7 and 8.8 depict frequency distributions for the optimal sample size and net

benefit of sample information from the Monte Carlo simulation. The expected values

77 Except for the duration of follow up.

243



Table 8.7: Probability Density Functions for Parameters Relating to

Information Value from Etidronate Trial

Base value Probability density function
Start up costs $30000 Normal (30 000, 3 000)
Annual costs of study $50000 Normal (50 000, 5 000)
management
Costs per sample $500 Normal (500, 50)
Finishing costs $10 000 Normal (10 000, 1 000)
Analysis and policy costs $10 000 Normal (10 000, 1 000)
Time required for start up 0.25 Triangular (0.15, 0.35,0.35)
Time required for 0.17 Triangular (0.15, 0.17, 0.19)
finishing
Time required for analysis 0.17 Triangular (0.15, 0.17, 0.19)
and policy revision
Annual recruitment rates 365 Normal (365, 36.5)
Annual number of patients 74848 Normal (74 848. 7 485)
Uptake of results 0.75 Beta (30, 10)
Lifespan of research 10 Triangular (7, 10, 13)

Note: Normal distributions characterized by mean and standard error. Triangular
distributions characterized by minimum, mode, maximum. Beta distribution
characterized by alpha and beta.

244



Figure 8.7 Frequency Count for Optimal Sample Size for Etidronate Clinical

Assuming Data are Uncertain
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for both the optimal sample size (632.0) and the net benefit from sampling ($43.3

million) are similar to the original values from the base analysis (640 and $43.6

million respectively) (Table 8.8) . However, the frequency distributions and the 95%

certainty intervals from the Monte Carlo simulation highlight the uncertainty over

these estimates.

8.4.2 Impact of changes to the design of clinical trials

The optimal sample size for the randomized controlled trials was based on particular

assumptions relating to the design of the trial. Studies were assumed to be single site

RCTs. In the preceding section, the impact of uncertainty around parameters relating

to the original study design was assessed for the etidronate clinical trial.

In this section, the impact of conducting a multi centre clinical trial is assessed. A

multi site study will allow quicker completion of study and thus increasing the

duration for which a study may make an impact. However, a multi site study is

likely to lead to increased costs relating to both start up and the annual costs

associated with the coordination of data collection and investigator costs.

For the single site study, it was assumed that start up costs were $30000 with annual

costs of $50 000. To assess the impact of multi site studies, the following

assumptions were made. First, each site would recruit patients at the same rate - i.e.

a two site study would finish recruitment in half the time of the single site study.

However, for each additional site participating in the study there would be a delay in

the start of recruitment due to a necessary increase in start up time (assumed to be 1

month per additional site). Secondly, both start up costs and annual costs would
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Table 8.8: Optimal Sample Size and Maximum Net Benefit of Sample

Information for the Etidronate Clinical Trial

Optimal Sample
Size

Net Benefit from Sample
Information

Base analysis
Monte Carlo simulation

640
632.0
(460,720)

$43.6 million
$43.3 million
(22.2 million, 67.8 million)

Note: Figures in parenthesis are 95% certainty intervals.
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increase by $10 000 for each additional site involved reflecting increased

management costs associated with multi site studies.

Thus, conducting multi site studies will involve a trade off between higher costs of

research and possible greater information value due to its shorter duration.

Figure 8.9 demonstrates the effect of the number of sites participating in the study on

both the optimal sample size and the net benefit gain from sampling. For both trials,

adding additional sites increases the optimal sample size as more patients can be

recruited quicker and the delay in use of the research is limited. However, for both

trials the maximum net benefit of sample information will peak at a specific number

of sites (for etidronate 7 and for alendronate 5). Adding additional sites would lead to

a loss in net benefit as the increased costs outweigh the benefits form an increased

sample.

8.4.3 Randomised trial of no therapy, etidronate and alendronate

In Sections 8.3.5.1 and 8.3.5.2, the information value from conducting clinical trials

comparing first, etidronate, and secondly, alendronate, to no therapy was assessed.

Both trials generated significant net benefits which may be unsurprising given the

relative uncertainty over which is the optimal treatment for the different sub-groups

of patients.78

Both trials may be worthwhile. However, it is likely to be infeasible to conduct two

simultaneous trials in the same patient population. As both trials include no therapy

78 This is highlighted in Appendix B.
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Figure 8.9 Effect of Number of Sites Participating in Clinical Trials on

Optimal Sample Size and Net Benefit of Sample Information
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as a comparator an alternate single three arm trial may be preferable. Thus, the

methods used to assess the optimal sample size for the etidronate and alendronate

trials were applied to the potential three arm clinical trial.

Figure 8.10 depicts the cost of sample information and EVSI by potential sample size

for the three arm clinical trial. As with the etidronate-no therapy trial, EVSI is

shown to rise significantly with information from the first few patients within a trial.

For sample sizes greater than 800 EVSI is shown to fall as the value obtained from

additional patients is less than the net benefit loss arising from the delay in obtaining

information. The optimal sample size for the clinical trial is 750 patients with a net

benefit of sample information of $37.1 million (Table 8.6).

8.5 CONCLUSIONS

In Section 8.2, the methods for assessing information value relating to treatment

decisions for osteoporosis were described. In Section 8.3, the expected value of

perfect partial information for individual parameters and parameter groups was

estimated and potential studies which may have information value were identified. In

Section 8.4 the implications on information value and optimal sample size of changes

to some of the assumptions made for the analysis in Section 8.3 were assessed.

Six potential studies were identified. Two studies involved randomized controlled

trials of treatment to assess their impact on hip fractures, one study involved a case

control study to assess the relative increase in fractures with previous fracture and

three further studies required simple cohort studies to refine individual parameters

within the model.
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Figure 8.10 EVSI and Cost of Sample Information for Trial including

Etidronate, Alendronate and No Therapy by Sample Size
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The greatest net benefit gain from sampling is from a randomized controlled trial

examining the relative risk of hip fracture with etidronate. The maximum net benefit

gain from this study is $30.3 million with a sample size of 640. The randomized

clinical trial of alendronate has an optimal sample size of 800 though the net benefit

gain from sampling is only $590 000. Thus, the etidronate trial has a smaller optimal

sample size but greater potential gains. This occurs as there is substantial value

obtained from the initial patients in the etidronate trial given the relative paucity of

information on its effects on hip fractures. However, given that etidronate is not the

drug of choice for any of the patient sub-groups whilst alendronate is 79, there is

continued value to be obtained from increasing sample size for the trial of

alendronate but not from the trial of etidronate.

With further analysis, it was shown that there was no information value from the case

control study relating to the relative risk of fracture with previous fracture. The

EVSI from this trial increases with sample size but is never greater than the

estimated costs of the study. For the three potential cohort studies, there is net

benefit to be gained from conducting these studies, though they are less than from the

two potential clinical trials.

There is clear evidence that randomized controlled trials for etidronate and

alendronate relating to their impact on preventing hip fractures may be justified

given that they provide sufficient information value. However, the feasibility of

conducting both trials needs to be questioned. In Section 8.4.3, an alternate approach

is explored in terms of a three ann clinical trial involving no therapy, etidronate and

79 As demonstrated in chapter 6.
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alendronate. The EVPPI for the parameter group of the effect on hip fractures for

alendronate and etidronate is by definition greater than the EVPPI for etidronate

alone $337 versus $311. However, analysis shows that the three arm trial will have

less information value than the trial comparing etidronate to no therapy. This is

likely due to both the reduced proportion of patients in the trial receiving etidronate

(and consequently the reduced level of information for the more uncertain parameter)

and the delay in completion of the study. Thus, if one trial was to be conducted the

optimal trial would be the comparison of etidronate to no therapy.

In Section 8.4.1, the impact of uncertainty around the parameters required for

estimating optimal sample size and the net benefit of sampling was assessed.

Uncertainty was shown to lead to a wide dispersion in estimates of these parameters.

However, expected values were similar to estimates from the base analysis, implying

that, in this instance, uncertainty in this area would have little impact on determining

an efficient research plan.

In Section 8.4.2, analysis focused on identifying whether a multi site trial would be

more beneficial than a single site trial. Involving more sites, requires the

consideration of the trade off between the ability to recruit more patients quicker and

increased research costs. Thus, analysis found that although optimal sample size will

increase as the number of sites increase; there will be an optimum number of sites

which will maximize the net benefit of sample information and this will vary by

study.
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There is a less convincing case for the conduct of the three potential cohort studies.

The parameter for which there is the greatest evidence in favour of conducting a

further study is the proportion of benefit maintained after curtailment of treatment.

Analysis is based on the conduct of a hypothetical cohort study. However, this

parameter is extremely difficult to measure. An alternate approach to measuring this

parameter would be to conduct a long term follow up of patients within a clinical

trial. This may be less costly but will result in longer delay before the data would

become available. Data for the other two parameters relating to long term care can

be obtained from specific cohort studies. However, for both parameters the net

benefit gain is small and an alternate approach of obtaining further information from

the proposed randomized controlled trials may be preferable.

In conclusion, in this chapter, value of information analysis has been conducted to

identify an efficient research plan relating to the treatment of osteoporosis. Given

the underlying uncertainty concerning the effectiveness of etidronate (the cheapest of

the available bisphosphonates), it is not surprising that a clinical trial to obtain

further information on the drug's effectiveness is the most desirable of the potential

research studies. A clinical trial relating to alendronate is of less value but may be

justified. However it may be infeasible to conduct both trials simultaneously and a

three arm trial has been shown to be of less value than the simple two arm etidronate

trial. Further information for three other parameters may be warranted. However, if

a trial of etidronate was conducted it is possible that such information as well as

information on many other parameters could be obtained for limited additional cost.
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Chapter 9.

Conclusions

9.1 INTRODUCTION

The objectives of this thesis are: first, to develop a nonnative framework for fully

handling both variability and uncertainty when making decisions using economic

evaluation; and secondly, to apply this framework to an economic evaluation of

treatments for osteoporosis. Decisions considered relate to, first, the immediate

decision concerning which therapies should be funded for the treatment of which

patients and, secondly, the decision concerning what is the optimal research plan to

reduce uncertainty around the first decision.

In Chapter 2, the concepts of uncertainty and variability were defined and their

previous handling in economic evaluation was discussed. In Chapters 3 and 4, the

nonnative framework for handling uncertainty and variability was developed. In

Chapter 5 and 6, the background to economic evaluation in osteoporosis was

discussed and the model used in subsequent chapters was described. In Chapter 7, a

stratified economic analysis of treatments for osteoporosis was conducted. In

Chapter 8, a value of information analysis was conducted.

In this chapter, the conclusions to be drawn from this thesis are developed. In

Section 9.2, the nonnative framework for handling uncertainty and variability are

discussed. In Section 9.3, the feasibility and acceptability of the framework is

discussed in relation to the evaluation of treatments of osteoporosis. Section 9.4
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contains a discussion of the innovative features of this thesis are discussed. In

Section 9.5, further work which could be conducted to enhance the progress made

with the thesis is identified. Finally, Section 9.6 contains concluding remarks.

9.2 THE NORMATIVE FRAMEWORK

The primary objective of this thesis was to develop a normative framework for the

consideration of uncertainty and variability when applying economic evaluations in

health care decision making. The framework is argued to be intuitive in that unlike

the previous practice of sensitivity analysis it is built on the actual definitions of both

terms. In addition, the framework fully handles uncertainty and variability related to

input parameters and outcomes.

Variability relates to the heterogeneity amongst the potential population affected by

the choice of health care intervention. Given that it is not possible to reduce the

degree of heterogeneity within the population the intuitive response is to split the

population into groupings of more similar individuals. Thus, heterogeneity within

each sub-group will be reduced.

Given the above, conducting economic analysis for different strata of the population

is attractive in that it is known that the cost effectiveness of interventions may vary

by patient characteristics. Thus, the practice of limiting interventions to those strata

for which they are cost effective can realise substantive economic and health benefits

for the population as a whole.
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The technique of stratified cost effectiveness analysis is described in Chapter 3. The

technique allows identification of the incremental net benefit to be gained from

restricting access to interventions only to those individuals for which it is cost

effective. The technique is feasible in that the outcomes generated are consistent

with the format of recent decisions relating to the management of pharmaceuticals

and devices in terms of limiting access. Furthermore, the technique permits

consideration of both equity concerns and the impact of non-adherence.

Uncertainty relates to the lack of knowledge concerning a particular variable. As in

economic evaluation we typically have a degree of uncertainty around parameter

values, this propagates into uncertainty around the outcomes of interest; i.e. the

relative cost effectiveness of alternate uses of scarce resources.

The framework is based upon the convincing arguments that in terms of public

funding decisions the only outcomes of interest are the expected values. Thus, the

thesis adopts what has been described as a Bayesian approach to decision making. It

is important to note that the framework requires the conduct of probabilistic analysis

to estimate expected values; recognising the non-linear relationships between input

parameters and outcomes.

As uncertainty is caused by lack of perfect information then the collection of further

information can reduce such uncertainty. Thus, the framework for handling

uncertainty is twofold. First, decisions on funding should be based on expected

values generated through probabilistic analysis. Secondly, that uncertainty around
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the cost effectiveness of interventions should determine an efficient research plan

relating to the particular treatment decision.

For the latter issue, the methods for assessing expected value of perfect information

and the expected value of sample information detailed in Chapter 4 are argued to be

appropriate for assessing the optimal sample size for potential research studies. The

framework goes further than previous literature in that it allows the concurrent

consideration of both uncertainty and variability. Thus, the optimal research plan

relates to the need for further information to potentially revise the criteria for access

to interventions.

The normative framework presented in this thesis allows decision makers to address

the two fundamental questions arising from variability and uncertainty

1. Which patients should receive which therapies?

2. What further information should be collected to increase certainty concerning

the answer to the previous question?

9.3 APPLICATION OF THE NORMATIVEFRAMEWORK

In the latter chapters of this thesis, the normative framework is applied to decisions

relating to the appropriate interventions for osteoporotic women in Canada.

Osteoporosis is a complex disease which subsequently requires the construction of a

complex decision model incorporating various sub models relating to osteoporotic

status, fractures, residence and mortality. The model is designed to determine

optimal treatment choices for different patient cohorts and is fully probabilistic.
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Analysis is time consuming; one Monte Carlo simulation of 3000 replications takes 4

Y2 hours to run. For the analysis contained in Chapters 7 and 8, the osteoporosis

model is subject to 643 separate Monte Carlo simulations of 3000 replications.

Combined with the simulated research studies in section 8.3.5, the total number of

replications required is 1.98 million. This, of course is the minimum number

required assuming that no analytical errors will lead to repeat analysis!

Despite the associated computational complexity, the feasibility of applying the

normative framework is demonstrated. Thus, the application of the normative

framework in practice is argued to be both optimal and feasible though the

computational complexity of the analysis is discussed further in Section 9.5.

Analysis determined the optimal limited use criteria for access to bisphosphonates.

The stratified analysis has been shown to be pertinent to decision makers, in that,

reflecting this analysis, the province of Ontario has revised the criteria for access to

both alendronate and risedronate. Based on the results of the decision model, the

revisions will lead to improved quality of life and survival for osteoporotic patients

with an increase rather than a decrease in drug costs. However, whilst still sub

optimal, it is clear that the revisions are based on the results of the analysis.

Analysis also determined an optimal research plan relating to treatment decisions for

osteoporosis patients. However, it is less clear how the value of information analysis

will influence decision makers. The major recommendation is to conduct a

randomised clinical trial comparing etidronate with no therapy. Whilst, the optimal

sample size of 640 is considerably less than that which could be justified based on
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standard statistical inference, clinicians may not accept the need to conduct a clinical

trial of the least effective treatment option particularly on ethical grounds. Thus,

value of information analysis may be seen initially as informative rather than

directive.

9.4 METHODOLOGICAL ADVANCES WITHIN THE THESIS

This thesis goes beyond recent work concerning the application of Bayesian

techniques to economic evaluation, in that the thesis provides a complete framework

for handling uncertainty and variability relating to input parameters within decision

models. Previous recommendations tended to focus solely on uncertainty (Claxton et

al. 2004).

The application of the framework to treatments for osteoporosis has many innovative

features. It is the first study to fully assess uncertainty and variability within a

Bayesian context. The analysis is the first study of treatments for osteoporosis which

meets all previous recommendations for the conduct of studies in this area. The

analysis includes one of the first full value of information analyses where a full range

of parameters are considered and the value of a full range of potential study designs

and sample sizes are assessed.

This thesis also includes several specific methodological developments. For handling

variability in economic evaluation, the technique of stratified cost effectiveness

analysis was developed which allows consideration of the net benefit gain from

stratification. For handling uncertainty, two additional valid methods for assessing

EVPPI are developed; the unit normal loss integral method and the quadrature
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method. Furthermore, a previous method used to calculate EVPPI is shown to be

invalid. Finally, unlike in previous analyses, the methods used for estimating the

value of information considers both the delay in obtaining information due to the

time required to conduct research and alternate sample sizes and study designs.

Recent changes to guidance relating to handling uncertainty and variability highlight

that the recommendations contained within the normative framework are becoming

recognized as appropriate. Recent guidance for the conduct of technology appraisals

from the National Institute for Clinical Excellence (NICE 2004), contains stronger

recommendations relating to the conduct of probabilistic sensitivity analysis. The

guidance continues to recommend sub group analysis for handling variability with

the focus on the need for clinical justification. Similarly, new guidelines currently

being developed by CCOHT A are likely to include more advanced recommendations

relating to uncertainty and variability'". However, these standards are far from

routinely applied.

Nineteen HTA reports from the UK NHS HTA containing full economic evaluations

based on decision analysis were published between January 2003 and May 2004 (the

date of publication of the revised NICE Guidance)". Of these 7 contained

probabilistic sensitivity analysis (Bagnall et al. 2003, Chilcott et al. 2oo3b, Turner et

al. 2003, Jones et al. 2004, Kalenthaler et al. 2004, Pandor et al. 2004, Barton et al.

2004). Only one study including estimation of EVPPI (Pandor et al. 2004). Only one

80 Personal communication from Bruce Brady, CCOHT A.

81 Bagnall et at. 2003, Barton et at. 2004, Calvert et at. 2003, Chilcott et at. 2oo3b, Clark et at. 2003.
Davenport et at. 2003. Grimshaw et at. 2003. Hummel et at. 2003. Jones et at. 2004. Kalenthaler et at.
2004. Meads et at. 2003. Mowatt et at. 2003. Pandor et at. 2004. Roderick et at. 2003. Ross et at.
2004, Sharp et at. 2003, Song et al. 2003. Turner et al. 2003. Wardlaw et at. 2004
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study contained a stratified analysis (Mowatt et al. 2003) with two further studies

containing sub group analyses (Turner et al. 2003, Barton et al. 2004).

Thus, given previous economic evaluations, the revised recommendations from

NICE are a major undertaking which will require considerable change to previous

practice. However, with respect to the framework for handling uncertainty and

variability developed in this thesis it could be argued that both the NICE and

CCOHT A guidelines do not go far enough. Neither guideline requires the conduct of

a full stratified analysis. Within the NICE guidelines consideration of sub groups

continues to be based on clinical rather than economic criteria. Furthermore, the

NICE guidelines focuses on presenting the results of probabilistic sensitivity

analyses in the form of certainty intervals and cost effectiveness acceptability curves

with only limited discussion relating to assessing the value of further information.

Thus, revisions to guidelines for economic evaluation are moving towards

recommendations contained within this thesis. However, revisions are required

before they meet the standards proposed in this thesis for the optimal handling of

uncertainty and variability.

9.5 FURTHER WORK REQUIRED

Further work is still required before all issues relating to uncertainty and variability

are covered.

The thesis does not consider uncertainty relating to the appropriate model structure.

When developing decision models assumptions are required relating to many model
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features such as cycle length, the number of health states and time horizon. These

assumptions reflect an understanding of the underlying disease and treatment process

for osteoporotic patients and are not specifically evidence based. The assumptions

can influence the results of an analysis. The impact of assumptions can be assessed

through simple sensitivity analysis but further advanced recommendations on

handling such issues need to be made.

The thesis does not consider how to deal with any lack of data for stratified analysis.

Within the economic evaluation of treatments for osteoporosis it is assumed that the

relative risk reductions associated with therapies are consistent across all patient

strata. This assumption is made due to the lack of data for each strata. The

implications of making such an assumption and the validity of assuming the same

expected value and variance across all strata are areas requiring further research.

Implicit within this discussion is the need to consider the trade off between reducing

heterogeneity through stratified analysis and the potential for increased decision

uncertainty. Thus, as the potential patient population is split into more groups the

information value from further studies may increase.

The form of analysis recommended by the normative framework is complex.

Although, the feasibility of using this framework within a complex decision model as

required for osteoporosis was demonstrated in Chapters 7 and 8, the complexity of

the analysis and the time required may limit its applicability in all settings. Thus,

techniques for simplifying the conduct of repeated Monte Carlo simulations may be

beneficial and the development of specific software would be welcome. Similarly,
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guidelines on determining the optimal number of replications with a Monte Carlo

simulation would be worthwhile.

Finally, the thesis highlights the impact of uncertainty around assumptions relating to

information value. When estimating the value of further information, data are

required relating to the likely characteristics of research, the likely uptake of

research, the useful life span of research information and the potential patient

population affected by any decisions relating to reimbursement.

• For design features of research, the development of standardised methods for

estimating relevant parameters would be worthwhile. Also, the impact of

assuming that such variables are uncertain rather than known should be

addressed.

• Within this thesis, physician adherence to revised reimbursement decisions is

assumed to be independent of the form of information which leads to the

revision. Itmay be expected that physicians would be more likely to adhere

to a change in reimbursement status which involved an expansion of the

indication of a treatment rather than a contraction. Similarly, physicians may

be more likely to adhere to revisions based on new clinical trial evidence

rather than updated cost data.

• The life span of research information should be assumed to vary by form of

input parameter. For example, clinical trial evidence is useful until the

treatments consider within the trial are no longer considered suitable. Utility

values for common health states could be considered as having a long

lifespan given that they should be appropriate unless there are fundamental

changes in society's attitudes to the health state. Finally, cost parameters
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may have a limited life span unless it can be assumed there will not be any

fundamental changes in how patients are managed over time

• Finally, in value of information analysis, it is common to consider only the

value of information to the decision makers for the specific location to which

the study relates. However, it is clear that research relating to clinical

efficacy and possibly utilities will be of use to decision makers

internationally. Thus, whether such external value should be considered will

be dependent on whether decision makers consider such value of importance

may depend on whether decision makers are involved in formal

collaborations with respect to research funding.

9.6 CLOSING REMARKS

The primary objective of this thesis was to develop a normative framework for

handling uncertainty and variability concerning input parameters within economic

evaluation based on decision analysis. It is argued that the framework developed in

Chapters 3 and 4 provides the optimal methods for handling these concepts when

making decisions regarding treatment reimbursement. First, the framework requires

the stratification of patients into cohorts which are more homogenous with respect to

costs and outcomes. Secondly, the framework involves the determination of an

optimal research plan to increase the certainty relating to the above decisions.

As outlined in Section 9.4, the thesis contains several methodological advances

relating to the analysis of uncertainty and variability. These relate to the methods for

conducting stratified cost effectiveness analysis and methods for estimating EVPPI.

The framework allows the full consideration of uncertainty and variability with

respect to input parameters. There are other aspects of uncertainty which still require
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similar consideration. In the previous section, further research is identified which

would enhance the framework further by allowing consideration of other aspects

relating to uncertainty and variability.

The conduct of an economic evaluation of treatments for osteoporosis using the

normative framework detailed in Chapters 7 and 8 highlights the feasibility of

conducting such studies. Furthermore, recent changes to reimbursement decisions

within Ontario demonstrate the acceptability of this framework.

The thesis provides a blueprint for future studies in terms of handling uncertainty and

variability through the adoption of the normative framework. The thesis contains the

first example of an economic analysis fully considering uncertainty and variability.

The recommendations from this analysis provide both the optimal treatment choices

for specific patient cohorts as well as an optimal research plan. It is hoped that future

studies will adhere to the standards developed in this thesis.
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APPENDIX A: COST EFFECTIVENESS ACCEPTABILITY CURVES

WITH MULTIPLE TREATMENT OPTIONS

A.I Introduction

Cost effectiveness acceptability curves (CEAC) present for different values of A, the

probability that each treatment is the most cost effective given the available evidence

(see Section 3.4.4).

In a two treatment model, a CEAC will report the percentage of replications where

one treatment is optimal, the complement of this percentage is the percentage of

replications where the other treatment is optimal. However, as demonstrated by the

entacapone case study in Chapter 3, at specific values of A, the optimal treatment as

determined by the expected value of net benefit need not have the higher probability

of being cost effective. Thus, the use of CEACs seems limited to a simple method of

graphically representing the degree of uncertainty around the optimal treatment and

not as a means of facilitating a decision.

In a multiple treatment model, the CEAC curve for each treatment can be represented

on one graph (the sum of the height of all curves at each value of A will be 1). In this

instance, the y axis represents the proportion of replications where each treatment is

associated the maximum NB. In this appendix, issues concerning the interpretation

of CEACs with multiple treatment options are identified by focusing on one

particular strata from the analysis of osteoporosis treatments: an 80 year old woman

with previous fracture.
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A.2 Methods

Multiple estimates of costs and QAL Ys for each osteoporotic treatment option were

derived for the strata relating to an 80 year old woman with previous fracture. The

expected values were used to determine the cost effectiveness frontier for the strata

(i.e. which therapies are optimal at which values of A.).

A CEAC was drawn based on the multiple estimates of costs and QALYs. In

addition, a CEAC was derived assuming only alendronate and etidronate were the

only available therapeutic options.

A.3 Results

Table A.I presents the expected values for each therapeutic option. Etidronate is

dominated by all other treatment options whilst risedronate is dominated by

alendronate. Thus, the optimal treatment choice is either no therapy or alendronate

dependent on the value of A.: for A. < $11 600 no therapy is optimal, for all other

others alendronate.

There is high degree of uncertainty over the true value of costs and QAL Ys

especially for etidronate. This is depicted in Figure A.I which is a scatterplot of the

estimates of incremental costs and QAL Ys for each bisphosphonate compared to no

therapy.

This high degree of uncertainty, over the costs and effects associated with etidronate

leads to the shape of the cost effectiveness acceptability curve in Figure A.2. Despite

etidronate being dominated by all other treatment options, it is the treatment option
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with the highest probability of being cost effective for values of A. both < $20000

and> $100; and the second highest for all other values.

Figure A.3 depicts the probability of etidronate being more cost effective than

alendronate. For all values of A.. alendronate has the highest probability of being cost

effective.

A.4 Conclusions

CEACs present the probability that a specific treatment is the most cost effective.

CEACs ignore the dispersion of values for different treatment alternatives; the

skewness of the distribution of net benefit may mean that therapies that are optimal

based on expected values but will not be the majority decision. Thus. CEACs can not

be used to facilitate decision making concerning the optimal treatment choice.

Treatments for which there are more information available may have a lower

probability of being preferred than treatments for which there is less information.

This is demonstrated by the example above, in that etidronate which is dominated by

all therapies but yet has the highest probability of being cost effective for certain

values of A.. A more useful graphical depiction would be to compare individual

therapies to each other rather than include all therapies within the same graph.

IfCEACs were used as a means of choosing the optimal treatment choice, then it

may not be beneficial for companies to collect more data on a product - for example,

with the data below it would appear unwise for the makers of etidronate to collect

more data as this would likely lead to less uncertainty around its cost effectiveness
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and will make it less attractive based on a CEAC. Given the results from this study,

the role of CEACs in aiding decisions must then be questioned.
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Table A.1 Expected Values for Costs and QAL Ys for an 80 Year-old

Woman with Previous Fracture

Etidronate No therapy Risedronate Alendronate
Lifetime cost
QALYs
Incremental cost per QAL Y

vs. etidronate
vs. no therapy
vs. risedronate

$9600
4.272

$8700
4.283

$9400
4.293

$8900
4.305

Dominant Dominant
$67600

Dominant
$11 600

Dominant

Figure A.1 Scatterplot of Incremental Costs and QALYs
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Figure A.2
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APPENDIXB: EFFECT OF CHOICE OF PROBABILITY

DISTRIBUTION ON UNCERTAINTY WITHIN ECONOMIC ANALYSIS

B.1 Introduction

In the conduct of Monte Carlo simulation, an analyst often has discretion over what

particular form of probability distribution is chosen to characterise the uncertainty

concerning a parameter. Clearly for certain parameters such as probabilities which

should be specified as beta distributions and relative risks which are characterised by

lognormal distributions such discretion does not exist. However, for others such as

costs and utilities, the form of the distribution may be unknown and thus the choice

of distribution may bias results. Thus, the objective of this appendix is to identify the

potential degree of bias inherent in the subjective choice of probability distributions

B.2 Methods

In Chapter 3, a study of the use of entacapone in the treatment of Parkinson's disease

was used to demonstrate the methods for estimating both the global expected value

of perfect information (EVPI) and the expected value of perfect partial information

(EVPPI) with respect to particular input parameters for a model. Within the base

analysis, uncertainty around cost and utility parameters were assumed to take the

form of normal distributions.

To test for bias associated with this choice of probability distribution the following

was conducted.

1. The mean and standard error for both costs and disutilities from the original

model were identified.
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2. For both costs and utilities uncertainty was expressed in terms of normal

(original), gamma and lognormal distributions with the same mean and

standard error as the base analysis

3. For each of the nine (3x3) possible combination of distributions the mean and

95% Cl for incremental net benefit was identified

4. CEACs were plotted for each of the nine combinations

5. Global EVPI and EVPPI for parameter groups of costs and disutilities were

estimated for each different combination

B.3 Results

Table B.l presents estimates of the incremental net benefit for entacapone based on

the different combinations of distributions. Expected values are identical though the

width and skewness of the 95% certainty interval vary; although minimally. The

maximum width of the interval is $9 089 associated with normal distributions for

costs and gamma distributions for disutilities. The minimum width of $9 066 is

associated with lognormal distributions for costs and gamma distributions for

disutilities. The shape of the CEAC is consistent across all combinations of

probability distributions (Figure B.1).

Estimates of global EVPI are consistent across combinations ranging from $147 and

$152 per patient. However, estimates ofEVPPI are less consistent (Table B.2). For

costs, EVPPI varies from $3.30 for lognormal distributions to $7.05 for normal

distributions. For disutilities, EVPPI varies from $24.20 for lognormal distributions

to $26.18 for normal distributions.
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B.4 Conclusions

Given that costs and utilities are weights to be applied to estimates of time duration

and incidence, the results are as expected in that the choice of distribution has no

effect on the expected value of net benefit. The choice of distribution has a modest

effect on the 95% Cl of NB and on global EVPI. However, the choice has a much

more noticeable effect on estimates of EVPPI which in tum will affect EVSI and

optimal sample size. However, the direction of the bias is not consistent across the

two parameter groups.

Thus, in the conduct of value of information analysis, analysts must be careful in

their choice of parameter distribution.
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Table B.1 Incremental Net Benefit and EVPI by Choice of Probability
Distribution

Cost Distribution Disutilities distribution Net Benefit 95% Cl EVPI
Normal Normal 2252 -1715,7368 151
Gamma Normal 2252 -1687,7385 149
Lognormal Normal 2252 -1675, 7394 147
Normal Gamma 2252 -1718,7371 152
Normal Lognormal 2253 -1717,7362 152
Gamma Gamma 2253 -1694,7380 149
Gamma Lognormal 2253 -1699,7378 150
Lognormal Gamma 2252 -1680, 7386 148
Lo~normal Lo~normal 2253 -1687,7385 148

Table B.2
Distribution

EVPPI for Parameter Groups by Choice of Probability

Parameter Set Distribution EVPPI
Costs Normal 7.05
Costs Gamma 3.95
Costs Lognormal 3.03
Disutilities Normal 24.20
Disutilities Gamma 25.28
Disutilities Lognormal 26.18

Figure B.1: Cost Effectiveness Acceptability Curves by Choice of Probability
Distributions
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APPENDIX C: ABSTRACT ACCEPTED FOR PRESENTATION AT

THE 2004 MEETING OF THE SOCIETY FOR MEDICAL DECISION

MAKING

The Impact of Failure to Calibrate on Results in Economic Evaluation
Douglas Coyle, Ottawa Health Research Institute, Ottawa, Canada

Purpose: To demonstrate how failure to calibrate economic models can lead to biased
estimates of the cost effectiveness of health interventions
Methods: The Canadian Economic Model of Osteoporosis has been used in several
previous evaluations of osteoporosis treatments. It is fully calibrated in that the
model replicates population data for the risk of fracture and mortality. Many
previous models of osteoporosis are not calibrated: e.g. the population risk of
fractures are weighted by the relative risks of fracture with osteoporosis or previous
fracture history. This will lead to an overestimation of the risk of fracture for such
groups. Analysis assessed the cost effectiveness of alendronate compared to no
therapy for a 75 year old women with previous fracture history with and without
calibration for fracture risk and mortality. Analysis identified the optimal age at
which treatment with alendronate becomes cost effective.
Results: For a 75 year women with previous fracture, the annual probability of
fracture without therapy is 1.31% with calibration and 1.58% without calibration.
The incremental cost per QAL Y gained (ICUR) of alendronate is $35 600 when
calibrating the model with respect to fracture risks and mortality and $19 400
without. Assuming a QAL Y was worth $50000, it would be cost effective to treat
with alendronate women with previous fracture who were aged 75 and over when the
model was calibrated. Without calibration, alendronate would be cost effective for
women aged 73 and over.
Conclusions: Although recommended, decision models used for economic analysis
are often not calibrated to replicate population data. Failure to calibrate models can
lead to substantially different estimates of an ICUR and can lead to differences in
policy recommendations. Studies based on decision models need to report what
means of calibration were undertaken.
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