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1. Introduction

We consider the Dirichlet, Neumann and Robin boundary value prob-
lems (BVPs) in a bounded domain for scalar second order divergent-form
elliptic partial differential equations (PDEs) with variable matrix coeflicients
and develop the method of localized boundary-domain singular integral equa-
tions (LBDSIEs) based on a localized harmonic parametrix.

The basic boundary value problems treated in the paper are well inves-
tigated in the literature by the variational methods, and (when the corre-
sponding fundamental solution is available in an explicit form) also by the
classical potential methods, see, e.g., [18], [19], [20], [27], and the references
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therein. In the latter case, the BVPs in the domain can be reduced to bound-
ary integral equations on the domain boundary, which can be used not only
for the BVP analysis but also for effective numerical solution.

However, the fundamental solutions for second order elliptic partial dif-
ferential equations with variable coefficients are not available in explicit form,
in general. Application of the potential method based on the corresponding
Levi function, which can be constructed explicitly, leads to Fredholm-Riesz
type integral equations but invertibility of the integral operators was proved
only for some particular cases (see [27] and the references therein).

For a mixed BVP for an elliptic PDE with a scalar variable coefficient
in a three-dimensional bounded domain, an analysis (including invertibility)
in Sobolev spaces of segregated direct boundary-domain integral equations
(BDIEs) with a parametrix (Levi function) taken as a fundamental solution
of a corresponding PDE with frozen coefficient, was developed in [7, 8] and
extended to united direct boundary-domain integro-differential equations in
[23]. For the same BVPs, two-operator segregated direct BDIEs, where a
parametrix of another elliptic PDE was employed, were analysed in [3, 4].
An analysis of segregated direct BDIEs for Dirichlet, Neumann and mixed
BVPs for the PDE with variable scalar coefficient in a bounded domain with
internal crack was presented in [10]. In [13], the direct segregated BDIEs for
Dirichlet, Neumann and mixed BVPs in exterior (unbounded) domains have
been investigated in weighted Sobolev spaces of the Beppo-Levi type.

The segregated direct localized boundary-domain integral equations (LB-
DIEs), introduced in [21] and associated with the Dirichlet and Neumann
BVPs for the PDE with a scalar variable coefficient in a bounded three-
dimensional domain, were analysed in [9]. In [11] we considered segregated
LBDIEs for an elliptic second order PDE with a scalar variable coefficient in
a composite domain under the transmission conditions on the interface and
the Dirichlet or mixed boundary conditions on the external boundary. In [12]
the latter analysis was extended to segregated LBDIEs associated with the
Dirichlet, Neumann and mixed BVPs in a composite domain with a crack on
the interface, for an elliptic second order scalar PDE with variable matriz
coefficients of a particular form, where the PDE matriz coefficients in ad-
jacent regions of the composite domain are representable as the product of
constant matrices and scalar functions. In the references [9], [11] and [12], it
was possible to represent the localised parametrix of the considered PDE as
the product of a scalar function and the localised parametrix of a constant-
coefficient partial differential operator. As a result, all the domain integral
operators involved in the corresponding LBDIE systems were at most weekly
singular, and the multiplicative form of the parametrix essentially facilitated
the analysis.

However such possibility seems to be not available for scalar second or-
der PDEs with general matriz variable coefficients. In this paper, our main
goal is to show that employing the localized parametriz of the Laplace opera-
tor, the Dirichlet, Neumann and Robin BVPs for a scalar elliptic PDE with



Localized Boundary-Domain Singular Integral Equations 3

variable matriz coefficients of general form can be reduced to some systems of
segregated direct localized boundary-domain singular integral equations. Fol-
lowing [22, 3, 4], we call them two-operator LBDSIE systems, since they are
obtained by applying a parametrix of the Laplace operator to solve BVPs for
another scalar second order elliptic partial differential operator with variable
coeflicients, for which it is not a parametrix, in general. We prove that the cor-
responding localized boundary-domain singular (in the Cauchy sense) integral
operators (LBDSIOs) are invertible in appropriate Sobolev spaces. Beside a
pure mathematical interest, these results look also important for constructing
LBDSIE-based effective numerical algorithms, cf. [32, 33, 31, 30, 21, 25].

The paper is organized as follows. In Section 2, we formulate the Dirich-
let, Neumann, and Robin BVPs for an elliptic PDE with matrix variable co-
efficients in appropriate Sobolev spaces. Then we introduce the localized har-
monic parametriz as the product of the fundamental solution function of the
Laplace operator and an appropriately chosen localising function. The har-
monic parametrix is neither a fundamental solution nor a parametrix of the
variable-coefficient PDE under consideration, in general (unlike the scalar-
coefficient case considered in [9]). Using the localized harmonic parametrix,
we derive a two-operator localized parametrix-based version of the Green
third identity for a second order divergent-form elliptic partial differential op-
erator with variable coefficients and establish some auxiliary identities needed
in our further analysis.

In Sections 3, with the help of Green’s third identity derived in Section 2,
we reformulate the Dirichlet, Neumann, and Robin BVPs as direct localized
boundary-domain integral equations systems and prove the corresponding
equivalence theorems.

In Sections 4, we investigate Fredholm properties of the domain singular
integral operator which appears in the obtained LBDSIE systems.

In Sections 5, 6, and 7 we analyse in detail Fredholm properties of
the LBDSIOs associated with the Dirichlet, Robin, and Neumann BVPs,
respectively. We establish that the LBDSIOs belong to the Boutet de Monvel
algebra of pseudo-differential operators [5, 17, 28] and employing the Vishik-
Eskin theory [15, 29] based on the factorization method we prove invertibility
of the LBDSIOs in appropriate Sobolev spaces. The most essential point here
is to show that the so called generalized Sapiro-Lopatinskii conditions hold,
implying that the LBDSIOs under consideration are Fredholm. Afterwards we
establish that the indices of the LBDSIOs equal to zero and characterise the
corresponding null spaces. In particular, we show that the null spaces of the
LBDSIOs associated with the Dirichlet and Robin problems are trivial which
lead to invertibility of the LBDSIOs in appropriate Sobolev spaces, while the
LBDSIO associated with the Neumann problem possesses a one-dimensional
nontrivial null space.

To make the paper more self-contained, we describe shortly classes of
localizing cut-off functions in Appendix A, while in Appendices B and C we
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collect some auxiliary results regarding the properties of localized potentials
and the corresponding integral operators needed in our analysis.

2. Boundary value problems and parametrix-based operators

2.1. Formulation of the problems and basic relations
Consider a uniformly elliptic second order scalar partial differential operator
in R3,

0 ( (2) ou )
— |ag;(z) =— ),
al'k ki 8(Ej
where 0, = (01,02,03), 0j = 0,; = 0/0x;, real coefficients ay; € C>(R3),
and ar; = ajk, j,k =1,2,3. Here and in what follows we assume summation
from 1 to 3 over repeated indices if not explicitly stated otherwise. Due to
the uniform ellipticity, the matrix a(z) := [ag;(2)]3x3 is positive definite, i.e.,
there are positive constants ¢; and ¢y such that

€ <A@, &) =ap(@) & & < 2§ VazeR? VEER®.  (21)

A(x,0;)u =

Further, let Q27 be an open bounded domain in R? with a simply con-
nected boundary 90t = S € C*, Qf = QF U S. Throughout the paper
n = (n1,ng,n3) denotes the unit normal vector to S directed outward the
domain Q. Set O~ := R?\ QF.

By H"(Q) = H3(Q), Hj,.(Q) = Hj100(Q); Hipmp(2) = H3 comp($),
and H"(S) = H3(S), r € R, we denote the Bessel potential spaces on a
domain © and on a closed manifold S without boundary, D(2) stands for
the space of infinitely differentiable test functions with compact support in
Q, while D(Q2) denotes the space of restrictions to  of all functions from
D(R3). Recall that H?(Q) = Ly(£) is a space of square integrable functions
in Q and for » > 0 the Bessel potential space H" coincides with the Sobolev-
Slobodetskii space W3

By H%9(Q%; A) we denote the following subspaces of H'(Q%), respec-
tively,

HY0(QF; A) := {uec HY(QF) : Auec H'(QF)},

endowed with the following graph norms

1/2
lull o2y = {1l ) + 1Aulogos }

Further, let HL (275 A) := {u e HL(Q7) : Aue H2 (27)}.

By v~ ! we denote a (non-unique) continuous linear extension operator
acting from H?(S) into H'(R?). The restrictions of v~! on Qt and Q= are
the right inverse operators to the corresponding trace operators 4+ and ™.

The co-normal derivative operators on the surface S for sufficiently

smooth functions are defined by the relations

T (x,0,) u(z) := ap;(z) ng(z) y=oju(z), z € S. (2.2)
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Hinted by Green’s first identity, the co-normal derivative operator can be
extended by continuity to u € HY%(QF; A) as follows,

Trugle= [ (7 Audet [ ag(@) @) 00T 9de (23
VgeH(S),

where (-, ), denotes the duality between the adjoint spaces H —3(S) and
Hz(S) which extends the usual bilinear Ly(S) inner product. The gener-

alized co-normal derivative operator T~ u is defined similarly for functions
ue HY0(Q; A),

Tug)si== [ (7 Aude = [ ay(e) @) O Mg de (24

VgeH(S).

Definitions (2.3) and (2.4) do not depend on the extension operator y~1, cf.
[16, 14, 20, 24]. Hence, since y~! can always be chosen such that v~ lg €

H.\p(R?), the co-normal derivative operator (2.4) is well defined on a wider

class of functions u € Hllo’c0 (Q—; A) for the unbounded domain Q.
By [14, Lemma 3.4], [20, Lemma 4.3]), the first Green identity holds for
u € HYO(Q; A) in the form

(T*u, ’}/+U>S = /Q+ [vAu+ agj(z) (O;u) (Opv) | dz Vv e H'(Q). (2.5)

Then for arbitrary functions u,v € H'(Q; A) we have the second Green
identity,

/ [vAu—uAv} dx = <T+u, ’}/+’U>S — <T+v, 7+u>s.
o+

The Dirichlet, Neumann, and Robin boundary value problems read as
follows.
Dirichlet problem: Find a function u € HY%(QT; A) satisfying the differ-
ential equation
A(z,0:)u=f in QF (2.6)
and the boundary condition
ytu=¢p, on S, (2.7)

where @, € H2(S), f € HO(QH).
Neumann problem: Find a function u € H"%(QT; A) satisfying the dif-
ferential equation (2.6) and the boundary condition
Ttu=1, on S, (2.8)

where ¢, € H=2(S) and f € HO(Q™).
Robin problem: Find a function u € H'°(QF; A) satisfying the differential
equation (2.6) and the boundary condition

TYu+rytu=1, on S, (2.9)
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where k is a smooth non-negative function which does not vanish identically on
S, 1, € H 2(S) and f € HO(QT).

Equation (2.6) is understood in the distributional sense, the Dirichlet
type boundary condition (2.7) is understood in the usual trace sense and the
Neumann type condition in (2.8) and (2.9) for the co-normal derivative is
understood in the generalized functional sense defined by relation (2.3).

Remark 2.1. Tt is well known that the above formulated Dirichlet and Robin
BVPs are uniquely solvable, while the condition

- f(@)de = (o, 1)5 (2.10)

is necessary and sufficient for the Neumann problem to be solvable (see, e.g.,
[27], [19], [18]). A solution of the Neumann problem is defined modulo a
constant summand.

2.2. Parametrix-based operators and auxiliary identities

Our goal is to develop the LBDSIE method for the above formulated BVPs.
To this end, let us define a localized parametriz corresponding to the funda-

mental solution F(z) := —[47|z|]~! of the Laplace operator, A = 97 + 05 +
03,
Plr) = ,_ _ o xe) _

where Y is a localizing function which belongs to X* or Xﬁ with & > 0 (see
Appendix A). Further on in the paper we will assume that x € X i unless
otherwise is explicitly stated.

Denote by B(y,e) a ball centred at a point y, with a radius €, and let
Y(y,e) := 0B(y,¢). Let us take u € D(QF) and v(x) = P(z — y), where y is
an arbitrarily fixed interior point in QF. For x € X?® we have (cf. Lemma B.1
and Corollary B.2) that v € H?(QF), where QF := QF \ B(y,e) with e > 0
such that B(y,e) C QT, and thus we can write the second Green identity for
the region Q7

/Q+ [P(m —y) A(z, 0, )u(x) — u(x) Az, 0,)P(x — y)] dx
_ /S [Pz —y) T*u(z) — {T(z,0,)P(z — y)} v u(x)] dS,

+ / [P(x — ) Tu(z) — {T(z,0,)P(x — y)} ulz)] dS,. (2.12)
S(y.€)

Here the direction of the normal vector on (y, €) is chosen outward Q7 i.e.,
inward B(y,¢).

For x € X? and u € D(Q7), let us define the singular integral operator
N as

Nu(y) == v.p. /Q+ [A(z,0,)P(x — y) | u(z) dz



Localized Boundary-Domain Singular Integral Equations 7

:= lim [A(z,0;)P(xz — y) ] u(z) da. (2.13)

e—0 Q;r
Note that in the distributional sense,
82 1 47 6kj 62 1
=— o(x — P,
Oz 0z |z —y 3 (@ =y +vp Oz, 0z |x — y|

where dy; is the Kronecker delta, 6( - ) is the Dirac distribution and it is easy
to check that the last term in (2.14) is well defined. Therefore, in view of
(2.11) and taking into account that x(0) = 1, we can write the following

equality in the distributional sense
0?P(x —y) Oday;(z) OP(z —y)
A Pz —vy) = ai; J
(37, aw) (l‘ y) ak] (l‘) ka 8(Ej al‘k 89cj
= B(z) §(x —y) + v.p. A(z,0)P(z — y),

(2.14)

where
1
B(x) =3 [a11(z) + aza(r) + asz() ], (2.15)
2
. o akj 1
v.p. A(z,0,)P(x =V.p. [ e axk 9z, @ _yd R(z,y) (2.16)
52
ak] 1
—vp.[- o axk 5 T _y|] Y Ri(zy), (2.17)
_ 1 [0 rox(z—y) ag(z)
R(z,y) = {Bxk [ oz |z —y }
LOay@xe—y] 9 1
Oxy, Oxz;j |z — y|
0? 1
+a; () [x(z —y) —1] WM} :
L B ar;(z) — ag;(y) o 1
Rl(xa y) T R(‘Ta y) 471_ 6.’1)k (%‘J |.’IJ . y| .

Clearly, if x € X2, the functions R(x,y) and R;(z,y) generally possess
weak singularities of order O(|z—y|~2) as z — y. It is evident that if ay;(z) =
a(z)dk;, then the first terms in the right-hand sides of (2.16)-(2.17) vanish
and v.p. A(z, 0, ) P(z — y) becomes a weakly singular function.

Further, by direct calculations one can easily verify that

lim Pz —y) T(x,0z)u(x) dSy = 0, (2.18)
e—0 S(y.e)
tiy [ {70 PG = ) ate)ds, = = S0 ] as
£20J5(y.e) dm =
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where ¥ is a unit sphere, n = (n1,12,73) € X1, and 8 is defined by (2.15).

Passing to the limit in (2.12) as ¢ — 0 and using the relations (2.13),
(2.18), and (2.19) we obtain the two-operator localized parametrix-based
Green third identity in the form

Bly) uly) + N uly) = V(TTu)(y) + W(yFu)(y) = P(Au)(y),  (2.20)
yeQ, ye X3,

where N is a localized singular domain integral operator given by (2.13),
while V', W, and P are the following localized single layer, double layer, and
Newton-type volume potentials,

V(o)) = — [3 P(z — ) g(z) dS,, (2.21)
W(g)(y) == /S [T(z,0,) P(z — y)] g(z) dS.. (2.22)
Ph)(y) = /Q P =) h(a) . (2.23)

If the domain of integration in the Newton-type volume potential (2.23) is
the whole space R2, we employ the notation

P(h)(y) == / Pz ) hiz)do.

Mapping properties of potentials (2.21)-(2.23) are investigated in [9], and we
have collected in Appendix B some of them needed in our analysis.

Due to the density of D(QF) in HV°(QF; A) (see [24, Theorem 3.12])
and the mapping properties of the potentials, Green’s third identity (2.20) is
valid also for u € H%(QT; A). In this case, the co-normal derivative T u is
understood in the sense of definition (2.3).

For v € H'(QT) and x € X3, applying the first Green identity (2.5) to
definition (2.13), we derive that

Nu(y) = =By uly) = WHTu)(y) + 0, P(aw ku)(y), YyeQr, (2.24)

where we have taken into account that

OP(x —y) Ou(x) , "
- /m ap () o, o2, dr = 9y P(aw Opu)(y), VyeQr.

Keeping in mind that D() is dense in H*(Q") for any s € R, we will
use relation (2.24) as a generalised definition of the operator A for a wider
range of s and for y € X* also with k < 3. Then the mapping properties
of the operators v, P, and W, see Theorems B.3 and B.4, imply that the
operator

3

N H5(QY) — H5(QF), % <s<g, (2.25)

is continuous if y € X?2.
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For u € D(R3) and x € X? we can define, similar to (2.13), the singular
integral operator over R?,

Nu(y)i=vp. [ [A(,0.)P(e - ) u(o) do.

R3
which by the same reasoning as for N can also be represented in the form
Nu(y) = —B(y) uly) + O P(ar Opu)(y), VyeR>. (2.26)

Keeping in mind that D(R?) is dense in H*(R3) for any s € R, we will
employ (2.26) as a generalised definition of the operator N on H*(R3). By
the mapping property (B.2) for the operator P, we then obtain that the
operator
N: H*(R®) — H*(R?), seR,
is continuous if y € X!
Denote by Fy the extension operator by zero from Q% onto 2~. For a
function u € H'(Q") we have
N u=NEyu, (2.27)
where the derivatives in the right hand side of (2.27) given by definition
(2.26) should be understood in the distributional sense. This (cf. also (2.25))
implies the continuity of the operator
1 3
r NEy: H(Q%) — H*(Q"), 3 <s<3 (2.28)
Here and throughout the paper r, denotes the restriction operator to Q2. The
continuity of operator (2.28) is implied also by more general assertions (see,
e.g., [5], [18, Theorem 8.6.1]) due to decomposition (2.17) since the symbol
of the operator N is rational (see (4.4)) and the operators with the kernel
functions R(z,y) and Ry (x,y) map H*(QT) ¢ Hz ¢(Q") into H2 =(Q")
for 1/2 < s < 3/2, any € > 0, and x € X? (cf. [9], Theorem 5.4).
Now we rewrite Green’s third formula (2.20) for u € H»9(Q*; A) in a
form more convenient for our purposes:

[BI+N] Eou(y) — V(T u)(y) + W u)(y) = P(A(z, d:)u) (y), (2.29)
yeQt, ye X3,

where I stands for the identity operator.

Using the properties of localized potentials (see Theorems B.3 and B.5)
and taking the trace of equation (2.29) on S, we arrive for u € H9(QF; A)
at the relation

Nt Eou —V(THu) + (8 — )y u+ W(ytu) = PT(A(z,0,)u)  (2.30)
on S, y € X3,

where the localized boundary integral operators V and W are generated by
the single and double layer potentials,

Vly) = /S P(z—y) g(x)dS,, y €S, (2.31)



10 O. Chkadua, S.E. Mikhailov and D. Natroshvili

Wyl(y) = —/S [T(x,0,) P(x —y)] g(x)dSs, y€S, (2.32)
while
H) = 5 ) me(y) ny) > 0, y €S, (23

Nt :=+*N on S, Pt :=~4"P on S.
Now we prove the following technical lemma.

Lemma 2.2. Let f € HO(QV), F e HYO(QT;A), ¢ € H2(S), ¢ € H2(S),
and x € X3. Moreover, let u € H*(Q) and the following equation hold

By)uly) + Nu(y) = V() () + Wp)ly) = Fly) + P(Nly),  (234)
yeQt.
Then u € HY0(Q1; A) and the following estimate holds

lullzrro@+;ay = llull @y + [ Aull o)
< O (lullmsiany + 1913 ooy + 19113 o
+ | fllzo+) + 1F | oa+sny)  (2.35)

with some positive constant C.
Proof. In view of definition (2.24), equation (2.34) can be rewritten as

0P (ak Oku) (y) = F(y) + P(H)(y) + V() (y) = We — 7 u)(y),  (2.36)

yeQt.

By Theorem B.3, P(f) € H?*(Q") for arbitrary f € H°(Q"), while the
inclusions V (¢), W (p) € H2(QF; A) hold for arbitrary ¢ € H~2(S) and

¢ € Hz(S) by Theorem B.4 . This implies that the right-hand side function
in (2.36) belongs to the space H-2(QT; A) since vtu € H2(S), and therefore

o ’P(akl 8ku) S H1’0<Q+; A) . (2.37)
We have
Ay Plx—y)=Ay Pz —y) =6(x—y)+ Ralz —y), (2.38)
where
1l gAix(—y)  Ox(z—y) 0 1
Ralz—y) = 47 { |z — ¥ 2 Oy Oz |z — y| } (2.39)

Clearly, Ra(z —y) = O(|Jz — y|72) as 2 — y and with the help of (2.38)
and (2.39) one can establish that for arbitrary ® € D(27) there holds the
relation (see, e.g., [26])

(APD)(y) = D(y) + (Ra®)(y), yeQF, (2.40)

where

(Ra®)(y) = /Q Ra(e—y) 9(a) da.
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Evidently (2.40) remains true also for ® € H(Q"), since D(Q7F) is dense in
HO(Q") and the operators

Ra @ HY(QT) - HY(QT), P: H' Q) - H*QT), (2.41)
are bounded if y € X? (cf. [9, Theorem 5.4]). Further,

A {81 ’P(akl 8ku) (y)} =0 [AP(akl aku) (y)}

=0 [akl(y) aku(y)} + 0y Ra(ag Oru)(y)
= A(y,0y) uy) +  Ralam Opu)(y), yeQt.  (242)

Whence the embedding A(y, d,)u € H°(QT) and estimate (2.35) follow due
to (2.36), (2.37), (2.41) and Theorem B.4. O

In fact, the continuity of the first operator in (2.41) and identity (2.42)
in the proof of Lemma 2.2 imply by definition (2.24) the following assertion.

Corollary 2.3. If x € X3, then the following operator is bounded
BI+N : HYO(QF A) — HYO(QF; A).

3. BVPs reduction to LBDSIE systems and equivalence
theorems

Now, we are in the position to reduce equivalently the boundary value prob-
lems to the LBDSIE systems.

3.1. LBDSIE system for the Dirichlet problem and the equivalence theorem
Let u € HY(Q%; A) be a solution to the Dirichlet BVP (2.6)-(2.7) with
@, € H2(S) and f € H°(QF). Relations (2.29) and (2.30) can be rewritten
in the form
[BI+N]Eou— V() =P(f) = W(p,) in QF, (3.1)
N+ Eou — V(/(/)) = P+(f) - (5 - :u) Po — W(on) on Sa (32)

where ¢ = TTu € H_%(S) and p is defined by (2.33). One can consider
these relations as a LBDSIE system with respect to the segregated unknown
functions v and .

Theorem 3.1. Let x € X3, p, € H2(S), and f € H(QY).
(i) If a function u € HY°(Q%; A) solves the Dirichlet BVP (2.6)-(2.7),
then the solution is unique and the pair (u,) € HYO(Q+; A) x H=2(S) with
=T u, (3.3)
solves LBDSIE system (3.1)-(3.2).
(ii) Vice versa, if a pair (u, ) € HYO(Qt; A)x H™2(S) solves LBDSIE

system (3.1)-(3.2), then the solution is unique and the function u solves the
Dirichlet BVP (2.6)-(2.7), while equation (3.3) holds.
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Proof. (i) The first part of the theorem directly follows from the relations
(2.29), (2.30), and (3.3).

(ii) Now, let a pair (u,v)) € H-O(Qt; A) x H~2(S) solve LBDSIE
system (3.1)-(3.2). Taking the trace of (3.1) on S and comparing with (3.2)
we get

ytu =y on S. (3.4)

Further, since v € HL%(QF; A), we can write Green’s third formula (2.29)
which in view of (3.4) can be rewritten as
[BI+4 N]Eou—V(T"u) = P(A(z,0:)u) — W(g,) in QF. (3.5)
From (3.1) and (3.5) it follows that
V(T u — ) + P(A(a:,aw)u - f) =0 in Q7.
Whence by Lemma B.6 we have
A(z,0,)u=f in QF and TTu=1 on S.

Thus u solves the Dirichlet BVP (2.6)-(2.7) and equation (3.3) holds.

The uniqueness of solution to LBDSIE system (3.1)-(3.2) in the class
HYO(QF; A) x H™2(S) directly follows from the above proved equivalence
result and the uniqueness theorem for the Dirichlet problem (2.6)-(2.7) (see
Remark 2.1). O

3.2. LBDSIE system for the Neumann problem and the equivalence theorem
Let u € HYO(QF; A) be a solution to the Neumann BVP (2.6), (2.8) with
¢, € H2(S) and f € HO(Q"). The relations (2.29) and (2.30) can be
rewritten then in the form
[BI+N] Eou+W(p) =P(f) +V(¢,) in QF, (3.6)
N* Egu+ (8 = p) ¢ + W(p) =P (f) + V(¢,) on S, (3.7)

where ¢ := yTu € H2(S). One can consider these relations as a LBDSIE
system with respect to the unknown functions v and ¢.

Theorem 3.2. Let x € X3, ¢, € H™2(S), and f € HO(QY).

(i) If a function w € H-O(QF; A) solves the Neumann BVP (2.6), (2.8),

then the pair (u,p) € H-O(QF; A) x H2(S) with
p=7"u, (3.8)
solves LBDSIFE system (3.6)-(3.7).

(ii) Vice versa, if a pair (u, ) € H-O(QF; A) x Hz(S) solves LBDSIE
system (3.6)-(3.7), then the functzon u solves the Neumann BVP (2.6), (2.8)
and equality (3.8) holds.

(iii) The corresponding homogeneous LBDSIE system,

[BI+N]Eou+W(p)=0 in QF, (3.9)
Nt Egu+ (8—p)o+W(p) =0 on S, (3.10)
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admits only one non-trivial linearly independent solution (u,p) = (1,1) in
HLO0(Q+; A) x Hz2(S).

(iv) Condition (2.10) is necessary and sufficient for solvability of the
nonhomogeneous LBDSIE system (3.6)-(3.7) in HYO(Q+; A) x Hz(S).

Proof. (i) The first part of the theorem directly follows from relations (2.29),
(2.30), and (3.8).

(i) Now let a pair (u, ) € H-(QF; A) x H2(S) solve LBDSIE system
(3.6)-(3.7). Take the trace of (3.6) on S and compare with (3.7) to obtain
(3.8). Further, since u € H»(Q%; A), we can write Green’s third identity
(2.29) which in view of (3.8) takes form

[B14+ N]Eou— V(T u) +W(p) =P(A(z,0;)u) in QF. (3.11)
From (3.6) and (3.11) we get
V(T u—,) + P(A(z,0,)u— f) =0 in QF,
and by Lemma B.6
A(z,0,)u=f in QF and THru=1, on S.

Thus, u solves the Neumann BVP (2.6), (2.8) and equality (3.8) holds.

(iii) Let (u,p) € H-O(QF; A) x H2(S) solve the homogeneous LBDSIE
system (3.9)-(3.10). Evidently the zero right hand sides of the system can be
considered as generated by the zero right hand side, (¢, f) = (0,0), of the
homogeneous Neumann BVP (2.6), (2.8). Then the already proved statements
of item (ii) imply that w is a solution of the homogeneous Neumann problem,
which is a constant by Remark 2.1, and thus the couple (u, ) is proportional

o (1,1) due to (3.8).

(iv) By Remark 2.1, condition (2.10) implies solvability of the Neumann
problem and by item (i) solvability of LBDSIE system (3.6)-(3.7) follows.
Conversely, by item (ii), solvability of LBDSIE system (3.6)-(3.7) implies
solvability of the Neumann problem and therefore the condition (2.10) follows
due to Remark 2.1. O

3.3. LBDSIE system for the Robin problem and the equivalence theorem

Let u € HM9(Q; A) be a solution to the Robin BVP (2.6), (2.9) with 1, €
H~2(S), f € H'(Q"), and £ being a smooth nonnegative nonzero function
on S. The relations (2.29) and (2.30) can be rewritten as

[BI+N] Eou+W(p) +V(kp) =P(f) + V(%) in QF, (3.12)
N* Eou+ (8 —p) ¢+ W(p) +V(kg) =P (f) + V(¥,) on S, (3.13)

where ¢ := ytu € H2(S) and we have taken into account that THu =
¢, —k @ € H-2(S) in accordance with the boundary condition (2.9). One can
consider these relations as the LBDSIE system with respect to the unknown
functions u and .
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Theorem 3.3. Let y € X3 , 4, € H~2(S), and f € HO(QY).
(i) If a function u € HY°(Q; A) solves the Robin BVP (2.6), (2.9),
then the solution is unique and the pair (u,p) € H-O(QF; A) x Hz(S) with
o=7"u, (3.14)
solves LBDSIE system (3.12)-(3.13).
(ii) Vice versa, if a pair (u,) € HYO(Qt; A) x Hz(S) solves LBDSIE

system (3.12)-(3.13), then the solution is unique and the function u solves
the Robin BVP (2.6), (2.9) and equality (3.14) holds.

Proof. (i) The first part of the theorem directly follows from relations (2.29),
(2.30), and (3.14).

(ii) Now, let a pair (u, p) € H:O0(Q+; A) x Hz(S) solve LBDSIE system
(3.12)-(3.13). Taking the trace of (3.12) on S and comparing with (3.13) lead
to equation (3.14). Further, since u € H°(Q"; A) we can write Green’s third
identity (2.29),

[B14+ N]Eou— V(T u)+W(p) =P(A(z,0;)u) in QF, (3.15)
where the equality (3.14) is taken into consideration. From (3.12) and (3.15)
now it follows that

V(Itu+ ke —1,) +P(A(z,0;)u— f) =0 in QF,
whence by Lemma B.6 we infer
Az, 0, )u=f in QT and TTu+rp=1, on S.
Due to (3.14) we see that u solves the Robin BVP (2.6), (2.9).
The uniqueness of solution for LBDSIE system (3.12)-(3.13) in the class
HYO(QF; A) x H2(S) directly follows from the above proved equivalence

result and the uniqueness theorem for the Robin BVP (2.6), (2.9) (see Remark
2.1). O

4. Symbols and Fredholm properties of the domain operators

Let F and F~! denote the distributional direct and inverse Fourier transform
operators, that for g € L1(R?®) and § € L(R?) take form

i 1 1 A —iz
Falle) = [ o) et FaE) = g [ al) e s

R3
The complete symbol &(P) of the operator P reads as, cf. [9],
L x(z)
S(P)(€) = &(P;¢) :=F, [——7]
(P)(E) = 6(P:&) =Fime - 1= X
1 x(@) £ 3
=— — S e'Thd R 4.1
47 Jps |x|€ T, SERY (4.1)
while its principal homogeneous symbol is (see, e.g., [15])

1 1
So(Pi6) = 6(Pai€) i= Fave| — o | =~ €ERY (1)
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where P A is the classical Newton potential operator,

1 1
Pah(y) := "I e Tl P(x)de.

In what follows, we need an explicit expression of the principal homo-
geneous symbol So(N)(y, £) of the singular integral operator N, which due
to (2.13)-(2.17) and (4.2) reads as

62
So)116) = o)) = Foosg[ - H W vip L L]y
_an(y) 47 ok 2 1
T 47 }—z%§|: 3 6(2) + 8Zk 82[ m}
= —By) + an(y)ér&i Fose [ %M}
— By + akl(zgfk &
- Afg’f) Bly), yeQt, £cR\ {0}, (4.4)

where we also have taken into account that F,_,¢[0(2)] = 1.

As we see, the principal homogeneous symbol &q(N)(y,&) of the op-
erator A/ is an even rational homogeneous function in ¢ of order 0. It can
easily be verified that both the characteristic function of the singular kernel
in (4.3) and the Fourier transform (4.4) satisfy the Tricomi condition, i.e.,
their integral averages over the unit sphere vanish (cf. [26]).

Relation (4.4) implies that the principal homogeneous symbols of the
singular integral operators N and I+ N read as

Ay,§) — Blel?
€12

So(BT + N)(5,6) = Al(gf)
. (B1+N)E,.

So(N)(y, &) = VyeR’, VEERI\ {0},  (4.5)

>0 VyeR3, Ve R\ {0}. (4.6)

Let us introduce the notation B :=r
Lemma 4.1. Let a localizing function x € X°°. The operator
B H5 Q) = H(QM) (4.7)
1s Fredholm with zero index for all s > 0.

Proof. The principal homogeneous symbol of the operator B (cf. (4.6)) can
be written as

A
) = ST+ NI = g =

yeQF, ¢eR’\{0}.

> 0, (4.8)
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We see that the symbol (4.8) is an even rational homogeneous function of
order 0 in &. Then the factorization index s of the symbol (4.8) equals to
zero (see [15], §6 ). Moreover, since (4.8) is rational function in £, the operator
B possesses the transmission property. Therefore we can apply the theory of
pseudodifferential operators satisfying the transmission property (see [15],
Theorem 11.1, and Lemma 23.9; [5], [28]) to deduce that the operator (4.7)
is Fredholm for all s > 0.
To show that Ind B = 0 we use the fact that the operators B and

By=r, [(1-t)I+t(BI+N)]|Ey, tel0,1],
are homotopic in the sense of the definition from [26, p. 27]. Note that By =

IEO and Bl =B.
In view of (4.5) and (4.6) it is easy to see that

(1 —t)EP +t Ay, §)
45

i.e. the operator B; is elliptic, for all ¢ € [0,1], for all y € QF, and for all
£ R\ {0},

Since & (B)(y, &) is rational, even, and homogeneous of order zero in
&, we conclude that the operator B; : H¥(Q1) — H*(Q7") is Fredholm for all
s > 0 and for all ¢t € [0,1]. Therefore Ind B; is the same for all ¢ € [0, 1] (see
e.g. [26, Chapter 1, Theorem 3.11]). On the other hand, due to the equality
By =1we get IndB=1IndB; =IndB; = Ind By = 0. O

rsz-*—

So(Bi)(y,€) = >0,

5. Invertibility of the LBDSIO for the Dirichlet problem

From Theorem 3.1 it follows that the LBDSIE system (3.1)-(3.2), which has
a special right-hand side, is uniquely solvable in the class H%9(QT; A) x
H~=(S). However, this fact does not imply invertibility of the LBDSIO gen-
erated by the left-hand side expressions in (3.1)-(3.2). In what follows, we
investigate Fredholm properties of this operator and establish invertibility
results in appropriate function spaces. To this end, we consider the LBDSIE
system

[BI+N]Eyu—V(y)=F in QF, (5.1)

N Eou— V() = F» on S, (5.2)

where Fy € H'(Q1) and F, € H=(S) are arbitrary functions.
Denote by © the localized boundary-domain integral operator generated
by the left-hand side expressions in LBDSIE system (5.1)-(5.2),

] Tar BI+N)Ey, -1,V
| NtE, —y
and consider the operator

D Q) x HT5(S) — HHH(QH) x H™H3(S). (5.3)
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First of all note that if a localizing function is infinitely differentiable in
the radial direction, x € X°°, then the localized volume and layer potentials
and the corresponding boundary operators have exactly the same mapping
properties as the corresponding harmonic potentials (see, e.g., [5], [6, Theo-
rem 5.2.4(i)], [18, Theorem 8.4.13, 8.6.1], [27, Ch. 2]). Therefore the operator
(5.3) is continuous for all r > —1 if x € X*.

In what follows, we employ the approach considered in §12, §22, and
§23 of the monograph [15] and prove the invertibility of operator (5.3) for
r > —1/2 and x € X{° in three steps. First we prove that the operator is
Fredholm, then show that its index is zero and that the operator is injective.
Then we prove the invertibility for » = 0 when x € Xi.

Let us introduce two auxiliary operators. The operator IIT is a Cauchy
type integral operator

L i . oo h(€/7n3)dﬁg .
W) = o Jim [ EEBIEE (g ) R (54)

which is well defined for a bounded smooth function h(¢’, -) satisfying the
relation h(¢',n3) = O((1+ |ns|)™) with some v > 0.
The operator II’ is defined as

W(g)(€) = lim 1, Fe L, lo(€6)
1 o0 _
:% ws]gré+ 3 g(¢, 53)6711353 dés (5.5)
1 [T
“or | g(€',&3)des for g(€',:) € Li(R). (5.6)

The operator II' can be extended to the class of functions g(£’,&3) being
rational in 3 with the denominator not vanishing for real non-zero ¢ =
(¢/,&3) € R3\ {0}, homogeneous of order m € Z := {0,41,42,...} in &, and
infinitely differentiable with respect to £ for &' # 0. Then one can show that
(see Appendix C for details)

W(@)(E) = lim n Fol, o€ &) =5 [ €0 (67

where T, denotes the restriction operator onto Ry = (0, +00) with respect
to x3, I'” is a contour in the lower complex half-plane in (, orientated anti-
clockwise and enclosing all the poles of the rational function g(£’, -). It is clear
that if g(£’, ¢) is holomorphic in ¢ in the lower complex half-plane (Im ¢ < 0),
then IT'(g)(¢') = 0.

Now we prove the following basic assertion (cf. [15], Theorem 23.1).

Lemma 5.1. Let a localizing function x € X and r > —%, Then operator
(5.3) is Fredholm with zero index.

Proof. To investigate Fredholm properties of the operator ©, we will employ
the results of §12, §22, and § 23 in [15], based on the local principle.
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In particular, we will essentially apply Theorems 12.2 and 23.1 in [15]
along with formulas (12.25) and (12.27) from the same book (note that

IO{T (G) should evidently read as H,(G) in Theorem 23.1, as in the origi-
nal Russian edition of the book [15]).

Since the operator B = ., (31 + N) Ej is Fredholm with zero index
due to Lemma 4.1 and its principal homogeneous symbol is rational, from
the above mentioned theorems in [15] it follows that operator (5.3) is Fred-
holm for r» > —1/2 if in a local coordinate system with the origin at an arbi-
trary “frozen” point 7 € S = 99 the following generalized Sapiro-Lopatinskii
condition holds,

.y T SMN)T ) hf SoP)F) \T
e(y,&)=—1I = 11 =
<) & (B)(:) <65><B>@, ->> } ©)

- GO(V)(ga fl) 7é 0, v§/ 7é 0, v ?Aj € 697 (58)

where ﬁ, E, f’, and V denote the operators N, B, P, and V respectively,
written in the chosen local coordinate system, while Go(N), &¢(B), So(P),

and &¢ (V) are the corresponding principal homogeneous symbols in the same
local coordinate system; GEJi)(B) denote the so called “plus” and “minus”

factors in the factorization of the symbol GO(g) with respect to the variable
&3. Here we also have taken into account the representations (B.6) and (B.7)
for the single layer potential.

We assume that these symbols are “frozen” at the point y € S consid-
ered as the origin O of the local coordinate system. If the matrix of trans-
formation of the original coordinate system Oy;ysys to the new one 5171172773
is an orthogonal matrix A(y) := [Agi(¥)]3x3, which transforms the outward
unit normal vector n ' (%) into the vector ez = (0,0, —1) " (the outward unit
normal vector to RY), i.e., n' (y) = A(y) es, then

)\kg(g) = 771]6(@, k= 1, 2, 3, (59)
Y= THA@ Ty =AY, (5.10)
@) = M@ @) M) = (AT @a@ A (G
5@ = 5 50 + 3 ()) + A (@) (5.12)

Here ay;(y) are the “frozen” coefficients of the principal part of the dif-
ferential operator A(y,d,) subjected to above described orthogonal trans-
formation related to the local coordinate system and evidently the matrix

a(y) = [an(¥)]3x3 :== AT (¥) a(y) A(y) is positive definite, since a(y) is posi-
tive definite (see (2.1)). In particular, for arbitrary § € S we have
B@) > 0, (5.13)
a33(Y) = Ap3 () apq(9) Aq3(y) = apg(y) np(y) ng(y) = 2 1(y) > 0, (5.14)
T(y,0y) = ar(y) ni(y) Oy, = n(y) a(y) Vy
=n(y)a(y) AY) Vi = np(Y) api(y) Aig () 9y,
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= —Ap3(¥) ap(Y) A ig(y) Oy, = —a3q(Y) On, (5.15)
due to (2.2), (5.9)-(5.11), and (2.33).

Let us show that the Sapiro-Lopatinskii condition (5.8) holds in our
case. To this end, we note that the principal homogeneous symbols GQ(N),
So(B), Go(P), and &4(V) in the local co-ordinate system with the origin at
¥, involved in formula (5.8), read as (see (4.5), (4.8), (4.2), (B.31)):

S A, - BIEP _ au@éns — BlE)

So(N)(y,€) = e L : (5.16)
(B ) = HE W (5.17)
So(P)(¢) = *é, So(V)(¢) = ﬁ (5.18)

As we have mentioned, in (5.8) the functions 68” (B) and 657>(~) are
the “plus” and “minus” factors in the factorization of the symbol &q(B) with
respect to the variable &3, i.e.

&(B) =&, (B) &, (B),

where
@ oz A€
&, (B)(w,§) = W

due to (5.18). Here e (£) and A® (7,€) are the “plus” and “minus” factors
of the symbols ©(¢) = [¢[> = & + &+ & =0 (£) 0" (&) and A(y,€) =
(@) = A" (@ OA 7 (7.), respectively, and
07 (€)= (& £il€')). (5.19)
AT G0 =@ 6 - @Ol AT G =6 -G8, (520

Here 71 (y,&’) are the roots of the equation /T(ﬂ, €) = ap(¥)&k& = 0 with
respect to &3,

T+ (g7 5/) = Oé(g, 5/) - ZFY(@" 5/)7
T (9,€) =7+ (1.¢) = a@.¢) +iv@.£), 15.¢)>0, &#0. (5.21)
In what follows, to simplify the notation, we omit the fixed argument g, when

it does not lead to misunderstanding. Therefore (5.8) in view of (5.16)-(5.18),
(5.19)-(5.20), and (B.31) can be rewritten as

() - —w[(A=F0 0y (- L€ ey _e,iie)

A 0 4
(. A-B0 1 , -
-1 [(S55 ) T (5] €) - s
() + @) - 5o (522

21¢']
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where Z(,) 1
&) =1 [(55) 1 (g 5] €©) (5.23)
@ () =B n[(i) ) H%ﬁ)} (). (5.24)

Applying formula (5.4) along with the residue theorem at ¢ = —i|£’|, we have,

. 400
H+( <+)1~<—> )(5) - - lim / +) A=) L ;
6™ A 27 =0+ oo ©(¢,m3) AT(E ms) (&3 + it —m3)

i Foo dns
S 27 tl—lgar [oo (s 418 )ns —7-(&)] (§3 +it —n3)

= —L lim / d<

2m =0+ Jp- (C+a€))[C—T-(§)] (& +it —()
= — L lim 2mi
S 27 o0+ [ =T ()] (& +it i [E])

1
_ . 5.25
FET+ 7 @] (& + i €D 529)
Substituting (5.25) into (5.23), employing representation (5.7) and calculat-
ing the residue at ¢ = —i|¢’|, we find,
27 Je- C—alg| [+ () (C+ilg])  2[¢]
Quite similarly, substituting (5.25) into (5.24) and calculating the residue at
¢=74(), we get
Oy B[ _Crilgl a
27 Jr- s [C = 7 (&)] [+ (€] (C+i¢))
_ i
ass [i|¢'] +7-(&)]
Substituting to (5.22) we finally obtain
() = - i B _ B @) +g+ia€)
ass [i '] + 7 (£')] azs o*(&) + (v(&) +[¢'])?
By (5.13), (5.14), and (5.21) we then deduce Ree(¢’) < 0 for all £ # 0.
Thus, for the operator ® the Sapiro-Lopatinskii condition holds. Therefore
operator (5.3) is Fredholm for r» > —1/2.

Now we will show that index of the operator ® equals to zero. To this
end let us consider the operator

B _rsz-*-v
@t =
tN*TEy -y
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with ¢t € [0, 1], and establish that it is homotopic to the operator ® = D;.

We have to check that for the operator ©, the Sapiro-Lopatinskii condi-
tion is satisfied as well. In this case, for the corresponding boundary symbol
we have the following expression, cf. (5.8),

e (&) = —11’ 60(tN) + 60(15) no_ YN[ ¢!
€)= [gE o (ey(g)”(“ So(V)(¢)
_ 6(1) / 6(2) / _ 1 — e / t—1

t—1 t8 ) +|¢|+ial)
21¢'| @z a2(€) + (v(€) +1€])?

Since 3 >0, v(¢) >0, asz3 >0, and ¢ € [0,1], we infer

t—1 8 () + 1€ ,
Ree (&) = —— — =—— <0 forall & #0,
(=308 ™ @ @)+ (1) + T
which implies that for the operator ©; the Sapiro—Lopatinskﬁ condition is
satisfied. Therefore the operator

D, H' T (QF) x H'3(8) — H™ Q) x H'F3(9)

is Fredholm and thus has the same index for all » > —1/2 and for all ¢ € [0, 1]
(see, e.g., [26, Chapter 1, Theorem 3.11]).

On the other hand, the upper triangular matrix operator g has zero
index since the operators on the main diagonal, B and V), are Fredholm with
zero index in appropriate function spaces. Indeed, for the operator B it has
been shown in Section 4, while for the operator V it follows from the fact that
V is a compact perturbation of the invertible harmonic single layer operator
([7], [18]). Consequently, Ind® =Ind®; = Ind®; = Ind Dy = 0. O

Theorem 5.2. Let a localizing function x € X$° and r > —1/2. Then operator
(5.3) is invertible.

Proof. Since by Lemma 5.1 the operator ® is Fredholm with zero index, its
injectivity implies the invertibility. Thus, it remains to show that the null
space of the operator ® is trivial for r > —1/2.

Assume that U = (u,4)T € H™(Q1) x H™=2(S) is a solution to the
homogeneous equation

DU =0. (5.26)
Since the index of of the operator ® is zero, there exists its left regularizer,
£ H™H QM) x H™3(S) —» H™TH Q1) x H™3(S),

such that £0 = I + T, where T is the operator of order —1 (cf. proofs of
Theorems 22.1 and 23.1 in [15]),

T H™TH Q) x H™2(S) — H™2(QF) x H™H2(9). (5.27)
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Therefore, from (5.26) we have

LU =U +3U =0. (5.28)

From (5.27) we see that TU € H™2(Q%) x H™+2(S), and consequently, by
(5.28) we get

U=(u,0)T € H Q) x H™3(8). (5.29)
If » > 0, this implies u € HL0(QF; A). If —1/2 < r < 0, we iterate the above
reasoning for U satisfying (5.29) to arrive at the inclusion U = (u,¢)T €
H™3(Q+) x H™3(S) which again implies v € H-9(Q; A). Then we can
apply the equivalence Theorem 3.1 to conclude that a solution U = (u, )"
to the homogeneous equation (5.26) is zero vector because u solves the homo-
geneous Dirichlet problem and the relation 7+ u = v holds on S. This implies
that the null space of D is trivial in the class H™H(QF) x H™=2(S). Conse-
quently, the operator ® : H™(QF) x H™=2(S) — H™H(QF) x H™+2(S) is
invertible. O

For a localizing function x of finite smoothness we have the following
result.

Corollary 5.3. If x € Xi, then the operator
D HY(QY) x H 3(S) —» H'(Q1) x H3(S)
1s invertible.

Proof. It can be carried out by the word for word arguments applied in the
proofs of Lemmas 5.1 and 4.1, Theorem 5.2 with r = 0, and using Theorems
B.3 and B.4 that provide mapping properties of the localized potentials for
a localizing function of finite smoothness. U

The following result follows immediately from Lemma 2.2 and Corollar-
ies 5.3 and 2.3.

Corollary 5.4. If x € Xi, then the operator
D HYO(QF, A) x H 2(S) — H'WO(QF5 A) x H?(S)

1s invertible.

6. Invertibility of the LBDSIO for the Robin problem

From Theorem 3.3 it follows that LBDSIE system (3.12)-(3.13), which has a
special right-hand side, is uniquely solvable in the class H'?(QF; A) x H? (9).
However, as in the previous case, this fact does not imply invertibility of the
LBDSIO generated by the left-hand side expressions in (3.12)-(3.13). In what
follows, we investigate Fredholm properties of this operator and establish
invertibility results in appropriate function spaces.

To this end, we consider the LBDSIE system

[BI+N]Eyu+Wp+VM.p=F in QF, (6.1)
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N+ FEyu + (ﬁ - M) p+ W(,O + VMHQD =F5 on S, (62)

where F; € HY(QV), F, € H2(S), & is a smooth nonnegative function in-
volved in the Robin boundary condition (2.9), and M, is the multiplica-
tion operator, (M,¢)(z) := k(x) p(z). Denote by R the localized boundary-
domain integral operator generated by the left-hand side expressions in LBD-
SIE system (6.1)-(6.2),

7., (BI+N)Ey o, W+ VM,]

R = .
NT*E, B-—wI+W+VM,

(6.3)

Lemma 6.1. Let the localizing function x € X*° and r > —1/2. Then the
operator

R H T (QT) x H'T3(S) — H P Q) x H'F2(9) (6.4)
is Fredholm with zero index.

Proof. As we mentioned in the proof of Lemma 5.1, if a localizing function
is infinitely differentiable, x € X$°, then the localized volume and layer
potentials and the corresponding boundary operators have exactly the same
mapping properties as the corresponding harmonic potentials (see, e.g., [6,
Ch. 5, Theorem 2.4(i)], [18, Theorem 8.4.13], [27, Ch. 2]), which implies that
the operator (6.4) is continuous for all » > —1/2 if x € X°°. Further, we note
that the operators

V i H™I(S) > HTYQY), YV HTTI(S) o HTTE(S)

are compact since they have the following mapping properties

V i H™I(S) —» H'2(QF), Vi HTI(S) - H'(S), r> f%.

To prove the lemma we apply the same scheme as in the proof of Lemma
5.1. We have to show that the Sapiro—Lopatinskif condition for the operator R
is satisfied (cf. [15], Theorem 12.2). To this end, let us take into consideration
formulas (5.9)-(5.15) and arguments in the proof of Lemma 5.1 related to local
coordinate systems, the expressions for the principal homogeneous symbols
of the operators 51+ N and N, representation formula (B.8) of the double
layer potential operator, and also Remark B.7 for the principal homogeneous
symbol of the operator W.

Here we employ the notation in Section 5 and on the basis of the above
mentioned relations we construct the following matrix associated with prin-
cipal homogeneous symbols of the operators involved in (6.3) at some local
co-ordinate system with the origin at a point y € S:

~ o | Bu(m.&) Ri(y§)
R(5:¢):= Ro1(y,§) Ra2(y, &) |7 (6:5)

where

Ru(5,€) :=60(B) (7€) = So(BI+N)(F,€)
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_ A(€) an(y)ér&

B . (60

ua(7.€) =0 (@ () () 1 P) = - L (67)
- A ~ @ — Ble)2

Rn(7.6) =60(R)(7.6) = 105~ 5= “UREZEEL o)

Raa(7,€") =60 ((B — i) 1+ W) (5,€)
11 ~ iy
=5 |28~ G (@) — i ; s (7) éid , (6.9)
= (@), €= (&,6,8) eRP\{0}, & =(&,&) R\ {0}.

Recall that summation over repeated indices is assumed from 1 to 3 if not
otherwise stated and the outward unit normal vector n(y) has the components
(0,0,—1)T in the chosen local coordinate system.

The Sapiro-Lopatinskii condition then takes the form (see [15], Theorem
12.2, formulas (12.25) and (12.27))

- Ry (y, Ry (y.
e(yvg ) =-II |:R(+)((y’.)) I’ (R (( 7))

Ve eR2\ {0}, V7ecoQ,
where IIT and T1” are defined in (5.4) and (5.5), while

)€+ R ) #0. (6.10)

Rii(3,€) =Ry; (3,€) Ry (5,€),
@ AT@E @) — T4 (3,6)]
Rll ( 35)* ®(+)(§) - §3+’L‘f/| 5
o A @ (e
R(ll)(yag) — 7(ya§) _ 63 T. (%f ) 7

07 (¢) & —il¢|
and the notations (5.19)-(5.21) are employed.
As in the proof of Lemma 5.1, we will further drop, when possible, the
fixed argument ¥, associated with the origin of the local coordinate system.
Let 9(¢') := Zl 1a3:& . It is easy to see that

20() = —ass [ (&) + (&), (6.11)

since 7 and 7_ are roots of the quadratic equation

2
A(€) = a3383 +20(E) &+ Y an&r& =0.

k=1
From (5.4), calculating the residue at n3 = —i|¢’|, we have,
Rz —iaz§ & —il¢|
I+ (== —TIIt /
(R;’)(O ( SRR )(5)
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(s L e

E3+ilE'] &3 —T-
i +oo [—i9(&") — iassns] dns
=— 1
27 04 /_oo (15 + 4 1€]) (s — 7) (3 + it — 1)

i) +amle]
(i €T) E +ile)

Further, calculating residues at £&3 = —|¢'| and &5 = 74, we find
/[ Ro1 R /
I [R‘ﬁ’ H*(R(ﬂ))}(é)
1 A©) 3\ Grile]l  i9(E) +asl]
__ b _3) = d
( B ) T ) D & D
1 §) + ass|¢'| §s—1- B
el ME = R e
i) +assle| | B i0(E) +asl|
21| ass  T-+il¢]
Now, from (6.10) and (6.6)-(6.9) we get
n ) +assle| B i0E) +asld| | 1rs o 9E)
e T R BTN R

_ B + a7 (€)]
ags[r- (&) +il¢l]
Finally, in view of (5.11), (6.11), and (5.21), we arrive at the relation
no_ Fﬂv[T,(f/) - 7—+(§/)] _ ZE'Y(g,) /
O =@ riel @i eFe 61

which shows that the Sapiro-Lopatinskii condition for the operator R is ful-
filled. Thus the operator R in (6.4) if Fredholm.
With the help of the homotopy principle as in the proof of Lemma 5.1,
we now show that IndR = 0. To this end we consider the operator
i [ s (T NI 0 VM
tNTFEy BI+t(—pI+W+VM,)

(6.13)

with ¢ € [0, 1] and show that it is homotopic to the operator R = R;. The
operator R; is evidently continuous in ¢ € [0, 1]. Moreover, it is also Fredholm
operator for each t € [0,1]. Indeed, the boundary symbol corresponding to
(6.13) now reads as (cf. (6.5), (6.10), and (6.13))
tR R ~ - —~
e(€) = T [ 2 () |(€) + So (BT + ¢ [-AT+ W) (¢)

(+)
Rll Rll
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©) +tRaa(€) + (1 - B

tR R

(g

Rll Rll
=te(d)+ (1 -1,

where e(¢') is defined in (6.12). Since 3 > 0 and

B(E) (E€) + €]
a?(§) + [v(&) + €]

we see that Reey(€') = tRee(¢) + (1 — ) > 0 for all & # 0 and for all
t € [0, 1]. Thus, the Sapiro—Lopatinskﬁ condition for the operator R; holds
for all ¢ € [0, 1] and, consequently, the operator R, : H™1(Q+)x H™+2(S) —
H™(QF) x H™2(S) is Fredholm and thus homotopic to ;.

Hence R, has the same index for all ¢ € [0, 1] (see, e.g., [26, Chapter
1, Theorem 3.11]). On the other hand, by Lemma 4.1 it is evident that the
index of the upper triangular operator $Ry equals to zero, since the operators
in the main diagonal, B =r_, (81+ N) Ey and S1, are Fredholm with zero
index. Therefore IndR = IndR1 = IndR; = IndRg = 0. [l

:—H’{

Ree(¢') = >0 for & #0,

Theorem 6.2. Let a localizing function x € X$° and r > —1/2. Then the
operator

R H T Q) x H'T3(S) — H Q) x H'H2(9) (6.14)
is invertible.

Proof. Continuity of the operator (6.14) directly follows from the mapping
properties of the localized potentials associated with an infinitely smooth
localizing cut off function (see the paragraph after formula (5.3) in Section
5).

Further, let us show that the null space of the operator (6.14) is trivial.
Indeed, let a vector U = (u, )T € H™ () x H™+2(S) be a solution of the
homogeneous equation

RU = 0. (6.15)

Since the operator fR is Fredholm with zero index there exists a left regularizer
£1 such that

£ H'HHQT) x H'H2(S) — H™HHQT) x H3(S)

and £1 R = I + T4, where T is the operator of order —1 (see [15], Theorems
22.1 and 23.1),

Ty HHYQT) x HT3(S) — H™P2(Q1) x H™H3/2(9). (6.16)
Therefore, from (6.15) we have
LCiRU =U+%,U =0. (6.17)
From (6.16), we see that
TLU € HT2(QF) x H'3/2(9), (6.18)
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and, consequently,

U= (u,p)" € H2(QF) x H™3/2(89)
due to (6.17). For r > 0 this implies u € H-°(QT; A). If —1/2 <r < 0, we
iterate the above reasoning for U satisfying (6.18) to show that

U= (uy)" € HH(QY) x HHE(S),

which again implies u € H*?(Q7F; A). Therefore we can apply the equivalence
Theorem 3.3 to conclude that a solution U = (u,¢) " to the homogeneous
equation (6.15) is zero vector, since u solves then the homogeneous Robin
problem and the relation y*u = ¢ on S holds. Thus Ker R = {0} in the class
H™(QT) x H™+2(S). Then it follows that the operator (6.14) is Fredholm
with zero index and injective, and therefore it is invertible. O

For a localizing function x of finite smoothness we have the following
result.

Corollary 6.3. If x € X3 , then the operator
R HY(Q) x H3(S) —» HY(QT) x H2(S)
is invertible.

Proof. 1t can be carried out by the word for word arguments applied in the
proof of Theorem 6.2 with » = 0 and using Theorems B.3, B.4, and B.5
that provide mapping properties of the localized potentials for a localizing
function of finite smoothness. O

As in the previous section, Lemma 2.2 and Corollaries 6.3 and 2.3 im-
mediately imply the following assertion.

Corollary 6.4. If x € Xi, then the operator
R HYOQA) x H(S) » HYO(QA) x H3(S)

is invertible.

7. Fredholm properties of the LBDSIO for the Neumann
problem

The operator generated by the LBDSIE system (3.6) corresponding to the

Neumann BVP reads as

—_— . (BI+N)E, r. W
N*E, B-mI+w |’

and the operators
N: H Q) x H™3(S) — H'(Q1) x H™3(8),

1
XEXiO? 7">—§7
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N: HY(QT) x H2(S) — H' () x H2(S), x € X2, (7.2)
N: HYOQT A) x H2(S) = HYO QT A) x H2(S), x€ X3,  (7.3)

are continuous. Note that the continuity of the above operators still holds if
the subscript + is dropped in the classes X fﬁ

In view of (6.3) it is easy to see that the operator M is a compact
perturbation of the operator R. Therefore, from the above obtained results
for the operator R, it follows that the operators (7.1) and (7.2) are Fredholm
with zero index. Applying the equivalence Theorem 3.2(iii) we see that in
HYO(QH; A) x Hz(S) and thus in HY(QT) x H2(S) the null space of the
operator is one-dimensional and Ker 9t = {cU™M}, where UM = (1,1)T and
¢ is an arbitrary constant. Employing the same arguments as in the proofs of
Theorems 5.2 and 6.2 we can conclude that the operator 91 in (7.1) with any
7 > —1/2 has the same null space {cU™}. Thus we arrive at the following
assertion.

Theorem 7.1. Operators (7.1), (7.2), and (7.3) are Fredholm with zero index
and possess a one-dimensional null space {cUM}, where UMY = (1,1)T and
c is an arbitrary constant.

APPENDICES

Appendix A. Classes of localizing functions

Here we present the classes of localizing functions from [9] used in the main
text.

Definition A.1. We say x € X% for integer k > 0 if x(z) = X(|z]), X €
WF(0,00) and oX(0) € L1(0,00).
We say x € X¥ for integer k£ > 1 if x € X*, x(0) = 1 and

oy(w) >0 YweR, (A1)

where

@ for we R\ {0},

UX(w) = [e'e)
/ ox (o)do  for w=0,
0

and xs(w) denotes the sine-transform of the function ¥,
o0
Xs(w) ::/ X (o) sin(pw)do.
0

Evidently, we have the following imbeddings: X** c X*2 and X f -
XxF2 for ky > ko.

The class X _’ﬁ is defined in terms of the sine-transform. However the
following lemma provides an easily verifiable sufficient condition for non-
negative non-increasing functions to belong to this class (see [9, Lemma 3.2]
for proof).
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Lemma A.2. Let k > 1. If x € X*, x(0) = 1, x(0) > 0 for all o € (0,00),
and X is a non-increasing function on [0,400), then x € Xfﬁ.

The following examples for x are presented in [9],

_ ="
xlk(m:{gl 2] o lel<e

for |z| > e,

|/

exp [ } for |z| <e,

X, () = |z|? — &2

for |z| >e.

One can observe that x,, € X* for k > 1, while y, € X3° due to Lemma A.2.

Appendix B. Properties of localized potentials

Here we collect some theorems describing mapping properties of the localized
potentials (2.21), (2.22), (2.23), and the corresponding localized boundary
operators (2.31) and (2.32).

Note that V is a weakly singular integral operator (pseudodifferential
operator of order —1), while W is a singular integral operator (pseudodiffer-
ential operator of order 0).

If a localizing function is infinitely differentiable, y € X°°, then the
localized potentials and the corresponding boundary operators have the same
mapping properties as the corresponding harmonic potentials (see, e.g., [6,
Ch. 5, Theorem 2.4(i)], [27], [18, Theorem 8.4.13)]. However, for localizing
functions of finite smoothness the localized potential operators may possess
quite different properties, in particular, their smoothness is reduced and the
smoothness exponents depend on the localizing function (cf. [9]).

Properties of the localized volume potential P are described in the asser-
tions that follow. Some of them are proved in [9]. We recall that the complete
symbol &(P;¢) of the operator P is defined by formula (4.1).

Lemma B.1. (Lemma 5.1 in [9])
(i) Let x € X* with k > 0. Then &(P; -) € C(R?),

S(P;0) = —/OOOX(Q) odo,

and for & #£ 0 the following equality holds

K gy
S(P;¢) = Z W )“((Qm)(o)
m=0
1 o0 k
gt /0 sin (|§|9 + %)i(k)(@) do, (B.1)

where k* is the integer part of (k — 1)/2 and the sum disappears in (B.1) if
k=0.
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(ii) If x € X° and condition (A.1) is satisfied, then S(P;&) < 0 for all
£ eR3.
(iii) If x has a compact support, then &(P; -) € C(R3).

Corollary B.2. (Corollary 5.2 in [9])
(i) There exists a positive constant ¢y such that

IG(P;)| <er (L+]62)~"F forall €€R® ifye X*, k=0,1,
and the operators
P: H*(R?) — H*"*H(R?) Vs e R forx e X, k=01, (B.2)
CH(R®) — HPFFLUR3) V s € R
forx € X*, k=2,3, and x(0) =0, (B.3)

are continuous.
(ii) If x € Xi, then there exist positive constants ¢; and co such that

co (L+[63) 7 <ISPs€)[ <o (L+[EP) 7" for all € € R,
and the operator
P: HR? — H*T?R3) VseR
s continuously invertible.

For —1/2 < r < 1/2, let us introduce the following spaces, cf. [24,
Definition 3.3],

HO™(QF A) :={ue H(QF) : Auec H'(QF)}.
Theorem B.3. (Theorem 5.6 in [9]) If x € X!, then the operators
1

- 1
P:H(QY) — HT25(QT; A), —5<s<3

L HY(Q1) — H375375(Q1; A), <s, Vee(0,1)

M| —

are continuous.

For t > 1/2, let v§ denote the operator adjoint to the trace operator
vs : HY(R?) — H'=2(09), i.e.,
(yEv, wigs := (v, ysw)s ¥V w e H(R), ve H2YS).
This definition evidently implies that the operator
vE  H27HO0) —» HHR?), > 1/2, (B.4)

is continuous and y4v = 0 in QF, i.e., y5v belongs to the space H;t consisting
of distributions from H~!(R3) whose supports belong to S = 9. This also
allows us to rewrite the localized single layer potential in terms of the localized
volume potential,

VMM=—LP@—M¢@M&=—Wﬁ%—mwﬁ
= —(P(- —y),75¥)rs = —Py5(y), (B.5)
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Note that if the integration surface in (B.5) is S = OR3 = {z € R? : z3 = 0},
then we have

Vip(y) = =P (¢(x1,22) ® 6(x3))(y), v € R?, (B.6)

where (2') ® 6(x3) = vEy with &’ := (x1,22) denotes the distributional
direct product of the density function v (z’) and the Dirac function 0(z3).
Consequently, for this particular case we can write

Fare(VY(2))(§) = =Fame (P 9(2))(€)
= —6(P)(§) Fome(v(z1,22) @ 8(23))(§) = =6 (P)(§) Farmer (¥)(£).  (B.7)

The localized double layer potential can also be represented in terms of
the localized single layer potential,

Woly) = — /S [T(z,0,) P(z — y)] o(x)dS,

= 7/5 [an;(x) np () Ox, P(z — y) | () S,
= =0y, V(agjni @) (y), y€R’\S. (B.8)

Now we can prove an analogue of [9, Theorem 5.10] extending it here
to a wider range of the exponent s and to the specific double layer potential
(B.8).

Theorem B.4. The following operators are continuous

ViH2(S) = H*(R%), s< g ,

. 1
LHYE(S) » HYQF), s<k+g, for xeXF k=12, (B10)

for x € X, (B.9)

‘ 1
LHYE(S) » HY TN QR D), 5 <s < g for x € X2, (B.11)
1
W HTHS) 5 HY(QF), s<k—g, for x€X' k=12, (B12)
1 3
CHH(S) = H L0 A), 5 <5<y JorxeXx®. (B.13)

Proof. The continuity of operator (B.9) and thus of operator (B.10) for & = 1
is proved in [9, Theorem 5.10]. To prove continuity of (B.10) for k = 2,3, ...,
let us first assume that y has a compact support. By Lemma B.1 we can
decompose &(P; &) given by (B.1) as S(P; &) = G (§) + Sk1(§), where

K’ 71 m—+1
Six(§) = Z (|§|22”+2 X*m(0), (B.14)
m=0
1 > k
Sui(6) = = gy [ sin (1elo+ ) ¥ o) de

(_1)”““(’“—1)(0) if k is odd
+9 jgrr X BRmecd (B.15)

0 if k is even
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k' is the integer part of (k —2)/2 and &;x(§) =0if £ =0,1.

Then P = Pyx + Py, where Pis and Py are the pseudodifferential
operators with the symbols Gix(§) and Sir(€), respectively. Therefore the
localized single layer potential with the help of (B.5) can be represented as

V() = Vis(¥) + Vir(¢), (B.16)

where Vis(¢) = —Prs(759)(y) and Vi () = —Prr(vgy).

Note that the symbols G(P) and &y are neither of rational type nor
classical, in general. Therefore we can not apply directly the well known
theorems for pseudodifferential operators with rational type symbols (see,
e.g. [6], [18]). However, for k > 2 the operator Py is of order —2 with the
rational symbol &5 (€) and we have (see, e.g., Theorem 8.5.8 in [18]),

Viz : H73(S) > H(QY) V se€R, ye X*, k=23,..., (B.17)
iy Vi« HS2(8) — H(Q7) V s €R,
Yur € D(R?), xe X*, k=2,3,.. (B.18)
On the other hand, we can write
Srr(§) = AE)Grr(§) + [1 = MEISki(€), (B.19)

where A € D(R3) is a cut-off function such that A(¢) = 1 for |[¢] < 1. The
first summand in (B.19) has a compact support and defines a pseudodiffer-
ential operator which maps H*(R?) into C*°(R3) for arbitrary s € R. By
(B.15) and Definition A.1 of the classes X*, we have &;7(¢) = O(|¢|7%~1)
for sufficiently large |£|, implying that the second summand in (B.19) defines
a pseudodifferential operator of order —(k + 1). Thus we obtain continuity of
the operator
p1 Py o HSTFY(R3) — H5(R?)
forscR, xy € X*, Vu € DR?), £=0,1,2,...
Then by (B.4) we have the continuity of the operator
Py’ 1 HF2(S) = HY(RP) (B.20)
1
fors <k + 3, x € Xk ¥V e DR?), k=0,1,2,...

Hence (B.16), (B.17), and (B.20) imply (B.10) for the bounded domain Q7,
while (B.16), (B.18), and (B.20) imply continuity of the operator

Vo HS73(S) — H*(Q) (B.21)
1
for s<k+§, x € X*, VYu € D(R3), k=2,3,...

for the unbounded domain Q. Choosing u1 such that y; = 1 on the compact
support of V' (defined only by S and by the compact support of x), we obtain
that u1V =V, i.e., 1 can be dropped in (B.21) implying (B.10) also for Q2.

Let now x be not compactly supported. Let us introduce a radial func-
tion g € D(R?) with respect to the origin of the coordinate system such
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that po(x) = 1 in a neighbourhood of 0 and represent y = xo + Xoo With
Xo = poX and Xeo = (1 — p1o)x. Evidently,

Vip =V ¥ + Vo ¥ (B.22)

For x € X* we see that yo € X* and is compactly supported, implying
(B.10) for V;,. On the other hand, Yo € X* and )“((o%) (0)=0,¢=0,1,2,..
Then by Lemma B.1 applied to x~ we obtain the following estimate for the
corresponding symbol
kit
ISP ;O < L+
Therefore the volume potential

P, :H "R - H(RY forseR, ye X* k=0,1,2,..,

forall £eR® if ye X* k=0,1,2,..

and thus the single layer potential

1
Voot HSF73(0Q) —» HY(R®), s<k+ 5 XE X* k=0,1,2,..,
(B.23)

are continuous, which implies (B.10) with non-compactly supported .
Mapping (B.10) can be evidently rewritten as

. 1
V:H2(S) = HTHQF) for s < k — 3 XE Xk kE=1,2,..

Then (B.8) implies the continuity of operators (B.12).

The continuity of (B.11) is already proved in [9, Theorem 5.10]. To
prove continuity of (B.13), we first remark that Goyx = S35 = —1/[¢]? by
(B.14) since ¥(0) = 1, which implies Voxtp = Vigt) is the classical (non-
localised) single layer potential harmonic in QF. Then by (B.16) we obtain
r AV = —r  APrr(v5¢) for k = 2,3. Rewriting operator (B.20) as

1Py Hsfg(s) s HETRL(RY)
for s < g, x € X* Vu eDR?), k=0,1,2,...
and applying the Laplace operator, we obtain the continuity of the operator
p1 AV : HS73(S) — H*HF=3(QF)
fors < g x € Xk ¥V e DR?), k=2,3. (B.24)

The multiplier p1 can be evidently dropped in (B.24) for the bounded domain
Q. It can be dropped also for the unbounded domain €~ if ¥ has a compact
support. If x is not compactly supported, we again represent V as in (B.22)
and, taking into account (B.23), we finally conclude that p; can be dropped
in (B.25) also for the non-compactly supported x, and we have

AV : H5(S) = H3(Q%) for s < g xeX® k=23 (B.25)

Along with (B.10) this particularly implies (B.11) if we take k = 2.
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Applying the Laplace operator to (B.8) and taking into account (B.25),
we obtain

AW H‘g_%(S) — HTF4HQF) for s < %’ k=2,3.
For k = 3, in view of (B.12) this particularly implies (B.13). O
Theorem B.5. The following jump relations hold on S':
VEVY =V, p e H3(S), % <s< k+%

for xeX* k=12, .., (B.26)
) 1 1
VWe=Fue+We, @eHT2(8), S <s<k-g
for xeX* k=23,..,
(B.27)

where p(y) is given by (2.33) and the operators

1 1
YV H35(S) = H*3(9), 5<s<ktg forxeX’ k=12,
(B.28)

. | 1 1
W H*2(S) — H*"2(S), g <s<k-—3 forxye X*, k=23,..,
(B.29)

are continuous.

Proof. Relation (B.26) was proved in [9, Theorem 5.13] for k¥ = 1. For a
smooth function v the following jump relations for derivatives of the single
layer potential hold on S (cf. [27], Ch. 2, Section 14, formula (14.12))

{0,,V}* = £ % njY(y) — /SayjP(x —y)p(x)dS,, yeS, xeX
(B.30)

The singular kernel 9, P(x —y) satisfies the Tricomi condition, cf. [26, Ch.IX,
Section 1, Theorem 1.1], [18, condition (7.1.17) and Theorem 7.1.7], and the
surface integral in (B.30) is understood in the Cauchy principal value sense.
Moreover, operators (B.30) can be treated as pseudodifferential operators
of order zero ([1], [2], [15], [18, Chapters 7-8]). Substituting (B.30) in (B.8)
we obtain (B.27) for smooth functions ¢. Taking into account the mapping
properties of the operators V and W given by Theorem B.4, these relations
can be extended then by continuity to the appropriate spaces, giving also the
continuity of (B.28)-(B.29) (cf. [9], [18, Theorem 8.6.3 and Section 9.2]). O

Lemma B.6. [9, Lemma 6.3] Let x € X1, v € H~3(09Q), and f € HO(QF).
IfVY+Pf=0inQF, thenty =0 on 0Q and f =0 in Q.

Remark B.7. The principal homogeneous symbols of the pseudodifferential
operators V and —uI 4+ W calculated in a local coordinate system with the



Localized Boundary-Domain Singular Integral Equations 35

origin at a point y € S and the third axis coinciding with the outward unit
normal vector n(y) to S at the point ¥, read as (cf., [7], [8], [18])

SM)(F.€) = SV F.E) = g € B2\ (0, (B.31)

60(_MI+W)(§,£/) = 60(_/'LI+W)(§J)£/)
:é@ﬁ%;Z@@@. (B.32)
=1

Here ay;(y) is given by (5.11), where A(y) = [Ar;(¥)]3xs is an orthogonal
matrix with the property AT n(y) = (0,0, —1)T. Therefore \,3(7) = —n,(7),
p=1,2,3. In view of (2.33) it is evident that

5 @55(7) = 5 A0 () 3@ Aas(3) = (3) > 0.

Appendix C. Representation for IT’

Here we derive representation (5.7) for the operator IT" defined by (5.5), i.e.,
we show that

W(g)(¢) = lim =, Fo ', [9(¢,&)]

z3—04+ "t
—— 5 [ a€.0d ¢eRVL (C)

if the following conditions hold:

(i) g(¢',&3) is rational in & and the denominator does not vanish for
nonzero real £ = (¢/,&3) € R?\ {0},

(ii) g(¢&',&3) is homogeneous of order m € Z := {0,£1,4+2,...} in £ =
(¢',€), and

(iil) g(&’,&3) is infinitely differentiable with respect to real & = (¢, &3)
for £ #£0.

Then it follows that the function ¢g*(w,7,&3) = g(£, &) = g(rw, &)
with r = |¢/| and w = £'/|¢| is infinitely differentiable with respect to the
real variables w, r, and &3 for |w| = 1, 7 € [0, +00), & € (—00,+00) and
r + &3] > 0. Moreover,

9(0707 _1) = eiimﬂ-g(0707 +1)7

8]69*(&),0,*1) akg*(w70a+1) kL=1.2
ark ark 0 TS

Therefore such a function g belongs to the class of symbols D,, introduced
in [15, Ch. 3, Sections 3.10].
By Lemma 10.1 in [15] we deduce that g admits the decomposition

g(&', &) =g~ (¢',&) + Ry (£, &3), (C.2)

_ (_l)kefimﬂ'
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where g7 (£, €3) is a rational function in &3 and has an analytic continuation
9 (&,&5 + i) with respect to ( = &5 + i7 into the lower complex half-plane
7 < 0, which is continuous for |&’| + |&3| 4 |7] # 0 and satisfies the estimate

g7 (&' & +im)| < cy (I€'1+ l&s] + 7)™, (C.3)
while Ry (£',&3) is a homogeneous function of degree m satisfying the esti-
mate

RN (€, &) < N 1€V + &)™ (C.4)

with arbitrary natural number N and some positive constants ¢y and cf;.
In view of (C.2), Ry(£,&3) is rational in &3 and the poles of the functions
g(&',¢) and Ry (€’,¢) in the lower complex half-plane coincide.

It can be easily shown that for 7 < 0, £’ # 0, and 2m + 2s + 1 < 0 the
estimate (C.3) implies

—+oo
/ (L4 16l + 7% g (€', & + ir) | dés

— 00

+oo
<dy / (1 + lgsl +[71)* (1€'] + I&s] + I7)*™ dés < Cn (L +[¢/1*™),

— 00
where the positive constant C does not depend neither on £’ nor on 7.
Now, in accordance with the Paley-Wiener theorem in one dimensional
case (obtained e.g. from [15, Theorem 4.5], where the dependence on and
integration over £’ should be omitted), for any s < —m — 1/2 and any fixed
€' # 0 there is a function f(¢, -) € H*(R_) such that

g_ (£I7€3 + 7/7-) = ]::D3—>€3 [f(é-/ax?)) e T]7 T <0.

Hence, the equation
Fertrasl97 (6 & +im)] = f(¢,23)e™ ™7 =0 for 23>0 (C.5)

§3—x3

follows with arbitrary 7 < 0, since f(¢, -) € H*(R_).

Taking into account that ¢~ (¢’,&5 + i7) is holomorphic in the lower
half-plane 7 < 0 and continuous for |£’| + |£3| 4 || # 0, and since the direct
and inverse Fourier transform operators are continuous in appropriate func-
tion spaces, we deduce from (C.5) by passing to the limit as 7 — 0—, that
Fol g7 (€,&)] = 0 for x3 > 0. Therefore,

§3—ws
Jim o Fol [0 (€ @) =) =0 Ve R\ {0} (C0)

Further, with the help of decomposition (C.2) with N > m+ 1 and using the
estimate (C.4) for & # 0, we see that Ry (&', -) € L1(R). With the help of
(C.6) we get from (C.1)

+oo
(o)) =T (RN(E) = 5= [ Rl &)dsa= =5 [ Ral€0.

21 J_

where I'™ is a contour in the lower complex half-plane orientated anticlock-
wise and enclosing all the poles of the rational function Ry (¢, ¢) in the lower
complex half-plane.
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Finally, due to relation (C.2) and since g~ (¢’,¢) is holomorphic in the
lower complex half-plane, we arrive at the equality

M) =5 [ €0+ Ru(e 0] dc=—5- [ g€.0d.
™ Jr- ™ Jr—
which completes the proof of relation (C.1).
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