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Abstract 

Traditional clustering algorithms have different criteria and biases, and there is 

no single algorithm that can be the best solution for a wide range of data sets. This 

problem often presents a significant obstacle to analysts in revealing meaningful 

information buried among the huge amount of data. Ensemble Clustering has 

been proposed as a way to avoid the biases and improve the accuracy of 

clustering. The difficulty in developing Ensemble Clustering methods is to 

combine external information (provided by input clusterings) with internal 

information (i.e. characteristics of given data) effectively to improve the 

accuracy of clustering.  

 

The work presented in this thesis focuses on enhancing the clustering accuracy 

of Ensemble Clustering by employing heuristic optimisation techniques to 

achieve a robust combination of relevant information during the consensus 

clustering stage. Two novel heuristic optimisation-based Ensemble Clustering 

methods, Multi-Optimisation Consensus Clustering (MOCC) and K-Ants 

Consensus Clustering (KACC), are developed and introduced in this thesis. 

These methods utilise two heuristic optimisation algorithms (Simulated 

Annealing and Ant Colony Optimisation) for their Ensemble Clustering 

frameworks, and have been proved to outperform other methods in the area. The 

extensive experimental results, together with a detailed analysis, will be 

presented in this thesis.  
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Chapter 1: Introduction 

Cluster analysis has been an indispensable technique for the pre-processing step 

of analysing high-dimensional data, where the number of dimensions could be a 

few dozen, hundreds or thousands. The principle of cluster analysis is to assign 

given objects into different groups based on their characteristics [Jain et al., 

1999; Berkhin, 2002; Xu and Wunsch, 2005; Berkhin, 2002; Xu and Wunsch, 

2005; Pandey et al., 2007]. Within a group, the objects are expected to have the 

same or very similar characteristics; between different groups, the 

characteristics of objects are expected to be much more different from each 

other.  

 

In the last few decades, many individual clustering methods have been 

developed and used for different applications across many research areas 

including bioinformatics, pattern recognition, machine learning, data mining, 

and image processing [Jain and Dubes, 1988; Jain et al., 1999; Berkhin, 2002; 

Xu and Wunsch, 2005; Berkhin, 2002; Xu and Wunsch, 2005; Duda et al., 2001; 

Hastie et al., 2001].  

 

The clustering analysis of gene-expression data provides a good example of 

contributions offered by clustering techniques. Based on gene-expression data, 

clustering techniques are used to partition genes into different clusters so that 

we can analyse the relationships between genes and predict the functions of 

unknown genes [Jain et al., 1999; Berkhin, 2002; Xu and Wunsch, 2005; Jiang 

et al., 2004; Pandey et al., 2007; Causton et al., 2007]. In other words, within a 

cluster, it is tended to that the genes have similar functions or play similar roles 

during the genetic process [Everitt, 1993; Jain et al., 1999; Berkhin, 2002; Xu 

and Wunsch, 2005; Webb, 1999; Causton et al., 2007]. Clustering 



Chapter 1: Introduction 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   2 

Ensemble Clustering via Heuristic Optimisation 

gene-expression data can help analysts to discover potential information about 

genes among huge amounts of data.  

 

Individual clustering methods have made significant contributions to data 

analysis. However, it is important to note that different clustering methods have 

different clustering criteria. For a given data set, different algorithms may 

produce very different clustering results [Swift et al., 2004; Hu and Yoo, 2004; 

Pandey et al., 2007; Causton et al., 2007]. For example, Swift et al. used four 

different individual clustering algorithms to cluster a B-cell lymphoma data set 

[Jenner et al., 2003] in the literature [Swift et al., 2004], where the results of the 

four algorithms are very different from each other.  

 

In addition, some clustering algorithms are very sensitive to their initialisations. 

For a given data set, they may generate different results after different runs 

[Tseng and Kao, 2005; Hu et al., 2006; Viswanath and Jayasurya, 2006; Lv et 

al., 2006]. For instance, the K-means [Lloyd, 1982] algorithm is a well known 

partitional algorithm. It is capable of dealing with large data sets with a low 

computational complexity. However it is very sensitive to its initialisation so 

that the results of different runs of K-means may differ from each other.  

 

Due to the above limitations of individual clustering methods, it is often hard 

for analysts to decide which algorithm is most suitable for a specific data set. 

Thus it is also often difficult for analysts to judge which clustering results reveal 

true structures of data [Hu and Yoo, 2004; Pandey et al., 2007; Causton et al., 

2007; Tseng and Kao; 2005, Hu et al., 2006; Lv et al., 2006; Swift et al., 2007]. 

Consequently, following the extensive research experience in classification 

methods, a new research topic, Ensemble Clustering, has emerged in recent 

years [Asur et al., 2007; Viswanath and Jayasurya, 2006; Hu and Yoo, 2004; 

Swift et al., 2004; Hu et al., 2006; Lv et al., 2006].  

 

Existing Ensemble Clustering methods can be roughly classified into the 

following categories: (a) graph partitioning-based methods [Yu et al., 2007; 

Karypis et al., 1999]; (b) heuristic optimisation-based methods [Swift et al., 

2004; Tumer and Agogino, 2008; Yang and Kamel, 2003]; (c) 
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re-sampling-based methods [Topchy et al., 2003; Topchy et al., 2004; Topchy 

et al., 2005]; (d) soft clustering-based methods [Punera and Ghosh, 2008; Asur 

et al., 2007]; (e) others [Fred and Jain, 2005; Hu et al., 2006; Lv et al., 2006]. 

According to surveys of existing Ensemble Clustering methods, it has been 

demonstrated that Ensemble Clustering methods are sufficiently robust to 

produce better clustering results than individual clustering methods [Kuncheva, 

2006; Goder and Filkov, 2008; Topchy et al., 2004].  

 

The principle of Ensemble Clustering is to combine results produced by a set of 

individual clustering algorithms to generate more accurate clustering results. 

Therefore Ensemble Clustering methods usually contain two main steps: the 

generation of input clusterings, and the combination of input clusterings (also 

known as the consensus clustering step) [Yu et al., 2007; Azimi et al., 2007]. A 

common difficulty presented in the Ensemble Clustering process is performing 

the combination efficiently when input clusterings are very different from each 

other (and even some of them represent noise in the consensus step) [Fern and 

Brodley, 2004; Li, 2004; Vega-Pons et al., 2008; Goder and Filkov, 2008]. It is 

necessary to develop more robust Ensemble Clustering methods.  

 

1.1 Motivation 

We claim to employ heuristic optimisation techniques to combine overall 

clustering information to improve the clustering accuracy of Ensemble 

Clustering for analysing high-dimensional data. In this thesis, we define 

high-dimensional data as the data with more than three dimensions. The number 

of dimensions is defined as the number of attributes of instances. The 

dimensionalities (i.e. the number of attributes) of most data sets used for our 

experiments are larger than 10 (the minimal dimensionality is 4, and the 

maximal dimensionality is 600).  

 

We prefer using heuristic optimisation techniques for Ensemble Clustering 

because heuristic optimisation methods have three significant advantages. The 

first is that heuristic optimisation is capable of integrating overall information 
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by different objective functions. The second is that the definition of objective 

functions is flexible. Analysts can define different objective functions based on 

different purposes, and even can define multiple objective functions for one 

single optimisation. Finally, heuristic optimisation methods have a feedback 

regulation mechanism, which can automatically supervise the progress of 

optimisation. During the optimisation process, the quality of each candidate 

solution is evaluated by the objective function(s) and other criteria. The 

candidate solution will be accepted or discarded based on the evaluation. After 

that, this information will be fed back to the solution generator to regulate the 

generation of the next candidate solution. In this way, the solution generator can 

enable candidate solutions to move closer to the optimum solution.  

 

Although heuristic optimisation techniques have many advantages, the existing 

Heuristic Optimisation-Based Ensemble Clustering (HOBEC) methods have 

two main limitations:  

 

 The clustering combination relies solely on input clusterings. Most 

existing heuristic optimisation-based Ensemble Clustering algorithms 

achieve the clustering combination only based on input clusterings. Hence 

the clustering accuracy of these algorithms will be influenced significantly 

when input clusterings are noisy or differ significantly from each other. 

Consensus Clustering (CC) proposed by Swift et al. [2004] is one of the 

widely used heuristic optimisation-based Ensemble Clustering algorithms. 

The Simulated Annealing (SA) [Kirkpatrick et al., 1983, Granville et al., 

1994] algorithm is employed by CC. The principle of the CC algorithm is 

to use SA to seek optimal solutions that maximise the value of the objective 

function. Since the formation of the objective function is only based on 

input clusterings, it is obvious that the accuracy of final results depends 

heavily on the quality of input clusterings [Li et al. 2009].  

 

 The computational cost of optimisation is high. Heuristic optimisation 

methods have been applied to seek possible optimal solutions in the state 

space, where an exhaustive search is impossible or difficult to be achieved. 

For a given problem, the state space is defined as the aggregation of all 
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possible solutions. Based on the state space, heuristic methods are 

implemented. In theory, global optimisation only can be achieved by an 

infinite iterative procedure; in practice, we can only have a finite time to run 

the heuristic optimisation [Granville et al., 1994; Eiben et al., 1994]. 

However, it is impossible to guarantee that the global optimum can be 

reached within a finite time; this is known as a Nondeterministic Polynomial 

problem (NP-problem) [Garey and Johnson, 1979]. In order to find the 

global optimum, traditional heuristic optimisation methods require a long 

time to implement the optimisation especially for analysing large data sets. 

To overcome this difficulty, lots of efforts have been made to balance time 

cost against quality of results [Goldberg, 1989; Colorni et al., 1991; 

Granville et al., 1994; Eiben et al., 1994]. In this thesis, we do not claim to 

guarantee generating global optimal results, but claim to offer results with a 

high enough degree of accuracy within the application context.  

 

In order to overcome these problems, we have developed two novel heuristic 

optimisation-based Ensemble Clustering methods, which can achieve 

sufficiently robust Ensemble Clustering via heuristic optimisation. The concept 

of robustness in computer science is defined as the ability of a 

software/hardware system withstanding errors, faults and variations during its 

operating procedure [Dictionary.com, 2010]. In this thesis, the robustness of our 

novel Ensemble Clustering methods is defined to be the ability of coping with 

noisy input clusterings (i.e. input clusterings are very different from each other).  

 

1.2 Framework 

Two Ensemble Clustering methods are proposed in this thesis. The basic 

framework of our Ensemble Clustering methods is illustrated by Fig. 1.  

 

 

 

 

http://en.wikipedia.org/wiki/Michael_Garey
http://en.wikipedia.org/wiki/David_S._Johnson
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In order to analyse a given data set, firstly Input Clusterings will be generated. 

Input Clusterings contains a set of clustering solutions, which are generated by a 

set of individual clustering algorithms selected by analysts. Each solution is 

displayed by a one-dimensional vector, where each element indicates an 

instance of the given data set. Within the vector, the elements will have the 

same number if they belong to the same cluster, otherwise they will have 

different numbers.  

 

The Information Integration component combines the clustering information 

provided by Input Clusterings. It transforms the external information into 

tractable information for the Optimisation component. In other words, the 

Information Integration component is the bridge between Input Clusterings and 

the Optimisation component.  

 

The Optimisation component is where Heuristic Optimisation techniques are 

used. This is the key component of the basic framework, so that the 

performance of the framework depends mainly on the Optimisation component. 

Based on characteristics of given data and the information delivered from the 

 
 
 

Fig. 1: The basic framework of our Ensemble Clustering methods 

 
Input Clusterings 

 

Optimisation  

Information 
Integration  

Output Clustering Solutions 
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Information Integration component, the Optimisation component generates final 

results by seeking optimal clustering solutions.  

 

Based on the basic framework, we have developed two Ensemble Clustering 

methods: Multi-Optimisation Consensus Clustering (MOCC) and K-Ants 

Consensus Clustering (KACC). MOCC utilises a Simulated Annealing-based 

multiple Optimisation component to integrate internal and external clustering 

information to enhance the accuracy of clustering; KACC adopts a three-phase 

Optimisation component to integrate overall clustering information to provide 

more accurate clustering. These two methods have been compared with some 

well-known Ensemble Clustering methods; the evaluation of results has 

demonstrated that both MOCC and KACC are capable of providing better 

clustering results than those methods in general.  

 

1.3 Main Contributions 

 This thesis presents successful applications of employing Heuristic 

Optimisation techniques for Ensemble Clustering. We have successfully 

integrated two well known heuristic methods, Simulated Annealing and the 

Ant Colony Optimisation theory, into our Ensemble Clustering frameworks. 

Many promising results have been generated by our methods.  

 

 The development of the Multi-Optimisation Consensus Clustering 

(MOCC) method. We developed an advanced consensus clustering 

algorithm called MOCC, which combines agreement fitness evaluation of 

input clusterings with internal clustering separation criterion to enhance the 

clustering accuracy. MOCC generated very promising results, and is a good 

example for achieving Ensemble Clustering by integrating multiple 

appropriate clustering evaluation techniques into a multi-optimisation 

framework.  

 

 Effect analysis of cooling functions for Ensemble Clustering using SA. 

The performance of SA depends heavily on configurations of the Cooling 
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Schedule (i.e. the cooling function). It is the most significant limitation of SA. 

In this thesis, a comprehensive analysis is given to demonstrate effect of 

different cooling functions on the performance of Ensemble Clustering. CC 

and MOCC are used as representatives of Ensemble Clustering methods 

during the analysis. This analysis offers insights into behaviours of cooling 

functions in the context of Ensemble Clustering.  

 

 The development of the K-Ants Consensus Clustering (KACC) method. 

KACC combines internal and external clustering information by multiple 

optimisations with a low computational cost to enhance the accuracy of 

clustering. We developed the Attribute Weighted Description Length 

(AWDL) criterion to express internal information (i.e. characteristics of 

given data) for Ensemble Clustering, and utilise an Agreement Matrix to 

combine and express external information (provided by input clusterings). A 

K-Ants Multiple Optimisation Framework is developed to achieve three 

optimisation phases: the Agreement Based MDL Optimisation (ABMDLO), 

the Equal Probability MDL Optimisation (EPMDLO), and the Equal 

Probability Agreement Fitness Optimisation (EPAFO). These three 

optimisation phases achieve the combination of overall clustering 

information to provide more accurate clustering results.  

 

 Our methods have overcome the limitation of the clustering 

combination that is only based on input clusterings. Since the clustering 

combination of existing HOBEC methods relies solely on input clusterings, 

the clustering accuracy of these methods is affected by noise and biases of 

input clusterings. Our novel HOBEC methods overcome the problem by 

combining all relevant clustering information (internal and external 

information) to achieve a robust clustering combination. Extensive 

experimental results are illustrated in this thesis and demonstrate that our 

novel methods have significant advantages in reducing effects of noise and 

biases of input clusterings.  
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 Our method KACC performs its clustering optimisation with a much 

lower computational cost than existing HOBEC methods. Expensive 

computational costs of existing HOBEC methods limit the clustering 

efficiency of these methods. Our novel method KACC solves this difficulty 

by carefully restricting the search space of its heuristic optimisation. In other 

words, KACC aims to provide a sufficient clustering accuracy in the context 

of applications instead of being pertinacious to search for global optima. 

The restriction of the search space is achieved by a well constructed initial 

clustering solution. In this way, MOCC can not only provide high accurate 

clustering results but also have a good clustering efficiency.  

 

1.4 Thesis Organisation 

The rest of this thesis is organised as follows: 

 

Chapter 2 introduces background knowledge of the techniques and methods that 

relate to our work. Firstly, a review of individual clustering algorithms and 

Ensemble Clustering techniques is given. Specially, a related existing Ensemble 

Clustering method called Consensus Clustering (CC), which is the foundation 

of our research work, is presented in detail. A deep understanding of CC will be 

a good preparation for understanding the novel Ensemble Clustering methods 

proposed in this thesis. Secondly, several heuristic optimisation methods 

employed in our work will be introduced. Finally, a few related clustering 

evaluation techniques are described in detail.  

 

Chapter 3 describes a novel Ensemble Clustering method called 

Multi-Optimisation Consensus Clustering (MOCC), where its 

multi-optimisation section is based on a heuristic algorithm Simulated 

Annealing (SA). The multi-optimisation framework and an advanced objective 

function are firstly introduced in this chapter. After that, results of experiments 

are discussed for performance comparison between CC and MOCC.  

 



Chapter 1: Introduction 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   10 

Ensemble Clustering via Heuristic Optimisation 

Chapter 4 investigates the effect of cooling functions for CC and MOCC using 

SA. Since SA is employed by both CC and MOCC for their optimisation 

sections, it is important to understand the performance of SA. One of the key 

components of SA is the cooling function. Therefore this chapter gives an 

in-depth study about cooling functions of SA, and explores how cooling 

functions affect the performances of CC and MOCC.  

 

Chapter 5 introduces another novel Ensemble Clustering method named K-Ants 

Consensus Clustering (KACC). KACC contains a K-Ants Multiple 

Optimisation (KAMO) framework. The construction of KAMO is based on the 

basic principle of applying the Ant Colony Optimisation theory for clustering. 

After the description of the KAMO framework, results of experiments are 

discussed to give performance comparison between KACC and some other 

Ensemble Clustering methods.  

 

Chapter 6 gives performance comparison between CC, MOCC and KACC. The 

comparison is conducted and discussed from two aspects: the accuracy of 

clustering, and the efficiency of clustering. This chapter gives the insights into 

different performances of the three Ensemble Clustering methods.  

 

Chapter 7 draws a summary of the whole thesis. It consists of conclusions about 

what have been achieved through the research work, and an outline of possible 

further research directions.  

 

1.5 Summary  

This chapter has described the motivation of our research; illustrated the basic 

framework of our Ensemble Clustering methods; listed the main contributions 

of the work; outlined the whole structure of this thesis. It gives a general view 

of our research.  

 

In the next chapter, we will detail the related background knowledge of our 

research to provide a good preparation for readers to have a thorough 
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understanding of our novel Ensemble Clustering methods and the research 

carried out during this thesis.  
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Chapter 2: Background  

This chapter is organised as follows: firstly, an overview of Individual 

Clustering methods will be introduced, followed by an overview of Ensemble 

Clustering methods. After that, related heuristic optimisation methods and the 

clustering validation indexes will be presented in detail.  

 

2.1 Individual Clustering  

Nowadays, it is important to understand the huge amount of high-dimensional 

data being accumulated. Cluster analysis has become a key technology for 

analysing these data. Many clustering algorithms have been developed in the last 

a few decades. Jain et al. [1999] and Everitt et al. [2001] roughly sorted existing 

individual clustering algorithms into two categories: hierarchical clustering and 

partitional clustering.  

 

The principle of hierarchical clustering is to construct a hierarchical tree to 

characterise distances between different objects across a data set. A set of clusters 

of the data set are obtained by cutting the tree at a particular level [Jain et al., 

1999; Berkhin, 2002; Xu and Wunsch, 2005, Pandey et al., 2007]. There are two 

ways of building the hierarchical tree [Johnson, 1967; Xu and Wunsch, 2005]. 

One is called Division; the other is called Agglomeration. Division allocates all 

objects into one cluster at the beginning, and then splits the cluster step by step 

until each object becomes an individual cluster [Johnson, 1967; Xu and Wunsch, 

2005]. In contrast, Agglomeration treats each object as a cluster at the beginning, 

and then merges the two closest clusters into one cluster at each step until all 

objects are merged into one cluster [Johnson, 1967; Xu and Wunsch, 2005]. 

Hierarchical clustering can provide information for visualisation of the 
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clustering structure to help analysts establish potential clusters. However this 

approach has a very high time complexity when dealing with large data sets 

[Johnson, 1967; Xu and Wunsch, 2005]. The typical hierarchical clustering 

methods are HC (Hierarchical Clustering) [Johnson, 1967; D'andrade, 1978; 

Murtagh, 1983], BIRCH (Balanced Iterative Reducing and Clustering using 

Hierarchies) [Zhang et al., 1996], and CURE (Clustering Using Representatives) 

[Guha et al., 1998].  

 

In partitional clustering, given objects are divided into a predefined number of 

clusters without a hierarchical structure [McQueen, 1967; Xu and Wunsch, 2005]. 

A “good” result of partitional clustering is expected to have a high homogeneity 

within each cluster and a high separation between clusters [Xu and Wunsch, 

2005]. The typical partitional clustering methods are K-means [McQueen, 1967], 

and PAM (Partitioning Around Medoids) [Kaufman and Rousseeuw, 1990].  

 

Another common taxonomy of clustering algorithms was introduced by Berkhin 

[2002], Xu and Wunsch [2005]. This taxonomy divides clustering algorithms 

into five categories. The first two categories are still hierarchical clustering and 

partitional clustering. The other three are density-based clustering, grid-based 

clustering, and model-based clustering.  

 

Density-based clustering is to cluster objects based on the connectivity and 

density of objects in a data space [Berkhin, 2002; Xu and Wunsch, 2005]. This 

kind of clustering methods uses a density threshold to determine whether 

objects within a region can be formed into one cluster. If the density of a set of 

objects exceeds the threshold, the objects will be assigned into one cluster; 

otherwise, they will not be assigned into the same cluster. Density-based 

clustering has the ability of detecting arbitrary shaped clusters and dealing with 

high-dimensional data [Berkhin, 2002; Xu and Wunsch, 2005]. In addition, 

density-based clustering is sufficiently robust to deal with noise and outliers in 

data. Typical density-based clustering algorithms are DBSCAN [Ester et al., 

1996], and OPTICS [Ankerst et al., 1999].  

 

The process of grid-based clustering is based on a multiple-level granularity 
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structure [Berkhin, 2002; Xu and Wunsch, 2005]. Grid-based clustering divides 

data space uniformly into a number of grids. Clustering is performed on each 

grid. Since the time complexity only relates to the number of grids, grid-based 

clustering has a good speed for dealing with large data sets [Berkhin, 2002; Xu 

and Wunsch, 2005]. There are some typical grid-based clustering methods such 

as STING (a STatistical INformation Grid approach) [Wang et al., 1997], and 

WaveCluster  [Sheikholeslami et al., 1998].  

 

Model-based clustering methods achieve clustering based on the assumption 

that clusters of given data can be determined by a series of probability 

distributions [Berkhin, 2002; Xu and Wunsch, 2005]. Model-based clustering 

hypothesises a model (such as a density distribution function) for each cluster, 

and then uses these models to find appropriate objects for corresponding 

clusters [Kohonen, 1981; Fisher, 1987]. Statistical model-based clustering and 

neural network model-based clustering are the most widely research topics. 

Model-based clustering has the ability of detecting arbitrary shaped clusters and 

better stabilities of clustering [Xu and Wunsch, 2005], but it is not capable of 

dealing with large data sets, and is sensitive to initialisation [Berkhin, 2002; Xu 

and Wunsch, 2005]. Typical model-based clustering methods are Self 

Organising Map (SOM) [Kohonen, 1981], Autoclass [Cheeseman and Stutz, 

1996], and Cobweb [Fisher, 1987].  

 

In the last a few years, a new taxonomy of clustering methods has emerged. 

According to the flexibility of clustering results, this taxonomy classifies 

individual clustering methods into two types: hard clustering methods, and 

fuzzy clustering methods [Berkhin, 2002; Xu and Wunsch, 2005]. The hard 

clustering means that each object is permanently assigned into one and only one 

cluster. Clustering algorithms such as K-means, HC, BIRCH, SOM and PAM 

all belong to hard clustering. In contrast, fuzzy clustering assigns each object 

into more than one cluster by a membership function [Xu and Wunsch, 2005], 

where the memberships are presented in the form of probabilities. A typical 

fuzzy clustering method is the Fuzzy C-Means (FCM) algorithm [Dunn, 1973; 

Bezdek, 1981].  
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For more details of the different taxonomies of clustering methods, readers are 

referred to references [Jain et al., 1999; Everitt et al., 2001; Berkhin, 2002; Xu 

and Wunsch, 2005].  

 

Before further describing individual clustering algorithms, it is necessary to 

understand the concept of Distance Metric. The way of measuring similarity or 

distances between two objects is defined as Distance Metric. For any clustering 

approach, Distance Metric is a foundational component of clustering analysis. 

There are many different distance metrics for measuring the similarity between 

objects. Using different distance metrics may generate different shapes of 

clusters. Some common distance metrics are listed in Table 1 [Quarteroni and 

Fausto, 2006; Parr and Schucany, 1980; Xu, 2005].  

 

In Table 1,    is a one dimensional vector, and denotes the object r in the data 

set X (with n objects); m indicates the number of attributes for each object (i.e. 

the number of elements of   ); D is a diagonal matrix, where the diagonal 

elements are variances of attributes across all n objects; V is a sample 

covariance matrix;     stands for the jth attribute of the object r;     is the 

Spearman rank for the jth element of the vector   ;       is the mean of the 

vector   .            (where j=1, …, m) represents the number of elements 

in the union of vectors    and   .            (where j=1, …, m) signifies 

the size of the intersection of vectors    and   . For example, we suppose 

Xr=[1,2,3,3], Xs=[2,3,5,6], then [       ]=[1,2,3,5,6] and [       ]=[2,3], 

where j=1, 2, 3, 4. Therefore,             ,             . More 

details of these distance metrics can be found in the literature [Xu, 2005].  
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Table 1 The common distance metrics 

 

Distance Metric Distance Function 

Euclidean distance    
                

  

standardised Euclidean distance    
          

         
  

Mahalanobis distance    
          

         
  

City-block distance               

 

   

 

Minkowski distance                
 

 

   

 

 
 

 

Spearman correlation       
           

  
   

       
 

Pearson correlation     
 

 

 
 
 
 

  
                       
 
   

             
  

               
  

    
 
 
 

 

Jaccard distance     
                     

          
, where j= 1, …, m 

Cosine distance       
    

 

   
    

 
    

    
 
 

 

Correlation distance 

      
                    

 

                     
  

 
                      

  
 
 

 

where       
 

 
      and       

 

 
       

 

 

In this thesis, some individual clustering algorithms have been chosen to 

generate clustering solutions as inputs for Ensemble Clustering methods. A brief 

description of these individual clustering algorithms is as follows:  

 

2.1.1 Hierarchical Clustering (HC)  

HC [Johnson, 1967; D'andrade, 1978; Murtagh, 1983] is a typical hierarchical 

clustering method. According to the process of constructing its hierarchical tree 

(also called dendrogram), HC has two different forms: the agglomerative HC 

and the divisive HC [Everitt, 1993; Jain et al., 1999; Pandey et al., 2007]. The 

key steps of the agglomerative HC algorithm are outlined as follows (the 

divisive HC algorithm has a reversed procedure to build the hierarchical tree) 

[Johnson, 1967; D'andrade, 1978]:  
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1) Treat each object as a cluster at the beginning; 

2) Calculate distances between each pair of clusters based on a distance metric; 

3) Find the closest two clusters and merge them into one cluster; 

4) Repeat the steps 2 and 3 until all objects are assigned into one cluster.  

5) Output a hierarchical tree.  

 

There are several different Linkage Metrics (listed in Table 2) for defining the 

linkage between two clusters. Based on different Linkage Metrics, HC may 

generate different hierarchical trees.  

 

Table 2 Six different Linkage Metrics for defining the distance between two clusters 

 

Linkage Criterion Description 

Single linkage 

Use the distance between two closest objects (which belong to two 

different clusters) to indicate the distance between the corresponding two 

clusters 

Complete linkage 

Use the distance between two farthest objects (which belong to two 

different clusters) to indicate the distance between the corresponding two 

clusters 

Average linkage 
Use the average distance between the objects in cluster A and the objects 

in cluster B to indicate the distance between the clusters A and B 

Weighted linkage 
It is similar to Average Linkage but use the weighted average distance to 

indicate the distance between two clusters 

Centroid linkage 
The distance between two clusters is defined as the Euclidean distance 

between the centroids of the two clusters 

Median linkage 

The distance between two clusters is defined by the Euclidean distance 

between the weighted centroids of the two clusters. The weighted 

centroids is the mean of two related previous weighted centroids,  

 

The main advantages of HC are as follows [Everitt, 1993; Jain et al., 1999; Webb, 

1999]:  

- It can provide very informative visualisation for predicting clustering 

structures.  

 

The main limitations and biases of HC are as follows [Everitt, 1993; Jain et al., 

1999; Webb, 1999]:  

- Using different Distance Metrics to define distances between objects may 

bias results of HC.  

- Using different Linkage Metrics to define distances between clusters may 

bias results of HC.  
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- It is often difficult to appraise which Distance Metric (or Linkage Metric) is 

the most appropriate for analysing a given high-dimensional data set.  

- Its time complexity is O(n
2
) so that HC is not capable of dealing with large 

data sets (where n is the number of objects in a given data set).  

- Suppose HC has constructed a hierarchical tree for a given data set. If we 

need to add new objects into the data set, HC cannot predict the cluster 

assignment for the new objects without constructing a new hierarchical tree.  

- It is sensitive to outliers and noise in data.  

 

 

2.1.2 K-means Clustering 

The K-means [McQueen, 1967] Clustering algorithm is a well-known 

partitioning algorithm. The key steps of the K-means clustering algorithm are 

outlined as follows [Jain et al., 1999; Pandey et al., 2007]: 

1) Randomly select k objects to be centres of k clusters; 

2) Assign the rest objects into their closest cluster centres; 

3) Re-calculate the cluster centre (which is defined as the mean of all objects in 

the cluster) for each of the k clusters; 

4) Re-allocate the objects into k clusters according to the new cluster centres; 

5) Repeat steps 3 and 4 until there is no more change in each cluster or 

terminative conditions have been reached.  

 

There are several ways of selecting objects for the initial cluster centres (or 

centroids). In this thesis, we use the following two approaches (“Sample” and 

“Uniform”) to initialise cluster centres for the K-means algorithm [Quarteroni 

and Fausto, 2006;].  

- Sample means Random Sampling, i.e. randomly selecting k objects from a 

given data set to be initial cluster centres.  

- Uniform is defined as Uniform Sampling, i.e. selecting k objects uniformly 

from the range of a given data set to be initial cluster centres.  
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The main advantages of the K-means clustering algorithm are as follows [Jain et 

al., 1999; Berkhin, 2002; Xu and Wunsch, 2005; Pandey et al., 2007]:  

- It is good for analysing large data sets.  

- It has a good (low) time complexity.  

- It is easy to be implemented.  

 

The main limitations and biases of the K-means clustering algorithm are as 

follows [Jain et al., 1999; Berkhin, 2002; Xu and Wunsch, 2005; Pandey et al., 

2007]:  

- Using different Distance Metrics to define distances between objects may 

bias results of K-means.  

- Each run of K-means may generate a different clustering result.  

- It does not scale well for data where sizes of clusters vary significantly.  

- It is sensitive to initialisation (i.e. the selection of k initial cluster centres). 

Hence an inappropriate initialisation can bias results of K-means.  

- It is sensitive to noise and outliers in data.  

- It cannot deal with non-convex shaped clusters.  

- It is sensitive to the order of input data.  

- It is not capable of dealing with categorical data (i.e. the data with 

categorical attributes).  

 

2.1.3 Partitioning Around Medoids (PAM)  

PAM was proposed by Kaufman and Rousseeuw [1987]. It is a K-medoids 

clustering method. The “medoid” means an object of a cluster, where the object 

(medoid) has the minimal average dissimilarity to all other objects within the 

cluster [Kaufman and Rousseeuw, 1987]. The dissimilarity between two objects 

can be defined by any distance metric such as the Euclidean distance. 

Comparing to the K-means algorithm, K-medoids algorithms are more robust to 

handle outliers and noise in data [Jain et al., 1999; Berkhin, 2002; Xu and 

Wunsch, 2005].  

 

The key steps of PAM are outlined as follows [Kaufman and Rousseeuw, 1987]: 
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1) Randomly chooses k objects as medoids to represent k clusters from a given 

data set;  

2) Assign each object (non-medoid) to its nearest medoid;  

3) Use an objective function, which is defined as the sum of the dissimilarities 

between all objects and their corresponding nearest medoids, to evaluate the 

quality of clustering. The best clustering solution is expected to minimise 

the objective function.  

4) Calculate a swapping cost for each pair of non-medoid and medoid. 

Swapping mans using a non-medoid to replace a medoid. If the replacement 

can decrease the value of the objective function, the swap will be confirmed; 

otherwise, the medoid will not be replaced by the non-medoid.  

5) Repeat steps 2, 3 and 4 until medoids have no more changes.  

 

The main advantages of PAM are as follows [Kaufman and Rousseeuw, 1987; 

Jain et al., 1999]:  

- It can be applied to the data with categorical attributes. 

- It is more robust than K-means to handle noise and outliers in data.  

 

The main limitations and biases of PAM are as follows [Kaufman and 

Rousseeuw, 1987; Jain et al., 1999]:  

- Results could be biased by using different Distance Metrics.  

- PAM is based on the assumption that each cluster can be well represented 

by its “medoid”. It may bias results for the data sets that the assumption 

cannot be applied.  

- The time complexity of PAM is O(k(n-k)
2
) so that it is not efficient for 

dealing with large data sets.  

- It also needs to set the initial number of clusters k.  

 

2.1.4 Cluster LARger Application (CLARA) 

CLARA is also a K-medoids clustering method. It was proposed by Kaufman 

and Rousseeuw [1990]. CLARA is a multiple samples-based clustering method. 

CLARA employs PAM for clustering each of samples (i.e. subsets of original 
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data). If we compare CLARA with PAM, an advantage of CLARA is that it can 

deal with much larger data sets than PAM [Jain et al., 1999; Berkhin, 2002; Xu 

and Wunsch, 2005]. A weakness of CLARA is that the accuracy of clustering 

depends on the quality and size of samples [Xu and Wunsch, 2005].  

 

The key steps of CLARA are outlined as follows [Kaufman and Rousseeuw, 

1990]:  

1) Randomly select a sample set from original data; 

2) Use the clustering algorithm PAM to partition objects of the sample set into 

k clusters;  

3) Assign each object into its nearest cluster for the rest objects of the original 

data;  

4) Repeat the above three steps for a predefined number of iterations, and then 

choose a clustering solution, which has the shortest average distance, to be 

the final result. The average distance is defined as the mean distance 

between objects and their corresponding medoids.  

 

The main advantages of CLARA are as follows [Kaufman and Rousseeuw, 1990; 

Xu and Wunsch, 2005]: 

- It has a good efficiency for dealing with very large data sets.  

 

The main limitations and biases of CLARA are as follows [Kaufman and 

Rousseeuw, 1990; Xu and Wunsch, 2005]: 

- Sampling biases can affect the accuracy of clustering of CLARA.  

- Results also could be biased by using different Distance Metrics.  

- It also needs prior knowledge to define the number of clusters.  

 

2.1.5 Affinity Propagation [Frey and Dueck, 2007] 

Affinity Propagation (AP) [Frey and Dueck, 2007] extends the K-centres 

(K-means) clustering algorithm. AP does not require prior knowledge of the 

number of clusters. It uses predefined similarities between pair-wise objects to 

be inputs. The similarity between two objects indicates how suitable one object 
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is to be the exemplar for the other object. A larger similarity denotes a higher 

probability of the object being the exemplar. Commonly, the similarities are 

initialised to be the same for all pairs of objects [Frey and Dueck, 2007].  

 

AP treats each object as a node of a network, and conveys messages along edges 

between objects to seek appropriate objects to be central exemplars of 

corresponding clusters [Frey and Dueck, 2007]. AP has two kinds of messages 

to be transferred between objects. One is the responsibility message; the other is 

the availability message [Frey and Dueck, 2007]. For a pair of objects (i, j), the 

responsibility message is passed from i to j as cumulated evidence to reflect the 

suitability of i asking j to be its exemplar; in contrast, the availability message is 

sent from j to i to reveal how appropriate j becomes the exemplar for i. The 

messages are updated by minimising an energy function. If an object is assigned 

to an exemplar, the object will decrease its availability and increase its 

responsibility, whereas the exemplar will increase its availability and decrease 

its responsibility.  

 

The key steps of Affinity Propagation are outlined as follows [Frey and Dueck, 

2007]:  

1) Set similarities for all pairs of objects; 

2) Set availabilities and responsibilities of objects to be zeros; 

3) For each iteration 

a) update all responsibilities based on the availabilities and similarities; 

b) update all availabilities based on the updated responsibilities; 

c) Combine responsibilities and availabilities to determine exemplars; 

4) Terminate the algorithm if exemplars have no more changes for 10 

iterations;  

5) Generate the final clustering result by assigning each object into its closest 

exemplar.  

 

The main advantages of AP are as follows [Frey and Dueck, 2007; Leone, 

Sumedha and Weight, 2007; Zhang, Furtlehner and Sebag, 2008]:  

- AP does not require piror knowledge of the number of clusters.  

- It can be applied to general types of data sets.  



Chapter 2: Background 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   23 

Ensemble Clustering via Heuristic Optimisation 

- AP is very efficient for dealing with large data sets.  

 

The main limitations and biases of AP are as follows [Frey and Dueck, 2007; 

Leone, Sumedha and Weight, 2007; Zhang, Furtlehner and Sebag, 2008]:  

- The principle of AP is based on the assumption that a cluster can be well 

represented by an exemplar. It leads to that AP has biased results for the 

data that has irregularly shaped clusters.  

- Since noise can influence the choice of exemplars, AP is not robust to deal 

with noisy data.  

 

2.1.6 Mean Shift Clustering [Fukunaga and Hostetler, 1975] 

The Mean Shift Clustering algorithm was originally proposed by Fukunaga and 

Hostetler [1975]. Mean Shift Clustering is a non-parametric mode clustering 

method [Georgescu et al., 2003]. It clusters objects in a data space based on a 

gradient function and an empirical probability density function [Georgescu et al., 

2003]. The gradient function is used as an objective function to detect modes for 

the density function. The zeros of the gradient function locate modes of the 

density function. The gradient function consists of a multivariate kernel density 

estimate section and a mean shift vector. A gradient ascent procedure is 

executed for each object on a local estimated density, and continued until 

convergence conditions are reached. During the gradient ascent procedure, 

stationary objects are treated as distribution modes of clusters, and related 

objects will be treated as members of the corresponding clusters. [Cheng, 1995; 

Comaniciu & Meer, 2002]  

 

The key steps of Mean Shift Clustering are outlined as follows [Comaniciu & 

Meer, 2002; Georgescu et al., 2003; Wang et al., 2004]: 

1) A mean shift procedure is run for each object; 

a) Computing the mean shift vector for an object; 

b) Updating a corresponding density estimation window based on the 

mean shift vector; 
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c) Repeating the above two steps until the mean shift procedure is 

converged to find stationary objects for the density function; 

2) These stationary objects are pruned by retaining only local maxima (these 

local maxima are treated as distribution modes of clusters);  

3) Objects associated with the same mode are assigned into the same cluster.  

 

The main advantages of Mean Shift Clustering are as follows [Cheng, 1995; 

Comaniciu & Meer, 2002; Georgescu et al., 2003]:  

- It is capable of dealing with arbitrary shaped clusters. 

- It does not require prior knowledge of the number of clusters as an input.  

- It is capable of dealing with noisy data.  

 

The main limitations and biases of Mean Shift Clustering are as follows [Cheng, 

1995; Comaniciu & Meer, 2002; Georgescu et al., 2003]:  

- Mean Shift Clustering only uses radially symmetric kernels for its 

multivariate kernel density estimate section. This restriction can bias the 

estimation of anisotropically shaped clusters.  

- The constant kernel bandwidth of Mean Shift Clustering may limit the 

robustness of tracking objects.  

- Mean Shift Clustering is sensitive to the selection of kernels.  

- It can only be used to analyse data in Euclidean spaces. In other words, 

results of Mean Shift Clustering will be biased for analysing data in non- 

Euclidean spaces.  

- Values of some parameters can only be specified empirically.  

 

2.1.7 Fuzzy C-means (FCM) 

The FCM algorithm is the most widely used fuzzy clustering algorithm [Bezdek, 

1981; Jain et al., 1999; Pandey et al., 2007]. It was developed by Dunn [1973] 

and improved by Bezdek [1981]. The most important difference between hard 

clustering and fuzzy clustering is that fuzzy clustering does not assign each 

object into a cluster permanently. Fuzzy clustering uses a concept “degree” to 
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express how objects belong to clusters. For each object, the sum of degrees (also 

called fuzzy coefficients) is 1 [Dunn, 1973; Bezdek, 1981].  

 

The objective function of FCM is named Membership Function [Dunn, 1973; 

Bezdek, 1981]. A “good” clustering solution of FCM is expected to minimise 

the objective function. The Membership Function is defined as equations (2.1), 

(2.2) and (2.3) [Dunn, 1973; Bezdek, 1981]:  
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where n is the number of objects in a given data set; k is the number of clusters; 

m can be any real number that is greater than or equal to 1;     is the fuzzy 

coefficient that indicates the degree of the object    belonging to the cluster j; 

   is the centre of the cluster j;         denotes the distance between the 

object    and the cluster centre   .  

 

The key steps of FCM are outlined as follows [Dunn, 1973; Bezdek, 1981]:  

1) Assign fuzzy coefficients into each object according to an estimated number 

of clusters k;  

2) Calculate cluster centres based on the fuzzy coefficients;  

3) Re-calculate fuzzy coefficients based on the new cluster centres;  

4) Evaluate the variance of fuzzy coefficients (and comparing with the one of 

previous fuzzy coefficients);  

5) Compare the variance with a predefined sensitivity threshold;  

6) Repeat steps 2, 3, 4 and 5 until the variance of fuzzy coefficients is less than 

the sensitivity threshold.  
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The main advantages of FCM are as follows [Jain et al., 1999; Pandey et al., 

2007]: 

- FCM is robust and flexible for dealing with uncertain and vague data.  

 

The main limitations and biases of FCM are as follows [Jain et al., 1999; Pandey 

et al., 2007]: 

- FCM is not capable of analysing data with the shapes such as the lip and 

skin.  

- Using different Distance Metrics may bias results of FCM.  

- It is not capable of dealing with noise and outliers in data.  

- FCM requires prior knowledge of the number of clusters.  

- Results of FCM may be stuck within local minima.  

 

2.2 Ensemble Clustering  

From the introduction of individual clustering algorithms in the previous section, 

it is clear that different individual algorithms have different biases and criteria. 

There is no single „best‟ clustering algorithm for a wide range of data sets [Everitt, 

1993; Jain et al., 1999; Swift et al., 2004; Hu and Yoo, 2004]. Different 

clustering algorithms may generate very different results for a given data set. For 

a given clustering problem, it should be considered that which algorithm is the 

most efficient. Sometimes, however, it is uncertain that which algorithm is the 

most suitable for a given problem. It is increasingly difficult for analysts to 

choose appropriate clustering algorithms for given problems. Therefore, 

Ensemble Clustering has emerged to avoid the biases of individual clustering 

algorithms. The purpose of Ensemble Clustering is to enhance the accuracy of 

clustering by combining a set of clustering solutions generated by individual 

clustering algorithms.  

 

Ensemble Clustering syncretises results of individual clustering algorithms to 

generate more accurate clustering solutions. It usually contains two main steps: 

the generation of input clusterings, and the combination of input clusterings (also 

called the consensus clustering step) [Yu et al., 2007; Azimi et al., 2007]. Input 
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clusterings are usually obtained from one of the following four sources [Topchy 

et al., 2004; Kuncheva, 2006; Azimi et al., 2007; Goder and Filkov, 2008]: (1) 

using different individual clustering algorithms to generate different clusterings; 

(2) using multiple times of sub-feature (subsequent) clustering for a data set 

based on feature extraction techniques; (3) running a single clustering algorithm 

for a number of times with different initialisations; (4) running a number of 

times of subset clustering for a data set. Many Ensemble Clustering methods 

have been proposed in the last decade. The way of combining input clusterings 

is a main feature that distinguishes different Ensemble Clustering methods. 

Existing Ensemble Clustering methods can be roughly sorted into the following 

categories:  

 

(a) Graph partitioning-based methods [Yu et al., 2007; Hu and Yoo, 2004].  

For example, Hu and Yoo [2004] developed the Cluster Ensemble Algorithm 

(CEA), which is a typical graph-based Ensemble Clustering method. CEA 

uses a weighted graph to represent relationships between objects. Firstly, a 

set of individual clustering algorithms are used to generate input clusterings. 

Secondly, each input clustering is used to construct a distance matrix. 

Thirdly, these distance matrices are integrated to form a master distance 

matrix. Afterwards, a weighted graph is built based on the master distance 

matrix. Finally, a graph partitioning algorithm, METIS [Kayypis and Kumar, 

1998], is applied to partition the weighted graph to obtain final clustering 

results. Hu and Yoo [2004] demonstrate that CEA generated significantly 

better clustering results than any of input clustering algorithms.  

 

(b) Heuristic optimisation-based methods [Yang and Kamel, 2003; Swift et al., 

2004; Yang and Kamel 2006; Yang et al., 2006].  

This kind of methods employs heuristic algorithms to optimise the 

combination of input clusterings. The Consensus Clustering (CC) algorithm 

designed by Swift et al. [2004] is a typical heuristic optimisation-based 

Ensemble Clustering method. They employed a heuristic algorithm, 

Simulated Annealing, to combine input clusterings. Swift et al. [2004] 

claimed that CC generated reasonably better results than input clustering 

algorithms. Yang and Kamel [2003] proposed a method called ESIC 
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(Ensemble of Swarm Intelligence Clustering) based on the Ant Colony 

heuristic optimisation theory. ESIC uses three ant colonies (with different 

moving speeds) to produce three clustering solutions as inputs, and 

combines these inputs through a hypergraph model. Final results of ESIC 

are generated by implementing the ant colony heuristic algorithm again on 

the hypergraph model.  

 

(c) Re-sampling-based methods [Topchy et al., 2003; Topchy et al., 2004; 

Topchy et al., 2005].  

These methods use an individual clustering algorithm to cluster sample sets, 

which are subsets randomly selected from an original data set, to generate a 

set of clustering solutions as inputs. Then the consensus clustering will be 

achieved by combining these input solutions. Bidgoli et al. [2004] present a 

resample-based Ensemble Clustering method that has two types of sampling: 

sub-sampling (sampling without replacement) and bootstrap (sampling with 

replacement). They have shown that integrating multiple clusterings of 

small size subsamples can generate meaningful partitions for an entire data 

set with a reduced computational cost.  

 

(d) Soft clustering-based methods [Punera and Ghosh, 2008; Asur et al., 2007; 

Punera and Ghosh, 2007].  

Soft Ensemble Clustering methods combine results generated by a set of 

individual soft clustering algorithms. They use posterior membership 

probability distributions to represent clustering properties for each object, 

and utilise a distance metric to measure distances between probability 

distributions for objects in a soft ensemble [Punera and Ghosh, 2007]. Soft 

Ensemble Clustering has significant advantages for analysing vertically 

partitioned data [Punera and Ghosh, 2007]. Avogadri and Valentini [2008] 

proposed a fuzzy Ensemble Clustering method that employs the fuzzy 

k-means algorithm to generate a set of input clusteirngs in the form of a 

membership matrix. Each element of the membership matrix presents the 

membership of an object belonging to a cluster. Consensus clustering is 

implemented on the membership matrix.  
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(e) Others [Viswanath and Jayasurya, 2006; Hu et al., 2006; Lv et al., 2006].  

Lv et al. [2006] proposed a multiple Ensemble Clustering method based on 

Core Groups. A core group is a set of objects that are always clustered 

together by whichever clustering algorithm is used to cluster a given data set 

[Lv et al. 2006]. Lv et al. use three agglomerative hierarchical algorithms to 

construct initial core groups; and these core groups are further refined by 

another hierarchical algorithm. A final clustering result is generated by the 

K-means algorithm based on the core groups. Hu et al. [2006] integrated 

text mining techniques with Ensemble Clustering for microarray gene 

identification clustering. Viswanath and Jayasurya [2006] developed a 

method called Ensemble of Leaders Clustering (ELC) to implement a fast 

Ensemble Clustering. Leaders Clustering assigns each object to its nearest 

leader. A group of leaders represents final clusters.  

 

Surveys of existing Ensemble Clustering methods have demonstrated that 

Ensemble Clustering methods are sufficiently robust to produce better clustering 

results than individual clustering methods [Kuncheva, 2006; Goder and Filkov, 

2008; Topchy et al., 2004]. However, a common difficulty presented in the 

existing Ensemble Clustering methods is performing the consensus clustering 

step efficiently when input clusterings differ from each other and even some of 

them represent noise during the procedure of clustering combination [Fern and 

Brodley, 2004; Li, 2004; Vega-Pons et al., 2008; Goder and Filkov, 2008]. It is 

necessary to develop more robust Ensemble Clustering methods to improve the 

accuracy of clustering.  

 

In this thesis, we claim to use heuristic optimisation techniques to combine 

internal and external clustering information to improve the accuracy of 

clustering for Ensemble Clustering. Therefore our work is focused on 

developing Heuristic Optimisation-Based Ensemble Clustering (HOBEC) 

methods. We treat input clusterings as external clustering information, and 

characteristics of given data as internal clustering information.  

 

In Chapter 1.1, we have presented advantages of employing heuristic 

optimisation techniques for Ensemble Clustering, and two difficulties with 



Chapter 2: Background 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   30 

Ensemble Clustering via Heuristic Optimisation 

existing HOBEC methods. This thesis describes how we overcome the two 

difficulties by our novel Ensemble Clustering methods. The foundation of our 

research work is an existing HOBEC method called Consensus Clustering (CC) 

[Swift et al., 2004]. A good understanding of CC will be helpful for 

understanding novel methods proposed in this thesis. Hence a detailed 

introduction of the CC algorithm is given in the following subsection.  

 

2.2.1 Consensus Clustering (CC)  

CC is a heuristic optimisation-based Ensemble Clustering method that was 

developed by Swift et al. [2004]. This method fuses results of other individual 

clustering algorithms to generate more reliable clustering results for given data 

sets [Swift et al., 2004]. Hirsch et al. [2007] compared CC with different 

Ensemble Clustering methods included in the well-known CLUster Ensembles 

(CLUE) package, which was developed by Hornik [2005]. Results show that 

CC achieved comparable or even better performance than those ensemble 

methods. 

 

CC has three key components: an Agreement Matrix, an Agreement Fitness 

Function (AFF), and a Simulated Annealing Optimisation (SAO) section. The 

Agreement Matrix is used to combine clustering information of input clustering 

solutions, which are generated by a set of individual clustering algorithms 

selected by analysts. The AFF is utilised by Simulated Annealing (as an only 

evaluation criterion) for optimisation searches in the SAO section. Swift et al. 

[2004] adopt the Agreement Matrix technique to build a State Space for the 

SAO section, and then use Simulated Annealing to seek optimal clustering 

solutions within the State Space. An optimal clustering solution is expected to 

maximise the value of the objective function AFF. Final clustering results will 

be generated by the SAO section.  

 

 Agreement Matrix 

The Agreement Matrix is built based on an input clustering matrix. Each row of 
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the input clustering matrix is a clustering solution, which is generated by one 

individual clustering algorithm selected by analysts, in the form of a 

one-dimensional arrangement (vector). For a given data set, the length of the 

arrangement is equal to the total number of instances in the data set. Within the 

arrangement, each element indicates an instance of the given data set, and is 

labelled by a number. For instances assigned into the same cluster, the 

corresponding elements within the arrangement have the same label number; 

whereas elements will have different label numbers if the corresponding 

instances are assigned into different clusters.  

 

The Agreement Matrix is a square symmetric matrix with zeros along the 

leading diagonal. Each element of the Agreement Matrix indicates how many 

input clustering algorithms agree that the two corresponding instances are 

assigned into one cluster. If we use a variable A to indicate the Agreement 

Matrix, equation (2.4) gives the definition of the Agreement Matrix as follows:  

 

  

 
 
 
 
 
 
 
 

     
     

 
          
          

 
 

    
 

    

 
 

            
        

 
       

        
 
 
 
 
 
 
 

 (2.4) 

 

It is shown that A is a n×n square symmetric matrix, where n means the total 

number of instances in a given data set. Each element ai,j denotes the number of 

input clustering algorithms that agree the instances i and j are assigned into the 

same cluster.  

 

 Agreement Fitness Function 

The Agreement Fitness Function (AFF) is defined as the objective function of 

Simulated Annealing for the SAO section. The value of AFF denotes agreement 

of input clustering algorithms for a clustering solution. The calculation of AFF 

can be simply achieved by two steps. The first step is to calculate 
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sub-agreement fitness for each cluster; the second step is to sum up all 

sub-agreements fitness to obtain the value of AFF. The definition of AFF is 

shown by equations (2.5) - (2.6) [Swift et al. 2004].  
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  (2.6) 

 

Equation (2.5) shows the sum of all sub-agreements fitness, where F(Ci) is 

sub-agreement fitness of the cluster i in the clustering arrangement C. The total 

number of clusters in C is m. Equation (2.6) defines how to calculate 

sub-agreement fitness of a cluster. The variable Si stands for the total number of 

instances in the cluster i. If a cluster only has one instance (i.e. Si = 1), the 

sub-agreement fitness of this cluster will be zero. β is the agreement threshold, 

which can reward or punish agreement of a cluster. Cik means the kth instance in 

the cluster i; the variable          denotes the agreement value (in the 

Agreement Matrix A) for the kth and qth instances in the cluster i.  

 

In order to further understand         , We use an example to explain how to 

obtain the value of         . Suppose a data set consists of six instances {1, 2, 3, 

4, 5, 6} that are assigned into two clusters C1 and C2, where C1 is {1, 3} and C2 

is {2, 4, 5, 6}. We want to know the value of         . According to the 

definition of Cik, we get C21=2 and C23=5. Then          can be rewritten as 

    . Therefore, we can obtain the agreement value of          from the 

Agreement Matrix A according to the equation                    and the 

equation (2.4).  

 

Swift et al. [2004] defined the Agreement Threshold as equation (2.7): 
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where Max(A) and Min(A) indicate the maximum agreement value and the 

minimum agreement value respectively in the Agreement Matrix A. It is clear 

that β is defined as the mean agreement value, which rewards instance-pairs that 

have agreement values above the mean value, and penalises instance-pairs that 

have agreement values below it. Therefore, if instance-pairs (such as        ) in 

each cluster have very high agreement values for a clustering solution, the final 

value of AFF will be high; otherwise AFF will have a low agreement value or 

even a negative agreement value (i.e. most of input clustering algorithms 

disagree with the clustering solution).  

 

The CC algorithm aims to seek an optimal clustering solution that has the 

maximum agreement fitness value. In other words, the value of AFF is expected 

to be as large as possible.  

 

 Simulated Annealing-based Optimisation 

The Simulated Annealing (SA) algorithm will be introduced in Section 2.3.1 of 

Chapter 2. CC employs SA for its optimisation section to optimise combination 

of clustering information for input clusterings. SA-based optimisation is 

achieved by searching for the best clustering solution (which has the maximal 

agreement fitness value of the objective function AFF) within a State Space 

restricted by the Agreement Matrix. For a given data set, the State Space 

consists of all possible clustering solutions.  

 

SA-based optimisation starts from a random clustering solution selected from 

the State Space. SA treats the random solution as a current solution, and the 

agreement fitness value of the current solution is calculated according to 

equations (2.5) – (2.7). After that, SA uses a Solution Generator to generate 

candidate clustering solutions. In the CC algorithm, the Solution Generator 

produces candidate solutions by three different actions, which are moving an 

instance from one cluster to another, splitting a cluster into two clusters, and 

merging two clusters into one cluster. These actions have an equal probability to 

be chosen during the optimisation process.  
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Once a candidate solution is generated, the corresponding agreement fitness 

value will be calculated to be compared with the one of the current solution. If 

the candidate solution has a higher agreement fitness value than the current 

solution, the current solution will be updated (replaced) by the candidate 

solution; otherwise the candidate solution will be discarded. And then SA 

continues to generate new candidate solutions. The above process will be 

continued until the value of AFF is converged (or a certain number of iterations 

have been reached).  

 

 The Whole Framework of CC 

Fig. 2 displays the key steps of the CC algorithm as follows:  

 

 

Input: Input Clustering Matrix, InpMat; Upper-limit of the Number of Clusters, Kmax; Number of 

Iterations, NC; Initial Temperature, T0.  

(1) Generate a Agreement Matrix, A, according to the Input Clustering Matrix InpMat;  

(2) Calculate the Agreement Threshold, β, according to Equation (2.7);  

(3) Generate a random clustering solution to be the current solution Z, and calculate its 

agreement fitness value ƶ according to Equations (2.5) and (2.6);  

(4) Based on the current solution Z, Simulate Annealing starts to seek the optimal clustering 

solution that maximises the value of the Agreement Fitness Function.  

(i)  T= T0 

(ii)  For i = 1 to NC do  

(iii)       Generate a candidate solution Z’ by the Solution Generator, and calculate its 

agreement fitness value ƶ’ (the number of clusters of Z’ cannot exceed Kmax) 

(iv)       IF  ƶ’ > ƶ, Then  

(v)  Z will be updated by Z’ 

(vi)       Otherwise 

(vii)            The acceptance of Z’ will be based on an probability       , where 

    ƶ  ƶ    .  

(viii)          IF p > p’, Then     (where p’ is an random probability within [0, 1])  

(ix)               Z will be updated by Z’ 

(x)          Otherwise 

(xi)               Z’ will be discarded 

(xii)          End IF 

(xiii)      End IF 

(xiv)      IF the value of AFF is converged, Then, Exist FOR LOOP, End IF 

(xv)      Use a predefined cooling function to update T  

(xvi)  End For 
 

Output: An optimal clustering solution  

 

Fig. 2: The Consensus Clustering algorithm.  

 



Chapter 2: Background 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   35 

Ensemble Clustering via Heuristic Optimisation 

 

It is clear that CC has four main steps. Firstly, CC builds an Agreement Matrix 

based on Input Clustering Matrix InpMat. Secondly, based on the Agreement 

Matrix, equation (2.7) is used to calculate the Agreement Threshold β. After that, 

CC generates an initial Current Solution, and calculates its agreement fitness 

value based on β and the Agreement Fitness Function. Finally, SA starts from 

the Current Solution to seek an optimal solution that maximise the value of 

AFF.  

 

Within the four steps, the final step (Step (4)) is the most complicated. It is an 

iteration procedure. The number of iterations is set to be NC. In each iteration, 

the Solution Generator produces a candidate solution, and the corresponding 

agreement fitness value is calculated based on AFF. Then, the candidate 

solution will be evaluated by comparing its agreement fitness value with the one 

of the Current Solution. If the candidate solution has a higher agreement value, 

it will be accepted to replace the Current Solution (i.e. the Current Solution is 

updated); otherwise a probability p will be used to decide whether accept the 

candidate solution or not (the definition of p is shown in Step (vii)). If p is high 

enough, the candidate solution will still be accepted, whereas it will be 

discarded if p is not. The whole iteration procedure is continued until the value 

of AFF is converged or the predefined number of iterations NC has been reached. 

Finally, the latest Current Solution will be treated as an optimal clustering 

solution to be the final result of CC.  

 

From the framework shown in Fig. 2, we can see that the Agreement Fitness 

Function and the Simulated Annealing Optimisation section are the most 

important components of CC. Therefore, two related situations need to be 

noticed. One is that, within the Agreement Fitness Function, the Agreement 

Threshold β is the key parameter. The definition of β can directly affect 

selections of candidate solutions during the SA-based optimisation. The other is 

that, in the Simulated Annealing Optimisation section, the Agreement Fitness 

Function is the only evaluation criterion. Hence results of CC may be enslaved 

by the accuracy of input clusterings.  
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2.3 Heuristic Optimisation 

In computer science, optimisation is to find the best solution for a programming 

problem from a defined solution space [Elster, 1993]. Optimisation algorithms 

are mainly sorted into two classes: classical optimisation algorithms, and 

heuristic optimisation algorithms [Elster, 1993; Yang, 2008].  

 

Classical optimisation algorithms have been playing a very important role for 

solving optimisation problems since the concept “linear programming” was 

proposed as the first term of optimisation by Dantzig [1947]. Classical 

optimisation algorithms have three characteristics [Dantzig, 1947; Elster, 1993; 

Yang, 2008]: 1) they use enumeration or differential calculus to seek the best 

solution; 2) the best solution is assumed to be existing and unique; 3) the 

convergence of algorithms is guaranteed to find the best solution for the 

first-order conditions. Classical optimisation algorithms can be divided into two 

categories: linear optimisation (or linear programming) algorithms and 

nonlinear optimisation (or nonlinear programming) algorithms [Dantzig, 1947; 

Elster, 1993]. Linear optimisation is to utilise a linear objective function to 

study convex programming problems [Dantzig, 1947; Elster, 1993]. Constraints 

of linear optimisation are defined by linear equalities or inequalities [Dantzig, 

1947; Elster, 1993]. Nonlinear optimisation is to (but not limited to) analyse 

convex programming problems by a nonlinear objective function and 

constraints [Dantzig, 1947; Elster, 1993].  

 

Although classical optimisation algorithms have significant contributions for 

solving optimisation problems, it is not practical or possible to apply them for 

problems that have large solution spaces [Elster, 1993; Yang, 2008]. Heuristic 

optimisation algorithms have solved the difficulty. For clustering analysis, 

analysts often need to deal with large data sets with high dimensionalities. In 

this case, heuristic optimisation algorithms can only be applied.  

 

Heuristic optimisation combines heuristic information obtained from itself to 

further guide its search directions during the optimisation process. An important 

advantage of heuristic optimisation algorithms is that heuristic optimisation 
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algorithms can obtain an optimal solution with a reasonable lower time cost 

than classical optimisation algorithms [Elster, 1993; Yang, 2008].  

 

Heuristic optimisation includes simple heuristic optimisation algorithms, and 

meta-heuristic optimisation algorithms [Elster, 1993; Yang, 2008]. Greedy 

algorithms and local search algorithms belong to simple heuristic optimisation. 

These heuristic algorithms have two limitations [Elster, 1993; Yang, 2008]: 1) 

they cannot explore Solution Space systematically to find global optima; 2) 

since their results are often stuck in local maxima, the quality of results may not 

be satisfied. Meta-heuristic optimisation means advanced heuristic optimisation, 

which is mostly applied for solving combinational optimisation problems for 

which other optimisation techniques cannot be implemented [Elster, 1993; Yang, 

2008]. There are many types of meta-heuristic optimisation algorithms 

including discontinuous methods, guided search methods, single agent methods, 

and multi-agent or population-based methods [Elster, 1993; Yang, 2008].  

 

In this thesis, we employ two meta-heuristic optimisation algorithms (we simply 

call them Heuristic Algorithms) for our Ensemble Clustering frameworks. 

These algorithms are Simulated Annealing, and Ant Colony Optimisation.  

 

2.3.1 Simulated Annealing  

Simulated Annealing (SA) [Kirkpatrick et al., 1983; Granville et al., 1994] is a 

single agent meta-heuristic search algorithm which simulates the process of 

metal cooling into a minimal energy state. The most significant advantage of SA 

is its capability of seeking global optima for nonlinear problems. In general, SA 

has three main components: an objective function, a solution generator, and a 

cooling schedule [Snedecor and Cochran, 1980; Kirkpatrick et al., 1983]. Firstly, 

for a given problem, an objective function must be designed. It must be 

guaranteed that the domain (i.e. the state space) of the objective function 

contains all possible solutions for the problem. Secondly a solution generator 

needs to be developed for coming up with candidate solutions during the search 

process. Finally a cooling schedule needs to be carefully set up in order to 
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achieve the optimisation search.  

 

The purpose of SA is to find a solution that optimises the value of the objective 

function. SA achieves this goal by decreasing a probability of accepting worse 

solutions during the search process. SA starts with a random solution, and then 

uses the solution generator to create candidate solutions that are close to 

previous solutions in the state space. If a candidate solution is worse, it will be 

discarded by a random probability based on a cooling schedule; otherwise, it 

will be accepted directly. The search will be continued from the accepted new 

solution. Fig. 3 shows the key steps of the SA algorithm. For further details, 

please refer to references [Snedecor and Cochran, 1980; Kirkpatrick et al., 1983; 

Granville et al., 1994].  

 

 

Parameters:  Number of iterations, Ite; Initial Temperature, T0; Final Temperature, Tn; Cooling 

Function, Fc; Objective Function, F. 

(1) Generate a random solution S for the Objective Function F 

(2) Ti= T0 

(3) For i = 1 to Ite do  

(4)     Generate another random solution S’ that close to the previous solution S 

(5)     If  S’ is better than S, then  

(6)         S’ will be accepted directly to replace S 

(7)     End If 

(8)     If  S’ is worse than S, then 

(9)         The acceptance of S’ will depend on a random probability p; if S’ is not accepted, S 

will be remained.  

(10)    End If 

(11)    If  Ti > Tn ,  then  Ti = Fc (i, T0),  End If 

(12) End For 

Output: An optimal clustering solution 

Note: In line (9),       , where                   . 
 

 

Fig. 3: The Simulated Annealing algorithm 

 

SA has two main disadvantages [Kirkpatrick et al., 1983; Granville et al., 1994]. 

One is that SA is sensitive to settings of its parameters such as the number of 

iterations, initial temperature, definition of the objective function, and the 

cooling function. The other is that its convergence rate is very low. This 

limitation relates to the cooling schedule. One may change the cooling schedule 

to enable SA to converge in a very short time period, but SA may converge too 

early to reach a global optimum. We have to balance time costs against the 
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quality of results. In practice, performance of SA much depends on experience 

of users [Kirkpatrick et al., 1983]. It is necessary to understand performance of 

these parameters to make an appropriate configuration.  

 

2.3.2 Ant Colony Optimisation  

Ant Colony Optimisation (ACO) is a typical discontinuous meta-heuristic 

optimisation method. It was firstly proposed by Colorni, Dorigo and Maniezzo 

[1991]. The paper named “Ant System: Optimization by a colony of 

cooperating agents”, which was written by Dorigo et al. [1996] and published in 

1996, is a landmark of developing the ACO theory. After that, a systematic 

account of the ACO theory was given by Bonabeau et al. [2000].  

 

The basic ACO mechanism has the following characteristics [Dorigo et al., 

1996; Mullen et al., 2009]. Firstly, ants communicate with each other by 

synthetic pheromones. Each ant makes decisions according to pheromones (left 

by other ants), and then leaves new pheromones about its decisions for other 

ants. Secondly, although each ant makes decisions independently according to 

its surrounding environment, the colony of ants exhibits orderly activities as a 

whole. Finally, ACO is an intelligent multi-agent system. Each agent (ant) 

explores resources for the system; meanwhile, the whole system exploits the 

obtained resources to provide further guidance for explorations of ants. This 

recurrence will be continued until an objective is achieved.  

 

We take the TSP problem as an example to describe the key steps of the stand 

ACO algorithm as follows [Colorni et al., 1991; Deneubourg et al., 1991; 

Dorigo et al., 1996; Lumer and Faieta, 1994]: 

1) Initialisation: the current number of iterations N = 0, the maximal number of 

iterations Nmax, the number of ants m, data of n cities, initialise the vector 

diagram Q;  

2) N= N+1;  

3) Set the index k of Tabu List to be 1 for an ant; 

4) Based on a probability calculated by a state transition equation, the ant 
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selects a city j to move on (where j is not in the Tabu List); 

5) Update the Tabu List for the ant by adding the city j to the list; 

6) If k<n, then k= k+1 and go to step 4, otherwise, go to step 7; 

7) Update information of each path (edge) of the vector diagram Q, and clear 

the Tabu List; 

8) Repeat steps from 2 to 7 until N≥Nmax ; 

9) Output an optimal solution.  

 

For different applications, analysts developed different ACO-based algorithms. 

Since the work described in this thesis relates to clustering analysis, the 

corresponding ACO-based method is the Ant Colony Clustering algorithm. This 

section only gives a brief description of the stand ACO algorithm. The details of 

the Ant Colony Clustering algorithm will be described in Chapter 5.2.4.  

 

For more details of the ACO theory, please refer to relevant literatures, 

[Bonabeau et al., 2000; Colorni et al., 1991; Deneubourg et al., 1991; Dorigo et 

al., 1996; Lumer and Faieta, 1994] and [Mullen et al., 2009], listed at the end of 

this thesis.  

 

2.4 Clustering Validity  

Clustering validity is a measure to indicate how a partitioning generated by a 

clustering method fits a given data set [Halkidi, Batistakis and Vazirgiannis, 

2001]. The validity of clustering results is evaluated by clustering validation 

indices. Clustering validation indices are basically sorted into two types: 

external validation indices, and internal validation indices [26]. External 

validation indices (such as Weighted-Kappa [Viera and Garrett, 2005] and 

Adjusted Rand [Hubert and Arabie, 1985]) evaluate the accuracy of clustering 

results based on prior knowledge (e.g. true clusters of given data). They 

measure similarities between generated clustering results and prior knowledge. 

Internal validation indices (such as Silhouette Width [Rousseeuw, 1987], 

Homogeneity and Separation [Shamir and Sharan, 2002]) rely on interior 

characteristics of given data instead of prior knowledge. Which type of 
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validation indexes we should use depends on what information we have. If we 

know true clusters of a given data set, external validation indices will be used 

for evaluating accuracies of clustering results. For analysing an untested data set, 

we do not know its true clusters so that we can only use internal validation 

indices for evaluation.  

 

For each data set used in this thesis, we have known clusters (i.e. true clusters). 

The simplest way of evaluating accuracies of results is to compare the results 

with the known clusters to see how close they are. The closer they are, the more 

accurate the results are. Therefore, in this thesis, we employ a well-known 

external validation index, Weighted-Kappa (WK) [Viera and Garrett, 2005], to 

evaluate clustering results for the accuracy comparison. The concept of 

accuracy, in the domain of science, is defined as the degree of conformity 

between a measured quantity and its true value [Taylor, 1999]. We use WK to 

measure the degree of agreement between the true clusters and a clustering 

result to indicate the clustering accuracy of the clustering result. This validation 

index was also employed by Hirsch et al. [2007] and Swift et al. [2004].  

 

We use Weighted-Kappa instead of a huge range of cluster validation indices 

for a number of reasons. Firstly we have the known clusters (i.e. the true 

clusters) for each of experimental data sets. Hence the "best" clustering method 

should be able to produce results that exactly match the known clusters. 

Secondly, internal validation indices have notable limitations. For example, the 

well-known Silhouette [Rousseeuw, 1987] index aims to reflect separation and 

compactness of clusters. A larger Silhouette value is expected to indicate a 

better clustering result [Rousseeuw, 1987]. In fact, however, this illation is not 

always tenable because the largest Silhouette value is always obtained only 

when each instance becomes an individual cluster. Finally it is worth noting that 

outcomes of the Weighted-Kappa index are identical to results produced by the 

well-known Adjusted Rand index [Hubert and Arabie, 1985].  

 

Weighted-Kappa constructs a (2x2) contingency table (as shown in Table 3) to 

measure agreement (i.e. similarity) between two clustering arrangements [Viera 

and Garrett, 2005]. For a given data set, all unique pairs of objects will be 
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counted in this table. The total number of unique pairs for n objects is defined as 

equation (2.8):  

 

  
      

 
 (2.8) 

 

Table 3: The WK contingency table 

 

 Cluster Arrangement 2 
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(The total number of unique pairs, which 

two arrangements all agree the objects of 

each pair are in the same cluster) 

     

(The total number of unique pairs, which 

Arrangement 1 agrees the objects of each 

pair are in the same cluster, but 

Arrangement 2 does not) 

    

(The total number of unique pairs, which 

Arrangement 2 agrees the objects of each 

pair are in the same cluster, but 

Arrangement 1 does not) 

     

(The total number of unique pairs, which 

two arrangements all disagree the objects 

of each pair are in the same cluster) 

 

 

The way of calculating WK is shown by equations (2.9), (2.10) and (2.11):  

 

 

   
       
     

 (2.9) 

    
 

 
          (2.10) 

    
 

  
                     

(2.11)                     

 

where    means the observed agreement, and     means the expected 

agreement [Sims, 1980]. N is the total number of unique instance-pairs. USS 

denotes the number of unique instance-pairs which the Cluster Arrangements 1 

and 2 all agree that two instances of each pair are assigned into the same cluster, 

whereas UDD stands for the number of unique instance-pairs which the Cluster 

Arrangements 1 and 2 all disagree two instances of each pair are assigned into 

the same cluster. USD means the number of unique instance-pairs which the 

Cluster Arrangement 1 agrees that two instances of each pair should be in the 
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same cluster but the Cluster Arrangement 2 disagrees. UDS counts unique 

instance-pairs that have an opposite situation of USD.  

 

The value of WK is between 1.0 (which means two clustering arrangements are 

exactly the same) and -1.0 (which means the two clustering arrangements are 

totally different). A WK score of zero stands for the expected level of 

agreement between two totally random clustering arrangements. Suggested 

interpretations of WK scores are listed in Table 4 [Viera and Garrett, 2005].  

 

Table 4: The range of the WK score 

 

Weighted Kappa Agreement 

-1.0 ≤ WK ≤ 0.0 Very Poor 

0.0 < WK ≤ 0.2 Poor 

0.2 < WK ≤ 0.4 Fair 

0.4 < WK ≤ 0.6 Moderate 

0.6 < WK ≤ 0.8 Good 

0.8 < WK ≤ 1.0 Very Good 

 

 

2.5 Summary  

In this chapter, firstly we introduced the background of individual clustering 

methods and Ensemble Clustering methods. Two conclusions can be 

summarised as follows: 1) different individual clustering methods have different 

drawbacks and biases; 2) Ensemble Clustering is an efficient way to reduce 

effects of biases of individual clustering methods. Secondly, an existing 

Ensemble Clustering method, Consensus Clustering (CC), was introduced as the 

foundation of understanding our novel Ensemble Clustering methods. Finally, 

two heuristic optimisation methods (SA and ACO) and a clustering validation 

index (WK) were introduced in detail. SA and ACO are used to be integrated 

with our novel Ensemble Clustering methods to achieve the clustering 

information combination and heuristic search, and WK will be used to evaluate 

the quality of clustering results generated by our methods.  
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In the next chapter (Chapter 3), our novel method Multi-Optimisation 

Consensus Clustering (MOCC) will be introduced in detail. MOCC employs the 

heuristic optimisation method Simulated Annealing (SA) to achieve its 

multi-optimisation heuristic search.  
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Chapter 3: Multi-Optimisation Consensus 

Clustering 

3.1 Introduction 

Ensemble Clustering has been suggested to tackle biases of individual clustering 

methods [Strehl and Ghosh, 2003], [Topchy et al., 2005]. It aims to combine 

results of a number of clustering algorithms to improve the clustering accuracy 

[Jain et al., 1999; Berkhin, 2002; Xu and Wunsch, 2005], [Lv et al., 2006], 

[Strehl and Ghosh, 2003], [Berkhin, 2002], [Topchy et al., 2005]. However, to 

develop an effective Ensemble Clustering method is still a challenge. For 

example, the Consensus Clustering (CC) algorithm, developed by Swift et al. 

[Swift et al., 2004], is an existing heuristic optimisation-based Ensemble 

Clustering method. Hirsch et al. [Hirsch et al., 2007] compared CC with six 

different Ensemble Clustering methods developed by Hornik [Hornik, 2005], 

and results show that CC achieved comparable or even better performance than 

those six ensemble methods. Nevertheless, CC seeks for optimal clustering 

solutions by only maximising agreement fitness, which is calculated by an 

objective function. This objective function combines information of input 

clustering arrangements, and depends fully on the input clusterings, so that final 

results would be bad if most of the input clusterings had low accuracies. It is a 

common difficulty among existing heuristic optimisation-based Ensemble 

Clustering methods. In order to overcome this difficulty, an advanced Ensemble 

Clustering method is introduced in this chapter.  

 

Over the past several years, extensive studies have been conducted in the area of 

multi-objective optimisation and clustering methods. Based on experience of 
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developing multi-objective optimisation methods, we present an advanced 

consensus clustering algorithm called Multi-Optimisation Consensus Clustering 

(MOCC), which evaluates not only the agreement fitness but also internal 

clustering characteristics of data sets to enhance the clustering accuracy. First of 

all, MOCC exploits an optimised agreement separation criterion to produce a 

Weighted Agreement Matrix (WAM). And then a Probability Based Solution 

Generator (PBSG) is developed to create candidate solutions. Based on the 

WAM and PBSG, finally, a Multi-Optimisation structure is adopted to produce 

final results. We demonstrated MOCC on fifteen different data sets and 

compared it with the original CC algorithm. Results of our experiments reveal 

that MOCC clearly performs better than CC.  

 

This chapter is organised as follows: Section 3.2 describes related works; 

Section 3.3 details the framework of the MOCC algorithm; all experimental 

data sets are presented in Section 3.4, followed by experimental results and 

discussion in Section 3.5; finally in Section 3.6, we draw some conclusions.  

3.2 Related Work  

3.2.1 Separation Score Evaluation Criterion 

The Homogeneity and Separation criterion, which was proposed by Shamir and 

Sharan, is one of the widely-applied cluster validation indices [Chen et al., 

2002]. Homogeneity and Separation are relative to each other. Homogeneity is 

defined as the average distance between each pattern and the centre of the 

cluster the pattern belongs to. It reflects the inside compactness of clusters. 

Separation is defined as the weighted average distance between cluster centres. 

It reflects the outside distance between clusters. Increasing the Separation score 

or decreasing the Homogeneity score suggests an improvement in the clustering 

results [Chen et al., 2002]. According to above characteristics of Homogeneity 

and Separation and the cost of computation, we adopt Separation Score to 

evaluate the intrinsic clustering characteristics for the optimisation search in 

MOCC. Equation (3.1) displays the way of calculating the Separation Score S.  
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 (3.1) 

 

     indicates the number of instances in the ith cluster. The D(Centi,Centj ) is 

the distance function that calculates the distance between two cluster centres 

Centi and Centj. Euclidean Distance is adopted in the MOCC algorithm.  

3.2.2 Correlation Index 

Maximising the value of the objective function to seek more accurate clustering 

results (i.e. the results have higher WK scores) is the basic principle of CC and 

MOCC. Therefore the correlation of the function value and the WK score is 

meaningful for CC and MOCC (the correlation definitions of CC and MOCC 

are described in Section 3.5.2, and they are different from each other). In this 

chapter, we employ the Pearson Product-Moment Correlation Coefficient 

(PMCC) [Snedecor and Cochran, 1980] to evaluate the correlation. PMCC 

denotes the degree of the linear correlation between two variables. The range of 

its values is from -1 to +1; where -1 means these two variables have totally 

opposite linear correlation, +1 indicates the two variables have the best positive 

linear correlation [Snedecor and Cochran, 1980]. For CC and MOCC, we expect 

the PMCC value to be as close to +1 as possible.  

3.3 The Multi-Optimisation Consensus Clustering 

algorithm (MOCC) 

The MOCC algorithm consists of four key components, which are the weighted 

agreement matrix, the fitness function, the probability based solution generator, 

and the multi-optimisation section. Each of these components is detailed in the 

following subsections.  

3.3.1 The Weighted Agreement Matrix and the Agreement Fitness Function 

The weighted agreement matrix is generated by the agreement threshold β and 

the agreement matrix A. The β is used to evaluate the agreement of clustering 

each pair of instances. It rewards (or penalizes) a clustering that has an 
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agreement value above (or below) the threshold. MOCC redefines the 

agreement threshold by equation (3.2), where the optimised agreement 

separation is 0.6 (the original value is 0.5). The details of the experiments and 

analysis of how 0.6 was derived are described in Section 3.5.1. Max(A) and 

Min(A) indicate the maximal agreement value and the minimal agreement value 

respectively in the agreement matrix A.  

 

                             (3.2) 

       (3.3) 

 

Equation (3.3) shows the definition of the weighted agreement matrix A'. It 

means that the A' is given by subtracting β from each element of A. The leading 

diagonal elements of A' will never be used, and we set them to be zeros.  

 

The agreement fitness function is shown as equation (3.5), where f'(Ci) is 

defined by equation (3.4).  

 

        
         

 

  

     

    

   

     

           

  (3.4) 

            

 

   

 (3.5) 

 

The function f'(Ci) calculates the agreement fitness of the ith cluster of the 

clustering arrangement C. The variable m is the number of clusters in C. Each 

       
  indicates the corresponding weighted agreement value, which related to 

the instances k and q in the ith cluster Ci, in the weighted agreement matrix A'. 

The variable    denotes the size of the ith cluster (i.e. the number of instances 

in the ith cluster).  

3.3.2 The Probability based Solution Generator 

In the original CC algorithm, the solution generator has three different operators, 

which are Move (moving an instance form one cluster to another cluster), 
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Merge (merging two random clusters to be one cluster), and Split (splitting one 

cluster to be two clusters) [Swift et al., 2004]. Each of these three operators is 

randomly chosen to generate a clustering solution (i.e. each operator can be 

chosen with an equal probability).  

 

The proposed MOCC algorithm also adopts these three operators for the 

solution generator but with different probabilities. The purpose of the Move 

operator is to find better solutions by estimating the neighbours of current 

solutions. The Merge and Split operators are used for avoiding results to be 

stuck at local maximums. The total probability of these three operators is 1. We 

set the operation probability of Move to be 80%, Merge to be 10% and Split to 

be 10%.  

 

The Simulated Annealing algorithm in CC starts from a random clustering 

solution to seek the optimal solution. For analysing high-dimensional data sets, 

it might cost much time to get convergence if the random solutions were very 

bad. Therefore we adopt a well-known clustering algorithm, K-means, to 

generate initial solutions for SA in MOCC. The number of clusters for K-means 

can be roughly inferred from the input clustering matrix. In general, the 

adoption of K-means aims to keep the quality of initial solutions at a relative 

good level.  

3.3.3 The Multi-optimisation Section 

MOCC implements SA to generate more accurate clustering results by a 

multi-optimisation framework. This framework integrates the Agreement 

Fitness Evaluation (AFE) with the Clustering Quality Evaluation (CQE) to 

evaluate solutions during the optimisation search of SA. The purpose of the 

AFE is to seek the solutions that have the maximal agreement fitness. The CQE 

uses Separation Score (SS) as a criterion to evaluate the clustering quality. With 

the same number of clusters, the value of SS is expected to be as high as 

possible. During the optimisation search of SA, candidate solutions will be 

accepted if they are eligible for both criteria otherwise will be discarded by a 

probability based on the annealing temperature.  
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Fig. 4 illustrates the multi-optimisation section of MOCC. First of all, a new 

candidate solution is generated by the solution generator. Secondly, the 

annealing temperature Ti is updated by the cooling function, and then the 

 
 
 

Fig. 4: The multi-optimisation section of MOCC.  

 

End 

Match the termination 

requirements? 
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NO 

Accept the candidate solution 

p = exp[(Fn - F)/Ti] 

NO 

YES 
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Sn < S & Fn > F 

NO 
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p > random(0,1) 

Fn < F 
NO 
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Update the temperature Ti according to the cooling function; calculate the 

Agreement Fitness Fn and Separation Score Sn for the new candidate solution 

Generating a new candidate clustering solution 

Comparing Fn and Sn with the corresponding previous 

Agreement Fitness F and Separation Score S 
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agreement fitness Fn and separation score Sn of the new candidate solution are 

calculated respectively. Thirdly, we compare Fn with the previous agreement 

fitness F, and compare Sn with the previous separation score S. Finally, the 

candidate solution will be accepted or discarded according to the result of the 

comparison. The above process will be repeated until the termination conditions 

are matched. Three different operations are available for dealing with new 

candidate solutions. If Fn>F and Sn>S, the new candidate solution will be 

accepted directly. If Fn<F, the acceptance probability p of the new candidate 

solution will be calculated according to the left side equation p=exp[(Fn-F)/Ti] 

(where Ti denotes the annealing temperature). If Fn>F and Sn<S, p will be 

calculated according to the right side equation p=exp[(Sn-S)/Ti].  

 

Input:  The maximal number of clusters, K; A matrix of results of a set of input methods, Matr; 

Original Data set Matrix, X; Initial Temperature, T0; Number of Iterations, NM; Cooling 

Rate, cool.  

(1) Construct the Agreement Matrix, A 

(2) Setup the agreement threshold β according to Equation (3.2) 

(3) Generate the weighted agreement matrix  A' 

(4) Use the K-means algorithm to generate the initial clustering arrangement C for SA  

(5) Calculate the Separation score, S, according to Equation (3.1) 

(6) Calculate the Agreement Fitness function (according to Equation (3.5)) to obtain f. 

(7) Ti= T0 

(8) For  i = 1 to NM        

(9)       Use Solution Generator to produce a new arrangement Cnew 

(10)        Re-calculate Equation (3.5) to obtain a value fnew;  and re-calculate Equation (3.1) to 

  obtain a value  Snew 

(11)        If   fnew < f  or   Snew < S 

(12)               Calculate probability p:    {If    fnew < f ,     p= exp[(fnew -f)/Ti];   

(13)                                           Else,          p= exp[(Snew - S)/Ti].   

(14)                                           End If } 

(15)               If  p > random(0,1) 

(16)                    Accept the new clustering arrangement. 

(17)               End If 

(18)        Else 

(19)               Accept the new clustering arrangement. 

(20)        End If 

(21)        Ti= cool × Ti 

(22)  End For 

Output:  An optimised clustering arrangement. 

 

Fig. 5: THE MOCC ALGORITHM 

 

The key steps of the MOCC algorithm are described in Fig. 5. First of all, a 

weighted agreement matrix A' is generated based on the Agreement Matrix A 

and the agreement threshold β (Step 1-3). And then an initial clustering 

arrangement C is produced for SA (Step 4). After that, the agreement fitness f 
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and the separation score S are calculated for C according to equations (3.5) and 

(3.1) respectively (Step 5-6). Finally, SA uses Probability Based Solution 

Generator to obtain new candidate arrangements, and implements the 

multi-optimisation framework to seek an optimal clustering arrangement (Step 

7-22). The multi-optimisation framework is described from Step 9 to Step 20.  

 

3.4 Experimental Data Sets  

We evaluate our method, MOCC, against 15 different data sets. Since we not 

only compare the performance between MOCC and CC but also observe the 

performance of MOCC and CC between different data sets, the sizes of these 

data sets have been made to be approximately the same. We chose about 100 

instances from each of the original data sets. The value of 100 was chosen as it 

is not too trivially small, but small enough to allow the large number of 

experiments run in this chapter to complete in a feasible amount of time. For 

some of the data sets, the instances were randomly chosen from the 

corresponding original data sets.  Some of the data sets were simply formed by 

the first 100 instances in the original data sets. Because of the stochastic nature 

of the MOCC and CC methods, we run these methods 10 times, and look at the 

average performance.  

 

Ten of these data sets, which are Ecoli, Glass, Iris, Lung Cancer, Poker Hand, 

Soybean, WDBC, Wine, Yeast_2 and Zoo, were downloaded from the UCI 

Machine Learning Repository database. The information of these experimental 

data sets is presented in Table 5. The details of the original data sets can be 

found from the UCI website: (http://archive.ics.uci.edu/ml/datasets.html).     

 

The other five data sets are ASC, Malaria, Normal, VAR and Yeast. The ASC 

(Amersham Score Card) was introduced and used in the literature [Swift et al., 

2004]. It is a set of multiply repeated control element spots, which using the 

Amersham Score Card to probe on the Human Gene clone set arrays of Human 

Genome Mapping Project [Swift et al., 2004]. This data set has 108 genes/probe 

elements, which are clustered into 15 clusters. The Malaria microarray data set 

http://archive.ics.uci.edu/ml/datasets.html
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[Bozdech et al., 2003] has fourteen clusters where the genes have the same 

function within each cluster and different functions between clusters. We 

choose the first one hundred instances for our experiments. VAR (Vector 

Auto-Regressive) [Lütkepohl, 2007] is a synthetic data set which was obtained 

from a vector autoregressive process [Sims, 1980]. The total number of clusters 

is 60. In each cluster, the number of instances varies from 1 to 60. In this 

chapter, we choose the first one hundred instances of the VAR data set for our 

experiments. The Normal data set has the same cluster structure as the VAR 

data set. The difference is that Normal is generated from multivariate normal 

distribution. The Yeast data set was used in the literature [Yeung and Ruzzo, 

2001]. We choose the first twenty instances from each cluster in the original 

data set to form the experimental data set. The information of these five data 

sets is also presented in Table 5.  

 

 

Table 5: Fifteen different data sets 

 

Data Sets Instances Chosen from the 

Original Data Sets 

Number of 

Instances 

Number of 

Attributes 

Number of 

Clusters 

ASC 1 - 108 108 23 15 

Ecoli CP(1-12); IM(1-12); 

PP(1-12); and all instances of 

the rest clusters 

100 7 8 

Glass 1-16; 71-86; 147-214 100 9 6 

Iris 26 - 125 100 4 3 

Lung Cancer 1-32; deleted the attributes 

with “?” 

32 54 3 

Malaria 1 - 100 100 48 12 

Normal 1 - 100 100 20 14 

Poker Hand 1 - 100 100 10 8 

Soybean 1-30; 71-140 100 35 7 

VAR 1 - 100 100 30 14 

WDBC 51 - 150 100 30 2 

Wine 51 - 150 100 13 3 

Yeast 1-20; 68-97; 203-222; 

278-297; 330-349 

100 17 5 

Yeast_2 1 - 100 100 8 8 

Zoo 1 - 101 101 16 7 
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3.5 Results and Discussion 

3.5.1 Optimising Agreement Separation for the Agreement Threshold β 

From the definition of the agreement threshold β in equation (3.2), it is clear 

that the Max(A) and Min(A) are constants for a specific agreement matrix.  The 

β is therefore only affected by the agreement separation. In order to seek a 

comparative optimal agreement separation, we use fifteen data sets to test CC 

on a number of different agreement separations. The numerical range of the 

agreement separation is between 0 and 1 (the values 0 and 1 are not included 

because they have no meaning for β), consequently we analyse a series of 

agreement separations that varies from 0.1 to 0.9 in steps of 0.1.  

 

The nine agreement separations were tested on fifteen data sets (described in 

Section 3.4). We use WK to indicate the clustering accuracy, and the results are 

illustrated in Fig. 6. The solid line with two arrows indicates the range between 

maximal and minimal WK scores for each agreement separation. The broken 

line links the mean WK scores for the nine agreement separations. We can see 

that the agreement separation 0.6 has the highest mean WK score. In addition, 

PMCC is used to indicate the Fitness-WK correlation for these separations. The 

mean Fitness-WK correlation values (linked by a broken line) are displayed in 

Fig. 7. It is clear that the agreement separation 0.4 has the highest mean 

Fitness-WK correlation. By comparing Fig. 6 and Fig. 7, we note that the 

separation 0.4 has a much lower mean WK score than 0.6, 0.7 and 0.8, but the 

mean Fitness-WK correlation of the separation 0.6 is only slightly lower than 

the one of 0.4. Therefore, 0.6 seems to be a good agreement separation.  

 

In order to validate the inference further, we analyse the distribution of WK 

scores for each agreement separation. From the definition of WK, it is clear that 

the agreement of two clustering arrangements is almost perfect when the WK 

score is greater than 0.8 and very poor when the WK score is less than 0.2 

[Viera and Garrett, 2005]. Therefore we count and compare the numbers of WK 

scores, which are between 0.2 and 0.8, for each separation. Based on Fig. 6, the 

numbers of WK scores between 0.2 and 0.8 for different separations are listed in 
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Table 6. The corresponding mean WK scores (which are different from those in 

Fig. 6) are illustrated in Fig. 8. It is apparent that the agreement separation 0.6 

still has the highest mean WK score, which shows that 0.6 is an ideal separation.  

 

 

 

 

Fig. 6: The WK comparison of nine different agreement separations tested on fifteen data 

sets.  

 

 

 

 

 

Fig. 7: The Fitness-WK correlation comparison of nine different agreement separations 

tested on fifteen data sets.  
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Fig. 8: The comparison of mean WK scores that corresponding to Table 6. 

 

3.5.2 Results Comparison between CC and MOCC 

CC was compared with a number of Ensemble Clustering methods implemented 

within the Clue [Hornik, 2005] R package in the literature [Hirsch et al., 2007]. 

Therefore, within this chapter, we will compare our novel method, MOCC, 

against CC only, to simplify the number of experiments being evaluated. The 

experiments were achieved by testing both CC and MOCC on each of the 

fifteen data sets respectively. Eight individual clustering algorithms were 

chosen to generate input clustering matrixes for CC and MOCC. The eight 

clustering algorithms are as follows: PAM (Correlation); PAM (Euclidean); 

Affinity Propagation (Correlation); Affinity Propagation (Euclidean); 

Hierarchical (Average, Correlation); Hierarchical (Average, Euclidean); 

Hierarchical (Complete, Correlation); Hierarchical (Complete, Euclidean). The 

Number of Clusters, which is one of the parameters of these algorithms, is set 

according to Table 5. For the CC and MOCC algorithms, we do not need to set 

the number of clusters as an input parameter. We analyse the experimental 

results and compare the performance between MOCC and CC in two aspects.  

 

Table 6: Number of WK scores between 0.2 and 0.8 for each of the nine separations 

 
Agreement Separation 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Number of WK Scores  

Between 0.2 and 0.8 
0 4 7 9 8 9 7 10 9 
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Fig. 9: The WK scores comparison of the results between CC and MOCC tested on fifteen 

different data sets. 

 

 

 

Firstly, we analyse the accuracy of the clustering results. We still use WK to 

evaluate the clustering accuracy. Fig. 9 displays the WK score comparison 

between CC and MOCC. In general, we can say MOCC generated better results 

than CC (especially for the WDBC and Zoo). We take WDBC as an example, 

the WK score of CC is zero (it means the result has no agreement related to the 

true clustering arrangement), but MOCC has a score that is over 0.6 (it means 

the result has a good agreement with the true clustering arrangement). The 

reason may be the WDBC has a very small number of clusters (2 clusters) but 

with a very high number of attributes (30 attributes). For the Poker Hand data 

set, it is interesting to observe that both MOCC and CC have very low WK 

scores, which means this data set is not suitable for clustering analysis.  In 

order to highlight the overall difference of WK scores between CC and MOCC, 

we calculated the mean values of WK, which displayed in Fig. 11 (a). It is clear 

that MOCC has a better mean WK score than CC.  
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Fig. 10: The correlation comparison of the results between CC and MOCC tested on fifteen 

different data sets. 

 

 

Secondly, we use PMCC to evaluate the correlation between the WK score and 

the value of the objective function. The correlation is expected to be as high as 

possible so that the algorithm can generate more accurate (higher WK scores) 

results when maximising the value of the objective function. For CC, the 

objective function value is the agreement fitness value. For MOCC, we define 

the objective function value to be the sum of the agreement fitness and the 

separation score. Fig. 10 illustrates the correlation comparison between CC and 

MOCC. It is clear that MOCC and CC have similar correlation scores for most 

of the data sets. However, when we compare Fig. 10 with Fig. 9, it is interesting 

to see that MOCC has better WK scores than CC if it has higher correlation 

scores, and MOCC still has better WK scores even its correlation scores are 

lower than CC for some data sets such as Iris, and Lung Cancer. It means 

MOCC performed better than CC. For the WDBC data set, Fig. 10 explains why 

MOCC has a much higher WK score than CC. We also calculated the mean 

correlation values of CC and MOCC. In Fig. 11 (b), it is apparent that the mean 

correlation value of MOCC is higher than CC‟s.  

 

 

 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

C
o

rr
el

at
io

n

The Fifteen Different Data Sets

CC

MOCC



Chapter 3: Multi-Optimisation Consensus Clustering 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   59 

Ensemble Clustering via Heuristic Optimisation 

 

 

 

Fig. 11: (a) The comparison between CC and MOCC by the mean WK of the fifteen 

different data sets; (b) The comparison between CC and MOCC by the mean correlation of 

the fifteen different data sets.  
 

 

Following the above results and discussion, it is clear that MOCC is more 

robust than CC in general. In addition, the most important difference between 

the two algorithms is that MOCC is not only seeking the solutions with high 

Agreement Fitness, but also impelling the results as close to the true clustering 

arrangement as possible by the multi-optimisation framework.  

3.6 Summary 

We have presented a novel Consensus Clustering framework called MOCC, 

which uses an optimised Agreement Separation and a Multi-Optimisation 

structure to enhance the Ensemble Clustering accuracy. Within the 

Multi-Optimisation structure, the Separation Score (SS) index is combined with 

the Agreement Fitness Evaluation (AFE) to ameliorate the performance of 

optimisation, but the combination is not limited to the SS index. The results 

show that MOCC has better stability of clustering and clearly performs better 

than original CC.  

 

This chapter has displayed promising results of combining other appropriate 

clustering validity indexes with AFE to improve the accuracy of clustering. 

However, the experiments designed in this chapter have two limitations. One is 
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that the data sets used for our experiments are ideal data sets (i.e. there are no 

noise and outliers in the data). The other is that the sizes of these data sets are 

almost the same (i.e. around 100 instances), and most of the data sets are subsets 

of the original data sets. The reason of only choosing subsets is that we need to 

analyse how MOCC performs for different types of data sets that have the same 

size. However, using subsets of original data sets may bias results. According to 

the above two limitations, in future work, we will further test MOCC from the 

following two aspects: 1) testing MOCC on a larger rang of data sets (using 

original data sets instead of subsets); 2) testing MOCC on data sets that have 

noise and outliers.  

 

In addition, from our experiments, we have noted that the computational cost of 

MOCC is significantly high (the details of analysing computational costs will be 

described in Chapter 6.3.2). It suggests that MOCC is not capable of analysing 

large data sets. In order to reduce the computational cost as well as to improve 

the accuracy of clustering, we have developed another novel Ensemble 

Clustering method called KACC, which will be analysed in Chapter 5.  
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Chapter 4: The Effect of Cooling Functions for 

CC and MOCC 

4.1 Introduction 

Simulated Annealing is an efficient heuristic global optimisation method for 

combinational problems. The most important feature of SA is that it can escape 

from local optima to find global optimal solutions [Granville et al., 1994]. This 

feature distinguishes SA from some traditional search methods such as Hill 

Climbing [Russell and Norvig, 2003]. Therefore SA has been applied for 

extensive research areas such as image processing, control system design, 

machine learning, and data mining [Buckham and Lambert, 1999, Laarhoven 

and Aarts, 1987, Wang and Li, 2004].  

 

In our previous work, two Ensemble Clustering (EC) methods have been 

developed to use Simulated Annealing to achieve a global optimal clustering 

combination. One is the Consensus Clustering (CC) [Swift et al., 2004] 

algorithm that employs SA to seek optimal solutions that maximise an 

agreement fitness function. The other is the Multi-Optimisation Consensus 

Clustering (MOCC) [Li et al., 2009] algorithm (described in Chapter 3) which 

implements SA to perform a multi-objective optimisation for the clustering 

combination. MOCC has been compared with CC in the literature [Li et al., 

2009], which demonstrates that MOCC achieved better performance than CC on 

average.  

 

Although many successful applications (such as CC and MOCC) have appeared 

in the literature due to the simplicity and capability of global convergence of SA, 
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there are some considerable limitations of SA affecting its performance. In 

theory, global optimisation only can be achieved by an infinite iteration 

procedure of SA [Kirkpatrick et al., 1983, Granville et al., 1994]. In practice, 

the only way we can implement SA is to utilise a finite iteration procedure. 

Therefore numerous efforts have been made to simulate the asymptotic 

convergence behaviour of SA in order to obtain comparable optimal results 

within a finite iteration procedure, which we refer to as the Cooling Schedule. In 

this way, the performance of SA depends heavily on the configuration of the 

Cooling Schedule. This is the most important limitation of SA. The core 

component of Cooling Schedule is the cooling function. In order to choose or 

design a suitable cooling function for a specific problem, it is vital to understand 

the behaviour of cooling functions.  

 

A variety of cooling functions have been proposed in the literature [Andresen 

and Gordon, 1993, Hoffmann and Salamon, 1989, Nourani and Andresen, 1998]. 

Atiqullah [Atiqullah, 2004] proposed a Simple Cooling Schedule, and claimed 

that it could be more efficient. Hajek [Hajek, 1988] stated some conditions for a 

logarithmic cooling function to obtain a stable convergence. However, to date, 

there is no comprehensive analysis that has been reported for analysing a wide 

range of cooling functions. Furthermore, no attempt has been made in the 

literature to analyse the effect that cooling functions have on Ensemble 

Clustering. Therefore this chapter aims to bridge this gap, and offers insights 

into the behaviour of cooling functions in the context of Ensemble Clustering.  

 

We do not attempt to make the performance comparison between different 

Ensemble Clustering methods. Instead we shall choose two representative EC 

methods, CC and MOCC, for our study of cooling functions. Comprehensive 

experiments have been performed by using these two EC methods to test each 

of the cooling functions on thirteen different data sets. In this way, the chapter 

presents the findings for those who are interested in Ensemble Clustering 

techniques as well as who want to obtain a deep understanding of the behaviour 

of the cooling functions.   

 

The rest of this chapter is outlined as follows: Section 4.2 gives a brief 
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introduction of ten key cooling functions; Section 4.3 describes designed 

experiments and corresponding data sets used; results and discussion are 

presented in Section 4.4, followed by some conclusions drawn in Section 4.5.  

 

4.2 Cooling functions of SA 

The cooling function is the core component of the cooling schedule. Some 

widely used cooling schedules have been studied in the literature. For example, 

Nourani and Andresen [Nourani and Andresen, 1998] compared five cooling 

schedules to find which schedule has the minimal entropy production. In fact, 

the essence of the comparison between different cooling schedules is the 

comparison between different cooling functions. The most widely used cooling 

functions are the linear function, the logarithmic function, and the simple 

exponential function. Luke has listed some other existing cooling functions in 

the literature [Luke, 2002]. Since some of these cooling functions are very 

similar to each other, we finally selected ten representative cooling functions 

(which are listed in Table 7) to study in this chapter.  

 

Table 7: The ten cooling functions 
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Note:     is the initial temperature;     is the final temperature; N is the number of search 

iterations for temperature cooling from    to   . 
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We have divided these cooling functions in Table 7 into three groups: a 

hyperbolic function group, an exponential function group, and a mixed group. 

The hyperbolic function group contains equations (4.9) and (4.10), where 

Equation (4.9) is a Hyperbolic Tangent function and Equation (4.10) is a 

Hyperbolic Cosine function. The exponential function group consists of 

equations (4.5), (4.6), (4.7), and (4.8). The rest equations (4.1), (4.2), (4.3) and 

(4.4) are assigned into the mixed group, where Equation (4.1) is a logarithmic 

cooling function, Equation (4.2) is a linear cooling function, Equation (4.3) is a 

power cooling function, and Equation (4.4) is a cosine cooling function. Fig. 12 

illustrates the curves of the ten cooling functions.  
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Fig. 12: The curves of the ten different cooling functions that corresponding to Table 7. 
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4.3 Data sets and experiments 

4.3.1 Data sets  

We selected thirteen different data sets and divided them into four groups, 

which are the small, medium, and large data sets groups, and the variant 

dimensionality data sets group.  

 

The small data sets group has three data sets: ASC (Amersham Score Card), 

E-coli, and Zoo. The number of instances in each data set is between 100 and 

400. The ASC data set was generated from a set of multiply repeated control 

element spots for probing on the human gene clone set arrays [Swift et al., 

2004]. It contains 108 genes that are sorted into 15 clusters. E-coli is a recorded 

set of Protein Localisation Sites data, and was created by Kenta Nakai in 1996 

[Asuncion and Newman, 2007]. There are a total of 336 instances sorted into 8 

clusters in the E-coli data set. The Zoo data set contains 101 instances (animals) 

with 16 Boolean-valued attributes plus one class attribute [Asuncion and 

Newman, 2007]. It is a very small data set with 7 clusters but has been used in 

many research papers.  

 

The medium group has two data sets, which are Normal and Yeast. The Normal 

data set is a synthetic data set that was generated from a multivariate normal 

distribution [Swift et al., 2004]. It has a total of 1830 instances with 20 

attributes. The total number of clusters is 60, and each cluster was generated 

from a multivariate normal distribution with a different covariance and mean 

[Swift et al., 2004]. The Yeast data set was used in the literature [Yeung and 

Ruzzo, 2001]. It has 1484 instances with 8 attributes. This data set was 

generated for the analysis of predicting the localisation sites of proteins 

[Asuncion and Newman, 2007].  

 

The large group also contains two data sets, which are ISOLET (Isolated Letter 

Speech Recognition) and Letter (Letter Image Recognition Data). ISOLET was 

created by Fanty and Cole, and used in a paper entitled Spoken Letter 

Recognition [Fanty and Cole, 1991]. The total number of instances is 7797. The 
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total number of attributes of each instance is 617 in the original data set but we 

only used the first 10 attributes. There are two reasons. One is that the 

computation cost would be extremely high if the whole 617 attributes were 

involved for experiments. Another is that the groups, 1, 2 and 3, are used to 

study the performance of cooling functions for analysing different sizes of data 

sets. So we need each of these data sets to have a comparable dimensionality 

(i.e. a comparable number of attributes). The Letter data set was created by 

Slate in 1991 [Asuncion and Newman, 2007]. The original data set has a total of 

20,000 instances with 16 attributes. In order to have a size comparable with the 

ISOLET data set, we only use the first 7,000 instances.  

 

The above three groups of data sets have a relative low dimensionality which is 

less than 30. In order to analyse how cooling functions perform for Ensemble 

Clustering methods on data sets with different dimensionalities, we created the 

variant dimensionality data sets group. This group has six data sets created from 

the VAR (Vector Auto-Regressive) data set and the original ISOLET data set. 

The six data sets have the same number of instances but with different 

dimensionalities (i.e. the numbers of attributes), which are 30, 150, and 600 or 

617. The VAR data set is a synthetic data set that has the same cluster structure 

as the Normal data set. It was generated from a vector autoregressive process, 

and has a total of 60 clusters [Sims, 1980, Lütkepohl, 2007]. The number of 

instances of these clusters varies from 1 to 60.  

 

The four groups of data sets have been listed in Table 8. The data sets, ASC, 

E-coli, Zoo, Yeast, ISOLET and Letter, were obtained from the UCI Machine 

Learning Repository website. More information about these data sets can be 

found on the UCI website (http://archive.ics.uci.edu/ml/datasets.html).  
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Table 8: The experimental data sets 

 

 Data Sets Number of 

Instances 

Instances 

Chosen from 

the Original 

Data Set 

Dimensionality 

(Number of 

Attributes) 

Number of 

Clusters 
G

ro
u

p
 

1
 

ASC 108 all 23 15 

E-coli 336 all 7 8 

Zoo 101 all 16 7 

G
ro

u
p

 

2
 

Normal 1830 all 20 60 

Yeast 1484 all 8 10 

G
ro

u
p

 

3
 

ISOLET 7797 all 10 26 

Letter 7000 1 -7000 16 26 

G
ro

u
p

 4
 

VAR 900 1 - 900 30 42 

VAR 900 1 - 900 150 42 

VAR 900 1 - 900 600 42 

ISOLET 900 1 - 900 30 26 

ISOLET 900 1 - 900 150 26 

ISOLET 900 1 - 900 617 26 

Note: In the original data sets, we define that the rows of the data matrices as the Instances, 

and the columns of the data matrices as the attributes of the Instances. The 

dimensionality means the number of attributes of an instance. For a given data set, all 

instances have the same dimensionality. 

 

 

This chapter focuses on analysing behaviours of cooling functions when MOCC 

and CC perform for different sizes and dimensionalities of data sets. Based on 

this purpose, we only choose subsets for some data sets. In Table 8, the data sets 

Letter, VAR and ISOLET are subsets of their original data. It is worth to note 

that, although choosing subsets may bias clustering results, it does not affect the 

analysis of behaviours of cooling functions.  

 

4.3.2 Experiments  

We designed two groups of experiments to analyse the effect of cooling 

functions on Ensemble Clustering.  The first group of experiments is that CC 

and MOCC employ each of the ten cooling functions to analyse different sizes 

of data sets. In this group, the first three groups of data sets (i.e. the small, 

medium and large data sets groups) have been used to test these ten cooling 

functions. The second group of experiments is that CC and MOCC employ the 
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ten different cooling functions to analyse the data sets with different 

dimensionalities. The variant dimensionality data sets group has been used for 

the second group of experiments. In each of these two groups of experiments, 

we analyse the performance of different cooling functions from three aspects as 

follows: the convergence rate of cooling functions, the final value of the 

objective function, and the accuracy of results.  

 

In order to analyse the behaviour of different cooling functions, we recorded the 

traces of the objective function values (which are sampled every 2000 iterations) 

for all experiments achieved by CC and MOCC. In addition, we configured 

three input parameters of SA for CC and MOCC. These three parameters are the 

initial temperature T0, the final temperature Tn , and the number of iterations Ite. 

The settings of T0 and Tn are fixed for all experiments (where T0= 100, Tn 

=0.001). The setting of Ite may vary according to different clustering problems. 

We set the default value of Ite to be 1,000,000.  

 

Ensemble Clustering combines the results of input clustering methods to 

generate a better clustering. In order to analyse how cooling functions perform 

when the number of input methods is changed, we designed two groups of input 

clustering methods. One group has 8 input clustering methods. The other group 

has 16 input methods. These two groups of input methods have been used in 

both two groups of experiments. Table 9 and Table 10 list the two groups of 

input clustering methods.  

 

For the clustering methods listed in Table 9 and Table 10, the basic reference 

information has been given as follows. The Hierarchical and K-means clustering 

algorithms are the most widely used traditional clustering algorithms. 

Hierarchical clustering was firstly proposed by Ward in 1963 [Ward, 1963], and 

the standard K-means algorithm was suggested by Lloyd [Lloyd, 1982]. Mean 

Shift Clustering (MSC) was proposed by Funkunaga and Hosteler, and can be 

found in the literature [Fukunaga and Hostetler, 1975]. The original Affinity 

Propagation (AP) algorithm was proposed by Frey and Dueck [Frey and Dueck, 

2007], and the improved version (i.e. the Adaptive AP algorithm) was 

developed by Wang et al. [Wang et al., 2007]. The PAM (Partitioning Around 
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Medoids) was firstly proposed by Kaufman and Rousseeuw in the literature 

[Kaufman and Rousseeuw, 1987], and after that they proposed an advanced 

version CLARA (Clustering Large Applications) in the literature [Kaufman and 

Rousseeuw, 1990]. The FCM (Fuzzy C-Means) algorithm was proposed by 

Bezdek et al. [1999]. For the details of these clustering algorithms, please refer 

to the corresponding references. 

 

 

Table 9: The eight input clustering methods 

 

Method Distance Matrix Linkage Initial Cluster Centre 

Hierarchical Euclidean Single N/A 

Hierarchical Spearman Complete N/A 

Hierarchical Correlation Average N/A 

Hierarchical Jaccard Weighted N/A 

K-means Squared Euclidean N/A Sample 

K-means Correlation N/A Uniform 

K-means Cosine N/A Sample 

K-means Cosine N/A Uniform 

 

 

Table 10: The sixteen input clustering methods 

 

Method Distance Matrix Linkage Initial Cluster Centre 

Hierarchical Euclidean Single N/A 

Hierarchical Spearman Complete N/A 

Hierarchical Correlation Average N/A 

Hierarchical Jaccard Weighted N/A 

K-means Squared Euclidean N/A Sample 

K-means Correlation N/A Uniform 

K-means Cosine N/A Sample 

K-means Cosine N/A Uniform 

Mean Shift Clustering N/A N/A N/A 

Affinity Propagation 

(Original) 

Euclidean N/A N/A 

Affinity Propagation 

( Original) 

Pearson N/A N/A 

Affinity Propagation 

(Adaptive) 

Euclidean N/A N/A 

Affinity Propagation 

( Adaptive) 

Pearson N/A N/A 

PAM Euclidean N/A N/A 

FCM N/A N/A N/A 

CLARA Euclidean N/A N/A 
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4.4 Results and discussion 

We discuss the results based on the two groups of experiments mentioned in 

Section 4.3.2. One is that CC and MOCC employ different cooling functions to 

be tested on the data sets with different sizes, and the other is that CC and 

MOCC use different cooling functions to be tested on the data sets have the 

same size but with different dimensionalities. For each group of experiments, 

we discuss the results from three aspects, which are the convergence rate of 

cooling functions, the final values of objective functions, and the accuracy of 

results. For the values of objective functions, in MOCC, it should be the sum of 

the agreement fitness value and the separation score (because MOCC adopts 

two evaluation criteria). In order to simplify the description, we use Evaluation 

Score to denote the sum for MOCC.  

4.4.1 The first group of experiments: tested on data sets with different sizes  

In this group, each of the ten cooling functions was tested by CC and MOCC on 

the first three groups of data sets (i.e. the small, medium, and large data sets 

groups). First of all, we analyse the convergence rate of the ten cooling 

functions. We need to answer the following questions. Have they converged 

after the defined number of iterations? How are the convergence speeds of the 

cooling functions?  

 

The small data sets group was firstly used to test the cooling functions. The 

number of iterations is default, which is set to be 1,000,000 as described in 

Section 4.3.2. The sample series traces (sampled during the search process) 

have been illustrated in Fig. 13 and Fig. 14. Fig. 13 shows the traces generated 

by CC, and Fig. 14 shows the traces generated by MOCC. We notice that 

different cooling functions have different convergence speeds during the search 

process. The cooling function F5 has the fastest convergence speed, and F1 has 

the lowest speed which comes along with a concussive sample trace during the 

whole search process. In Fig. 13 (b) and (c), although the traces of F1 rose very 

fast at the beginning, they had not converged after 1,000,000 iterations. It means 

that the results generated by using F1 as the cooling function are not valid.  
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Fig. 13: (a) The comparison of the convergence performance between ten cooling functions 

(with 8 input clustering methods): (a) tested on ASC by CC; (b) tested on E-coli by CC; (c) 

tested on Zoo by CC.  
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Fig. 14: The comparison of the convergence performance between ten cooling functions 

(with 8 input clustering methods): (a) tested on ASC by MOCC; (b) tested on E-coli by 

MOCC; (c) tested on Zoo by MOCC.  
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If we compare Fig. 14 with Fig. 13, we can see that the convergence traces of 

the cooling functions are shown in a correlative order. If we ignore F3 and F6, 

other cooling functions can be listed in an order as follows: F5, F10, F7, F8, F9, 

F4, F2 and F1. We pick up the curves of these eight cooling functions from Fig. 

12, and display them again in Fig. 15. It can be seen that, when the temperature 

is lower than 20, these cooling functions close to the abscissa in an order that is 

exactly the same as the one shown in Fig. 13 and Fig. 14. This situation 

suggests that the convergence speeds of cooling functions could be predicted by 

the speeds of the cooling functions‟ curves closing to the abscissa.  

 

 

Fig. 15: The curves of eight cooling functions: F1, F2, F4, F5, F7, F8, F9, and F10. 
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speed of F3 varies against the speed of F4 for different data sets. By comparing 

Fig. 12 (b) with Fig. 13 and Fig. 14, it can be seen that F6 has the same situation 
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one of Q for analysing different data sets.  

 

From the above discussion of Fig. 13 and Fig. 14, it is important to note that F1 

had never converged in any of these tests. It means that the number of iterations 

is not big enough for F1 to gain convergence. Therefore, for a certain number of 

iterations, the results of Ensemble Clustering may be invalid if the EC methods 

employ a very slow cooling function. For a new cooling function, its 

convergence speed may be predicted by comparing its algebraic curve with the 

one of a known cooling function.  

 

In order to obtain valid results for analysing the small data sets, we retested the 

cooling functions on the small data sets with 3,000,000 iterations. Based on the 

experience of analysing small data sets, we changed the number of iterations to 

be 3,000,000 and 6,000,000 for medium and large data sets respectively. In 

order to compare the performances of cooling functions for analysing different 

sizes of data sets, we chose one data set from each of the three data set groups, 

and illustrated their results in Fig. 16 and Fig. 17. Fig. 16 (a) and (b) show the 

results of CC using ten cooling functions tested on one small data set E-coli and 

one medium data set Normal respectively. All cooling functions had converged 

after 1,500,000 iterations in Fig. 16 (a), but after 2,300,000 iterations in Fig. 16 

(b). Fig. 16 (c) shows the results of CC being tested using ten cooling functions 

on one large data set ISOLET with 6,000,000 iterations. It is clear that the 

cooling functions had not converged until after 5,000,000 iterations.  

 

Fig. 17 shows the results generated by MOCC being tested using the cooling 

functions on the same three data sets. It also appears that the convergence 

speeds of cooling functions get slower when the size of data sets becomes 

bigger. Moreover, in Fig. 16 (c) and Fig. 17 (c), we notice that the final 

convergent values of F5 and F10 are clearly smaller than others for analysing 

large data sets. It suggests that, for large data sets, F5 and F10 may converge too 

early to obtain global optima. The results of CC and MOCC being tested using 

the cooling functions on other data sets (i.e. ASC, Zoo, Yeast, and Letter) have 

the similar findings, so we do not list those figures here. It is clear that, if we set 

the number of iterations to be 1,000,000 for medium and large data sets, all 
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results of the ten cooling functions would be invalid.  

 

 

 

 

Fig. 16: The comparison of the convergence performance between ten cooling functions 

(with 8 input clustering methods): (a) tested on E-coli by CC; (b) tested on Normal by CC; 

(c) tested on ISOLET by CC. 
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Fig. 17: The comparison of the convergence performance between ten cooling functions 

(with 8 input clustering methods): (a) tested on E-coli by MOCC; (b) tested on Normal by 

MOCC; (c) tested on ISOLET by MOCC.  
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By comparing these figures, it becomes clear that, when the size of data sets 

becomes bigger, the cooling functions require more time to get convergence. In 

other words, when Ensemble Clustering methods are used to analyse large data 

sets, an appropriate number of iterations should be set up carefully even for the 

same cooling function. In addition, the results illustrated in Fig. 16 and Fig. 17 

also show that the convergence speeds of cooling functions are related to the 

speeds of the cooling functions‟ curves closing to the abscissa, which is similar 

to those shown in Fig. 13 and Fig. 14.  

 

Secondly, we analyse the final values of objective functions for the ten cooling 

functions. For the small data sets, we plot the final convergent results in Fig. 18 

according to the retested experiments. Fig. 18 (a) displays the results generated 

by CC, and Fig. 18 (b) shows the results generated by MOCC. It seems that, for 

analysing small data set, the final convergent values obtained by using different 

cooling functions have no big difference between each other. Fig. 19 shows the 

final convergent results for the medium data sets. It has the same situation as in 

Fig. 18. Fig. 20 shows the final values of objective functions for the large data 

sets. We found that F5 and F10 have lower values than other cooling functions 

in both results of CC and MOCC. This situation is the same as those shown in 

Fig. 16 (c) and Fig. 17 (c).  
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Fig. 18: The comparison of final values of the objective functions between the ten cooling 

functions (with 8 input clustering methods): (a) tested on the small data sets ASC, E-coli, 

and Zoo by CC; (b) tested on the same data sets by MOCC.  
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Fig. 19: The comparison of final values of the objective functions between the ten cooling 

functions (with 8 input clustering methods): (a) tested on the medium data sets Normal 

and Yeast by CC; (b) tested on the same data sets by MOCC.  
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Fig. 20: The comparison of final values of the objective functions between the ten cooling 

functions (with 8 input clustering methods): (a) tested on the large data sets ISOLET and 

Letter by CC; (b) tested on the same data sets by MOCC.  
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Based on the above discussion, we may have the following findings. For small 

data sets, once the final values of objective functions are convergent, there will 

be no much difference between these values in general. However, for analysing 

large data sets, F5 and F10 may not be able to obtain global optima as well as 

other cooling functions.  

 

From Fig. 13 to Fig. 20, all illustrated results are generated by using 8 input 

clustering methods (we call them R8). For the results generated by using 16 

input clustering methods, we call them R16. For the convergence rate of cooling 

functions and the final values of objective functions, the findings obtained from 

R16 are the same as those from R8. So we do not describe them again for R16.  

 

Thirdly, we analyse the accuracy of the results. Fig. 21 shows the WK scores for 

all results generated by CC using 8 input clustering methods. By comparing Fig. 

21 with Fig. 18, Fig. 19 and Fig. 20, we can see that, although ten cooling 

functions have similar final convergent values for small and medium data sets, 

the accuracies of these results differ from each other. For large data sets, the 

accuracy of the results also cannot be predicted by the objective function values 

shown in Fig. 20 (a). The similar findings have been obtained from the results 

generated by MOCC.  It means the accuracy of these results depends on the 

nature of CC and MOCC. In other words, if cooling functions generate the same 

(or comparable) convergent results for a data set, the accuracy of these results 

will only depend on the nature of the Ensemble Clustering method.  

 

One question is how the accuracy of results will change if more single 

clustering algorithms are chosen to be the input methods for the Ensemble 

Clustering method. We discuss this issue by comparing R8 with R16.  

 

In this chapter, we plot the best case and the worst case of the comparison in Fig. 

22 and Fig. 23 respectively. Fig. 22 shows the best case where CC and MOCC 

are tested using the ten cooling functions on E-coli. In this case, R16 generated 

by CC and MOCC are better than R8. Fig. 23 displays the worst case where CC 

and MOCC are tested using the ten cooling functions on Yeast, and shows that 
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R16 are worse than R8.  

 

 

 

 

Fig. 21: The comparison of WK scores for the results generated by CC (with 8 input 

clustering methods): (a) CC being tested using ten cooling functions on ASC, E-coli, Zoo 

and Normal; (b) CC being tested using ten cooling functions on Yeast, ISOLET and 

Letter.  
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Fig. 22: The best case of comparing the accuracy of the results between using different 

numbers (8 and 16) of input clustering methods: (a) the WK scores of the results generated 

by CC analysing E-coli; (b) the WK scores of the results generated by MOCC analysing 

E-coli.  
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Fig. 23: The worst case of comparing the accuracy of the results between using different 

numbers (8 and 16) of input clustering methods: (a) the WK scores of the results generated 

by CC analysing Yeast; (b) the WK scores of the results generated by MOCC analysing 

Yeast.  
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Fig. 24 denote the WK scores that are much lower than the mean of the group. 

In other words, the red bars mean that the corresponding methods are weak (or 

not appropriate) for the E-coli data set. It is clear that there are two weak 

clustering methods in the 8 input methods group (i.e. 25% of the input methods 

are weak), and four weak clustering methods in the 16 input methods group (i.e. 

there is also 25% of these input methods are weak). Fig. 25 illustrates the 

clustering accuracy of the input clusters for the Yeast data set corresponding to 

Fig. 23. There are three weak input methods in the 8 methods group (i.e. over 37% 

of these methods are weak), and eight weak methods in the 16 methods group 

(i.e. 50% of these methods are weak).  

 

 

 

Fig. 24: The clustering accuracy comparison between input methods of the two input 

clustering methods groups for E-coli corresponding to Fig. 22: (a) the 8 input methods 

group; (b) the 16 input methods group.  
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For the E-coli data set, the added input methods increased the mean accuracy 

without raising the percentage of weak methods. For the Yeast data set, the 

added input methods not only increased the percentage of weak methods, but 

also decreased the mean accuracy of the group. By comparing Fig. 25 with Fig. 

24, we can observe that, for any of the cooling functions, using more input 

methods for Ensemble Clustering can only improve the accuracy of results 

when most of these input methods are appropriate (or most of them generate 

comparable or better results than the mean) for the given problem.  

 

 

 

 

Fig. 25: The clustering accuracy comparison between input methods of the two input 

clustering methods groups for Yeast corresponding to Fig. 23: (a) the 8 input methods 

group; (b) the 16 input methods group.  
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4.4.2 The second group of experiments: tested on data sets with different 

dimensionalities  

In order to analyse the effect of different cooling functions on Ensemble 

Clustering for analysing data sets with different dimensionalities, we discuss the 

relevant results in this section. The experiments were tested on the fourth group 

of data sets, i.e. the variant dimensionality data sets group. We still analyse the 

results from three aspects (i.e. the convergence rate, final values of objective 

functions, and the accuracy of results) as discussed in the first experiment 

group.  

 

First of all, we analyse the convergence rate of the ten cooling functions. Fig. 26 

and Fig. 27 show the sample traces generated by CC being tested using ten 

cooling functions on three different dimensional VAR (900 instances) data sets 

and ISOLET (900 instances) data sets respectively. After comparing these 

sample traces with the figures from Fig. 13 to Fig. 17, we have the same 

findings as those discussed in the first experiment group for the convergence 

speeds of cooling functions. The finding is that convergence speeds of cooling 

functions are relevant to the speeds of the cooling functions‟ curves closing to 

the abscissa.  
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Fig. 26: The comparison of the convergence performance between ten cooling functions 

(with 8 input clustering methods): (a) tested on VAR (900 instances with 30 

dimensionalities) by CC; (b) tested on VAR (900 instances with 150 dimensionalities) by 

CC; (c) tested on VAR (900 instances with 600 dimensionalities) by CC.  
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Fig. 27: The comparison of the convergence performance between ten cooling functions 

(with 8 input clustering methods): (a) tested on ISOLET (900 instances with 30 

dimensionalities) by CC; (b) tested on ISOLET (900 instances with 150 dimensionalities) 

by CC; (c) tested on ISOLET (900 instances with 617 dimensionalities) by CC.  
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In addition, we found that the cooling functions have the slowest convergence 

speeds for the highest dimensional data sets, while have the fastest convergence 

speeds for the smallest dimensional data sets. In addition, if we compare Fig. 26 

with Fig. 27, it can be seen that the convergence speeds of cooling functions 

have different delays for VAR900 and ISOLET900 when their dimensionality 

becomes higher. Additionally, for different data sets with the same 

dimensionality, we found that one cooling function may have different 

convergence speeds. The same findings can be obtained from the results 

generated by MOCC.  

 

The above phenomena suggests that, for the same clustering problem, the higher 

the dimensionality of data sets is, the slower the convergence speeds of cooling 

functions will be; for different clustering problems, the delay of convergence 

speeds may be different when the dimensionality of data sets becomes higher. 

Therefore, when using Ensemble Clustering methods to analyse high- 

dimensional problems, it is important to consider the delay of convergence 

speeds of cooling functions.  

 

Secondly, we analyse the final values of objective functions for the cooling 

functions. Fig. 28 shows the final convergent results generated by CC. In Fig. 

28 (a), the highest dimensional data set is VAR900_600. For this data set, the 

final convergent agreement fitness values are the highest. For the lowest 

dimensional data set VAR900_30, the results have the lowest convergent 

agreement fitness values. Fig. 28 (b) also shows that the highest dimensional 

data set ISOLET900_617 has the highest convergent values, and the lowest 

dimensional data set ISOLET900_30 has the lowest convergent values. The 

reason is that, in this data set group, the small and medium dimensional data 

sets were generated from the highest dimensional data sets.  
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Fig. 28: The comparison of final values of the objective functions between the ten cooling 

functions (with 8 input clustering methods): (a) tested on the three different dimensional 

VAR900 (i.e. 900 instances) data sets by CC; (b) tested on the three different dimensional 

ISOLET900 (i.e. 900 instances) data sets by CC.  
 

 

 

 

 

 

 

20000

22000

24000

26000

28000

30000

32000

34000

36000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A
gr

ee
m

en
t 

FI
tn

es
s 

V
al

u
e

Cooling Functions
(a)

VAR900_30

VAR900_150

VAR900_600

10000

15000

20000

25000

30000

35000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

A
gr

ee
m

en
t 

FI
tn

es
s 

V
al

u
e

Cooling Functions
(b)

ISOLET800_30

ISOLET800_150

ISOLET800_617



Chapter 4: The Effect of Cooling Functions for CC and MOCC 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   93 

Ensemble Clustering via Heuristic Optimisation 

 

In the small and medium dimensional data sets, each instance is a subset of the 

corresponding instance in the high-dimensional data sets. However, the known 

clusters we have only correspond to the high-dimensional data sets. Therefore 

the clustering results of small and medium dimensional data sets may be much 

different from the known clusters. We can observe that, the more attributes we 

choose, the more accurate the input clusters (generated by input methods) tend 

to be, so that the final results generated by Ensemble Clustering methods will be 

more accurate. The above characteristics also appeared in the results generated 

by MOCC.  

 

From Fig. 26 to Fig. 28, all illustrated results are generated by using 8 input 

clustering methods (i.e. R8). For the convergence rate of cooling functions and 

the comparison of objective functions‟ values, R16 has demonstrated the same 

phenomena as above, so we do not include those figures of R16 in this section.  

 

Finally, we discuss the accuracy of results. Fig. 29 shows the WK scores of the 

results generated by CC. In Fig. 29 (a), the highest dimensional data set has the 

most accurate results, and the lowest dimensional data set has the worst 

accuracy. This situation is also shown in Fig. 29 (b). It is clear that Fig. 29 

provides further evidence for the message mentioned in the last two paragraphs.  
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Fig. 29: The comparison of WK scores for the results generated by CC (with 8 input 

clustering methods): (a) CC being tested using ten cooling functions on the three different 

dimensional VAR900 data sets; (b) CC being tested using ten cooling functions on the 

three different dimensional ISOLET900 data sets.  
 

 

 

In this section, we also discuss the effect of the number of input methods on the 

accuracy of results. As the discussion of the first experiment group, we choose 

the best case and the worst case for our discussion. Fig. 30 (a) illustrates the best 

case where CC is tested using the ten cooling functions on the VAR900_600 

data set. The results R16 (generated by CC with 16 input methods) are clearly 

better than those results R8 (generated by CC with 8 input methods). Fig. 30 (b) 
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illustrates the worst case where CC is tested using the ten cooling functions on 

the ISOLET900_30 data set. Although it is the worst case, the results R16 are 

still better than R8. From the discussion of the first experiment group, we could 

hypothesise that most of the input methods are appropriate for these two data 

sets (i.e. VAR900_600 and ISOLET900_30), or most of them generated results 

that have comparable or better accuracy than the mean.  

 

 

 

 

Fig. 30: The accuracy comparison of the results between using different numbers (8 and 16) 

of input clustering methods for analysing different dimensional data sets: (a) the best case 

that the results generated by CC analysing VAR900_600; (b) the worst case that the 

results generated by CC analysing ISOLET900_30.  
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In order to see if the hypothesis is valid, we analyse the quality of the 8 input 

methods group and the 16 input methods group for these two data sets. The 

results are shown in Fig. 31 and Fig. 32 respectively. Fig. 31 shows that three of 

the 8 input methods and six of the 16 input methods are weak for the 

VAR900_600 data set. In other words, there are about 63% input methods of 

each group that are appropriate for VAR900_600. Fig. 32 shows that two of the 

8 input methods and four of the 16 input methods generated very bad results 

(which are much worse than the mean) for the ISOLET900_30 data set. In other 

words, 75% input methods of each group generated good results that are 

comparable or better than the mean for ISOLET900_30. By analysing the above 

two figures, it is clear that our hypothesis is valid. Therefore, for analysing 

different dimensional data sets, Ensemble Clustering methods using more input 

methods may improve the clustering accuracy if most of the input methods are 

appropriate for the data sets.  
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Fig. 31: The clustering accuracy comparison between input methods of the two input 

clustering methods groups for VAR900_600 corresponding to Fig. 30(a): (a) the 8 input 

methods group; (b) the 16 input methods group.  
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Fig. 32: The clustering accuracy comparison between input methods of the two input 

clustering methods groups for ISOLET900_30 corresponding to Fig. 30(b): (a) the 8 input 

methods group; (b) the 16 input methods group.  
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4.4.3 Conclusions  

Based on the above discussion, we can summarise our findings as follows:  

 

Firstly, different cooling functions have different convergence speeds. An 

unsuitable cooing function can cause the Ensemble Clustering methods 

generating invalid results. In this chapter, the exponential cooling function F5 

has the fastest convergence speed, and the logarithmic cooling function F1 has 

the slowest convergence speed.  

 

Secondly, the convergence speeds of cooling functions could be forecasted by 

observing the speeds of the cooling functions‟ curves closing to the abscissa. 

This information would be very useful when employing a new cooling function 

for an Ensemble Clustering method.  

 

Thirdly, for analysing small data sets, it is good to use some fast cooling 

functions to save time. However, when using EC methods to analyse large data 

sets, the fast cooling functions may converge too quickly to reach global 

optima.  

 

Fourthly, the bigger the size of the data set is, the slower the convergence of 

cooling functions will be. In other words, if EC methods are used to analyse 

large data sets, the number of iterations should be set to be big enough to allow 

the cooling function to gain convergence.  

 

Fifthly, for the same clustering problem, the bigger the dimensionality of data 

sets is, the slower the convergence of cooling functions will be.  When using 

EC methods to analysing high-dimensional problems, it is important to consider 

whether the convergence speed of cooling functions will be delayed.  

 

Sixthly, for different data sets with the same size and dimensionality, the 

convergence speed of a cooling function may be different. It depends on the 
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nature of these data sets.  

 

Seventhly, for a specific clustering problem, if all cooling functions generated 

the same (or comparable) convergent results, the accuracy of these results will 

only depend on the nature of the Ensemble Clustering method.  

 

Finally, for analysing a specific data set, Ensemble Clustering methods using 

more input methods can improve the accuracy of results when most of the input 

methods are appropriate for the data set (or most of them generate comparable 

or better results than the mean).  

4.5 Summary  

This chapter has presented many important insights into behaviours of cooling 

functions in the context of SA-based Ensemble Clustering. Ten cooling 

functions have been selected and studied in this chapter, and two Ensemble 

Clustering methods (CC and MOCC) have been used as representatives to test 

the cooling functions on thirteen different data sets. These insights can be very 

useful in assisting with the choice of cooling functions for different clustering 

problems. For example, F5 and F10 can be an ideal choice for saving time when 

analysing small data sets, but may not be good for analysing large data sets 

(because they may converge too early to obtain global optima). In general, for 

choosing a suitable cooling function or adjusting settings of a cooling function, 

we need to combine overall information to make an informed decision.  
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Chapter 5: K-Ants Consensus Clustering 

In Chapter 3, we have introduced a novel heuristic optimisation-based Ensemble 

Clustering method called Multi-Optimisation Consensus Clustering (MOCC). 

MOCC employs Simulated Annealing to optimise the combination of internal 

and external clustering information. The results of MOCC have demonstrated 

that MOCC performed more stably and generated better results than CC. 

However, based on our experiments, we have observed that MOCC has a very 

expensive time cost. In order to have a good clustering efficiency as well as the 

clustering accuracy, this chapter presents another novel heuristic optimisation- 

based Ensemble Clustering method, which can overcome the weakness of 

MOCC. 

 

5.1 Introduction 

To develop an efficient and robust optimisation framework for Ensemble 

Clustering is still a challenge [Fern and Brodley, 2004; Li et al., 2009; Li et al., 

2004; Swift et al., 2004]. First of all, developing an efficient objective function 

is not an easy task. Secondly, for heuristic optimisation-based methods, 

computational costs are very high especially for analysing large data sets. Last 

but not least, it is difficult to guarantee that global optima can be reached after 

an optimisation search. Among these difficulties, how to design an efficient 

objective function is the key. If we treat input clusterings as external 

information, and characteristics of given data as internal information, we can 

comprehend the key problem as designing an objective function that can 

efficiently combine internal information with external information for Ensemble 

Clustering.  
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A promising method for describing internal information of given data is called 

Minimum Description Length (MDL), which was firstly introduced by Rissanen 

[1983; 1978]. A key advantage of the MDL principle is that it is sufficiently 

robust for describing a variety of data [Graunwald et al., 2004; Rissanen, 1983; 

Rissanen, 1996; Rissanen, 2001; Witten and Frank, 2005]. Graunwald et al. 

[2004] stated that MDL is a versatile method, whose performance is comparable 

to other well-known inductive inference methods such as Bayesian Statistics 

[Kontkanen et al., 2006; Lee, 1997].  

 

For solving optimisation problems, we take notice of the Ant Colony 

Optimisation (ACO) techniques [Colorni et al., 1991; Dorigo and Caro, 1999; 

Dorigo et al., 1999; Dorigo et al., 2006; Yang and Kamel, 2003]. Many 

improved versions of ACO have been employed for data clustering analysis. For 

example, Jiang and Chen [2007] introduced an ant colony algorithm for General 

Clustering; Zhao [2007] developed an ant colony clustering algorithm that 

combines the global pheromone updating with heuristic information to construct 

solutions. These literatures have revealed promising results for the applications 

of ACO [Jiang et al., 2007; Zhao, 2007]. The most remarkable advantage of 

ACO, for data clustering, is that each ant is an intelligent agent and has the 

ability of judging candidate objects with purposes [Colorni et al., 1991; Yang 

and Kamel, 2003]. When an ant finds an object, it can evaluate the object to 

decide whether to pick it up or not. This characteristic can enable ACO to have 

more efficient performance, and speed up the convergence of the optimisation.  

 

Based on the ideas and principles of MDL and ACO, we developed a novel 

Ensemble Clustering method called K-Ants Consensus Clustering (KACC) with 

the following advantages.  

 

1) The generation of the initial clustering solution is based on the agreement of 

input clusterings. KACC combines external information (i.e. input clusterings) 

by an Agreement Matrix, which has been presented in our previous work [Swift 

et al., 2004]. Based on the Matrix, we construct a set of agreement lists. And 

then the initial clustering solution will be generated based on the agreement 

lists.  
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2) Based on the idea of MDL [Graunwald et al., 2004; Rissanen, 1983], we 

developed Attributed Weighted Description Length (AWDL) as the criterion to 

combine internal information (i.e. characteristics of given data) for Ensemble 

Clustering. For each attribute of instances, we utilise a variance ratio as weight 

to score the contribution of the attribute.  

 

3) We developed a K-Ants Multiple Optimisation (KAMO) framework based on 

ant colony clustering theory without introducing parameters. Existing Ant 

Colony Algorithms (ACA) have too many parameters so that the results are very 

sensitive to the initialisation. It is often difficult for analysts to configure these 

parameters properly. Our Ensemble Clustering method solves this difficulty by 

the KAMO framework, which does not introduce any extra parameters.  

 

4) Our method has achieved the clustering combination across external and 

internal information. For Ensemble Clustering, we treat the input clusteirngs 

(generated by input clustering algorithms) as external clustering information, and 

treat the characteristics of given data as internal information. The existing 

ACA-based Ensemble Clustering methods only (or mainly) based on the external 

information provided by input methods. Therefore the clustering accuracy of 

these methods relies heavily on the accuracy of input clusterings. Our method, 

KACC, combines not only the external information but also the internal 

information to achieve the clustering optimisation, which can avoid biases 

contained by input clusterings.  

 

5) The heuristic optimisations of KACC have very good efficiencies. In order to 

seek global optima, computational costs of traditional heuristic optimisation 

methods are often very high especially for analysing large data sets. It is known 

as the NP-problem. In our method, we only try to guarantee the results with high 

enough degree of accuracies in the application context instead of trying to find 

global optima. We construct a well initial solution to restrict the search space. 

Based on the reasonable restricted search space, KACC has very low 

computational costs.  
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6) A validation vector, which consists of five clustering validation indices, is 

developed and used to evaluate the clustering solutions generated by the K-Ants 

Multiple Optimisation Framework. The final clustering result of KACC will be 

generated by the validation vector.  

 

In order to evaluate the performance of our method KACC, we compare KACC 

with several other Ensemble Clustering methods. Yang and Kamel [2003] 

proposed a method called Ensemble of Swarm Intelligence Clustering (ESIC), 

which is one of the few papers about clustering ensembles based on Ant Colony 

Optimisation techniques [Azimi et al., 2009]. We use ESIC as a representative 

to be compared with KACC. Moreover, seven Ensemble Clustering algorithms 

of the well-known R [R Development Core Team, 2005] package CLUE 

(CLUster Ensemble), which was developed by Hornik [2005], are also used for 

the performance comparison in this chapter. There are totally ten data sets that 

have been used for the experiments. The experimental results reveal that KACC 

generated much better results than above Ensemble Clustering methods.  

 

The rest of this chapter is organised as follows: Section 5.2 describes the work 

related to our Ensemble Clustering method. Section 5.3 introduces the details of 

the KACC algorithm. Section 5.4 describes designed experiments and the data 

sets used. Section 5.5 discusses the results generated from the experiments. 

Finally in Section 5.6, we draw some conclusions. 
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5.2 Related Works  

5.2.1 The Agreement Matrix 

The Agreement Matrix (A) was firstly presented by Swift et al. [2004], where A 

is used to describe the clustering agreement of a set of input clustering 

algorithms for a give data set. the formation of Agreement Matrix is based on an 

input clustering arrangement matrix Z. Each row of Z is an Input Clustering 

Arrangement generated by an Input Algorithm. Suppose we use eight individual 

clustering algorithms to generate eight clustering arrangements (i.e. one 

algorithm generates one arrangement) for the given data set, these individual 

algorithms are called Input Algorithms, and these clustering arrangements are 

called Input Clustering Arrangements (or Input Clusterings). The definition of 

the Agreement Matrix has been detailed in Chapter 2.2.1.  

 

5.2.2 Minimum Description Length (MDL)  

Our Attribute Weighted Description Length (AWDL) criterion is developed 

based on the basic principle of MDL.  MDL is an inductive inference method, 

and was developed for solving the model selection problem. MDL was firstly 

introduced by Rissanen [1983; 1978], who claimed that the more the data can be 

compressed, the more the data have been learned by us [Graunwald et al., 2004]. 

The principle of MDL is to detect the regularities in the given data and use the 

regularities to compress the description of the data [Graunwald et al., 2004].  

 

Nowadays, MDL has been improved and applied in many research areas such as 

data clustering. Kontkanen et al. [2006] proposed a MDL framework, which is a 

model-based method, for data clustering. The behind idea is that the more the 

description of the clusters can be compressed, the better the similarity of the 

instances within a cluster is. The total description length of all clusters is the 

global criterion that measures the dependence between clusters [Kontkanen et 

al., 2006]. Witten and Frank [2005] claimed that MDL is sufficiently robust for 

describing various types of data.  
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The following example simply describes the principle of using MDL for data 

clustering [Kontkanen et al., 2006; Witten and Frank, 2005]:  

 

Suppose we need to partition a data set (with n instances) into k clusters. We use 

Ci indicates the centre of the cluster i (where i= 1, 2, …, k). Based on the MDL 

principle, the data set can be described by the following two parts: 1) the cluster 

centres C1 …Ck; 2) for each instance, recording the difference between the 

instance and the cluster centre it belongs to. In theory, the shortest description 

length of the data set indicates the best cluster partitioning.  

 

Since we use AWDL instead of the existing MDL formulisations, we only 

introduce the basic principle of MDL in this chapter. For more detailed 

descriptions of MDL, please refer to the references [Graunwald et al., 2004; 

Kontkanen et al., 2006; Rissanen, 1983; Rissanen, 1996; Rissanen, 1978; 

Rissanen, 2001] and [Witten and Frank, 2005].  

 

It is worth to note that, in this chapter, we focus on showing how the results are 

generated by KACC, which utilises the AWDL criterion. We know that the 

modern formulisation of MDL is called Normalized Maximum Likelihood 

(NML) that was proposed by Rissanen [1996; 2001]. In future work, we will 

employ NML instead of AWDL for our KACC so that we can compare the 

performance of AWDL with the one of NML. By analysing the differences 

between them, we will refine AWDL or integrate their advantages to further 

improve the performance of KACC.  

5.2.3 Ant Colony techniques for Ensemble Clustering  

For different applications, various ant colony algorithms have been developed 

based on the Ant Colony Optimisation (ACO) theory during the past two 

decades [Bonabeau et al., 2000; Mullen et al., 2009]. One of the valued efforts 

is the development of ant colony clustering algorithms. The insights about ant 

colony clustering algorithms came from observing wild ants sorting their eggs, 

larvae and cocoons into different piles without direct supervisions in their nest 

[Deneubourg et al., 1991; Lumer and Faieta, 1994]. Moreover, the above 
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successful experiences have started to benefit the development of Ensemble 

Clustering.  

 

To our best knowledge, there is a limited amount of work that employs Ant 

Colony Algorithms (ACA) for Ensemble Clustering. The first ACA-based 

Ensemble Clustering method was proposed by Yang and Kamel [2003]. The 

method is called ESIC (Ensemble of Swarm Intelligence Clustering) [Yang and 

Kamel, 2003], which uses three ant colonies (with different moving speeds) to 

produce three clustering solutions as inputs, and then combines these inputs 

through a hypergraph model. The final result of ESIC is generated by 

implementing an ant colony algorithm again based on the hypergraph model.  

 

Based on ESIC, Yang et al. further improved their method and introduced their 

works in the literature [Yang and Kamel, 2006] and [Yang et al., 2006]. In the 

literature [Yang et al., 2006], Yang et al. added a clustering validity index for 

ant colonies to evaluate the clustering performance and find the best number of 

clusters; moreover, they employed the Adaptive Resonance Theory (ART) 

[Carpenter and Grossberg, 2003; Carpenter and Grossberg, 1987; Carpenter and 

Grossberg, 1990; Grossberg, 1987] to combine the clusterings produced by the 

ant colonies to generate final results. In the literature [Yang and Kamel, 2006], 

Yang and Kamel presented an Aggregated Multi-Ant Colonies (AMAC) 

algorithm, which introduces a queen ant agent to integrate with the 

implementation of several parallel ant colonies to generate clusters. The 

combination of these clusters is achieved by a similarity matrix calculated by a 

hypergraph model [Yang and Kamel, 2006].  

 

The above three Ensemble Clustering methods proposed by Yang et al. have two 

main drawbacks. One is that their ant colony algorithms have too many input 

parameters that need to be initialised. The propriety of initialisation depends 

much on subjective experiences and judgements, so that the results of their ant 

colony algorithms are very sensitive to the initialisation. The other is that these 

methods combine clustering information only based on their input clusterings. 

Therefore the clustering accuracy of these methods could be significantly 

affected by their input clusterings.  
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Wei [2009] proposed an ACA-based Ensemble Clustering method, which is very 

similar to the ESIC framework introduced by Yang and Kamel. Azimi et al. 

[2009] suggested a new ACA-based Ensemble Clustering method, which 

introduces a new ant colony algorithm, where a co-association matrix is used for 

simplifying and reducing input parameters. However this method still has the 

difficulty in which the clustering accuracy could be significantly affected by 

input clusterings.  

 

Recently, Gu et al. [2009] proposed an improved ant colony algorithm for 

Ensemble Clustering. Strictly speaking, this Ensemble Clustering method is not a 

real ACA-based framework since its consensus clustering part is just the NMF 

(Nonnegative Matrix Factorization) algorithm [Lee and Seung, 1999], which has 

no relations with ACA. Moreover, NMF produces final results only based on 

input clusterings, and the proposed ant colony algorithm has so many parameters.  

5.2.4 The Ensemble Clustering method called ESIC  

In this chapter, we use ESIC (Ensemble of Swarm Intelligence Clustering), 

proposed by Yang and Kamel [2003], as a representative of existing ACA-based 

Ensemble Clustering to compare with our method KACC. ESIC consists of 

three key components: Ant Colony Clustering, Hypergraph Representation, and 

Clustering Ensembles. The following subsections give detailed descriptions of 

these components.  

 Ant Colony Clustering  

The Ant Colony Clustering module contains three ant colony algorithms with 

different moving speeds of ants, which are the constant speed, the random speed, 

and the decreasing random speed. These ant colony algorithms are used to 

generate three clustering solutions to form into the input clusterings. The only 

difference between the three ant colony algorithms is the moving speed of ants. 

First we present the details of the Constant Speed Ant Colony Algorithm. For 

other two algorithms, we only present the differences of the definition for the 

ant moving speed.  



Chapter 5: K-Ants Consensus Clustering 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   109 

Ensemble Clustering via Heuristic Optimisation 

 

The Constant Speed Ant Colony Algorithm (CSACA) randomly maps all 

instances onto a plane, where each instance is represented by a coordinate value 

on the plane. The plane is divided into a number of square cells with the same 

size. Suppose that there are a number of ants on the plane. Each ant randomly 

chooses an instance i (not-selected by other ants), and measures the average 

similarity between the instance i and other instances within the cell that the 

instance i belongs to.  

 

The average similarity of the instance i in its cell is defined as equation (5.1)  

 

           
 

  
    

      

               
 

    

   (5.1) 

 

where s is the side length of the cell, and Ns is the neighbours of i within the cell; 

d(i, j) denotes the distance between the instances i and j on the plane; v is the 

moving speed of ants, and vmax is the maximal speed ants could have. The value 

of v can be simply set to be a number of cells. The variable   is the similarity 

coefficient. Under the same conditions, a larger   could enable the ant colony 

algorithm to have a quicker convergence with fewer clusters; the other way 

round, a smaller   could cause the algorithm to have a slower convergence with 

more clusters.  

 

After measuring the average similarity of the instance i, the probability of the 

ant picking up i is calculated by equation (5.2): 

 

             (5.2) 

                (5.3) 

where  

     
 

      
 (5.4) 

 

Equation (5.4) is a natural exponential expression, where the variable c is a 
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slope coefficient. Under the same conditions, increasing c can speed up the 

convergence of the algorithm. The probability of the ant dropping off the 

instance i is defined by equation (5.3).  

 

Once the ant picks up the instance i, it will randomly move to another cell on 

the plane with the moving speed v. We assume that the ant moved to the cell w. 

The ant will measure the average similarity again for i within the cell w and the 

probability of dropping off the instance i. If the probability Pd is high enough so 

that the ant drops i within the cell w, it will randomly choose another instance 

(unselected by other ants) to start again. Each ant will repeat the above activities 

until the whole system is converged (i.e. there are no more instances that need 

to be moved by ants) or after a certain number of iterations. The final clustering 

solution is obtained from square cells of the plane. All instances within a square 

cell are assigned into one cluster; in contrast, instances in different cells are 

assigned into different clusters. The number of non-empty cells on the plane 

indicates the total number of clusters.  

 

For the Random Speed Ant Colony Algorithm (RSACA), before each 

movement of ants, the moving speed v in equation (5.1) is randomly chosen 

from the interval [1, vmax]. For the Decreasing Random Speed Ant Colony 

Algorithm (DRSACA), the moving speed v is set to be a large value within the 

interval [1, vmax] at the beginning, and then the value of v will be decreased 

randomly as time goes on.  

 Hypergraph Representation  

For this part, Yang and Kamel [2003] employed a hypergraph model proposed 

by Strehl and Ghosh [2003] to combine the results generated from the Ant 

Colony Clustering module. The hypergraph model transforms input clustering 

arrangements into a hypergraph, where each vertex indicates an instance and 

each hyperedge represents the similarity between two vertices. In this way, the 

consensus clustering can be achieved by partitioning the hypergraph. The 

hypergraph model is constructed by two steps. The first step is to construct the 

Hypergraph Adjacency Matrix (HAM), and the second step is to build the 
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Symmetric Similarity Matrix (SSM).  

 

The rows of HAM denote the vertices (i.e. instances) of the hypergraph, the 

columns of HAM indicate the edges of the hypergraph. Suppose that a data set 

Q has n instances, and the Ant Colony Clustering module generated three 

clustering solutions R1, R2 and R3 for Q. The corresponding numbers of 

clusters for the three solutions are k1, k2 and k3. For the data set Q, HAM will 

have n rows and (k1+ k2+ k3) columns. Each column of HAM stands for one 

cluster. For each column, the members of the cluster are set to be 1; others are 

set to be 0.  

 

After constructing HAM, the Symmetric Similarity Matrix is built to combine 

the results of the three ant colony algorithms. Suppose we get a Hypergraph 

Adjacency Matrix H, the matrix SSM can be represented as equation (5.5):  

 

      (5.5) 

 

where H
T
 is the transpose of H. Each row or column of S indicates a vertex of 

the hypergraph. Each element (except those along the leading diagonal) 

signifies the weight of the corresponding hyperedge.  

 Clustering Ensembles  

The final clustering result is generated by the Clustering Ensembles module. 

Based on the Symmetric Similarity Matrix, an ant colony algorithm (e.g. 

CSACA) is used again to cluster the vertices of the hypergraph to obtain final 

results. Equations (5.1) - (5.4) are still used to calculate the average similarity, 

picking up and dropping off probabilities, but the distance definition is different. 

In equation (5.1), each instance is represented by a coordinate value on the 

plane, whereas in the Clustering Ensembles module, the vertices of the 

hypergraph are regarded as instances. The distance between two vertices is 

defined as equation (5.6)  

       
      

         
 (5.6) 

where  
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                               (5.7) 

 

g(i) indicates an aggregation of vertices that have edges connected to vertex i. 

D(i, j) means the aggregation of the vertices that belong to g(i) or g(j) (but not 

both).  

5.2.5 Seven algorithms of the CLUE package  

The CLUE (CLUster Ensemble) package developed by Hornik [2005] is an 

extension package for R, which is a well known programming language 

developed by R Development Core Team [2005]. CLUE provides the 

cl_consensus() function to implement different consensus clustering algorithms 

[Hornik, 2005].  

 

In this chapter, we choose seven consensus clustering algorithms provided by 

the cl_consensus() function to compare with our method KACC. The seven 

algorithms are outlined as follows (cited from [Hornik, 2005]): 

1) “SE” – a fixed-point algorithm for obtaining soft least squares Euclidean 

consensus partitions;  

2) “GV1” – the fixed-point algorithm for the “first model” proposed by 

Godon and Vichi [2001];  

3) “DWH” – an extension of the greedy algorithm proposed by Dimitriadou, 

Weingessel and Hornik [2002];  

4) “HE” – a fixed-point algorithm for obtaining hard least squares Euclidean 

consensus partitions;  

5) “SM” – a fixed-point algorithm for obtaining soft median Manhattan 

consensus partitions;  

6) “GV3” – a SUMT algorithm for the “third model” proposed by Godon 

and Vichi [2001];  

7) “soft” – a SUMT method based on soft partitions.  

 

For the details of these algorithms, please refer to the references [Gordon and 

Vichi, 2001; Hornik, 2005] and [Dimitriadou et al., 2002].  
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5.3 The K-Ants Consensus Clustering algorithm  

Fig. 33 shows the flow chart of the K-Ants Consensus Clustering (KACC) 

algorithm. It is clear that KACC consists of four modules, which are the 

Generation of the Initial Solution, the Description of the Initial Solution based 

on AWDL, the K-Ants Multiple Optimisation Framework, and the Validation 

Vector module. The KACC algorithm is detailed in the following subsections.  

5.3.1 Generation of the Initial Solution  

 Construction of Agreement Lists  

The construction of the agreement lists is based on an Agreement Matrix that 

has been introduced in Section 2.2.1. In order to construct an Agreement Matrix, 

 
 

 
Fig. 33: The flow chart of the K-Ants Consensus Clustering algorithm. 
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the KACC algorithm uses a clustering arrangement matrix Z as one of its inputs. 

The Z is formed by the clustering results generated by a set of selected 

clustering methods (these methods are called input clustering algorithms). Each 

row of Z is one clustering result. Based on the Z, KACC creates an Agreement 

Matrix. Each element of the Agreement Matrix (except the elements along the 

leading diagonal) corresponds to a pair of instances. The value of the element 

indicates how many input clustering methods agree that the corresponding two 

instances are assigned into the same cluster.  

 

After creating the Agreement Matrix, we can start to construct the agreement 

lists. For the values in the Agreement Matrix, we assume that a pair of instances 

with a high agreement value should have a high probability of assigning this 

pair of instances into one cluster. Therefore, the unique instance-pairs, which 

have the same agreement value, should have the same probability of assigning 

instances of each pair into the same cluster. Based on this assumption, we assign 

unique instance-pairs into different groups according to their agreement values 

in the Agreement Matrix. In other words, each group is an agreement list that 

only contains the unique instance-pairs that have the same agreement value. 

Once the agreement lists are constructed, the next step of KACC is to generate 

the initial combinational clustering solution C0.  

 The Initial Combinational Solution C0  

The agreement list with the highest agreement value will have the highest 

priority of being processed for generating the initial solution. Other agreement 

lists will be processed in descending order according to their agreement values. 

In addition, within these agreement lists, there is a special list which contains 

unique instance-pairs that have the zero agreement. It means that, for any of 

these instance-pairs, all input clustering methods agree that the corresponding 

two instances should not be assigned into the same cluster. In order to highlight 

this agreement list, we name it Full Disagreement List (FDL). The FDL list will 

be treated as a condition list. In other words, during the whole process of 

generating C0, any instance-pair of FDL cannot appear in any cluster.  

 



Chapter 5: K-Ants Consensus Clustering 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   115 

Ensemble Clustering via Heuristic Optimisation 

The procedure of generating C0 starts from the agreement list with the highest 

priority. For each instance-pair, four different situations need to be considered. 

Firstly, if the corresponding two instances have not been assigned into any of 

existing clusters, these two instances will become a new cluster. Secondly, if 

these two instances have been assigned into one cluster, no operation will be 

executed. Thirdly, if these two instances exist in two different existing clusters, 

these two clusters will be merged into one cluster. Finally, if no more than one 

of these two instances has been assigned into an existing cluster, the remaining 

instance will be assigned into the same cluster. For the third and fourth 

situations, it is important to note that, after assigning an instance into an existing 

cluster or merging two existing clusters, any instance-pair of the FDL list must 

not appear in the updated cluster, otherwise, the operation will be undone.   

 

The KACC algorithm uses an estimated number of clusters k as one of the 

inputs. It means the initial clustering solution C0 should have k clusters. 

Therefore, the process of generating C0 will be continued until all instances 

have been assigned into k clusters based on the agreement lists.  

5.3.2 Description of C0 based on AWDL  

The original data set M is one of the inputs of KACC. Rows of M correspond to 

instances, and columns of M correspond to attributes. Before using AWDL to 

describe C0, we need to standardise the M to be X. For each attribute, the range 

of the values will be standardised into [0, 1]. The standardisation equation is 

shown as equation (5.8):  

 

    
       

     
     

   
     

         
     

     
 (5.8) 

 

where Xij and Mij indicate the jth attribute of the ith instance in X and M 

respectively; n denotes the total number of instances;               denotes 

the maximal value of the jth attribute for all instances, and               

corresponds to the minimal value. The purpose of standardising the original data 

set is to prepare for calculating the Attribute Weighted Coefficient (AWC).  
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 The Attribute Weighted Coefficient  

Clustering aims to assign instances into different groups according to the 

differences between these instances. Variance measures the degree of variation 

for values of a variable. The higher the variance is, the larger the variety of the 

values is. A high variance means a high difference between values. Different 

attributes often provide different contributions of describing differences 

between instances. The bigger the range of the variation of an attribute is, the 

bigger contribution the attribute provides. In order to describe the contributions 

provided by different attributes, we adopt the variance to weight each attribute.  

 

The way of calculating the weight for each attribute is shown by the following 

equations:  

   
         

  
   

 
 

(5.9) 

   
    
 
   

 
 (5.10) 

   
  

               
 (5.11) 

 

where Dj indicates the variance of the jth attribute for instances in the data set X, 

n indicates the total number of instances, Xij denotes the value of the jth attribute 

of the ith instance, and μj denotes the mean value for the jth attribute over the n 

instances. The variable wj indicates the weight of the jth attribute. The total 

number of attributes is a.  

 The Attributed Weighted Description Length criterion  

The Attributed Weighted Description Length (AWDL) criterion L consists of 

three parts, which are the sum of mean values Sm, the sum of weighted absolute 

deviations Sd, and the attribute weight vector W.  

 

            (5.12) 

 

AWDL is defined by equation (5.12), where W is a vector (as defined by 
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equation (5.13)) that consists of weights of all attributes.  

 

               (5.13) 

 

According to equations (5.9)-(5.11), we know that the attribute weight vector is 

a constant vector. In other words, the attribute weight vector will not be changed 

whatever the clustering result is.  

 

Therefore, we simplify the description of AWDL as equations (5.14)-(5.16):  

 

         (5.14) 

                         

 

   

 

        

 

   

 

   

 

(5.15) 

 

                               

 

   

 

   

              

               

 

   

 

   

 

   

 

(5.16) 

 

 

where Sm signifies the sum of mean values of all clusters; mpj denotes the mean 

value of the jth attribute in the pth cluster, where the value of j varies from  1 

to a;  k is the total number of clusters. In equation (5.16), we use the absolute 

deviation to measure the difference between the mean and the value of each 

instance for each cluster. Sd stands for the sum of weighted absolute deviations 

for all instances, and Xqj denotes the value of the jth attribute of the qth instance 

in the pth cluster, where the value of q varies from 1 to T. The variable T 

indicates the number of instances in the pth cluster. According to equations 

(5.14)-(5.16), the description of the initial clustering solution C0 can be 

simplified to be L
’
0.  
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5.3.3 The K-Ants Multiple Optimisation Framework 

The K-Ants Multiple Optimisation (KAMO) framework contains three 

independent optimisation phases: the Agreement Based MDL Optimisation 

(ABMDLO), the Equal Probability MDL Optimisation (EPMDLO), and the 

Equal Probability Agreement Fitness Optimisation (EPAFO). The EPMDLO 

phase optimises the combination of internal information of the given data. The 

EPAFO phase optimises the combination of external information provided by 

input clusterings. And the ABMDLO phase optimises the integration of internal 

and external information. Each optimisation phase starts from the initial 

clustering solution C0. K-Ants means the total number of ants used for each 

optimisation phase is K which is equal to the estimated number of clusters k. 

Each ant is in charge of one cluster. We also endow these ants with intelligence. 

Each ant can remember all members of its cluster, and the information can be 

automatically updated if the members of its cluster have been changed.  

 

Candidate solutions are generated by each ant moving instances from one 

cluster to another cluster. The AWDL criterion is used to evaluate these 

solutions to decide whether accept them or not. The activity of an ant moving an 

instance consists of two actions: picking up, and dropping off. The KAMO 

framework has two different definitions for the picking up probability. One 

definition uses the equal probability, another uses the agreement-based 

probability.  

 The Agreement Based MDL Optimisation  

Agreement Based MDL Optimisation (ABMDLO) is based on both agreements 

of input clusterings and interior characteristics of data sets. The agreements of 

input clusterings are used to evaluate the probability of an ant picking up an 

instance; and the interior characteristics of data sets are presented by the L′ 

which is expected to be as small as possible. The objective function has been 

given as equations (5.14)-(5.16).  

 

The probability of picking up an instance by an ant is defined by equations (5.17) 

- (5.20),  
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 (5.17) 

   
        

 
 (5.18) 

   
                                        

                           
  (5.19) 

       (5.20) 

 

where v1 is named Compound Agreement Ratio, and v2 is the Simple Agreement 

Ratio. The variable A denotes the Agreement Matrix. Aiq indicates the 

agreement values of instance-pairs within the cluster q, and each of these 

instance-pairs must include the instance i. max(Aiq) means the maximum value 

within these agreement values. Nq denotes the number of the maximum 

agreement values within Aiq. The variable Ai stands for the agreement values of 

all instance-pairs that contain the instance i, and max(Ai) denotes the maximum 

agreement value within Ai. Ni signifies the number of maximum values within 

Ai.  

 

In equation (5.18), the variable r indicates the number of input clusterings. The 

picking up probability Vp is finally defined by equation (5.20), where v is the 

un-picking up probability. For an instance i, if the instance-pair (i, j) has the 

maximal agreement value max(Ai), but j does not stay with the instance i in the 

same cluster, v will be 0. It means the instance i will be definitely picked up by 

the ant. If i and j stay in the same cluster, the value of v will be the smaller one 

of v1 and v2.  

 

Once an ant picks up an instance from its cluster, it will go through other 

clusters to see whether the movement of the instance can reduce L′. If the 

movement does make L′ smaller, the ant will drop the instance into that cluster 

and go back to its own cluster to pick up another instance. Meanwhile, the 

information of instance members for these two clusters will be updated in the 

memory of the corresponding two ants. If the movement does not make L′ 

smaller, the ant will put the instance back and mark it as picked. And then the 
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ant will try to pick up another un-picked instance to repeat the above actions. If 

the picking up probability of an instance is very low so that the ant does not 

pick it up, the instance will be also marked as picked. If all instances of a cluster 

are marked as picked, the ant will clear all marks and start again. All ants take 

actions in turn. The whole process will be continued until the value of L′ is 

converged or the predefined number of iterations is reached.  

 

The probability of dropping off an instance by an ant is defined by equation 

(5.21),   

 

    
      

      
 

             
  (5.21) 

 

where L′old indicates the value of AWDL before an ant moving an instance, and 

L′new stands for the value of AWDL after a movement of the ant. The definition 

of Vd is applied for all optimisation phases: ABMDLO, EPMDLO, and EPAFO.  

 The Equal Probability MDL Optimisation  

Equal Probability MDL Optimisation (EPMDLO) starts from the Initial 

Solution C0 to seek the optimal clustering solutions by minimising L′. The 

objective function is also defined by the equations (5.14)-(5.16). Each ant 

randomly picks up instances within its cluster. The whole process of EPMDLO 

is similar to the process of ABMDLO. The only difference is that, the instances 

within a cluster have the equal probability to be picked up. The quality of the 

results of EPMDLO is based on the linear correlation between the value of L′ 

and the accuracy of candidate solutions. We expect that the linear correlation 

could be the minimal value -1. In other words, the ideal situation is that, when 

the value of L′ goes down, the accuracy of candidate solutions should be going 

up.   

 The Equal Probability Agreement Fitness Optimisation  

The whole process of Equal Probability Agreement Fitness Optimisation 

(EPAFO) is the same as the process of EPMDLO but with a different objective 
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function. The objective function of EPAFO is an agreement fitness function. 

EPAFO aims to seek the solutions that maximise the value of the agreement 

fitness function. According to our previous works in [Li et al., 2009; Swift et al., 

2004], the agreement fitness function is defined as equations (5.22)-(5.25):  

 

                             (5.22) 

       (5.23) 

       
         

 

  

     

    

   

     

           

  (5.24) 

           

 

   

 (5.25) 

 

β is the agreement threshold, which rewards clusters with agreement values 

above β, and penalises clusters with agreement values below it; Max(A) and 

Min(A) are the maximum agreement value and the minimum agreement value 

respectively in the agreement matrix A. A' is the weighted agreement matrix, 

which is given by subtracting β from each element of A. The leading diagonal 

elements of A' are set to be zeros. f(Ci) is the agreement fitness for the ith cluster 

of the clustering arrangement C. The variable        
′  indicates the 

corresponding weighted agreement value, which is related to the instances k and 

q in the ith cluster Ci, in A'. The variable    denotes the size of the ith cluster 

(i.e. the number of instances in the ith cluster). f(C) indicates the total agreement 

fitness of the clustering arrangement C, where the number of clusters in C is m.  

 Relations of the three optimisation phases  

These three optimisation phases are complementary to each other. The key 

characteristic of EPMDLO is that it mainly focuses on describing interior 

characteristics of data sets, so that it can abate the effect of biases of input 

clusterings. EPAFO combines external information (i.e. input clusterings) to 

seek an optimal solution with the maximal agreement. ABMDLO integrates the 

comments (agreements) of input clusterings with the description of interior 
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characteristics of data sets to seek the optimal solution. In this way, the three 

optimisation phases can abate the biases of both internal and external 

information.  

 

Based on the results of EPMDLO, ABMDLO and EPAFO, the final result is 

generated by selecting the best solution from these results. A validation vector, 

which combines five validation indices, is developed to evaluate the quality of 

these results.  

5.3.4 Validation Vector of Five Indices  

The clustering validation indices are basically classified into two types: the 

internal validation indices, and the external validation indices [Halkidi, 2001]. 

External validation indices evaluate clustering results based on prior knowledge 

(e.g. the true clusters of the given data set), and measure how close the 

generated clustering results and the prior knowledge are. Internal validation 

indices do not rely on prior knowledge. They evaluate clustering results based 

on the given data set itself. During the process of clustering a given data set, 

internal validation indices can only be used to evaluate the quality of candidate 

clustering solutions.  

 

For the KACC algorithm, we developed a validation vector to combine five 

internal validation indices to evaluate the quality of clustering solutions. The 

five validation indices are Silhouette Width [Rousseeuw, 1987], Homogeneity 

[Shamir and Sharan, 2002], Separation [Shamir and Sharan, 2002], 

Davies-Bouldin Index [Davies and Bouldin, 1979], and C-Index [Hubert and 

Schultz, 1976]. The following five paragraphs give a brief description of these 

indices.  

 

Silhouette Width [Rousseeuw, 1987] was firstly proposed by Rousseeuw in 

1987. It is calculated as equation (5.26):  

 

   
 

 
 

         

              

 

   

 (5.26) 
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where n is the total number of instances, R(i) denotes the average distance 

between instance i and  the instances in the nearest cluster (which is the closest 

neighbour to the cluster instance i belongs to), and r(i) indicates the average 

distance between instance i and other instances in the same cluster. The value of 

SW is expected to be maximised.   

 

Homogeneity [Shamir and Sharan, 2002] was suggested by Shamir and Sharan. 

Its definition is as follows:  

 

  
 

 
            

 

   

 (5.27) 

 

where n is the number of instances. d(ni, Ctrni) indicates the distance between 

the instance ni and the cluster centre       that ni belongs to. A smaller H infers 

a better clustering result.  

 

Separation [Shamir and Sharan, 2002] was also proposed by Shamir and Sharan. 

It is defined as equation (5.28): 

 

    
             

     
       (5.28) 

 

where ci and cj denote the cluster centres of the ith and jth clusters respectively. 

Ni is the number of instances in the ith cluster, and Nj is the number of instances 

in the jth cluster. A larger Sep indicates a better clustering result.  

 

Davies-Bouldin Index [Davies and Bouldin, 1979] is defined as the average 

maximal ratio of intra-cluster mean distances and inter-cluster distances across 

all clusters. The definition is shown as equation (5.29): 
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 (5.29) 

 

where k is the total number of clusters. d(ci, cj) is the distance between the 

centre of cluster i and the centre of cluster  j. ɵi is the average distance between 

the cluster centre ci and all instances in cluster i; and ɵj is the average distance 

between cj and all instances in cluster j. The smaller the value of DB is, the 

better the clustering result is.  

 

C-Index [Hubert and Schultz, 1976] was proposed by Hubert. The definition is 

shown as equations (5.30) - (5.31): 

 

   
       

     
      

 (5.30) 

where 

              

  

     

 

   

        (5.31) 

 

In equation (5.30), Q is the sum of distances between unique instance-pairs 

within each cluster, and p stands for the number of unique instance-pairs in Q. 

     
is the sum of p smallest distances between all unique instance-pairs, and 

     
is the sum of p largest distances between all unique instance-pairs. In 

equation (5.31), k is the total number of clusters. Ni is the number of instances in 

the cluster i. The variable nia denotes the ath instance in the cluster i, and nib 

denotes the bth instance in the same cluster i. d(nia, nib) indicates the distance 

between nia and nib. The value of CI is expected to be as small as possible within 

the interval [0, 1].  

 

For more details of these validation indices, readers are referred to the 

respective literature [Davies and Bouldin, 1979; Hubert and Schultz, 1976; 

Rousseeuw, 1987; Shamir and Sharan, 2002] given in the Reference Section.  

 

Decisions of the above five validation indices are mapped into a validation 



Chapter 5: K-Ants Consensus Clustering 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   125 

Ensemble Clustering via Heuristic Optimisation 

vector. The vector is one dimension and contains five elements. Each element 

corresponds to the decision of one validation index. The validation vector is 

defined by equations (5.32) - (5.33):  

 

                       (5.32) 

where  

    
 
 
 

                      (5.33) 

 

If a validation index i proves the result of EPMDLO is better than those of 

ABMDLO and EPAFO, the corresponding xi will be 0. If index i proves the 

result of ABMDLO is the best, the xi will be 1; and the xi will be 2 if EPAFO 

has been proved to have the best result. The final clustering result will be 

determined by comparing the number of 0 with the number of 1, and with the 

number of 2 in the validation vector. If a result has the most votes, it will be the 

winner and be selected as the final result.  

 

5.3.5 The whole framework of KACC  

In order to outline the whole framework of KACC, we describe its key steps in 

Fig. 34.  
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Input parameters: the clustering arrangement matrix Z, the estimated number of clusters k, the 

original data set M, the maximal number of iterations NK. 

1. Build the Agreement Matrix A based on the input clustering arrangement matrix Z. 

2. Assign unique instance pairs into different agreement lists based on their agreement 

values in A (sorted from large agreement values to small ones).  

3. Generate the initial clustering solution C0 by assigning all instances into k clusters based 

on the sorted Agreement Lists. The process starts from the agreement list with the 

maximal agreement value, followed by the list with the secondary agreement value, and 

so on.  

4. Standardise the original data set M to be X, where the values of each attribute are scaled 

into [0, 1].  

5. Calculate the weighted coefficient for each attribute of X based on variances of attributes. 

6. Describe the initial clustering solution C0 to obtain the initial description length L0 (can 

be simplified to be L’0.) based on the AWDL criterion.  

7. Use the novel K-Ants algorithm to start to optimise the initial clustering solution C0.  

a) Perform the Agreement Based MDL Optimisation (ABMDLO). This process is 

continued until the value of L′ is converged or the predefined number of iterations 

NK is reached. 

b) Perform the Equal Probability MDL Optimisation (EPMDLO). This process is 

continued until the value of L′ is converged or the number of iterations NK is 

reached.  

c) Perform the Equal Probability Agreement Fitness Optimisation (EPAFO). This 

process is continued until the value of L′ is converged or the number of iterations 

NK is reached.  

8. Use a validation vector to evaluate the results of ABMDLO, EPMDLO and EPAFO, and 

select the best one to be the final result.  

Output: an optimised clustering solution.  

 

Fig. 34: The key steps of K-Ants Consensus Clustering algorithm 
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5.4 Data Sets and Experiments  

5.4.1 Data sets 

Two groups of data sets have been used for our experiments. The information of 

these data sets is listed in Table 11. For each data set, the information includes 

the total number of instances, the number of attributes, and the true number of 

clusters. Group 1 consists of four data sets: Image (Image Segmentation), Iris, 

Wine, and Zoo. This group of data sets are used for comparing the performance 

between our KACC algorithm and the Ensemble Clustering method ESIC 

(Ensemble of Swarm Intelligence Clustering) proposed in the literature [Yang 

and Kamel, 2003]. Group 2 contains six data sets, which are SCCTS (Synthetic 

Control Chart Time Series), E-coli, Malaria, Normal, VAR (Vector 

Auto-Regressive), and WDBC (Wisconsin Diagnostic Breast Cancer). The sizes 

of the data sets in Group 2 are comparative bigger than those in Group 1, and 

most data sets in Group 2 have clear higher dimensionalities.  

 

 

Table 11: The data sets for experiments 

 

 Data Sets Number of 

Instances 

Dimensionality 

(Number of Attributes) 

Number of 

Clusters 

G
ro

u
p

 1
 Image 210 19 7 

Iris 150 4 3 

Wine 178 13 3 

Zoo 101 16 7 

G
ro

u
p

 2
 

SCCTS 600 60 6 

E-coli 336 7 8 

WDBC 569 30 2 

Malaria 530 48 14 

Normal 1830 20 60 

VAR 900 600 42 

Note:  We define the rows of each data set as instances, and the columns of each data set 

as attributes of instances. For a given data set, all instances have the same 

dimensionality. 

 

 

All data sets in Group 1 and the three data sets, SCCTS, E-coli and WDBC, in 

Group 2 were obtained from the UCI Machine Learning Repository website 

[Asuncion and Newman, 2007]. Since this website provides detailed 
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information for each of these data sets, readers are referred to [Asuncion and 

Newman, 2007] for more information. The other three data sets are VAR, 

Normal, and Malaria.  

 

VAR [Lütkepohl, 2007] is a synthetic data set that was generated from a vector 

autoregressive process [Sims, 1980]. In the original VAR data set, there are 60 

clusters. The number of instances in clusters varies from 1 to 60. In other words, 

the first cluster of VAR has one instance; the second cluster of VAR has two 

instances; and so on. Therefore a subset (which consists of the first m clusters of 

VAR, where m<60) has the same capability of testing clustering algorithms as 

the whole VAR data set without biasing results. In order to complete our 

experiments in a feasible amount of time, we only choose the first 42 clusters of 

the original VAR data set. The Normal data set was used in the literature [Swift 

et al., 2004]. Normal has a similar cluster structure to the VAR data set, but the 

main difference is that each cluster of Normal was generated from a 

multivariate normal distribution with different covariance and means [Swift et 

al., 2004]. Normal has 60 clusters. The number of instances of each cluster 

varies from 1 to 60. Malaria [Bozdech et al., 2003] is a microarray data set 

which has known true clusters: within each cluster, genes should have the same 

function; between clusters, different genes have different functions.  

5.4.2 Experiments Setup 

In order to validate the performance of KACC, we designed two groups of 

experiments. The first group is designed to compare the performance between 

KACC and ESIC. The Group 1 data sets are used for this group of experiments. 

For each data set, we run KACC for 20 times and look at the average 

performance. Since we have the true clusters of each data set, we use external 

validation indices to evaluate the accuracy of clustering results. Yang and 

Kamel employed an external index, F-measure [Rijsbergen, 1979] (to be 

described in Section 5.4.3), to evaluate the performance of ESIC in the literature 

[Yang and Kamel, 2003]. In order to compare KACC with ESIC, we also use 

F-measure to evaluate the performance of KACC.  
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In order to further compare KACC with other consensus clustering methods, we 

designed the second group of experiments. The Group 2 data sets are used for 

these experiments. Seven consensus clustering algorithms in the CLUE package 

(described in Section 5.2.5) are tested to compare with KACC. We analyse the 

average performance of 20 runs for each algorithm tested on each data set. For 

evaluating the accuracy of these results, we not only use F-measure but also 

utilise another external validation index, Weighted-Kappa [Viera, and Garrett, 

2005] (described in Section 2.4.1), to verify the results.  

 

In addition, for each group of experiments, the results of KACC are also 

compared with the Input Clusterings (generated by input clustering algorithms) 

to see how much the clustering accuracy has been improved by our KACC 

algorithm. In this chapter, we use the most common and simplest clustering 

algorithms, HC [Johnson, 1967; D‟andrade, 1978; Murtagh, 1983] and K-means 

[Mcqueen, 1967], to be the input algorithms for KACC. These input clustering 

algorithms are listed in Table 12. For a given data set, each algorithm generates 

an input clustering, and then the total eight input clusterings form into the Input 

Clustering Matrix.  

 

Besides, it is worth to note that the value of the maximal number of iterations 

NK is based on given data. In this chapter, we set NK to be 30, which is 

appropriate and large enough for our experiments.  

 

Table 12: A set of input clustering algorithms 

 

Algorithm 
Parameters 

Distance Matrix Linkage Initial Cluster Centre 

Hierarchical (H) Euclidean Single N/A 

Hierarchical (HSC) Spearman Complete N/A 

Hierarchical (HCA) Correlation Average N/A 

Hierarchical (HJW) Jaccard Weighted N/A 

K-means (K) Squared Euclidean N/A Sample 

K-means (KCorU) Correlation N/A Uniform 

K-means (KCS) Cosine N/A Sample 

K-means (KCosU) Cosine N/A Uniform 
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5.4.3 Two External Validation Indices 

For each data set used in this chapter, we have the known clusters (i.e. the true 

clusters). The simplest way of evaluating the accuracy of results is to compare the 

results with the known clusters to see how close they are. Therefore, in this 

chapter, we employ two external validation indices, F-measure and 

Weighted-Kappa, to evaluate the clustering results for the performance 

comparison.  

 F-measure Index  

F-measure was firstly derived by Van Rijsbergen in 1979 [Rijsbergen, 1979]. It 

is a comprehensive unary measure index, and contains two key conceptions: 

Precision and Recall. Precision indicates the fraction of a true cluster that is 

taken up by a cluster of an obtained clustering result for a given data set 

[Rijsbergen, 1979]. Recall means the fraction of a generated cluster that is 

included by a true cluster for a given data set [Rijsbergen, 1979]. The definition 

of Precision is given by equation (5.34)  

 

          
   

  
  (5.34) 

 

where c is the generated clustering result of a given data set, and t is the true 

clusters of the data set. The variable ci indicates the ith cluster of c; and tj is the 

jth cluster of t. Nij is the number of instances in the intersection of ci and tj, and 

Nj means the number of instances in the true cluster tj. Equation (5.35) defines 

Recall as  

 

          
   

  
  (5.35) 

 

where Ni denotes the number of instances in the cluster ci.   

 

For a given data set, the F-measure between the jth true cluster and the 

generated ith cluster is calculated as equation (5.36). The F-measure between 
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the jth true cluster and the whole clustering result c is defined by equation (5.37), 

where l denotes any cluster of the clustering result c, and kc is the total number 

of clusters of c.  

 

         
                     

                   
 (5.36) 

         
      

           (5.37) 

 

To a generated clustering result c, its final F-measure is defined as the weighted 

average F-measure based on the true clusters t. The calculation is shown as 

equation (5.38): 

  
        
  
   

   
  
   

 (5.38) 

 

where Kt is the number of clusters in t. For more information about F-measure, 

readers are referred to [Rijsbergen, 1979].  

 Weighted-Kappa Index  

The Weighted-Kappa (WK) [Viera, and Garrett, 2005] index has been 

introduced in Chapter 2.4.1.  

5.5 Results and Discussion 

This section illustrates and discusses results generated from the experiments 

mentioned in Section 5.4.2. The results shown by figures in Section 5.5 are the 

averages of 20 runs.  

 

5.5.1 Comparison between KACC and ESIC 

Before comparing the performance between KACC and ESIC, we first look at 

how much the accuracy has been improved by KACC based on the input 

clusterings.  
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Fig. 35 displays the F-measure score comparison between results of KACC and 

the mean accuracy of eight input clusterings for the Group 1 data sets. The black 

bars indicate the F-measure scores of the results of KACC, and the grey bars 

denote the average F-measure scores of the eight input clusterings. It is clear 

that the results of KACC are significantly better than the mean accuracies of 

input clusterings for these four data sets. In order to see the differences between 

each input clustering and the results of KACC, the accuracies of all input 

clusterings are illustrated by Fig. 36. We can see that, for data sets Image 

Segmentation, Wine and Zoo, KACC clearly generated better results than all of 

the input clusterings. For the data set Iris, the result of KACC is better than most 

of the input clusterings, and comparable to the best one among them. Based on 

Fig. 35 and Fig. 36, it is evident that KACC performed better than the input 

clustering algorithms for the Group 1 data sets.   

 

 

 

Fig. 35: The F-measure score comparison between the results of KACC and the average 

accuracy of the input clusterings for Group 1 data sets.  
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Fig. 36: The F-measure score comparison between the results of KACC and the eight input 

clusterings for the Group 1 four data sets.  
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The comparison of F-measure scores between KACC and ESIC is shown by Fig. 

37. Since Yang and Kamel listed the highest, lowest and average F-measure 

scores of the results generated by ESIC in the literature [Yang and Kamel, 

2003], we illustrate all these F-measure scores in Fig. 37. It is apparent that 

KACC clearly has better F-measure scores than ESIC especially for the Image 

and Wine data sets. Therefore, we can say that KACC performed significantly 

better than ESIC for these four data sets.  

 

 

 

Fig. 37: The comparison of F-measure scores between KACC and ESIC for the four data 

sets of Group 1. (ESIC_H denotes the highest F-measure scores of results of ESIC; ESIC_L 

means the lowest scores; and ESIC_A is the average score of each data set.)  
 

5.5.2 Comparison between KACC and Algorithms in CLUE 

We also first compare the results of KACC with the input clusterings for the 

data sets of Group 2. We use both F-measure and WK to evaluate the accuracy 

of results. Fig. 38 illustrates the comparison between the average of the input 

clusterings and the results of KACC. Both F-measure scores and WK scores 

demonstrate that the results generated by KACC are much more accurate than 

the average of the input clusterings. In other words, the two validation indices 

all demonstrate that KACC has improved the clustering accuracy. Another 

important point is that the improvements of the accuracy illustrated by Fig. 38 

(a) (the F-measure comparison) and (b) (the WK comparison) are quite similar 

to each other.  
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Fig. 38: The comparison between the results of KACC and the average of the input 

clusterings for the data sets of Group 2. (a) F-measure scores. (b) WK scores.  
 

 

From Fig. 38, readers may notice that the WK scores are much lower than the 

F-measure scores in general (especially for the E-coli and WDBC data sets). Fig. 

39 displays the evaluation of the eight input clusterings for the E-coli and 

WDBC data sets. In Fig. 39 (a) and (b), it is obvious that, for the same input 

clusterings, the WK scores are much lower than the F-measure scores. The 

obove situation also appears in Fig. 39 (c) and (d). Hence Fig. 39 interprets why 

the corresponding average WK scores of the input clusterings are much lower 

than the corresponding average F-measure scores in Fig. 38. In addition, Fig. 39 

illustrates that the results of KACC are better than all input clusterings for 

E-coli and WDBC. It has been further verified that KACC has improved the 

accuracy of clustering by combining input clusterings.  
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Fig. 39: The accuracy comparison between the results of KACC and the eight input 

clusterings for the E-coli and WDBC data sets. (a) F-measure scores for E-coli. (b) WK 

scores for E-coli. (c) F-measure scores for WDBC. (d) WK scores for WDBC.  
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Fig. 40 presents the accuracy comparison between KACC and the Seven 

Consensus Clustering Algorithms (SCCA) of the CLUE package. In Fig. 40, the 

left side pictures show the F-measure scores for the six data sets of Group 2, and 

the right side pictures display the corresponding WK scores.  

 

For the SCCTS data set, the F-measure scores show that KACC generates better 

results than SCCA, while the corresponding WK scores of KACC and SCCA 

are quite similar to each other. For the Normal data set, although KACC only 

has a WK score comparable to the best one of SCCA, KACC has a good 

F-measure score that is better than all those of SCCA. Therefore, for data sets 

SCCTS and Normal, we can say that KACC generated results comparable to 

those of SCCA. For other data sets, both F-measure and WK scores demonstrate 

that the results of KACC are clearly better than those of SCCA. Specially, 

KACC performed extremely better than SCCA for E-coli, Malaria, and WDBC.  

 

In addition, for the WDBC data set, the results generated by SCCA vary 

significantly. If we compare Fig. 39 (c) and (d) with Fig. 40 (f) and (vi), it is 

evident that SCCA is very sensitive to the accuracy of input clusterings for 

WDBC. It suggests that KACC has a better stability than SCCA.  

 

Based on the above discussion, we can say that KACC clearly generated better 

results than the average of input clusterings, and performed comparably or 

better than the Seven Consensus Clustering Algorithms of the CLUE package.  

5.5.3 Contributions of ABMDLO, EPMDLO and EPAFO 

We take three data sets as examples to describe the contributions of ABMDLO, 

EPMDLO and EPAFO. From the results discussed in Sections 5.5.1 and 5.5.2, it 

is clear that F-measure scores are always higher than WK scores. In other words, 

the F-measure score will be good if the WK score is good.
1
 Therefore we only 

illustrate the traces of WK scores for analysing the three optimisation phases.  

 

                                                 
1   We have analysed the correlation between F-measure and WK, and found that they have a very high 

correlation. Since this correlation analysis is out of the scope of this thesis, we do not describe it here.  
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Fig. 40: The comparison between KACC and the seven consensus clustering algorithms of 

CLUE for the six data sets of Group 2 via the validation of F-measure and WK. The left side 

pictures (from (a) to (f)) display the F-measure scores. The right side pictures (from (i) to 

(vi)) display the WK scores.  
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First of all, we take the E-coli data set as an example to illustrate the 

contribution of ABMDLO in Fig. 41. Pictures (a1) and (a2) show the traces of 

the AWDL value and the corresponding WK scores respectively for the 

EPMDLO phase; pictures (b1) and (b2) display the traces for the ABMDLO 

phase; and pictures (c1) and (c2) illustrate the traces of Agreement Fitness 

values and WK scores respectively for the EPAFO phase.  

 

 

 

 

 

Fig. 41: Take the E-coli data set as an example for illustrating the contribution of 

ABMDLO. 
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In Fig. 41 (a1) and (a2), during the process of EPMDLO, the AWDL value 

becomes lower and lower, while the WK score does not increase 

correspondingly. Picture (a2) shows that, after a rapid increase at the beginning 

of EPMDLO, the WK score started to decrease significantly when the AWDL 

value goes down. It means that minimising the AWDL value does not obtain 

better clustering solutions for the E-coli data set. For the ABMDLO process, Fig. 

41 (b1) and (b2) clearly show that the WK score is kept at a reasonable high 

level when it is compared with Fig. 41 (a2) and (c2).  

 

Now we analyse the traces of Agreement Fitness values and WK scores for the 

EPAFO process. The Agreement Fitness value is expected to be maximised so 

that we can get better results. However, the results shown in Fig. 41 (c1) and (c2) 

are very poor. The WK score decreased swiftly while the Agreement Fitness 

value was going up. It means that only maximising the Agreement Fitness value 

is not good for clustering this data set. After analysing Fig. 41, it is clear that 

ABMDLO generated the best result for E-coli, which is also confirmed by the 

Validation Vector.  

 

Secondly, the Image Segmentation data set is taken as an example for 

demonstrating the contribution of EPMDLO. In Fig. 42, the first four pictures, 

(a1), (a2), (b1) and (b2), show that WK scores of both EPMDLO and 

ABMDLO are going up when the AWDL value is going down. Fig. 42 (c1) and 

(c2) display that the WK score is risen considerably when the Agreement 

Fitness value is increasing.  

 

As a whole, Fig. 42 shows that all of the three optimisation phases, EPMDLO, 

ABMDLO and EPAFO, can increase the clustering accuracy for the Image data 

set. Consequently, we need to validate which optimisation is the most efficient. 

From Fig. 42 (a2), (b2) and (c2), we can see that the result of EPMDLO has the 

highest WK score. Moreover, the linear correlation between the AWDL value 

and the WK score for the EPMDLO process is -0.96501, which is better than 

those of the ABMDLO and EPAFO processes. Therefore we can reach the 

conclusion that EPMDLO is the most efficient for the Image data set, which is 

confirmed by the Validation Vector.  
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Fig. 42: Take the Image Segmentation data set as an example for illustrating the 

contribution of EPMDLO.  
 

 

Finally, Fig. 43 illustrates the contribution of EPAFO by taking the Normal data 

set as an example. Fig. 43 (a1) and (a2) show that the WK score declines 

sharply during the EPMDLO process. In other words, EPMDLO is not suitable 
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has a much better trace of WK scores than EPMDLO (although the WK score of 

ABMDLO decreases remarkably). The best clustering result is obtained from 

EPAFO and shown by Fig. 43 (c1) and (c2). We can see that, when the 

Agreement Fitness value increases, the WK score only has a slight undulation at 

the beginning, and then it remains stable until it finally converges at 0.8. 

Therefore, the result of EPAFO has been selected by the Validation Vector to be 

the final result of KACC.  

 

 

 

 

 

Fig. 43: Take the Normal data set as an example for illustrating the contribution of EPAFO. 
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5.6 Summary  

This chapter has introduced a new Ensemble Clustering method called K-Ants 

Consensus Clustering (KACC), which is developed by integrating the MDL 

principle and the Ant Colony clustering techniques. KACC consists of three 

optimisation phases: EPMDLO, ABMDLO and EPAFO. The synthesis of these 

optimisation phases achieves the combination of internal and external clustering 

information.  

 

The results of KACC were firstly compared with the input clusterings. The 

comparison shows that KACC generated significantly better results than the 

average accuracy of the input clusterings. Secondly, KACC was compared with a 

comparable ant colony-based Ensemble Clustering method called ESIC and 

seven consensus clustering algorithms of CLUE respectively. The results 

demonstrate that KACC clearly performed better than these clustering algorithms. 

Finally, this chapter illustrates the contributions of the three optimisation phases 

(EPMDLO, ABMDLO and EPAFO), and demonstrates that they can be good 

complement to each other.  

 

A possible limitation of KACC is that it requires prior knowledge of the number 

of clusters. KACC uses the estimated number of clusters k (shown in Fig. 34) as 

one of its input parameters. Since k is an estimated number, the quality of 

clustering results of KACC could be affected by the accuracy of k. It is very 

important to have an appropriate estimation to predict the number of clusters k. 

There are many different ways to estimate the number of clusters for a given 

data set. Some widely used estimation techniques can be found in the following 

literatures: [Choi, Kim and Choi, 2006], [Tibshirani, Walther and Hastie, 2001], 

[Fraley, Adrian and Raftery, 1998], [Fridlyand, Dudoit and Dudoit, 2001], and 

[Cuevas, Febrero and Fraiman, 2000].  

 

In this chapter, we used ideally clean data sets to test different clustering 

methods. Only using clean data sets is the limitation of our experiments. This 

limitation is the same as in Chapter 3. Therefore, in future work, we will analyse 
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how robust KACC is for dealing with noisy data by testing KACC on a large 

range of data sets that have noise and outliers.  

 

 

 



Chapter 6: Performance Comparison between CC, MOCC & KACC 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   145 

Ensemble Clustering via Heuristic Optimisation 

    

6 

 

 

 

 

 

Chapter 6: Performance Comparison between CC, 

MOCC & KACC 

In order to enhance the clustering accuracy based on an existing heuristic 

optimisation-based Ensemble Clustering method - Consensus Clustering (CC), 

we developed a novel method called Multi-Optimisation Consensus Clustering 

(MOCC), which was presented in Chapter 3; in Chapter 5, we presented another 

novel Ensemble Clustering method called K-Ants Consensus Clustering 

(KACC). The reason why we developed KACC after MOCC is that MOCC has 

very high computational costs. In order to understand the advantages of KACC 

and differences between performances of KACC, MOCC and CC, this chapter 

gives a performance comparison amongst the three Ensemble Clustering 

methods.  

 

We achieve the performance comparison from two aspects: the accuracy of 

clustering, and the efficiency of clustering. For the accuracy comparison, we 

still use the Weighted-Kappa (WK) [Viera and Garrett, 2005] validation index 

to evaluate clustering results. For the efficiency comparison, we focus on 

analysing the time complexity and time cost (i.e. time of implementation) of the 

three methods. In the following sections, we will describe data sets and 

experiments, and then discuss the accuracy comparison and the efficiency 

comparison in Section 6.2 and Section 6.3 respectively. The final section gives a 

summary of our discussion.  
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6.1 Data sets and experiments 

We continue to use the ten data sets listed in Table 11 to test performances of 

CC, MOCC and KACC. The designed experiments are outlined as follows:  

 

- Each of CC, MOCC and KACC is run 20 times on each data set.  

- We record clustering results and time cost for each run.  

- WK is used to evaluate accuracies of clustering results.  

- We analyse the average performance across the 20 individual runs for each 

Ensemble Clustering method.  

- The number of iterations NC of CC is set to be the default value i.e. 

1,000,000 based on the discussion in Chapter 4.  

- The number of iterations NM of MOCC is also set to be 1,000,000.  

- The maximal number of iterations NK of KACC is set to be 30, which is the 

same setting as in Chapter 5.4.  

 

The details of experimental facilities are as follows:  

- The experimental facility: Laptop  

- Manufacturer: Sony Corporation 

- Type: VGN-CR Series 

- Operating System: Windows Vista, 32 bits 

- RAM: 1GB  

- CPU: Intel(R) Core(TM)2 Duo, T5450, 1.67GHz  

 

6.2 Comparison of the Accuracy of Clustering  

Hirsch et al. [2007] compared CC with seven consensus clustering algorithms 

provided by the CLUE [Hornik, 2005] package, and claime that CC generated 

results comparable to these methods. In Chapter 5, we compared KACC with 

the same seven consensus clustering algorithms, and the results demonstrate that 

KACC clearly generated better results than these algorithms. Thus we can draw 

a conclusion that the clustering accuracy of KACC can be better than the one of 

CC. On the other hand, the clustering accuracy comparison between CC and 
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MOCC was described in Chapter 3, where the results demonstrate that MOCC 

generated comparable or even better results than CC. Therefore we can find out 

which method has the best clustering accuracy by only comparing KACC with 

MOCC. The accuracies of clustering results for KACC and MOCC are 

illustrated in Fig. 44.  

 

 

Fig. 44: The accuracy comparison between the clustering results of KACC and MOCC 

(tested on ten data sets).  

 

The WK scores in Fig. 44 indicate accuracies of clustering results. For the data 

sets Malaria, WDBC, Image and Wine, Fig. 44 shows that the results of KACC 

are much more accurate than those of MOCC. For other data sets, the results of 

KACC are comparable to or have the same accuracy as those of MOCC. 

Consequently, we can say that KACC generated comparable or better results 

than MOCC in general.  

 

Both MOCC and KACC aim to enhance the accuracy of clustering by 

combining internal and external information. MOCC uses the Agreement 

Matrix, the Agreement Fitness function, and the Separation index to describe 

and combine external and internal information. KACC utilises three 

optimisation phases, ABMDLO, EPMDLO, and EPAFO, to achieve the 

information integration. The results in Fig. 44 demonstrate that the integration 
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strategy of KACC performs better than the one of MOCC for improving the 

accuracy of clustering.  

 

From the above discussion and the extensive results analysed in Chapter 3 and 

Chapter 5, we can reach the conclusion that KACC has the best clustering 

accuracy among the three Ensemble Clustering methods, and MOCC is not far 

in the second place.  

 

6.3 Comparison of the Clustering Efficiency  

6.3.1 The Time Complexity  

When using CC to analyse a given data set, time is mostly spent for 

implementing the heuristic optimisation part. CC utilises SA to achieve the 

heuristic optimisation, where the number of iterations and the quantity of 

computations for iteration are key factors for the time complexity. Suppose we 

have a data set with n instances. The number of iterations is NC, and each 

iteration has m operations. Hence the time complexity of CC is O(m  ), where 

m is less than or equal to n. CC has three different operations, Move, Split and 

Merge, for generating new candidate solutions. The worst case for m is that 

splitting the whole data set (with n instances) into two clusters or vice versa. 

Therefore, in the worst case, the time complexity of CC is O(n  ).  

 

MOCC also utilise SA for its heuristic optimisation part, and the solution 

generator also implements three different operations that are the same as those 

of CC. Thus the time complexity of MOCC seems to be similar to the one of 

CC. However, the key difference between MOCC and CC is that MOCC 

implements multiple optimisations, which are the agreement fitness 

optimisation and the separation optimisation. Therefore, for each iteration, 

MOCC requires double operations to evaluate candidate solutions. According to 

these characteristics of MOCC, its time complexity can be O(2m  ), where NM 

is the number of iterations, and m≤n. In the worst case, the time complexity of 

MOCC is O(2n  ).  
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KACC contains three heuristic optimisation phases, which are the main factors 

for its time complexity. These optimisation phases have the same maximal 

number of iterations. During each iteration, each instance needs to be selected 

by an ant. Thus, for a data set with n instances, there will be n operations for 

each iteration. The time complexity of KACC, therefore, will be O(3n  ), 

where NK is the maximal number of iterations.  

 

From the above discussion, it seems that CC, MOCC and KACC have similar 

time complexities. However, it is important to note that NC and NM could be 

much larger than NK. For example, in this thesis, NC and NM have the same 

default value that is 1,000,000, but NK is 30. In this case, the time complexity of 

KACC is much lower than those of CC and MOCC, moreover, the time 

complexity of MOCC is a double of the one of CC.  

 

6.3.2 Time Cost  

In order to further understanding how different time complexities the three 

Ensemble Clustering methods have, we recorded their time costs when these 

methods analysing ten data sets respectively. Table 13 lists average time costs 

across 20 runs for each method analysing each data set.  

 

Table 13: The comparison of time costs between CC, MOCC and KACC 

 

Data Sets 
Time of the Computation (minutes) 

CC MOCC KACC 

SCCTS 33.03 403.33 2.03 

E-coli 11.27 54.67 0.62 

Malaria 11.97 155.33 1.06 

VAR 14.33 1521.67 5.32 

Normal 21.17 2948.86 17.67 

WDBC 256.67 551.67 2.8 

Image 10.2 48.17 0.16 

Iris 19.33 31.33 0.08 

Wine 22.33 42.94 0.12 

Zoo 14.8 35.83 0.04 

 



Chapter 6: Performance Comparison between CC, MOCC & KACC 

 

 

Jian Li     A Thesis Submitted for the Degree of Doctor of Philosophy     Brunel University   150 

Ensemble Clustering via Heuristic Optimisation 

 

First we compare time costs of CC with those of MOCC. The second and third 

columns of Table 13 clearly show that MOCC has much higher time costs than 

CC especially for data sets SCCTS, VAR, and Normal. From the time costs of 

KACC, it is obvious that KACC has extremely lower time costs than CC and 

MOCC. In general, Table 13 demonstrates that KACC has the lowest time costs, 

and MOCC has the most expensive time costs. Under different experimental 

conditions, time costs of the three methods may be different from those listed in 

Table 13. The conclusion, however, will be the same.  

 

There are two reasons why MOCC has expensive time costs. One is that MOCC 

employs SA for its heuristic optimisation search. In order to find global optimal 

solutions, SA requires a long time to run the search process; moreover, SA 

seeks for optimal solutions by evaluating random candidate solutions. Hence it 

is inevitable for MOCC to have some redundant or pleonastic operations during 

the search process. The other reason is that MOCC contains a multiple 

optimisation framework, where the Separation optimisation increases the 

computational cost of MOCC. It is also the main reason why the time cost of 

MOCC is higher than the one of CC (because CC only implements a single 

heuristic optimisation).  

 

For KACC having the lowest time cost among the three methods, there are also 

two reasons. The first one is that KACC aims to provide a sufficient accuracy of 

clustering in the application context instead of searching for global optima, 

which saves huge time for optimisation. The second reason is that, in KACC, 

intelligent agents (ants) have “memory” to trace the search process so that 

KACC can avoid having redundant or pleonastic operations.  

 

Based on the above discussions of the time complexity and time cost, we can 

get a conclusion that KACC has the best clustering efficiency among the three 

methods, while MOCC has the worst clustering efficiency. Since we have 

described the accuracy comparison between CC, MOCC and KACC in Section 

6.2 and known that KACC has the best clustering accuracy, we can draw 

another conclusion that KACC can not only provide a high accuracy of 
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clustering but also have a very good clustering efficiency. In addition, expensive 

time costs of MOCC suggest that MOCC improves clustering accuracies by 

sacrificing its clustering efficiency.  

 

6.4 Summary  

This chapter has discussed the performance comparison between CC, MOCC 

and KACC. Among the three heuristic optimisation-based Ensemble Clustering 

methods, the performance of KACC is the best. There are two advantages of 

KACC. On the one hand, KACC has significantly improved the accuracy of 

clustering by a good combination of internal and external clustering information. 

On the other hand, KACC aims to provide a sufficient accuracy of clustering in 

the application context instead of searching for global optima to reduce 

computational costs effectively.  

 

MOCC implements a combination of internal and external information to have a 

better clustering accuracy than CC, but its time cost is too high. Further 

improvements are needed for MOCC in order to reduce its computational costs 

while improving the accuracy of clustering. Moreover, the clustering accuracy 

of MOCC cannot be comparable to the one of KACC.  

 

For the CC algorithm, its clustering efficiency is better than the one of MOCC, 

but much worse than the one of KACC. Furthermore, CC has no capability of 

providing a clustering accuracy that is comparable to those of MOCC and 

KACC.  
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Chapter 7: Conclusions & Future Work 

7.1 Conclusions 

In this thesis, our work was focused on employing heuristic optimisation 

techniques to achieve Ensemble Clustering. We highlighted two difficulties 

with existing Heuristic Optimisation-Based Ensemble Clustering (HOBEC) 

methods.  

 

One difficulty is that the consensus clustering step of existing HOBEC methods 

only relies on input clusterings; the clustering accuracy of these methods 

depends heavily on the quality of input clusterings. It is inevitable that, if input 

clusterings are noisy or differ significantly from each other, it will be difficult to 

guarantee the quality of results when using these HOBEC methods. Results of 

these methods could be worse than the mean accuracy of input clusterings.  

 

The second difficulty is that heuristic optimisation has very high computational 

costs especially for analysing large data sets. In order to find a global optimal 

solution, traditional heuristic optimisation methods require a long time to 

implement the heuristic search. Therefore, it is often the case that existing 

HOBEC methods have very high computational costs, and global optima cannot 

be guaranteed even after extensive search.  

 

To address the first difficulty, we use multiple optimisations to integrate 

information of input clusterings (i.e. external information) with information of 

given data (i.e. internal information) during the consensus clustering step. In 

this way, we can reduce the effect of biases of input clusterings, and enhance 

the accuracy of clustering. The second difficulty is handled from two aspects. 
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One is that optimising initial candidate clustering solutions for the heuristic 

search; the other is that aiming to provide a sufficient accuracy of clustering in 

the application context instead of searching for global optima. These enable our 

Ensemble Clustering methods to not only meet requirements of applications but 

also reduce computational costs. Two novel HOBEC methods, MOCC and 

KACC, were presented in this thesis to overcome these difficulties. The main 

achievements are outlined as follows:  

 

 Multi-Optimisation Consensus Clustering 

Based on the Consensus Clustering (CC) algorithm proposed by Swift et al. 

(2004), we developed a novel Ensemble Clustering method called 

Multi-Optimisation Consensus Clustering (MOCC). MOCC employs 

Agreement Matrix and an Improved Agreement Fitness (IAF) function to 

describe external information (provided by input clusterings), and utilises 

the Separation index to describe internal information of given data. MOCC 

integrates the internal and external information by combining the IAF 

function with the Separation index to evaluate candidate solutions. 

Heuristic optimisation of MOCC is achieved by a multi-optimisation 

framework, which employs a well known heuristic method, Simulated 

Annealing (SA), to seek optimal solutions based on the IAF function and 

the Separation validation. The results demonstrate that MOCC has better 

stability for clustering and clearly performs better than the original CC 

algorithm. In other words, MOCC has successfully achieved the 

combination of internal and external clustering information, and improved 

the accuracy of clustering.  

 

 Analysing cooling functions for Ensemble Clustering using SA 

Simulated Annealing has played an important role in optimisation search 

and decision making. One of the key components of SA is the Cooling 

Function. This thesis presented insights into the behaviour of cooling 

functions in the context of Ensemble Clustering. According to these 

insights, we can choose appropriate cooling functions for the optimisation 

within the Ensemble Clustering context. Ten cooling functions were 
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selected and studied in this thesis, and two heuristic optimisation-based 

Ensemble Clustering methods (CC and MOCC) were used as 

representatives to test the ten cooling functions on thirteen different data 

sets.  

 

These cooling functions are sorted into three groups. We tested them by 

different numbers of input methods, and different data sets with different 

sizes and dimensionalities. After analysing the results obtained from the 

experiments, we have the following key conclusions: 1) different cooling 

functions have different convergence speeds; 2) the number of iterations for 

the optimisation process should be set up carefully in order to obtain 

convergent results; 3) the larger a data set is (or the higher the 

dimensionality of a data set is), the slower the convergence speed is; 4) 

adding more input methods can improve the accuracy of clustering only 

when most of the input methods are appropriate for a given clustering 

problem.  

 

These insights are important and can be very useful in assisting with the 

choice of cooling functions for different clustering problems. To sum up, 

for choosing a suitable cooling function or adjusting settings of a cooling 

function, we can combine all information from these aspects to make an 

informed decision.  

 

 K-Ants Consensus Clustering 

The other new Ensemble Clustering method introduced in this thesis is 

called K-Ants Consensus Clustering (KACC). Based on the MDL principle 

and the Ant Colony Clustering theory, KACC combines external and 

internal information by multiple optimisation phases, which are EPMDLO, 

ABMDLO and EPAFO. It has been proved that these optimisation phases 

can be good complements to each other for combining clustering 

information. Each phase starts from an initial clustering solution based on 

input clusterings. The three optimisation phases generate three different 

clustering solutions. These solutions will be evaluated by a Validation 
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Vector to find out which solution is the best. After that, the best solution is 

selected to be the final clustering result of KACC.  

 

Ten data sets were used for testing the performance of KACC. The 

experiments reveal that the results of KACC are much more accurate than 

the average of input clusterings. In addition, KACC was compared with 

some other comparable Ensemble Clustering methods such as ESIC and 

seven consensus clustering algorithms of the R CLUE package. The 

experimental results demonstrate that KACC clearly performed better than 

these Ensemble Clustering algorithms.  

 

Among the two novel Ensemble Clustering methods proposed in this thesis, 

KACC is the ideal solution for solving the two difficulties of existing HOBEC 

methods. KACC not only improves the accuracy of clustering significantly by 

combining internal and external clustering information, but also has excellent 

clustering efficiency achieved by providing a sufficient accuracy of clustering in 

the application context instead of global optima. Moreover, this thesis has 

demonstrated that KACC clearly performs better than both CC and MOCC. 

MOCC only achieves the combination of internal and external clustering 

information to solve the first difficulty. For solving the second difficulty, further 

improvements are needed for MOCC.  

 

In addition, all insights and conclusions summarised in this thesis are based on 

the experiments that test our methods and relevant algorithms on clean and 

high-dimensional data sets. In other words, having clean and high-dimensional 

data is the condition of using our methods. This thesis has demonstrated that our 

methods have clearly better performance for analysing cleanly high-dimensional 

data. In order to evaluate how robust our methods are for dealing with noisy 

data, in future work, we will test our methods on a large range of data sets that 

have noise and outliers.  
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7.2 Future Work 

In this thesis, we have presented successful applications of integrating two well 

known heuristic algorithms, Simulated Annealing and the Ant Colony 

Clustering theory, with Ensemble Clustering. This thesis has demonstrated that 

our Ensemble Clustering methods generated very promising results. These 

meaningful achievements open up some possible further research directions for 

improving the performance of Heuristic Optimisation-Based Ensemble 

Clustering methods.  

 

1) MOCC combines the Separation index with the Agreement Fitness 

Evaluation (AFE) for its multi-optimisation structure. The combination, 

however, is not limited to the Separation index. Since the Separation index 

has expensive computational costs, to combine other appropriate clustering 

evaluation indexes with AFE would be a good way forward for further 

research.  

 

2) The function achieved by the multi-optimisation framework of MOCC is 

similar to the one of the Multi-Objective Simulated Annealing (MOSA) 

algorithm [Bandyopadhyay et al., 2008], which aims to generate global 

optimal solutions by optimising multiple objectives. Therefore, it is good to 

further explore these two multi-optimisation structures to see whether 

MOCC can benefit from MOSA.  

 

3) Based on the Minimum Description Length (MDL) principle, we developed 

the Attributed Weighed Description Length (AWDL) criterion for KACC to 

describe characteristics of given data. Rissanen [2001] proposed a criterion 

called Normalized Maximum Likelihood (NML) [Kontkanen et al., 2006] 

for applying the MDL principle to describe data, and he claims that NML 

could be a universal code for describing all types of data sets. In future work, 

to integrate the advantages of the NML criterion with AWDL could be 

beneficial for refining the AWDL criterion of KACC.  

 



Chapter 7: Conclusions & Future Work 
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4) This thesis has introduced promising results of using our novel methods 

MOCC and KACC to analyse different types of data sets. However, the 

limitation of our experiments is that all data sets are clean (i.e. there are no 

noise and outliers in data) and some data sets are relative small. In order to 

further analyse the performance of our methods, in future work, we will test 

them on a wider range of data sets that contain noise and outliers.  

 

5) There are some other heuristic optimisation techniques such as Tabu Search 

[Glover and Laguna, 1997], Genetic Algorithm [Mitchell, 1998], and so on. 

In future work, we will analyse these techniques and try to find possible 

ways of integrating these heuristic methods with Ensemble Clustering to 

improve the accuracy of clustering and the clustering efficiency.  
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