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Abstract 
 
The cellular radiosensitivity of two fibroblast cell lines derived from a breast cancer 

patient that “over-reacted” to radiotherapy (84BR) and a patient with multiple 

independent tumours (175BR) was examined. Both patients had not been previously 

diagnosed with a mutation in any known DNA repair gene. 

 

The clonogenic assay revealed the 84BR and 175BR cell lines were hypersensitive 

to gamma radiation when compared to repair normal NB1 and 1BR.3 fibroblast cells. 

In addition, DNA DSB repair was found to be defective in both patient cell lines due 

to the abnormal persistence of -H2AX foci over a 24 hour time point in the nuclei of 

gamma irradiated cells when compared to normal fibroblasts. Also  normal response 

to the cross-linking agent nitrogen mustard in a clonogenic assay was observed in 

84BR and 175BR cell lines indicating a normal homologous recombination (HR) DNA 

repair pathway (since HR is essential for DNA crosslink repair). From these data it 

was concluded that these cells were defective in one or more components of the Non 

Homologous End Joining (NHEJ) pathway.  

 

The Artemis gene which has an endonuclease activity in the NHEJ repair pathway 

trims the ends of the double strand breaks before the two ends are ligated. 

Quantitative real time PCR analysis detected approximately 1.5 to 2 fold over-

expression in Artemis gene in 84BR and 175BR cell lines compared to normal cells.  

Also an increase in the level of apoptosis before and following radiation exposure 

and a failure to efficiently repair DNA DSB were observed in the patient cell lines. 
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Consequently, it was demonstrated in the cell lines described in this study that 

increased expression of Artemis endonuclease leads to abnormal and illegitimate 

DNA DSBs due to unregulated action of the protein thus, contributing to increased 

radiosensitivity and elevated apoptosis. 
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Chapter 1 - General Introduction 
 
1.1 - DNA damage and repair 

To achieve a successful flow of genetic information from DNA, genetic stability and 

physical integrity of the DNA must be protected from DNA damaging agents. 

Although the DNA is a stable molecule and has sophisticated DNA repair systems to 

protect it from DNA damaging agents, the DNA is subject to exposure by exogenous 

or endogenous damage at all times which cause damage. The modifications made 

within the DNA, unlike some molecules such as, proteins and lipids where the 

damage is readily degraded and resynthesized, is permanent via the formation of 

mutations (Bohr and Dianov 1999). Although, all DNA lesions pose a threat to 

genetic integrity, DNA double strand breaks (DSBs) are considered especially 

deleterious as they can be potentially lethal if not repaired (Weterings and van Gent 

2004). Also as Tauchi et al., (2002), states even one DSB generated in a cell, if not 

successfully re-joined, can potentially result in cellular lethality.  

 

Some of the main exogenously occurring DNA damaging agents have been well 

characterised. These are ultra violet (UV) light, ionising radiation (IR), aflatoxins (a 

strongly carcinogenic mould produced contaminant) found in contaminated peanuts, 

hetrocyclic amines (HCA) in over-cooked meats, N-nitroso compounds (NOC) found 

in tobacco (Wogan et al., 2004; Jackson and Bartek 2009). The endogenous DNA 

damaging agents are reactive oxygen species (ROS), which are produced by normal 

oxidative metabolism and cause DNA base modification and strand breaks (reviewed 

in Valko et al., 2007)  
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However, depending on the type of DNA damage, the cells have evolutionary 

conserved specific DNA damage recognition and repair mechanisms that are 

activated and put into action for the repair of vast number of DNA damage. Some of 

the most common DNA damaging agents, the types of DNA lesions introduced and 

the specific DNA damage repair pathways are summarised in Table 1.1. 

 

Table 1.1 - Principal of DNA-damaging agents, lesions & repair pathways. 
 

Damaging Agent DNA Lesion 
Repair 
Pathway 

IR 
Anti-tumour agents 

DSBs 
HR  
NHEJ 

Spontaneous reactions 
Oxygen radicals 
Alkylating agents 
X-rays 

Abasic site 
Oxidised deaminated and 
alkylated bases 
ssDNA breaks 

BER 

UV light 
6-4 photoproduct 
Cyclobutane pyrimidine dimer  
Bulky adduct 

NER 

Replication and recombination 
errors 

Base mismatches 
Insertion 
Deletion 

MMR 

 

HR, Homologous Recombination; NHEJ, Non-homologous End Joining; BER, Base Excision Repair; 

NER, Nucleotide Excision Repair; MMR, Mismatch Repair (Scharer 2003). 
 

 

As mentioned, depending on the type, extent and the location of the DNA damage, 

specific DNA repair mechanisms are activated within the cell to recognise, signal and 

repair the DNA damage. This distinctive nature of the DNA repair is gained through 

the presence of more than a hundred DNA repair genes whose proteins are 

equipped with different functions in the DNA repair process. Some of these DNA 

repair genes discovered since 2001 are illustrated in Table 1.2. 
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Table 1.2 - Review of DNA repair genes and their activity in DNA repair. 

DNA repair 
Mechanisms 

DNA 
repair genes 

Activity References 

NHEJ 

Ku70 & Ku80 
DNA-PKcs 
Artemis 
XRCC4 & XLF 
Ligase IV 

Non-specific dsDNA end binding 
Bridging of the DNA ends 
Trimming of the DNA ends 
Processing and gap filling 
Sealing the nick and repair break 

(Hefferin 
and 
Tomkinson 
2005) 
 

HR 

RAD50 
RAD51 & RAD54 
RAD52 
BRCA1 & BRCA2 
Mre1 

Form a nuclease complex 
Required for homologous pairing 
Enhance the activity of RAD51 
Recruits repair proteins to DNA damage site 
Forms a nuclease complex with Rad50 & NBS1 

(Krejci et 
al., 2012) 

Direct repair MGMT O
6
-meG alkyltransferase 

(Hegi et al., 
2008) 

MMR 

MutSα & MutLα 
EXO1 
RPA 
PCNA 
RFC 
Pol δ 
DNA Ligase 

Binds mismatches 
Coordinates multiple steps in MMR 
Performs 3’-5’ excision of ssDNA 
Activated by MutSα 
Stabilises single-stranded gap 
DNA repair synthesis 
Seals the nick to complete the repair 

(Jiricny 
2006; Hsieh 
and 
Yamane 
2008)  
 

NER 

XPC-hHR23B 
XPB & XPD 
XPA 
XPG,XPF,ERCC1 

DNA Pol ɛ δ, 

PCNA, RPA, RCF 

Involved in damage recognition 
Promotes bubble formation 
Directs recruitment of other NER proteins 
Excises the damaged strand 
Excises and restores the nucleotide gap - 
generated by XPG,ERCC1,XPF 

(Friedberg 
2001) 

BER 

Glycosylase  
APE1 

Pol β, polδ/ɛ 
Ligase III/Ligase I 
XRCC1 
FEN1 

Recognises and removes damaged bases 
Targets AP sites & creates a 5’dRP group 
Fills the gap by adding nucleotide in the gap 
Seals the DNA ends 
Seals the DNA ends 
Removes the flap structure 

(Dianov et 
al., 1998) 

 
ERCC1, excision repair cross-complementing 1; PCNA, proliferating cell nuclear antigen; POL, 
polymerase; RFC, replication factor C; RPA, replication protein A; TFIIH, transcription factor IIH; XP, 
xeroderma pigmentosum; APE1, apurinic endoduclease 1; XRCC1, X-ray repair cross-complementing 
group 1; FEN 1, flap endonuclease 1, EXO1, Exonuclease 1; AP, apurinic/ apyrimidinic, BRCA 1, 
Breast cancer associated gene 1; BRCA 2, Breast cancer associated gene 2; XRCC4, X-ray cross 
complementing 4; XLF, XRCC4 like factor, MGMT, Methylguanine-DNA methyl-transferase.  
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1.1.1 - Direct repair (DR) 

The alkylating agents (e.g. methylating and chloroethylating anticancer drugs) or 

naturally occurring metabolic processes damage cellular macromolecules of DNA via 

a unimolecular nucleophilic substitution reaction (SN1 reaction) and thus, have a 

strong affinity towards oxygen atoms in DNA (Kaina et al., 2010). The SN1 reaction is 

where a functional group in a reaction is replaced by another group, so in this case 

the oxygen group in guanine, which is biologically most important position (Kaina et 

al., 2010), may be substituted with O6-alkylating agents such as; methyl group (CH3-) 

(inserted by methylating agents) or chloroethyl group (inserted by chloroethylating 

agent) at the O6 position of guanine. Both of these adducts are directly repaired by 

the suicide enzyme, O6-methylguanine-DNA metyl-transferase (MGMT). This DNA 

repair process is a single step reaction which involves direct reversal of the DNA 

damage into original form. The MGMT specifically removes the CH3 group from the 

O6 position of guanine, thereby restoring the nucleotide to its native form without 

causing any DNA strand breaks (Hegi et al., 2008). The adduct thymine on O4 

position on DNA may also be removed by MGMT. As stated by Silber et al., (2012) 

during this single step reaction the CH3- group from O6 -methyl guanine and O4- 

thymine are transferred from the alkylated bases onto cysteine residues which 

results in the restoration of guanine in the DNA and irreversible activation of MGMT. 

This reaction is illustrated for removal of CH3- group in Figure 1.1. 

.  
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Figure 1.1 - Repair of O6-alkylguanine adducts by MGMT. 

 
 
The CH3- group at the O6 position of guanine (O6-Methylguanine) pairs with thymine rather 
than cytosine. MGMT repairs this damage and protects the DNA by transferring the CH3- 
group  to a cysteine residue in the protein (Silber et al., 2012). 

 

This enzyme accepts the CH3- group from the lesion in a stoichiometric reaction of 

1:1 and undergoes ubiquitination and proteasome-mediated degradation. Thus, 

when the active MGMT enzyme accepts the CH3- it gets degraded and not 

regenerated i.e. undergoes suicidal reaction (Rasimas et al., 2004; Kaina et al., 

2010). Also the MGMT catalyses the stoichiometric transfer of a variety of alkyl 

substituents from the O6 position of guanine to an active-site cysteine and prevents 

incorrect base pairing caused by these adducts (Rasimas et al., 2004). 
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Although the alkylating agents are important drugs in cancer chemotherapy, their 

effectiveness is strongly influenced by MGMT DNA repair protein. For example, in 

both methylating and chloroethylating agents, the MGMT can eliminate the initial O6 -

alkylguanine damage in DNA, and thus preventing toxicity to cells (Verbeek et al., 

2008). So, while the removal of adducts by MGMT is beneficial for normal cells, it 

allows development of resistance to DNA damage in cancer cells (Kaina et al., 

2010).  

 

1.1.2 - Base Excision repair (BER) 

Base damage, single strand breaks (SSBs), O6-methylguanine, 8-oxoguanine, uracil, 

thymine glycol, and apurinic/apyrimidinic (AP) sites are common lesions subject to 

repair by BER (David et al., 2007; Dianov and Parsons 2007). The majority of these 

non-bulky lesions are repaired by four proteins found in BER pathway. These 

include, a DNA glycosylase, an AP endonuclease or AP DNA lyase, a DNA 

polymerase, and a DNA ligase (reviewed in Robertson et al., 2009).  These proteins 

are able to remove a single or a small subset of chemically altered damaged base 

and replace it with the correct bases. The BER of DNA damage by glycosylase and 

AP endonuclease is illustrated in Figure 1.2. 

Here the specific damaged bases are recognised by glycosylases, excised and both 

long patch and short patch BER is initiated. This enzyme cleaves then effectively 

removes damaged bases and thus, creates an AP site. The DNA backbone is 

cleaved by DNA AP endonuclease (Robertson et al., 2009). The cleavage by one of 

these enzymes generates a DNA SSB. In short patch BER pathway, the Polymerase 
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β (Pol β) removes the 5'-terminal deoxyribophosphate (dRP) and adds one 

nucleotide into the single nucleotide gap. Then, XRCC1-Lig III complex seals the 

DNA end. Although, the decision to proceed via the long patch or short patch BER 

mechanism is poorly understood (Robertson et al., 2009) Dianov  (2011) proposes 

that if the 5'- sugar phosphate is resistant to cleavage by Pol β, then the long patch 

BER pathway is initiated where, the Pol δ/ε adds 2-8 more nucleotides into the repair 

gap, generating a flap structure that is removed by flap structure-specific 

endonuclease 1 (FEN-1) in a proliferating cell nuclear antigen (PCNA) dependent 

manner. Ligase I then seals the remaining DNA ends. 
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Figure 1.2 - Model for BER pathways. 

 
 
The glycosylase and AP endonuclease first excise the damaged base then incise the arising 
abasic site, respectively generating a DNA SSB with a 5'- sugar phosphate (blue circle). The 
repair is completed via short or long patch pathways. Red blocks indicate the incoming 
nucleotide(s), the size of the blocks represent the number of nucleotides added by the DNA 
polymerases (adapted from Dianov 2011). 
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1.1.3 - Nucleotide excision repair (NER) 

NER is a highly versatile and sophisticated DNA damage removal pathway that 

counteracts the deleterious effects of a multitude of DNA lesions, including the major 

types of damage induced by environmental sources (de Laat et al., 1999). The most 

relevant lesions repaired by NER are the UV induced cyclobutane pyrimidine dimers 

(CPDs) and (6-4) photoproducts (6-4PPs) (Wood 1997; de Laat et al., 1999).  

 

There are two sub-pathways of mammalian NER. 1) Global genome nucleotide 

excision repair (GG-NER) which repairs DNA lesions throughout the genome. 2) 

Transcription-coupled nucleotide excision repair (TC-NER) which is confined to 

repair of DNA lesions in transcribed strands (Fousteri and Mullenders 2008). The 

XPC-RAD23B and UV-DDB complexes recognise and bind to DNA damage-

mediated helix distortion and initiate GG-NER while the TC-NER is triggered by 

blockage of elongating RNA polymerase II complex (RNAPIIo) and interactions of 

CSB and XPG proteins (the XPG having more stable interaction) with the RNA pol. 

Then, the CSF recruits HMGN1, XAB2 and TFIIS to enable cleavage of protruding 

3’mRNA by RNAPIIo for resumption of transcription upon lesion removal (Fousteri 

and Mullenders 2008). Once the lesion has been recognised, all subsequent steps 

leading to assembly of functional NER complex, requires the same NER core factors 

in GG-NER and TC-NER. The UV-DDB and XPC-RAD23 recruit the basal 

transcription factor TFIIH. The TFIIH complex, which has two DNA helicase activities 

(XPB and XPD) unwinds the DNA duplex in the immediate vicinity of the base 

damage, and generates a bubble in DNA. Then the ERRCC1-XPF and XPG DNA 

endonucleases cut the damaged strand at 3’ and 5’ sides of the damage. This 

incision generates an oligonucleotide fragment (~27-30 nucleotides in length) 
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containing the damaged bases. This fragment is excised and the 27-34 nucleotide 

gap is repaired by DNA polymerases δ or ε as well as the PCNA and replication 

factor C (RFC). The damaged DNA is then sealed by DNA ligase I or ligase III. This 

process of DNA damage recognition and removal by NER pathway is summarised in 

Figure 1.3. 

 

Figure 1.3 - Model for NER pathway.

 

XPC-R23 complex recognises the bulky lesion and binds to the undamaged strand of DNA 
(A), TFIIH is recruited to the site (B), the lesion is verified by XPD leading to formation of the 
pre-incision complex through interaction with XPD resulting in the recruitment of XPA, RPA 
and XPG (C), the XPF is recruited to the pre incision complex through interaction with XPA 
leading to DNA incision 5’ (D), which produces a free 3’-OH group available for initiation of 
repair synthesis by the replication machinery, and in turn triggers 3’ incision by XPG (E). 
DNA ligase III or ligase I seals the nick to complete the process (F) (Fagbemi et al., 2011) 
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Deficiency in TC-NER is associated with mutations in the CSA and CSB genes that 

give rise to a rare disease Cockayne syndrome (CS) (Fousteri and Mullenders 2008). 

 

1.1.4 - Mismatch repair (MMR) 

MMR system is employed to detect and repair base-base mismatches and insertion-

deletion loops that escape their exonucleolytic proofreading activity during DNA 

replication (Jiricny 2006). Once the error is detected the mistake is excised, and the 

gaps are filled in with correct sequences.  

 

Mismatch recognition in human cells is predominantly mediated by MutS homologue 

(MSH), heterodimer proteins containing MSH2 and MSH6 subunits. The MSH2 

heterodimerises with MSH6 or MSH3 to form MutSα or MutSβ respectively, both of 

which are ATPases that play a critical role in mismatch recognition and initiation of 

repair (Li 2008). The MSH heterodimer subunits undergo an ATP-dependent 

conformational change, which recruits the MLH heterodimer containing MLH1/PMS2 

subunits. The MSH/MLH complex is translocated towards the strand cut (such as a 

gap between Okazaki fragments) and eventually encounters proliferating cellular 

nuclear antigen (PCNA). PCNA interacts with MSH2 and MLH1 and is thought to 

play roles in the initiation and DNA re-synthesis steps of MMR. It has been proposed 

that PCNA may help localise MutSα and MutSβ to mispairs in newly replicated DNA.  

 

While PCNA is essential for 3’- directed MMR the EXO1 is essential in both 3’-and 5’-

directed MMR. For 5’ directed MMR the excision is straight forward by the 5’ to 3 

exonuclease activity of EXO1. For 3’-directed MMR, the endonuclease function of 
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PMS2 is activated by presence of the 3’ nick, and stimulated by RFC, PCNA and 

ATP to introduce a second nick 5’ to the mismatch. The replication factor C (RFC) 

dependent endonuclease activity plays a critical role in 3′ nick-directed MMR 

involving EXO1 (Li 2008). 

  

MSH2-MSH6 preferentially recognises base-base mismatches and insertion-deletion 

loops of 1-2 nucleotides while MSH2-MSH3 has preferences for larger insertion-

deletion loops. DNA polymerse fills the gap by synthesis of new DNA and DNA ligase 

seals the ligation. A model for MMR is illustrated in Figure 1.4. 
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Figure 1.4 - Human MMR. 

 

The MSH2-MSH6 or MSH2-MSH3 heterodimeric ATPase complex recognises and binds to 
the mismatch and recruits the MLH1-PMS2 complex. The PCNA clamp recruits MMR 
proteins to the replication fork while the clamp loader RFC loads PCNA. RPA binds to single 
stranded DNA during the excision and facilitates the DNA repair synthesis by Polδ. Finally 
Lig 1 ligates remaining nicks after synthesis is performed (Jeppesen et al., 2011).  
 
 
 

Mutations in MMR genes (hMLH1 and hmSH2) may cause hereditary non-polyposis 

colorectal cancer (HNPCC) and familial non-HNPCC which is associated with 

microsatellite Instability (Jiricny and Nystrom-Lahti 2000; Jiricny and Marra 2003; 

Boland and Goel 2010). 
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1.2 - DNA Strand breaks 

DNA DSBs occur when the sugar backbones of both strands are broken close 

enough to disrupt the Watson-Crick base pairing, resulting in the liberation of two 

DNA ends (Bassing and Alt 2004). DSBs can be generated by; exposure to IR, 

certain classes of anticancer chemotherapeutic drugs such as alkylating agents, as a 

consequence of normal cellular oxidative metabolism, the action of recombinase 

activating gene (RAG)-mediated VDJ recombination during the process of 

immunoglobulin production (Ramsden et al., 2010). In addition, the DSBs are formed 

from combination of two independently induced single strand breaks that occur within 

about 10 base pairs of each other (Chadwick 1994). Also the DSB formation is a 

conserved step in the initiation of meiotic recombination (Richardson et al., 2004).  

 

Although, the DSB is considered the most difficult lesion to repair eukaryotic cells 

have evolved specialised and redundant systems to detect and repair chromosomal 

DSBs within the context of normal G1/S, intra-S, and G2/M checkpoints (Bassing and 

Alt 2004). 

 

Some of the well-known agents that cause DSBs and different types of DSB repair 

pathways (with main focus on NHEJ repair pathway) will be described next. 
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1.2.1 - DSBs initiated by Oxidative Damage 

When a high-energy radiation strikes molecules in its path, electrons may be 

displaced from atoms within the molecule. Thus, result in loss of one or more 

electrons and conversion of electrically neutral molecules to one that carry electrical 

charge. This is known as an ionising radiation event. Unlike some chemical agents, 

whose damaging potential are strongly dependent on diffusion processes and thus 

may be affected by sub-cellular structures, the IR is typically highly penetrating and 

the ionisation events are complete within a few microseconds at the site of the 

molecule which it anticipates to damage. The energy deposited in cells depends on 

the level of dose range which the cell is exposed to over a length of its decay tract. 

Thus the measure of energy transfer as an ionising particle to any material is referred 

to as Linear Energy Transfer (LET) which is usually expressed in units of kilo-

electron volts per micrometre (keV/µ) (Leonard et al., 2004).  

 

The radiation may be in the form of an atomic particle such as alpha (α) and beta (β) 

particles or in the form of an energy wave such as X and gamma ( ) rays. The -rays 

penetrate a higher energy radiation compared to other forms of radiation. The 

radiation absorbance dose, i.e. the amount of energy that IR deposits in a unit of 

mass of matter such as human tissue, is expressed in a unit called gray (Gy), where 

1 gray is equal to 1 joule per kilogram or miligray which is one thousandth of a Gy.  

 

The oxidative damage may be induced as a consequence of normal metabolism, 

inflammation and IR. The oxidative damage induced by normal metabolism is not  as 

harmful to the cell as the IR induced damage since the previous occur at relatively 

isolated positions along the DNA molecule, whereas, the IR deposits the energy 



16 

 

unevenly and tend to create clusters of radicals around the DNA leading to multiple 

independent lesions within a localised region of DNA.  As reviewed by Ulsh (2010), 

the randomly deposited energy by IR produces clustered DNA damage, also known 

as locally multiple damaged sites (LMDS), which is essentially several regions of 

DNA damage within a short DNA segment. The LMDS was initially introduced by 

Ward (1985). Some of these lesions are the abasic sites (separation of a base from 

the sugar, leaving behind an unpaired base), base alterations (additional bonds 

between atoms or new chemical groups attach to the base) or single (a strand break 

in the phosphodiester backbone) and DSBs in the DNA. Also, two or more DNA 

lesions of the same or different nature may be produced in close proximity to each 

other on opposite DNA strands (also known as bi-stranded lesions), generally within 

one-two helical turns of the DNA molecules (Hada and Georgakilas 2008). 

 

Ionising radiation can also impair or damage DNA when alpha particles, beta 

particles or x-rays create ions which physically break one or both of the sugar 

phosphate backbones or break the base pairs of the DNA.  

 

Since, water is the largest component in the cell the charged molecules converted 

from neutral atom interacts mostly with the water molecule (a process known as 

radiolysis) and generates intermediates called reactive oxygen species (ROS). The 

ROS create free radicals (a highly unstable, reactive molecule that poses an 

unpaired electron) such as, hydrogen peroxide (H2O2), hydroxyl radical (OH.) and 

superoxide radical (O-
2

.), which damages the DNA.  Thus, the removal of electrons 

by species such as the free radicals, a process called oxidation, is one of the main 

causes of mutations in DNA. 
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The superoxide anion, arising either through metabolic processes or following 

oxygen “activation” by physical irradiation, is considered the “primary” ROS, and can 

further interact with other molecules to generate “secondary” ROS, either directly or 

prevalently through enzyme or metal-catalysed processes (Valko et al., 2007). 

 

For example, when cells in vivo are under stress, an excess of superoxide release 

free contaminated iron molecules. The released Fe2+ then participate in the Fenton 

reaction (Fe2+ +H2O2→Fe3+ + •OH+OH−), generating highly reactive hydroxyl free 

radical (OH.) which can easily break the DNA chemical bonds (Valko et al., 2007).  

 

According to Leonard et al., (2004), the H2O2 is not a free radical and does not react 

directly with biomolecules, however, it is biologically significant as it interacts with 

superoxide in the presence of transition metals, such as iron and copper and leads to 

formation of highly reactive and most deleterious ROS and OH. through the Haber-

Weiss reaction.  The superoxide radical also participates in the Haber–Weiss 

reaction (O2•− +H2O2→O2 + •OH+OH−) which combines a Fenton reaction and the 

reduction of Fe3+ by superoxide yielding Fe2+ and oxygen (Fe3++O2•−→Fe2+ +O2) 

(Valko et al., 2007).  

 

Certain viruses such as the human papilloma virus (HPV), Epstein-Barr virus (EBV), 

hepatitis B virus (HBV), human T-lymphotropic virus type 1 (HTLV-1 ) integrate their 

genome in DNA. According to Williams et al., (2011), the integration of the HPV 

genome in DNA can lead to inflammation which may then result in production of ROS 

and progression of cervical cancer. In primary liver carcinoma, which is associated 
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with hepatitis B virus infection, G.C + T.A transversions are the predominant p53 

genome mutation (Cheng et al., 1992). 

 

Also the cells of the immune system produce both the superoxide anion and nitric 

oxide during the oxidative burst triggered during inflammatory processes. Under 

these conditions, nitric oxide and the superoxide anion may react together to produce 

significant amounts of a much more oxidatively active molecule, peroxynitrite anion 

(ONOO−), which is a potent oxidising agent that can cause DNA fragmentation and 

lipid oxidation (reviewed in Valko et al., 2007). 

 

Oxidation can also produce oxidised bases in the DNA for example the guanine 

analogue 8-hydroxyguanine (oh'Gua)' formed in human cellular DNA as a by-product 

of normal metabolic processes is an abundant base modification in mammalian DNA 

whose levels increase with oxidative stress (Cheng et al., 1992).  When Cheng et al., 

(1992), inserted oh’Gua in E.coli cells they have detected misreading of guanine 

which give a mutation frequency of 0.7% and the twenty two of the 23 mutations 

were G + T substitutes.  

Another endogenously occurring damage to DNA is some of the reactive products 

derived from the reactive nitrogen species (RNS), such as the nitrogen dioxide 

radical (NO2) and peroxynitrite (ONOO-) (Wiseman and Halliwell 1996). The ROS 

and RNS can damage both the nucleus and mitochondrial DNA. The damage 

induced by these compounds may be due to formation of DNA adducts that may 

impair base pairing or block DNA replication and DNA transcription. Also in some 

cases the DNA bases may be lost or DNA SSBs may occur as a result of ROS and 

RNS DNA damage (reviewed in Jackson and Bartek 2009). 
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1.2.2 - DSBs initiation in B and T cell development 

During the early B and T cell development, the variable regions of the 

immunoglobulin (Ig) and the T cell receptor (TCR) which directly binds to the antigen 

is assembled together with a mechanism known as V(D)J recombination process. 

This process begins when the recombination activating genes RAG1 and RAG2 

makes a single strand nicks between the V (variable), D (diverse) and J (joining) 

gene segments and the adjacent recombination signal sequences (RSSs) (Bassing 

et al., 2002). The nick made by RAG protein between the RSS and its adjoining DNA 

generates a 3 hydroxyl (OH) end on the coding segment. The newly formed OH 

group on the coding DNA is copied to the phosphate group in the opposite strand, 

forming a DNA hairpin on the coding end and leaving blunt DSB on the signal end 

through the direct trans-esterification (Brandt and Roth 2004). 
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1.3 - DSB repair mechanisms  

In eukaryotes there are three enzymatically distinct mechanisms that can recognise 

and repair DSB with different fidelity; homologous recombination (HR), non-

homologous end joining (NHEJ) and single strand annealing (SSA). The repair of 

DSBs is likely not straightforward because DNA lesions caused by IR may not 

always be ideal substrates for repair by HR mechanisms that are normally employed 

during replication restart  (Willers et al., 2004). 

 

1.3.1 -  Non-Homologous End Joining (NHEJ) Pathway  

Through the use of genetic and biochemical studies the scientists have identified 

several key proteins in NHEJ pathway. The most extensively studied NHEJ repair 

proteins are the DNA-dependent protein kinase DNA-PK which, includes the 

Ku70/Ku80 heterodimer (Ku) and the DNA dependent protein kinase catalytic subunit 

(DNA-PKcs), Artemis, X-ray cross complementing 4 (XRCC4), XRCC4 like factor 

(XLF) and DNA ligase IV (Wood et al., 2001).  

 

The NHEJ is essentially the canonical DSB repair pathway. This pathway functions 

primarily in the early phases of the cell cycle and directly re-ligates the DNA broken 

ends without requirement of homology between the broken ends (Rothkamm et al., 

2003). As the DSBs leave the two broken ends of the DNA with additional, deleted or 

damaged nucleotides, the prerequisite for the ligation of the two end of the DNA is 

first the removal of these nucleotides. Also, the ligation reaction creates small 

sequence mutations around the break so the re-joining of the two DNA ends that 

may be mutated can result in errors. Thus, the NHEJ is error-prone due to the lack of 

re-joining of the original ends of the DNA (Mladenov and Iliakis 2011).  
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The DSBs created via the V(D)J recombination are also repaired in a single joint by 

the NHEJ DNA repair machinery (Market and Papavasiliou 2003). The DSB repair 

proteins (DNA-PKcs, Ku70, Ku80, XRCC4, Ligase IV, and Artemis) are all involved in 

V(D)J recombination (Mansilla-Soto and Cortes 2003). The Figure 1.5 will first briefly 

outline the role of the key genes found in NHEJ repair pathway. Then each of these 

key genes (with main focus on Artemis gene) will be described in more detail. 
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Figure 1.5 - Main steps involved in NHEJ.  
 

 
 

DSB is recognised by the Ku heterodimer (a), DNA-PKcs is recruited to the break by Ku 
heterodimer and DNPK complex is formed, (b) DNA-PKcs recruits Artemis (c), DNA ends are 
processed by a complex consisting of XLF, XRCC4, DNA ligase IV, and Artemis (d) DNA-
repair factors dissociate and the DSB is repaired (d) (adapted from Misteli and Soutoglou 
2009). 
 

 

Briefly, three main steps are involved in NHEJ repair of DSBs; end binding, 

bridging and end processing and ligation. The DSB recognition and binding step 

requires the binding of Ku heterodimer to DNA ends and recruitment of the DNA-

PKcs to the break site (West et al., 1998) which, bridges the broken DNA ends. Also 

due to the fact that the DNA ends at the break are rarely compatible the DNA-PKcs 
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recruits the Artemis protein which acquires endonucleolytic activity and digests 5’ 

and 3’ DNA overhangs. Following, compatible DNA ends are re-ligated by a protein 

complex containing DNA ligase IV which is stabilised and stimulated by XRCC4 and 

Cernunos-XLF (Burma et al., 2006). 

 

1.3.1.1 -  Ku Heterodimer 

The Ku heterodimer is a DNA-binding protein which comprises of two tightly-

associated subunits of ~70kD and 83 kD (Ku70 and Ku80, respectively; Ku80 is 

sometimes referred to as Ku86) (Smith and Jackson 1999). Although, the two 

subunits of heterodimer have weak primary sequence homology they are very similar 

in structure as each subunit includes three domains: an N-terminal α/β globular 

domain with the Rossmann fold, a centrally located DNA binding β barrel domain, 

which is central to the interactions with DNA, and the extended α-helical arm near 

the C terminus (Jones et al., 2001).  

 

Ku may act solely as a sensor of DNA damage, binding to ends of a DSB and 

signalling events that indirectly affect DSB repair (e.g. cell cycle regulation) through 

induction of DNA-PK activity or it may play a more direct role, including protection of 

ends from degradation, bridging of DNA ends prior to joining, or recruitment of other 

proteins that repair DSBs (Ramsden and Gellert 1998). According to Shin et al., 

(2004), the broken ends of the DNA with either blunt or fidelity ligation are promoted 

by the Ku70/Ku80 heterodimer. Briefly the Figure 1.6 summarises the role of 

Ku70/Ku80 heterodimer in the repair of NHEJ repair of DSB.  
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Figure 1.6 - Binding and bridging of DNA ends through Ku heterodimers. 
 
 

 
 

         
The broken DNA molecule is missing a base and is blocked by a non-ligatable moiety (black 
circle) on the right-hand side (a) Ku heterodimer binds to both ends at the break (b) and 
interacts with each other to form a bridge between the each ends of the DNA (c) (adapted 
from Jones et al., 2001).  

 

If the broken ends are compatible, ligation would be rapid and efficient. However, if 

the ends are not a competent substrate for ligation (e.g. hairpins from V (D) J 

cleavage, non-complementary overhangs, etc.), one or both of the Ku heterodimers 

could translocate internally, continuing to stabilise the intermolecular association of 

the ends (i.e. form a bridge between the two ends) and permit processing to occur 

until a substrate that is competent for ligation is produced (Ramsden and Gellert 

1998).  
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1.3.1.2 -  DNA-Dependent Protein Kinase (DNA-PK) 

The DNA-PK complex, which includes Ku70/80 heterodimer and DNA-PKcs, is a key 

player in NHEJ pathway of DSB repair (reviewed in Burma et al., 2006). The DNA–

PK components are also important in a variety of other processes, including the 

modulation of chromatin structure and telomere maintenance (Smith and Jackson 

1999). The DNA-PKcs is a large catalytic subunit (~460-kDa in size) and is one of 

the members of the phosphatidylinositol-3-kinase-like (PIKK) family of 

serine/threonine protein kinases. Other members include Ataxia Telangiectasia-

Mutated (ATM), Ataxia and Rad3 related (ATR), mammalian target of rapamycin 

(mTOR), suppressor of morphogenesis in genitalia (SMG-1) and 

transformation/transcription domain-associated protein (TRRAP) (Leuther et al., 

1999; Lempiainen and Halazonetis 2009).  

 

A study by Chan et al., (2002)  has shown that phosphorylated DNA-PKcs plays 

important role in the repair of DNA DSBs, by virtue of its localisation at the site of 

damage. Once the DNA DSB is recognised by the Ku heterodimer the DNA-PKcs are 

recruited to the site of the DNA damage. Upon binding to DNA ends, DNA-PKcs 

becomes active and exhibits serine/threonine kinase activity and is phosphorylated 

(Lee and Kim 2002). It then functions as a scaffold and bridges the broken DNA ends 

in a synaptic complex containing two DNA-PKcs molecules (DeFazio et al., 2002). 

DNA-PKcs provides binding sites for other NHEJ proteins such as nuclease Artemis 

(Ma et al., 2002), required for the trimming of the DNA ends or XRCC4/DNA ligase IV 

complex involved in the re-joining step of NHEJ  (O'Driscoll and Jeggo 2002).  
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1.3.1.3 -  Artemis 

The Artemis is one of the most recently identified NHEJ repair protein located on 

chromosome 10p13 and has a predicted molecular weight of 77.6kDa (Moshous et 

al., 2000). This protein belongs to metallo-β-lactamase superfamily and is composed 

of three identifiable regions; the β-Lactamase homologous region (aa 1-155), the 

associated β-CASP domain (aa 156-385), and the COOH-terminal region (aa 386-

692) (Poinsignon et al., 2004). When Poinsignon et al., (2004), investigated the role 

of β- Lactamase and β- CASP domains with regard to V(D)J recombination and DNA 

repair after IR, they have found that the DNA repair during V(D)J recombination and 

after IR are quantitatively different, as different regions of the Artemis are required for 

the DSB repair. The β-CASP region for example, participates within the β-Lactamase 

region in forming the catalytic site of Artemis (Poinsignon et al., 2004). The COOH-

terminal region of the Artemis may be required for DNA repair after IR (Poinsignon et 

al., 2004). The metallo β-lactamase region shows homology to yeast PSO2 and 

murine SN1. The conserved homology of β-lactamase region and the catalytic 

activity of β-CASP are crucial for the functioning of the Artemis protein. The C 

terminal consists of eight Serine-glutamine (SQ)/ threonine-glutamine (TQ) domains 

required for ATM, ATR, and DNA-PKcs proteins carry out phosphorylation of Artemis 

(Poinsignon et al., 2004). 

 

The Artemis protein has shown to have exonuclease and endonuclease activities 

when in the presence of DNA-PKcs and ATP. Mutations in Artemis protein encoded 

DNA Cross Link Repair 1C Gene (DCLRE1C) gene in 29 SCID patients has been 

reported by (Pannicke et al., 2010). In total, 13 different mutated DCLRE1C alleles 
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were detected and the most mutations (59%) were gross deletions of exons 1-3 or 

exons 1-4.   

 

The DNA-PKcs auto-phosphorylation at the T2609–T2647 cluster, in the presence of 

Ku and target DNA, is required for Artemis mediated endonuclease activity. Also the 

DNA-PK autophosphorylation regulates Artemis access to DNA ends (Ma et al., 

2005). The Artemis:DNA-PKcs complex gains DNA endonuclease activity that 

specifically targets and cleaves single-stranded to double-stranded DNA junctions 

(including 50 or 30 overhangs, hairpins, flaps, bubbles, loops and gaps) (Ma et al., 

2005). After the trimming of excess or damaged DNA, the Artemis:DNA-PKcs 

complex may de-bind and permit the ligase complex, XRCC4:DNA ligase IV, which 

completes the joining of the two DNA strands. 

 

The Artemis:DNAPKcs complex also has hairpin-opening activity. Although, Artemis 

alone has 5’ to 3’ single-strand-specific exonuclease activity, upon complex formation 

with and phosphorylation by DNA-PKcs gains endoncleolytic activity which is critical 

for the hairpin-opening step V(D)J recombination and for the 5’ and 3’ overhang 

processing in NHEJ (Ma et al., 2002). As explained earlier, during V(D)J 

recombination, the RAG proteins create DNA hairpins at the V, D, or J coding ends, 

and Artemis is essential to open these hairpins prior to binding.  

 

The DNA-PKcs and Artemis are only detectable in vertebrates (reviewed in Ma et al., 

2002) suggesting the absence of hairpin activity in eukaryotes. Different hairpin 

sequences are opened by the native DNA-PKcs and full-length Artemis in variable 

ways and with varying efficiency. The sequence dependent variation in the efficiency 



28 

 

and even the position of hairpin opening by Artemis:DNA-PKcs is important from the 

standpoint of immunologic diversity (Lu et al., 2007). The way which the 

Artemis:DNAPKcs complex processes the two ends of the DNA and gets the DNA 

ready to repair the DSB is demonstrated in more detail in Figure 1.7. 

 

Figure 1.7- DNA-PK and Artemis mediated DNA end processing. 
 

 

Two SSBs resolve into a DSB with long overhangs (1). The Ku70/80 heterodimer binds the 
DNA end to confer protection and recruit DNA-PKcs (2). When bound to a DNA end, DNA-
PK autophosphorylates and undergoes a conformational change that alters the orientation of 
the DNA such that (4) Artemis can now recognise the ssDNA–dsDNA junction of the 
overhang, make an intra-strand incision and cleave the fragment via its exonuclease activity 
(5). With reduced affinity for the now blunt DNA, autophosphorylated DNA-PKcs eventually 
dissociates leaving Ku-bound DNA ends ready for further processing by NHEJ factors 
(adapted from Goodarzi et al., 2006). 
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1.3.1.4 -  XRCC4, XLF and DNA Ligase IV complex 

The XRCC4 promoter consists of an N-terminal head domain which constitutes β-

sandwich and a long helical C-terminal stalk which constitutes α-helixes. The head 

domain and the stalk are held together by van der Waals contacts and form a helix 

turn helix (HTH) structure which faces the major groove and interacts with the DNA 

backbone (Junop et al., 2000). 

  

The XRCC4-like factor (XLF, also known as Cernunnos) has structural similarity to 

XRCC4 and could be required for XRCC4-Ligase IV complex recruitment to DNA 

ends or could help the XRCC4-Ligase IV complex to bridge with other NHEJ 

components such as Ku and DNA-PKcs (Ahnesorg et al., 2006). 

 

The DNA ligase IV is a nuclear enzyme that joins the breaks in the phosphodiester 

backbone of DNA. Although, the DNA ligase IV carries out the ligation step, it 

requires the binding of XRCC4 to do so. The XRCC4 functions as a regulatory 

element to stabilise DNA ligase IV, to stimulate ligase activity, and to direct the ligase 

to the site of DNA breaks via its recognition helix and DNA-binding capacity.  

 

A complex of XRCC4, XLF and DNA Ligase IV performs the final ligation step in 

NHEJ. According to Li et al., (2008), the possible modes of interaction between 

XRCC4, XLF and Ligase IV are formed by; linker region between Ligase IV BRCA1 

COOH-terminal domain (BRCT) binding to XRCC4’s coiled-coil, the folded 

XLF/Cernunnos contact of XRCC4 via the head domains, the C termini of XLF 

molecules unfold and bind to Ligase IV in a similar way to XRCC4, the XLF and 

XRCC4 form a heterodimer and bind to Ligase IV in the composite coiled-coil region. 
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When Chen et al., (2000) have co-expressed human DNA ligase IV and XRCC4 in 

insect cells and purified an active complex of these proteins to near homogeneity 

they have found that the DNA ligase IV-XRCC4 associates with both Ku and the 

catalytic subunit (DNA-PKcs) of DNA-PK at the ends of DNA molecules to allow the 

DNA ligase IV-XRCC4 complex to bind specifically to DNA ends and acts as an 

alignment factor, holding together the short complementary single-strand ends of 

linear duplex DNA molecules.  However, Ku and DNA-PKcs have markedly different 

effects on DNA end joining by DNA ligase IV-XRCC4. Ku inhibits intermolecular DNA 

joining, whereas DNA-PKcs stimulates intermolecular DNA joining even in the 

presence of Ku (Chen et al., 2000).  

 

When Ahnesorg et al., (2006), has reintroduced wild-type XLF into NHEJ-deficient 

2BN cells derived from a radiosensitive and immune-deficient patients lacking XLF 

due to an inactivating frameshift mutation their radiosensitivity and NHEJ defects 

were corrected. Thus, the XLF constitutes a novel core component of the mammalian 

NHEJ apparatus. 

 

Another protein implicated in mammalian NHEJ is the DNA polymerases of the Pol X 

family that are thought to mediate strand-filling steps in the pathway (Ma et al., 

2005). 
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1.3.2 -  Homologous Recombination (HR) Pathway 

The HR repairs double-strand DNA breaks, single-strand DNA gaps and interstrand 

cross links with high fidelity (Krejci et al., 2012). The HR occurs during S and G2 

phases and repairs the DNA DSBs using homologous chromosomal or sister 

chromatid DNA as a template for synthesis of new error-free DNA (Shin et al., 2004). 

During this process a Holliday junction is created whereby lost genetic information 

from the undamaged sister chromatid (mitosis) or homologous chromosome 

(meiosis) is used to restore the original information lost at the site of the break 

(Helleday 2003; Wyman et al., 2004). 

 

This process is conserved from bacteria to man and recent observations suggest that 

mitotic HR is essential for faithful replication in vertebrate cells (Helleday 2003). 

Different HR mechanisms exist in different organisms and at different biological 

circumstances (Jackson 2002).  

 

The initial step in HR is thought to be a 5’ to 3’ exonuclease re-sectioning of the DNA 

end to produce a 3’ ssDNA overhang (Helleday 2003). The ensuing 3’ ssDNA tails 

are then bound by Rad51 in a process that is influenced by a range of other proteins 

including replication protein A (RPA), Rad52p and Rad54p (Jackson 2002).  A 

central player in HR is the strand exchange protein, called Rad51 in eukaryotic cells 

(RecA in E coli). During synapsis (homolog search and DNA invasion are collectively 

called synapses) the Rad51 facilitates the formation of a physical connection 

between the invading DNA substrate and homologous duplex DNA template, leading 

to the generation of heteroduplex DNA (D loop). The D-loop intermediates are where 

the 3’-end of the invading strand primes DNA synthesis off the template duplex DNA 
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(Li and Heyer 2008). The 3’ terminus of the damaged DNA is then extended by a 

DNA polymerase that copies information from the undamaged partner, and the ends 

are ligated by DNA ligase I. Finally, after migration, the DNA crossover, i.e. the 

holiday junctions are resolved by cleavage and ligation to yield two intact DNA 

molecules. A model of HR repair of DSBs which occur in eukaryotes is illustrated in 

Figure 1.8. 

Figure 1.8 - Main steps involved in HR. 
 

 
 
HR initiates with processing of DNA DSB in the 5’3’ direction by the MRE11-Rad50-NBS1 
complex to form 3’ overhangs. RAD52 binds to ssDNA-RPA and recruits RAD51 to form a 
nucleoprotein filament that searches for homologous DNA molecule. RAD51-bound DNA 
exchanges DNA strand with the undamaged, homologous DNA molecule, resulting in 
formation of recombination intermediate heteroduplex DNA (Holiday Junction). Holiday 
junctions are resolved by structure-specific endonucleases and branch migration, restoring 
the original lost genetic information (adapted from Jackson 2002). 
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Following resolution and separation of the two sister chromatids by the action of 

resolvase enzymes, DNA replication is completed and genomic integrity at the site of 

the DSB is maintained (Ip et al., 2008). 

 

According to Saintigny et al., (2002), patients with Werner syndrome (WS), an 

uncommon autosomal recessive disease with features of premature aging and 

genetic instability, is defective in HR pathway. A physiological role for the WRN 

RecQ helicase protein in RAD51-dependent HR and a link between defective 

recombination resolution and limited cell division potential, DNA damage 

hypersensitivity, and genetic instability in human somatic cells was detected in a 

study reported by (Saintigny et al., 2002). Also the BRCA 1 defect in breast cancer 

patients may lead to defective processing of DSBs via HR in these patients. 

 

1.3.3 -  Single-Strand Annealing (SSA) 

SSA is a process that is initiated when a DSB is introduced between two repetitive 

sequences oriented in the same direction. Four steps have been suggested for the 

repair of DSBs by SSA (Figure 4): (i) an end resection step which is needed for the 

formation of long 3'-ssDNA, (ii) annealing step in which the two repetitive sequences 

are annealed together forming a flap structure, (iii) a second resection step in which 

the flap structures (formed by the regions between the repeats) are resected and 

finally, (iv) the DNA ends are ligated. An example of direct SSB repair is illustrated in 

Figure 1.9. 
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Figure 1.9 - SSA model for repair of a two-ended DNA DSB. 

 
 

 
 

 
After DNA DSBs are introduced the DNA ends are resected 5’3’ direction and 3’ 
overhangs containing complementary repeat sequences (dark blue regions) are generated. 
The complementary ends are paired. The non-complementary ends are removed by FEN-1 
like nuclease. DSBs are ligated (adapted from Helleday et al., 2007). 
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This chapter to this point has focused more on different types of DNA damaging 

agents that cause DSBs, the DNA repair mechanisms that recognise and repair 

different DNA damages (with particular emphasis being around the DNA DSBs). 

However, as the overall aim of this research is to detect the cause of radiosensitivity 

in 84BR and 175BR patients, the next step of our discussion will be largely based on 

a discussion for different types of diseases associated with defective DSB repair 

mechanisms (especially those diseases that are associated with defective NHEJ 

repair pathway). 

 

Also, since the patient 84BR under study is considered over responder or over 

reactor to radiotherapy, the effects of radiotherapy on this patient will be discussed in 

more detail. Then, a discussion on a small group of patients found in population that 

are classified as over responders to radiotherapy will put an end to this chapter. 
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1.4 - Radiosensitivity and human syndromes  

 

There are number of human genetic disorders which are characterised by defective 

DSB response to IR. Animal models reveal that defects in any component of NHEJ 

pathway can lead to hypersensitivity to IR, genome instability, immunodeficiency and 

cancer (Bassing and Alt 2004). In humans, defects in the specific genetic 

components of NHEJ also result in predisposition to cancer (lymphoma and 

leukaemia) or to extreme radiosensitivity. For example, defects in ligase IV (Riballo 

et al., 1999) deficiency in Artemis expression (Musio et al., 2005) or a mutation in the 

DNA-PKcs gene are associated with extreme clinical and cellular radiosensitivity and 

increased cancer incidence (Abbaszadeh et al., 2010). Diseases that exhibit 

radiosensitivity are listed in Table 1.3. 

 

 
Table 1.3 - Radiosensitivity associated disorders. 

 

Syndrome Defect References  

Ataxia telangiectasia (A-T) ATM (Chun and Gatti 2004) 

Radiosensitive Severe Combined 
Immunodeficiency (RS-SCID) 

Artemis 
DNA-PKcs 

(Kobayashi et al., 2003; 
van der Burg et al., 2009) 

Ligase IV syndrome LIG4 (Chistiakov et al., 2009) 

Nijmegen Breakage Syndrome (NBS) NBS1 (Bakhshi et al., 2003) 

Breast / ovarian cancer BRCA1 (Gatti 2001) 

Blooms syndrome BLM  Ellis et al., 1995 

DNA-PKcs syndrome DNA-PKcs 
(van der Burg et al., 2009; 
Abbaszadeh et al., 2010)  
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1.4.1 - RS-SCID  

Defects leading to a reduction in functional Artemis endonuclease activity at the 

cellular level manifest extreme radiosensitivity. In human subjects, Artemis deficiency 

results in radiation sensitive severe combined immunodeficiency (RS-SCID). This 

disorder was originally identified in Athabscan speaking Americans who display high 

level of SCID (Murphy et al., 1980), hence the name SCID-A. SCID-A is 

characterised clinically by extreme radiosensitivity and by a complete absence of T 

and B cells due to a failure of the receptor recombination stage of V(D)J 

recombination (Dvorak and Cowan 2010). 

 

Nicolas et al.,1998 showed that a number of radiosensitive T – B – NK + SCID 

patients without mutations in the RAG genes and without any mutations in any of the 

five key NHEJ repair genes (DNA-PKcs, Ku70, Ku80, XRCC4, XLF, Ligase IV). Then 

the Artemis gene was identified by (Moshous et al., 2000) was involved in the 

pathogenesis of RS-SCID. Also a study by Noordzij et al., (2003) confirms that the 

deletions and missense mutations in the Artemis gene can cause RS-SCID with 

defective coding joint formation and lead to an early and complete B-cell 

differentiation block. Artemis deficiency also causes mild telomere dysfunction 

phenotype and show significantly elevated IR induced telomeric fusions (Yasaei and 

Slijepcevic 2010).  

 

The increase radiosensitivity of RS-SCID to gamma rays is not restricted to the cells 

of the immune system, but is also a characteristic of fibroblasts. An example is an. 

This patient with T-B  severe combined immunodeficiency, whose cells have defects 

closely resembling those of NHEJ-defective rodent cells showed dramatic 
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radiosensitivity, decreased DSB re-joining, and reduced fidelity in signal and coding 

joint formation during V(D)J recombination. Also the patient was defective neither in 

the known factors involved in NHEJ in mammals (Ku70, Ku80, DNA-dependent 

protein kinase catalytic subunit, XRCC4, DNA ligase IV, or Artemis) nor in the Mre11-

Rad50-Nbs1 complex. Then a research by a French group with Turkish-Italian-

German collaborators analysed five new patients and identified the XLF protein 

which happen to be mutated in 2BN which was responsible for radiosensitivity as 

reintroduction of wild type XLF rescued radiosensitivity in these patients (Dai et al., 

2003; Ahnesorg et al., 2006). Van der Burg et al., (2009) also reports the first human 

patient with the radiosensitive T-B severe combined immunodeficiency with a DNA-

PKcs missense mutation.  

 

Attempts to correct the deficiency in Artemis gene in cells by transduction with 

lentiviral gene expression vectors containing the Artemis cDNA has led to over-

expression of Artemis in a number of mammalian cell types (Multhaup et al., 2010). 

However, over-expression has also resulted in a loss of cell viability, associated with 

increased DNA damage and elevated apoptosis as a result of abnormal activity of 

the Artemis endonuclease inducing DNA breaks (Multhaup et al., 2010). While such 

findings have significant implications for the role of gene therapy approaches for the 

treatment of SCID, it also reveals a potentially novel mechanism which may explain 

radiosensitivity in human cell types. 
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1.4.2 - Ataxia Telangiectasia (A-T)   

A-T is a human autosomal recessive disorder characterised by progressive 

cerebral degeneration, immunodeficiency, lack of balance (Ataxia), dilated 

blood vessels of the eye (ocular Telangiectasia) and skin, radiosensitivity, 

predisposition to lymphoreticular and other malignancies, and cell cycle 

checkpoint defects (Lavin and Shiloh 1997).  A-T is caused by a mutation in 

ATM gene which is central to cell cycle checkpoint responses such as 

intracellular signalling; DNA-damage induced cell cycle checkpoints and DNA 

DSB repair.  

 

Patients with A-T either lack the ATM protein or ATM kinase activity or have 

mutations in ATM gene. Thus, a defect in a single ATM gene could cause a diverse 

problem such as ataxia, cancer susceptibility, radiosensitivity, characteristic 

translocations and immunodeficiency. Also, ATM-deficient cells show enhanced 

sensitivity and greatly reduced responses to genotoxic agents that generate DNA 

DSBs, such as IR and radiomimetic chemicals (Rotman and Shiloh 1999).  

 

Xu and Baltimore (1996), examined the ability of ATM deficient (ATM -/- ) mice cells 

(which they have created in their laboratory) to arrest cell cycle at G1 following 

gamma irradiation and UV irradiation. According to their results the ATM deficient 

cells exhibited an intermediate defect in cell cycle arrest following higher dosage (>5 

Gy) of radiation. This characteristic support the idea that ATM is responsible for 

signalling the P53 mediated cell-cycle arrest that follows IR. ATM is also required for 
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efficient G1 to S phase transition during the cell cycle progression (Xu and Baltimore 

1996). 

 

A-T cells exhibit defective induction of all checkpoints in response to DSBs. The 

abnormal responses of A-T cells to IR include increased chromosomal breaks and 

radioresistant DNA synthesis, impaired p53-dependent arrest in G1 and other cell 

cycle checkpoint defects (reviewed in Delia et al., 2000). 

 

Other defects in the cellular responses of A-T cells to IR might also contribute to their 

radiosensitivity, such as defective induction of NF-kB (Rotman and Shiloh 1999). 

Inhibition of NF-kB activation was shown to enhance IR-induced cell death of normal 

cells and introduction of a truncated IkB-a corrected the hypersensitivity to IR and 

streptonigrin of A-T cells (reviewed in Rotman and Shiloh 1999). 

 

A study by Sandoval et al., (1999) investigated the mutational spectrum of the ATM 

gene in a cohort of sixty six unrelated A-T patients living in Germany. They have 

identified 46 different ATM mutations among which were the amino acid deletion, 

amino acid substitutions, frameshift deletions, frameshift insertions, nonsense, 

missense and splicing mutations and 26 sequence polymorphisms and variants 

scattered throughout the gene. The majority of the mutations were truncating, 

confirming that the absence of full length ATM protein is the most common molecular 

basis of A-T. Cultured cells from A-T patients are also hypersensitive to IR and show 

defective activation of radiation-induced cell cycle checkpoints; including retarded 

p53 stabilisation (reviewed in Sandoval et al., 1999). The radiation sensitivity of A-T 
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cells generally is assumed to result from an inability to delay the cell cycle to allow 

sufficient time to repair DNA damage (Meyn 1995). 

 

The ATM protein activates several cellular functions such as the p53, cell cycle 

checkpoints and apoptosis in response to DNA damage. The defect in ATM gene in 

A-T patients leads to suppression of these pathways and the A-T phenotypes 

described above.  

 

So to recap, the mutation of the ATM gene regulating cell cycle control and DSB 

repair is associated with clinical and cellular radiosensitivity in A-T. 

 

1.4.3 - Nijmegen Breakage syndrome (NBS) 
 

The NBS is a rare autosomal recessive syndrome of chromosomal instability. Some 

of the characteristic features of the NBS are microcephaly at birth, combined 

immunodeficiency and predisposition to malignancies and cellular hypersensitivity to 

IR (Chrzanowska et al., 2012). 

 

The first reported NBS case was described in 1979 in a Dutch boy with 

microcephaly, stunted growth, mental retardation, café-au-lait spots and 

immunodeficiency. Then in 1981, his brother was reported to have same clinical 

symptoms by researchers at the University of Nijmegen in Netherlands hence the 

name, Nijmegen breakage syndrome which was named by the Dutch group 

(Weemaes et al., 1981).      
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Although, the clinical features of the NBS and AT are different the NBS shares a 

number of cellular features with A-T notably, a specific sensitivity to IR, characteristic 

chromosomal rearrangements in cultured and a predisposition to malignancies, 

particularly lymphoid cancers.  

 

The gene mutated in NBS was cloned in 1998. This gene termed the NBS1 gene 

encodes a protein called Nibrin which is a member of the hRad50/hMre11 protein 

complex involved in DNA DSB processing in HR (Varon et al., 1998). Nibrin together 

with Mre11 and Rad50 is part of a trimeric complex (M/R/N complex) that is 

conserved between yeast and mammals (Demuth and Digweed 2007). 

 

Although, there is controversy in literature the deficient G1- to S-phase and G2 to 

mitosis transitions have been reported for NBS cells (Demuth and Digweed 2007). 

The NBS1 is involved in signal transduction for cell-cycle checkpoints as a substrate 

of ATM kinase and, when this mechanism is defective, induces impaired G2 

checkpoint control and also allows continued DNA synthesis in the presence of 

DSBs, so-called radio- resistant DNA synthesis (RDS) (reviewed in Tauchi et al., 

2002). 
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1.4.4 - Bloom’s Syndrome (BS)  

BS as reviewed in German (1995) and Ellis et al., (1995) is a rare autosomal 

recessive disorder characterised phenotypically by retarded growth, hypersensitivity 

to IR, sun sensitivity, immunodeficiency and predisposition to a wide variety of 

cancers at an early age. The gene mutated in Bloom’s syndrome, BLM, encodes a 

member of the RecQ family of DExH box-containing DNA helicases (Ellis et al., 

1995). Some genes in the DExH family e.g. PB, XPD, and ERCCG genes are found 

in DNA repair and mutations where such genes are found in XP and Cockayne 

syndrome patients.  

  

The BS gene product, BLM, is a 159 kDa DNA helicase enzyme belonging to the 

RecQ family (Turley et al., 2001). It was found that BS cells are much more sensitive 

to the irradiation than control cells at the end of S and at G2 phases. The rate of 

induction of chromosome breaks is significantly increased and that of chromatid 

breaks and exchanges is also increased, though to a lesser degree (Aurias et al., 

1985). 
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1.5 - Over responders to radiotherapy  

Radiotherapy is an important modality of treatment for a wide variety of histologically 

distinct cancers. Most cancer patients receive radiotherapy alone or in combination 

with other forms of therapy. Approximately 20% of patients experience side effects or 

normal tissue toxicity during radiotherapy, which can include mild erythema to 

ulceration and haemorrhage and occasionally neuropathy and paralysis. Also a few 

individuals manifest disproportionately severe normal tissue toxicity (NTT) to IR and 

such patients are often referred to as radiotherapy (RT) “over-reactors”. Such 

individuals respond so extremely to RT that NTT can be life-threatening. The Table 

1.4 summarises normal tissue toxicity for skin. However standardised scales of NTT  

for all tissue and organ types have been developed (Cox et al., 1995). 

 

Table 1.4 - NTT (Skin) following radiotherapy. 
 

RTOG 
Scale 

Normal tissue toxicity 

0 No side effects. 

1 Faint, dull erythema, dry superficial desquamation. 

2 Tender erythema, moist deep desquamation, oedema. 

3 Extensive moist desquamation, increased oedema. 

4 Ulceration, haemorrhage, tissue necrosis. 

5 Death (over-reactors). 

            
 

 

There is considerable inter-patient heterogeneity in the development of NTT as a 

consequence of RT which has been recognised for over half a century (e.g., 

Holthusen 1936). During clinical RT, normal tissue tolerance levels are appreciated 

and severe sequel is avoided in the majority of patients.  
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The NTT scoring system was developed by the Radiotherapy Oncology Group 

(RTOG) (e.g. Cox et al., 1995) and the Late Effects Normal Tissue Task Force 

Subjective, Objective, Management and Analytic (LENT/SOMA) provided 

standardised scales of NTT for all tissue types (Pavy et al., 1995).  

  

In addition many studies have examined the development of NTT in breast cancer 

patients following RT and have demonstrated the occurrence of NTT such as 

telangiectasia, fibrosis, oedema, atrophy, ulceration and neuropathy, at a predictable 

rate. For example, slight fibrosis in approximately 15% of patients; moderate in 5% 

and severe in 5% of patients (e.g. Fehlauer et al., 2003; Hoeller et al., 2003). 

 

A classical example of an over-reactor disease is A-T in which inherited mutations in 

the ATM gene controlling cell cycle control and DNA DSB repair is associated with 

extreme clinical and cellular radiosensitivity (Lavin and Shiloh, 1997). Moreover, 

Abbaszadeh et al., (2010) have recently demonstrated a unique mutation in DSB 

repair gene DNA-PKcs which resulted in clinical and cellular radiosensitivity in a 

patient whom died as a consequence of RT-induced NTT. 

 

As demonstrated in the previous section the core cause of radiosensitivity in these 

individuals is due to some form of defect in the repair of DNA DSBs or signalling 

pathways that are involved in the repair of DNA damage. 
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1.5.1 - 84BR and 175BR Patients: Over-responders to radiotherapy  

Briefly, some of the clinical data known from the literature for the two cell lines under 

study are as follows: 

1. The patient cell line 84BR is an adult female with breast cancer who had 

extreme reaction to radiotherapy. 

2. The patient cell line 175BR is an adult male with multiple primary tumours of 

independent histological origin but no evidence of over-reaction to 

radiotherapy. 

 

A skin biopsy from the patient 84BR who have had adverse reactions at radiotherapy 

was provided to Dr Arlett (MRC Genome Damage and Stability Centre, Sussex 

University) by Professor N.M. Bleehan (MRC Clinical Oncology and 

Radiotherapeutics Unit, Cambridge). The patient from which the 84BR cells were 

derived can be categorised at a RTOG class three patient with severe oedema, 

swelling and persistent fibrosis. Cell strains developed from this patient biopsy had a 

reduced competence for RPLD (repair of potentially lethal damage) which is a form 

of a measure used to detect the level of cell survival to genotoxic agents such as IR.   

 

In a study by Arlett et al.,1989 the RPLD assay was used to measure the effect of 

potentially lethal damage of IR on the survival of five fibroblast cell strains (84BR and 

83BR (both from radiosensitive breast cancer patients) A-T patient CS (patient with 

Cockayne’s syndrome) and 1BR.3 (DNA repair normal individual).  Their results 

revealed that the 84BR was not only sensitive to IR but also lacked in RPLD while 

the rest of the cell strains under study were only slightly sensitive than the normal 

individuals and showed little capacity for RPLD. Another study by Alsbeih (1996) 
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looked at the recovery ratios (RR) of the three hypersensitive cell lines (84BR, 

GM739 and 180BR) to radiation and detected a significantly higher RR for those cell 

lines compared to the controls.  

 

Thus, some of the studies conducted on 84BR cell line confirm the hypersensitivity of 

84BR cell line to IR at cellular level and a defect in the ability of the cells to repair the 

DNA damage. 

 

An established cell line for 175BR patient was also provided by Dr Arlett but originally 

was isolated from a non-affected skin biopsy by Professor Bruce Ponder (Cambridge 

Research Institute, Cambridge, UK). A brief history of this patient can be observed in 

a family pedigree illustrated in Figure 1.10. As can be seen from the pedigree the 

most of the family members of the 175BR patient exhibit a multiple number of 

tumours independently, some of which are the brain tumour, breast cancer, bowel 

and pancreas cancer while the 175BR patient is the only member that exhibits 

multiple tumours. The patient 174BR, the brother of 175BR, also exhibits multiple 

primary tumours. It is also very unfortunate that majority of his family members who 

have had cancer have died.  
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Figure 1.10 - Cancer Prone Kindred. 
 
 

 
 

 
 
 
From the literature we know that the cytotoxic chemotherapy and radiotherapy exerts 

its anticancer effect by inducing DNA damage e.g. DNA strand breaks and DNA 

crosslinks. Also the efficacy of DNA repair mechanisms in cells will be important in 

governing the response to anticancer therapy. Therefore, the aim of this project will 

be briefed in the next page. 
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1.6 - Project Aim 

The aim of this project is twofold; first to determine if the 84BR and 175BR exhibit 

cellular radiosensitivity. Thus, once the radiosensitivity in the two patients are 

identified the next aim of the research will be to determine if the radiosensitivity in 

these patients is associated with failure to effectively repair the DNA DSBs. 
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Chapter 2 - Clonogenic assays  
 

2.1 -  Introduction        

In order to determine the cellular radiosensitivity of 84BR and 175BR fibroblast cell 

lines, clonogenic assays were first conducted with IR to establish sensitivity. Then 

clonogenic assays with nitrogen mustard (HN2) were carried out, to determine the 

defective DNA repair pathway (NHEJ or HR) responsible for the potential cellular 

radiosensitivity in 84BR and 175BR patient fibroblast cells.  

 

Clonogenic assays are a reliable method for the determination of inherent cellular 

sensitivity to a variety of DNA damaging agents. Briefly, a cell that is not 

reproductively dead and has retained the capacity to divide after exposure to IR or 

other cytotoxic agents has the potential to form a clone or colony, and it is said to be 

clonogenic (Munshi et al., 2005). The clonogenic cell survival assay, first described in 

1950s for the study of radiation effects on reproductive survival of cells, is still a 

widely used experimental approach to test the effects of radiation, drugs or genes on 

the growth and proliferative characteristics of cells in vitro (Munshi et al., 2005; Guda 

et al., 2007). This assay is also known as colony forming assay (CFA) and it can be 

performed on monolayer cultures as well as cells growing in semi-solid soft agar 

media. The monolayer CFA measures effects of drug or radiation toxicity on 

anchorage-dependent cell growth while soft-agar CFA measures anchorage-

independent growth (Yung 1989).  

 

In this chapter the clonogenic assays were used to identify differences in the 

response to genotoxic agents such as IR and HN2. In clonogenic assays the cell 
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survival is demonstrated with a cell survival curve, which defines the relationship 

between the doses of the agent used to produce an insult and the fraction of cells 

retained to reproduce. From the survival curve the D10 (dose of radiation required to 

reduce colony survival to 10%) is determined, which is used as a quantitative index 

of a given cell types response to the lethal action of the radiation or drug exposure.  

  

There are many published papers where scientists have conducted the clonogenic 

assays on various cell types, a few of which are summarised below; 

 

A previous study by Abbazsedeh et al., (2010), demonstrates the use of clonogenic 

assay for the determination of hypersensitivity of XP14BR patient with Xeroderma 

Pigmentosum (XP) to IR.  In a study by Arlett and Cole 1989 the clonogenic cell 

survival assays are also used to determine the hypersensitivity of A-T patients to IR. 

In this study the D0 (mean lethal radiation dose), for five normal, (1BR.3, 1BR.2, 

48BR, GM730 and 54BR), based on seventy-four survival curves, was at 

1.457±0.018 Gy, while the D0 based on fifteen survival curves for five A-T 

heterozygotes (ATHM4BI, ATHM1SF, ATHF4BI, ATH96TO and ATHM7BI) was at 

1.280±0.037 Gy. Thus, the results show a slightly more radiosensitivity to IR in A-T 

patients compare to their five counterparts. A larger study, by Paterson et al., (1979) 

on 143 strains, consisting of twenty one supposedly normal and hundred twenty two 

cancer patients (such as patients with Hodgkin’s disease, Lymphoma, malignant 

melanoma and breast cancer) was conducted  where a total of 407 survival curves 

were generated. Their study also demonstrates hypersensitivity in those patients to 

IR with clonogenic assays. 
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Although, clonogenic assay is a widely used technique, in some circumstances, the 

clonogenic assays may be misleading particularly when using primary (non-

immortalised) cells. Here cells may be very viable and able to divide very efficiently 

and may not form colonies very well. Under these circumstances it may be useful to 

use some sort of proliferative assay rather than a clonogenic assay. Also primary 

cells are subject to, after a number of population doublings, replicative senescence. 

Here cells are metabolically viable but unable to undergo cell division and thus are 

non-clonogenic. For example, the cell survival assays such as the MTT assay 3-(4,5-

dimethylthylthiazol-2-yl)-2,5-dithenyltetrazolium bromide might be useful. 

 

The MTT, a yellow coloured tetrazolium-based compound (2,5-dithenyltetrazolium 

bromide), is taken up by live cells and reduced to blue-purple formazan crystals by 

mitochondrial enzyme succinate dehydrogenase (Yung 1989) (Yung 1989) and 

(Price and McMillan, 1990). Once the live cells take up this dye the absorbance of 

the MTT solution is read at 540nm to quantify the number of live cells that survive the 

exposure to a cell damaging agent.  

 

In a study by Price and McMillan (1990) the MTT assay was used as an alternative to 

clonogenic assay to measure the response of cultures of primary human tumours 

(HX142 cell line derived from patients with neuroblastoma and MGHU1 and RT112 

from patients with bladder cancer) to IR. Briefly, in this study, the cells were 

irradiated with 60Cobalt source then the MTT was added to the cells. Depending on 

the individual cell requirement the cell culture was incubated for 3-5 hours. The MTT 

solution was then removed and DMSO was added to dissolve the formazan crystals. 

The cell viability was then quantified by measuring the absorbance of the resultant 
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solution. Although, their results showed a reproducible measure of survival with MTT 

compared to clonogenic assays the usefulness of MTT assay in determining the 

radiosensitivity in primary human tumour cultures was limited as it required a several 

optimisation conditions for each cell lines.  

 

Another example is the sulforhodamine B (SRB) assay which was developed by 

Skehan and colleagues in 1990 to measure drug induced cytotoxicity and cell 

proliferation for large-scale drug screening applications (Voigt 2005). Briefly, cells 

grown in a 96 well plate are incubated in sulforhodamine B dye to allow this dye to 

bind to protein basic amino acids. Then the protein-bound to the dye is fixed in 

trichloroacetic acid and dissolved in Tris base solution. The cellular protein is then 

measured by reading the OD values at 510nm. So in principle the more live cells 

there is the more protein is made and the higher is the binding of SRB dye to the 

cells.  This method is more efficient and highly cost effective as large number of 

samples can be tested within a few days, and requires only simple equipment and 

inexpensive reagents (Vichai and Kirtikara 2006). 

 

Although, the clonogenic assay is over 50 years old, it is still the gold standard 

technique for measuring cellular radiosensitivity (Eastham et al., 2001). Hence, the 

use of this technique to detect the radiosensitivity in 84BR and 175BR cancer 

patients was very crucial to my research. Arlett et al., (1989) reports that the clinically 

radiosensitive 84BR patient is also sensitive to gamma radiation at cellular level. 

Thus, the clonogenic assays were performed with gamma radiation to confirm the 

clinical radiosensitivity at cellular level in 84BR and to detect radiosensitivity also at 

cellular level in 175BR patient cell line.  Once the cellular radiosensitivity is detected, 
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the clonogenic assays with HN2 will be conducted to determine the defective 

pathway that may be responsible for the radiosensitivity seen at cellular level.  
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2.2 - Materials and Method 

2.2.1 - Cell Lines 

Human fibroblasts (84BR, 175BR, 1BR.3, NB1) and NB1-tert human dermal 

fibroblast cell lines were used in this study. The 84BR diploid fibroblast cell line was 

derived from a non-affected skin biopsy of radiosensitive breast cancer patient (Arlett 

et al., 1989). The 175BR cell line was derived from a non-affected skin biopsy of an 

individual with multiple tumours of independent histological origin and was a kind gift 

from Professor Bruce Ponder. The NB1 normal diploid fibroblast cell line is described 

in Bridger and Kill (2004) and the 1.BR3 diploid fibroblast cell line was derived from a 

normal individual (Arlett et al., 1988). The NB1-tert cell line was established during 

this research, by transfecting the NB1 cell line with human telomerase reverse 

transcriptase (hTERT) in Brunel institute for cancer genetics and 

pharmacogenomics.  

 

2.2.2 - Cell Culture 

Cells were routinely cultured in complete medium consisting of Dulbecco’s Modified 

Eagle Medium (DMEM). (PAA Laboratories Ltd, Yeovil, Somerset, UK), 

supplemented with 10% (V/V) foetal calf serum (PAA Laboratories Ltd), 2mM L-

glutamine and 100 U mL-1 penicillin and streptomycin (PAA Laboratories Ltd). Cells 

were grown as monolayers in sterile Petri dishes (P100) or tissue culture flasks (75 

cm2) (Nalgen Nunc International, Life Technologies Ltd, Paisley Scotland) at 37 C in 

a humidified atmosphere with 5% CO2 in a class 2 Heraeus 6000 incubator (Heraeus 

Holding GmbH, Hanau, Germany).  
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2.2.3 - Sub-culturing  

Cells were routinely sub-cultured (2x105 cells/ dish) when they reached 

approximately 80% confluence. Medium was aspirated, and cells washed with 10ml 

of versene (phosphate buffered saline and 2mM EDTA), after which 1-2ml of 10% 

(v/v) trypsin (0.25% trypsin with Ethylene-diamine-tetra-acetic-acid (EDTA) was 

added. Immediately after, the cells were transferred to 50ml centrifuge tubes (Nunc), 

recovered by Heraeus Megafuge 1.0 centrifugation (DJB Labcare Ltd, 

Buckinghamshire, England) at 1200rpm and then subjected to a five-fold dilution 

before seeding into fresh 75 cm2 cell culture flasks or P100 Petri dishes. Culture 

media refreshed every 3-4 days and sub-cultured as they became 80% confluent. 

 

2.2.4 - Cell Count 

The 80% confluent cells were trypsinised and re-suspended in 10ml complete growth 

medium in a 15ml centrifuge tube.  Approximately, 10µl of this cell suspension was 

applied to a Neubauer haemocytometer (Weber Scientific International Ltd., 

Teddington, Middlesex, UK) and five 4 x 4 squares were counted using x10 objective 

of an Olympus CK2 inverted microscope (Olympus Europa GmbH, Hamburg, 

Germany). The total cell count established using the formula A= n x r x 104, where A 

is total cell number, n is the mean of cell count, and r is the total re-suspension 

volume.   
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2.2.5 - Irradiation of cells 

Cells were irradiated in suspension in DMEM with 0, 2, 4, 6 and 8Gy gamma 

radiation from a higher activity 60Cobalt source (Puridec Irradiation Technologies, Ltd, 

Oxford) at a distance of 25cm from the source at a dose rate of 1.4-1.5Gy min-1. An 

appropriate number of cells were plated into each of five 10cm dishes containing 

10ml DMEM to allow the growth colonies in each dish. 

 

2.2.6 - Feeder Layers 

Before commencing the clonogenic cell survival assay, cultures of feeder layer were 

established. The feeder layer provides extracellular matrix and certain nutrients for 

the growth of primary fibroblasts. To establish feeder layer, the cells, not greater than 

80% confluence, were recovered by trypsinisation, diluted in approximately 10ml 

complete medium and counted. Cells were diluted to approximately 105 cells per ml 

and subjected to 30Gy gamma irradiation, on a 60Co source, which is a dose rate of 

approximately 2.5Gy per minute. Following irradiation, 2 x 106 cells were cryo-

preserved in liquid nitrogen in 1ml complete medium containing 20% FCS and 10% 

DMSO. One day prior to nitrogen mustard and IR cell survival analysis, appropriate 

feeder cells were recovered from liquid nitrogen and diluted to 104 cells/ml of 

complete medium. Feeder cells (105 per dish) were added to each of twenty five 

10cm plastic Petri dishes and these were incubated overnight.  

 

 

 

 

 



58 

 

2.2.7 - Clonogenic Cell Survival Assay with Gamma Radiation 

Clonogenic assays following exposure to gamma radiation were conducted as 

described previously (Arlett et al., 2006). In brief, approximately 2.5 x 105 cells were 

seeded in 75cm2 tissue culture flasks and incubated overnight. Cells at 80% 

confluency were trypsinised, suspended in 10ml media and counted to determine the 

number of cells per ml. The cell suspension was serially diluted to concentrations of 

1000, 2000, 3000, 5000 and 8000 cells/ml at a final volume of 5ml. Cells in 

suspension were irradiated with 0, 2, 4, 6 and 8 Gy of gamma radiation. One ml 

aliquots of each cell dilution were transferred into 90mm dishes (5 replicates) 

containing 105 autologous feeder cells in 10ml DMEM. Feeder cells were produced 

by exposure to 30Gy gamma irradiation as described earlier. Cultures were 

incubated for three weeks at 37 C. After three weeks of incubation, colonies that had 

grown were fixed with 70% methanol and stained with 0.5% methylene blue (Sigma 

Aldrich, UK) diluted in distilled water. The colonies were counted and the survival of 

cells was expressed as a percentage of survival of untreated control cells. 

 

2.2.8 - Clonogenic cell survival assay with HN2 

Clonogenic assays following exposure of cells to HN2 was conducted as described 

by (Clingen et al., 2007). In brief, approximately 1 x 105 cells were seeded in five 

75cm2 tissue culture flasks and incubated overnight. Analytical grade HN2 (Sigma 

Aldrich, UK) was dissolved in serum free medium (SFM) immediately before use. 

Overnight cultures, at about 80% confluency, were washed once with versene and 

then treated with 5ml of 2, 4, 6 and 8 μM HN2 for 1 h at 37 C. Treated cells were 

harvested with trypsin, and serially diluted to concentrations of 1000, 2000, 3000, 

5000 and 8000 cells/ml at final volume of 5ml. One ml aliquots of each cell dilution 
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were seeded into 90mm dishes (5 replicates) containing 105 autologous feeder cells.  

Cultures were incubated for three weeks at 37 C. Microscopic examination revealed 

colony formation after three weeks, which were fixed with 70% industrial methylated 

spirit (IMS) and stained with 1% methylene blue. The stained colonies were counted 

and the percentage plating efficiency (PE) was calculated using the following 

equation: PE % = colonies counted / total number of cells plated X 100. 
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2.3 - Results 

2.3.1 - Clonogenic cell survival assays - Radiation  

The response of 84BR and 175BR diploid fibroblast cell lines to increasing dose of 

gamma radiation is shown in Figure 2.1 and is compared with the response from the 

repair normal human diploid fibroblast cell lines, NB1 and 1BR.3. It can be seen that 

for all cell lines the exposure to increasing doses of gamma radiation causes a 

proportionate decrease in clonogenic cell survival. However, in 84BR and 175BR cell 

lines there is an abnormal reduction in colony survival when compared to the NB1 

and 1.BR3 normal fibroblast cell lines. Comparison of the D10 values as illustrated in 

Table 2.1 show that the D10 values for the repair normal fibroblasts is 5 Gy for the 

NB1 cells and 5.7 Gy for the 1BR.3 cells. Therefore, the NB1 cells are 1.47 fold more 

radioresistant than the 84BR and the 175BR cells while the 1BR.3 cells are 1.68 fold 

more radioresistant than the 84BR and 175BR cell lines. These observations confirm 

those of Arlett et al., (1989) and demonstrate the inherent cellular radiosensitivity of 

the 84BR and 175BR fibroblast cell lines. A Student’s unpaired T-test, comparing the 

D10 values of the 84BR and 175BR cell lines with the normal fibroblasts, 

demonstrated that the cells were significantly more sensitive to gamma radiation (P < 

0.05). 
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Figure 2.1- Sensitivity of 84BR and 175BR to IR Compare to Control Cell Lines.

 

Here the clonogenic cell survival of 84BR and 175BR in comparison to the repair normal 
fibroblast 1BR.3 and NB1 following exposure to increasing doses of gamma radiation is 
illustrated. Data are derived from at least five independent experiments and error bars 
represent standard error of the mean survival following exposure to 2, 4, 6, and 8 Gy gamma 
radiation. The P value is < 0.05. 

 

 
 
 



62 

 

 

 

Table 2. 1 - The Dose of radiation required to reduce cell survival in a clonogenic 
assay to 10% (D10) in patient and control cells. 

D10 Values 

175BR 84BR NB1 1BR.3 

3.50 3.60 5.13 6.00 

 

To summarise, the exposure of cells to IR has induced DSBs in DNA. Due to the 

defect in the repair pathways the DSBs remained unrepaired. Thereby, the inability of 

the patient cells to repair the DNA damage resulted in more sensitivity to IR than the 

normal cells. Thus, the radiosensitivity seen at cellular level confirms the clinical 

radiosensitivity seen in 84BR.     

 

To determine the defective repair pathway that may be responsible for the cellular 

radiosensitivity seen here, the clonogenic assays were conducted with HN2. 
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2.3.2 - Clonogenic cell survival assays - HN2 

DNA DSB can be repaired by one of two mutually exclusive repair pathways as 

described in Chapter 1. In order to determine if the radiosensitivity of the 84BR and 

175BR cell lines was associated with a defect in either the NHEJ or HR repair 

pathway, clonogenic assays were performed in which the sensitivity to HN2 was 

determined as shown in Figure 2.2. 
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Figure 2.2 - Sensitivity of 84BR and 175BR to HN2 Compare to Control Cell Lines. 

 

Here the cell survival to HN2 exposure is illustrated. The patient cells having survived the 
nitrogen mustard suggests a defect in NHEJ repair and efficient repair via HR pathway. The 
error bars represent the SEM of at least five independent experiments. The P value is 0.18.        
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The Figure 2.2 shows the response of HN2 on 84BR and 175BR together with the 

repair normal NB1 and 1BR.3 cells. It can be observed that for all cell lines as the 

concentration of HN2 increases there is a decrease in clonogenic cell survival. 

However, all cell lines display a similar sensitivity profile in response to HN2 

exposure indicating that the radiosensitivity of 84BR and 175BR cell lines is not due 

to a defect in HR repair pathway and more likely to be a defect in one or more 

components of NHEJ repair pathway. This agent primarily exerts its cytotoxicity by 

the introduction of DNA interstrand crosslinks (ICL) which compromise both strands 

of the DNA. Such adducts are particularly challenging for the cell to repair which 

occurs via a two-step process. Here the ICL is ‘unhooked’ from one strand via the 

action of the nucleotide excision repair-associated endonuclease ERCC1-XPF 

protein complex. This in turn creates a substrate for repair of the strand break by HR.  

Using a Student’s unpaired T-test to compare the half maximal inhibitory 

concentration (IC50)  values of the 84BR and 175BR cell lines with the normal 

fibroblasts it was demonstrated that there were no significant differences in IC50 

values indicating similar responses to HN2 (P = 0.18). This observation indicates that 

the radiosensitivity of the 84BR and 175BR cell lines is not due to a defect in HR 

repair pathway and more likely to be a defect in one or more components of the 

NHEJ repair pathway. 
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2.4 -  Discussion 

The clonogenic cell survival of the radiosensitive patients, 84BR (patient with breast 

cancer) and 175BR (patient with multiple tumours) to IR and HN2 was measured 

against normal human fibroblasts 1BR.3 and NB1. The use of clonogenic cell 

survival assay, being the gold standard technique for measuring cellular 

radiosensitivity for many years (Eastham et al., 2001), had twofold purpose in my 

research: First, the clonogenic assays were conducted with IR to confirm 1) the 

clinical radiosensitivity of the 84BR patient cell line at cellular level, 2) to detect the 

radiosensitivity of 175BR at cellular level. Then, the clonogenic assays were 

conducted with the HN2, to determine the defective pathway that may be responsible 

for the cellular sensitivity to IR seen in these patients. 

 

On the basis of the cell survival curves the 84BR and 175BR patient cells seem to be 

more sensitive to gamma radiation when compared to controls. Thus, the findings 

confirm the observations made by Arlett et al., (1989) and demonstrate the inherent 

cellular radiosensitivity of the 84BR and 175BR fibroblast cell lines. The findings 

further confirm that the 84BR patient is not only clinically sensitive to IR but is also 

sensitive to IR at cellular level.  

 

IR causes DSBs in DNA. The DSBs in eukaryotic cells is repaired via HR or NHEJ 

repair pathways. The NHEJ repair pathway is the principal mechanism of repair of IR 

induced DSBs in eukaryotic cells and can occur in non-dividing cells. In HR repair 

pathway the genetic information lost after DSBs in DNA is borrowed from the sister 

chromatid so the repair of the lost genetic information is achieved in an error free 

manner. 
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To find out which pathway might be defective in the patient cell lines which, lead to 

sensitivity of these cells to IR, clonogenic assays were conducted with HN2. This 

DNA damaging agent exerts it is effect by simply introducing ICRs in DNA. The ICRs 

are repaired via interaction between the NER and HR DNA repair pathway. Here the 

ICL is unhooked by the action of the site specific endonuclease XPF-ERCC1. This 

unhooking then provides a substrate for the action of the HR pathway. Thus cells 

defective in HR are likely highly sensitive to cross linking agents such as HN2 

(Clingen et al., 2007). As illustrated in cell survival curves generated after the 

treatment of cells with HN2 the patient cells are repair normal compare to the 

controls. The normal sensitivity of patient cells to HN2 suggests that the HR DNA 

repair pathway may be functioning normal and it is more likely that the defect is in the 

NHEJ repair pathway. The NHEJ repair pathway repairs the DNA strand breaks in an 

error prone manner in all phases of the cell cycle but with preference to the G1 and 

early S phase. It is well known that defects in any key genes found in NHEJ repair 

pathway results in radiosensitivity (Scott and Pandita 2006). Since, patient cells 

under study display cellular radiosensitivity to gamma radiation the radiosensitivity 

seen in these cells may be due to a defect in the NHEJ repair pathway which leads 

us to further investigate this defect using various other functional and molecular 

techniques. 
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Chapter 3 - DNA DSB Assay ( -H2AX detection) 
 

3.1 -  Introduction  

In Chapter 2 the clonogenic assays conducted with two patient cell lines revealed a 

cellular hypersensitivity of about two fold when compared to repair normal diploid 

fibroblasts. These observations also confirmed that the clinical radiosensitivity of 

84BR patient was evident at cellular level. In addition the cellular hypersensitivity of 

the 175BR cell line may be associated with the increased cancer incidence observed 

in the patient. Moreover, the clonogenic assay conducted with HN2 demonstrated a 

normal HR DSB repair. Thus, the cellular radiosensitivity observed in 84BR and 

175BR fibroblast cells was likely associated with abnormal NHEJ. 

 

To determine if the cellular radiosensitivity observed in two patient cell lines was 

associated with a defect in DNA DSB repair, a phosphorylated H2AX ( -H2AX) assay 

was performed following the exposure of cells to 2Gy of gamma radiation from a 

60Cobalt source.  

 

DNA DSBs occur when both strands are broken close enough to disrupt the Watson-

Crick base pairing, resulting in the liberation of two DNA ends (Bassing and Alt 

2004). They arise from exogenous agents such as, IR and certain chemotherapeutic 

drugs, or endogenously generated from ROS and from chromosomal stress (Scott 

and Pandita 2006). The DSB is probably the most deleterious of the many types of 

DNA damage that exist within the cell and are potentially lethal if not repaired (Scott 

and Pandita 2006). 
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Histones are among the most evolutionary conserved proteins in eukaryotes. They 

can be classified into five groups, namely the four core histones H2A, H2B, H3, and 

H4 and the linker histone H1. There are two copies of the four core histones, so in 

total the eight histones come together to form a histone octamer, which binds and 

wraps about 1.7 turns of DNA, which is about 146 base pairs of DNA. In addition to 

this the H1 protein wraps another 20 base pairs, resulting in two full turns around the 

octamer (Annunziato 2008). This method of packaging allows close to two meters, 

negatively charged molecules of DNA to exist in relatively small 3D space (Bilsland 

and Downs 2005). Despite this enormous degree of compaction, the DNA must still 

be rapidly accessible to permit its interaction with protein machineries that regulate 

the functions of replication, repair and recombination (Ridgway et al., 2002). 

 

Figure 3.1 - Chromatin structure and histone-modifying enzymes. 

 

 

Base pairs of DNA wrapped around a histone octamer consisting of two copies of each of the 
core histones H2A, H2B, H3, and H4. Linker histone H1 is positioned on top of the 
nucleosome core particles stabilising higher order chromatin structure (adapted from 
Fullgrabe et al., 2010).  
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There are a number of histone H2A variants, two of which are the H2AX and H2AZ 

proteins that are highly conserved as unique H2A species from S.cerevisiae to 

humans (Redon et al., 2002). The H2AX represents between 2-25% of the total 

cellular H2A, whereas the H2AZ appears to account for 10% (Redon et al., 2002). 

The H2A variants contain a sequence (SQ) motif conserved at its carboxy terminus 

which is somehow evolutionary from Drosophila to S.cerevisiae (Bilsland and Downs 

2005). It is the phosphorylation of this SQ motif in H2AX immediately after the DSBs 

in the DNA, which is measured to determine the level of DSBs in cells. As one of the 

early studies by (Rogakou et al., 1999) provides evidence that the cells of the normal 

human fibroblast IMR90 and the human breast cancer line MCF7 both respond to 

DNA DSBs caused by IR with the formation of discrete foci containing gamma H2AX. 

Rogakou et al., (1998) also demonstrated that, after DNA DSBs the H2AX is 

phosphorylated on the residue serine 139 in the unique carboxy-terminal tail.  

 

Therefore, within minutes after DNA DSBs, the H2AX is phosphorylated and the DNA 

repair proteins are accumulated in large nuclear domains known as foci at the sites 

of DNA DSBs (Bilsland and Downs 2005). These foci, also known as the DNA repair 

centres, contain hundreds to several thousand phosphorylated H2AX molecules per 

DNA DSB (Rakiman et al., 2008; Bilsland and Downs 2005).         

 

The -H2AX phosphorylation is carried out by the PIKK family of protein kinases such 

as; ATM, ATR (ATM- and Rad3-related or the yeast homologous Mec1 and Tel1) 

and DNA-PKcs. The formation of -H2AX redundantly requires the Met1 and Tel1 

kinases in fission yeast strains (Nakamura et al., 2004). Although, previous studies 

have suggested that the ATM is required for the induction of foci at DSBs, and ATR 
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is involved in the recognition of stalled replication forks when Friesner et al., (2005) 

investigated the ATM and ATR dependency of the formation of -H2AX in M-phase 

Arabidopsis plant cells exposed to IR they have also found that at least a 10% of the 

IR induced -H2AX foci require functional ATR.  

 

One possible role of the -H2AX foci formation at the sites of DNA DSBs could be to 

serve in recruiting proteins that are involved in re-joining DNA ends such as MRE11 

or RAD50 to those sites, either directly, through binding to the -H2AX COOH 

terminus, or indirectly, through an altered regional chromatin structure (Rogakou et 

al., 1999). Paull et al., (2000), investigated the co-localisation of -H2AX and repair 

factors at sites of laser induced DSBs in MCF7 human breast tumour cell lines and 

found that the repair factors Rad50 and Rad51 and the tumour suppressor gene 

(BRCA1) co-localises with phosphorylated H2AX foci at the site of DSBs immediately 

after the DNA damage. The BRCA1 recruitment to the sites of -H2AX 

phosphorylation happens several hours before the Rad50 and Rad51 co-localises.  

 

3.1.1 -  Techniques employed for the measurement of DNA DSBs  

Over the years many techniques have been employed to determine the level of DNA 

DSBs induced by DNA damaging agents such as IR. Few of which will be outlined 

here.  

 The -H2AX assay is used to measure the phosphorylated H2AX as an indicative 

measure for DNA DSBs. The idea in this assay is that, after the exposure of cells 

with IR, the DSBs are introduced and, where there is DSBs there is accumulation 

of -H2AX at it is site as demonstrated by some of the studies mentioned above. 

Then the cells are immunofluorescently labelled with antibodies specific to the 
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phosphorylated H2AX, which binds to the phosphorylated H2AX and fluoresces 

as discrete spots of foci under the fluorescent microscopy. Also from the literature 

it is known that the number of foci approximate the number of expected DNA 

DSBs in the ratio of one -H2AX to one DSB in DNA.  So by scoring the number 

of foci as (<5 foci = DSB repair normal and >5foci = DSB repair defective) the 

DSB repair defect can be established. As the cells are able to repair the DSBs, 

the number of phosphorylated H2AX will drop, in another term are de-

phosphorylated, and in the repair defective cells the level of H2AX 

phosphorylation will persist.  

 

The phosphorylated H2AX used as a marker for the measurement of DNA DSBs, 

can be visualised through the use of imagestream imaging flow cytometry. This 

procedure was recently employed by our group (Bourton et al., 2012), to detect 

the differences in the induction and repair of DNA DSBs in XP14BRneo17 cell 

line from XP patient defective in DNA-PKcs, AT5BIVA cell line from A-T patient 

defective in ATM gene, and MRC5-SV1 SV40 immortalised lung fibroblasts 

derived from repair normal cells. Here cells were exposed to 2Gy of IR to induce 

DSBs then cells were immunofluorescently labelled with antibodies specific for 

phosphorylated H2AX. Through the analysis of frequency and distribution of -

H2AX foci in a minimum of 20,000 cells, our group was able to show a DNA 

DSBs defect in both the XP and AT patients.  
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Figure 3.2 - Imagestream analysis of Gamma-H2AX foci in human cells. 
 

 
 
                      
Multispectral imaging in cells at 30 minutes after exposure to 2Gy gamma radiation is 
illustrated here. Chanel 1: Brightfield image; Chanel 3: Brightfield image with Draq 5 nuclear 
merge; Chanel 5: Nuclear staining by Draq 5. 

 

 The comet assay also known as the single-cell gel electrophoresis (SCGE) is a 

simple, rapid, cheap, versatile and sensitive method for detecting a wide variety 

of  DNA damage including single and double strand breaks (Collins 2004), DNA 

interstrand crosslinks, and base damages that appear as endonuclease sensitive 

sites in individual cells (Olive and Durand 2005). A unique property of the comet 

assay is its ability to detect cellular heterogeneity (nuclei containing mixture of 

damaged and undamaged strand breaks) which is crucial when predicting tumour 

response to specific treatment (Olive et al., 1998; Olive and Banath 2006). 

Different types of comet assays exist where each type vary on the bases of pH of 

the buffer used in lysis buffer at the lysis step. So if the lysis buffer is alkali 

(pH>13) the alkali sites (ALS) are detected as SSB and if neutral (non-denaturing 

at pH <13) then DSBs are mainly detected. However, briefly in this assay, the 

cells are exposed to DNA damaging agents such as IR, then approximately 2µl 

sample is suspended in 0.5% low melting agarose and sandwiched between a 

layer of 0.6% normal melting agarose and top layer of 0.5% low melting agarose 

on fully frosted slides. After the solidification of 0.6% agarose layer, the slides are 

lysed for approximately an hour in pre-chilled lysing solution or longer up to 24 
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hours depending on the types of DNA damage being analysed. Then the slides 

are placed in electrophoresis buffer for 20 minutes at RT, to allow for DNA 

unwinding and then electrophoresed at 20V 300mA. The electric current pulls the 

charged DNA from the nucleus so that relaxed and broken DNA fragments also 

known as comets migrate further from the nucleus than intact DNA. The comets 

formed during electrophoresis are then neutralised using the neutralisation buffer, 

and stained with ethidium bromide to be imaged under the fluoresce microscopy. 

According to Mozaffarieh et al., (2008), the cells containing damaged DNA have 

the appearance of comet with bright head and tail. In contrast, undamaged DNA 

appears as an intact nucleus with no tail Figure 3.3. 

 

Figure 3.3 - Fluorescence microscopy visualisation of comet assay. 
 

 
 
The comet created by electrophoresis has an astronomical body, with head consisting of 
intact DNA and a tail containing damaged and broken pieces of DNA. Intact nucleus with no 
tail represents undamaged DNA (adapted from Hastak et al., 2008). 
 
 

Pulsed field gel electrophoresis (PFGE) analysis the DNA DSBs caused by IR, 

through the separation of broken DNA from extremely large chromosome 

(Gunderson and Chu 1991). Briefly, in this assay the irradiated cells are embedded 

in agarose plugs and lysed to release DNA without any mechanical damage to it 

before subjecting to an electrophoretic condition. During electrophoresis DNA above 

30-50 kb migrates with the same mobility as single large diffused bands. The DNA is 
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then forced to change direction during electrophoresis to allow different sized 

fragments within this diffuse band begin to separate from each other. With each 

reorientation of the electric field relative to the gel, smaller sized DNA will begin 

moving in the new direction than the larger DNA. Thus the larger DNA lags behind, 

providing a separation from the smaller DNA. 

 

Figure 3.4 - A model for PFGE. 

 

 
Whole cells are embedded in agarose and DNA is enzymatically purified and restricted by 
rare cutting enzymes in situ. The agarose plug is then inserted into a well in an agarose gel 
and the restricted fragments are separated by an electric current which pulses from different 
angles (O'Sullivan 2000).  

 

 
The use of H2AX, comet or PFGF assays for the detection of DSB defects in 

radiosensitive patients with various human diseases is known for many years. One 

example is the use of H2AX assay by Abbaszadeh et al., (2010), which revealed an 

altered cellular response to IR as a DSB repair defect in XP14BR cell lines in a 14 

year old XP patient. Other human diseases with evidence for altered cellular 

response to DNA damage where one of these techniques have been employed to 
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detect DSB defect are the Bloom’s syndrome (Nocentini 1995) and Nijmegen 

Breakage Syndrome (Girard et al., 2000). 

  

Kühne et al., (2004), employed immunoflurosence detection of -H2AX nuclear foci 

and pulsed gel electrophoresis assay in AT1BR cell lines, deficient in ATM, from a 

patient with A-T, to analyse the time course for DSB repair between days 1 and 14 

after 2Gy of X-ray exposure. According to their findings the AT1BR cells exhibited a 

substantial fraction of unrepaired DSBs many days after irradiation and contribute to 

radiosensitivity in ATM deficient cells.  

 

Girard et al., (2000), used untransformed skin fibroblasts 87RD102 derived from NBS 

patients displaying radiosensitivity and cell cycle checkpoint defect and 347BR 

derived from a patient with a diagnosis of common variable immunodeficiency.  The 

aim of their research was to find out if the radiosensitivity of the NBS cells was the 

result of a repair defect in these cells or if it can be attributed to impaired checkpoint 

arrest. Using the PAGE assay, they have found a modest but reproducible defect in 

DNA DSB re-joining in 347BR and 87RD102 cells after exposure to IR. 

 

The ability of radiosensitive patient cells (84BR and 175BR) to repair the DSBs 

induced by IR was measured in this study using the -H2AX assay as described in 

materials and method section.  
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3.2 -  Materials & Method 

The detection of phosphorylated H2AX as an indicative measure for the repair of 

DNA DSBs after the exposure of cells to gamma radiation as described by 

Abbaszadeh et al., (2010), will be outlined here in detail.  

 

3.2.1 -  Irradiation of cells 

Cells were grown as monolayers on 13 mm diameter circular coverslips (Sigma) and 

exposed to 2Gy of gamma radiation from a 60Cobalt source.  

 

3.2.2 -  Fixing of cells 

Cells were washed for three times in 5ml PBS and fixed in a 50:50 acetone and 

methanol mixture for 8 minutes at 4ºC, at specific time points (30 minutes, 3, 5 and 

24 hours). Control cells were not exposed to -radiation. After fixing, cells were 

washed twice with ice-cold PBS. 

 

3.2.3 -  Permeabilisation and Blocking 

On each coverslip 0.5 ml Permeabilising buffer (0.5% TritonX100) (Sigma)  in PBS 

was added for 5 minutes, after which the buffer was aspirated then blocking buffer 

(0.2% skimmed milk, 0.1% Triton X-100 in PBS) was applied. Then the cells were 

incubated in a humidified box at 4ºC overnight. The next day, the blocking buffer was 

removed from the cells with three washes of PBS. 

 

3.2.4 -  Immunostaning with Anti-γH2AX Antibody 
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Cells were incubated with 25µl (per coverslip) of anti -H2AX phosphoserine139 

(Clone JW301) mouse monoclonal antibody (Millipore Ltd., Watford, UK) diluted 

1/10,000 in blocking buffer, for an hour at room temperature. After incubation the 

cells were washed with PBS three times with 15 minutes incubation at each wash. 

Cells were then incubated with 200µl/well of secondary antibody Alexa Fluro® 488 

goat anti-mouse IgG (Invitrogen Ltd., Paisley, Scotland, UK)  diluted 1:1000 in 

blocking buffer, for 1 hour at room temperature in dark. Antibodies were then washed 

off with PBS and cell nuclei were counterstained with 2µg/ml of Propidium iodide in 

PBS for 3 minutes and de-stained with distilled water for 20 minutes. 

 

3.2.5 -  Mounting Slides 

Cells were washed, and mounted in mowoil mountant containing 1µg/ml 4’6-

diamidino-2 phenylindole (DAPI) (Sigma Aldrich Ltd). The excess mounting medium 

and air bubbles were removed before sealing the edges of the coverslip with clear 

nail polish. Slides were stored at -20ºC until the analysis.  

 

3.2.6 -   Cell Scoring and Imaging 

Analysis was performed by counting the number of foci in a minimum of 200 nuclei of 

each cell line at each time point (un-irradiated and 30 minutes,3, 5 and 24 hours post 

exposure) using a Zeiss Axioscope fluorescence microscope with a 100X 

magnification objective. Untreated cells typically exhibited 0-2 foci per/cell. Also 

images of each cell lines were captured by using the fluorescence microscopy 

equipped with Photonic Science Cooled charge-coupled device (CCD) camera (West 

Germany) with integration times of between 0.5-10 seconds depending on the 

brightness of staining. 
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3.3 -  Results 

3.3.1 -   -H2AX foci assay: DNA DSB repair  

Exposure of radiosensitive cell lines to 2Gy of gamma radiation induced DSBs in two 

radiosensitive patient cell lines (84BR and 175BR) and in two repair normal 

individuals (NB1 and 1BR.3), which resulted in accumulation of phosphorylated 

H2AX proteins at the sites of DSBs.  Following the cell exposure to gamma radiation 

the cells were fixed, permeabilised and stained with primary and secondary 

antibodies. Then the induction and repair of DNA DSBs in radiosensitive cell lines 

and in normal individuals was determined by counting the number of -H2AX foci in 

the nuclei of untreated cells and those exposed to 2Gy gamma radiation at 30 

minutes, 3, 5 and 24 hours post irradiation.   

 

The induction and repair of DNA DSB in all cell lines was determined by counting the 

number of -H2AX foci in the nuclei of untreated cells and those exposed to 2 Gy 

gamma radiation at 30 minutes, 3, 5 and 24 hours post-irradiation. The data 

displayed in Figure 3 show that in the untreated cells there are more residual -H2AX 

foci in the radiosensitive 84BR and 175BR cell lines (5.12 and 4.32 foci per nucleus 

respectively), compared to the repair normal NB1 and 1BR.3 cells (0.81 and 1.02 foci 

per nucleus). At 30 minutes post-irradiation there is a dramatic induction of foci in all 

cells consistent with the induction of DNA DSB. In the NB1 and 1BR.3 cells the 

number of foci return to near normal levels at 5 and 24 hrs. In the 84BR and 175BR 

cells however, there is a significant (Student’s unpaired T-test) retention of foci at 5 

and 24 hours when compared to the NB1 and 1BR.3 cells.  
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Figure 3.5 - DSB repair measured by formation and disappearance of -H2AX foci in 
radiosensitive cells and controls. 

 

The induction and repair of DNA DSBs in the radiosensitive 84BR and 175BR fibroblasts in 
comparison to the repair normal 1BR.3 and NB1 fibroblast cells. Cells were exposed to 2Gy 
gamma radiation and the induction and repair of DNA DSB was measured by the 

appearance and removal of -H2AX foci in the nuclei of un-irradiated and irradiated cells. 
Data are derived from three independent experiments, the error bars represent standard 
error of the mean and the P value is < 0.05. 

 

 

Since the -H2AX level after five and twenty four hours post irradiation remained 

significantly higher in 84BR and 175BR patient cells a reduced repair in DNA DSBs 

in these cells is clearly visible. However, in the repair normal NB1 and 1BR.3 cells 

the -H2AX returned to near normal levels after five and twenty four hours post 

irradiation thus, indicating an efficient level of repair of DNA DSBs.   
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As illustrated in Table 3. 1 the efficient repair of γ-radiation-induced by DSBs is 

determined by de-phosphorylation of foci (clearing of -H2AX foci) in 84BR and 

175BR patient cells and NB1 with IBR.3 cell lines from normal individuals in five 

independently conducted experiments. 

 

Table 3. 1 - The -H2AX foci formation following 2Gy of gamma irradiation in 
irradiated patient and control cells. 

Number of -H2AX per nuclei 

Time Points (hr) 175BR 84BR NB1 1BR.3 

Untreated 4.2 5.12 0.81 1.02 

0.5 37 39 33 30 

3 22 24 24 20 

5 17 15 5 4 

24 17 15 0.81 0.81 

 

 

So, to conclude, the visualisation of -H2AX formation confirms the clonogenic 

radiosensitivity seen in patient cells and is likely to be associated with a defect in 

DSB repair. 
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3.4 -  Discussion  

The clonogenic assay conducted with IR revealed cellular radiosensitivity in 84BR 

and 175BR patient cells. The IR causes DSBs in DNA which can be repaired via 

NHEJ or HR repair pathways. Then, the clonogenic assays were conducted with 

HN2 to detect the defective DNA DSB repair pathway that may be responsible for the 

cellular radiosensitivity seen in patient cells. This alkylating agent induces cross links 

in DNA, which is repaired primarily by HR repair pathway. The ability of patient cells 

to repair the cross links induced by HN2 suggested a normal HR but a possible 

defect in the NHEJ repair pathway. Then a gamma H2AX assay was conducted to 

find out if the cellular radiosensitivity in both patients is due to a defect in the ability of 

cells to repair the DSBs induced by IR.  

 

The -H2AX assay is a widely accepted technique for the detection and estimation of 

DSBs induced by DNA damaging agents such as IR. The -H2AX assay being the 

most simple and sensitive assay was chosen in our research for the detection of 

DSB repair defect in radiosensitive patient cells.  

 

The H2AX, one of the variants of H2A histone proteins, along with other core histone 

proteins (H2B, H3, and H4) and linker histone (H1) protein compacts two meter long 

DNA in a 3D space. The H2AX constitutes a carboxyl tail which is a highly conserved 

sequence comprising of an SQ motif. Immediately after DSBs are induced this 139 

residue is phosphorylated ( -H2AX) and DNA repair proteins are recruited to the DSB 

sites where a group of H2AX at each site of DSBs are known as foci.  
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Immunofluorescence assay was conducted, where specific antibodies were raised 

against -H2AX, to detect the -H2AX foci formation in the patient cells. At least 200 

foci, each foci containing hundreds to thousands of -H2AX, were viewed and 

images were taken with the florescence microscopy. The number of -H2AX foci 

were counted and plotted against various time points, post exposure to IR. The rate 

of disappearance of -H2AX has been shown to be associated with a greater ability 

to survive following treatment with clinically relevant doses of (2Gy) of IR (Olive and 

Banath 2006; Abbaszadeh et al., 2010).  

 

The -H2AX induction was approximately the same in both the patient cells and the 

repair normal cells after 30 minutes exposure to IR (15 and 14 foci per nucleus). 

Then after 24 hour post irradiation, the level of -H2AX foci was reduced to 5 and 4 

foci per nucleus in 84BR and 175BR cell lines. Thus, indicating a normal DSB repair 

in the controls and DSB repair defect in patient cells. The evidence provided from 

this data strongly dictates a defective NHEJ repair pathway in patient cells.  

 

Here we have demonstrated that the enhanced radiosensitivity in these cell lines was 

associated with a failure to effectively repair DNA DSB following radiation exposure 

as measured in a -H2AX foci retention assay.   

 

Since -H2AX foci loss monitors all repair events, that is, NHEJ and HR (Beucher et 

al., 2009) we sought alternative techniques, which would more specifically measure 

the key genes in NHEJ repair pathway.  So, to determine the defective component of 

the NHEJ pathway an investigation of expression levels of key NHEJ genes was 

conducted using the technique of quantitative real time PCR (qRT-PCR). 
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Chapter 4 - Quantification of NHEJ genes in 
radiosensitive cells by qRT-PCR 

 

4.1 -  Introduction 

The existence of a potential NHEJ repair defect in cells derived from two 

radiosensitive patients (84BR and 175BR) was shown after observing: 

1. Cellular radiosensitivity in a clonogenic assay. 

2. A normal response to the crosslinking agent (nitrogen mustard), as an 

indicative measure to normal functioning of HR pathway. 

3. Abnormal repair of DNA DSB measured by -H2AX retention. 

Taken together, these data suggest the DSB repair defect found in cells is most likely 

due to aberrant or abnormal NHEJ repair causing the cellular and clinical 

radiosensitivity described.  

 

Subsequently, to reveal the possible defect in NHEJ repair pathway the expression 

of the key NHEJ genes was examined using the qRT-PCR. The principal genes 

whose proteins function in this pathway and their locations on different chromosomes 

are shown in Table 4. 1 
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Table 4. 1 - NHEJ repair genes and their locations on different chromosomes. 

Chromosome 
location 

NHEJ repair 
genes 

Protein function in NHEJ 

2q35 Ku80 
Binds to DNA ends and recruits DNA-
PKcs to the break site. 

22q13.12 Ku70 
Binds to DNA ends and recruits DNA-
PKcs to the break site. 

8q11 DNA-PKcs Recruits Artemis. 

10p13 Artemis 
Endonuclease trimming of un-
compatible DNA ends. 

5q13 XRCC4 Promotes gap filling and reseals DSBs. 

13q33 Ligase IV Re-ligates compatible DNA ends. 

2q35 
XLF /Cernunnos 
gene 

Involved in the ligation step. 

 

 

As briefly covered in the Chapter 1, defects in any components of NHEJ pathway can 

lead to hypersensitivity to IR, genome instability, immunodeficiency and cancer 

(Bassing and Alt 2004). In humans, defects in the specific genetic components of 

NHEJ also result in predisposition to cancer (lymphoma and leukaemia) or to 

extreme radiosensitivity. For example, defects in ligase IV (Riballo et al., 1999) 

deficiency in artemis expression (Musio et al., 2005) or a mutation in DNA-PKcs  

gene (van der Burg et al., 2009; Abbaszadeh et al., 2010) are associated with 

extreme clinical and cellular radiosensitivity and increased cancer incidence. 

 

Vis-à-vis published evidence we have employed the qRT-PCR method to 

determine if abnormal gene expression of any key genes found in the NHEJ repair 

pathway is responsible for the cellular hypersensitivity seen in 175BR and 84BR cell 

lines.  

The quantitative or real time PCR is not a new discovery but more of a new 

development by Higuchi et al., (1992), from the traditional PCR assay first discovered 
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by Kary B. Mullis in 1983. To this date the real time PCR has been the gold standard 

for gene expression analysis but, other techniques may also be used to examine 

genetic defects in cells which may lead to abnormal DNA repair processes (D'Haene 

et al., 2010). These include conventional karyotyping, fluorescent in situ hybridisation 

(FISH) analysis, microarray-based copy number screening, multiplex ligation-

dependent probe amplification (MLPA). However, real time PCR distinguishes itself 

from other methods in terms of accuracy, sensitivity, and fast results. Because of 

this, the technology has established itself as the golden standard for medium 

throughput gene expression analysis (Derveaux et al., 2010). Some of the basic 

steps involved in real time PCR method for the detection of gene expression are 

summarised in Figure 4.1. 

 

Figure 4.1 - Steps in nucleic acid quantification by real time PCR. 

 

 

 
Here the processing of a sample using real time PCR as a detection method is illustrated 
(adapted from Stahlberg et al., 2005). 
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The real time PCR detects the amplicon as the reaction is happening and the data is 

gathered at the exponential phase of the PCR reaction. The data is then manifested 

on a amplification plot or a melting curve.  

 

The amplification plot is a graphical representation of gene expression. As the 

fluorescent signal reporter increases to a detectable level the gene expression is 

captured and displayed on this plot. A threshold on this plot is the point at which a 

reaction reaches a fluorescent intensity above background. A cycle threshold (Ct) is 

the cycle at which the sample reaches the threshold. Several mathematical methods 

make use of the Ct value to calculate the gene expression level. One recently 

developed mathematical model is the delta-delta comparative Ct method of relative 

quantification, written in short as 2 -[ΔCt Sample - ΔCt Control] or 2-ΔΔCt (Pfaffl 2001). The 2-

ΔΔCt was employed in this research to detect the expression of NHEJ repair genes in 

84BR and 175BR patient cells. 

 

The dissociation or melting curve provides a graphical representation of the PCR 

products. A single peak on this graph usually suggests a single size product and a 

presence of a peak in the negative control sample usually indicates a primer dimer.  

 

Although, the literature search reveals no specific study on the use of qRT-PCR for 

the detection of NHEJ repair genes in radiosensitive cells the two papers that 

prompted the use of qRT-PCR assay to detect the possible defect in NHEJ repair 

genes were; 

1. The study by Mohrin et al., (2010), which makes use of the qRT-PCR assay for 

NHEJ repair gene expression analysis in quiescent hematopoietic stem cells 
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(HSPCs) from adult mouse cells.  Their findings reveal that the HSPCs are 

intrinsically more resistant to IR exposure than common myeloid progenitors 

(CMPs) and granulocyte/macrophage progenitors (GMPs). They imply that the 

long-lived HSPCs are resistant to IR-mediated cell killing, have enhanced  NHEJ 

repair gene expression and a strong induction of p53-mediated DNA damage 

response (DDR) leading to growth arrest and DNA repair; whereas short-lived 

MPs are molecularly poised to undergo apoptosis and are predominantly 

eliminated in response to genotoxic stress.  

 

2. The study by Chiou et al., (2007) uses qRT-PCR to examine the mRNA 

transcripts of KU70, Ku80, DNA-PK, Artemis, XRCC4, Ligase IV and XLF in 

paediatric acute lymphoblastic leukaemia (ALL) patients. This study reveals that 

the mRNA expressions of all NHEJ members in untreated fresh ALL were 

elevated when compared with (the non-leukemic) thalassemia cases.  The 

overexpressed NHEJ mRNAs were down regulated after therapy i.e. after 

complete remission and mRNA transcripts of Ku80, DNA-PK, Artemis, XRCC4 

and ligase IV were elevated again in relapsed specimens.  Therefore, differential 

mRNA expressions of NHEJ genes were observed between persons of various 

disease statuses.  

 
Based on the studies outlined here a qRT-PCR assay was designed to detect the 

expression of the NHEJ repair genes in two radiosensitive patient cell lines 

compared to the expression of these genes in repair competent normal fibroblasts.  



89 

 

4.2 -  Materials & Method 

4.2.1 -  RNA Extraction 

The first critical step prior to commencing qRT-PCR is continual production of high 

quality intact cellular RNA which requires, the yield of the RNA extract, the RNA 

integrity, purity, storage and stability to be of high standard. The steps involved in 

RNA extraction are as follows. 

 

4.2.1.1 -  Cell Lysis 

Medium from cell cultures of 80% confluence was aspirated. The cells were 

thoroughly washed by adding 10ml of ice cold PBS to the cells and gently agitating 

the cells by swirling the Petri dish. The PBS was aspirated; 2ml (as manufacturer’s 

recommendation of 2ml for 10cm dishes) of TRIzol (Sigma Aldrich, Dorset, UK) was 

added to the adhered cells and incubated for 2-3 minutes at room temperature to 

detach the cells from the dish. Further cell detachment and homogenisation was 

achieved by pipetting the cells up and down for several times. The homogenised 

cells were incubated at room temperature for 5 minutes to completely dissociate the 

nucleoprotein complex. Then the cells were collected in 1 ml eppendorf tubes and 

pelleted at 13,000 rpm centrifugation for 1 minute. 

 

4.2.1.2 -  Phase Separation 

Two hundred μl of chloroform was added to the cell pellet in TRIzol, then the tube 

was vigorously shaken for 15 seconds and the cells incubated at room temperature 

for 3 minutes. All work with chloroform performed in fume cupboard (Premier 

Labserve Limited, County, UK) as the chloroform is a narcotic reagent. The samples 
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were centrifuged at 13,000 rpm at 4 C for 30 minutes to separate the sample into 

following phases:  

Top colourless aqueous phase = RNA  

Inter phase     = DNA 

Bottom red organic phase  =  Protein, Lipids 

 

4.2.1.3 -  RNA Precipitation 

The upper (clear) aqueous layer transferred to a fresh 1ml eppendorf tube (Sarstedt 

Ltd, Leicester, UK) with a p1000 (1000 ml) Gilson Pipette (Sarstedt) ensuring that the 

upper layer was not contaminated with the lower two layers. Then 0.5ml of propan-2-

ol was added to the decanted aqueous layer, shaken thoroughly for 15 seconds and 

incubated at room temperature for 10 minutes. Samples centrifuged at 4 C (Sorvall® 

Legend T, Thermo Scientific) for 20 minutes to precipitate the RNA also to form a 

gel-like pellet.  

 

4.2.1.4 -  RNA Wash and Re-suspension 

Following centrifugation the supernatant was discarded and 1ml of 75% ethanol was 

added to the RNA pellet and briefly vortexed for 10 seconds to wash the pellet.  The 

sample was centrifuged at 4 C, 8,000 rpm, for 5 minutes. The supernatant was 

removed and the pellet was air dried for 5 minutes at room temperature. The RNA 

pellet was re-dissolved in 30μl of 1% Diethylpyrocarbonate (DEPC) treated water and 

incubated at 60 C for 10 minutes to dissolve the pellet in solution.  
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4.2.2 -  RNA Concentration and Purity Detection 

Once the RNA was extracted 1μl of RNA was placed in a Nanodrop 2000C (Thermo 

Scientific, Wilmington, USA) and the RNA concentration and purity was determined. 

Pure preparation of RNA had A260 – A280 ratio values in the range of 1.5 to 2. The 

RNA purity was further determined on 1% agarose gel by approximately running 10μl 

1:1 dilution of RNA (200ng RNA suspension in  9µl of DEPC treated water containing 

1µl 6X Loading Buffer (30% w/v/ sucrose, 0.35% orange G) on a 1% agarose gel. 

The RNA purity was then visualised with Ethidium bromide (EtBr) under UV 

transilluminator (Alpha Innotech Corporation, USA). As the RNA degrades fast at RT, 

immediately, after RNA quantification, the RNA in solution was stored at -80 C.  

 

4.2.3 -  Deoxyribonuclease I, amplification grade treatment of RNA 

The quality of the extracted RNA may be influenced by certain factors for example, 

the DNA or protein during RNA extraction may be carried over into the RNA extract 

which, may then interfere with the gene amplification. To circumvent this problem, a 

20µl reaction mix was prepared in a 1ml RNase free microcentrifuge tube (Sarstedt 

Ltd), containing 4µg total RNA, 2µl 10X DNAse I (Deoxyribonuclease I) reaction 

buffer (Sigma Aldrich) 0.5µl (40U/µl) RNase out (Sigma Aldrich) 2µl (1U/µl) DNAse 1, 

Amp Grade (Sigma Aldrich) and DEPC treated water.  The reaction was incubated at 

RT for 1 hour. After the incubation 25mM (2μl) DNase 1 stop solution (EDTA) at pH 8 

was added to the reaction and heated for 15 minutes at 65 C. The RNA sample is 

now ready for reverse transcription. The sample can be stored at -80 C for future 

use. 
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4.2.4 -  cDNA Preparation 

4.2.4.1 -  Annealing of Primers to RNA 

In a 1ml nuclease free-microcentrifuge tube (5 µl) 1µg DNase treated total RNA, 1 µl 

(10mM) dNTP mix (Invitrogen, Paisley, Scotland, UK), 1 µl (250ng) Random primers 

(Invitrogen) were added and the reaction volume was made to 13ml with 6ml DEPC 

treated water. The mixture was heated at 65 C in a heating block (Techne, Fisher 

Scientific, UK) for 5 minutes then incubated on ice for at least 1 minute. Then the 

content of the tube was collected by brief centrifugation. 

 

4.2.4.2 -  Synthesis of First Strand cDNA 

To the content above plus 4 µl (5X) first-strand buffer, 1 µl (0.1 M) DTT, 1 µl (40 

units) RNaseOUT TM RNase Inhibitor, 0.5 µl (100 units) SuperScriptTM  III (all 

purchased from Invitrogen Ltd) and 0.5 µl DEPC treated water were added to make 

up a total volume of 20µl reaction. With gentle pipetting the reaction was mixed up 

and down and incubated at following temperatures (25 C for 5 minutes, 50 C for 50 

minutes and 70 C for 15 minutes) inside the gradient PCR (Peltier Thermal Cycler) 

for 70 minutes. The first DNA strand (cDNA) was stored at -20 C.  

 

4.2.4.3 -  Determining the quality of cDNA 

In an eppendorf tube 10µl ReddyMix (Thermo Scientific), 2µl (5µM) forward GAPDH 

primer (Sigma Aldrich), 2µl (5µM) reverse GAPDH primer and 4µl DEPC treated 

water was added. The reaction was run at following parameters in gradient PCR. 
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Table 4. 2 - PCR amplification cycles for detection of cDNA quality. 

Number of cycles Temperature ( C) Time 

1 94 5 min 

35 

94 45 sec 

58 45 sec 

72 45 sec 

1 72 10 min 

 

The quality of the cDNA was visualised with EtBr under UV transilluminator and an 

image of the cDNA run was captured. 

 

4.2.5 -  Determining the quality of primers  

Before commencing qPCR it was crucial to know if the primers work well, whether 

there is any primer dimers and if the NHEJ repair genes are being expressed.  A 

PCR reaction made with following reagents answered some of these questions. 

 100ng cDNA from NB1 cell line 

 1µl forward primer (10µM) 

 1µl reverse primer (10µM) 

 16µl 1.5 X ReddyMix 

The volume was made to 20µl with DEPC treated water then the PCR mix was 

amplified at following cycles in the gradient cycler as summarised in Table 4.3.  

 
Table 4. 3 - PCR amplification cycles for detection of primer quality. 

Number of cycles Temperature ( C) Time 

1 95 5 min 

34 

95 40 sec 

60 40 sec 

72 40 sec 

1 72 15 min 

1 4 ∞ 
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4.2.6 -  Determining the quality of PCR products  

The amplified PCR products were run on 1% agarose gel. The 1% agarose gel was 

prepared by dissolving 1g agarose (Fisher BioReagents, New Jersey, USA) in 90ml 

distilled water and 10ml 10 X TBE (89 mM Tris-HCI pH 7.8, 89 mM borate, 2 mM 

EDTA) in the microwave until the agarose was translucent in solution. When the 

solution was hand temperature hot 2µg/ml EtBr was added to the agarose and 

poured in electrophoresis chamber with a comb already in place. Once the gel had 

solidified 1X TBE buffer was poured on the gel, the comb was removed and the PCR 

samples were loaded to the wells. Five µl molecular weight DNA ladder was loaded 

in another well to accurately size the PCR product. The samples were run at 40V for 

50 minutes, and visualised under UV transilluminator. An image of the DNA run was 

captured with the image acquisition end analysis system. 

 

4.2.7 -  Designing Primers for NHEJ repair genes 

The Applied Biosystems (AB) ABI Prism prime express version 2.0 was used to 

design primers for the key NHEJ repair genes. First the primer annealing 

temperature (PARAMS) was set to 60 C, the GC content of the primer was set to 

max: 45 or min: 55%, the primer length was set to min 18bp or max: 22bp and the 

amplicon product size was set to max: 100bp or min: 150bp. Then the icon ‘optimal 

primers’ was selected to retrieve a list of optimal i.e. the best known primers for the 

genes under study. From this list the primer that was the most GC rich at the 3’ end 

of the primer sequence was selected. The FASTA sequence of mRNA of interest 

was downloaded from National Centre for Biotechnology Information (NCBI) and 

loaded into the primer express software. The chosen primer pair sequences were 

then BLASTED in NCBI website to check for specificity of each primer. A list of 
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primers designed and ordered from Sigma-Aldrich for the qPCR analysis of NHEJ 

repair genes are listed in Table 4. 4. 

 

Table 4. 4 - Primer sequences used for the amplification of NHEJ genes during qRT-
PCR analysis. 

 

Gene Primer sequence (5’ – 3’) 
Amplicon size 
(bp) 

Ku70 
F: CCCCAAAGACAAACCAAGTGG 
R: AGCGATGGCAGCTCTCTTAGA 

121 

Ku80 
F: AATGACAGTGCCAAAGCCAGC 
R: CAAGGATATGTCAAAGCCCCC 

113 

Artemis 
F: ACAGGAGACTTCAGATTGGCG 
R: CACTCCTCCCGACTTGGAATT 

145 

XRCC4 
F: TTTGGATAATCTCCTTCGCCC 
R: TTCGCACCCGTAGAATCAGTG 

103 

Ligase 4 
F: CTGCACCTTGCGTTTTCCA 
R: TACCAGATGCCTTCCCCCTAA 

115 

XLF-
cernunnos 

F: TTTGGATAATCTCCTTCGCCC 
R: TCACTTCGCACCCGTAGAATC 

107 

DNA-PKcs 
F: CCAGCTCTCACGCTCTGATATG 
R: CAAACGCATGCCCAAAGTC 

125 

 
 
The dry oligonucleotides were re-suspended to a 100µM concentration with DEPC 

treated water following the manufacturer’s guideline and stored at -20 C. The 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (F: GAAGGTGAAGGTCGGA 

GT and R: GAAGATGGTGATGGGATTTC) was used as an internal control in 

experimental sample to normalise the quantitation of a cDNA target for the 

differences in the amount of cDNA added to each reaction. The normalisation of 

target gene expression levels must be performed to compensate intra and inter-

kinetic qRT-PCR variations i.e. the sample-to-sample and run-to-run variations (Pfaffl 

and Hageleit 2001).  
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4.2.8 -  Optimising Primer Concentration 

In three separate PCR tubes a PCR reaction was prepared at 10µM primer 

concentration and the reaction was run under fast real time ABI PRISIM® 7900HT 

Sequence Detection System (SDS).  

 
 

Table 4. 5 - PCR reaction conducted at 10µM primer concentration. 
 

100ng 
*cDNA 

(µl) 

10µM 
^forward primer 

(µl) 

10 µM 
^reverse primer 

(µl) 

2X 
SYBR Green 

(µl) 

DEPC 
treated 
water 
(µl) 

2 1 1 10 6 

2 1 1 10 6 

2 1 1 10 6 

*cDNA derived from NB1 cell line; ^primer is the GAPDH 

 

A melting curve was generated where each peak in the curve represented an 

approximate expression value of the NHEJ repair genes. Also primer dimer 

formation, if any, was visualised from this graph. 

 
 

4.2.9 -  qRT-PCR 

A master mix consisting of 10μM (1μl) forward primer, 10μM (1μl) reverse primer, 

(except for GAPDH which was used at 5μM) 10μl (2X) SYBR green (Applied Bio-

systems) and 7μl DEPC treated water was prepared in a 0.5ml eppendorf tube. In a 

pre-cooled 96 well plate (Applied Bio-systems) 100ng (1μl) cDNA was pipetted per 

well. To each well 19μl of master mix was added. The plate was then sealed with 

optical adhesive cover (Applied Bio-systems), inverted few times and centrifuged at 

4 C at 12,000 rpm for few seconds. It was important to keep the 96 well plate on ice 

whilst preparing the qRT-PCR reaction to minimise the degradation of cDNA. The 96 
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well plate was placed in ABI prism 7900HT SDS and the reaction was ran under fast 

real time PCR program.  

 

4.2.10 -  qRT-PCR data analysis on SDS.3 Software 

The SDS 2.3 software installed on the ABI PRISIM® 7900HT instrument was used to 

quantitatively run the PCR products. The following parameters; relative quantification 

(∆∆Ct) and container 96 well plate were selected to create an SDS file with a 96-well 

plate map. The detectors (DNA-PKcs, GAPDH, XLF, Ligase IV, Artemis, KU70, 

KU80, XRCC4) once added to the detector tab were assigned to the 96 well plate. 

The endogenous gene and the target genes were selected. The wells not in use 

were omitted. Under the instrument tab the thermal profile was edited to the following 

temperatures and a dissociation stage was added at stage 4. The Table 4.6 

summarises the thermal profile set for the qRT-PCR reaction. 

 

Table 4.6 - The thermal profile set for the qRT-PCR reaction. 

Stage Number of cycles Temperature (ºC) Time 

1 1 50 2 min 

2 1 94 10 min 

3 35 
94 15 sec 

58 1 min 

4 1 72 1 min 

 

The volume of the reaction was kept to 20µl. The real time tab was selected. The 96 

well plate was loaded to the ABI machine and the PCR reaction began under the fast 

run option. After the run was complete, which took approximately 45 minutes, the 

dissociation program was set up. 
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4.2.11 -  Setting up the Dissociation Program 

Under a new document file the absolute quantification assay was selected. The 

template was kept blank and the barcode was left empty. The appropriate detectors 

were added, then under the instrument tab the thermal profile was set to the 

following parameters as in Table 4.7. 

 

Table 4.7 - The thermal profile set for the dissociation curve. 

Stage 
Number of 

cycles Temperature ( C) Time (sec) 

1 1 95 15 

2 1 
60 15 

95 15 

 

Data collected at the end of the run was analysed using the SDS.3 RQ manager 

software. The results were plotted on separate bar charts to show the level of gene 

expression in both patient cells. 
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4.3 -  Results 

It can be hypothesised from the clonogenic assays and the γ-H2AX DNA DSB assay 

conducted so far that a defect in NHEJ was responsible and causing the 175BR and 

84BR cell lines radiosensitive. To confirm this hypothesis the expression of the key 

genes (Ku70, Ku80, XLF, XRCC4, DNA-PKcs, Ligase IV and Artemis) found in NHEJ 

in patient cells were measured using the SYBR Green I based qRT-PCR assay.   

 

In order to accurately detect the expression of the key genes found in NHEJ repair 

pathway the quality of the RNA and cDNA had to be carefully evaluated. Also the 

concentration of the primers designed for the detection of NHEJ repair genes had to 

be optimised. 

 

Firstly, the quality of the RNA extracted with TRIzole reagent was measured by 

running the RNA samples from all four cell lines (NB1, 1BR.3, 175BR and 84BR) on 

a 1% agarose gel and an image of all RNA samples was captured on a UV 

transilluminator. From this image one can tell whether the RNA is degraded or intact 

or whether there is any DNA contamination.  
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Figure 4.2 - Total RNA for NB1, 1BR.3, 84BR and 175BR samples. 
 

 
 

 
 

 
Here the image shows the two species of RNA (28S and 18S rRNA) which suggests that the 
extracted RNA is completely intact. The absence of the DNA contamination is an indication 
that a clean RNA preparation was made. Also the 1+Kb DNA ladder and the water control 
illustrated here provided a good measure for smooth running of the RNA on the agarose gel. 

 

Secondly, the quality of the cDNA prepared for all four cell lines under study was 

determined. The quality of the cDNA preparations were measured with the use of 

GAPDH since this gene is widely expressed in all cell types it provides not only a 

good internal control for the running of the sample but also provides a good 

indication to whether a good quality cDNA was being made. The cDNA samples ran 

on 2% agarose gel and the image captured on the UV transilluminator is shown in 

Figure 4.3. 
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Figure 4.3 - cDNA samples for GAPDH in patient and control cells. 

 

 

 

 
 

 
An image of all cDNA samples for GAPDH from four cell lines under study is shown here. 
The cDNA samples are approximately 100bp’s long, which is an indication to a correct length 
of cDNA required for the detection of the expression of NHEJ repair genes. Also the quality 
of the cDNA is of good quality as there is no degradation and no contamination in any of the 
cDNA preps made for the four cell lines. 

 

Thirdly, the primers designed for the NHEJ repair genes were optimised in order to 

achieve an optimum concentration of primer for the running of the qRT-PCR 

products. When a gradient PCR was conducted at 10µM primer concentration and a 

gel image was captured on the UV transilluminator the expression of all NHEJ repair 

genes was clearly observed. 
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Figure 4.4 - Primers at 10µM concentration. 

 

 

 
A normal expression of GAPDH, XLF Ligase IV, XRCC4, Ku70, Ku80, DNA-PKcs and 
Artemis for all four cell lines at10µM concentration is illustrated here.  

 
 

The image in Figure 4.4 confirms not only that the GAPDH, XLF Ligase IV, XRCC4, 

Ku70, Ku80, DNA-PKcs and Artemis are being expressed in all four cell lines but 

also the concentration of primers at 10µM is optimum for the running of the samples 

as there are no dimer formed at this concentration. Thus the 10µM concentration is 

optimum for the running of all four samples for the expression of the key genes found 

in NHEJ repair pathway.   
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Although, no primer dimer was detected when the gradient PCR was conducted with 

all primers at 10µM concentration when a qRT-PCR was conducted with all primers 

again at 10µM concentration a primer dimer was observed with GAPDH. 

 

Figure 4.5 - Melting curve showing the primer dimer with GAPDH at 10µM 
concentration. 

 

 
Images on the left and right panel show dimer formation in GAPDH non template control 
(NTC). 

 

Also when a quantitative PCR reaction was separately prepared and run on a 1% 

agarose gel, as illustrated in Figure 4.6 the presence of primer formation with 

GAPDH at 10µM concentration was once again obvious. Thus, further supporting the 

presence of primer formed with GAPDH in the melting curve.  

 

Figure 4.6 - Primers run at 10µM concentration on 1% agarose gel. 
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The primer dimer as circled is illustrated in both images A and B. Image A is a 
replicate of image B.  
 
 

Therefore, to avoid the dimer formation the GAPDH was used at 5µM concentration 

whereas the rest of the primers were used at 10µM concentration. The amplification 

curve shows the effect of the primer concentration on the efficiency of amplification. 

 

 

 
 
 

Figure 4.7 - GAPDH run at 5µM and remaining primers run at 10µM concentration.  
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The amplification curve from real-time PCR shows the effect of the primer concentration. 

 
 
Once the required parameters were optimised, the qRT-PCR assay was conducted 

with SYBR Green I dye to measure the expression of the NHEJ repair genes. The 

repair normal NB1 and 1BR.3 fibroblasts were used as internal calibrators for the 

expression of the NHEJ genes and the levels of gene expression in these cells were 

represented at 1.0. Also the expressions of the NHEJ genes in the radiosensitive 

cells (84BR and 175BR) were plotted relative to the repair normal fibroblasts. 
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Figure 4.8 - NHEJ Gene expression in 84BR radiosensitive fibroblasts. 

 

 

 
Here the expression of the NHEJ genes in the radiosensitive 84BR fibroblasts in comparison 
to the repair normal NB1 and 1BR.3. The data are derived from three independent 
experiments and error bars show standard error of the mean. Gene expression in 84BR cells 
is expressed in comparison to the normal fibroblasts cells (calibrators) in which levels of 
expression are regarded as a level 1. The P value is 0.003.  
 

 

As it is clear in Figure 4.8 there is an approximately 2 fold over-expression of the 

Artemis gene in 84BR fibroblast cells when compared to the repair normal NB1 and 

1BR.3 fibroblasts. Comparison of the expression levels of Artemis in 84BR cells with 

the repair normal fibroblast using a Student’s unpaired T test also reveals a 

statistically significant difference in expression levels. 
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Similarly for the radiosensitive 175BR fibroblasts, it can be seen that there is an 

approximate 1.7 fold over-expression of the artemis protein when compared to the 

control cells. Also a Student’s unpaired T test reveals a statistically significant 

difference in expression levels between the 175BR radiosensitive cells and the repair 

normal control cells. 

 

 

Figure 4.9 - NHEJ Gene expression in 175BR radiosensitive fibroblasts. 
 

 
 
This figure shows the data for the 175BR radiosensitive cell line and is presented in an 

identical manner to that of Figure 4.8. Also the P value for 175BR cell line is 0.007. 
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While the expression of the Artemis is considerably higher in both cell lines a 

marginal decrease in DNA-PKcs, Ku70, Ku80 and XRCC4 and a marginal increase 

in Ligase-IV and XLF were observed in 84BR or decrease in DNA-PKcs, Ku70, 

Ku80, Ligase-IV XLF and XRCC4 were observed in 175BR cells.  Although, the 

dramatic increase in the Artemis expression is more striking than the marginal 

fluctuation observed in the expression of  the remaining NHEJ repair genes is also 

worth mentioning as any change in gene expression could be the consequence of 

some form of defect or abnormality of that gene or of its regulation of gene 

expression. 
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4.4 -  Discussion 

In previous Chapters we have hypothesised from the clonogenic and the H2AX 

assays that the cellular radiosensitivity seen in clinically radiosensitive patient 84BR 

and the patient 175BR may be due to a defect in the NHEJ repair pathway as HR 

pathway was found to be functioning normally.  

 

Then, in this chapter we tried to unveil the defect in NHEJ repair pathway which may 

be responsible for the radiosensitivity observed at clinical and cellular level in 

radiosensitive patients. Hence, to determine this defect, if any in the NHEJ repair 

genes, a qRT-PCR assay was conducted, which enabled us to study the level of 

gene expression of some of the key genes found in NHEJ repair pathway.   

 

The key genes under investigation were the Ku70, Ku80, DNAPKcs, XRCC4, XLF, 

Ligase IV and Artemis. Since the previous studies have clearly shown that any 

defects in any component of NHEJ pathway can lead to hypersensitivity to IR, 

genome instability, immunodeficiency and cancer (Bassing and Alt 2004) the next 

prudent decision in our research was to detect the level of NHEJ repair genes as to 

disclose the reason for the radiosensitivity seen in 84BR and 175BR cells.  

 

Based on the study by Mohrin et al., (2010), and Chiou et al., (2007) also the fact 

that the real time PCR is the golden standard for gene expression was the preferred 

choice for the analysis of the key NHEJ genes in two radiosensitive patient cell lines. 

As discussed in previous chapters certain diseases are known to be associated with 

defective genes in NHEJ repair pathway. Defects leading to a reduction in functional 
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Artemis endonuclease activity are particularly noteworthy. At the cellular level this 

manifests extreme radiosensitivity. In human subjects, Artemis deficiency results in 

RS-SCID. RS-SCID is characterised clinically by extreme radiosensitivity and by a 

complete absence of T and B cells due to a failure of the receptor recombination 

stage of V(D)J recombination (Dvorak and Cowan 2010). Attempts to correct the 

deficiency in cells by transduction with lentiviral gene expression vectors containing 

the Artemis cDNA has led to over-expression of Artemis in a number of mammalian 

cell types (Multhaup et al., 2010). While such findings have significant implications 

for the role of gene therapy approaches for the treatment of SCID, it also reveals a 

potentially novel mechanism which may explain radiosensitivity in human cell types.  
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Chapter 5 - Artemis over-expression and Apoptosis 
in Radiosensitive cells  
 

5.1 - Introduction 

As described in Chapter 1 the key proteins involved in NHEJ repair pathway are; 

Ku70, Ku80, DNA-PKcs, Artemis, XLF, XRCC4 and Ligase IV. The Ku70 is 

associated with Ku80 to form a Ku heterodimer that binds to DNA ends with high 

affinity (Smider et al., 1994). Upon binding to DNA ends, the Ku heterodimer recruits 

DNA-PKcs to the sites of DSB (West et al., 1998). The DNA-PKcs protein becomes 

autophosphorylated and functions as a scaffold to bridge the broken DNA ends in a 

synaptic complex (DeFazio et al., 2002). The DNA-PKcs also provides binding sites 

for other NHEJ proteins such as nuclease Artemis (Ma et al., 2002), which is 

required for trimming of the DNA ends or XRCC4/DNAligase IV complex involved in 

re-joining step of NHEJ (O'Driscoll et al., 2001).   

 

The Artemis gene is also required for V(D)J recombination during T-cell and B-cell 

development. In order to get each V (D) J segments to join together the DNA must 

form a DSB. Also since the two ends of the broken DNA molecule generated by DSB 

are rarely compatible Artemis complexes with DNA-PKcs to create a hairpin opening 

which is one of the crucial stages of V(D)J recombination (Ma et al., 2002). 

 

Artemis deficiency in human subjects results in SCID which is characterised clinically 

by extreme radiosensitivity and by a complete absence of T and B cells due to a 

failure of the receptor recombination stage of V(D)J recombination (Dvorak and 

Cowan 2010). Attempts to correct the deficiency in cells by transduction with lentiviral 

gene expression vectors containing the Artemis cDNA has led to over-expression of 
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Artemis in a number of mammalian cell types (Multhaup et al., 2010). However, over-

expression has also resulted in a loss of cell viability, associated with increased DNA 

damage and elevated apoptosis as a result of abnormal activity of the Artemis 

endonuclease inducing DNA breaks (Multhaup et al., 2010).  

 

While such findings have significant implications for the role of gene therapy 

approaches for the treatment of SCID, it also reveals a potentially novel mechanism 

which may explain radiosensitivity in human cell types. To support this assertion, we 

have characterised two radiosensitive human fibroblast cell lines (175BR and 84BR) 

derived from different cancer patients in which we observed a two-fold increase in 

the expression of Artemis as determined by qRT-PCR analysis. This over-expression 

in Artemis was also associated with: 

 Enhanced cellular radiosensitivity (observed with clonogenic assays 

conducted with radiation). 

 A possible defect in NHEJ repair pathway (observed with clonogenic asays 

conducted with HN2). 

 A reduction in the repair of DNA DSBs (observed with H2AX DSB repair 

assay). 

 

Although, radiosensitivity is associated with deficiency in Artemis the study by 

Moshous et al., (2001) and by Multhaup et al., (2010) opted us to review the 

relationship between Artemis over-expression, DNA damage repair defect, 

radiosensitivity and apoptosis in radiosensitive human fibroblasts (84BR and 175BR).  
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5.2 - Materials and Method 

5.2.1- Transfection of NB1-Tert cells with Artemis cDNA   

The Artemis cDNA expression construct was purchased from Origene Inc (Rockville, 

MD, USA) which was provided in the expression plasmid pCMV6-XL5 (under control 

of the cytomegalovirus promoter). This plasmid was supplied without a selectable 

marker to identify transfected cells. Therefore the NB1-Tert cells were co-transfected 

with pCMV6-XL5 and pPur plasmid (Clontech, Hant, UK). 

 

Figure 5.1 -  Map of pCMV6-XL5.  

 

 
 

 
The pCMV-XL5 (4.5 kb) contains: a polylinker also known as the multiple cloning site (MCS), 
for cloning of the gene of interest; Cytomegalovirus (CMV), a promoter for the expression of 
cloned cDNA; an ampicillin-resistance gene (ampr), for selective amplification; the SV40 ori 
for replication in mammalian cells; f1 ori, the filamentous phage origin of replication, for 
recovery of single-stranded plasmids. 
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To overcome the absence of a selectable marker to identify Artemis transfected cells, 

the pCMV6-XL5 plasmid was co-transfected with the pPur plasmid shown below. The 

puromycin resistance gene was used as a selectable marker to identify the 

transfected cells. 

 

 

Figure 5.2- Map of Plasmid pPur. 

 

 

 

The 4.3 kb pPUR is a selection vector which contains; Puror gene that confers 
resistance to puromycin, pBR322 origin of replication for propagation in E.coli and 
Ampr gene for selection of transformed E.coli cells in cultures containing ampicillin. 
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5.2.2- Maxi Preparation of Plasmid DNA 

5.2.2.1 - Transformation of E.coli 

The pCMV6.XL5 plasmid containing the Artemis cDNA was transferred into 

chemically competent DH5α cells (Invitrogen, Paisley, Scotland) for amplification. 

Three µl (10ng) of plasmid was mixed in 100µl thawed DH5α competent bacteria 

cells, gently swirled and incubated on ice for 15 minutes. The bacterial cells were 

heat shocked at 42ºC for 2 minutes. One ml SOC medium was added to the mixture, 

mixed gently and transferred to a fresh Eppendorf tube. The SOC media was made 

by adding 20g of Bacto-tryptone, 5g of Bacto yeast extract, 2ml of 5M NaCI, 2.5ml of 

1M KCI, 10ml of 1M MgCI2, 10ml of 1M MgSO4, 20ml of 1M glucose added to 900ml 

of dH2O (all reagents purchased from Fisher Scientific). Once mixed, the volume was 

adjusted to 1L with dH2O and immediately autoclaved. Transformed E.coli were 

transferred to a sterile 15ml tube and incubated for 1 hour in 200rpm in the orbital 

incubator shaker (Gallenkamp, Holly, Misigan, USA) at 37ºC. After 1 hour incubation 

100µl and 200µl aliquots of the transformed sample were spread with a sterile 

spreader onto two separate pre made Luria-Bertani (LB) agar plates containing 

100µg/ml ampicillin. The plates were left to dry in sterile air under the flame of 

Bunsen burner. The plates were inverted in the incubator (Gallenkamp, Holly, 

Misigan, USA) at 37ºC for overnight incubation. The next day the bacteria growth 

was visible on the surface of the LB agar plates, the plates were either kept at 20ºC 

or a colony of bacteria was picked with a sterile loop and streaked in a fresh LB agar 

plate containing ampicillin and incubated further at 37ºC for overnight. This step was 

repeated three times for three days to get single small colonies. 
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5.2.2.2 -  Growing Large Volume of Transformed Bacteria 

Once single small colonies were achieved, the colonies were picked with a sterile 

loop in the centre to avoid picking satellites and inoculated in a 10ml LB culture 

medium containing 100µg/ml ampicillin. The transformed bacterial cells were 

incubated for 6-8 hours at 37ºC with vigorous shaking at 200rpm. The next day the 

bacteria culture became very turbid; this culture was re-inoculated in 1L of LB media 

and further incubated at 37ºC with vigorous shaking at 200rpm for overnight. One ml 

aliquots of cell culture in 80% glycerol were frozen at -80ºC.   

 

5.2.2.3 - Purification of Plasmid DNA 

Before commencing the maxi prep the RNAse was added to the P1 buffer then the 

P1 and the P3 buffers were stored at 4ºC until used. The following steps were then 

conducted using the QIAGEN plasmid maxi kit to extract the plasmid DNA from the 

bacteria culture.  

 

i. Bacteria culture, harvest and lysis  

The 1L of saturated bacterial culture grown in LB media was pelleted by 

centrifugation (Sigma 6k10, Meadowrose, UK) at 6000xg for 15 minutes at 4ºC. The 

bacterial pellet was homogenously re-suspended in 10ml re-suspension Buffer P1 

(100µg/ml RNase A, 50mM Tris-HCI and 10mM EDTA, pH 8) buffer. To the cells, 

10ml of lysis Buffer P2 (0.2 M NaOH in 1% SDS) was added then mixed vigorously 

by inverting for 4-6 times and incubated at RT for 5 minutes. To the viscous lysate 

10ml ice-cold Neutralisation Buffer P3 (2.55M potassium acetate, pH 4.8) was added 

to neutralise the lysing effect of Buffer P2, and, after thoroughly mixing the lysate 

was incubated on ice for 20 minutes.  
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ii. Bacterial lysate clearing      

The lysate was centrifuged at 16000 x g for 30 minutes at 4ºC then transferred to a 

fresh tube and re-centrifuged for 15 minutes to clear off any remaining pellet. The 

clear supernatant containing plasmid DNA was transferred to a fresh tube.  

 

iii. Bind, wash and elute plasmid DNA on QIAGEN-tip 

The QIAGEN tip was equilibrated by applying 10ml QBT Buffer (750mM NaCI, 50 

mM Mops, 15% ethanol and 0.15% Triton X-100, pH 7) and allowing the column to 

empty by gravity flow. The supernatant containing plasmid DNA was applied to the 

active QIAGEN tip and allowed to enter the resin by gravity flow. The QIAGEN tip 

was washed twice with 30ml of QC buffer (1M NaCI, 50mM Mops, 15% ethanol, pH 

7) by allowing the buffer run through the QIAGEN tip by gravity flow. The DNA was 

eluted with 15ml elution QF buffer (1.25M NaCI, 50mM Mops, 15% ethanol, pH 8.2) 

into a clean 50ml vessel.   

 

iv. Precipitate, wash and re-dissolve plasmid DNA  

The DNA was precipitated by adding 10.5ml RT isopropanol (0.7 volume of elution 

buffer) to the eluted DNA. The DNA was centrifuged at 16000 x g for 30 minutes at 

4ºC, and the supernatant was discarded. The DNA pellet was washed twice in 3ml 

RT 70% ethanol to remove the remaining salts from the preparation. The floating 

pellet was briefly spun at 13000 x g for 5 minutes, the methanol was discarded and 

the pellet was air dried for 5-10 minutes. The pellet was then re-dissolved in 750µl 

Tris-EDTA (TE) buffer (10mM Tris-CI (Sigma Aldrich, Germany) 1Mm EDTA (Fisher 

Scientific, New Jersey, USA) at pH 8.0. The DNA suspension was left at RT for few 

hours to allow the DNA to solubilise in TE buffer before storing at -20ºC. 
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5.2.3- Analysis of Purified Plasmid DNA 

The plasmid DNA was diluted in 1:100 (1µl DNA plus 99µl H2O) dilution and 1:10 

(10µl DNA plus 90µl H2O) dilution with DEPC treated water in two separate cuvettes. 

The UV spectrophotometer (Eppendorf, BioPhotometer) was turned on 15 minutes 

prior to use. The spectrophotometer was blanked with DEPC treated water. The 

concentration of the plasmid DNA was determined by measuring the absorbance at 

260nm (A260) on the spectrophotometer. An absorbance of 1 unit at 260nm 

corresponds to 50µg of DNA per ml. Therefore, the concentration of the purified 

plasmid DNA was calculated by using the following equation: 

 

DNA concentration (µg/ml) = (A260) x (dilution factor) x (50 µg/ml DNA) 

Total yield = DNA concentration x volume of sample in ml 

 

Then the purity of DNA was calculated by measuring the ratio between the 

absorbance values at 260 and 280 nm (260/280). 

 

5.2.4- Agarose Gel Analysis of Purified Plasmid DNA 

The purified plasmid DNA was run on a 1% agarose gel to assess the quality of the 

DNA and to confirm that the DNA sample is free from RNA contamination. The 

samples were run at 40V for 50 minutes, and visualised under UV transilluminator. 

An image of the DNA run was captured with the image acquisition end analysis 

system. 
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5.2.5- Co-transfection of NB1-Tert cells with pCMV6-XL5 Artemis cDNA  

Co-transfection of NB1-Tert cells with pCMV6-XL5 plasmid containing Artemis cDNA 

was performed with Genejuice lipid transfection reagent (Novagen, Ltd). Twenty 

micrograms of each plasmid in 100 l of serum free medium containing 3 l of 

Genejuice reagent was added to the 1X106 cells in 10ml of complete DMEM. The 

mixture was left on cells for 5 hours then the media was changed and the cells were 

incubated at 37ºC for 24 hours. The successfully transfected cells were selected in 

20 g/ml puromycin. The selection and medium refreshment were repeated once a 

week, for 4 weeks until distinct colonies were ready to be picked. A puromycin-

resistant clone was also isolated in which the cells were transfected with pPur only 

without pCMV6-XL5 plasmid.  

 

5.2.6- Isolation and Freezing of NB1-Tert Transfectants 

Puromycin resistant clones were collected by ring cloning and expanded into culture. 

The culture were transferred to 50mm Petri dishes containing 5ml complete medium 

supplemented with 20 g/ml puromycin and incubated at 37ºC in a humidified 

atmosphere of 10% CO2 in air. When cells reached to approximately 80% confluence 

aliquots of clones were frozen in liquid nitrogen for future use. When the puromycin 

resistant clones were subjected to further analysis an aliquot was gently thawed at 

37ºC prior to use.  

 

 

 

 

5.2.7- Clonogenic assay – Surviving fraction at 2 Gy gamma irradiation 
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The NB1-Tert cells and those transfected with the Artemis cDNA and pPur only were 

subjected to clonogenic assays to determine the -radiation sensitivity in each of the 

various clones selected. The procedure for clonogenic assay (see Chapter 3) was 

also employed here. The response of all five clones to -radiation was compared to 

that of non-transfected parental NB1-Tert cells.   

 

5.2.8- Quantitation of Artemis Protein Expression in Cells  

The Artemis protein expression in the fibroblast cell lines (NB1, 1BR.3, 84BR and 

175BR) and the NB1-Tert cell line transfected with Artemis was determined using the 

immunocytochemistry and imaging flow cytometry assay. Cells growing as 

monolayers were trypsinised and washed twice in 10ml of ice cold PBS. Following 

fixation in 3.7% paraformaldehyde in PBS at 4ºC for 15 minutes, cells were washed 

in PBS and fixed in 50:50 vol:vol methanol acetone for 10 minutes at 4ºC. Cells were 

rehydrated and permeabilised in tris buffered saline (TBS) containing 0.1% Tween 20 

after which the cells were stained with a rabbit polyclonal anti-artemis antibody at a 

dilution of 1/100 in permeabilisation buffer containing 5% goat serum (Abcam, 

Cambridge, UK). Following two washes in permeabilisation buffer, a goat anti-rabbit 

Alexa Fluor488 conjugated secondary antibody (Invitrogen) was added at a dilution of 

1/1000 for 1 hr at RT. Cells were washed three times in permeabilisation buffer and 

re-suspended in 100 l Accumax flow cytometry buffer (PAA Ltd.) containing 5 M 

Draq 5 (to visualise the nuclear region). Images of 10,000 cells were captured using 

the Imagestream and the level of Artemis expression in cells was determined by 

calculating the average Alexa Fluor488-associated fluorescence in the nuclei of the 

cells. 
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5.2.9- Apoptosis Assay 

The level of apoptosis in untreated and cells irradiated with 2Gy gamma radiation 

was determined by immunocytochemistry and imaging flow cytometry using a FITC 

Annexin-V Apoptosis detection kit (BD Pharmingen Ltd., Oxford, UK) according to 

the manufacturer’s instructions. In brief either untreated or cells irradiated with 2Gy 

gamma radiation were recovered into a suspension by trypsinisation and washed 

twice in PBS.  Cells were resuspended into 500 l of binding buffer to which was 

added 5 l annexin V-FITC and 5 l of propidium iodide. Cells were incubated for 10 

minutes at RT in the dark and levels of apoptosis were determined by counting 5,000 

cells using the Imagestream imaging flow cytometer with a 488nm laser at a power 

setting of 40m Watts (Amnis Corporation, Seattle, Washington, USA). Images of all 

cells were visualised using the Ideas™ analysis software programme of the 

Imagestream (Bourton et al., 2012). Here cells are first gated for single cells, cells in 

focus, followed by identification of apoptotic cells. Apoptotic cells were gated and 

enumerated by identifying those cells that exhibited FITC and propidium iodide 

staining. Staining patterns in all cells was visually confirmed by assessing the 

appearance of the cells using the Image Gallery of the Ideas  software package. 

 

5.2.10-  Sample loading and data analysis 

Levels of apoptosis were determined by counting 5,000 cells using the 

Imagestream  imaging flow cytometer with a 488nm laser at a power setting of 40m 

Watts (Amnis Corporation, Seattle, Washington, USA). Images of all cells were 

visualised using the Ideas™ analysis software programme of the Imagestream e.g. 

(Bourton et al., 2012). Here cells are first gated for single cells; cells in focus followed 

by cells that exhibit the following patterns of fluorescence. Early apoptotic cells were 
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gated and enumerated by identifying those cells that exhibited FITC fluorescence 

located at the membrane region of the cells. A membrane mask was created using 

the Mask Manager function of the Ideas  software. Late apoptotic cells were 

enumerated by gating those cells that exhibited both intracellular FITC and propidium 

iodide staining. Staining patterns in all cells was visually confirmed by assessing the 

appearance of the cells using the Image gallery of the Ideas  software package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 - Results 
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5.3.1 - Detection of plasmid Quality with Agarose gel  

The pPur and pCMV6-XL5 plasmids containing full length Artemis cDNA were 

amplified in E.coli and purified with Qiagen MaxiPrep kit. Once the plasmids were 

purified approximately 200 to 400ng of plasmids were run on a 1% agarose gel to 

detect the quality of the plasmids. The image Figure 5.3 illustrates the agarose gel 

analysis of pCMV6-XLF Artemis cDNA and pPUR plasmids. The pCMV6-XL5 

plasmid did not contain any selectable marker required for identification of 

transfected cells and isolation of the resulting colonies. To overcome this problem, 

the full length Artemis cDNA was co-transfected into recipient NB1-Tert cells with the 

pPur plasmid conferring resistance to puromycin. 

 

Figure 5.3 - Agarose gel analysis of the purified plasmids. 

 

 

 

 

The pPUR plasmid cDNA is 4.3 Kb and the pCMV6-XL5 plasmid containing full length 
Artemis cDNA is 4.5 Kb. The plasmids were purified using the Qiagen maxi columns and run 
on 1% agarose gel. 

5.3.2 - Artemis Expression in Cells 
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With the aid of pCMV6-XL5 and pPur plasmids the Artemis full length cDNA was 

transferred into NB1-Tert cells. In total six puromycin resistant clones were isolated. 

The level of Artemis expression in cells was measured by the method of imaging flow 

cytometry in conjunction with immunocytochemistry. Cells growing as monolayers 

were trypsinised and stained with antibodies to detect Artemis. Images of 10,000 

cells were captured with imaging flow cytometry and using a series of pre-determined 

analysis routines in the Ideas  software (Amnis Inc.) (e.g., Bourton et al., 2011) the 

average level of nuclear fluorescence attributable to Artemis expression was 

calculated. The data are summarised in Table 5.1. 

Table 5.1 - Artemis expression in all cell lines determined by imaging flow cytometry. 

Cell line Artemis Expression Cell line Artemis Expression 

 
NB1 

1.00 NB1-Tert 1.00 

 
1BR.3 

 
1.00 

Vector only 0.64 

 
84BR 

 
2.06 

Clone 1 1.81 

 
175BR 

 
2.09 

Clone 2 2.08 

  
Clone 3 1.65 

  
 

Clone 4 
 

2.02 

  
 

Clone 5 
 

2.25 

  

 
Clone 6 

 

 
1.05 

 

 
Artemis expression was determined by calculating the average Artemis associated 

fluorescence in the nuclei of 10,000 cell images. Artemis expression (fluorescence) 

in NB1-Tert parental cells or normal fibroblast cells is assigned a value of 1.0 

(relative fluorescence). Fluorescence in all other cell lines was expressed in relation 

to the relative fluorescence in normal cells or parental cells. 



125 

 

 

In the NB1 and 1BR.3 normal fibroblast cells the average nuclear fluorescence 

attributable to Artemis expression was averaged and given a value of 1.0. 

Expression of Artemis in the 84BR and 175BR was expressed in relation to levels in 

the normal fibroblast cells. We demonstrate that the 84BR and 175BR cells display a 

2.06 and 2.09-fold increase in nuclear Artemis expression. These data support our 

observations of elevated Artemis expression derived from the qRT-PCR 

experiments. 

 

Artemis expression in the NB1-Tert parental cells was derived as explained above. 

Artemis expression in the vector-only transfected cells and in clone 6 reveals a 

largely unchanged level of Artemis expression. However in clones 1-5 there is an 

increased level of Artemis expression in the nuclei of these cells. This ranged from a 

1.65-fold increased level of expression in clone 3 to a 2.25-fold elevated expression 

in clone 5. A representative image of Artemis staining of cells, derived from imaging 

flow cytometry is shown in Figure 5.4. 

 
 

Figure 5.4 - Representative images of NB1-Tert cells stained for Artemis. 
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A brightfield image is shown in the left column. The centre column shows Alexa Fluor488 
staining for Artemis and the right column shows the Draq 5 staining of the nuclear region of 
the cell. Row A shows NB1-Tert parental cells. Row B shows elevated Artemis expression in 
NB1-Tert clone 2 which has been transfected to over-express the Artemis protein.  

 

 

 

 

 

 

 

5.3.3 - Radiation Sensitivity of Artemis-Transfected NB1-Tert Cells 

Clonogenic cell survival in the Artemis-transfected NB1-Tert cells following exposure 

to 0, 2, 4, 6 and 8 Gy gamma radiation is shown in Figure 5.5. In the parental NB1-

Tert cells and those transfected with the pPur plasmid together with a single clone 

(clone 6) of Artemis transfected cells, there is a similar and normal level of survival. 

However, in NB1-Tert clones 1 to 5 (that are over-expressing Artemis), there is 

marked reduction in the clonogenic cell survival following exposure to increasing 
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doses of gamma radiation. In the single clone 6 in which the radiation response was 

unaltered, it is likely that here the cells were transfected with the pPur plasmid only 

and failed to acquire the Artemis gene during the co-transfection process. 
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Figure 5.5 - The -radiation sensitivity of Artemis transfectants. 

 

The survival of the NB1-Tert cells transfected with Artemis following exposure to 0, 2, 4, 6 
and 8 Gy gamma radiation. The NB1-Tert cells were transformed with Artemis cDNA and the 
transfected clones as well as non-transfected clones were diluted and irradiated with 

different doses of -radiation, as explained in Chapter 1. Surviving colonies were then fixed, 
stained and colonies counting 50 or more were counted. Survival of each clones were 
normalised to plating efficiency of unirradiated control cells. Data are derived from three 
independent experiments and error bars shown represent standard error of the mean. The P 
value is <0.05. 
 
 
 
 
 
 
 

5.3.4 - Elevated Apoptosis in Artemis-Transfected NB1-Tert Cells 
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Apoptosis in NB1-Tert cells transfected to over-express Artemis was measured by 

imaging flow cytometry. In five of six clones we demonstrated a significantly 

increased level of apoptosis when compared to non-transfected cells and cells 

transfected with the pPur vector only. In clone 6 we did not observe elevated 

apoptosis. Interestingly, this clone was not observed to have elevated Artemis 

expression; this is likely due to the failure to transfect with the Artemis cDNA during 

co-transfection. 

 
 

Figure 5.6 - Apoptosis in NB1-Tert cells transfected to over-express the Artemis 
protein. 

 

 

Data are derived from analysing the images of not less than 5000 cells. Standard deviation 
bars are included and shown on the graph. White bars are untreated cells. Grey bars are 
cells treated with a 2 Gy gamma radiation. The P value is < 0.05. 
 
 

Figure 5.7- Non-apoptotic and cells at different stages of apoptosis. 
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Images derived from Imagestream analysis shows a brightfield image together with an image 
of Annexin V staining (FITC) and an image of the nucleus stained with PI. A: A normal cell 
with spherical nucleous and no sign of apoptosis, B: Shrunken cell with light fluorescence as 
a sign of early apoptosis, C: cell beginning to bleb and intense green fluorescence indicates 
apoptosis, D: Cell membrane breaking and intense fluorescence indicating high level of 
apoptosis. 

 

 

 

 

 

 

5.3.5 - Apoptosis in radiation hypersensitive patient cells  
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The data in Figure 5.6 shows that in the repair normal NB1 and 1BR.3 cells the 

levels of apoptosis in un-irradiated cells (determined by the number of cells positive 

for Annexin V and propidium iodide staining) is 5.00% and 3.31% of all cells. 

Following 2 Gy gamma radiation the levels of radiation-induced apoptosis increases 

to 8.65% and 11.50% respectively for each cell line. In the radiation-sensitive 84BR 

and 175BR fibroblasts, apoptosis levels in un-irradiated cells are 8.65% and 10.32% 

respectively. Following 2Gy irradiation these levels increase to 24.54% and 30.60% 

respectively. These data indicate that spontaneous levels of apoptosis in the 

radiosensitive cell lines are higher than in the repair-competent NB1 and 1BR.3 cells. 

Moreover, a similar and significantly increased level of apoptosis is observed in the 

84BR and 175BR cell lines compared to the repair competent fibroblasts (P < 0.05, 

Student’s unpaired t-test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 - Apoptosis in patient and in control cells. 
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Here the apoptosis level in NB1 and 1BR.3 repair normal cell lines compared with the 
radiosensitive 84BR and 175BR cell lines prior (white bars) and following 2Gy gamma 
radiation (grey bars) is illustrated. Apoptosis was determined by Annexin V and propidium 
iodide staining and data are derived from imaging flow cytometry using the Imagestream 
whereby images of 5000 or more cells were captured and apoptotic cells determined. 
Standard deviation bars are included and shown on the graphs. The P value is < 0.05. 
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5.4 - Discussion 

In previous chapters, it was demonstrated that the 84BR and 175BR patient cell lines 

were hypersensitive to the lethal effects of -radiation. However, a normal response 

to DNA cross-linking agent (nitrogen mustard), as explained in Chapter 3, which 

requires collaboration of NHEJ and HR, indicated that the likely defective pathway 

controlling the hypersensitivity was NHEJ. The qRT-PCR analysis of key genes 

associated with NHEJ DNA repair revealed a 1.5-2 fold over-expression of the 

Artemis endonuclease in both 175BR and 84BR patient cells. Thus, the likelihood of 

radiosensitivity as a result of Artemis over expression in these cells. To investigate 

further this hypothesis and subsequently to reveal the defect in Artemis gene, the 

NB1-Tert cells were co-transfected with full length Artemis cDNA. The pCMV6.XL5 

vector did not carry any selectable marker, thus the full length Artemis cDNA was co-

transfected with plasmid pPur into NB1-Tert cells and the transfectant capable of 

growing and producing clones in puromycin were isolated. In total six clones were 

identified. The use of imaging flow cytometry revealed the highest Artemis 

expression, ranging between 1.65 to 2.25 fold, in clones 1-5, while in clone 6  there 

was largely unchanged level of Artemis expression. It is likely that the clone 6 was 

co-transfected with pPur only thus the reason why the Artemis expression was 

largely unchanged.  

 

The radiosensitivity of these clones was examined through -irradiation clonogenic 

assay. Different clones containing Artemis cDNA were irradiated with increasing 

doses of -irradiation. Non-transfected NB1-Tert cell line served as control in this 

experiment. The -irradiation survival curve showed that the NB1-Tert clones 1 to 5 

had a marked reduction in the clonogenic cell survival following exposure to 



134 

 

increasing doses of gamma radiation, suggesting that the radiosensitivity in these 

clones may be associated with the over-expression of Artemis gene. Thus, further 

supporting the association of high Artemis expression detected in Chapter 4 with 

qRT-PCR, with radiosensitivity in175BR and 84BR patients.  

 

One explanation as to why those cells with high expression of Artemis, (the five NB1-

Tert clones and the two patient cell lines (175BR and 84BR) displayed much higher 

cellular radiosensitivity in comparison to the controls, might be due to the fact that the 

more Artemis is being made, the higher is the nuclease activity (i.e. the trimming of 

the DNA ends) during the NHEJ repair of DSBs of DNA. Therefore, as the nuclease 

activity increases more DNA is un-specifically trimmed and less XRCC4 and Ligase 

IV proteins are available for the ligation and sealing of the DNA ends. The un-specific 

cutting of the DNA therefore, resulted in a defect in the ability of both patient cells to 

repair the DSBs caused by IR. This may then have resulted in high sensitivity to 

radiation in cells with high expression of Artemis. 

 

While we demonstrate radiosensitivity associated with Artemis over-expression in the 

two cell lines and that this result is concordant with that of (Multhaup et al., 2010), 

others have not demonstrated similar findings. For example, over-expression of 

functional Artemis in the 48BR normal fibroblast cell line results in increased 

radioresistance. However an Artemis construct deleted at the C-terminus thus 

removing endonuclease activity of the protein results in a dominant negative 

phenotype whereby the 48BR fibroblasts are rendered sensitive to the lethal effects 

of radiation and radiomimetic drugs (Mohapatra et al., 2011). The apparent disparity 

of these findings are unclear but it may be speculated that cell line specific 
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differences in DNA repair and gene expression may underpin the differences in 

radiation survival following Artemis transfection. Alternatively, over-expression of an 

endonuclease such as Artemis beyond a critical level may lead to cytotoxicity rather 

than resistance to radiation. 

 

Also in five of six clones and the two radiation-sensitive fibroblasts (84BR and 

175BR) the apoptosis was elevated after gamma radiation exposure. Thus, the data 

indicate that the spontaneous levels of apoptosis in the radiosensitive cell lines are 

higher than in the repair-competent NB1, 1BR.3  and NB1-Tert cells.  

 

To reiterate, our findings together with the results of others (e.g. Mohapatra et al., 

2011) indicate that both increased and reduced levels of Artemis expression can 

result in cellular radiosensitivity. While the level of over-expression in the 84BR and 

175BR cell lines is approximately 1.5-2 fold, we do observe elevated apoptosis and a 

failure to efficiently repair DNA DSB before and following radiation exposure.  

Therefore, we hypothesise that the increased expression of the Artemis protein 

appears to act in a dominant negative manner and can result in elevated sensitivity 

to IR and elevated apoptosis. 
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Chapter 6 - General Discussion 
 

In this research, the cellular radiosensitivity in two human fibroblast cell lines (84BR 

and 175BR) has been identified. The 84BR fibroblast cell line was derived from a 

non-affected skin biopsy of radiosensitive breast cancer patient (Arlett et al., 1989). 

The 175BR cell line as derived from a non-affected skin biopsy from an individual 

with multiple tumours of independent histological origin and was a kind gift from 

Professor Bruce Ponder (Cambridge Research Institute, Cambridge, UK). 

 

The breast cancer patient is an adult female who has over-reacted to radiotherapy. 

Also on the RTOG scale this patient was categorised as class three patient with 

severe odema, swelling and persistent fibrosis (Cox et al., 1995). The clinical hyper 

sensitivity to radiotherapy in 84BR patient was also confirmed at cellular level by two 

independent studies conducted by Arlett et al., (1989) and Alsbeih et al., (1996). 

 

According to the family pedigree, provided by Professor Bruce Ponder, and the 

patient information provided by Dr C.F Arlett, the patient 175BR is an adult male and 

multiple tumours existed amongst other members of his family. However, there is no 

evidence of clinical radiosensitivity and over-reaction to radiotherapy in this patient.  

 

Other cell lines used in this project were the NB1 and 1.BR3 normal diploid fibroblast 

cell lines as described in Bridger and Kill (2004) and Arlett et al., 1988 and the 

immortal NB1-Tert cell line was established during this research.   

 

The clonogenic assays were conducted by exposure of cells to IR and the DNA 

cross-linking agent (nitrogen mustard). The clonogenic assay conducted with IR had 
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two fold purposes; to detect the hypersensitivity of both patient cells to -radiation, 

and to confirm the findings of Arlett et al., (1989) and Alsbeih et al., (1996) which 

supports the radiosensitivity of 84BR patient cells at cellular level. The results of 

clonogenic assay with IR demonstrated that both the 84BR and 175BR patient cells 

were 1.5-2 fold more sensitive to the lethal effects of IR, than two fibroblast cell lines 

1BR.3 and NB1 derived from repair normal individuals.   

 

The exposure of cells to -radiation can result in single strand breaks single strand 

breaks together with sugar and base oxidations. The damage to DNA is recognised 

and repaired by specific DNA repair pathways. The three enzymatically distinct 

pathways that repair DNA DSBs are: NHEJ, HR, and SSA. While the NHEJ is the 

main pathway of IR-induced DSB repair in eukaryotic cells the HR is the principle 

mechanism in prokaryotic cells.  

 

To determine the defective DSB repair pathway responsible for -radiation sensitivity 

of 84BR and 175BR cell lines, these cells were treated with increasing doses of HN2. 

As exposure of HN2 on patient cells revealed similar response to that of control cells, 

the possibility of defective HR was excluded thus, the results implied a defect in 

NHEJ pathway.   

 

The DSBs in 84BR and 175BR cells were detected by immunofluorescence assay 

where the cells treated with -irradiation and the ability of the cells to repair DSBs 

were measured with anti -H2AX antibody. The DSB repair in these cells were 

measured on the basis of clearance of -H2AX foci against repair time and compared 

to that of control cell lines. Immunofluorescence assay showed that in 84BR and 
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175BR cells the majority of the -H2AX foci were still present after 24 hour exposure 

to IR, which suggested defective DSB repair. The majority of -H2AX foci in control 

cell lines (NB1 and 1.BR3) were cleared thus, indicated the efficient repair of DSBs. 

The persistence of -H2AX foci even at 24hr post irradiation in patient cells and 

enhanced radiosensitivity in patient cell lines was associated with a failure to 

effectively repair DNA DSBs following radiation exposure.   

 

The next step of this research involved detection of NHEJ repair defect which may 

have been responsible for the radiosensitivity seen in both patients. To identify the 

NHEJ defective gene the qRT-PCR assay was conducted. This assay enabled us to 

study the level of gene expression of some of the key genes (Ku70, Ku80, DNAPKcs, 

XRCC4, XLF, Ligase IV and Artemis) found in NHEJ repair pathway. Quantitative 

PCR analysis of key genes associated with NHEJ DNA repair revealed a 1.5-2 fold 

over-expression of the Artemis endonuclease, which is a key component of the 

NHEJ repair pathway. In the absence of detecting any other defect in the cells other 

than an abnormal over-expression of Artemis, it was necessary to determine how 

such a phenotype might be responsible for the radiation hypersensitivity of the two 

cell lines 

 

A study by Multhaup et al., (2010) investigating the use of lentivral vectors for the 

gene therapy of RS-SCID demonstrated that over-expression of the Artemis protein 

was associated with reduced cell survival, increased DNA damage and elevated 

apoptosis. Similarly, we hypothesised from our observations that in the cell lines 

described in this study, that increased expression of the Artemis endonuclease might 

be acting as a dominant negative leading to abnormal and illegitimate DNA DSBs 
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due to the unregulated action of the protein thus contributing to increased 

radiosensitivity. 

 

The expression of Artemis protein in fibroblast cell lines (NB1, 1BR.3, 84BR and 

175BR) and clones of NB1.Tert cells transfected with Artemis was determined using 

immunocytochemistry and imaging flow cytometry. A 2.06 and 2.09-fold increase in 

nuclear Artemis was detected thus, confirming the observations of elevated Artemis 

expression detected by RT-qPCR experiments. Also the Artemis expression ranged 

from 1.65-fold increased level in clone 3 to 2.25-fold elevated expression in clone 5.  

 

As in Multhaup et al., (2010) study to determine the effect of over-expression of 

Artemis in those fibroblast cells the apoptosis assay was conducted. The levels of 

apoptosis in untreated and cells irradiated with 2Gy gamma radiation were 

determined by immunocytochemistry and imaging flow cytometry. In the repair 

normal NB1 and 1BR.3 cells the levels of apoptosis in un-irradiated cells was 5.00% 

and 3.31% of all cells. After treating the cells to 2Gy gamma radiation the levels of 

radiation induced apoptosis increased to 8.65% and 11.50% respectively for each 

cell line. In the radiation-sensitive 84BR and 175BR fibroblasts, apoptosis levels in 

un-irradiated cells were 8.65% and 10.32% respectively. Following 2Gy irradiation 

these levels increased to 24.54% and 30.60% respectively. Thus the results indicate 

a much higher spontaneous levels of apoptosis in the radiosensitive cell lines when 

compared to repair-component NB1 and 1BR.3 cell lines.  
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Similarly the apoptosis in NB1-Tert cells transfected to over-express Artemis was 

also significantly increased when compared to non-transfected cells and cells 

transfected with the pPur vector only. 

 

The clonogenic cell survival in the Artemis transfected NB1-Tert clones 1 to 5 (that 

are over-expressing Artemis), a marked reduction in the clonogenic cell survival was 

also confirmed following exposure to increasing doses of gamma radiation.  

 

Thus, the increased endonuclease activity associated with over-expression of 

Artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated 

apoptosis in two radio-hypersensitive cell lines (175BR and 84BR) as well as those 

NB1-Tert clones 1 to 5 with high expression of Artemis. These data reveal a 

potentially novel mechanism responsible for radiosensitivity in human cells. 

 

From these observations we propose a novel mechanism of cellular radiation 

hypersensitivity whereby the increased expression of the Artemis endonuclease 

promotes illegitimate DNA DSB leading to elevated DNA damage and elevated 

apoptosis associated with clinical and cellular radiosensitivity. Also the prolonged 

H2AX foci in patient cells are not only due to deficiency in repairing DSBs. Also the 

foci may be the result of new breaks being created due to an excess of the Artemis 

nuclease.  
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Future Work  

Since the over-expression of Artemis resulted in radiosensitivity in two patient cell 

lines (84BR and 175BR) and in NB1-Tert cells transfected to induce high expression 

of Artemis in clonogenic assay the gene knockdown would ideally bring the level of 

Artemis expression to a normal level. One suggestion is that normal level of Artemis 

expression may restore normal radiosensitivity in the cells. Thus, a restoration of 

normal radiosensitivity might lead to efficient DSB repair and automatically a 

reduction in apoptosis levels in those cells.  

 

Also, it would be interesting to see if over-expression of Artemis in DNA-PKcs 

defective cells would cause radiosensitivity as described in this thesis. The cell lines 

XP14BRneo17 (Abbaszadeh et al., 2010) and the MO59J (Anderson et al., 2001) are 

defective in DNA-PKcs. Therefore, over-expression of Artemis in these cell lines may 

not render the cells sensitive to radiation due to the necessity for DNA-PKcs 

phosphorylation of Artemis. This would also address this question as to whether 

other kinases have the ability to activate Artemis in the absence of DNA-PKcs. 

 

Finally, we have demonstrated a dominant negative effect of Artemis over-

expression in two fibroblast cell lines derived from cancer patient and in the cell line 

NB1-Tert transfected to over-express Artemis. It may be conceded that this is a 

limited number of cell types. Therefore, it would be a useful enterprise to determine 

the effect in a wider variety of cell types from normal individuals and in cells derived 

from different types of cancer. Moreover, the critical level of Artemis expression in 

cells which results in radiosensitivity needs to be addressed. For example, it was 

demonstrated that a twofold over-expression of Artemis results in radiosensitivity. It 
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would be useful to create a range of cell lines with increasing and decreasing levels 

of Artemis to determine which level of protein expression induces radiation 

resistance and sensitivity. 
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