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Abstract: This paper presents a time-series model of the United States Airport Network as a directed, 

weighted network, with the weight representing the total number of passengers flying from an origin to a 

destination airport, in a two month time period. Six independent networks are built for a given year, in 

order to capture the seasonal variation of passengers. To explore the evolution of the network over the 

past two decades, three specific years are investigated: 1990, 2000, and 2010. The results highlight the 

growth of the network in terms of airports and connections, and suggest a scale-free, small-world 

topology. In addition, the ranked passenger distribution appears to follow a logarithmic trend, implying 

high heterogeneity in passengers on different connections. 
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1. INTRODUCTION 

In recent years, the availability of huge data sets has enabled 

researchers across many disciplines to model and to 

understand exceedingly complex systems, by using network 

modelling and analysis. For example, biological networks, 

such as metabolic (Morine et al. 2009), and gene co-

expression (Carter et al. 2004); technological networks, such 

as the Internet (Alderson, Willinger 2005), and the power 

grid (Carreras et al. 2002); and social networks, such as 

friendship (Girvan, Newman 2002), and co-authorship 

(Barthelemy et al. 2005), have been widely studied, and 

interesting patterns have emerged. This research has shown 

that network modelling provides a powerful abstraction of 

networked complex systems in the real-world, that is able to 

strip away the detail of individual systems, while retaining 

the core information, such as network structure (topology), 

and dynamics (the function of the network). Hence, it is 

possible to model the evolution of complex systems at a high 

level, and to identify common properties, as well as trends, 

over time. This leads to a better understanding of complex 

systems, with potential benefits to many areas, such as 

medicine, technology, and the social sciences, to name a few. 

1.1 Airport Networks 

The air transportation network of a country or region is a 

critical component of its infrastructure, with huge impacts on 

its economy, the transportation of people, cargo, and mail, as 

well as the potential for propagating negative effects, such as 

globally spreading diseases (Guimera et al. 2005). Therefore, 

researchers from multiple disciplines have recently shown a 

lot of interest in this field, and with an abundance of available 

data, have made attempts to model and to analyse airport 

networks. This provides an understanding of how these 

networks operate; the critical airport nodes that connect 

otherwise distant locations; whether there are any naturally 

occurring community structures; and how the networks 

evolve over time. 

1.2  Evolution 

Depending on several key factors, such as geographical area, 

population, economic growth, tourism, and trade, the national 

airport network of a country may grow and change its 

topology considerably over time, driven mainly by the 

airlines, seeking to increase their short-term profits. This 

means that an airport network is constantly developing, or 

more precisely, evolving in response to the growing demands 

of the people using the network either directly as passengers, 

or indirectly as consumers of transported goods. 

Globalisation, and the introduction of more long-distance 

direct connections between far-apart regions does however 

present a serious threat to public health, as a small outbreak 

of a disease in a remote region may quickly turn into a global 

epidemic.   

 



 

 

     

 

1.3 Related Work 

Researchers working on airport networks have typically 

focused on the modelling of a national airport network, such 

as the Airport Network of China (Li, Cai 2004), and the 

Airport Network of India (Bagler 2008); or the World Airport 

Network (Guimera et al. 2005), which is the global network 

of all airports. However, most studies so far have either 

investigated the evolution of the network over a not 

significantly long time period (Amaral et al. 2000, Barrat et 

al. 2004, Xu, Harriss 2008), or have not modelled in detail by 

ignoring link directionality and link weights (Bounova 2009).  

1.4 Contribution 

This paper presents a more detailed model of the evolution of 

a complex airport network over a significant time period.  

The aim is to explore the development of the network, in 

order to expose growth patterns, and changes in structure as 

well as passenger demand. In addition, the ranked weight 

distribution of the links (Gegov et al. 2011), instead of the 

commonly used (cumulative) probability distribution of link 

weights, is used as a measure of the volume of passengers 

travelling between all connected airports. It was chosen 

because it contains information about the absolute numbers 

of passengers flying between airports, and every connection, 

or link, is explicitly present in the distribution.    

2. METHODOLOGY 

Evolution-based modelling of any complex network can be 

defined as a process that takes as input some specific network 

data, and returns a complete network model of these data. In 

other words, all local interactions between pairs of nodes for 

some time period are mapped onto a global network model, 

representing the structure and dynamics of the real complex 

network, for the period under study. In this way, it is possible 

to determine how the network is evolving over time, in terms 

of its topology and interactions.  

2.1 Selecting Data 

First, it is necessary to decide which specific interactions in 

the network are of particular interest. For example, in an 

airport network, these can be the number of passengers flying 

between airports, the number of aircraft flying between 

airports, or quite possibly, any other metric describing the 

link between a pair of airports. Then, a long enough time 

interval is chosen, such that there are available data to be 

modelled, and the scale of the observed evolution is 

maximised. The chosen interval is partitioned into equal time 

slices, depending on the required level of granularity. In the 

case where a long interval and high granularity result in an 

unfeasible number of time slices, a sample of those can be 

selected for the actual modelling.   

 

 

2.2 Network Modelling 

A network is essentially a set of nodes and links, so if the 

data are in the form of node pairs (in most cases it is), it is 

easy to build a network directly from the data: for each pair, 

insert a directed link from the source node to the target node, 

labelling the link with the given weight (representing strength 

of interaction). Hence, a snapshot of the evolving network is 

generated for each time slice of the data.  

3. UNITED STATES AIRPORT NETWORK 

Here, a case study of a continuously developing air 

transportation network that is vital for the mobility of 

millions of passengers per day is presented. The United 

States Airport Network (USAN) was chosen for several 

reasons. Firstly, it is large and growing, so it is clearly a good 

candidate for studying network evolution. Secondly, there is 

a lack of detailed models that trace the network for more than 

a few years. Thirdly, there is a large quantity of available 

data, dating back to 1990, when the network looked very 

different to what it is today. Essentially, this is an application 

of the evolution-based modelling methodology from the 

previous section, with an additional part describing the 

network analysis. 

3.1 Data Sets 

The number of passengers flying from an origin to a 

destination airport was chosen as the variable for this study, 

because it is the common choice in the literature, and it is 

perhaps the most influential factor in the expansion and 

organisation of the network. The longest possible time period 

– from 1990 to 2010 – was selected, based on the availability 

of data for this period. To investigate seasonal variation 

within a given year and to build more precise models of the 

network, time slices of length two months offer a good 

balance, so a year is divided in six equal parts. To reduce the 

huge amount of modelling (120 networks), without losing too 

much information, only three years are modelled in this 

study: 1990, 2000, and 2010. These years capture the oldest, 

the intermediate, and the newest, open source states of the 

network. Unfortunately, the data for the end of 2010 are still 

unreleased at the time of writing, so the network snapshot for 

November – December is not included in this study. All the 

data is obtained from the Bureau of Transportation Statistics 

(http://www.bts.gov/), and is publicly available.   

3.2 Network Model 

The model consists of seventeen network snapshots: six for 

1990, six for 2000, and five for 2010. Each network is 

directed and weighted, and includes a number of isolated 

nodes and self-loops. The directed links reflect the difference 

in passengers flying from A to B and vice versa. The link 

weight represents the total passengers travelling from A to B 

in a time slice (January – February, March – April, etc.). 

Isolated nodes denote airports that handled aeroplane 

departures and/or arrivals, but no actual passengers. Self-



 

 

     

 

loops occur when an aeroplane takes off and lands at the 

same airport for some reason, such as an emergency. Over 

the past twenty years, the USAN experiences dramatic 

growth: airports triple from about 350 to over 1,100, and 

direct connections double from 5,000 to 10,000.       

3.3 Network Analysis 

Graph theory offers numerous statistical parameters that 

usually measure some structural property of the underlying 

network, so for the purposes of this study, the most 

prominent parameters are selected for analysis. Since they are 

quite general, they are often used across many disciplines that 

exploit the potential of network modelling. In this paper, we 

investigate six individual parameters (defined further below): 

number of nodes (N); number of links (E); size of Giant 

Connected Component (GCC); average degree (<k>); 

characteristic path length (L); and clustering coefficient (C). 

In addition, we compute three functions: the in-degree 

distribution P(kin); the out-degree distribution P(kout); and the 

ranked weight distribution W(r). Note that W(r) is an 

indicator of network dynamics, as opposed to network 

structure. 

In the USAN model, N is the total number of US airports; E 

is the total number of one-way domestic connections; GCC is 

the number of airports in the largest connected subnetwork; 

<k> is the average number of domestic connections per 

airport; L is the average number of flights that need to be 

taken to get from A to B; and C is the expected proportion of 

airport neighbours (all connected to an airport) that are 

connected themselves. The latter two of those are calculated 

for an undirected network due to computational complexity, 

but most connections are bidirectional anyway, so the results 

should be fairly accurate. P(kin) and P(kout) are the probability 

distributions of a randomly chosen airport having kin 

incoming and kout outgoing connections, respectively. By 

extracting the first two data points (0 and 1 connection) and 

taking them as separate parameters p and q, the degree 

distributions are well-approximated by a power-law fitting 

function of the form P(k) = ak
n
, where a is the scaling factor, 

k is in/out-degree, and n is the exponent. W(r) is the rank-

ordered passenger distribution on all network connections. 

For systematic analysis across all networks, W(r) is 

normalised to be in the range (0, 1]. This function is well-

approximated by a logarithmic fit of the form W(r) = bLn(r) 

+ c, where b is the scaling factor, Ln is the natural logarithm, 

r is the rank, and c is the coefficient. Hence, the functions are 

described by their parameters: pin, qin, ain, and nin of P(kin); 

pout, qout, aout, and nout of P(kout); and, b and c of W(r). To sum 

up, the networks are analysed in terms of six individual 

parameters (denoted by capital letters), and ten function 

parameters (denoted by lower case letters).          

4. RESULTS 

The single parameters are calculated using Network 

Workbench; the degree distributions are fitted using the 

EzyFit toolbox for Matlab; and the ranked weight 

distributions are fitted in SPSS. For each parameter and for 

each of the three years (1990, 2000, and 2010), the mean 

parameter value and the Standard Error of the Mean (SEM) 

of all six network snapshots were calculated. The SEM 

indicates the amount of bimonthly variation. Figs. 1-16 

illustrate the trend of each parameter average over the 

twenty-year period, and the vertical error bars (where visible, 

due to higher variance) indicate the SEM. Figs. 1-6 present 

the six individual network parameters in green. Figs. 7-14 

show the eight degree distribution parameters in blue for in-

degree and orange for out-degree. Figs. 15 and 16 report the 

ranked weight distribution parameters, b and c, in red. The 

results are discussed in the next section. 

        

  

Fig. 1. Airports.              Fig. 2. Connections. 

  

Fig. 3. Connected airports.       Fig. 4. Average connections. 

  

Fig. 5. Average hops.              Fig. 6. Clustering. 

  

Fig. 7. P(0 connections in).       Fig. 8. P(0 connections out).       



 

 

     

 

  

Fig. 9. P(1 connection in).        Fig. 10. P(1 connection out).       

  

Fig. 11. Scaling factor ain.        Fig. 12. Scaling factor aout.        

  

Fig. 13. Exponent nin.                Fig. 14. Exponent nout.        

  

Fig. 15. Scaling factor b.           Fig. 16. Coefficient c.        

5.  DISCUSSION 

The obtained results are discussed in three parts. Section 5.1 

addresses the individual parameters, which are based on the 

global structure of the entire network. Section 5.2 covers the 

degree distribution parameters, which describe the structure 

of the USAN in terms of the airports’ number of incoming 

and outgoing connections from/to other airports. Section 5.3 

focuses on the weight distribution parameters, which 

highlight the high heterogeneity in the number of passengers 

on different connections. 

 

 

5.1  Individual Network Parameters 

Figs. 1-3 show the growth of the network in terms of airports, 

connections, and connected airports. Clearly, the expansion is 

much larger from 2000 to 2010, indicating a non-linear 

growth process. This observed behaviour is not unusual, as 

any transportation network is constantly affected by 

economic decisions, supply and demand, and many other 

factors. What is rather unusual is the fact that the average 

number of airport connections, Fig 4, displays a linear decline 

in time, due to the faster increase in number of airports 

compared to the number of airport connections. This means 

that many (probably small size) airports were introduced but 

they were not interconnected that well, unless already 

established airports lost some connections. Because of this 

rapid growth, the average hop length (Fig. 5) between any 

two airports in the US jumped from 2.5 to 3.5, within the past 

ten years.  However, this does not imply that the average 

journey would need more changes; to the contrary, the 

network was optimised over time to reduce the changes of the 

average passenger by interconnecting airports with higher 

passenger demands, and disconnecting those less profitable. 

This is evident from the recent boom in low-cost airlines, 

providing many point-to-point flights between poorly 

connected destinations. Based on these facts, it is natural to 

assume that the clustering in the network increases, but Fig. 6 

contradicts this; again, this must be due to the huge number 

of new airports. All these parameters have confirmed the 

immense development of the USAN, particularly in the first 

decade of the 21
st
 century, and the next section explains this 

phenomenon in a little more detail.                    

5.2  Degree Distribution Parameters 

Figs. 7 and 8 show the probability of an airport having zero 

incoming and outgoing connections, respectively. In other 

words, this parameter measures the proportion of very remote 

airports that only have some arrivals, or departures, per 

month. Clearly, the fraction rises from 1990 to 2000, 

indicating a significant increase in such poorly connected 

airports, but more interesting is the 2000 to 2010 period, 

which experienced no major change. Figs. 9 and 10 present 

the fraction of airports with just one incoming and outgoing 

connection, respectively. Again, these trends quantify the 

presence of minor airports, which increases linearly over the 

two decades. Figs. 11 and 12 report the fitting functions’ 

estimates for the parameters from the previous two figures. 

Basically, they confirm that the fits are not able to 

approximate (especially for the year 2000) the first two data 

points that were extracted as p and q, since they do not obey 

the power-law relationship that the rest of the data does. The 

key parameter in a power-law is the exponent, as it controls 

the skew of the distribution. Therefore, between 1990 and 

2000, Figs. 13 and 14 suggest an increasing exponent in 

absolute terms, since the scale of the figures is negative. This 

implies stronger preferential attachment, which means that 

already highly connected airports obtained more connections, 

while poorly connected airports received few new, or even 

lost existing, connections. The fact that the change between 

2000 and 2010 is small, suggests that although there was a 



 

 

     

 

lack of point-to-point flights in the 90s, it may have been 

resolved in the 00s. 

5.3  Weight Distribution Parameters 

The ranked passenger distribution is the only characteristic of 

the dynamics on the network that is considered in this paper, 

and as such, cannot be taken as a complete description of the 

function of the network. Nevertheless, the results are 

interesting, and can be used as a basis for further analysis. 

Figs. 15 and 16 depict the two parameters of the logarithmic 

fit, and although further work is necessary to arrive at more 

precise conclusions, one thing is certain: the USAN exhibits 

considerable passenger variability over the course of a year. 

This is demonstrated by the error bars in the figures.       

6.  CONCLUSION 

Evolution-based modelling of networks promises to be a 

useful tool for extracting detailed information about the 

complex interactions in networks that are typically getting 

larger, as demonstrated by this United States Airport Network 

case study. Specifically, it is necessary to build network 

models that satisfy three key conditions: modelling a 

significantly long time period; capturing fine temporal detail 

by high-resolution snapshots of the state of the system; and 

including multiple system features by using more complex 

network models. The approach described in this paper is 

simple and straightforward, and may be applied to the study 

of any transportation network, or more generally, to any 

evolving complex network. Further work on this case study 

will focus on finding community structure, additional 

measures for network dynamics, and forecasting future 

trends. The authors look forward to exciting new 

developments in the multi-disciplinary field of complex 

networks, which may apply to any domain-specific question.  
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