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We study the eigenvalue distribution of dilut&x N random matrice$d that in

the pure(undiluted case describe the Hopfield model. We prove that for the fixed
dilution parameten the normalized counting functiofNCF) of Hy converges as
N—o to a uniqueo,(\). We find the moments of this distribution explicitly,
analyze the H correction, and study the asymptotic propertiesrgf\) for large

I\|. We prove thair,(\) converges as a to the Wigner semicircle distribution
(SCD). We show that the SCD is the limit of the NCF of other ensembles of dilute
random matrices. This could be regarded as evidence of stability of the SCD to
dilution, or more generally, to random modulations of large random matrices.
© 1997 American Institute of Physids$50022-24887)03106-X]

I. INTRODUCTION

Large random Il X N) matrices are currently of considerable interest, mainly because of their
applications in a number of different branches of theoretical physics. By having all entries of the
same order, they represent an approximation to real systems and lead to exactly solvable models
in the limit N—oo. Dilute random matrices, with an average mfnonzero elements per row,
frequently provide an improved physical description of a real system and are often tractable in the
limit of large dimension.

In this paper we study the eigenvalue distribution of dilute random matrices, which in the
pure, undiluted case can be written as

1 m
ANCY)= g 2 §400€4Y). Xy=1N, (1.1

where é#(x), u=1,m, x=1,N are real independent identically distributéd.d.) random vari-
ables with zero average and variance

The matrixAy(Xx,y) was used in the statistical mechanics of disordered systems, where it was
suggested as an interaction matrix of a simplified mean field model of a random spin System.
Later it was reintroduced in the neural network theory of autoassociative mémdrgre the
randomN-dimensional vectorg”(x) = £“(x)/N'? are interpreted as patterns to be memorized by
the system and where the model is known as the Hopfield model.

This new field of applications created by the neural network theory has motivated a number of
studies of matrices lik¢l) and their modificationgsee, e.g., the monographs, Refs. 3-5, and
references therejn Of special interest are randomly diluted versions(bfl), which can be

defined as
m
ANOGY) = 2 E400£4(Y)dn(pix,Y), (1.2
o=
0022-2488/97/38(6)/3300/21/$10.00
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wheredy are independent random variablefso independent frofé*(x)}) and take the nonzero
values with probabilitypy vanishing asN— .,

Such ensembles are well known in statistical mechanics and a number of results have been
obtained for disordered spin systems with2) as the matrix of interactions in the Hamiltonian;
see, e.g., Ref. 6. Several important particular case€l. @ have also been studied in neural
network theory ™1

However, the spectral characteristics(df2) are poorly understood. Even the simplest quan-
tity in spectral theory of random matrices, the normalized eigenvalue counting furiblioR),
has not been studied for the dilute ensemiile).

For anN XN symmetric matrixAy, the NCF can be defined as

oM AN =#HANSAINTY, 1.3

where\() are the eigenvalues a%y. The limit N—o of the NCF, if it exists, is called the
integrated density of statétDS) of matrix ensembld Ay} .

The IDS of ensemblél.1) was first studied by Marchenko and Pastutt follows from the
results of Ref. 11 that the NCF & (1) with i.i.d. £€“(x) having zero mean and varianeé,
converges in probability a, m—o, m/N—c>0 to a nonrandom functiom(\) of the form

4cv?— (x— 1)p2)21Y2
ff<k>=[1—c]+6<x)+JA [ov”— (= (e+ Loy ],

o 270X dx, (1.4

where[ x], =max(0x). In the case o= N the ensemblél.1) represents the square of the more
widely known Wigner ensemble of random symmetric matricee, e.g., Refs. 12, 13

1
Wh(X,Y)=—=WwW(X,y), X,y=1,N, 1.
n(X%,Y) N (X.y), Xy (1.9
with independentapart from a symmetry conditigpdentically distributed random variables with
properties
Ew(x,y)=0, E[w(xy)]*=u?. (1.6)

Thus, the results of Ref. 11 can be regarded as a generalization of the famous sefoicircle
Wignen law:**

lim o(N,Wy)=0(\), (1.7

N—o®
where

—12 4u?—\?, |\|=2u,
27U ’ (1.8

0, IN|>2u.

T N)=

Spectral properties of the dilute Wigner ensem\f&l@ with entries

Wh(X,Y) =w(x,y)dy(Xy),  dn(x,y)=dy(y.X), 1.9

where dy(x,y) X<y are independent random variables taking nonzero values with vanishing
probability asN— o, are well understoot?8In particular, it follows from the results of Refs. 17
and 18, obtained using the replica triéland supersymmetric methotfsthat if w(x,y) = =1 with

equal probability and
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1/\J/p, with probability p/N,

dn(X,y) = , . 1.1
n(X.y) 0, with probability 1-p/N, (1.19

then

lim E{c(\;Wy)}=0p(\), (1.11)

N—o
such that

lim op(N)=o0sdN). (1.12

p—oo

with os{\) given by(1.8) with u?=1. In addition, both the §/ correction to the density of states
p()\) and an asymptotic estimate of the density of states for lavigeere found. In Ref. 16 the

weak convergence d&{o(\; WN)} to os{\) is proved rigorously for the ensemh(.9), (1.10
with i.i.d. w(x,y) satisfying(1.6) and having the third moment finite.
Starting from the square of the diluted matfix9), we arrive at the ensembi&.2) with

dn(u,x,y) = dy(x)dy(y). (1.13

The IDS of this ensemble can be studied by the replica trick as in Ref. 17 or by the resolvent
approach used in Ref. 16. This ensemble is discussed further in Sec. IV. However, more interest-
ing for applications in dilution phenomena is the ensemble

Hu(x,y) = 2 X0 EM(Y)an(xy),  an(xy)=ay(y,X), (1.14
u=1

which cannot be related to the square of the Wigner ensemble and does not admit the direct use of
the methods in Refs. 16—18.

In the present paper we study the NG@E\;Hy) of ensemblg1.14) with jointly independent
{&*(x)} and {ayn(x,y)}. We refer to this ensemble as the dilute MRMarchenko—Pastur—
Hopfield) ensemble. We assuni(x) has zero average and finite variance and define the
dilution matrix ay(x,y), in analogy with(1.10), as

1 1, with probability aN™¢,
Y= 5 [0, with probabilty 1-aN~, (119

with somee, v, such thate=0 and G<v<1. We show that if

at+2v=2, isy<i, (1.16
and

an(x,x)=0, x=1,N, (1.1
then o(\;Hy) converges in probability to the semicircle distributich8) (a) in the limit of
infinite m and N when 3i<v<1, and(b) in the limit of infinite m, N and infinitea when v

=1/2.
We prove these statements by studying the moments
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1 N

MY ka do(\HN) = > (HZ)(x,X), (1.18

x=1

in the asymptotic limit of largen andN (anda for »=3). Using the independence of matrices
an(x,y) andX , &“(x)&*(y), we compute the mathematical expectatiorwtfjf(‘). To do this, we
combine Wigner's original approach to the matricag(x,y) with a diagrammatic technique
developed for dealing with matrices with the structureXof & (x) & (y).

Our results show that the dilutiody(w;x,y) =ay(x,y) of the MPH ensemblél.2) makes
those properties of matricé$.1) that differ from the Wigner matriced..5) irrelevant. We inves-
tigate the role of the dilution parametgiin this property of the MPH ensemble. The technique we
use allows us to study the NCF ¢f.14) for finite a. We prove that for each fixed>1 there
existsa,(\), which is the weak limit ofE{a(\;Hy\)} whenm, N—~. We study the support,
asymptotics for largé\| and 14 correction ofo,(\) and compare the results with those derived
in Ref. 17 forop(\) (1.1 for the dilute Wigner ensemble. We show that the difference between
the dilute MPH ensemble and the dilute Wigner ensemble vanishes in theNiimib.

This paper is organized as follows. The remainder of this section is devoted to an explanation
of conditions(1.16) and(1.17). In Sec. |l we prove our main result concerning the convergence of
the NCF to the semicircle distribution. In Sec. Il we are concerned with the case- &f with
finite dilution parametea. In Sec. IV we describe different diluted random matrix ensembles and
their possible generalizations. Section V is devoted to a discussion of the origin of the semicircle
distribution in the ensemblél.13).

Now let us turn to condition$1.16 and (1.17). We can show that these conditions are
necessary by considering H3 and E Hy, where E(---)={((---)¢)a. For the case of i.i.d.
&4(x), we have

E Hi= 2 2 (£41(X) £11(8) £F2(X) £42(S)) { an(X,S) an(8,X) ) a

=1 pg,pp=1
(N=1)m m(m—1) m
= N2v+a U4+ N2v+a U4+ N2v+a <[§M(X)]4>fa (119>

wherev?=(£?). Thus, the first nontrivial moment,

N

EJ A2 doy(\) = % le E HZ(x,x), (1.20

is finite and nonzero if and only i+ 2v=2. The fourth momenE H,(x,x) includes averages

N
Z (£11(x) §1(s) §M2(5) §M2(X) £3(x) £13(5) §14(5) £74(X) ) {an(X,S) an(s, X) an(X,s)

hM 3

" s M(mM—1)No®
Xan(sx))a=m(m=1)(v*)"N([an(X,9) 1) a=—yz7zrg (1.21

and we arrive at the conclusion that 1. On the other hand, when the term

E[Hn(x,x)]?=m(m—1)(m—2)(m=3)v¥[an(x,x)]}a. (1.22
is finite, eitherv=1 or ay(x,x)=0. The first possibility contradictdl.16 and so we have shown
that (1.17) holds.
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II. MAIN RESULT AND PROOF

Let us consider the ensemble of random matrices with entries,

Hu(x,y)= 21 L) EL(Y)an(xy), Xy=1,N, 2.1)

where £y“(x) and ay(x,y)=ay(y,X), #=1,m, x=1,N are jointly independent random vari-
ables. For each fixe®N we denote the average over the measure generated\B#y(x)} as
(--+)¢ and the average over the measure generatechjpfx,y)} as(---),. Let us assume

(E00)e=0, ([£K00T%) =0, (2.2

and

1— 8,y [1, with probability aN=2(2=#), 23

aOY)= 05 10, with probability 1-aN-21-),
where > v= land

1 x=vy,
Ylo o x#y.

We study the NCFo(A;Hy) in the limit m, N—o, m/N—c>0.
Theorem 2.1:Let each of the random variablég\*(x)} have a symmetric distribution and
let, for any fixedr>0,

N m
im %) fltl>f4ﬁlt|2*ﬁdPLN,i<t>=o, (2.4

myx=1 4=1
where =4(2v—1) and PNV, (t)=Prob{&y*(x)<t}. Then
p—Lim o(N\;Hy)=0sd\), (2.5
where Lim denotes the limiting transitions
mN—o~, m/N—c>0 and fixeda when v>3, (2.6
and
m,N,a—», m/N—c>0 and a<N when v=3, (2.6b
and os{\) is given by Eq. (1.8) with &=cv*.
From now on we use “Lim” to denote this limi2.6) and “lim” to denote other limits that
are defined as required.
Remarks:

(1) By p-Lim in (2.5 we mean weak convergence in probability of measures associated with
o(\;Hy). In other words(2.5 means that for any smooth(\) with finite support,

p—tim [ y00do0iH = [ 40doun). 27
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(2) Condition (2.4) is the analog of the well-known Lindberg condition from probability
theory. In random matrix theory this condition has been proved to be suffitemd necessaty
for the semicircle law(1.7)—(1.8) to be the IDS of the Wigner ensemil&.5).

Let us stress that if&y“(x)} are identically distributed and|&,(1)|2*#)<<, then (2.4)
holds. It should also be noted thgtis always less that 4, so in the case of i.{dn"“(X)},
(|€+,(1)|8) <= is sufficient for Theorem 2.1 to be true for al=3. On the other hand, iF=3
then83=0 and(2.4) takes the form closest to the Lindberg condition. The only difference is that
the latter has:N'?instead ofrN'*in (2.4). This difference is due to the quadratic character of the
{&nH(X)} terms inHy(X,y).

Proof: Let us introduce truncated random variables,

— [gmx), if |eax)|<7IN,
= (2.8

et X)=
S0, it letool> AN,
with 7<1 and consider the ensembﬁN given by (2.2) with &*(x)én*(y) replaced by

ENOC) EN(Y) . In Lemmas 1 and gat the end of this sectignve prove that for any smooth function
(N\) with finite support,

p—Lim

f lﬂ(k)do(A;HN)—f w(k)dasc(h)FO- (2.9
Consequently, our main goal is to prove that
p—Lim o(\;Hy)=oed\). (2.10

To achieve this we start with the moments@,ﬁ and show that for any fixegd,

— _(2! [cvlk, if p=k
lim Lim EHP(0,0=1 kI(k+1)I LV 1" P=K. (2.1
70 0, if p=2k+1,
and
lim Lim EHP(0,00HR(0,0—[EHR(0,0]2=0. (2.12

7—0

Then in Lemma 3 we prove th&2.11) and(2.12 imply (2.10.
Our study of the average,

E{Hﬁ(O,O)}Z{Si} & X Yp)as (2.13
where
(Xp)e=(€"10) £M1(s,) §12(Sp) - - - 1P 1(Sp) §M0(Sp) §#P(0) ) ¢ (2.14
and
(Yp)a=(an(0:2)an(sz,S3) - an(Sp-1.,Sp)an(sp.0)a. (215

is based on the separation of those setS§ef(0.s;,S3,...,Sp) andM = (u1,...,4,), Which give
a nonzero contribution in the limit of infiniten,N (anda for v=3).
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H

FIG. 1. Diagrammatic representation of a gengdg).

Our main observation is that conditigh.17), ay(x,x) =0, together with the independence of
{&*(x)} and the property

(40012 )=, (2.16

reduces the number of independently changingariables in the suni2.12 while the properties
of {an(x,y)} (2.3) allow us to restrict the number of seB5. As we shall see(Y), plays the
same role in the selection @&, as that played by the averadggW(0.s,)---W(s,,0)} in the
original Wigner proof of the semicircle la¥. This observation is crucial for counting the number
of appropriate sets;,.

When separating, and M, and counting the number of nonzero contributions, we use the
fact that all the moments off are finite for fixedp and N. Then, calculating the averages
(Xp)¢ we_show that, due to the independence #f(x)}, the leading contribution includes only
powers([ £&£12) while higher moments of come with factors of M. This allows us to estimate
terms including( €2*'), wheret is an integer, byc,7, wherec, does not depend ON.

The role of the independence {@*(x)} becomes clearer if we introduce a diagram for a fixed
S, andM,, where each random variab{g”(x)} is given by a vertical interval. This interval
consists of two parts; the upper part is of lengtand the lower of lengttu. Then the average
(2.14 can be presented in the form of Fig. 1. Due to the independence dttfg)} and the
condition(2.16), the average oK, is nonzero only when the corresponding diagram has an even
number of each interval present.

For example, if we consider a fixe®} where all numbers @, ,s3,...,s, are different, then the
average(X,) is nonzero only when allu;} are equal. Hence, such a sequencgsgf produces
m nonzero terms. It is clear that if one considers general sequé&gcelse more coincident points
{si}, the more{u;} are allowed to vary independently, and vice versa.

Let us now consider the case pf=2k. Due to(1.17), the maximal number of coincident
points s; is k and the only set that achieves this is given $y=(0s,0,s,...,05). The corre-
sponding diagram containkXertical intervals with upper points and these need to be paired.
Thus, among thgu;} only k variables are allowed to change independently and the number of
nonzero terms in averag.14 for S, is cim(m—1)...(m—k+1)=c5m +o(m*). Any
change inS}, can only diminish the number of independgntariables. Thus, we come to the
conclusion that any fixe&,, producesc,m*+o(m*) terms.
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Now let us turn to the case=2k+ 1. Here theS5, , ; with a maximal number of coincident
s variables are of the form (0s,0,s,...,05,0). Sincet#s, only sums ovefu;} with u;=pu,
provide a nonzero average. Thus, the pantt can be omitted and we apply the rest of the
arguments in the previous paragraph.

So, we have proved the following.

Proposition 1: Each fixed Sproduces gm P2+ o(m!P”?) nonzero terms, whefex] equals a
maximal integer not greater than x ang & some constant independent of m

Let us now prove the following.

Proposition 2: The numbet,, of nonzero terms iri2.13) is of order NPLP2

Proof: Let us consider the sum over thaSgin (2.2) that haved pointss;, t=1,d that are
unpaired, i.e., such that, #s; for all t andj#i(t). There are no more tha® (P~ sych
S,.

’ Since{&*(x)} are independent with zero mean, we have a nonzero avera@l® only
when Mi(1)™ Mi(1)+11-++r Mi(d)™ Mi(d)+1- If the neighbors OfSi(t) do not COinCide,Si(t)_l,
#Si)+1, We have the diagram as given in Fig. 1. This diagram can be regarded as org with
—d points (0s;,..., Sj(1)—1, Si(1)+1+-++» Si(d)—1:Si(d)+1.---.Sp), Which due to Proposition 1 pro-
duces no more tham[Ep‘d)’z] terms. Thus the total number of terms in this case is no more than
NAHI(P=1=d)2lml(P=d)/2] " \which is of orderNP.

If somes; ;) has equal neighbors;)_1=S;)+1, then we cannot apply Proposition 1. How-
ever, such a diagram can be reduced to a new diagram corresponding 8 setéherep’ =p
—2 with s;(;) omitted and ther. ,=NmL,, . Consequently, Proposition 2 is proved.

Let us now study(Y,) for the case of evep. We consider the averag2.14 with p=2k
and show that the leading contribution(®13 comes from sums over thoS§3, , where each step
(s,s’) is paired with its inverseq’,s) and the pairs obtained have no coincidence between them.
This picture is exactly the same as the Wigner enserf®land the number of sucg;, is**

C(2K)! -
"2k 219

There are three ways in which general s8fg can differ froms;, .

(I) There can be steps,’) having no inversiong’,s) or repetition §,s').

(I) There exist stepss(s’) having repetition §,s').

(II') There can be a coincidence between pairs of steps.

We consider these three possibilities separately because the general case can be ftrivially
subdivided into these three scenarios.

First consider the simplest caflg¢ whenS,, containsk+d different steps. Then at leasti2
steps have no inverse and the othek2{l) steps are paired. Then

Ja

NNl*V

2d 2d

Va

lev

1 1
<sz>=<aﬁ>k7d<am>2d=m =N
Due to Proposition 2, all such terms give vanishing contribution@tb3 asN— o,

Before considering caséH) and(lll) let us first compute the contribution of sé$§k. The
sum over each particular set can be obtained as follows: we first identify the stegs {) that
are paired, and then allog to run from 1 toN, but conserving this pairing. This pairing ok 2
intervals (0s,),(S2,S3),..-,(S2,0) splits the set of R+1 points (0=5¢,S,,...,Sok:Sok+1=0)
into r groups; all equal points are put in the same group. Such a partition §ilds-1)---(N
—r+2)=N"1+0o(N""1) terms. Taking into account Proposition 1 and the equality,)
=N"2k we conclude that nonvanishing contributions come from partitions into not lesskthan
+1 groups (=k+1). In this case at least one group consists of one point that we call the
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S.
i)

S
it)y1
S.
it)y2
-

FIG. 2. Pairing ofu variables in a general diagram foXy).

“peak” point. Thus, for each particulaB;, there exists at least one peak pogt) such that
Siy-1=Si+1- One can then reducs,, to S;k,, 2k’ =2k—2 by removing points;., and
considerings; ;1= Si¢)+1 as a New point irs,,, .

We repeat this reducing procedure until we are left with the two poin(,8t There arek
steps in the reduction &, to (0,0), in whichk peak points removed. Due to Propositions 1 and
2, nonvanishing contributions #?.13 come fromS;,, where all these peak points vary inde-
pendently, are nonzero and take different values.

Turning to the diagram foiX,, (Fig. 2), we see that in this sum over particulgj, two
vertical cuts drawn down from the peak pog, are independent from all other random variables
for any M. Then theu variables corresponding to thesevariables must be pairegs;)— 1
= uim=p'. If in the sum considereg’ is not equal to the othes variables, then the random
variablesé®’ (sii-1) =" (Siy+1) and €% (s;)) are independent from the others, and the dia-
gram forX5, can also be reduced by removing four vertical cuts belonging -, andu;, and
multiplying the average ii2.13 by

— 1 —,

2 (L& (si0-017) 1 (L& (510017
wi(t)

Thus we have reduced the whole aver&ye,) (Y, to (Xo—2)(Yok—»). Repeating this proce-
durek times, and taking into accouri2.4), we come to the conclusion that the sum over each
particular S, with noncoincident pairs of. variables gives a contribution t®.13 of (cv*)¥
(1+0(1)), in the limit m, N—o. Terms that come from coincident pairs @fvariables are of
order 7 and will be considered later.

Let us consider cas@l) when each step i, has its repetition or inverse and at least one
step 6;,Sj+1) has its repetition §;,s; 1), i.e. S;=5j, Sj11=Sj41. In this case R+1 points
(0,s5,S3,....,524,0) are split intor groups. Ifr <k then such splitting gives a vanishing contri-
bution. If r=k+1, there is at least one peak point 8, and we reduce it as was done for
Sk

Repeating this reducing procedure, we come to the position where the peak point has either
Si, Si+1, Sj Or Sj+1 as a neighbor. Supposing that this neighbos;is 0, we obtains;_,=s;
=sg;. Thus, in the partition of the points &,,, one group of equal points consists of three or
more elements. This implies that the contribution from these sets is vanishingly small in the limit
N— oo,

Now it remains to consider cagBl) and show that sums over s&sg, with paired steps and
coincidences between pairs provide contributions vanishing in the fimk— oo,

J. Math. Phys., Vol. 38, No. 6, June 1997
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In each sum over a particular s8f, a nonvanishing contribution is given typeak points
moving independently. To make a pair of steps coincident with another pair, one has to make at
least one peak point equal to another one. It is easy to see that the contribution of such sums is

N tmia?)*~%(a*)(1+0(1))=0

1

wherecﬁz) counts the number of ways to make peak points coincidento&fh)l comes from the
sums where more than two peaks are equal.
Sums overS,, having exactlyd pairs coincident give a contribution,

B B 1
CE(d)Nk d+1mk<a2>k d(az")(l+0(1)):o<ad1N<2v1><dl>)’

which is also vanishing. Situations with more complex coincidences between pairs can be ana-
lyzed by generalization of the above arguments.

Let us turn now to the odd momerEs H?** (0,0). In this casé,, . ; has at least one step
(si,si+1) that is unpaired. In fact, due to conditi¢h.17), there are at least three unpaired steps.
If the remaining X—2 steps make a s&,_,, then for such a set,

ava 1

(Y1) =(any(ag) 1= NET N3 N2K2

But according to Proposition 2, there are no more thgh'* terms in the sum2.13 and we
obtain a contribution of orde®(a®*?N3(*~1)) from the sum over the sets described. If the 2
—2 steps do not form a s&;,_,, then the contribution is even smaller.

Stopping at this point, we see that in fact we have der{2etl)) for Hy with bounded random
variables|&|<T. Now we are going to prove th&®.11) holds for truncated random variables
ER(x) (2.7). Indeed, it is easy to understand that higher powerg oén only be obtained by
coincidence between pairs @f variables combined with the coincidence between pairs of
variables. Both of these conditions lead to extra faaters or N~ in the contributions from such
sums.

We start with the sum over se8, having all steps paired with noncoincident pairs. First,
consider the sums where all peak poisiig, take different values. Then increased powerg can
be obtained just by making all thevariables equal. The only case of interest is when around peak
poiNti’, wir_p=mir_1=mi» =i +1. Then we obtaif{ £*) with a factorm™?, which means that
the contribution of these sums @&(?m~%?).

If we consider sums oves;, with coincident peak points, then the increase in powersisf
followed, apart from the coincidence of pairs pfvariables, by extra powers di~*, which
makes contributions from such terms even smaller than in the previous case.

Now consider sums oved,, having all steps paired witl coincident pairs. In this case the
maximal power of¢ is 2d and these sums give a contribution of order

k—d+1pk—d+1/ 42 \k—d/42dy / z2dy / z2d 1 1 g2d-1)\ 2
NK—d+Lmk= +1<aN> “Yay ><§2 ><§2 Y= 2T @D <§2 N(dl)/2>

T

=0 a0 IN[@-D@v-1)

It is obvious that the presence of unpaired steps does not lead to an increase in pogvers of
To complete the proof 0f2.11), we just note that higher moments éfin odd moments
E H?*1 (0,0) arise by the same mechanism and need not be studied separately.
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3310 A. Khorunzhy and G. J. Rodgers: Large dilute random matrices

Now let us describe the proof ¢2.12. We rewrite the average i2.12 for p=2k as

2 2 [{XaXP (Y 2kY ) = (X X5 Y20 (Y 1, (2.18

S, u SI,#V

and note that the difference is nonzero only in the case whigncontains random variables
common withX3, or when{Y Y5 # (Yo ){(Y3)-

We consider these two possibilities separately. The latter inequality is possible if some step
from S, has its inverse only i8;, and if pairs fromS,, coincide with pairs frong,, . In the first
case the se0=s,,S,,S3,...,5, 0=5;1,55,S3,...,S3,) can be regarded as a new Sgt. Reduc-
ing this set by eliminating peak points, we easily come to the conclusion that the central point,
s;=0, is a peak point. Since it is fixed, then this sum is of ordé. 1Averages( Y ){Y23),
apparently having unpaired steps, give a vanishing contributidv-ase.

Let us consider the case when pag coincide with a pair frons}, . Then the sum

3" 2 (Xad (X5 Yar) (Y30 2.19

over such sets is of orderN/because it corresponds to the case when some of the peak points are
fixed. On the other hand, the sum over sets,

27 2 (XX i Y Y ) (2.20

Sk’ !

can be regarded as a sum 04 )(Y.x), where the corresponding,, has coincident pairs of
steps. Thus, according to arguments presented ali@&€) contributes to2.18 as a variable of
order (1+0(7))/aN?""1, It remains to check the sums wWheé,,Y,) ={(Y,){(Y5) but

(XX 1) # (X2 X - (2.2

Obviously, it is sufficient to study sums ov&, and (S'),, such that there is no coincidence
between pairs. The one way to obtdl2]) is to make peak points i}, equal to some peak
points in (S');, and to make corresponding pairs pfvariables coincident. Another way is to
make equal pairs of variables that correspond to bottom pointsSgf and (S'),, . It is easy to
see that these ways lead to terms with contribu@iN ).

Similar reasoning shows th&2.13 holds for odd momentp=2k+ 1. Thus(2.11) and(2.12
are proved.

Lemma 1: Let{on(N;w)} be a sequence of random nondecreasing non-negative bounded
functions, and le{fy(\;w)} be the sequence of their Stieltjes transforms,

fNO\)=J (A=2)"*day(N),

wherew is a point (realization) of the corresponding probability spd@q . Suppose that there
exists a nonrandom function(#) that is analytic forim z#0 satisfying inequalities

sup,-onf(7)<1, Imf(z)imz>0,
and that

Lim suszUoE|fN(z)—f(z)|2=0, (2.22

J. Math. Phys., Vol. 38, No. 6, June 1997
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A. Khorunzhy and G. J. Rodgers: Large dilute random matrices 3311

where Uy={ze C,|Im Z=17,} and 7,>0. If a(\),o(—)=0 is the nondecreasing function that
corresponds to (z), then at each continuity point ef(\) we have

p—Lim on(N)=0(N), (2.23
or, in other words, the measures,(d\ ; ) weakly converge in probability to-(d\) [cf. (2.7)].

The proof of this lemma can be found, for example, in Ref. 20. The key point is that the
family fy(z,w)—f(2) is analytic and uniformly bounded on any compact $ebelonging to
Uy,.2! This allows one to derive fron2.22 the relation

Lim E sup..1|fn(2)—f(2)|2=0,
which together with the compactness of the family(d\ ; @) — a(d\)? implies (2.23).

Let us define

Grm— d G !
=— an = ,
N Hy—2 N Hy—2

whereH is given by(2.1)—(2.4) andH_N is obtained fronH y by truncation(2.8). Then according
to the definition ofa(\) (1.3),

1 - —
N Tr GN=J (A—2)"da(N;Hy)

and
1
N GN=J (A=2)"*da(N;Hy).
Lemma 2: For = U,,

1 1 —
p—Ilimm x| Tr Gn(2Z)— N Tr Gy(2)|=0.

N

Proof: Let us consider the resolvent identi@'—G=-G'(H'—H)G, where G=(H
—2z)"tandG’'=(H'—2) "%, [ImZ>0 andH, H' are symmetric matrices of the same dimension.
Then

1 — 1 - A —
An2)=§ TGN ~Gr(2)= 5 2 (GNBWI(S,D 2 [EN(SIEN(D + ENDER(S) Jan(s,b),
S, 1%
(2.29

Where%=§—z )
We denote 3, £K(s)&K(t) by yn(s,t) and, using the inequality|Gy[<|ImZ~* and
|G(s,t)|<||Gpl, derive from(2.24) the relation

2 1 Ja
E{lAn@I = imzz 2 Imsth(ansn)= gz T 2 (0™ (229

It is easy to see that B+t then
J. Math. Phys., Vol. 38, No. 6, June 1997
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3312 A. Khorunzhy and G. J. Rodgers: Large dilute random matrices

<(7N(s,t>)2>=<§ %M(s)gﬂ(t>%k(s>§*(t>> =v2<§ [%M<s>]2>.
Then we derive from2.25 that

. 1/2
E{lAMz)l}stN—ﬁg <E |§*N‘<s>|2>

mv\/a 1 2 1 a2 112
= .
N mN < Nl—2v <|§NS| >
2v-1 1/2
<TG S [ et e ap)
N MmN 5% Jit>#4n |t|4(2V*l) .S

Using (2.4), we complete the proof of Lemma 2.
Lemma 3: Relations (2.10) and (2.11) imply that foe d,, with 7,=(2cv*+2)? and
|Rez<1,

_ 2
Lim E[ % Tr Gn(2)—f(2) ]zo, (2.26

where

f(Z)=f (A=2)"dodN),

with os{\) given by (1.8) with d=cv*.
Proof: We prove(2.26 by showing that

Lim E{gn(2)}=1(2), (2.27)
wheregy(2) =N"1 Tr Gy(2), and that
Lim E{gn(2)gn(2)} —E{gn(2)}E{gn(2)}=0. (2.28

For givene>0, we choose & such that
1 _ €
(2cv*+2)% "4’
and expandyy(z) into the series

129 HPxx) 1

0D=- 2 e g R,

where
() 1 2q+1
Ry (2)= N Tr HY'" "Gy

Let us note that

@ © )\2q+l _
RN @)= | =5 do(\iHy)

=

foc ) AN —Rez+ilmz
)\q

— 2
. - 2q
" (A—Rez)?+(Im z)? do(\Hy)| =g TrHY

Then we expand(z) into the series

J. Math. Phys., Vol. 38, No. 6, June 1997
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2
1 M, rq(2)

f(2)=—2, v~ —26+1>
(2)==2 1 et

whereM, are given by the right-hand side (.11) andr 4(z) <2M,.
Then taking into account th&HPy(x,x) =EHPy(0,0), we can write the inequality

20 |EHR(0,0—M,| 1 4M 54+ 2| EHZY(0,00— My

|EgN(Z)_f(Z)|$pZO 4P + (ZCU4+2)2q (2C04+2)2q+2

The trivial inequalityM 2qs(CU“) 24 together with(2.11) implies (2.27). The relation2.28 can be
derived from(2.12 using the same procedure. Theorem 2.1 is proved.

lll. FINITE DILUTION PARAMETER

In this section we study the moments

of the ensemblé¢2.1)—(2.3) in the casev=1/2 and finitea=1. We prove that there exist numbers
h®p such that

lim E{HR(0,0}=h{?, peNU{0}. (3.1

We derive estimates fdi®;, which imply that

kgo [hi)] Y =co, (3.2

This Carleman’s condition provides existeffcand uniquene$3 of a non-negative nondecreasing
function o,(\) satisfying the relation

hff‘)=f_ AP doy(N).

We prove that the support of the measdre,(\) is unbounded and study the asymptotic behavior
of o,(\) for large |A|.
Finally, we show that if a functiom*)(\) exists, such that

1 1
aa()\):gsc()\)+ag<1>()\)+o(a7 : (3.3
thenoM(\) can be written in the form
1 3 r 72 2 2
o )()\)230()\)+—2f ——2|J4u —7=dr, (3.9
2muc J_o4\u

where

1, A=0,
(M=o, r<0

J. Math. Phys., Vol. 38, No. 6, June 1997
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S
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FIG. 3. Division into intervals for the case dfcoincident pairs.

andu®=cv*. This can be compared with the results of Ref. 17, where thecdfrection for the
diluted Wigner ensemblél.9) was calculated. The corrections are slightly different but have the
same structure of the semicircle distribution multiplied by a quadratic functiox. dthe 6(\)
term, which does appear in the results of Ref. 17, probably arises in our problem from the
condition of zero diagona(l.17).

Let us first note that it follows from the proof of Theorem 2.1 th§f, ;=0 andh{®=1. The
next observation is that in the average

E(HX(0,0} =2 > (Xa(Y20),
sit {uj}
the nonvanishing contribution in the limiN—«~ comes from sums over those seB5
=(0,s,,S3,...,5), Where each steps(,s;, ;) has an inverse¥, {,s;). Sincev=1/2 anda is
finite, sums oveiS, that have coincident pairs of steps, as well as @&rwith no coincident
pairs, give a nonvanishing contribution ¢8.5).

Let us consider sums ove‘z‘j'() with exactlyd equal pairs. The remaining R{d) steps are
paired ands;} run from one toN such that these pairs are not equal. Let us calculate the number
L sequences,, of this type. Having marked®steps, we obtain@ intervals between them of
lengthsqy, ..., 024, 9;=0. Note that the last interval,y consists of two parts because we consider
two edge points 0 as orsee Fig. 3.

Let us consider a particular interval numigewith left endu and right endv. Due to the
independence of pairs given lﬁigj from other pairs we can sum ovSé’j and the corresponding

w variables and obtaifto leading orderthe factorE{HEli(Su ,S,)} in (3.1. Thus, we conclude
that each interval is of even length=2p;, p;=0 ands,=s, .

The latter is because we can consideands, fixed (we sum over them at the last stagand
use the fact that for each fixed

EH25(0t)=O(1/N+ 7).
This can easily be proved from the observations that
EH2K(0)<[EHZX(0t)H2K (1,012

and that in the last average there is one fixed peak point.
J. Math. Phys., Vol. 38, No. 6, June 1997
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So, the leading contribution comes from the diagrams of the type in Fig. 3, where steps
(st,s,) are separated by steps,(s;). It is easy to see that the number of different siéﬁ is
given by the formula

(d)
L5 = péo Np,Np,* Moy (3.6

Epi=k*d

wheren, is defined by(2.17).
Now let us compute the contributions of sums o8} . The sums ove8+1 - ,Sq*2k give the

leading terms adl— oo, 7—0,
(CU“)"‘de‘dmk‘d<az)k‘d(1/N), (37)

where the factor N comes from the fixed peak point 0 in the interggl; .

We now compute averages over random variables belonging to coincident pairs. There are
d upper points andl lower points and, hence, variablgs , ....,u54 should be paired to obtain a
nonzero average in the limMl—o, 7—0. Then we obtain for the sum expression,

TogN?mia?9y29y29(14+ O( 7)), (3.9
where O(7) comes from the sums where more than twovariables are equal anfl,4 is the
number of ways of splitting @ points, (4,....i2q), into pairs.T,4 has the property thal,q, »
=(2d+1)T,4, because,y,, can make a pair with @+ 1 points and the remainingd2points

produceT,y possibilities. ThusT ,4=(2d—1)!!
Collecting (3.6), (3.7), and(3.8), we find thatS gives a contribution,

(Lad™HL W (cotk(2d— 1)1, (3.9

to (3.1). Let us stress th (?() are the only sources of terms of ordead7?. It should be noted
that (3.6) with d=1 results in the recurrence relation

= X NpMp-1, No=1. (3.10
p.k—p—1=0

This relation, leading to the exact form p§, (2.17), was first derived by Wignef:

It follows from (3.10 that the moment#, of the semicircle distribution given big) satisfy
recurrence relation

Me=u? > MMy, ;. (3.11)
p.k—p—1=0

Taking into account previous considerations, we obtain ﬁnallynfﬁ)r,

k
(2d—1)!!
h(Z?():le WTUngd*MlepzmMpzd’ h5i1=0 3.12

where a summatioX; denotes a sum ovdp;} such thatp;=0 for all i and=p;=K.
Now let us show thaf3.2) holds. SinceM,=u?*n,, we derive from(2.17 the trivial esti-
mate,

J. Math. Phys., Vol. 38, No. 6, June 1997
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3316 A. Khorunzhy and G. J. Rodgers: Large dilute random matrices

<(2u)?, keN.

Then each term in the sum overin (3.12) is less than (2)%¢2¢ and the number of terms in this
sum is

(2k)_ (2K)!
2d/~ (2d)!(2k—2d)!

The latter fact can easily be understood if one remembers(8@twas obtained by choosing
2d from 2k steps. Thus we derive froi(3.12 that

(2d-D11t  (2u)* oc(

2Va® 2w

¥ 2k X
h@<a(2u) ( —+1
2k ( dzl 2d 2\/5

Integrating by parts, we obtain the recurrence relation

p—1
ﬂpzﬁpfl'{' “4a ,Bp721 Bo=1, B1=1,

b <(1F)>

where y is a Gaussian distributed random variable with 0 mean and variance 1. This relation
provides the elementary estimate for1,

for the moments

2u

1 2k
1+—” (2k—1)I1; (3.14

hid)<2a ia

then(3.2) is shown to be true.
Now it is easy to see thatr,(\) cannot have a bounded support. In the latter case the
momentsh?) admit an exponential estimate for &ll but it follows from (3.12 that

) (2k 1) 2k
Inequality (3.14) provides that
PN a
w | 1§ doaM= 5T

is true for allke N, where

T=4u| 1+ —

Then
0 )\2
f_ exp:ﬁ]daa(x)s%

J. Math. Phys., Vol. 38, No. 6, June 1997
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and

f doy(\)<4a exp{—x?}. (3.15
IN>xT

This gives the estimate for the asymptotic behaviotrgf\) for large|\|.
Now let us derive(3.4). Considering the ternd=2 in (3.12 and applying(3.1]) twice, we
obtain that

3
M/ =3u* 2 MpMpMp M =8 > MaioMazq= 5z [Maci2—2u"Ma.

q,2k—4—q=0
(3.16
Thus, if expressioti3.3) holds, we have to find a functiom®)(\) such that
f AL deM(N)=0
and
Mg”:f doM(\)=0, M<21>:f A2 doP(N)=0, (3.17
and

2

A
72 A dogdN).

M;}Q:f A2 da<1>(>\):3f

It is a simple matter to check th&B.4) satisfies these conditions. Let us note that all terms with
higher powers of H from (3.12 can be treated by the same technique and subsequent 1/
correctionso®™()\), k=2,3,..., to thefunction o,(\) can be found. However, one needs some
additional arguments to prove the existence of these corrections. This is because all functions
o (N) cannot be nondecreasing due to the condifida®)(\) =0 [c.f. (3.17)]. Hence, classical
m(%ment problem theory cannot be applied to prove the existence and uniqueness of corrections
o (N\).

IV. OTHER ENSEMBLES OF DILUTE RANDOM MATRICES

In the two previous sections we studied the dilution of the Marchenko—Pastur—Hopfield
(MPH) matrices(1.1) with

dN(,u,X,y)=aN(X,y). (41)

This dilution is known as a ‘“spatial” dilution in neural network theory. We observe that it
changes the IDS of the MPH ensemble and leads to the semicircle distribution. This can be
interpreted as the spatial dilutigd.1) destroying the dependence between the entries in the MPH
ensemble.

If one were to introduce a dilution of the forfi.13), then the matrix obtained,

J. Math. Phys., Vol. 38, No. 6, June 1997
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3318 A. Khorunzhy and G. J. Rodgers: Large dilute random matrices

An(X,y)= X, SO0y, (4.2

is more closely related to the structure of the pure, undiluted MPH ensdiftjehan the dilute
ensemble we considered. This observation is supported by the following theorem.

Theorem 4.1:Let independent random variablég*(x)} satisfy the conditions of Theorem
2.1. If random variables &(x) are jointly independent and independent frg&t(x)} and

1 a
——, with probability —1—
a N a
dixy) =1 N .3

0, with probability l—m,

with 0= a<1/2, then

p—Lim a(\;Ay)=a(N), (4.4)

wherea()\) is given by (1.4)

Under Lim in (4.4) we mean the limiting transitions.f. (2.6)]

(@ m, N—o, m/N—c>0 whena>0 and

(b) m,N,a—, m/N—c>0 anda<N whena=0.

One can prove this theorem by using, for example, some modification of the resolvent tech-
nigue developed in Ref. 16.

We see that the Marchenko—Pastur distribution can also be a limiting distribution for certain
dilute random matrix ensembles. However, the following results show that this situation is quite
unusual. Namely, applying the technique used in Sec. Il, we prove the following.

Theorem 4.2: Let i.i.d. random variables \{x,y), x<y have zero average and variance
w? [c.f. (1.6)] and let w(x,x)=0. Then the NCF of the random matriges

Wi(X,y) =W(X,y) 21 dé0o0di(y), xy=1N, (4.5)

where d(x) are defined by (4.3) an@<a=<1/4, converge in probability to the semicircle
distribution (1.8) withv?=cw? in the limit described in Theorem 4.1

Remark:As we noted earlier, the technique of eliminating diagrams with vanishing contribu-
tions used in Sec. Il is appropriate here. However, for the case of a finite dilution pardemeter
fixed anda=0), the diagrams giving nonzero contributions to the ID§4¥) are different from
those of the spatially dilute MPH ensemti21). This results in different & corrections to the
semicircle distribution. We plan to study this problem in a separate publication.

Taking into account that the semicircle distribution is the IDS of a spatially diluted Wigner
ensemble, we can conclude that it is the more natural eigenvalue distribution for dilute random
matrices than the Marcheno—Pastur distribution.

The dilution could be regarded as a particular case of a more general problem in the random
modulation of matrices,

Hn(%,Y) =An(X,Y)Dn(X,Y)-

One could, for instance, ask about the stability of the semicircle distribution under modulation of
the Wigner random matriced&/y(=Ay) by some random perturbatiddy .

As a particular answer to this question we can present the result about the IDS of the curious
ensemble of random matrices,

J. Math. Phys., Vol. 38, No. 6, June 1997

Downloaded-15-May-2007-t0-134.83.90.186.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp



A. Khorunzhy and G. J. Rodgers: Large dilute random matrices 3319

HN<x,y>=iw<xy> 2 EROO)ER(Y), (4.5
N

which can also be regarded as the modulation of MPH random matfiic®sby independent
random variablesv(x,y), X<y, w(X,y)=w(y,x) satisfying(1.6). )

By slightly changing the reasoning presented in Sec. I, we can prove that the 1B isf
also the semicircle distribution.

V. DISCUSSION

We have considered the IDS of an ensemble of dilute random matrges the limit
N—o. Our main tool was the momenE{Hﬁ}, ke N. To study their asymptotic behavior as
N— -, we modified the original technique used by Wigner to prove the semicircle law. Using this
technique we obtained an exact expression for the moments in theNimi, for both infinite
and finite dilution parametea.

Our main result, Theorem 2.1, is that the spatial dilution of the Marchenko—Pastur—Hopfield
(MPH) ensemble leads to the semicircle distribution, and not an analog of the distribution for the
pure, undiluted, MPH ensemble. In Secs. Ill and IV we showed that the IDS of the dilute MPH
ensemble is similar to the IDS of the dilute Wigner ensemble, even for finite dilution parameter
a, and that the semicircle distribution is stable with respect to several other types of dilution.

The nature of the similarity between the dilute MPH and dilute Wigner ensembles for fixed
a becomes especially clear in the casevef1/2. Then(2.1) can be redefined as &hx N matrix
with entriesyy(X,y)cn(X,y), where

7N(xy)—TE: EROOER(Y),  X#Y,

andcy(x,y) is 1 with probabilitya/N and 0 with probability +a/N. In this caseHy for each
N contains approximatelg?/2 nonzero entries and they converge whes « to jointly indepen-
dent random variables. This explains the convergence of the dilute MPH and Wigner ensembles.
The difference between the MPH and Wigner ensembles is that the entries in the MPH
matrices are slightly dependent on one another. However, this dependence is enough to shift the
IDS of the pure MPH ensemble from the semicircle distribution. The spatial dilution eliminates, in
the limit N—, the dependence between entries in the MPH ensemble.
This conclusion suggests that it would be interesting to study the spatial dilution of random
matrices with more strongly dependent entries. For example, one could cofisilevith Gauss-
ian £“(x), such that*

<§M(X)§T(y)>:vﬂ_7(x_y).

We assume that the spatial dilution will break this dependence between entries in the limit
N— oo,

The same phenomenon of breaking the dependence between the matrix elements with spatial
dilution was observed in studies of the dilute MPH ensemble in neural network th&diyese
studies considered the case of strong dilution that corresponds to our problemywliéh Note
that these works treated the case of an infinite dilution paramater<(), while we observe
breaking for finite values o4.

Another type of dilution, called weak dilution in the literature on neural network th&dry,
corresponds to the case=1 in definition(2.3). Using this terminology, we have studied the IDS
of the MPH ensemble with moderate and strong dilution.
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It seems to be difficult to use our technique to study the weak dilution case directly. This is
because the ensemhi.1)—(2.3) with v=1 differs essentially from those with ¥2v<1. Pre-
liminary studies show that the IDS of the weak dilution MPH ensemble cannot be equal to the
semicircle or the Marchenko—Pastur distribution. We plan to study this ensemble separately.

Another of our observations concerns random matrices,

Hn (%) =W(X,y)Dn(X,Y),

wherew(x,y) are as in Wigner random matrices abg|(X,y) represents dilution independent
from w(x,y) or, more generally, a random modulation of the Wigner ensemble.

In Sec. IV we showed that Dy(X,y) is the proper dilution of the MPH ensemble and even
if Dny(X,y) are entries of MPH matrices by themselves, then the IDHpfs again a semicircle
distribution.

These facts, together with our main conclusion, suggest that the semicircle law is quite stable
to dilution (or modulation. It would be interesting to develop a more precise formulation of this
observation.
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