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Abstract

Reliable volatility forecasts are needed in many areas of finance, be it option
pricing, risk management or portfolio allocation. Mathematical models that
capture temporal dependencies between the returns of financial assets and
their volatility and could be used for volatility forecasting generally fall into
one of the following categories: historical volatility models, GARCH – type
models and Stochastic Volatility (SV) models. This thesis will focus on the
predictive ability of the discrete version of SV models. Six variants of discrete
SV models will be estimated:

• classic SV model,

• SV model with innovations having Student distribution,

• SV model with Gaussian innovations augmented with lag one trading
volume,

• SV model with t-innovations augmented with lag one trading volume,

• SV model with Gaussian innovations augmented with lag two trading
volume,

• SV model with t-innovations augmented with lag two trading volume.

These models will be compared on the basis of their ability to predict volatil-
ity. Our study will show that SV model specification with Student t distribu-
tion with 3 degrees of freedom leads to a significant improvement in volatility
forecasts, thus demonstrating good agreement with the empirical fact that
financial returns have fat-tailed distribution. It will be shown that the in-
fluence of the trading volume is very small compared with the impact of
different distributional assumptions on innovations.
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Chapter 1

Introduction

In finance, the term volatility is used to denote a measure of the variation of a
particular asset. Mathematically it is often calculated as standard deviation
of asset return [119]. Volatility plays an important part in option pricing,
since it is the only quantity in the Black-Scholes option pricing formula that
is not observed directly and needs to be estimated. Volatility modelling is
useful in risk management for the value-at-risk calculations of a financial po-
sition. Asset allocation procedures based on mean-variance portfolio theory
use volatility as a risk measure. Financial market volatility index is itself
a financial instrument – VIX volatility index is compiled by the Chicago
Board of Option Exchange (CBOE) and traded from March 2004. A number
of mathematical models of volatility have been developed in order to pro-
vide the finance professionals with reliable volatility forecasts, e.g. historical
volatility models, GARCH - type models and stochastic volatility models
[121].

Since historical volatility models are built directly on the realized volatility
from the previous periods, they are the easiest to estimate and produce fore-
casts. Riskmetrics EWMA (exponentially weighted moving average) from
JP Morgan [97] is one of the widely used models from this class.

GARCH - type models were first designed by Engle [50] to capture the per-
sistence in volatility and later proved to be a good fit for different kinds
of financial time series [24]. Stochastic volatility models in continuous time
are used mainly for the option pricing applications, one of the widely used
model being the Heston model [77]. Discrete versions of stochastic volatility
models, proposed by Taylor [146], are considered to be superior in capturing
some basic features of financial time series (also called stylized facts). How-
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ever, since parameter estimation for such models required computationally
intensive simulation procedures (e.g., Markov chain Monte Carlo), they were
not widely used for forecasting purposes. Recent developments in the area of
Markov chain Monte Carlo (MCMC) methods for stochastic volatility (SV)
models [139] and the availability of more or less standardized MCMC soft-
ware tools (such as OpenBUGS software [99]) have made the application of
SV models in volatility forecasting feasible.

There are a number of general advantages of Bayesian inference in appli-
cations to financial time series [81]. Firstly, for financial time series prior
knowledge is often available: for example, dealers and traders usually have
some information that they use to predict market patterns. This information
could be easily incorporated into model priors. Secondly, Bayesian predictive
densities automatically account for the parameter uncertainty in financial
time series models: whereas a non-bayesian estimation of volatility mod-
els would require setting some fixed values for initial volatility, in Bayesian
framework this problem is solved naturally by choosing a prior distribution
for it. Finally, a strong motivation for the use of Bayesian methods stems
from the ability of the MCMC methods to handle complicated models where
either analytical expression for the likelihood function is not available or is
nonlinear in the parameters (which is almost always the case for financial
models), making optimization procedure very unreliable due to the existense
of local optimal points [123].

A common approach for testing the forecasting capability of any model
amounts to the comparison of the predicted values and subsequent realiza-
tions. But this approach is not applicable for volatility forecast evaluation
due to the fact that volatility is a hidden variable and could not be observed
directly. Since for a correctly specified model the mathematical expectation
of squared returns is equal to their variance, squared returns could be used as
a proxy for the unobserved ex-post volatility. It was shown by Lopez ([98])
that this produces a very noisy volatility estimate. Studies completed by
Cumby [43], Figlewski [56], Jorion [86] were all based on this squared returns
estimates and came to the conclusion that GARCH models are not able to
satisfactorily explain the variability in ex-post returns.

Another approach to volatility forecast evaluation is based on the continuous-
time volatility framework developed by Nelson[112] and Drost and Werker
[46], that justified the usage of high-frequency trading data to construct
the ex-post volatility estimate, which is called Realized Volatility (RV) and is
calculated from the squared intraday returns. With the increase of the obser-
vation frequency RV converges to the unobserved actual volatility. Andersen

7



and Bollerslev [7] found that realized volatility, based on high-frequency re-
turns, is a less noisy estimate of actual volatility (and has better stability)
than the one that is estimated from squared daily returns. Their evaluation
of volatility forecast based on the comparison with RV shows that GARCH
models are able to explain at least 50% in the returns’ variability.

There are a number of studies aimed at explanation of the contemporaneous
correlation between trading volume and volatility. The first one was pro-
posed by Clark [40] and is referred to as a mixture of distribution hypothesis
(MDH). It postulates that both the variance of the daily price changes and
trading volume are dependent on the same latent variable that represents the
amount of information relevant to the price changes that arrives to the mar-
ket. Then arrival of “good news” leads to a price increase, while “bad news”
lead to a price decrease. Both the types of news lead to an increased market
activity due to the market movement to a new price equilibrium. According
to this concept a correlation between volatility and trading volume is due to
their dependence on the latent information flow process.

Although ARCH and GARCH models are good at predicting the actual
volatility values, they, as already noted above, do not explain the driving
forces begind the volatility dynamics. Further attempt to explain them was
made by Lamoureux and Lastrapes [92]. Their findings show that contem-
poraneous trading volume used as a proxy for the daily information flow in
the volatility specification of the GARCH model has significantly stronger
explanatory power compared to the previous price changes.

In our study we are going not only to extend the approach of Lamoureux
and Lastrapes [92] to the discrete stochastic volatility models, but also at-
tempt to construct a model suitable for volatility forecasting. To this end
we will be trying to incorporate not the contemporaneous trading volume,
but the one from the previous trading day. Using realized volatility esti-
mates from intraday high-frequency trading data we will then compare the
forecasting performance of different discrete stochastic volatility models with
and without trading volume.

The rest of the thesis is organized as follows.

Chapter 2 collects together some facts from mathematical statistics that are
used later in the thesis and establishes the notation used in the subsequent
chapters.

Chapter 3 introduces general concepts of financial time series modelling and
explains a number of volatility models that are used in empirical research.
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Chapter 4 presents the Bayesian statistical framework with the emphasis on
the numerical procedures that could be applied to the calibration of discrete
SV models.

Chapter 5 contains the empirical investigation of six variants of discrete
Stochastic Volatility model. Some results of augmentation of SV models
with trading volume and “fat-tailed” innovations are reported and discussed.

Chapter 6 provides a summary of the main findings and outlines some direc-
tions for future research.

Appendix provides a collection of code listings which implement the numer-
ical procedures used in the thesis.
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Chapter 2

Mathematical preliminaries

2.1 Basic concepts in mathematical statistics

We first collect together some facts regarding mathematical statistics and
will also establish notation used in the subsequent chapters.

Statistical distributions and their moments LetRk be the k-dimensional
Euclidean space and x ∈ Rk denotes a point in it. Let X = (X1, X2, . . . , Xk)
and Y = (Y1, Y2, . . . , Yq) be continuous random vectors such that X is in the
subspace A ⊂ Rk and Y is in the subspace B ⊂ Rq.

Joint distribution The function

FX,Y (x, y; θ) = P (X ≤ x, Y ≤ y; θ), (2.1.1)

where x ∈ Rp, y ∈ Rq (inequality ≤ acts componentwise), is called a joint
distribution function of X and Y with parameter θ. If the joint probability
density function fx,y(x, y, ; θ) of continuous random vectors X and Y exists,
then

FX,Y (x, y; θ) =

∫ ∞
−∞

fx,y(w, z; θ)dwdz. (2.1.2)

Marginal distribution The marginal distribution of X is given by

FX(x, θ) = FX,Y (x,∞, · · · ,∞; θ).
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In scalar case (when k = 1) the distribution function becomes

F (x, θ) = P (X ≤ x; θ),

where x ∈ R, and is called a cumulative distribution function (CDF) of X.
For a continuous random variable X

f(x) =
d(F (x))

dx

defines the probability density function (PDF), assuming the CDF is differ-
entiable. For a given probability p, the smallest qp such that p ≤ F (qp) is
called the 100pth quantile of the random variable X:

qp = inf
x
{q|p ≤ F (q)}.

Conditional distribution The conditional distribution of X given Y ≤ y
is given by

Fx|Y≤y(x; θ) =
P (X ≤ x, Y ≤ y; θ)

P (Y ≤ y; θ)
.

If the probability density function for the random vectors X and Y exists,
then the conditional density of X given Y = y is

fx|y(x; θ) =
fx,y(x, y; θ)

fy(y; θ)
, (2.1.3)

where the marginal density function fy(y; θ) is obtained as

fy(y; θ) =

∫ ∞
−∞

fx,y(x, y; θ)dx.

From the Eq. (2.1.3) we can get the following relation among joint, marginal
and conditional PDFs:

fx,y(x, y; θ) = fx|y(x; θ)× fy(y; θ). (2.1.4)

This relation is widely used in maximum likelihood estimation and is also
used to define the independence property, namely: random vectos X and Y
are independent if and only if

fx|y(x; θ) = fx(x; θ).

For independent random vectors X and Y the relation (2.1.4) takes the form

fx,y(x, y; θ) = fx(x; θ)fy(y; θ). (2.1.5)
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Moments of a random variable

m′` = E(X`) =

∫ ∞
−∞

x`f(x)dx

is called the `-th moment of a continuous variable X. The first moment
µx = m′1 = E(x) is called the mean or expectation of X and is used as
a measure of the central location of the distribution.

The `-th central moment of X is defined as

m` = E[(X −m′1)`] =

∫ ∞
−∞

(x−m′1)`f(x)dx.

The second central moment σ2 = m2 is called the variance of X and is used
as a measure of variability of X. Its positive square root σ is a standard
deviation of X.

The third central moment

S(x) = E

[
(X − µ)3

σ3

]
(2.1.6)

is called the skewness of X and is used as a measure of asymmetry of X’s
distribution. The fourth central moment

K(x) = E

[
(X − µ)4

σ4

]
(2.1.7)

is called kurtosis and is used as a measure of X’s distribution tail thickness.
There is a special term excess kurtosis for the expression K(x) − 3 due to
the fact that K(x) = 3 for the normal distribution (excess kurtosis for the
normal random variable is equal to 0). Positive excess kurtosis indicates
that a distribution has heavier tails, that is more of its mass is located on
the tails of its support (compared to the normal distribution). In financial
analysis this is considered as an indicator that a random sample from such
distribution could contain more extreme values. Distribution with positive
excess kurtosis is called leptokurtic. There is also a term platykurtic which
denotes a distribution with negative excess kurtosis and thinner tails.

For the random sample {x1, . . . , xT} of X with T observations the sample
variants of these moments are computed using the following formulas:

sample mean

µ̂ =
1

T

T∑
t=1

xT ,
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sample variance

σ̂ =
1

T − 1

T∑
t=1

(xT − µ̂)2,

sample skewness

Ŝ(x) =
1

(T − 1)σ̂3

T∑
t=1

(xT − µ̂)3,

sample kurtosis

K̂(x) =
1

(T − 1)σ̂4

T∑
t=1

(xT − µ̂)4.

2.2 Hypothesis testing

When working with statistical models, hypotheses take the form of state-
ments about model parameters. Using the information about a parameter
that is contained in the data sample, hypothesis testing procedure is used
to draw a conclusion about the hypothesis [79]. The null hypothesis speci-

fies a value for the parameter being estimated in the form H0 : θ̂ = c. This
null hypothesis represents the belief that is considered to be true unless the
sample evidence convinces us that it is not true. In the latter case we reject
the null hypothesis. Every null hypothesis is accompanied by the alternative
hypothesis that will be accepted if the null hypothesis is rejected. For the
null hypothesis H0 : θ̂ = c there are three alternative hypothesis possible:

• H1 : θ̂ > c,

• H1 : θ̂ < c,

• H1 : θ̂ 6= c.

The test statistic is a quantitative measure of the information about the null
hypothesis contained in the sample. The value of a test statistic is used to
decide whether to reject the null hypothesis. Test statistic is specially con-
structed in such a way that its probability distribution has one (theoretically
known in advance) form if the null hypothesis is true and another form if the
null hypothesis is not true. The rejection region is a range of values of the
test statistic that leads to the rejection of the null hypothesis. When the null
hypothesis is true, all values from the rejection region have low probability
of occuring under the theoretical distribution of test statistic. Whether the
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probability is “high” or “low” is determined by choosing the significance level
α. Results of the hypothesis’ test is given by reporting the p-value (proba-
bility value) of the test. The decision on whether to reject or not the null
hypothesis is made by comparing the p-value with the chosen level of signif-
icance α. If p ≤ α, then H0 is rejected. We will use a variety of hypothesis
tests in our empirical investigation later in this work.

2.3 Bayesian statistics

While there are a number of books on Bayesian statistics in general, the
most appropriate one for financial application, in our opinion, is the one by
Rachev et al [123], on which most of the discussion in this section is based.

2.3.1 Likelihood function and Bayesian theory

Statistical models are usually constructed to investigate possible relation-
ships between the response variable Y and a number of explanatory variables
X = {x1, . . . , xm}. Suppose we are interested in analyzing the evolution of
stock prices (or returns) given as a time series object. A common statistical
approach to this problem would be to try to guess what process generated
the data. In the framework of Bayesian statistics such guess would be rep-
resented in the form of a probability density f(y|θ), where y is a realization
of the randon variable Y and θ is a vector of parameters that define the dis-
tribution f . Having the data set y, we are able to draw a conclusion about
the value of θ. A likelihood function is a statistical construct introduced
to measure our ability to extract information about parameter θ from the
available data y = {y1, y2, . . . , yn}. The joint probability density function of
Y for a given value of θ would be

f(y1, y2, . . . , yn; θ) =
n∏
i=1

f(yi|θ). (2.3.1)

We can treat this function as a function of the unknown parameters θ given
a set of observed values y = {y1, y2, . . . , yn}. Such function of the unknown
parameters of a statistical distribution is called a likelihood function and is
denoted as

L(θ|y1, y2, . . . , yn) = f(y1, y2, . . . , yn; θ). (2.3.2)

The main philosophical principle of Bayesian statistics is that probability is
a measure of the degree of belief one has about an uncertain event. Bayesian
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inference is a process of updating these beliefs when some new information in
the form of observed data arrives. The following theorem is a mathematical
representation of this updating principle.

Bayes’ theorem. Suppose that prior to observing our data y we have
some evidence E about the values of the parameter θ, and the degree of the
researcher’s belief in it can be expressed as probability p(E). According to
the Bayes’ theorem, after we have observed the data D our belief in E should
be adjusted according to the following formula:

p(E|D) =
p(D|E)× p(E)

p(D)
, (2.3.3)

where:

• p(D|E) is a conditional probability of the data given that the prior
evidence E is true,

• p(D) is the unconditional (marginal) probability of the data (the prob-
ability of D irrespective of E).

The probability of E before seeing the data, p(E), is called the prior proba-
bility, whereas the updated probability, p(E|D), is called the posterior prob-
ability. It could easily be seen that the probability p(D|E), when treated as
a function of E, is actually a likelihood function (2.3.2).

For financial applications that we are going to investigate in this work we
will mostly need the continuous version of the Bayes theorem:

p(θ|x) =
L(θ|x)π(θ)

f(x)
, (2.3.4)

where f(x) is the unconditional (marginal) distribution of the random vari-
able X, given by

f(x) =

∫
L(θ|x)π(θ)dθ. (2.3.5)

Since f(x) doesn’t depend on θ, (2.3.5) usually written as

p(θ|x) ∝ L(θ|x)π(θ), (2.3.6)

where

• θ = unknown parameter whose inference we are interested in,

• y = a set of recorded observations,

15



• π(θ) = prior distribution of θ depending on one or more parameters,
called hyperparameters,

• L(θ|y) = likelihood function for θ,

• p(θ|y) = posterior (updated) distribution of θ.

Schematically, Bayesian model analysis includes the following steps [94]:

1. Choose a specification for the data generating process of the observed
data X. This is usually expressed in the form of probability density
conditioned on the unknown parameter θ:

X ∼ f(X|θ).

2. Choose a specification for the prior distribution π(θ) for θ:

θ ∼ π(θ).

3. Make inference on θ by computing integrals with respect to the poste-
rior distribution:

π(θ|X) =
π(θ)L(θ|X)∫
π(θ)L(θ|X)dθ

,

where L(θ|X) ∝ f(X|θ) is a likelihood of θ given X.

2.3.1.1 Prior distributions

Informative priors. To apply Bayesian computational methods, the prior
information about parameter θ should be expressed in analytical form, that
is a distribution of a certain class should be selected and the values for its pa-
rameters (which in Bayesian statistics are called hyperparameters) assigned.
A value that we consider as the most typical for θ could be taken as a mode
of this distribution (for symmetrical distributions it would be, in fact, its
mean value). Distributions selected in this way are called informative prior
distributions. A more difficult question is how to express our believes about
the spread of the distribution. One approach is to make some guesses about
the lower and upper quartiles of the prior distribution, which in turn could
be used to get the spread estimate. If selected distribution has finite second-
order moment, its value could be used to express our degree of belief in the
value of θ.
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Noninformative prior distributions. If one does not have any particular
beliefs in the value of θ, a noninformative prior could be used. There are
two main approaches to construction of noninformative priors. First option –
employ a uniform distribution which support is set to the range of all possible
values of θ. For example, diffuse prior for the mean of normal distribution
could be taken in the form

π(µ) ∝ 1,

which is a uniform distribution with support (−∞,+∞). Such prior is an
example of improper priors, because∫ +∞

−∞
π(µ)dµ =

∫ +∞

−∞
1dµ =∞.

In theoretical Bayesian statistics this usually does not constitute a real prob-
lem since theoretically derived posterior distributions are proper. Second
option to get a noninformative prior – use a proper prior distribution, but
select specific hyperparameters’ values to make it noninformative. Such non-
informative distribution are called diffuse priors and are usually constructed
selecting such hyperparameters that produce large second-order moments.
For example, we can get a normal diffuse prior by setting a variance of a
normal distribution to a significantly large value: N(0, 106).

2.3.2 Posterior inference

As the posterior distribution p(θ|X) is obtained by applying the Bayes’ the-
orem, it represents a combination of the data and the prior and encompasses
all infromation about the parameter θ. Inference in Bayesian framework
is performed by computing certain numerical characteristics of the posterior
distribution (this gives results compared to frequentist approach). Most used
for this purpore are posterior mean and posterior standard deviation. When
posterior distribution is available in the closed form (as it is in the case of
using a conjugate prior), these calculations could be done analytically. When
we do not have posterior distribution in closed analytical form and compute
in numerically (using simulation techniques such as MCMC), posterior mean
is also computed numerically.

Bayesian Credible Intervals. Credible intervals in Bayesian statistical
inference are used for the same purpose as confidence intervals in frequen-
tist statistics. Procedure used to construct credible interval is (like many
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definitions in Bayesian statistics) subjective. We will stick to a widely used
technique when a credible interval is based on the highest posterior density
(h.p.d). Then 100(1− α)% credible interval is a set constructed as

Rπ
1−α = {θ : π(θ|X) ≥ π(θ1−α|X)}

for some θ1−α satisfying

Pr
(
θ ∈ Rπ

1−α
)

= 1− α.

There is an alternative credible set definition which is obtained by replacing
the posterior density π(θ|X) with the likelihood L(θ|X)

RL
1−α = {θ : π(L|X) ≥ L(θ1−α|X)}

for some θ1−α satisfying

Pr
(
θ ∈ RL

1−α
)

= 1− α.

This second definition is useful when no prior information is availavle for θ.
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Chapter 3

Dynamic Volatility Models

3.1 Properties of Financial Time Series

According to Campbell et al [33], there are several reasons to use returns
instead of prices in financial time series models:

1. It is natural for the investors to think in terms of returns rather than
in terms of prices beacause this is the characteristic of their investment
that they are actually interested in;

2. Statistical properties of returns series make them more suitable as in-
puts to time series models.

There are several definitons of asset returns. If Pt denotes the price of an
asset at time t, then two most used definitons have the form:

Simple return (SR)

Rt =
Pt − Pt−1
Pt−1

, (3.1.1)

Continuously compounded return (CCR)

rt = ln
Pt
Pt−1

= pt − pt−1, (3.1.2)

where pt = ln(Pt).
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3.1.1 Distribution of returns

In general, a mathematical model for the log returns {rt; t = 1, · · · , T} is
represented as their joint distribution function:

Fr(r1, . . . , rn;Y, θ), (3.1.3)

where vector Y can represent some exogenous factors and θ is a vector of
parameters that define the function Fr(·). In time series analysis this joint
distribution (3.1.3) is often represented in the following form

F (r1, . . . , rT ; θ) =

= F (r1)F (r2|r1) · . . . · F (rT |rT−1, . . . , r1)

= F (r1)
T∏
t=2

F (rt|rt−1, . . . , r1), (3.1.4)

which is used to emphasize the dependencies of rt on time. Specification of
time evolution for the conditional distribution F (rt|rt−1) leads to different
theories. Under the random walk hypothesis [55] conditional distribution
F (rt|rt−1, . . . , r1) is equal to the marginal distribution F (rt), which means
that returns are independent from their own previous values, and, conse-
quently, unpredictable.

Although asset returns are measured at discrete time moments, for the theo-
retical purposes they are treated as continuous random variables. Assuming
that a probability density function exists, (3.1.4) could be written as:

f(r1, . . . , rT ; θ) =

= f(r1)f(r2|r1) · . . . · f(rT |rT−1, . . . , r1)

= f(r1)
T∏
t=2

f(rt|rt−1, . . . , r1). (3.1.5)

Several classes of statistical distributions can be used to model the asset
returns. We will briefly discuss these choices and their consequences for the
asset returns models.

Normal distribution According to this approach it is assumed that the
simple returns {Rt|t = 1, . . . , T} are independently and identically distributed
normal random variables with fixed mean and variance. The normality as-
sumption leads to tractable properties of returns and simplifies estimation of
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parameters (e.g., maximum likelihood methods). But asset returns’ normal-
ity also leads to several difficulties. By definition, simple return can not fall
below -1, while normal random variable is unbounded. Statistical investiga-
tion of empirical asset returns (that is real returns from the stock exchange)
does not support the normal distribution hypothesis either – we will give
details on this later in the discussion devoted to the financial time series
stylized facts.

Lognormal distribution According to this approach it is assumed that
the log returns {rt|t = 1, . . . , T} are independently and identically distributed
(iid) normal random variables with f ixed mean µ and variance σ2. In this case
the simple returns Rt are iid lognormal random variables with the following
mean and variance:

E(Rt) = exp

(
µ+

σ2

2

)
− 1, Var(Rt) = exp(2µ+σ2)[exp(σ2)− 1]. (3.1.6)

If m1 and m2 are the mean µ and variance σ2 of the lognormally distributed
simple return Rt, then

E(rt) = ln

 m1 + 1√
1 + m2

(1+m1)2

 , Var(rt) = ln

[
1 +

m2

(1 +m1)2

]
. (3.1.7)

With this distribution assumption simple returns, which could be calculated
from CCR using Rt = exp(rt)− 1, have the necessary lower bound.

3.1.2 Normality tests

Since the normality of returns is used in all the models investigated in this
thesis, we need statistical tests to check such distribution assumption – nor-
mality tests. We will employ two of them.

Shapiro – Wilk test It is one of the standard tests for normality imple-
mented in many statistical packages [137]. According to Shapiro and Wilk
[138], the test is conducted as follows. Let x1, . . . , xn be a sample of inde-
pendent and identically distributed values and x(1), . . . , x(n) a set of their
ordered values. Set s2 = (n − 1)−1

∑
(xi − x̄)2, where x̄ = n−1

∑
xi. Then

the Shapiro-Wilk statistic is computed as

W =
∑ aix(i)

s
,
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where a1, . . . , an depend on the expected values of the order statistics from a
standard normal distribution and are tabulated in [138]. The null hypothesis
H0 is that the random sample is from a normal distribution against the
alternativeH1 that the random sample is not from a normal distribution. The
null hypothesis H0 is rejected at the significance level α if p-value(W ) < α.
To calculate p-value(W ) statistical packages use numerical approximations
proposed by Royston [130, 131, 132].

Jarque and Bera normality test Sample excess and kurtosis can be
used to test the normality of asset returns. Jarque and Bera [84] showed
that under normality assumption the test statistics

JB =
Ŝ2

6
T

+
[K̂ − 3]2

24
T

.

is asymptotically distributed as χ2(2). The null hypothesis H0 (r is normally
distributed) is rejected at the significance level α if p-value(JB) < α, where
p-value stands for the probability of the JB (calculated from data) to occur
under the assumption that H0 is true.

3.1.2.1 Likelihood function of returns

If the conditional distribution f(rt|rt−1, . . . , r1, θ) is normal with mean µt and
variance σ2

t , then θ = (µt, σ
2
t ) and, using the partitioning formulas (3.1.4) or

(3.1.5), we can obtain the likelihood function for the observed log returns rt:

f(r1, . . . , rT ; θ) = f(r1; θ)
T∏
t=2

1√
2πσt

exp

[
−(rt − µt)2

2σ2
t

]
, (3.1.8)

Maximum likelihood estimate (MLE) of θ is obtained as the value of θ that
maximizes the likelihood function. In some calculations, it is more convenient
to use the log-likelihood function

ln f(r1, . . . , rT ; θ) = ln f(r1; θ)−
1

2

T∑
t=2

[
ln(2π) + ln(σ2

t ) +
(rt − µt)2

σ2
t

]
.

(3.1.9)
Since logarithm is a concave function, the argument θ which maximizes 3.1.9
also maximizes 3.1.8.
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3.1.3 Elements of linear time series analysis

Our analysis in subsequent chapters will be based mainly on the concepts
from time series theory which could be found in the books by Box et al [28]
and Brockwell and Davis [31]. Some of the fundamental concepts are briefly
reviewed below.

3.1.3.1 Stationarity

A time series {rt} is called strictly stationary if the joint distributions of
(rt1 , . . . , rtk) and (rt1+t, . . . , rtk+t) are identical for all t, where k is an arbitrary
positive integer and (t1, . . . , tk) is a collection of k positive integers. Since
it is not always possible to verify this strong condition empirically, a less
restrictive concept of weak stationarity is often used. A time series {rt}
is called weakly stationary if the mean of rt and the covariance between
rt and rt−` are time invariant for an arbitrary integer `, where covariance
for the random variables x and y with finite second moments is defined as
Cov(x, y) = E{(x− µx)(y − µy)}. If x = y, then γ` = Cov(rt, rt−`) is called
the lag-` autocovariance of the time series rt.

{rt} is weakly stationary if:

• E(rt) = µ (constant in time),

• Cov(rt, rt−`) = γ` (depends on `).

On a time plot of the weakly stationary time series its values fluctuate with
constant variation around a fixed level.

If rt is strictly stationary and its first two moments are finite, then rt is also
weakly stationary. The reverse in general does not hold, but for the normally
distributed time series rt weak stationarity is equivalent to strict stationarity.
Weak stationarity is one of the common assumptions in the study of financial
time series.

3.1.3.2 Correlation and Autocorrelation

The correlation coefficient between two random variales X and Y is defined
as

ρx,y =
Cov(X, Y )√

Var(X) Var(Y )
=

E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

. (3.1.10)

23



It can be shown that −1 ≤ ρx,y ≤ 1 and ρx,y = ρy,x. The value of ρx,y
measures the strength of linear dependence between X and Y , where ρx,y = 0
indicates that X and Y are uncorrelated. If X and Y are normal random
variables, then ρx,y = 0 if and only if X and Y are independent. Estimates
of ρ̂x,y for the sample {(xt, yt)}Tt=1 are obatined using the formula

ρ̂x,y =

∑T
t=1(xt − x̄)(yt − ȳ)√∑T

t=1(xt − x̄)2
∑T

t=1(yt − ȳ)2
, (3.1.11)

where x̄ and ȳ stand for the sample means of X and Y .

Autocorrelation function (ACF) Let rt be a weakly stationary time
series of returns. The correlation coefficient between rt and rt−` is called the
lag-` autocorrelation and is denoted by ρ`. In case of a weak stationarity it
is a function of `:

ρ` =
Cov(rt, rt−`)√

Var(rt) Var(rt−`)
=

Cov(rt, rt−`)

Var(rt)
=
γ`
γ0
, (3.1.12)

since for a weakly stationary time series Var(rt) = Var(rt−`). From this
definition follows that ρ0 = 1, ρ` = ρ−`, −1 ≤ ρ` ≤ 1 and weakly stationary
time series is not serially correlated if and only if ρ` = 0 for all ` > 0.

Estimate of the autocorrelation for the sample {rt}Tt=1 is calculated using the
formula

ρ̂` =

∑T
t=`+1(rt − r̄)(rt−` − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ ` < T − 1. (3.1.13)

Hypothesis testing for ACF To test H0 : ρ` = 0 versus H1 : ρ` 6= 0, one
can use the statistic

t =
ρ`√

1 + 2
∑`−1

i=1 ρ
2
i

T

, (3.1.14)

which for a stationary Gaussian time series {rt} under assumption ρj = 0
for j > ` is asymptotically distributed as a standard normal random variable
[31, 28, 58], and H0 is rejected at the significance level α if |t| > qα/2.

24



Portmanteau test It is a common task in financial applications to test
that several autocorrelations of rt are zero – statistical tests of this kind are
called ”portmanteau tests”. Box and Pierce [29] proposed the test statistic

Q∗(m) = T

m∑
`=1

ρ̂2` (3.1.15)

for the null hypothesis H0 : ρ1 = · · · ρm = 0 against the alternative hypothesis
H1 : ρi 6= 0 for some i ∈ {1, . . . ,m}. Q∗(m) is asymptotically distributed as
a chi-squared random variable with m degrees of freedom. Ljung and Box
[96] proposed a statistic with increased power for the finite samples:

Q(m) = T (T + 2)
m∑
`

ρ̂`
T − `

. (3.1.16)

H0 is rejected if Q(m) > χ2
α(m).

3.1.3.3 Linear Time Series and White Noise

A time series rt is called a white noise if {rt} is a sequence of independent
and identically distributed random variables with finite mean and variance
[150]. If rt is normally distributed with zero mean and variance σ2, the series
is called a Gaussian white noise. ACF of a white noise series is zero at all
lags – this fact is often used as a criteria of white noise property for empirical
returns. For the serially correlated time series it is necessary to built a model
for this serial dependance before applying other analysis techniques.

Linear Time Series A linear time series rt can be written as

rt = µ+
∞∑
i=0

ψiat−i, (3.1.17)

where µ is the mean of rt, ψ0 = 1, {at} is a white noise and the coefficients
{ψi} are called weights of rt. Since at represents the new information available
at time t it is often referred to as innovation or shock at time t. If rt is weakly
stationary, its mean and variance could be obtained from (3.1.17) using the
independence of {at}:

E(rt) = µ, Var(rt) = σ2
a

∞∑
i=0

ψ2
i , (3.1.18)
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where σ2
a = Var(at). From the finite variance requirement Var(rt) < ∞

follows that {ψ2
i } must be a convergent sequence and ψ2

i → 0 as i → ∞.
Consequently, past shocks at−i have less impact on rt as i increases.

The lag-` autocovariance of rt is

γ` = Cov(rt, rt−`) = E

[(
∞∑
i=0

ψiat−i

)(
∞∑
j=0

ψjat−`−j

)]

= E

(
∞∑

i,j=0

ψiψjat−iat−`−j

)

=
∞∑
j=0

ψj+`ψjE(a2t−`−j) = σ2
a

∞∑
j=0

ψjψj+`. (3.1.19)

Then autocorrelations of rt could be calculated from weights {ψi}:

ρ` =
γ`
γ0

=

∑∞
i=0 ψiψi+`

1 +
∑∞

i=1 ψ
2
i

, ` ≥ 0, (3.1.20)

where ψ0 = 1. As noted above, for a weakly stationary time series ψi → 0
as i → ∞, and, hence, ρ` → 0 as ` → ∞. It terms of asset returns this
means that linear dependence of the current return rt on the past return rt−`
diminishes with the increase of `.

Based on [150], one may enumerate the steps in building a time series model
of asset returns as follows:

1. Test for serial dependence in the returns data using Box-Pierce or
Ljung-Box test. If time series has linear dependence, then specify a
model for the time evolution of the mean (e.g., ARMA model).

2. Use residuals of the model built in step 1 to estimate volatility model.

3. If the series is not serially dependent, simply subtract the sample mean
of the series from its values.

3.1.3.4 Stylized facts in financial time series

Empirical studies on financial time series from a statistical point of view indi-
cate that prices of different classes of financial assets share some (sometimes
non-trivial) common statistical properties. Such properties that could be
observed for time series of different instruments, markets and time periods
are called stylized facts.
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Following Cont [41], financial assets share the following common properties:

1. Absence of autocorrelations. Linear autocorrelations of asset re-
turns are approximately zero for all lags, with the exception of intraday
data with time step less that 20 minutes where non-zero autocorrela-
tions could be present due to microstructure effects.

2. Heavy tails in unconditional distribution of returns. Yet Man-
delbrot [102] has pointed out that normal distribution is not sufficient
to model the disbtibution of asset returns. Excess kurtosis of the re-
turns’ distribution (2.1.7) is often used as a measure of deviation from
normal distribution. Positive values of K indicate a “fat tail” – a slow
asymptotic decay of the PDF. Different distribution could be used to
model this bahaviour, one of them being t-distribution [89, 21].

3. Assymetry in upward and downward price movements. For
most of the stock prices and indices one can observe significant down-
ward price movements without the upward movements of an equal size.

4. Aggregation distribution dependence. Distribution of returns de-
pends upon the time scale ∆t over which returns are calculated. With
the increase of ∆t the distribution of returns converges to normal.

5. Volatility clustering. Realized volatility displays a positive autocor-
relation over several days and events with high volatility tending to
cluster in time.

6. Heavy tails in conditional distribution of returns. Residual re-
turns time series obtained after correcting returns for volatility cluster-
ing (e.g., using GARCH-type models) still exhibit heavy tails, although
they are less heavy than in unconditional distribution.

7. Slow decay in autocorrelations of absolute returns. Autocor-
relation of absolute returns as a function of time lag decays slowly,
approximately following a power law with exponent β ∈ [0.2, 0.4].

8. Leverage Effect. Volatility of an asset is negatively correlated with
the returns on that asset.

9. Volume/volatility correlation. Trading volume is correlated with
realized volatility.
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3.2 Modelling volatility

Poon ([119]) defines volatility as a measure of “the spread of all likely out-
comes of an uncertain variable.” When working with time series of asset
returns in financial applications, sample standard deviation is often used as
a measure of volatility:

σ̂ =

√√√√ 1

T − 1

T∑
t=1

(rt − µ̂)2,

where rt is daily asset return, µ — sample average return.

We use standard deviation and not variance here because variance is less
stable while performing numerical computations, and standard deviation is
measured in the same units as as the mean value — the latter is more con-
venient while working with financial time series. From the pure theoretical
point of view theese measures are absolutely equal while comparing spreads
of financial time series.

The term “volatility” could be used in two different meanings :

• Realized volatility – calculated from past observations using formula
(3.3),

• Model (theoretical volatility) – volatility estimate produced by theoret-
ical models like GARCH or stochastic volatility, where volatility itself
is a hidden variable.

3.2.1 Types of volatility models

Volatility models could be classified into the following major types [119]:

1. historical volatility,

2. ARCH/GARCH models,

3. stochastic volatility models (discrete and continuous time versions).

Historical volatility models (HISVOL). Models of this type use lagged
values of realized volatility and are quite easy to construct and manipulate
[120]. While the main input into GARCH and SV estimation procedures are
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the past returns, HISVOL models do not need them and use estimates of
realized volatility from the previous periods:

σ̂t = ψ1σt−1 + ψ2σt−2 + . . .+ στσt−τ ,

where

• σ̂t – expected standard deviation at time t

• ψi – weight parameter

• σt−τ – historical values of standard deviation for preceding periods.

If sufficient data are available for every time period, historical volatilities
σt−1, σt−2,. . . ,σt−τ are calcualted from historical returns, and then this model
could be estimated using regression techniques. In case of insufficient daily
data volatility proxies could be used.

Widely used Riskmetrics EWMA (exponentially weighted moving average)
model developed by JP Morgan [15] is a HISVOL model and has the form

σ̂2
t = ασ2

t−1 + (1− α)r2t−1. (3.2.1)

A number of studies reveals that HISVOL models have good forecasting
performance in comparison to other classes of models. Taylor ([148], [147]),
Figlewski ([56]), Figlewski and Green ([70]), Andersen, Bollerslev, Diebold
and Labys([8]), Taylor, J. ([145]) claim that HISVOL models produce better
volatility forecasts than GARCH or SV.

3.2.2 GARCH-type models

Autoregressive conditionally heteroscedastic (ARCH) model of Engle [50] and
generalized ARCH (GARCH) of Bollerslev [24] specify a functional depen-
dence of the conditional variance of price changes on the price changes in
previous time periods. This variance specification enables these models to
capture the volatility clustering which is often observed in empirical returns
time series.

ARCH models. The ARCH (AutoRegressive Conditional Heteroscedas-
ticity) was proposed by Engle ([50]) and was historically a first systematic
framework for volatility modelling. Extensive investigations on this model
were performed by Bera and Higgins ([18]), Bollerslev, Chou and Kroner
([25]), Bollerslev, Engle and Nelson ([26]) Diebold and Lopez ([45]).
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ARCH models differ from HISVOL models in the fact that they do not use
past values of realized volatilities, but treat volatility as a hidden variable
and estimate its values using the method of maximum likelihood. The model
itself is usually formulated as follows:

rt = µ+ εt,
εt =

√
htzt,

(3.2.2)

ht = σ2
t is a conditional variance (common denotation in ARCH literature),

zt ∼ N(0, 1) is a white noise. This model is interpreted in the following way:
white noise process zt is scaled by the conditional variance ht which is a
function of past squared returns. Original conditional variance specification
proposed by Engle ([50]) has the form

ht = ω +

q∑
j=1

αjε
2
t−j, (3.2.3)

where restrictions ω > 0 and αj ≥ 0 are imposed to insure that ht is strictly
positive.

It could be seen from 3.2.3 that past squared volatility shocks ε2t−j lead to
large conditional variance ht in subsequent periods, which, in turn, leads to
high innovation values εt. In other words, big shocks tend to be followed by
big shocks [150], which allows a good reproduction of volatility clustering ob-
served in empirical asset returns. Several general properties of ARCH model
give a good insight into its suitability for the volatility modelling. It could
be shown [150], that excess kurtosis of εt is positive and the tail distribution
of εt is heavier than that of a normal distribution. As a consequence, any
shock εt of a Gaussian ARCH model is more likely to produce “outliers” than
a Gaussian white noise series, which is in good agreement with the stylized
facts on financial time series.

ARHC model also has some disadvantages in relation to volatility modelling
[150]:

1. Since volatility in ARCH depends on the previous squared shocks, the
effects of the positive and negative shocks on the volatility in ARCH
framework are the same, while empirical time series of returns clearly
show that this is not the case.

2. ARCH model imposes certain restrictions on its coefficients, which,
especially for the high-order ARCH models with Gaussian innovations,
limits its ability to capture excess kurtosis.
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3. In general, volatility forecasts produced by ARCH models tend to be
higher than the actual volatility.

Generalized ARCH Further extension to ARCH was proposed by Boller-
slev ([24]), where volatility ht also depends on its own lagged values:

ht = ω +

p∑
i=1

βiht−i +

q∑
j=1

αjε
2
t−j,

ω > 0. In order to ensure that ht is strictly positive a number of con-
straints should be imposed on αi and βi. For example, in the simplest case
of GARCH(1,1) it is required that αi ≥ 0 and βi ≥ 0, discussion of more
complex cases could be found in [113].

Integrated GARCH [51] When
∑p

i=1 αi +
∑q

j=1 βj = 1, the uncondi-

tional variance of a GARCH(p,q) process σ2 → ∞ and is no longer definite
and the time series rt is not covariance stationary. In this case conditional
variance is described as an integrated GARCH (IGARCH) process with infi-
nite fourth moment.

Exponential GARCH This modification was proposed by Nelson. One
of the motivations was to specify condtitional variance in a form that would
render obsolete the parameter constraints (which were used in GARCH to
avoid negative variance):

lnht = ω +

q∑
j=1

βj lnht−j +

p∑
k=1

[
θkεt−k + γk

(
|εt−k| −

√
2

π

)]
,

εt =
εt√
ht
.

In EGARCH hidden variance ht depends not only on the magnitude of εt,
but also on its sign. This allows to reproduce one of the stylized facts – large
negative returns lead to higher conditional variance in the following period
than large positive returns.

GJR-GARCH Was proposed by Glosten, Jagannathan and Runkle [68].

ht = ω +

p∑
i=1

βiht−i +

q∑
j=1

(
αjε

2
t−j + δjDj,t−1ε

2
t−j
)
,
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Dt−1 =

{
1, if εt−1 < 0

0, if εt−1 ≥ 0

This model allows to account for the leverage effect typically observed in
financial returns since it is formulated in such a way that negative residuals
generate higher volatility in subsequent periods than positive residuals of the
same magnitude do.

TGARCH Threshold GARCH (TGARCH) was proposed by Zaköıan [158]
and is quite similar to GJR-GARCH. The main difference is that it uses
absolute values of the returns to specify contiditional variance:

ht = ω +

p∑
i−1

[αi|εt−i|+ γiDi,t−i|εt−i|] +

q∑
j=1

βjσt−j.

NGARCH Nonlinear Asymmetric GARCH was proposed by Engle and
Ng [52] and its equation is given by:

ht = ω + α(εt−1 − θ
√
ht−1)

2 + βht−1,

where α, β ≥ 0;ω > 0. Parameter θ is a measure of the leverage effect.

3.2.3 Research on ARCH/GARCH forecasting perfor-
mance

From the theoretical point of view one can list several deficiencies of ARCH
models:

1. Since the model is built on squared returns, positive and negative
shocks have the same effects on volatility. In practice, however, prices
of financial assets respond differently to positive and negative shocks.

2. ARCH model does not explain theoretically the evolution of variance
in financial time series. It simply provides an algorithm to calculate
the estimate of conditional variance using past returns.

Good forecasting performance of GARCH-type models is supported by a
number of studies. Akgiray [3] discovered that daily time series of stock
market returns demonstrate higher statistical dependence (than had been
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reported in earlier studies), which could be explained if one assumes that
the prices themselves are generated by the nonlinear stochastic process. In
general,the paper gives clear indications that GARCH models provide better
volatility forecasts that EWMA and HISVOL.

Pagan and Schwert [115] reported that EGARCH forecasting performance is
better than that of GARCH and non-parametrics forecasting methods. This
research compared several statistical models for the monthly stock return
volatility using U.S. data from the years 1835-1925. GARCH and EGARCH
models were employed along with some non-parametric methods (which are
beyond the scope of this thesis). For the in-sample forecasting evaluation the
authors concluded that in most cases the non-parametric procedures provided
a better explanation of the squared returns than any of the parametric mod-
els, although preductive power of EGARCH was almost equivalent to that
of the non-parametric models. Different results were obtained in the out-of-
sample prediction experiments, where parametric models (and EGARCH in
particular) performed significantly better than non-parametric ones.

Cumby, Figlewski and Hasbrouk [43] found EGARCH better than HISVOL.
Figlewsky [56] finds that GARCH is the best choice for the stock market and
short-term forecasts.

It could be noticed that models with asymmetrical specification of volatility
dependence on past returns demonstrate better forecasting performance -
behaviour closely connected with the well known for the financial time series
stylized fact.

Using monthly volatility series of stock returns, Cao and Tsay [34] compared
performance of threshold autoregressive (TAR), linear ARMA, GARCH and
EGARCH. Results of their comparison could be summarized into the follow-
ing points:

1. the TAR models outperform the linear ARMA models in multi-step
ahead forecasts for large stocks,

2. the TAR models provide better forecasts than the GARCH and EGARCH
models for the volatilities of large stocks,

3. EGARCH gives the best long-term volatility forecast for small stock
returns.

Heynen and Kat [78], Lee [93], indicate that EGARCH is superior for the
volatility prediction of the stock indices and foreign exchange rates, but,
according to Blailsford and Faff [30] and Taylor [145], for the stock in-
dices GJR-GARCH can outperform GARCH. Bali [14] successfully applied
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several GARCH-type models (GARCH, NGARCH, VGARCH, AGARCH,
QGARCH, GJR-GARCH, TGARCH, TS-GARCH) to forecast volatility of
US T-bills, finding that NGARCH performed the best.

There are also studies where it was not possible to identify the best model:
Lee [93], West and Cho [153], Brailsford and Faff [153], Brooks [32] (which
also discusses trading volume), McMillan, Speight, Gwilym [104].

As parameter estimates in ARCH/GARCH models are usually obtained using
maximum likelihood methods, and ML, in turn, uses numerical optimisation
procedures, lack of convergence which arise when data period is not long
enough or there are significant changes in the volatility level is a common
problem in practical applications of these models – parameter estimates could
become very unstable. ARCH/GARCH convergence problems were studied
in [152], [148], [151], [90].

3.2.4 Stochastic volatility models

Strochastic Volatility (SV) model for financial time series was introduced
by Tauchen and Pitts [144] and Taylor [146]. For a number of reasons
SV was generally considered more as a purely theoretical concept than a
technique that could be applied in practical setting to get reliable volatility
forecasts. This was mostly due to the fact that in general case estimation
of SV required time-consuming simulation methods – for example, Markov
chain Monte Carlo method, which we will use later in this thesis. Stochastic
volatility model is specified as

rt = µ+ εt,

with innovations in the form

εt = zte
ht
2 .

with the following volatility process specification

ht = µ+ ϕ(ht−1 − µ) + ut,

where zt ∼ N(0, 1) and ut ∼ N(0, τ 2).

Compared to ARCH/GARCH volatility specification, here hidden volatility
is itself a stochastic process (like returns process), which leads to more flex-
ibility and can lead to a better fit (than with GARCH-type models). As
volatility in this model is itself a stochastic varible, this allows the model to
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better reproduce the fat tails in the return distribution. Volatility process
specification in form of the autoregressive process (AR(1) in our case) allows
for the volatility persistence.

As a result of introduction of the stochastic term in the volatility specification
of this model (contraty to ARCH/GARCH), it is not possible to get the
likelihood function in the closed form, and, consequently, this model could
not be estimated by maximum likelihood method.

Ruiz [133] used quasi-maximum likelihood estimation (QMLE) and gener-
alized method of moments (GMM). Andersen and Sorensen ([10]) provided
some comments on the efficiency of these methods applied to the estimation
of SV models.

A number of other methods was applied to the estimation of SV models:
generalized method of moments (using simulation) by Duffie and Singleton
([47]), possibilities of obtaining an analytical solution were expored by Single-
ton ([141]), likelihood approach with numerical integration by Fridman and
Harris ([57]), Monte Carlo integration with importance sampling by Daniels-
son ([44]), Pitt and Shepard ([140]), Durbin and Koopman ([49]), Monte
Carlo integration with Markov Chain techniques by Jacquier, Polson and
Rossi ([82]), and Kim, Shephard and Chib ([88]).

Forecasting performance of Stochastic Volatility models There are
not many studies where SV forecasting performance is investigated.

Heynen and Kat ([78]) use SV to forecast volatility of stock indices and ex-
change rates. SV provided the best forecast for indices but not so satisfactory
results for exchange rates.

Yu([156]) obtained good results in forecasting volatility for the New Zealand’s
stock market.

Lopez ([98]) found no difference between SV and other conventional volatility
forecasting methods.

Bluhm and Yu ([22]), Dunis, Laws and Chauvin ([48]), Hol and Koopman
([80]) compared SV forecast with implied volatility forecasts. Bluhm and Yu
([22]), Hol and Koopman ([80]) concluded that implied volatility forecasts
for the stock index volatility are better than SV forecasts, in [22] SV was
found equally precise as GARCH.
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3.3 Evaluation of volatility models

As we have already mentioned before, volatility is a latent variable. Volatility
estimation procedure depends upon the type and amount of information
available for each interval ∆t and the whole period T of the time series used
for estimation.

When ∃k ∈ N such that k ·∆t ≤ T , definition (3.2) could be used:

σ̂ =

√√√√ 1

T − 1

T∑
t=1

(rt − µ)2.

This case applies, for example, when daily data is available and monthly
volatility should be calculated.

As many economic and financial time series are available only on daily basis,
it is quite common that ∆t = T , which presents a more difficult case. In
financial applications we usually have end of day stock market data and daily
volatility estimation is required. Several approaches were developed in order
to tackle this case. In general they propose some function of daily returns to
be used as a proxy for daily volatility. Several studies have shown that such
proxies give only a rough estimate of daily volatility. According to Figlewski
([56]), absolute value of returns as a proxy it is a very poor estimate of
daily volatility. Squared returns as volatility proxy provide unbiased but
very imprecise estimations of volatility. (see [98]). More precise volatility
estimate could be obtained with the volatility estimators based on several
prices from the trading day. If Ht and Lt are the highest and lowest prices
on day t, then according to derivations in ([23]) we have volatility estimator
in the form

σ̂2 =
(lnHt − lnLt)

2

4 ln 2
.

This volatility estimator was studied by Parkinson ([116]), Garman and Klass
([62]), Beckers ([17]), Rogers and Satchell ([128]), Wiggins ([154]), Rogers,
Satchell and Yoon ([129]), Alizadeh, Brandt and Diebold ([4]). Another
estimator is proposed in [62] as an extension to [116] and uses high (Ht), low
(Lt) and close (Ct) prices:

σ̂2 = 0.5

(
ln
Ht

Lt

)2

− 0.39

(
ln

Ct
Ct−1

)2

.

Original form of stock market data is a time series of tick-by-tick prices:
each tick is produced by such events as a quote or a transaction. Their time
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spacing is irreqular due to the fact that the actions that produce them are
irregularly spaced in time. Another reason why intraday data are so impor-
tant is that participants of financial markets (traders) base their decisions on
it (cf. live market data feeds from Reuters, Bloomberg, dtniq). Generally,
intraday data comes in the form of tick data, that is the data itself (price of
a financial asset, or a trading volume, etc) accompanied by the time stamp.
As in recent years tick data from stock markets become available, realized
volatility calculated using intraday (5min or 15min) squared returns was pro-
posed as a measure of daily volatility. It could be shown ([7], [59], [87]), that
for time series with zero mean and no jumps this realized volatility is a good
approximation for the theoretical continuous time volatility. Realised volatil-
ity RV (ti) at time ti is calculated from historical data and is also sometimes
called historical volatility [65]:

RV (ti) = RV (∆t, n, p; ti) =

[
1

n

n∑
j=1

|r(∆t; ti−n+j)|p
] 1

p

,

where r are regularly spaced returns, n is a number of observations, ∆t –
time interval between returns, n∆t – time span of the entire data set used
for calculations. It is a common practice to set p = 2. To compare volatility
calculated using different types of datasets and procedures, it is convenient
to scale it to a certain time period. Assuming that returns are normally
distributed (which is not exactly the case, but for scaling purposes this is a
usual practice), it can be shown that RV 2 ∝ ∆t, and volatility scaling rule
takes the form

RVscaled =

√
∆tscale

∆t
vol

Then, for example, volatility scaled to 1 year (using daily returns) is calcu-
lated as

RVscaled =

√
252

1
RV, (3.3.1)

assuming 252 working days in a year.

Let us denote R̂Vt the value of the hidden volatility predicted by the model
under study and RVt the value of realized volatility calculated using intra-
day data and formula (3.3). Then the following error statistics are used to
compare volatility forecasts:

Mean Error(ME)

ME =
1

N

N∑
t=1

(
R̂Vt −RVt

)
,

37



Mean Square Error (MSE)

MSE =
1

N

N∑
t=1

(
R̂Vt −RVt

)2
,

Root Mean Square Error (RMSE)

MSE =

√√√√ 1

N

N∑
t=1

(
R̂Vt −RVt

)2
,

Mean Absolute Error (MAE)

MSE =
1

N

N∑
t=1

∣∣∣R̂Vt −RVt∣∣∣ ,
Mean Absolute Percent Error (MAPE)

MAPE =
1

N

N∑
t=1

∣∣∣R̂Vt −RVt∣∣∣
RVt

,

In the next chapter, we will look at how to calibrate some of the volatility
models mentioned earlier using empirical data (that is, using end-of-the-
day stock returns). The above measures of error will be used in empirical
investigation of models’ performance in chapter 5 where realized volatility
will be calculated from intra-day stock returns using 3.3.1 and compared
with volatility predicted by different models.
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Chapter 4

Parameter Estimation in
Volatility Models

4.1 Numerical computation in Bayesian frame-

work

Numerical techniques in Bayesian framework are applied when posterior dis-
tribution does not have a closed analytical form. As any inference in Bayesian
statistics is made using the posterior density of the investigated parameter
θ, this usually amounts to the computation of the posterior mean for some
function of θ, namely, E(g(θ)) (in the simplest and most common case g ≡ x):

E(g(θ)|y) =

∫
g(θ)p(θ|y)dθ,

where p(θ|y) is θ’s posterior distribution. In general case this integral could
not be evaluated analytically. The Central Limit Theorem constitutes a
theoretical basis for the numerical computation of the approximation to this
integral. If we are able to obtain a sample (θ1, θ2, . . . , θM) from posterior
distribution p(θ|y) and compute

ĝM(θ) =
1

M

M∑
m=1

g(θm),

then according to the central limit theorem it converges to Eg(θ|y) as M
goes to infinity. This procedure is called Monte Carlo integration. From the

statistical point of view the computed quantity ĝM(θ) is nothing more than
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a sample average. Theoretically the asymptotic variance of ĝM(θ) is equal to
σ2

M
, and an estimate to σ2 could also be obtained from the simulation results:

s2M =

√√√√ 1

M

M∑
m=1

(
g(θ(m))− ĝM(θ)

)2
.

Precision of the Monte Carlo integration is often estimated using the value
of Monte Carlo Standard Error (MCSE)

MCSE =

√
s2M
M
. (4.1.1)

It should be noted that direct simulation from the posterior distribution is not
always possible. In such cases one should use special simulation algorithms.

4.2 Algorithms for posterior simulation

For practical reasons we can divide algorithms for posterior simulations into
two groups:

1. Algorithms producing independent and identically distributed samples
from the posterior distribution,

2. Algorithms, which in the convergence phase produce nearly identically
distributed, but not independent samples from posterior distribution.

In fact, algorithms from the first group are used as building blocks for the
second, and in practice a combination of algorithms from these two groups
is used.

4.2.1 Markov chain Monte Carlo (MCMC) methods

It is not always possible to sample independent identically distributed values
from a posterior density. Markov chain Monte Carlo is a collective terms
used to denote a group of algorithms used to produce draws from a posterior
distribution. These algorithms work iteratively and provide approximate
samples that are not independent.

Algorithms of this group use iterative methods to approximately sample from
complex posterior densities. Sample values of θ which are used to compute
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sample averages are obtained as realisation of Markov chain. When using
MCMC algorithms, chains of sufficient length should be produced to guar-
antee convergence to the posterior distribution.

We will discuss two widely used MCMC algorithms — Metropolis-Hastings
[107, 75] and Gibbs sampler [35].

Metropolis – Hastings algorithm (M–H) As above, p(θ|y) is the pos-
terior density, direct sampling from which is not possible, θ = (θ1, . . . , θK)
– K dimensional parameter vector. Denote by q(θ|θ(t−1)) the approximat-
ing density (also called proposal density, candidate-generating density). The
function of the proposal density is to recursively generate a sample from θ
conditional on its value in the previous iteration. Each step of the algorithm
consists of generating a draw from the proposal density and an accept/re-
ject decision. Schematically, Metropolis – Hasting algorithm works in the
following way:

1. Choose a starting value θ(0).

2. Iteration number t. Draw a realization θ∗ from the proposal density
q(θ|θ(t−1)), where θ(t−1) is the value of parameter θ at the previous step
of M–H algorithm.

3. Compute the acceptance probability:

a(θ∗, θ(t−1)) = min

{
1,

p(θ∗)/q(θ∗|θ(t−1))
p(θ(t−1))/q(θ(t−1)|θ∗)

}
, (4.2.1)

4. Draw u from the uniform distribution U(0, 1). Then,

• If u ≤ a(θ(t), θ(t−1)), set θ(t) = θ∗.

• Otherwise, set θ(t) = θθ−1.

5. Go to step 2.

Note that in practical simulations one should use only the samples produced
after the chain converged to its stationary state.

Three main versions of the M–H algorithm exist according to the method
that is used to select a proposal density: Random Walk M–H Algorithm and
Independence Chain M–H Algorithm.
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Random Walk Metropolis – Hastings algorithm The general idea of
Random Walk M–H is that if there is no idea on the good approximation to
the posterior density, the solution is to construct a Markov Chain that will
explore all areas of parameter space no matter high or low their posterior
probability is. The states of such chain are obtained as

θ(t+1) = θ(t) + ε(t+1), (4.2.2)

where εt+1 is a K-dimensional random variable with a chosen distribution q
and zero mean. In most cases ε is chosen to have a normal distribution, in
which case proposal distribution has the form

q(θ∗|θ(t−1)) = N(θ(t−1),Σ). (4.2.3)

If the chosen proposal distribution q is symmetric, the formula for the accep-
tance probability has the simpler from:

a(θ∗, θ(t−1)) = min

{
1,

p(θ∗)

p(θ(t−1))

}
. (4.2.4)

It could be easily seen from the definiton above that the idea of this algo-
rithm could be expressed in the following way: the proposed draw is always
accepted when it has a higher posterior probability than the current draw
(then a = 1), and accepted with probability a when its posterior probability
is lower that that of the current draw. Realization simplicity of the Random
Walk M–H is an obvious advantage of this algorithm. The drawback of this
algorithm is that there is nothing in it that could prevent the chain from
making large steps and getting into the regions of parameter space with low
posterior probability, which, in turn, would lead to low acceptance probabil-
ity and rejection of the significant portion of the proposed draws. On the
other hand, when the steps get too small, the chain would stay in the same
region of parameter space, although the acceptance probability would be
high and most of the draws would be accepted. In practical implementation
the jump size could be tuned by choosing a special value for the covariance
matrix of the proposal distribution Σ.

Independence Chain Metropolis – Hastings algorithm While Ran-
dom Walk M–H obtains the next candidate draw starting from the previous
one, in Independence Chain M–H the next candidate draw doesn’t depend on
the current state of the chain (thus the name ”Independence Chain”). Pro-
posal distribution is usually set to multivariate normal or multivariate Stu-
dent [63], [127], [66]. Selected proposal density is then centered and scaled
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for it to fit the posterior. The following agorithm discribes this ”fitting”
procedure mathematically.

1. Find the mode θ̂ of the posterior distribution. In most cases this is
done by means of numerical optimization algorithms.

2. Compute the Hessian H = H(log p(θ|y))|θ=θ̂
3. In the case of the normal proposal density set it to

q(θ|θ(t−1)) = q(θ) = N(θ̂,−H−1). (4.2.5)

In the case of the Student proposal density set it to

q(θ|θ(t−1)) = q(θ) = t

(
ν, θ̂,−H−1 (ν − 2)

ν

)
. (4.2.6)

Degree of freedom parameter ν allows to regulate the ”heavy-tailedness”
of the t-distribution – smaller ν give heavier tails.

Block Structure M–H Algorithm Sometimes it is not feasible to set
the multivatiate proposal distribution q(θ) for the whole parameter vector
θ, but such distributions for certain blocks of θ make sense. Consider the
simple case of partitioning θ in two blocks θi, i = 1, 2,

θ = (θ1, θ2)

with conditional posterior densities

p1(θ1|θ2, y) and p2(θ2|θ1, y)

and proposal densities

q1(θ1|θ(t−1)1 , θ2) and q2(θ2|θ(t−1)2 , θ1).

In this settings the following modification of M-H algorithm is used.

1. Draw θ∗1 from the conditional proposal density q1(θ1|θ(t−1)1 , θ
(t−1)
2 ).

2. Accept or reject θ∗1 as in simple M-H.

3. Draw θ∗2 from the conditional proposal density q2(θ2|θ(t)1 , θ
(t−1)
2 ), where

θ
(t)
1 is the value of θ1 from step 1 and θ

(t−1)
2 is the value of θ2 from the

previous iteration of this algorithm.

4. Accept or reject θ∗1 as in simple M-H.

The block partitioning structure is often governed by the structure of the
model itself (e.g., model parameters constitute one block and hyperparame-
ters - another one).
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The Gibbs sampler. This sampler constitutes a further development of
the block-structure M–H and is used when one is able to sample directly
from the full conditional posterior distributions of the blocks into which θ is
partitioned. To employ Gibbs sampler the parameter vector θ is partitioned
into s components:

θ = (θ1, θ2, . . . , θs).

Full conditional posterior distribution for the blocks θi, i = 1, . . . , s is repre-
sented as

p(θi|θ1, . . . , θi−1, θi+1, . . . , θs, y) ≡ p(θi|θ−i, y). (4.2.7)

The steps of the Gibbs sampler are then the following ones:

1. Select initial values for all blocks: θ
(0)
i , i = 1, . . . , s.

2. Iteration t:

• Draw θ
(t)
1 from p(θ1|θ(t−1)2 , θ

(t−1)
3 , . . . , θ

(t−1)
s , y).

• Draw θ
(t)
2 from p(θ2|θ(t)1 , θ

(t−1)
3 , . . . , θ

(t−1)
s , y).

• Draw θ3, . . . , θs in the same way.

3. Repeat step 2 until the chain converges.

4.3 MCMC convergence diagnostics

Reliability of results obtained from posterior simulation procedures depends
on whether the Markov chain has converged, which means that the simulated
samples are indeed from the desired posterior distribution. Another desirable
property of a simulated Markov Chain is ”good chain mixing”, which means
that Markov chain explores the entire parameter space equally well. When
the autocorrelations between successive samples in Markov chain are high and
decay slowly, simulated chain values stay in the certain region of a parameter
space for a large number of steps. Though, of course, undesirable, high
correlation does not exclude convergence, but the latter takes more steps to
reach.

Markov property of chains produced by MCMC algorithms means that after
a number of steps influence of the starting values on the produced draws
eventully vanishes. To minimize the effect of the chain’s initial state, a
certain number of simulation from the start up to a step tbip, called a burn in
period, is often discarded, and posterior inference is based on the the samples
{θt : t > tbip} only.
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It is necessary to point out that the definition of convergence itself applied to
the simulation using Markov chain Monte Carlo methods is fundamentally
different from the usual concept of convergence for the iterative procedures in
numerical analysis (e.g., convergence for Newton-type root finding algorithms
for nonlinear equations). Indeed, the object that is produced by MCMC in
its convergence phase is not a single number (or vector in multidimensional
case) and not even a distribution, but a sample from distribution.

Research efforts in the area of MCMC convergence fall mainly into two groups
[42]. Methods within the first group analyze the Markov transition kernel
of the chain and try to predict a number of iterations that will guarantee
convergence to the stationary distribution within a specified tolerance. For
example, Roberts and Polson [126] investigated conditions under which Gibbs
sampler converges at a geometric rate. Although such techniques have great
theoretical importance, they require sophisticated mathematical calculation
for each and every particular model under consideration. In addition to
this, in most cases these theoretically obtained convergence bounds suggest
numbers of iterations that could differ by several orders of magnitude.

Due to these evident drawbacks of purely theoretical approaches applied
research that uses MCMC methods relies mainly on the second approach to
detect convergence, which is based on the application of certain diagnostic
procedures applied to the output of MCMC simulation algorithms.

4.3.1 Geweke diagnostics.

When the draws produced by Gibbs sampler are used to estimate the mean
of some function g of the parameter θ that is being simulated, Geweke [67]
proposed to use methods from spectral analysis. Computing values g(θ(j))
after earch iteration of the Gibbs sampler, we obtain a sequence which could
be regarded as time series. Important assumption of the Geweke’s method
is that MCMC simulation process and function g imply that the above con-
structed time series has a spectral density Sg(ω) that is continuous at ω = 0.
Under this assumption it is possible to construct an estimator for E[g(θ)]
using n iterations of the Gibbs sampler:

gn =

∑n
i=1 g(θ(i))

n
, (4.3.1)

which variance is Sg(0)/n. The standard error of the mean (or “numeric
standard error”, NSE, in terms of Geweke) could be obtained as a square
root of this variance.
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After n iterations of the Gibbs sampler Geweke’s convergence diagnostic
is calculated by taking the difference between g(θ)An (mean based on the
first nA iterations) and g(θ)Bn (mean based on the last nB iterations) and
dividing it by the asymptotic standard error of the difference (computed
as above from spectral density estimates). For fixed ratios nA/n and nB/n
such that nA + nB < n, applying the central limit theorem, one can get
that distribution of Geweke’s diagnostic approaches normal when n → ∞.
As to the ratios nA/n and nB/n, Geweke suggested using nA/n = 0.1 and
nB/n = 0.5. According to Geweke, the test is used to decide how many
initial iterations to discard. After discarding, MCMC simulation is run for
the number of iterations sufficient to get the desired precision (given by NSE).

4.3.2 Gelman and Rubin convergence diagnostics

Gelman and Rubin ([64]) proposed a convergence test that uses normal the-
ory approximations to exact Bayesian posterior inference. Full Gelman and
Rubin diagnostic procedure employs sampling from several Markov chains
and consists of two parts. At part 1, that is before any sampling is made, one
should obtain overdispersed starting values for the desired number of chains.
After running chain simulations for 2n steps, part 2 uses the last n itera-
tions to approximate the target distribution of the scalar parameter (which
distribution we are trying to approximate with the Markov Chain) with a
Student’s t-distribution with the scale parameter based on between-chain
and within-chain variance. Convergence criterium is based on the estimation
of the scale parameter shrinking factor which is given by the statistic

√
R̂ =

√(
n− 1

n
+
m+ 1

mn

B

W

)
df

df − 2
, (4.3.2)

where B is the variance between the mean values of the m parallel chains, W
is the average of the m within-chain variances, df is the number of degrees of
freedom of the approximating t distribution. According to Gelman and Rubin
step 2 should be repeated until “shrink factors” for all scalar parameters
of interest are close to 1. Althoug Gelman and Rubin initially proposed
this technique as a convergence estimator for the Gibbs sampler, it could
be successfully applied to the chains produced by any MCMC algorithm.
Gelman and Rubin approach is heavily criticised for its reliance on the user’s
ability to find overdispersed starting distributions, which, in turn, requires
some knowledge about the target distribution. Secondly, the reliance on the
normal approximation to the target distribution is also a weak point since
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MCMC simulation is used mostly in cases when target distribution is not
normal.

4.3.3 Heidelberger and Welch diagnostics.

Heidelberger and Welch [76] proposed a procedure to construct a confidence
interval for the mean when the Markov chain (from which it was estimated)
has an “initial transient period”, that is, when at the beginning of the simu-
lation process the chain has a distribution other than the desired stationary
one. First part of Heidelberger and Welch diagnostics is based on the results
of Schruben [136] and Schruben et al. [135]. The null hypothesis is that
a sequence of iterates is from a stationary ψ mixing process. Applied to
markov chains, this condition is equivalent to uniform ergodicity. According
to Meyn and Tweedie [109], this approach is also applicable to geometri-
cally ergodic chains, and, consequently, for chains produced by Gibbs and
Metropolis-Hastings algorithms. If θ(j) is a jth iterate in the chain, S(0)
is a spectral density of the chain evaluated at 0, n is the total number of
iterations, and

T0 = 0, (4.3.3)

Tk =
k∑
j=1

θ(j), k ≥ 1, (4.3.4)

θ =

∑n
j=1 θ

(j)

n
, (4.3.5)

and

Bn(t) =
T[nt] − [nt]θ√

nS(0)
, 0 ≤ t ≤ 1, (4.3.6)

where [·] denotes the largest integer not greater than ·, then for large n under
the null hypothesis Bn = {Bn(t), 0 ≤ t ≤ 1} is approximately distributed as
a Brownian bridge and the Cramer-von Mises statistic∫ 1

0

Bn(t)2dt (4.3.7)

could be used to test the hypothesis. The unknown quantity S(0) is estimated
from the data and plugged into the formula for Bn(t).

Heidelberger and Welch method consists of the following steps. Initially, two
parameters are specified: the maximum number of iterations jmax and desired
half-width for confidence intervals ε. j1 = 0.1jmax iterates of the chain are
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produced and the above described Schruben’s stationarity test is conducted
(S(0) is estimated from second half of this chain in order to diminish the
influence of the initial transient period). If the null hypothesis is rejected,
first 10% of the iterates are discarded and stationarity test is conducted for
the remaining part of the chain. This process is repeated until either a chain
of length not less than 0.5j1 is found that passes this stationarity test or the
remaining chain contains less that 50% of original iterates (but the test still
fails). If the test is passed, then the standard error of the mean is estimated

as

√
Ŝ(0)/np, where np is a remained chain’s length. Process stops when the

half width of the confidence interval obtained in this way is less than ε times
the sample mean of the remained chain.

If the stationarity test was failed or the confidence interval is too wide, all
the discarded iterates are restored in the chain and simulations continue to
obtain a chain with the length j2 = 1.5j1. New longer chain is again tested
using stationarity test and confidence interval width. This process could
be repeated with the increasing chain lengths jk+1 = min(1.5jk, jmax) until
either a confidence interval of the necessary width is obtained or the chain
length reaches jmax.
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Chapter 5

Empirical investigation of
discrete SV models using
MCMC

5.1 Description of the data

For the purposes of empirical investigation we randomly picked 5 compa-
nies from the list of the most actively traded stocks on the NASDAQ stock
exchange:

1. Cisco Systems, Inc. (ticker symbol CSCO),

2. Microsoft Corporation (ticker symbol MSFT),

3. Intel Corporation (ticker symbol INTC)

4. NVIDIA Corporation (ticker symbol NVDA)

5. Dell Inc. (ticker symbol DELL)

Exchange trading data was obtained from the DTNiQ data feed (http://www.dtniq.com/)
as a set of records with the following fields for each 1 minute period:

1. Time stamp,

2. Opening price (“Open”),

3. Highest price (“High”),

4. Lowest price (“Low”),
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5. Closing price (“Close”),

6. Trading volume for the current period (“IncVol”),

7. Cumulative trading volume (“Volume”, counting from the start of the
trading day).

Data covers the period from 01/03/2011 to 31/05/2011. This period selec-
tion was arbitrary, since the purpose was to gain insight into the MCMC
methodology and to see if adding transaction volume as a descriptor variable
makes any difference. The length was chosen so that, on the one hand it
contained enough data to perform Bayesian estimation, and, on the other
hand, to keep the computation time reasonable. Daily prices were converted
to the continuosly compounded returns (3.1.2). Sample skewness and kurto-
sis are given in table 5.1. Based on the kurtosis’ values greater than 3 we can
suppose that only Microsoft and Dell returns could have normal distribution.
Results of Shapiro – Wilk and Jarque – Bera normality tests (table 5.1) also
indicate that only Microsoft and Dell returns have normal distribution.

CSCO MSFT INTC NVDA DELL
Skewness 0.18726 0.04493 1.4928 -0.8019 0.4388
Kurtosis 3.73830 -0.0900 6.5467 2.432 0.3612

Table 5.1: Data characteristics: Second order moments

CSCO MSFT INTC NVDA DELL
Shapiro - Wilk 0.0015 0.7801 0.0000 0.0112 0.3479
Jarque - Bera 0.0000 0.9889 0.0000 0.0000 0.259

Table 5.2: Data characteristics: Normality tests, p-values

We also applied Box–Pierce [29] and Ljung–Box [96] portmanteau tests which
showed that autocorrelations for lags from 1 to 10 for all five time series are
statistically not different from 0. Since autocorrelations are 0, there is no need
to construct a trend model, and we applied a normalization transformation
only, that is our time series were transformed to

rnormt =
rt − µ̂
σ̂

, (5.1.1)

where µ̂ and σ̂ are the sample mean and sample standard deviation respec-
tively.

The following discrete stochastic volatility models will be tested:
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1. Classical SV model with normal innovations,

2. SV model with t-innovations,

3. SV model with normal innovations and volatility process augmented
with volume,

4. SV model with t-innovations and volatility process augmented with
volume.

Model evaluation will be done in sample by comparing one step ahead volatil-
ity forecast produced by each of the mentioned above models 5.1 and realized
volatility calculated for that day using 5-min intraday data according to for-
mula (3.3) with p = 2. The forecasts will be evaluated using the error metrics
discussed in section 3.3 on page 37.

5.2 Bayesian analysis of Classical SV model

5.2.1 Theoretical model

In this section we will give a general scheme for the implemention of the
Bayesian analysis for “classic” stochastic volatility model

ht = µ+ ϕ(ht−1 − µ) + ut, ut ∼ N(0, τ 2), (5.2.1)

where µ, φ, τ are model parameters and with innovations in the form

εt = e
ht
2 zt, zt ∼ N(0, 1). (5.2.2)

To calibrate this model we will use the normalized returns from (5.1.1), that
is εt ≡ rnormt .

Application of the classical frequentist parameter estimation methods to the
SV models presents a difficult task since its likelihood function doesn’t have
a tractable form. Some of the classical methods have been applied to the es-
timation of SV models: generalized method of moments was used by Melino
and Turnbull [106] and Sorensen [142]; quasi-maximum likelihood by Harvey,
Ruiz and Shephard [73]; efficient method of moments by Gallant, Hsieh and
Tauchen [60]; simulated maximum likelihood by Danielsson [44], Sandmann
and Koopman [134]; approximate maximum likelihood by Fridman and Har-
ris [57]. Parameter estimation for SV models using MCMC was proposed
by Jacquier, Polson and Rossi [82], Shephard and Pitt [140], Kim, Shephard
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and Chib [88]. Andersen, Chung and Sorensen [9] compared MCMC with
other estimation tools in Monte Carlo framework.

As a framework for implementing MCMC computation we will use JAGS
(Just Another Gibbs Sampler) [117] – one of the implementations of BUGS
(Bayesian analysis Using Gibbs Software) modelling software [99]. As an
example of SV estimation using this approach one can refer to the paper by
Meyer and Yu [108].

There exists a standard tool that can be used in combination with BUGS
software that implements some standard tests for MCMC convergence di-
agnostics - a CODA package [118], that could be called from R statistical
software suite [122].

We can regard volatility specification written in the form (5.2.2) – (5.2.1) as a
nonlinear state-space model [74]. In our case it is a state-space model for the
market returns rt (observations) with hidden volatility process ht (states),
the hidden state ht determines the value of the volatility on day t, and the
parameter φ could be interpreted as volatility persistence (see financial time
series stylized facts outlined in section 3.1.3.4).

As above, we denote the vector of model parameters by θ:

θ = (µ, φ, τ 2).

The likelihood fucntion for θ could be written as

L(θ|r) =
T∏
t=1

∫
f(rt|σ2

1, . . . , σ
2
T )f(σ2

1, . . . , σ
2
T |θ)dσ2

1 . . . dσ
2
T (5.2.3)

Bayesian computation in this case amounts to the simulations (sampling) of
hidden volatilities from their conditional distribution with model parameters.

5.2.1.1 Practical convergence assessment example

Before making any inference on model parameters, it is necessary to carry
out MCMC convergence test and ensure that chain has reached a stationary
distribution. In our usage of diagnostic routines implemented in CODA
we will follow the extensive description [20]. Originally CODA (convergence
diagnostics and output analysis) was a set of functions implemented in S-Plus
to serve as an output processor for BUGS-type software. We used CODA
implementation in R programming language (available as a package for R
system). It is important to stress that MCMC convergence tests implemented
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in CODA do not guarantee the convergence of the chain under study – it is
the absence (or lack) of convergence that they can reliably indicate. We will
give commented examples for the Cisco time series. For all other data sets
given below, it is assumed that convergence phase has been reached.

Visual inspection of plots There are some visual tools that could help
to see how well the chain is mixing. The term mixing refers to the move-
ments of the chain around the parameter space. If due to the nature of the
sampling process the chain stays in the same area of parameter space and,
consequently, requires longer time to explore the whole parameter space,
then such chain is called poorly mixing. The first aid in exploring the mixing
property is a traceplot – a plot of the parameter draw’s value against the
number of the iteration. Function plot.mcmc produces a graphical summary
of the iterates for each monitored variable and chain in the JAGS output.
Figure 5.1 shows plots of the MCMC chains for SV model parameters (µ, φ)
with trends superimposed on them.
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Figure 5.1: MCMC chains for the µ and φ parameters of the classic SV model

Chain statistics Function summary.mcmc produces summary statistics for
each monitored variable and chain in the BUGS output. We will use the
sample mean as an estimate for each parameter of interest in our model.

Geweke diagnostics Function geweke.plot generates graphical represen-
tation of Geweke’s diagnostics (Figure 5.2). in the following way. The entire
chain for each variable is split into a number of segments. For a chain of
length N, the first segment contains all N samples in the chain; the second
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contains the last N-n samples (i.e. iterations n+1-N); the third contains
samples from iterations 2n+1-N and so on. The final segment is chosen so
that it contains at least the last 50 samples. The default bin size is n=10
for chains of 500 iterations or less. For longer chains, the bin size is deter-
mined by splitting the chain equally into 50 bins. However these sizes may be
changed by the user. Geweke’s diagnostic is computed for each segment, and
the resulting Z-scores are plotted against the number of the first iteration in
the segment. Horizontal dotted lines at Z = ±1.96 are added to the plot
to indicate the 95% confidence interval for a N(0, 1) distribution. A large
number of Z-scores falling outside this interval suggests possible convergence
failure. These plots may take some time to produce due to the large number
of computations needed to produce them, but the process may be speeded
up by reducing the total number of bins, or increasing the bin size.
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Figure 5.2: Plot of Geweke’s diagnostics for the µ and φ parameters of the
classic SV model

Gelman and Rubin convergence diagnostics Function gelman.plot

produces plots of Gelman and Rubin diagnostics for each variable. (Figure
5.3). These plots are produced by splitting the chain for each variable into
a number of segments as follows: the first contains samples 1:50; the second
contains samples 1:(50 + n); the third contains samples 1:(50 + 2n) and so
on. The default bin size is n=10 for chains of 500 iterations or less. For
longer chains, the bin size is determined by splitting the chain equally into
50 bins. Gelman and Rubin’s diagnostic is computed for each segment, and
the median and 97.5% quantile of the sampling distribution for the result-

54



ing shrink factor are plotted against the maximum iteration number for the
segment.
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Figure 5.3: Plot of Gelman and Rubin diagnostics for the µ and φ parameters
of the classic SV model

Heidelberger and Welch diagnostics Function heidel.diag implements
a method devised by Heidelberger and Welch ([76]) for detecting an initial
transient in simulated sequences of discrete events. If the stationarity test
is passed, CODA reports the number of iterations to keep (i.e. which are
diagnosed to arise from a stationary process), the number of initial iterations
to discard and the Cramer-von-Mises statistic. Below is a typical test output
indicating convergence.

[[1]]

Stationarity start p-value

test iteration

mu passed 1 0.0701

beta passed 1 0.0609

phi passed 1 0.2699

tau2 passed 1 0.1090

itau2 passed 1 0.0552

Halfwidth Mean Halfwidth

test
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mu passed -0.444 0.00774

beta passed 0.810 0.00323

phi passed 0.337 0.00396

tau2 passed 0.760 0.01578

itau2 failed 4.731 2.49332

These convergence tests were carried out for all the models that we discuss
further in the thesis and demonstrated suitable convergence. The parameter
values and the error metrics obtained for this model, along with parameter
values and error metrics for other volatility models are listed and compared
in section 5.4.

5.3 Bayesian techniques for stochastic volatil-

ity models with t-innovations

It is a stylized fact of the financial time series behaviour that the returns
distributions are non-normal and have heavy tails. For two out of five data
sets that we investigate in this work hypothesis of normal distribution was
rejected by normality tests. One of the techniques that could be used to
account for heavy tails is to use Student distribution for the innovations in
stochastic volatility model, that is to specify it as

rt = µ+ εt, t = 1 . . . T, (5.3.1)

with innovations in the form

εt = e
ht
2 zt, zt ∼ t(k), (5.3.2)

where k is a number of degrees of freedom, and volatility process specification
is the same as for the classical model:

ht = µ+ ϕ(ht−1 − µ) + ut, ut ∼ N(0, τ 2). (5.3.3)

Modelling returns with t-distribution introduces a new parameter – number
of degrees of freedom k – that needs to be estimated. Theoretically for the
Student distribution with k degrees of freedom its excess kurtosis could be
computed analytically and equals

K(k) =
6

k − 4
. (5.3.4)
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On the one hand, this could give a convenient way of estimating the degree
of freedom parameter of a t-distribution from empirical data. But on the
other hand, sample kurtosis could not be viewed as a reliable estimate of
population kurtosis (Mosteller and Tukey [110], [13]). There also exists a
MCMC modification that allows to use k as a parameter in the estimation
procedure, but it is found to make the procedure prohibitively expensive in
terms of computation. Hence we decided to use a simulation approach and
estimated the model with different degrees of freedom assumptions, namely,
we tested the simulation performance of the model for k = {3, 4, 5, 6, 7, 8}.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
µ -0.8987 -0.7682 -0.6883 -0.6279 -0.5902 -0.5651
q2.5% -1.4330 -1.3050 -1.2148 -1.1786 -1.1314 -1.1225
q97.5% -0.3633 -0.2453 -0.1738 -0.1085 -0.0801 -0.0464
φ 0.4600 0.4531 0.4455 0.4365 0.4291 0.4229
q2.5% 0.0220 0.0216 0.0206 0.0199 0.0196 0.0192
q97.5% 0.9571 0.9549 0.9537 0.9470 0.9418 0.9410
MSE 0.0973 0.1105 0.1193 0.1262 0.1306 0.1335
RMSE 0.3119 0.3324 0.3453 0.3552 0.3614 0.3654
MAE 0.1621 0.1725 0.1791 0.1840 0.1870 0.1890
MAPE 0.2272 0.2266 0.2260 0.2253 0.2247 0.2242

Table 5.3: Parameters of SV model with t innovations

It could clearly be seen that the all error measures increase with the increase
of the degrees of freedom parameter k. Based on these results, in all other
models with t-innovations degrees of freedom parameter is set to k = 3.

5.4 Bayesian techniques for stochastic volatil-

ity models with trading volume

Investigation of the relationship between stock return volatility and trading
volume could find many applications in financial economics, the most im-
portant being dynamic portfolio allocation and option pricing. Clark ([40])
proposed Mixture of Distributions Hypothesis (MDH): stock returns and
trading volume depend on the same underlying latent variable – the flow of
information relevant to the trading process itself. Research findings by Epps
and Epps ([40]), Tauchen and Pitts ([40]), Harris ([72, 71]) agree with MDH.
On the other hand, findings by Lamoreux and Lastrapes ([92]), Richard-
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son and Smith([125]), Liesenfeld([95]) draw attention to some weak points
of this theory. Richardson and Smith([125]) pointed out that using normal
distribution to relate returns and trading volume with information flow may
not be the right specification. According to Lamoreux and Lastrapes ([92])
mixing variable (judging by its time series behaviour) does not fully explain
volatility persistence in financial time series.

Substantial number of papers is devoted to the relationship between return
volatility and trading volume in the field of market microstructure research.
In this area of research it is usually assumed that arrival of new informa-
tion causes price movements. Market microstructure theory mostly explores
intra-day relationship between volatility and volume. Andersen ([6]) tries
to combine MDH and market microstructure theory and create empirical
model of the daily return using market microstructure models proposed in
papers by Glosten and Milgrom ([69]), Kyle ([91]), Admati and Pfleiderer
([2, 1]). MDH and stochastic volatility are combined with main features of
microstructure models – asymmetric information structure, liquidity, noise
traders. The resulting model is called Modified Mixture Model (MMM) and
is specified as AR(1) stochastic volatility process for the latent information
arrival by Andersen ([5]).

Mahieu [101] took a Bayesian approach to perform simulations for modified
mixture model (MMM) in the framework proposed by Andersen [6].

All the studies mentioned above proposed models with trading volume con-
temporaneous to the returns, which makes these models not suitable for pre-
diction puproses. We are trying to establish a model that uses lagged volume
and could be useful in volatility prediction. In particular, we are constructing
a stochastic volatility model which incorporate the trading volume from the
previous trading day as exogenous factor.

We propose the following modifications of classical stochastic volatility model:

1. SV with Gaussian innovations

εt = e
ht
2 zt, zt ∼ N(0, 1), (5.4.1)

and volatility process with trading volume lagged for one day

ht = µ+ ϕ(ht−1 − µ) + ψ log vt−1 + ut, (5.4.2)

where log vt−1 is a natural logarithm of the lagged trading volume.

2. SV with t-innovations

εt = e
ht
2 zt, zt ∼ t(k), (5.4.3)
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and volatility process with trading volume lagged for one day

ht = µ+ ϕ(ht−1 − µ) + ψ log vt−1 + ut. (5.4.4)

3. SV with Gaussian innovations

εt = e
ht
2 zt, zt ∼ N(0, 1), (5.4.5)

and volatility process with trading volume lagged for two days

ht = µ+ ϕ(ht−1 − µ) + ψ log vt−2 + ut. (5.4.6)

4. SV with t-innovations

εt = e
ht
2 zt, zt ∼ t(k), (5.4.7)

and volatility process with trading volume lagged for two days

ht = µ+ ϕ(ht−1 − µ) + ψ log vt−2 + ut. (5.4.8)

Table 5.4 – 5.4 give the results of model estimation for different data sets.
We use the following abbreviations to denote the models:

1. SV – classic SV model,

2. SV-t – SV model with t-innovations,

3. SV VOL – SV model with Gaussian innovations augmented with lag
one trading volume,

4. SV VOL-t – SV model with t-innovations augmented with lag one trad-
ing volume,

5. SV VOL-2 – SV model with Gaussian innovations augmented with lag
two trading volume,

6. SV VOL-t-2 – SV model with t-innovations augmented with lag two
trading volume.

As a measure of parameter’s estimate significance in Bayesian framework we
use the position of the interval (q2.5%, q97.5%) – if this interval contains 0, then
the parameter is not significant. From the tables 5.4 – 5.4 we can see that
trading volume does not add any extra useful information to the models,
since its coefficient ψ in all models is not significant. This conclusion holds
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SV SV-t SV VOL SV VOL-t SV VOL-2 SV VOL-t-2
µ -0.4410 -0.8987 -0.4552 -0.8775 -0.4229 -0.8570

signif 0 1 0 1 0 1
q2.5% -1.0547 -1.4330 -1.2600 -1.422 -1.469 -1.4018
q97.5% 0.1490 -0.3633 0.1518 -0.3347 0.2633 -0.2982

φ 0.3364 0.4600 0.3164 0.3877 0.4723 0.4378
signif 1 1 1 1 1 1
q2.5% 0.0139 0.0220 0.0107 0.0157 0.0164 0.0173
q97.5% 0.8097 0.9571 0.9600 0.9360 0.9884 0.9611

ψ N/A N/A 0.1167 0.0713 -0.0773 -0.0014
signif 0 0 0 0
q2.5% -0.3870 -0.3394 -0.4470 -0.3604
q97.5% 0.6079 0.9360 0.4272 0.4421
MSE 0.1466 0.0973 0.1462 0.0979 0.1569 0.1030

RMSE 0.3829 0.3119 0.3823 0.3129 0.3961 0.3210
MAE 0.1983 0.1621 0.1949 0.1606 0.2070 0.1705

MAPE 0.2209 0.2272 0.2219 0.2245 0.2271 0.2362

Table 5.4: Parameter estimates and error statistics for Cisco

SV SV-t SV VOL SV VOL-t SV VOL-2 SV VOL-t-2
µ -0.0268 -0.5078 -0.0265 -0.5122 -0.0018 -0.48080

signif 0 0 0 0 0 0
q2.5% -0.4444 -1.018 -0.4537 -1.0059 -0.4084 -0.9781
q97.5% 0.3966 0.018 0.3942 -0.002 0.4091 0.02947

φ 0.4561 0.4571 0.4142 0.3939 0.3726 0.3788
signif 1 1 1 1
q2.5% 0.0204 0.0211 0.0167 0.0163 0.0119 0.0124
q97.5% 0.9552 0.9574 0.9470 0.9357 0.9251 0.9401

ψ N/A N/A -0.0316 -0.0270 -0.0995 -0.1189
signif 0 0 0
q2.5% -0.2971 -0.3938 -0.4849 -0.5664
q97.5% 0.2538 0.3500 0.2783 0.2891
MSE 0.1334 0.0825 0.1285 0.0827 0.1385 0.0886

RMSE 0.3652 0.2872 0.3585 0.2876 0.3722 0.2979
MAE 0.2705 0.2127 0.2649 0.2164 0.2800 0.2255

MAPE 0.2715 0.2715 0.2666 0.2794 0.2802 0.2878

Table 5.5: Parameter estimates and error statistics for Microsoft

for both lags two and one. Another fact that could be clearly seen for all
models is that models with t-innovations provide more accurate forecasts.

We also performed an out of sample forecast evaluation using the trading
data of the Cisco Systems, Inc for the period 01/06/2011 – 31/08/2011.
Results of this evaluation, which could be found in Table 5.4 and also in-
volve comparison with the GARCH(1,1) model, show that SV model with
t-distributed innovations gives the most accurate forecast.
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SV SV-t SV VOL SV VOL-t SV VOL-2 SV VOL-t-2
µ -0.3319 -0.7422 -0.3482 -0.7685 -0.2938 -0.7409

signif 0 1 0 1 0 1
q2.5% -0.9287 -1.2469 -0.9170 -1.2492 -0.9092 -1.2319
q97.5% 0.2318 -0.2242 0.1947 -0.2782 0.2807 -0.2425

φ 0.4320 0.4759 0.3346 0.3377 0.4215 0.3732
signif 1 1 1 1
q2.5% 0.0200 0.0231 0.0111 0.0140 0.0170 0.0174
q97.5% 0.9222 0.9674 0.9243 0.8554 0.9553 0.8884

ψ N/A N/A 0.1427 0.2471 -0.0082 0.1535
signif 0 0 0
q2.5% -0.2453 -0.1453 -0.3127 -0.1777
q97.5% 0.6361 0.7501 0.3854 0.5364
MSE 0.2099 0.1418 0.2132 0.1522 0.2183 0.1461

RMSE 0.4582 0.3765 0.4618 0.3901 0.4672 0.3823
MAE 0.2203 0.1796 0.2269 0.1980 0.2285 0.1908

MAPE 0.2311 0.2310 0.2420 0.2633 0.2370 0.2476

Table 5.6: Parameter estimates and error statistics for Intel

SV SV-t SV VOL SV VOL-t SV VOL-2 SV VOL-t-2
µ -0.2028 -0.7069 2.7756 0.6701 0.006 0.1650

signif 0
q2.5% -0.7589 -1.2056 -11.93 -19.94 -15.21 -15.86
q97.5% 0.3104 -0.2032 20.17 13.83 18.82 20.26

φ 0.3473 0.4431 0.1862 0.2185 0.2169 0.2208
signif
q2.5% 0.0143 0.0202 0.0064 0.006 0.007 0.0063
q97.5% 0.8765 0.9535 0.5727 0.6705 0.6173 0.6364

ψ N/A N/A -0.1400 -0.0498 -0.0378 -0.0742
signif
q2.5% -1.074 -0.753 -1.046 -1.172
q97.5% 0.6598 1.0907 0.7525 0.7506
MSE 0.1004 0.0618 9.7898 0.48113 0.1859 0.3991

RMSE 0.3169 0.2487 3.1288 0.6936 0.4311 0.6317
MAE 0.2177 0.1686 2.7752 0.4935 0.2837 0.5015

MAPE 0.2397 0.2387 0.6657 0.2979 0.2396 0.4154

Table 5.7: Parameter estimates and error statistics for NVIDIA
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SV SV-t SV VOL SV VOL-t SV VOL-2 SV VOL-t-2
µ -0.0703 -0.5461 -21.46 -11.36 -1.888 -10.43

signif
q2.5% 0.5548 -1.0423 -34.27 -28.68 -15.55 -34.07
q97.5% 0.3686 -0.0237 -8.408 1.400 11.40 10.86

φ 0.4778 0.4618 0.1766 0.2552 0.2138 0.1394
signif
q2.5% 0.0243 0.0218 0.0194 0.0195 0.006 0.0031
q97.5% 0.9621 0.9579 0.3470 0.6255 0.6772 0.5946

ψ N/A N/A 1.0564 0.5064 0.1009 0.5598
signif
q2.5% 0.3701 -0.0831 -0.5502 -0.5694
q97.5% 1.779 1.418 0.8632 1.9247

ME -0.0101 -0.0079 0.1664 0.2414 0.5179 0.6146
MSE 0.1475 0.0911 0.0292 0.0598 0.2927 0.3848

RMSE 0.3841 0.3019 0.1711 0.2445 0.5410 0.6203
MAE 0.2346 0.1838 0.1664 0.2414 0.5261 0.6146

MAPE 0.2343 0.2330 8314 77.69 1.5649 124.79

Table 5.8: Parameter estimates and error statistics for Dell

SV SV-t SV VOL SV VOL-t SV VOL-2 SV VOL-t-2 GARCH(1,1)
MSE 0.3318 0.2015 0.3152 0.2053 0.3358 0.2158 0.7366

RMSE 0.5760 0.4489 0.5615 0.4531 0.5795 0.4645 0.8925
MAE 0.2648 0.2001 0.2605 0.2061 0.2608 0.2131 0.5623

MAPE 0.2919 0.2679 0.2907 0.2785 0.2770 0.2872 0.6371

Table 5.9: Parameter estimates and error statistics for Cisco (out of sample)
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Chapter 6

Summary and future work

6.1 Contributions

Parameters of different modifications of SV models were estimated using
Markov chain Monte Carlo methods. As calibration data we used stock
prices of five companies listed on NASDAQ stock exchange: Cisco, Microsoft,
Intel, NVIDIA and Dell. Data was aquired through the DTNiQ data feed
(http://www.dtniq.com/) and used for calibration and realized volatility cal-
culation. Upon examination of the sample skewnes and kurtosis of the data
Shapiro-Wilk and Jarque-Bera normality test were performed which indi-
cated that distribution of the returns is not normal and has heavy tails.
Box-Pierce and Ljung-Box portmanteau tests did not reject the hypothesis
of zero autocorrelation in returns’ time series. Calibration of SV models aug-
mented with lagged trading volume and evaluation of their forecasting power
by comparison with realized volatility constitutes the main contribution of
the thesis, since most of the widely cited studies in this field dealt either with
contemporaneous volume or employed GARCH models [32, 92, 6, 101].

Six variants of the SV model were calibrated using the above described data:

• classic SV model,

• SV model with innovations having Student distribution,

• SV model with Gaussian innovations augmented with lag one trading
volume,

• SV model with t-innovations augmented with lag one trading volume,
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• SV model with Gaussian innovations augmented with lag two trading
volume,

• SV model with t-innovations augmented with lag two trading volume.

Calibration results showed that Markov chain Monte Carlo methods allow
to get reliable parameter estimates for discrete SV models, although the
estimation process is quite demanding computationally. On average, it takes
about 1.5 hours on Intel Core 2 Duo Processor T7300 (2.0 GHz, 4MB L2
cache, 800MHz FSB), which could pose a problem for applications where
frequent updates of parameters are needed.

Classic SV model was used to explore the influence of the distributional
assumptions on the innovations on the forecasting performance and it was
demonstrated that the most reliable forecasts are obtained with the innova-
tions having t distribution with 3 degrees of freedom.

Forecasting power of volatility models was assessed by comparing the pre-
dicted volatility with realized volatility. For this puprose realized volatility
for each day using intraday 5 minute trading data was computed and then
compared for every day with one step ahead forecast obtained from each of
the SV models. As an integral measure of forecast quality different functions
of forecasting error were used.

Our experiments indicated that trading volume may not be useful as an ex-
ogenous factor providing extra information for discrete stochastic volatility
models. This confirms the common belief that all information necessary for
trading purposes is already contained in prices. Further, the experiments
indicate that a stochastic volatility model with t-innovations appears to per-
form better than the one with Gaussian innovations. These results are in
agreement with the findings for the GARCH models augmented with volume
obtained by Brooks [32], who reported that augmenting of GARCH models
with lagged trading volume leads only to very modest improvements in their
forecasting performance.

6.2 Future work

Possible modifications to the classical SV model usually include heavy tails
in the distribution of returns, leverage effect and jump components in the re-
turns equation; see e.g. [39], [83],[157], [114], [19], [111]. One of the popular
methods to account for heavy tails is to use Student distribution to model
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return – an approach explored in the thesis. However, employing only differ-
ent specification for the returns’ distribution is often considered insufficient
and jumps in price process were introduced to explain the fat-tail behaviour
[54]. Several studies compare general performance of SV models with jumps,
among them [53], [38], [124], [37], [100]. Hence, investigation of SV mod-
els with leverage effects and jumps in returns’ process constitutes one the
possible directions for future work.

As a second direction we could propose testing our main conclusion about
volume in SV models using trading data from different markets, since empir-
ical price-volume relationships could be different among stock markets. It is
possible that, in informationally less efficient emerging markets, lagged vol-
ume does have predictive power. However, the intra-day data for emerging
markets is harder to access.

As a third direction, there could be different approaches to calculate realized
volatility [65], which could affect the assessment of predictive power of the
volatility models [103]. Another promising line of research within this field
could be aimed at using the realised volatility for the estimation of dynamic
asset pricing models [11]. For example, Barndorf-Nielsen and Shepard [16]
decomposed realized volatility into actual volatility and realized volatility
error. Considering this representation as a state-space model, they applied
Kalman to estimate volatility models. Building on the findings of Meddahi
[105], Bollerslev and Zhou [27] and Garcia et al. [61] estimated stochastic
volatility diffusion models using conditional moments of realized volatility.
Technique was developed further for the models with jumps by Todorov [149].

There are also some technical problems that need to be solved. MCMC
algorithms for many stochastic volatility models update volatility in a single-
state procedure [85]. Development of efficiten block routines, which could be
computationally less intensive, would allow to analyze sequentially a wider
range of models.
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Appendix A

Code Listings

Appendix provides R code used in the numerical experiments performed in this thesis as well as model description
in BUGS [143] notation.

A.1 Data preprocessing

A.1.1 Trading hours extraction

Script in R statistical programming language to extract the data corresponding to trading hours.

#process nasdaq quo tes downloaded through d tn i q
rm( l i s t = l s ( ) )
source ( ”J :\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
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i n s t r<−”MSFTTS. so r t ed ”
fname . ext<−” csv ”
i n s t r . name<−paste ( i n s t r , ” . ” , fname . ext , sep=”” )
i n s t r . data . dir<−”J :\\ dtniq \\ dtniq . prog \\data . r . proc . msft \\”
fname<−paste ( i n s t r . data . dir , i n s t r . name , sep=”” )
############################################################
i n s t r . t rad ing . s e s s i o n<−”MSFTTS. so r t ed . t rad ing . s e s s i o n ”
i n s t r . name . t rad ing . s e s s i o n<−paste ( i n s t r . t rad ing . s e s s i on ,

” . ” , fname . ext , sep=”” )
fname . t rad ing . s e s s i o n<−paste ( i n s t r . data . dir , i n s t r . name . t rad ing . s e s s i on ,

sep=”” )
############################################################
dframe<−read . table ( fname , header=TRUE, sep=” , ” , s t r i ng sAsFac to r s=FALSE)
aux . tStamps<−paste ( aux . date . chr , dframe$Time , sep=” ” )
aux . tStamps . POSIXct<−as . POSIXct ( aux . tStamps )
dframe$aux . tStamps . POSIXct<−aux . tStamps . POSIXct

dframe$ t rad ing . time . start<−as . POSIXct (paste ( aux . date . chr , ” 09 : 30 : 00 ” ) )
dframe$ t rad ing . time . end<−as . POSIXct (paste ( aux . date . chr , ” 16 : 00 : 00 ” ) )
dframe . t rad ing . s e s s i o n<−subset ( dframe ,

subset=(dframe$aux . tStamps . POSIXct>=dframe$ t rad ing . time . start ) &
( dframe$aux . tStamps . POSIXct<=dframe$ t rad ing . time . end ) )

#de l e t e a u x i l i a r y columns
dframe . t rad ing . s e s s i o n$aux . tStamps . POSIXct<−NULL
dframe . t rad ing . s e s s i o n$ t rad ing . time . start<−NULL
dframe . t rad ing . s e s s i o n$ t rad ing . time . end<−NULL
#wr i t e t r ad ing hours data
write . table ( dframe . t rad ing . s e s s i on , f i l e=fname . t rad ing . s e s s i on , quote=FALSE,

row .names=FALSE, col .names=TRUE, sep=” , ” )
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A.1.2 Specified period extraction

Script in R statistical programming language to extract the data corresponding to chosen days.

#process nasdaq quo tes downloaded through d tn i q
#add i t i o n a l f unc t i on s
rm( l i s t = l s ( ) )
source ( ”J :\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
i n s t r<−”MSFTTS. so r t ed . t rad ing . s e s s i o n ”
fname . ext<−” csv ”
i n s t r . name<−paste ( i n s t r , ” . ” , fname . ext , sep=”” )
i n s t r . data . dir<−”J :\\ dtniq \\ dtniq . prog \\data . r . proc . msft \\”
fname<−paste ( i n s t r . data . dir , i n s t r . name , sep=”” )
############################################################
i n s t r .mod<−”MSFTTS.mod . 1 . 1 min”
i n s t r . name .mod<−paste ( i n s t r .mod , ” . ” , fname . ext , sep=”” )
fname .mod<−paste ( i n s t r . data . dir , i n s t r . name .mod,

sep=”” )
############################################################
dframe<−read . table ( fname , header=TRUE, sep=” , ” , s t r i ng sAsFac to r s=FALSE)

names( dframe )<−c ( ”Date” , ”Time” , ”Open” , ”High” , ”Low” , ”Close ” ,
” IncVol ” , ”Volume” )

aux . tStamps<−paste ( dframe$Date , dframe$Time , sep=” ” )
aux . tStamps . POSIXct<−as . POSIXct ( aux . tStamps )
dframe$aux . tStamps . POSIXct<−aux . tStamps . POSIXct

dframe$time . start<−as . POSIXct ( ”2011−03−01 09 : 30 : 00 ” )
dframe$time . end<−as . POSIXct ( ”2011−05−31 16 : 00 : 00 ” )
dframe .mod<−subset ( dframe , subset=

( dframe$aux . tStamps . POSIXct>=dframe$time . start ) &
( dframe$aux . tStamps . POSIXct<=dframe$time . end ) )
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#de l e t e a u x i l i a r y columns
dframe .mod$aux . tStamps . POSIXct<−NULL
dframe .mod$time . start<−NULL
dframe .mod$time . end<−NULL
#wr i t e data
write . table ( dframe .mod, f i l e=fname .mod , quote=FALSE,

row .names=FALSE, col .names=TRUE, sep=” , ” )

A.1.3 Aggregation

Script in R statistical programming language to aggregate 1 min intraday trading data to 5 min data using timeSeries
package [155].

#process nasdaq quo tes downloaded through d tn i q
l ibrary ( ” t imeSe r i e s ” )
rm( l i s t = l s ( ) )
source ( ”J :\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
i n s t r<−”MSFTTS.mod . 1 . 1 min”
fname . ext<−” csv ”
i n s t r . name<−paste ( i n s t r , ” . ” , fname . ext , sep=”” )
i n s t r . data . dir<−”J :\\ dtniq \\ dtniq . prog \\data . r . proc . msft \\”
fname<−paste ( i n s t r . data . dir , i n s t r . name , sep=”” )
############################################################
## output
i n s t r .mod . name<−”MSFTTS.mod . 1 . 5 min”
i n s t r .mod . name . part<−paste ( i n s t r .mod . name , ” . ” , fname . ext , sep=”” )
fname .mod . name . f u l l<−paste ( i n s t r . data . dir , i n s t r .mod . name . part ,

sep=”” )
############################################################
dframe<−read . table ( fname , header=TRUE, sep=” , ” , s t r i ng sAsFac to r s=FALSE)
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names( dframe )<−c ( ”Date” , ”Time” , ”Open” , ”High” , ”Low” , ”Close ” ,
” IncVol ” , ”Volume” )

aux . tStamps<−paste ( dframe$Date , dframe$Time , sep=” ” )
t S e r i e s<−t imeSe r i e s (data=dframe , charvec=aux . tStamps )
#aggrega t e c a l c u l a t i n g d a i l y v o l a t i l i t y
#aggrega t i on parameters
aggr . start<−time ( t S e r i e s ) [ 1 ]
aggr . l en<−length ( time ( t S e r i e s ) )
aggr . end<−time ( t S e r i e s ) [ aggr . l en ] + 24∗3600
aggr .by<−timeSequence ( from=aggr . start , to=aggr . end , by = 5∗60)
t S e r i e s . aggr<−aggregate ( t S e r i e s ,

from=aggr . start ,
to=aggr . end ,
by=aggr .by ,
x . start )

t S e r i e s . aggr . as . dframe<−as . data . frame ( t S e r i e s . aggr )
DateTime<−time ( t S e r i e s . aggr )
DateTime . chr<−as . character (DateTime )
DateTime . chr . sp l i t<−s tr sp l i t (DateTime . chr , ” ” )
DateTime . chr . sp l i t . u n l i s t e d<−unlist (DateTime . chr . sp l i t )
DateTime . chr . sp l i t . u n l i s t e d .matrix<−matrix (DateTime . chr . sp l i t . un l i s t ed ,

ncol=2,byrow=T)
Dates<−DateTime . chr . sp l i t . u n l i s t e d .matrix [ , 1 ]
Times<−DateTime . chr . sp l i t . u n l i s t e d .matrix [ , 2 ]
t S e r i e s . dframe<−data . frame (Date=Dates , Time=Times ,

Open=t S e r i e s . aggr . as . dframe$Open ,
High=t S e r i e s . aggr . as . dframe$High ,
Low=tS e r i e s . aggr . as . dframe$Low ,
Close=t S e r i e s . aggr . as . dframe$Close )

#wr i t e data
write . table ( t S e r i e s . dframe , f i l e=fname .mod . name . f u l l , quote=FALSE,
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row .names=FALSE, col .names=TRUE, sep=” , ” )

A.1.4 Realized volatility calculation

Script in R statistical programming language to calculate realized volatility from 5 min intraday data using timeSeries
package [155].

#process nasdaq quo tes downloaded through d tn i q
#add i t i o n a l f unc t i on s
l ibrary ( ” t imeSe r i e s ” )
rm( l i s t = l s ( ) )
source ( ”J :\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
i n s t r<−”MSFTTS.mod . 1 . 5 min”
fname . ext<−” csv ”
i n s t r . name<−paste ( i n s t r , ” . ” , fname . ext , sep=”” )
i n s t r . data . dir<−”J :\\ dtniq \\ dtniq . prog \\data . r . proc . msft \\”
fname<−paste ( i n s t r . data . dir , i n s t r . name , sep=”” )
############################################################
## output
i n s t r .mod . name<−”MSFTTS.mod . 1 . 5 min . i n t r a v o l ”
i n s t r .mod . name . part<−paste ( i n s t r .mod . name , ” . ” , fname . ext , sep=”” )
fname .mod . name . f u l l<−paste ( i n s t r . data . dir , i n s t r .mod . name . part ,

sep=”” )
############################################################
dframe<−read . table ( fname , header=TRUE, sep=” , ” , s t r i ng sAsFac to r s=FALSE)

names( dframe )<−c ( ”Date” , ”Time” , ”Open” , ”High” , ”Low” , ”Close ” )
aux . tStamps<−paste ( dframe$Date , dframe$Time , sep=” ” )

t S e r i e s<−t imeSe r i e s (data=dframe , charvec=aux . tStamps )
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data . p r i c e s<−cbind (Open=dframe$Open ,
High=dframe$High ,Low=dframe$Low , Close=dframe$Close )

t S e r i e s . p r i c e s<−t imeSe r i e s (data . p r i c e s , charvec=aux . tStamps )
t S e r i e s . p r i c e s . r e tu rn s<−r e tu rn s ( t S e r i e s . p r i c e s , method=” cont inuous ” )
#aggrega t e c a l c u l a t i n g d a i l y v o l a t i l i t y
#aggrega t i on parameters
aggr . start<−time ( t S e r i e s . p r i c e s . r e tu rn s ) [ 1 ] + 6∗3600 + 30∗60
aggr . l en<−length ( time ( t S e r i e s . p r i c e s . r e tu rn s ) )
aggr . end<−time ( t S e r i e s . p r i c e s . r e tu rn s ) [ aggr . l en ] + 24∗3600
aggr .by<−timeSequence ( from=aggr . start , to=aggr . end , by = ”day” )
t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y<−aggregate ( t S e r i e s . p r i c e s . re turns ,

from=aggr . start ,
to=aggr . end ,
by=aggr .by ,
sq . r e t )

t S e r i e s . p r i c e s . as . dframe<−as . data . frame ( t S e r i e s . p r i c e s )
t S e r i e s . p r i c e s . r e tu rn s . as . dframe<−as . data . frame ( t S e r i e s . p r i c e s . r e tu rn s )
t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe<−as . data . frame ( t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y )
names( t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe )<−c ( ”SdOpen” , ”SdHigh” , ”SdLow” , ”SdClose ” )
DateTime<−time ( t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y )
DateTime . chr<−as . character (DateTime )
DateTime . chr . sp l i t<−s tr sp l i t (DateTime . chr , ” ” )
DateTime . chr . sp l i t . u n l i s t e d<−unlist (DateTime . chr . sp l i t )
DateTime . chr . sp l i t . u n l i s t e d .matrix<−matrix (DateTime . chr . sp l i t . un l i s t ed , ncol=2,byrow=T)
Dates<−DateTime . chr . sp l i t . u n l i s t e d .matrix [ , 1 ]
Times<−DateTime . chr . sp l i t . u n l i s t e d .matrix [ , 2 ]
d e l t a t<−5 # minutes
de l t a t scale<−24∗60 #minutes in a day
#s c a l i n g f a c t o r
s c f a c t o r<−sqrt ( (24∗60)/(6∗60+30))
#sc f a c t o r<−1
t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe<−s c f a c t o r∗ t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe
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v o l a t i l i t y . dframe<−data . frame (Date=Dates , Time=Times ,
SdOpen=t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe$SdOpen ,
SdHigh=t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe$SdHigh ,
SdLow=tS e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe$SdLow ,
SdClose=t S e r i e s . p r i c e s . r e tu rn s . day . v o l a t i l i t y . as . dframe$SdClose )

write . table ( v o l a t i l i t y . dframe , f i l e=fname .mod . name . f u l l , quote=FALSE,
row .names=FALSE, col .names=TRUE, sep=” , ” )

A.1.5 End of day data extraction for SV model calibration

Script in R statistical programming language to extract end of day trainding data from 1 min data.

#process nasdaq quo tes downloaded through d tn i q
#add i t i o n a l f unc t i on s
rm( l i s t = l s ( ) )
source ( ”J :\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
i n s t r<−”MSFTTS.mod . 1 . 1 min”
fname . ext<−” csv ”
i n s t r . name<−paste ( i n s t r , ” . ” , fname . ext , sep=”” )
i n s t r . data . dir<−”J :\\ dtniq \\ dtniq . prog \\data . r . proc . msft \\”
fname<−paste ( i n s t r . data . dir , i n s t r . name , sep=”” )
############################################################
i n s t r .mod . end . o f . day<−”MSFTTS.mod . 1 . end”
i n s t r . name .mod . end . o f . day<−paste ( i n s t r .mod . end . o f . day , ” . ” , fname . ext , sep=”” )
fname .mod . end . o f . day<−paste ( i n s t r . data . dir , i n s t r . name .mod . end . o f . day ,

sep=”” )
############################################################
dframe<−read . table ( fname , header=TRUE, sep=” , ” , s t r i ng sAsFac to r s=FALSE)

names( dframe )<−c ( ”Date” , ”Time” , ”Open” , ”High” , ”Low” , ”Close ” ,
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” IncVol ” , ”Volume” )
aux . tStamps<−paste ( aux . date . chr , dframe$Time , sep=” ” )
aux . tStamps . POSIXct<−as . POSIXct ( aux . tStamps )
dframe$aux . tStamps . POSIXct<−aux . tStamps . POSIXct
dframe$time . end<−as . POSIXct (paste ( aux . date . chr , ” 16 : 00 : 00 ” ) )
dframe .mod . end . o f . day<−subset ( dframe , subset=(dframe$aux . tStamps . POSIXct==dframe$time . end ) )
#de l e t e a u x i l i a r y columns
dframe .mod . end . o f . day$aux . tStamps . POSIXct<−NULL
dframe .mod . end . o f . day$time . end<−NULL
write . table ( dframe .mod . end . o f . day , f i l e=fname .mod . end . o f . day , quote=FALSE,

row .names=FALSE, col .names=TRUE, sep=” , ” )

A.1.6 Data analysis and hypothesis testing

Script in R statistical programming language to perform the following tasks:

1. Convert time series of prices to time series of returns and write it to file in format suitable for JAGS,

2. Calculate basic statistics including skewness and kurtosis,

3. Perform Shapiro–Wilk and Jarque–Bera normality tests,

4. Conduct Box–Pierce and Ljung–Box portmanteau test for serial correlation,

#prepare j a g s f i l e s
rm( l i s t = l s ( a l l = TRUE))
source ( ”E:\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
source ( ”E:\\ brune l \\R\\ r . funcs \\model . funcs .R” )
source ( ”E:\\ brune l \\R\\ r . funcs \\Box . t e s t . wrap .R” )
l ibrary ( ” fBa s i c s ” )
data . in . dir<−”E:\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\ round .2\\mod. 1 . 2\\ data . in \\”
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data . stat . dir<−paste ( ”E:\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\” ,
”round .2\\mod. 1 . 2\\ data . s t a t \\” , sep=”” )

data . s r c . f i l e<−”MSFTTS.mod . 1 . end . csv ”
data . f i l e<−paste (data . in . dir , data . s r c . f i l e , sep=”” )
p r i c e . data . frame<−read . csv ( f i l e=data . f i l e , header=TRUE)
p r i c e . data . frame<−ad jus t . volume ( p r i c e . data . frame )

r e tu rn s . l i s t<−get . log . return . l i s t ( p r i c e . data . frame )

log . r e tu rn s<−r e tu rn s . l i s t $log . return . frame$LogReturn
log . volume<−r e tu rn s . l i s t $log . return . frame$LogVolume
log . i n c vo l<−r e tu rn s . l i s t $log . return . frame$LogIncVol
log . volume . 0<−r e tu rn s . l i s t $LogVolume0
log . i n c vo l . 0<−r e tu rn s . l i s t $LogIncVol0
volume<−r e tu rn s . l i s t $log . return . frame$Volume
volume0<−r e tu rn s . l i s t $Volume0
i n cvo l<−r e tu rn s . l i s t $log . return . frame$ IncVol
i n cvo l 0<−r e tu rn s . l i s t $ IncVol0

#wr i t e data f o r j a g s
data . stat . f i l e<−paste (data . stat . dir , data . s r c . f i l e , ” . ” , ”data . s t a t . 1 ” , ” . ” , ”dat” , sep=”” )
parse . opts<−c ( ” quoteExpress ions ” )
#data f o r j a g s
n<−length ( log . r e tu rn s )
l o g r e t<−log . r e tu rn s
l o g r e t<−( l og r e t−mean( l o g r e t ) )/sd ( l o g r e t )
vo l<−volume
incv<−i n c vo l
vo l 0<−volume0
incv 0<−i n cvo l 0
l o gvo l<−log . volume
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l o g i n cv<−log . i n c vo l
l o gvo l 0<−log . volume . 0
l og in cv 0<−log . i n c vo l . 0
f l<−f i l e (data . stat . f i l e , ”w” )
sink ( f l )
b a s i c S t a t s ( l o g r e t )
shap i roTest ( l o g r e t )
jarqueberaTest ( l o g r e t )
box . t e s t . dframe<−Box . t e s t . wrap (x=log r e t , l ag =10, type=”Box−Pie r ce ” )
print (box . t e s t . dframe , d i g i t s =5)
box . t e s t . dframe<−Box . t e s t . wrap (x=log r e t , l ag =10, type=”Ljung−Box” )
print (box . t e s t . dframe , d i g i t s =5)
sink ( f i l e=NULL)
close ( f l )

A.2 JAGS models’ description

A.2.1 Classic SV model

model {
#l i k e l i h o o d : j o i n t d i s t r i b u t i o n o f ys
for ( t in 1 : n )
{

yis igma2 [ t ]<−1/exp( theta [ t ] )
l o g r e t [ t ] ˜ dnorm(0 , y is igma2 [ t ] )

}

# pr io r d i s t r i b u t i o n s
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mu ˜ dnorm( 0 , 1 . 0E−4)
i tau2 ˜ dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
beta <− exp(mu/2)
phi ˜ dbeta ( 1 , 1 )
tau <− sqrt (1/ i t au2 )
tau2 <− 1/ i t au2
theta0 ˜ dnorm(mu, i tau2 )
thmean [ 1 ] <− mu + phi∗ ( theta0−mu)
theta [ 1 ] ˜ dnorm( thmean [ 1 ] , i t au2 )
for ( t in 2 : n )
{

thmean [ t ] <− mu + phi∗ ( theta [ t−1]−mu)
theta [ t ] ˜ dnorm( thmean [ t ] , i t au2 )

}
}

A.2.2 SV model with innovations having Student distribution

model {
#l i k e l i h o o d : j o i n t d i s t r i b u t i o n o f ys
for ( t in 1 : n )
{

yis igma2 [ t ]<−1/exp( theta [ t ] )
l o g r e t [ t ] ˜ dt (0 , y is igma2 [ t ] , 3 )

}

# pr io r d i s t r i b u t i o n s

mu ˜ dnorm( 0 , 1 . 0E−4)
i tau2 ˜ dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
beta <− exp(mu/2)
phi ˜ dbeta ( 1 , 1 )
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tau <− sqrt (1/ i t au2 )
tau2 <− 1/ i t au2
theta0 ˜ dnorm(mu, i tau2 )
thmean [ 1 ] <− mu + phi∗ ( theta0−mu)
theta [ 1 ] ˜ dnorm( thmean [ 1 ] , i t au2 )
for ( t in 2 : n )
{

thmean [ t ] <− mu + phi∗ ( theta [ t−1]−mu)
theta [ t ] ˜ dnorm( thmean [ t ] , i t au2 )

}
}

A.2.3 SV model with Gaussian innovations augmented with lag one trading volume

model {
#l i k e l i h o o d : j o i n t d i s t r i b u t i o n o f ys
for ( t in 1 : n )
{

yis igma2 [ t ]<−1/exp( theta [ t ] )
l o g r e t [ t ] ˜ dnorm(0 , y is igma2 [ t ] )

}

# pr io r d i s t r i b u t i o n s

mu ˜ dnorm( 0 , 1 . 0E−4)
i tau2 ˜ dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
beta <− exp(mu/2)
phi ˜ dbeta ( 1 , 1 )
p s i ˜ dnorm( 0 , 1 . 0E−4)
tau <− sqrt (1/ i t au2 )
tau2 <− 1/ i t au2
theta0 ˜ dnorm(mu, i tau2 )
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thmean [ 1 ] <− mu + phi∗ ( theta0−mu) + ps i∗ l o g vo l 0
theta [ 1 ] ˜ dnorm( thmean [ 1 ] , i t au2 )
for ( t in 2 : n )
{

thmean [ t ] <− mu + phi∗ ( theta [ t−1]−mu) + ps i∗ l o gvo l [ t−1]
theta [ t ] ˜ dnorm( thmean [ t ] , i t au2 )

}

}

A.2.4 SV model with t-innovations augmented with lag one trading volume

model {
#l i k e l i h o o d : j o i n t d i s t r i b u t i o n o f ys
for ( t in 1 : n )
{

yis igma2 [ t ]<−1/exp( theta [ t ] )
l o g r e t [ t ] ˜ dt (0 , y is igma2 [ t ] , 3 )

}

# pr io r d i s t r i b u t i o n s

mu ˜ dnorm( 0 , 1 . 0E−4)
i tau2 ˜ dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
beta <− exp(mu/2)
phi ˜ dbeta ( 1 , 1 )
p s i ˜ dnorm( 0 , 1 . 0E−4)
tau <− sqrt (1/ i t au2 )
tau2 <− 1/ i t au2
theta0 ˜ dnorm(mu, i tau2 )
thmean [ 1 ] <− mu + phi∗ ( theta0−mu) + ps i∗ l o g vo l 0
theta [ 1 ] ˜ dnorm( thmean [ 1 ] , i t au2 )
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for ( t in 2 : n )
{

thmean [ t ] <− mu + phi∗ ( theta [ t−1]−mu) + ps i∗ l o gvo l [ t−1]
theta [ t ] ˜ dnorm( thmean [ t ] , i t au2 )

}

}

A.2.5 SV model with Gaussian innovations augmented with lag two trading volume

model {
#l i k e l i h o o d : j o i n t d i s t r i b u t i o n o f ys
for ( t in 2 : n )
{

yis igma2 [ t ]<−1/exp( theta [ t ] )
l o g r e t [ t ] ˜ dnorm(0 , y is igma2 [ t ] )

}

# pr io r d i s t r i b u t i o n s

mu ˜ dnorm( 0 , 1 . 0E−4)
i tau2 ˜ dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
beta <− exp(mu/2)
phi ˜ dbeta ( 1 , 1 )
p s i ˜ dnorm( 0 , 1 . 0E−4)
tau <− sqrt (1/ i t au2 )
tau2 <− 1/ i t au2
theta0 ˜ dnorm(mu, i tau2 )
thmean [ 2 ] <− mu + phi∗ ( theta0−mu) + ps i∗ l o g vo l 0
theta [ 2 ] ˜ dnorm( thmean [ 2 ] , i t au2 )
for ( t in 3 : n )
{
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thmean [ t ] <− mu + phi∗ ( theta [ t−1]−mu) + ps i∗ l o gvo l [ t−2]
theta [ t ] ˜ dnorm( thmean [ t ] , i t au2 )

}

}

A.2.6 SV model with t-innovations augmented with lag two trading volume

model {
#l i k e l i h o o d : j o i n t d i s t r i b u t i o n o f ys
for ( t in 2 : n )
{

yis igma2 [ t ]<−1/exp( theta [ t ] )
l o g r e t [ t ] ˜ dt (0 , y is igma2 [ t ] , 3 )

}

# pr io r d i s t r i b u t i o n s

mu ˜ dnorm( 0 , 1 . 0E−4)
i tau2 ˜ dgamma( 0 . 0 0 1 , 0 . 0 0 1 )
beta <− exp(mu/2)
phi ˜ dbeta ( 1 , 1 )
p s i ˜ dnorm( 0 , 1 . 0E−4)
tau <− sqrt (1/ i t au2 )
tau2 <− 1/ i t au2
theta0 ˜ dnorm(mu, i tau2 )
thmean [ 2 ] <− mu + phi∗ ( theta0−mu) + ps i∗ l o g vo l 0
theta [ 2 ] ˜ dnorm( thmean [ 2 ] , i t au2 )
for ( t in 3 : n )
{

thmean [ t ] <− mu + phi∗ ( theta [ t−1]−mu) + ps i∗ l o gvo l [ t−2]
theta [ t ] ˜ dnorm( thmean [ t ] , i t au2 )
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}

}

A.3 Data postprocessing

A.3.1 Parameter estimation for classic SV model

Script in R statistical programming language to perform the following tasks:

1. Load Markov chain data simulated in JAGS,

2. Obtain parameter estimates of SV model from chain data,

3. Calculate highest posterior density intervals,

4. Plot chains’ trace plots and autocorrelation function,

5. Perform convergence diagnostics using Geweke, Gelman and Rubin, Heidelberger and Welch tests.

Script uses function from R packages CODA [118] and TSA [36].

l ibrary ( ”coda” )
l ibrary ( ”TSA” )
#################################################
# read data from chain t e x t f i l e s
#################################################
#paths
########################################
chain . data . dir<−paste ( ”J :\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\ round .2\\ ” ,

”mod . 1 . 2\\ j a g s . l i nux . batches \\batch .1\\ coda” , sep=”” )
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coda . out . dir<−paste ( ”J :\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\ round .2\\ ” ,
”mod . 1 . 2\\ j a g s . l i nux . batches \\batch .1\\ conv . a n a l y s i s . 1 . params . out \\” , sep=”” )

########################
#read j a g s output in t o mcmc o b j e c t
##########################
chain . start<−1
chain . end<−1000000
chain . th in<−1
setwd ( chain . data . dir )
mcmc . obj . a l l<−read . openbugs ( start=chain . start , end=chain . end , th in=chain . th in )
window . chain . start<−800000
window . chain . end<−1000000
window . chain . th in<−1
mcmc . obj<−window(mcmc . obj . al l , start=window . chain . start , end=window . chain . end ,

th in=window . chain . th in )
#################################################
#TSA autocorr s
#################################################
autocor r . f i l e<−paste ( coda . out . dir , ” autocor r . pdf ” , sep=”” )
pdf ( autocor r . f i l e )
autocor r . plot (mcmc . obj , auto . layout=FALSE)
dev . of f ( )
#################################################
#Raftery and Lewis d i a gno s t i c s
#################################################
r a f t e r y . l ew i s . diag . f i l e<−paste ( coda . out . dir , ” r a f t e r y . l ew i s . d iag . dat” , sep=”” )
sink ( f i l e=ra f t e r y . l ew i s . diag . f i l e )
r a f t e r y . diag (mcmc . obj ,q=0.5)
sink ( )
##########################################
# coda summary
####################
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summary . f i l e<−paste ( coda . out . dir , ” coda . summary . dat” , sep=”” )
sink ( f i l e=summary . f i l e )
summary . obj<−summary(mcmc . obj )
print (summary . obj )
sink ( )
summary . obj . f i l e<−paste ( coda . out . dir , ” coda . summary . obj . dat” , sep=”” )
dump( ”summary . obj ” , f i l e=summary . obj . f i l e )
##########################################
##########################################
# Highes t Pos t e r i o r Densi ty i n t e r v a l s
####################
hpd . f i l e<−paste ( coda . out . dir , ”hpd . dat” , sep=”” )
sink ( f i l e=hpd . f i l e )
HPDinterval (mcmc . obj )
sink ( )
##########################################
#trace p l o t s
##########################################
plot .mcmc . f i l e<−paste ( coda . out . dir , ” p l o t .mcmc .bmp” , sep=”” )
bmp(plot .mcmc . f i l e )
plot (mcmc . obj , density=FALSE, auto . layout=FALSE)
dev . of f ( )
#################################################
#geweke d i a gno s t i c s
#################################################
geweke . diag . f i l e<−paste ( coda . out . dir , ”geweke . d iag . dat” , sep=”” )
sink ( f i l e=geweke . diag . f i l e )
geweke . diag (mcmc . obj )
sink ( )
geweke . plot . diag . f i l e<−paste ( coda . out . dir , ”geweke . p l o t . d iag . pdf ” , sep=”” )
pdf ( geweke . plot . diag . f i l e )
geweke . plot (mcmc . obj , auto . layout=FALSE)
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dev . of f ( )
############################################
#################################################
#gelman d i a gno s t i c s
#################################################
gelman . diag . f i l e<−paste ( coda . out . dir , ”gelman . diag . dat” , sep=”” )
sink ( f i l e=gelman . diag . f i l e )
gelman . diag (mcmc . obj )
sink ( )
gelman . plot . diag . f i l e<−paste ( coda . out . dir , ”gelman . p l o t . d iag . pdf ” , sep=”” )
pdf ( gelman . plot . diag . f i l e )
gelman . plot (mcmc . obj , auto . layout=FALSE)
dev . of f ( )
############################################
#################################################
#Heide l b e r g e r and Welch ’ s convergence d i a gno s t i c
#################################################
he i d e l . diag . f i l e<−paste ( coda . out . dir , ” h e i d e l . d iag . dat” , sep=”” )
sink ( f i l e=he i d e l . diag . f i l e )
h e i d e l . diag (mcmc . obj )
sink ( )
############################################

A.3.2 Forecasting performance analysis for classic SV model

rm( l i s t = l s ( ) )
source ( ”J :\\ brune l \\R\\ r . funcs \\ r . h f t . funcs .R” )
source ( ”J :\\ brune l \\R\\ r . funcs \\model . funcs .R” )
data . in . dir<−”J :\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\ round .2\\mod. 1 . 2\\ data . in \\”
v o l a t i l i t y . s r c . f i l e<−”MSFTTS.mod . 1 . 5 min . i n t r a v o l . csv ”
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chain . data . dir<−paste ( ”J :\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\ round .2\\ ” ,
”mod . 1 . 2\\ j a g s . l i nux . batches \\batch .1\\ coda” , sep=”” )

coda . out . dir<−paste ( ”J :\\ brune l \\ brune l . s c i e n c e \\ sv . with . rv \\ round .2\\ ” ,
”mod . 1 . 2\\ j a g s . l i nux . batches \\batch .1\\ conv . a n a l y s i s . 1\\ ” , sep=”” )

#############
#fo r e c a s t e va l ua t i on f i l e
#####################
f o r e c a s t . eval . f i l e<−paste ( coda . out . dir , ” f o r e c a s t . eva l . dat” , sep=”” )
f o r e c a s t .measures . f i l e<−paste ( coda . out . dir , ” f o r e c a s t . eva l . measures . dat” , sep=”” )
f o r e c a s t . e r r o r s . f i l e<−paste ( coda . out . dir , ” f o r e c a s t . eva l . e r r o r s . csv ” , sep=”” )
##########################################
#read r e a l i z e d v o l a t i l i t y f i l e
v o l a t i l i t y . f i l e<−paste (data . in . dir , v o l a t i l i t y . s r c . f i l e , sep=”” )
summary . obj . f i l e<−paste ( coda . out . dir , ” coda . summary . obj . dat” , sep=”” )
source ( f i l e=summary . obj . f i l e )
#ex t r a c t model parameters
mu<−summary . obj$ s t a t i s t i c s [ ”mu” , ”Mean” ]
beta<−summary . obj$ s t a t i s t i c s [ ” beta ” , ”Mean” ]
phi<−summary . obj$ s t a t i s t i c s [ ” phi ” , ”Mean” ]
tau2<−summary . obj$ s t a t i s t i c s [ ” tau2” , ”Mean” ]
i tau2<−summary . obj$ s t a t i s t i c s [ ” i tau2 ” , ”Mean” ]
#read f i l e wi th d a i l y annua l i zed v o l a t i l i t y c a l c u l a t e d from
# 5−min i n t e r v a l s
i n t v o l . dframe<−read . table ( v o l a t i l i t y . f i l e , header=TRUE, sep=” , ” , s t r i ng sAsFac to r s=FALSE)
i n t v o l<−i n t v o l . dframe$SdClose
mean . i n t v o l<−mean( i n t v o l )
s c a l i n g<−exp ( 0 . 5∗mu)/mean . i n t v o l
i n t v o l<−s c a l i n g∗ i n t v o l
log . i n t v o l 2<−log ( i n t v o l∗ i n t v o l )
i n t v o l . l en<−length ( i n t v o l )
i n t v o l . rv . to . compare<−i n t v o l [ 2 : i n t v o l . l en ]
i n t v o l . from .mod . to . compare<−rep ( 0 , ( i n t v o l . len −1))
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log . sigma . 2<−rep ( 0 , ( i n t v o l . len −1))
n . r e p l<−1
i n t v o l . from .mod . to . compare .mat<−matrix ( rep (0 , n . r e p l∗ ( i n t v o l . len −1)) ,ncol=n . r ep l )
for ( rep in 1 : n . r e p l )
{
log . vo l2 . s toch . cmpn<−rep (0 , i n t v o l . len −1)
for ( i in 1 : ( i n t v o l . len −1))
{

log . sigma . 2 [ i ]<−mu+phi∗ ( log . i n t v o l 2 [ i ]−mu)+log . vo l2 . s toch . cmpn [ i ]
}
i n t v o l . from .mod . to . compare .mat [ , rep ]<−exp ( 0 . 5∗log . sigma . 2 )
}
i n t v o l . from .mod . to . compare<−apply ( i n t v o l . from .mod . to . compare .mat, 1 ,mean)
Mod RV<−i n t v o l . from .mod . to . compare−i n t v o l . rv . to . compare
ME<−mean(Mod RV)
ME. s e r i e s<−Mod RV
MSE<−mean(Mod RVˆ2)
MSE. s e r i e s<−Mod RVˆ2
RMSE<−sqrt (MSE)
RMSE. s e r i e s<−abs (Mod RV)
MAE<−mean(abs (Mod RV))
MAE. s e r i e s<−abs (Mod RV)
MAPE<−mean(abs (Mod RV)/ i n t v o l . rv . to . compare )
MAPE. s e r i e s<−abs (Mod RV)/ i n t v o l . rv . to . compare
f o r e c a s t .measures . l s t<−l i s t (ME=ME,MSE=MSE,RMSE=RMSE,MAE=MAE,MAPE=MAPE)
dump( ” f o r e c a s t . measures . l s t ” , f i l e=f o r e c a s t .measures . f i l e )

f o r e c a s t . e r r o r s . dframe<−data . frame (ME. s e r i e s=ME. s e r i e s ,MSE. s e r i e s=MSE. s e r i e s ,
RMSE. s e r i e s=RMSE. s e r i e s ,MAE. s e r i e s=MAE. s e r i e s ,
MAPE. s e r i e s=MAPE. s e r i e s )

write . table ( f o r e c a s t . e r r o r s . dframe , f i l e=f o r e c a s t . e r r o r s . f i l e , quote=FALSE,
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row .names=FALSE, col .names=TRUE)
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