
44 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 1, FEBRUARY 2007

Efficient Memory-Protected Integration of
Add-On Software Subsystems in Small

Embedded Automotive Applications
Akram Khan, Member, IEEE, Achim Schäfer, and Markus Zetlmeisl

Abstract—Current innovations in the automotive industry
evolve mainly in the electronics and software domain. This leads
to an increasing integration of additional software subsystems
into already existing electronic control units (ECUs) to cope with
the raised amount and complexity of present ECUs in modern
high-end vehicles. This paper discusses different approaches
which are required to integrate such add-on software subsystems
in an isolated memory domain, and considers particularly the
special needs of small embedded systems—including the limited
hardware support. Special focus is brought to the efficient de-
tection of malicious memory accesses, as well as the benefits of
a thereupon possible and adaptable failure-handling strategy.
All investigations are based on a developed memory-protection
framework which has been tailored to the special needs of a sample
vehicle dynamics control system. Its usage allows the combination
of. integrating additional subsystems without reducing the main
application’s availability.

Index Terms—Add-on software integration, embedded automo-
tive systems, memory-protection unit, subsystem partitioning.

I. INTRODUCTION

THE TREND in today’s automotive systems is to integrate
several independently developed software and hardware

subsystems into larger electronic control units (ECUs). Sub-
parts like engine management, cruise and gearbox control, sen-
sors, and actuators grow together to a global vehicle control
system. The advantage of this approach is a limitation of the
extensively increased amount of ECUs, which reduces the costs
significantly (e.g., reduced installation space). Furthermore, the
more powerful ECUs now make it possible to develop and inte-
grate additional add-on functionalities—mainly realized in pure
software algorithms—which require only the already available
system internal signals. Such subsystems naturally have a small
interface to the main application and can therefore be developed
by external suppliers (third-parties), which have, for example,
deep knowledge in special market niches. This gives the auto-
motive manufacturers and suppliers the possibility to provide
additional add-ons (e.g., comfort values), which are not inter-
esting to develop in-house but fit well to their offered portfolio.

However, to integrate and run such subsystems in parallel to
the core application raises additional issues which must be han-

Manuscript received December 5, 2005; revised May 10, 2006 and July 20,
2006; accepted October 30, 2006. Paper no. TII-05-12-0078.R2.

A. Khan is with Brunel University, Uxbridge UB8 3PH, U.K. (Akram.
Khan@brunel.ac.uk).

A. Schäfer and M. Zetlmeisl are with Robert Bosch GmbH, Business Unit
CC (Chassis Systems Control), Stuttgart D-70174, Germany.

Digital Object Identifier 10.1109/TII.2006.890522

dled explicitly. The main application, which was often designed
to run exclusively onto the ECU [(with only a few limited net-
work interfaces to other ECUs; e.g., a controller area network
(CAN)], must now share its resources with additional indepen-
dent subsystems. To prevent possible subsystem malfunctions,
which could have impact on the core application’s stability, and
thus availability, requires the usage of additional partitioning
concepts.

This paper focuses on memory-protection issues and
describes different approaches and mechanisms which are re-
quired to integrate such subsystems in an isolated memory-pro-
tection domain. Prevention, detection, and proper reaction to
any illegal memory accesses outside the assigned domain gain
several benefits which obtain the required system’s availability.
All investigations are based on a developed memory-protection
framework which considers the special constraints of such
“small” high-end vehicle dynamics control systems where
common virtual memory concepts are often too heavyweight
and costly to realize (resources and runtime). Runtime mon-
itoring (e.g., time budgets for different subsystems)—which
is also a quite important issue for an overall partitioning con-
cept—is not considered here.

The paper starts with an overview of the target applica-
tions and highlights their constraints especially regarding
hardware and software design. Section II introduces the devel-
oped memory-protection framework with its realized internal
mechanisms, and in Section III, the achieved failure-handling
strategies are described. The paper ends with a performance
evaluation and conclusion about the investigations.

II. SYSTEMS CONSTRAINTS OF CURRENT AUTOMOTIVE ECUS

AND DESIGN REQUIREMENTS

This section describes some general design issues which must
be considered in the integration of add-on software subsystems.
It highlights the main differences between running exclusively
the main application on the ECU and the sharing of the con-
troller resources with supplier software functionalities.

A. Overview

Former vehicle-dynamics control systems had a strong em-
phasis on hardware functionality and the developed software
was tailored on its special needs. Tight cost constraints due to
strong market competition have been reflected to the software
design so that many systems have used the available micro-
controllers in the most efficient way and utilized the resources
(RAM, ROM, runtime) at the upper limit. The combination of

1551-3203/$25.00 © 2007 IEEE



KHAN et al.: EFFICIENT MEMORY-PROTECTED INTEGRATION 45

resource efficiency, required system specific complex degrada-
tion and fallback levels, and the support of different customer
configuration requirements result mainly in a monolithic design
structure of the core application. Hence, the system focus was
rather on a sort of software product line approaches ([1]) than
applying “costly” internal memory-partitioning concepts, which
additionally do not gain enough benefits as long as the main ap-
plication was running exclusively on the ECU.

However, with the increased need to integrate add-on soft-
ware and run it in parallel to the main system, it is often manda-
tory to prevent—at least—the core application during runtime
from any external malicious accesses and to clarify responsi-
bility in case such a failure has happened. But it is important to
distinguish between common public computer systems and the
target embedded automotive systems. All processes in such em-
bedded environments are designed to cooperate, which means
they never try to intentionally harm each other—like a worm or
a virus in a desktop or server system does. Another big differ-
ence is the missing dynamic addition and removal of functions
during runtime, compared with public computer systems. How-
ever, small software bugs in a less important module, which are
difficult to find and may occur only in some specific situations,
could potentially corrupt the whole system (e.g., invalid pointer
arithmetic in the C programming language).

B. Memory Management Constraints

With the introduction of high-performance microcontrollers
and their integrated memory management units (MMU), many
embedded systems benefit from the possible advantages of vir-
tual address spaces or isolated partitions, and can easily set up
these mechanisms ([2], [3]). However, as already mentioned,
there exist a large amount of small embedded systems where
the additional overhead is not worthy (e.g., explicit OS support;
increased runtime and memory consumption). Such real-time
applications are often allocated on the ECU in a predefined and
static way, and even dynamic memory allocation is often not
possible due to system and resource constraints. Partitioning
the monolithic main application in several dedicated subsystems
and providing a sort of protection would be too cumbersome
and resource consumptive as failures in these small partitions
affect the consistency of the whole system and require, anyway,
a global shut-down strategy. Even if a MMU is available on the
microcontroller, it is often either bypassed or configured in a
straightforward way to save the rare resources.

Beyond the common and flexible MMU systems, there exist
several microcontrollers which aim for the currently more and
more important memory-protection issues and integrate spe-
cial—for the target applications designed—memory-protection
units (MPUs). They monitor memory accesses against given re-
gions—specified by MPU channels—in a very efficient way and
consider the application’s possible address space, memory gran-
ularities, and peripheral interconnections (e.g., CAN mailboxes,
general input/output registers). The overhead in applying such
pure MPUs requires fewer resources than setting up a complete
virtual memory system.

The developed memory-protection framework will apply
an efficient protection scheme to isolate selected multitasking
add-on software subsystems on top of such a MPU.

C. Operating System Concepts and Memory Protection

The OSEK standard (German: Offene Systeme und deren
Schnittstellen für die Elektronik im Kraftfahrzeug; English:
open systems and the corresponding interfaces for automotive
electronics; [4]), published by a consortium of automotive
companies, specifies operating systems which are adapted
especially for static automotive applications. Even very small
applications often use such operating systems to benefit from
the specified and efficient implemented system services like
multitasking scheduling or alarm and message handling.

Unfortunately, no subsystem protection features are con-
sidered in the current standard until now. However, research
projects like APOS ([5]) face such issues and have developed
different features of an OS supported memory protection and
execution time monitoring. As these concepts move the whole
memory-protection responsibility to the operating system, they
restrict the protection granularity to the smallest available OS
scheduling units—which are tasks according to the OSEK
standard. However, the design of many small automotive appli-
cations is often based on a limited amount of cyclic activated
tasks with different prioritized time bases. In-between theses
tasks many independent functions run in a pure sequential way
and with the same priority (sometimes called processes; [6],
[7]). This OS configuration fulfils, on one hand, the cyclic
activation requirements of the different independent controller
applications and reduces, on the other, OS overhead since
only a limited amount of scheduling units must be handled in
the system. As a result, a subsystem may consist of several
functions, which are executed in different tasks but share a
single task with other subsystems.

The idea behind the developed memory partitioning frame-
work is to work mainly independent of the OS, and to integrate
any subsystem in a standard way without major changes in the
scheduling mechanism. This gains not only more flexibility and
high efficiency, but achieves also the protection of any arbitrary
small execution unit instead of using OS tasks (i.e., protection
on the function level).

However, developing a memory-protection framework inde-
pendent from the used OS raises several system internal issues
which must be considered explicitly in the design phase and are
highlighted in the following sections.

1) Multitasking Scheduling Support: OSEK defines two dif-
ferent task models: The simpler one is the basic task state model
and allows task activations in a cyclic way or by explicit calls,
whereas the second concept—extended task state mode—al-
lows the usage of an extended event mechanism. Operating sys-
tems which implement the extended task state model require a
more complex task management and therefore more resources
than systems supporting only the basic model.

The memory-protection framework concept focuses on the
more efficient basic task state model (so-called BCC confor-
mity class) because the majority of the target systems are based
on this strategy. So it must cope with these preemption mecha-
nisms to configure the execution environment properly and in a
transparent way to the OS.

2) Processor Mode Handling: Modern embedded microcon-
trollers are able to execute the code in several architecture de-
pendent processor modes—basically differentiated in privileged



46 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 1, FEBRUARY 2007

and unprivileged. However, running only one main application
(like the target automotive systems) makes it often inefficient to
use both modes. At least the OS and the main drivers need unre-
stricted access to the whole microcontroller to configure the pe-
ripherals during runtime (e.g., CAN or DMA, direct memory ac-
cess). Explicit mode switches for each privileged access would
result in unnecessary resource overhead. Furthermore, since the
main application has, for efficiency and configuration reasons,
usually a monolithic structure it is neither feasible to run parts
of it in an unprivileged mode nor would it gain any benefits be-
cause the whole core must be consistent to initiate one of the
complex system degradations after a failure.

However, this strategy changes with the integration and isola-
tion of add-on software subsystems. In that view, the main core
application and the OS are of higher priority than the subsystem
and must be protected against the unprivileged parts. The frame-
work must cope with issues that arise due to different execution
mode preemptions.

3) Stack Usage: To reduce runtime and memory overhead,
as well as stack configuration effort, small embedded systems
often use one large single stack for the whole application rather
than having for each task a separate one.

The stack handling strategy must be considered when exe-
cuting the add-on subsystem transparent to the OS because it
raises issues concerning stack protection and restoration after
an illegal access. There are mainly two approaches.

1) Share the single stack with the add-on software.
2) Provide an own stack for each subsystem, independent in

which tasks it is running.
The first approach requires additional measures to protect dy-

namically parts of “core” stack during subsystem execution and
needs more effort after a detected illegal access. The second,
on the other hand, is more efficient concerning protection and
restoration but requires some enhanced stack exchange mecha-
nisms—which are normally in the OS’s responsibility. System
constraints due to a limited amount of available MPU channels
enforce the realization of the second concept for the memory-
protection framework (separate stack for each subsystem).

III. MEMORY-PROTECTION FRAMEWORK OVERVIEW

The next section describes briefly the realized concepts of the
memory-protection framework as well as the subsystem inte-
gration. It starts with an introduction of the used environment
(main system, microcontroller, OS) before topics regarding the
MPU and the required OS extensions follow. The advanced
failure-handling strategies will be highlighted in a separate sec-
tion.

A. Existing System Environment

The sample memory-protection framework has been devel-
oped on top of an embedded vehicle dynamics control system,
running an open market 32–bit RISC microcontroller with an
ARM7 core (Texas Instruments TMS470; [8], [9]). The avail-
able hardware MPU has four independent MPU channels with
a granularity of 32 bits. Access violations result in an imme-
diate branch to the core’s data exception handler. The applica-
tion runs on top of the underlying OSEK oriented real-time op-
erating system ([6], [7]).

Fig. 1. Memory map with two independent subsystems.

As already mentioned, the main application is distributed over
several tasks which share the same single stack. Furthermore,
the operating system and the main application as well, run com-
pletely in the privileged processor mode to reduce explicit mode
switch overhead.

B. Subsystem Memory Isolation and MPU Channel Usage

To apply the limited amount of available MPU channels in
an efficient way, it is required to link the subsystem’s required
memory in one contiguous RAM section. This range is sur-
rounded by two labels which allow a dynamic configuration
of the HW MPU channels. Only the window between these la-
bels is accessible for unprivileged memory accesses during sub-
system execution. Furthermore, to cope with task preemptions,
it is required that the whole memory is permanently opened for
privileged accesses. This reduces the MPU channel reconfigura-
tion overhead during runtime because otherwise neither the OS
nor the privileged main application would have access to their
private memory until the channels are set properly. Fig. 1 shows
a sample configuration with two independent subsystems.

C. Framework Subsystem Wrapper

Since the memory-protection framework runs mostly inde-
pendent of the operating system, it must explicitly configure the
execution environment before starting each subsystem’s func-
tion. This is done in a special wrapper which prepares the system
(precall), invokes the function, and reconfigures the execution
environment afterwards back to its original state (postcall). Re-
quired actions to isolate the subsystem properly are as follow.

• Preserving the previous MPU configuration and opening
the current subsystem’s dedicated memory for unprivi-
leged access. The restored configuration in the postcall
function ensures that only the subsystem’s dedicated



KHAN et al.: EFFICIENT MEMORY-PROTECTED INTEGRATION 47

Fig. 2. Multitasking main application and subsystem execution.

memory is accessible when it proceeds (in case an isolated
application has been preempted).

• Preserve all processor registers to ensure that no manipu-
lations—even on register basis—are transported in case of
an abort from the subsystem to the main application (see
Section IV on failure-handling strategies, which covers this
topic more in detail).

• Switch to the subsystem specific stack to keep the main
stack free of any subsystem contents. This has the advan-
tage that the main stack does not need to be restored after a
detected malicious memory access and the following sub-
system abort.

• Switch explicitly to the unprivileged processor mode and
invoke the subsystem function. The MPU channels pre-
vent access to any memory locations outside the predefined
range, including peripheral and system-configuration reg-
isters.

The described measures have to be reversed in the corre-
sponding postcall function after the subsystem has finished.
Switching back to the privileged mode is done using a special
OS service call which makes use of the microcontroller’s
internal mode switch mechanisms.

Fig. 2 shows a scenario where two different subsystems and
the main application run with different priorities (i.e., in dif-
ferent tasks). The subsystems are invoked in-between the main
software tasks, requiring no additional OS scheduling units
(e.g., extra time table entries). The only extensions are the small
framework’s pre- and post-call functions which prepare the
execution environment for each subsystem function call. The
next section describes the subsystem preemption process more
in detail because it requires additional framework mechanisms.

D. Unprivileged Subsystem Preemption

Preemption of a lower priority task (e.g., currently executing
an unprivileged software subsystem), which is in the used op-
erating system always initiated by the same single
interrupt, requires two explicit OS features to interact later-on
with the framework, as Fig. 2 shows. Firstly, it is required that
each new task is started explicitly in the privileged mode, which
can be configured in the OS setup. This allows access of the
higher priority SW to the whole address range until a new sub-
system is started, using the framework’s pre-call wrapper. Sec-
ondly, it must be ensured that the operating system preserves and

restores the interrupted unprivileged processor mode, so that the
subsystem can proceed in the correct mode after the higher pri-
ority task has finished. This is generally part of every multi-
tasking OS’ interrupt context handling which considers also fur-
ther runtime context information (e.g., processor status flags).

The decision to spend a separate stack for each isolated sub-
systems requires the installation of a short routine in the inter-
rupt handler which switches to the main stack in case of an
unprivileged preemption. The action must be reversed (switch
to the dedicated subsystem stack) before returning to the inter-
rupted subsystem software.

E. Configuration Structure

The framework sets-up and maintains for each integrated sub-
system a single configuration structure which consists in the
current implementation of the accessible memory range, the as-
signed private stack pointer, and—as explained in the next sec-
tion—information about the software’s execution status. This
status shows, among other things, if the software forced an il-
legal memory access, which is especially important for the re-
quired failure-handling strategies.

IV. FAILURE-HANDLING STRATEGIES

The failure-handling strategy after a detected malicious
memory access depends strongly on the integrated subsystem.
If it is only responsible for some minor comfort functionalities,
a less restricted strategy can be applied compared with an
important information processing algorithm. Consequently, the
framework provides mechanisms which allow a flexible system
integration and achieve therefore project specific independence.

A. Implemented Framework Mechanisms

The most important requirement is the immediate abort of the
running subsystem because its consistency after the abnormal
memory access cannot be ensured. A branch directly to the spe-
cific postcall wrapper (behind a subsystem call) is initiated by
the exception handler to prevent any malicious side effects to
the main system and to restore the execution environment. The
following advantages result from this behavior.

• MPU channel reconfiguration: The restoration of the
previous MPU channel configuration ensures that other
integrated and currently preempted subsystems can pro-
ceed without any inconsistencies. It allows an independent



48 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 1, FEBRUARY 2007

Fig. 3. Cascading subsystem abort.

failure handling of each subsystem in which only the
malicious one will be aborted.

• Register set restoration: The restoration of the controller’s
register set to the state before invoking the function pre-
vents any inconsistencies on register basis to the main ap-
plication. This concerns mainly the compiler specific reg-
ister usage—like save-on-entry registers ([10]).

• Stack exchange: The usage of a separate stack for each sub-
system allows an efficient switch to the protected and there-
fore consistent main stack without any additional required
clean-up work. The application can proceed without wor-
rying about manipulated stack values (e.g., function return
addresses).

Beyond these issues, a detailed look at the multitasking sup-
port and the possible integration of one subsystem in several
tasks shows another problematic situation. It could be possible
that a higher priority process forces a failure while a lower pri-
ority function of the same subsystem has been preempted. This
would result in the correct immediate abort of the present one
but the operating system would later-on proceed with the inter-
rupted process, which would come across with an invalid en-
vironment (e.g., malicious SW had overwritten subsystem spe-
cific variables or stack contains invalid values). This scenario
shows that an additional mechanism is required to realize a
so-called cascading abort where the whole chain of all func-
tions belonging to the same subsystem has to be aborted. The
framework implements a small and efficient logic which is in-
voked before the operating system proceeds with the execution
of the interrupted software to cope with this situation. It decides,
evaluating the integrated subsystems execution status, if the in-
terrupted software is allowed to proceed or if a branch to the
corresponding post-call wrapper is required.

Fig. 3 shows this cascading abort scenario where a preempted
function of the same subsystem aborts after a higher process has
forced the failure.

B. Main-System Failure Handling

The automated framework mechanisms with its immediate
abort and the restoration of the execution environment have the

advantage that the main subsystem can proceed without any side
effects and does not need to consider any special system in-
ternal properties (register set; switch to main stack; preemption
issues). After returning from the subsystem call, it can instantly
evaluate the subsystem’s execution status, check if it has been
aborted, and react properly.

The first and most obvious action is to prevent the future exe-
cution of the subsystem. This depends on the integrated sub-
system’s timing requirements and can include cyclic calls as
well as invocations via asynchronous events. Furthermore, the
calling function—which is normally a wrapper who prepares
the interface for the subsystem—must ensure that the interface
to the main system is set to a defined state. Otherwise, the initi-
ated abort would prevent memory manipulations correctly, but
the inconsistent interface would transport errors in form of in-
valid data to the main system.

The next steps after these low level operations (interface han-
dling, function call) are the reactions on system level. As already
stated, there exist several degraded ways which are dependent
on the subsystems responsibility.

If the main application requires necessarily the subsystem’s
information (e.g., a deeply integrated information processing) a
strict, but defined, shut-down strategy is maybe the appropriate
solution. The advantage in using the framework anyhow—even
if such a hard reaction follows—is the availability and con-
sistency of the mandatory required system functionalities, like
global error handlers or watchdog mechanisms. Otherwise, it
would not be ensured that these parts work properly and could
result, in the first state, in an undefined system behavior which
will later force the external safety trigger mechanisms and rad-
ically shut down the system.

Another way is to bring the main application into a reduced
operating mode. This can be useful if the provided information
is only necessary for some special system layers and does not
make the whole application inoperative.

Furthermore, it is possible to proceed with the main appli-
cation in normal mode and keep the subsystem completely
switched-off. Examples are independent subsystems with no
effect/feedback to the main application (e.g., flat-tire detection
in a brake-control ECU).



KHAN et al.: EFFICIENT MEMORY-PROTECTED INTEGRATION 49

The framework offers also the possibility to set up the
subsystem from scratch for another trial. A central coordinator
could reinitialize the add-on subsystem and manage afterwards
the reintegration to the main system.

Particularly small and tight designed embedded applications
benefit from the proposed approaches in offering higher main
system availability even in case of memory violations out of an
integrated add-on subsystem.

V. IMPLEMENTATION AND PERFORMANCE RESULTS

A reference implementation based on the underlying system
environment with the 32-bit TI TMS470 microcontroller
(running at 60 MHz), the operating system,
and a typical vehicle-dynamics stability system (see also
Section III-A, existing system environment) has been done to
demonstrate the effectiveness of the described mechanisms.
The system is basically working in six cyclically executed
tasks with rate-monotonic assigned priorities and fix activation
scheme. The software subsystems are executed within these
tasks in a fix order per task, so-called processes. Most parts
of the system run without active memory protection, i.e., with
access to the complete address space. Single processes or even
subsets of these are memory access restricted in this exper-
imental reference implementation. Note that in this realistic
embedded control application the scheduling differs from
PC-based server/desktop application approach, where a system
consists of memory separated applications using an MMU with
virtual memory, each of which usually has a pool of threads
with different priorities but are working on a shared application
memory.

The experimental framework uses three out of four available
hardware MPU channels, in which two are used to configure the
subsystem base protection and one for application specific adap-
tations like subsystem inter-communication via shared memory.

The decision of the first prototype framework implementa-
tion was, in some cases, pro architecture and compiler indepen-
dence rather than on heavy runtime optimizations. This involves
mainly the interaction of written assembler and C routines to
hide data-structure alignments. Future enhancements in these
fields will bring additional optimizations of at least 20% in run-
time and ROM consumption. The results are classified in run-
time and memory overhead.

A. Runtime Overhead

The fix runtime overhead in preparing the system to execute
a single subsystem function requires approximately 570 pro-
cessor cycles whereas the phases precall and postcall are one
half each (see Section III-C, framework subsystem wrapper).
This is about 9.5 s assuming a 60-MHz processor system.

The variable runtime overhead which is needed during task
preemption depends on the interrupt load of the system (see
Section III-D, unprivileged subsystem preemption). Processing
of each interrupt requires the following additional resources.

1) Isolated subsystem is active/running: Overhead is required
to switch to the default stack and to implement the cas-
cading abort logic which needs approximately 192 pro-
cessor cycles (about 3.2 s).

2) Isolated subsystem is not active: Only a minimal interrupt
overhead is needed in checking the current system state
which requires 25 processor cycles (about 0.4 s).

B. Memory Overhead

The framework requires a static overhead of about 1-kbyte
ROM and 80-bytes RAM to implement the protection mecha-
nisms. Additionally, each subsystem requires for internal data
structures about 30-bytes ROM and 10-bytes RAM—which
scales very well with the number of integrated subsystems.

C. Example Application

The isolation of a typical, for such small systems, example
“dummy” application with an execution time of about 500 s, a
cyclic activation every 20 ms, and a global system interrupt load
of 4000 INTs/s, results therefore in a runtime overhead during
subsystem execution of nearly 16 us which is 3.2% based on
the subsystem’s execution time and an overall drop of 0.24%
(47 s) based on the cyclic task (including all interrupts). The
internal structure of the example subsystem is comparable to a
normal control application even if it does not perform any useful
work during the tests—which has no impact concerning the per-
formance results. This involves memory (including stack) and
runtime usage as well as internal function decomposition.

The static runtime overhead of 9.5 s can be directly charged
to the subsystems pre- and postprocessing phase. Since these
explicit phases are needed (and mostly accepted) in any case to
serve the subsystem interface when integrating add-on software
subsystems to a core application, only a small additional system
overhead with 0.16% remains (minimum interrupt overhead).

Hence, the main advantage compared with a fully oper-
ating system supported approach with an estimated 30%–50%
OSEK-OS overhead ([5], however with integrated timing pro-
tection) is the flexibility in isolating arbitrary small execution
units with a minimum overhead for the remaining system,
which can furthermore use the optimized OS version. This
makes it particularly useful when only single subsystems of a
larger applications have to be isolated.

VI. CONCLUSION

This paper highlighted different approaches which are re-
quired to integrate independent add-on software subsystems in
small high-end embedded automotive applications. It showed
that with the increasing need of such additional features, it is
inevitable to set up mechanisms which prevent impacts to the
core application. The focus in this paper was on the design of
an efficient memory-based subsystem isolation which is able
to prevent memory accesses outside the assigned domain and
thereupon provides possibilities in initiating proper system
reactions. Advantages are a higher main system availability,
even in the case of hard memory-access violations, either
forces by software or hardware failures. No side effects based
on memory accesses, including stack and register usage, are
transported from the malicious subsystem to the core applica-
tion. Different failure-handling strategies can be configured in
a project specific way, allowing flexible reactions dependent on
the integrated subsystem’s responsibility.



50 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 1, FEBRUARY 2007

The introduced memory-protection framework shows that it
is possible to set up flexible and quite efficient mechanisms with
respect to tight and cost sensitive designed embedded system. It
considers modern multitasking support regarding subsystem in-
tegration, as well as during the abort process (cascading abort).
Independence and transparency to the operating system allows
an efficient partitioning of arbitrary small protection units (i.e.,
on function call level), rather than using “heavyweight” OS
scheduling parts (tasks). The achieved advantages regarding
flexibility, isolation granularity, and configurable abort handling
are more important for the target small embedded systems,
where only a few dedicated subparts have to be isolated, than
using pure and fixed OS support.

REFERENCES

[1] P. Clements and L. M. Northrop, Software Product Lines: Practices
and Patterns, 1st ed. Boston, MA: Addison-Wesley, 2001.

[2] L. Tietz, “Virtual memory in embedded systems—Marketing hype or
engineering reality,” in COTS J , On the Softer Side, Sep. 2001, pp.
26–29.

[3] L. Tietz, “Under the hood of the ideal microkernel,” in COTS J., On the
Softer Side, Nov. 2001, pp. 25–31.

[4] Open Systems and the Corresponding Interfaces for Automotive Elec-
tronics, Specification Version 2.2.2, OSEK/VDX 2004 [Online]. Avail-
able: http://www.osek-vdx.org, Available

[5] K. Tindell, H. Kopetz, F. Wolf, and R. Ernst, “Safe automotive soft-
ware development,” in Design, Automation and Test in Europe Conf.
and Exhib. (DATE’03): Proceeding of an IEEE Computer Conference,
Munich, Germany, Mar. 03–07, 2003, pp. 10616–10623.

[6] S. Poledna, Th. Mocken, J. Schiemann, and Th. Beck, “ERCOS: An
operating system for automotive applications,” presented at the SAE,
The Engineering Society for Advancing Mobility—Design Innovations
in Engine Management and Driveline Controls (SP-1153), Detroit, MI,
Feb. 26–29, 1996, Paper presented at the, unpublished.

[7] ERCOSEK V4.0 User’s Guide, ETAS 2000, ETAS GmbH & Co. KG,
2000, Stuttgart, Germany, Document Number: EC110001 R4.0.2 EN.

[8] Texas Instruments, Microcontrollers, TMS470, [Online]. Available:
http://www.ti.com, Available

[9] ARM Architecture Reference Manual, ARM 1996 [Online]. Available:
http://www.arm.com, Advanced RISC Machines Ltd (ARM), 1996,
Cambridge, U.K., Document Number: ARM DDI 0100B. Available

[10] TMS470R1x Optimizing C/C++ Compiler User’s Guide, Texas Instru-
ments 1999, Texas Instruments Incorporated, Apr. 1999, Dallas, TX,
Literature Number: SPNU151A.

Akram Khan received the Ph.D. degree in exper-
imental particle physics from University College,
University of London, London, U.K.

He is a Reader in Grid Computing and in
Electronic and Computer Engineering at Brunel
University, Uxbridge, U.K. He is a Chartered Physi-
cist with over 15 years of experience of working
in large collaborative projects, which required the
development of distributed computing technologies
for the purposes of data analysis. He has held senior
positions in some of the leading international centres

for fundamental research (DESY, Femilab, and CERN) and is currently on
leave of absence at Stanford University, Stanford, CA, as Director of the
International Operational Computing Team. He is a member of the EU-funded
EGEE, and the PPARC-funded GridPP collaborations. He is the Principal
Investigator for the GridPP project for the development of middleware to
enable the large distributed data and Monte Carlo analysis on the Grid. He was
the Technical Director of the ScotGRID project for three years and is now the
Deputy Director of the newly created Centre for e-Science and Multimedia
Research, BITLab, Brunel University.

Achim Schäfer received the Dipl.-Ing. (FH) degree
in computer engineering from the University of
Applied Sciences Esslingen, Esslingen, Germany
in 2003, and the M.Sc. degree (with distinction) in
distributed computing systems engineering from
Brunel University, Uxbridge, U.K., in 2005.

He is currently working for Robert Bosch GmbH,
Business Unit CC (Chassis Systems Control),
Stuttgart, Germany, as an Embedded Software
Developer for vehicle dynamics control systems.

Markus Zetlmeisl received the M.S. (Hons.) degree
in computer science from the Friedrich-Alexander
University, Erlangen-Nuernberg, Germany, in 2002.

He was with Siemens Med and Siemens Corporate
Research. He then joined 3Soft GmbH, Erlangen,
Germany, as a Developer and Researcher in the
fields of Windows CE and OSEK operating systems
for automotive embedded applications. Currently,
he is with Robert Bosch GmbH, Business Unit CC
(Chassis Systems Control), Stuttgart, Germany, as
a Software Architect for vehicle dynamics control

systems. His main interests are in software architecture and design principles
for embedded systems.


