

CTR/27/04 April 2004

Revisiting Lagrange Relaxation for Processing Large-Scale
Mixed Integer Programming Problems

C Siamitros, G Mitra and C Poojari

Department of Mathematical Sciences and Department of

Economics and Finance
Brunel University, Uxbridge, Middlesex, UB8 3PH

www.carisma.brunel.ac.uk
�

 1

Abstract
Lagrangean Relaxation has been successfully applied to process many well known

instances of NP-hard Mixed Integer Programming problems. In this paper we present

a Lagrangean Relaxation based generic solver for processing Mixed Integer

Programming problems. We choose the constraints, which are relaxed using a

constraint classification scheme. The tactical issue of updating the Lagrange

multiplier is addressed through sub-gradient optimisation; alternative rules for

updating their values are investigated. The Lagrangean relaxation provides a lower

bound to the original problem and the upper bound is calculated using a heuristic

technique. The bounds obtained by the Lagrangean Relaxation based generic solver

were used to warm-start the Branch and Bound algorithm; the performance of the

generic solver and the effect of the alternative control settings are reported for a wide

class of benchmark models. Finally, we present an alternative technique to calculate

the upper bound, using a genetic algorithm that benefits from the mathematical

structure of the constraints. The performance of the genetic algorithm is also

presented.

 2

Table of Content

Abstract .. 1

1. Introduction and Background of MIP problems... 3

2. Literature review of Lagrangean Relaxation in processing MIP problems ... 4

3. Design of a general LR/MIP algorithm.. 5

3.1 Relaxation of constraints ... 6

3.2 Determination of the Lagrange multipliers... 8

4. Implementing a generic LR/MIP solver... 11

4.1 Classification and Relaxation of the Constraints................................ 11

4.2 The Lagrange Multiplier ... 13

4.3 Structure of the generic solver... 16

4.4 Efficiency and Speed-up of the solver ... 19

5. Computational Results ... 20

5.1 Collection of test problems .. 20

5.2 Analysis of Results ... 24

6. Upper bound using Genetic Algorithm.. 29

7. Discussions and Conclusions .. 33

8. References ... 34

Appendix I: Constraint Classes ... 37

Appendix II: Detailed Computational Results .. 43

Appendix III: Graphical Presentation of Algorithmic Behaviour.................... 56

 3

Revisiting Lagrange Relaxation for processing large-scale

Mixed Integer Programming problems

1. Introduction and Background of MIP problems

The availability of fast and reliable commercial solvers such as CPLEX[15],

Xpress-MP[5], OSL[14] and FortMP[7], and the easy access to public domain solvers

such as NEOS[27] and OSP[28], the processing of large-scale linear programming has

become easier. The processing of Mixed Integer Programming (MIP) problems,

however, still remains non-trivial and poses significant mathematical and

computational challenges. During the past years, ‘branch and bound’ approach

monopolised the commercial solvers for solving MIP problems. In the recent times,

the limitations of exact optimisation methods became increasingly apparent, since

many problems are too complex to be solved exactly and it is computationally

expensive. Therefore, many commercial solvers have been enhanced by using

improved cut generation techniques, or non-exact optimisation methods, or by using

new techniques, like pre-processing. In this paper, we discuss the Lagrangean

Relaxation (LR) decomposition technique, which is, from computational point of

view, a well-established approach to solve structured problems.

In this paper, we utilise the existing knowledge of processing MIP problems

using LR and thereby design an algorithmic framework for applying LR dynamically

to different classes of MIP problems. The outline of the paper is as follows. In section

2 we review the existing literature and refer to the different problem domains, where

LR based methods have been applied. In general the efficiency and the effectiveness

of the implementation depends on how well the knowledge about the structure of the

underlying problem has been exploited. In section 3 we discuss the general issues

 4

while applying LR and in particular address the challenges while applying the method

to process large-scale MIP problems. In section 4 we present the details of

implementing a generic LR based solver. We explain the alternative classification of

the constraints, techniques for updating the Lagrange multipliers, re-use of

information over iterations. In section 5, we present the computational results on a

selection of benchmark problems. Additionally, we compare the performances of

different options of the solver. In section 6, we introduce a Genetic Algorithm as an

alternative approach to calculate the upper bound of the models and we present some

primarily results. Finally, in section 7, we discuss the outstanding issues and give

directions for further research into the field.

2. Literature review of Lagrangean Relaxation in processing MIP

problems

Lagrangean Relaxation, also known as Lagrangean Decomposition, was

introduced in the early 70’s through the pioneering work of Held and Karp[11][12] on

the travelling salesman problem. It was discovered that the relationship between the

systematic travelling-salesman problem and the minimum spanning tree problem

yields a sharp lower bound on the cost of an optimum tour. Thereafter, Held et al.[13]

tried to test the effectiveness of subgradient optimisation for approximating the

maximum of certain pairwise linear concave functions. The results that they obtained

were promising for applying the method to general large-scale linear programming

problems. Subsequently, Geoffrion [9] in the mid 70’s developed a general theory for

applying the method by exploiting special problem structures. Since then, many

researchers worked in the field and tried to extend the current methodology [32][3][8]

and to apply the method to different classes of Integer Programming (IP) and MIP

problems of known structure. Mainly, most applications that can be found in the

literature are based either on scheduling problems or on location problems.

Renato de Matta [29] used LR to find the schedule for producing products of a

single level, capacitated line problem. The LR based approach that was used to solve

the problem in question found near optimal solution faster than other exact

optimisation methods. Kaskavelis and Caramanis [16] processed an industry size job-

shop scheduling problem with more than 10000 resource constraints by using a

 5

Lagrangean relaxation based algorithm. In their approach, they extended the

algorithm by introducing two new features in the Lagrange multiplier updating

procedure. Firstly, they replaced the dual cost estimation of all sub-problems and the

update of the multipliers values by a surrogate dual cost function and a more frequent

multipliers update. Secondly, they introduced an adaptive step size in the subgradient-

based multipliers. Both of the added features produced a more robust algorithm with

significant attenuated solution oscillations, better feasible schedules and faster

convergence. Kobayashi et al. [24] extended the subgradient optimisation method for

calculating the Lagrange multipliers and introduced an intelligent way of updating

these multipliers. The computational results arise show that the suggested method is

very effective in solving scheduling problems.

A wide variety of effective Lagrange relaxation applications to location

problems were also designed [2][4][22][21][1][6][17][10][23][31]. One of the

principal researchers in the field, Beasley, presented a framework for developing

Lagrangean heuristics with respect to location problems[2]. These heuristics are based

upon Lagrange relaxation and subgradient optimisation method for solving different

types of location problems. The computational results presented, indicate that the

suggested algorithmic framework is robust. In a similar application, Christofides and

Beasley [4], attempted to improve the lower bound of capacitated location problem by

using subgradient optimisation method.

Senne and Lorena [31], proposed the Lagrangean / Surrogate as an alternative

relaxation, in order to correct the erratic behaviour of subgradient like methods. The

proposed alternative approach was tested in p-median problems and from the

computational results showed that Lagrangean/Surrogate relaxations are very stable

(low oscillating) and are reaching equal quality results in less computational time than

the Lagrangean alone heuristics.

3. Design of a general LR/MIP algorithm

Lagrangean Relaxation is a Price Directive decomposition technique[23],

which in the first instance simplifies and reduces the problem in question by relaxing

 6

groups of constraints. Lagrangean relaxation has been successfully used in processing

many different instances of combinatorial optimisation problems, such as the

Travelling salesman Problem [11], [3] and [22]. Many combinatorial optimisation

problems consist of an easy problem that is complicated by the addition of extra

constraints. Applying LR in these problems involves identifying these complicating

constraints, and then relaxing them by attaching penalties to the complicating

constraints and then absorbing them into the objective function. These penalties are

known as the Lagrange multipliers. Due to the relaxation of the complicating

constraints, the relaxed problem becomes much easier to solve. The next aim is to find

tight upper and lower bounds to the problem by iteratively processing sequence of

modified sub-problems.

LR involves addressing two important issues; one is a strategic issue and the

other a tactical issue [3]. The strategic issue concerns the classification and relaxation

of the constraints. The strategic question is of the form “What constraints are to be

relaxed?” The tactical issue deals with the selection of a good technique for updating

the Lagrange multipliers. The tactical questions are of the form, “How the reduced

problem can be solved?” or “How can we calculate an efficient bound?”.

3.1 Relaxation of constraints

Before defining the general MIP problem, lets identify the following index sets:

B={1,…,|B|} Index set for binary variables,

I={|B|+1,…,|B|+|I|} Index set for integer variables,

C={|B|+|I|+1,…,|B|+|I|+|C|} Index set for continues variables,

N=B∪I∪C Index set for all variables.

Hence, the general MIP problem can be written as:

 7

{ }
IjiffZx

Bjiffx

CjiffRx

nlgxb

mkdxats

xc

j

j

j

Nj
ljlj

Nj
kjkj

Nj
jj

∈∈

∈∈

∈∈

=
�
�
�

�
�
�

=
≥

=
�
�
�

�
�
�

=
≥

+

+

∈

∈

∈

�

�

�

1,0

,...,1

,...,1..

min

This initial problem 0P is known as the master problem. Since this master

problem is difficult to solve, we relax a set of constraints,],1[mCO ∈ , by attaching

Lagrange multipliers (λk ≥ 0). Then, this relaxed group of constrints are appended to

the objective function and forms the following Lagrange Lower Bound Problem

(LLBP):

{ }
IjiffZx

Bjiffx

CjiffRx

nlgxbts

dacx

j

j

j

Nj
ljlj

m

k
k

Nj

m

k
jkjj

∈∈

∈∈

∈∈

=
�
�
�

�
�
�

=
≥

+−

+

+

∈

=∈ =

�

�� �

1,0

,...,1..

)(min
11

κκ λλ

The Lagrange multipliers, λk, penalise the violation of the corresponding relaxed

constraints introduced in the objective function. The selection of which set of

constraints to be relaxed is a strategic issue and we address it in the later section.

After decomposing the master problem, we are interested in choosing the

appropriate numerical values for the Lagrange multipliers (tactical issue) for the

problem)(λLP . In particular, we are interested in finding the values for λ that gives the

(P0)

(PL(λ))

 8

maximum lower bound. The Lagrange lower bound problem is also known as the

Lagrange dual program.

{ }

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

∈∈

∈∈

∈∈

=
�
�
�

�
�
�

=
≥

+−

+

+

∈

=∈ =

≥

�

�� �

IjiffZx

Bjiffx

CjiffRx

nlgxbts

dacx

j

j

j

Nj
ljlj

m

k
k

Nj

m

k
jkjj

k

1,0

,...,1..

)(min

max

11

0

κκ

λ

λλ

The best value for λk is calculated by applying iterative updating techniques to the

above system (PDual). There are two well-known techniques that have been widely

used: Subgradient Optimisation and Multiplier Adjustment. In this paper, however,

we will focus on the subgradient optimisation technique.

The estimation of a good solution to NP-hard problems by using a non-exact

method, like LR, does not depend only on the calculation of a good lower bound. It is

equally important to calculate good solutions that are feasible and provide upper

bounds to the master problem. We thus reduce the duality gap and provide tight

bound for the optimal solution. The duality gap is defined as the relative difference

between the lower bound and the upper bound. In ideal instances, the Lagrange lower

bound is equal to the upper bound. The upper bounds are usually calculated by using a

Lagrange Heuristic (LH) [3]. An instant of a LH algorithm is to take the LLBP

solution vector and to attempt to convert it to a feasible solution vector to the master

problem.

3.2 Determination of the Lagrange multipliers

There have been two main techniques that have been successfully applied for

finding Lagrange multipliers in a wide variety of problem instances. These are the

subgradient optimisation and the multiplier adjustment. Sub-gradient optimisation is

(PDual)

 9

an iterative procedure that, starting from an initial set of Lagrange Multipliers,

attempts to improve the lower bound of the LLBP in a systematic way. Multiplier

adjustment is also an iterative procedure, but modifies only one component of the

multiplier in an iteration.

The literature and the experiences of the researchers in the field [3] suggest

that subgradient optimisation is a preferable method to update the Lagrange

multipliers for general discrete optimisation problems. Sub-gradient optimisation is

straight forward to implement and can be applied without modifications for different

problem instances. Multiplier adjustment is non-trivial and requires to be modified for

different problems. Moreover, even the quality of the solution is better on using the

sub-gradient technique. Therefore, in our attempt to apply Lagrangean Relaxation for

general discrete optimisation problems, we have used subgradient technique for

updating the Lagrange multipliers.

Algorithmic Framework of Subgradient Optimisation

Define Cj as the cost coefficient vector of the LLBP (PL(λ)). Hence,

�−=
ki

kjkjj acC λ

where j = 1,…, n (number of coefficients) and k = 1,…, m (number of constraints).

The main steps that have to be followed to apply subgradient optimisation are set out

below:

STEP1: Initialisation

Set π, which is a user-defined parameter, equal to 2. (0≤π≤2)

Set the lower bounds to -∞, and the upper bounds UB, ZUB to +∞.

Set N_LR = 0 (number of Lagrange iterations).

Initialise the Lagrange Multipliers λ.

STEP2: Calculate lower bound

Solve the LLBP (PL(λ)) for the current set of λk to obtain the solution vector Xj

and the lower bound ZLB. (}ˆ{ j
t
LB xZ =)

If the Zlb > LB, set LB= ZLB.

STEP3: Calculate upper bound

(eq. 1)

 10

Apply a Lagrange Heuristic to find a feasible upper bound ZUB. If ZUB <UB,

set UB =ZUB.

STEP4: Update the multiplier
a. Calculate the Subgradients t

kG for current solution vector Xj.

If all Gi ≤ 0 for each ‘≥’ constraint, then ZLB is feasible.

b. Define a scalar step size T.

c. Update the Lagrange Multipliers set

STEP 5: Stopping criteria
a. π < 0.005

b. (UB - LB) = 0.0

c. 0)(
1

2 =� =

m

k
t
kG

If stopping rules as not satisfied then go to STEP 2.

The user-defined parameter, π controls the step size T. In the case wherein the

lower bound did not improve for 30 consecutive iterations, we half this parameter.

Generally speaking, the smaller the value of this parameter, the smaller is the

oscillation of the resulted lower bound (ZLB). In fact, when the value of the π

parameter is small, we are trying to improve the lower bound by searching on the

“neighbourhood” of the LB.

There are three termination conditions of the algorithm. The algorithm

terminates when the user-defined parameter becomes very small (i.e. 0.005), or when

the dual gap (UB-LB) is equal to zero, or when the sum of squares of all the

subgradients is equal to zero (0)(
1

2 =� =

m

k

t
kG). The last termination condition implies

that all the constraints are perfectly satisfied and therefore all the Slack variables of

the model are equal to zero.

mkxadG jkjk
t
k ,...,1=−= �

� =

−
=

m

k
t
k

LBUB

G

ZZ
T

1
2)(

)(π

mkTG t
k

t
k

t
k ,...,1),0max(1 =+=+ λλ

(eq. 2)

(eq. 3)

(eq. 4)

 11

4. Implementing a generic LR/MIP solver

In order to implement successfully a generic LR solver we needed to resolve

the following questions:

1. How to calculate good upper and lower bounds?

2. Which constraints to relax?

3. How to initialise λ , and update the same?

In addition we wanted the scheme to be generic such that it can be applied to wide

problem MIP classes with minimal modifications. During the course of our research

we encountered problems such as in some instances, the λ vector was not updated as

expected and the generated Lagrange Lower Bound Problem became unbounded and

the execution of the algorithm could not continue. We next discuss our investigations

into the strategic issue involved in relaxing the appropriate constraints and the tactical

issues in updating the Lagrange multipliers.

4.1 Classification and Relaxation of the Constraints

A constraint classification (CC) procedure [19][20] analyses the constraints of

a given MIP problem and partitions them into different classes of known structure.

As noted in [26], CC involves the identification of interesting special cases. There is

no defined terminology and classification scheme in the literature. To classify

constraints, we first distinguish binary variables from integer and continuous ones. All

the linear constraints are analysed first one by one to see if they belong to any of our

predefined well-known classes of constraints. The classified rows are taking into

account several parameters. These parameters include the type of variable, the number

of variables, the coefficient values, the type of bounds and the sense of the constraint.

Using the above parameters the defined constraint classes are given in Table 1.

 12

Table 1: IP constraint classes

In the above-defined classes some classes are subclasses of other defined classes

when they satisfy certain properties. The mathematical presentations [19] of the above

classes are defined in Appendix I.

One of the key issues for obtaining good lower bounds, when Lagrange

Relaxation is applied, is the integrality property. As described by Beasley [3] and

Geoffrion [9], a Lagrange Lower Bound Problem, like (PL(λ)) introduced above, is said

to have the integrality property when the solution of the relaxed problem is unchained,

even after the integrality constraint,)1,0(∈x , is replaced by its linear relation

10 ≤≤ x . Lagrange Lower Bound Problems for which this property holds can not

result in a better lower bound than the LP relaxed solution of the master problem.

Hence, this property can be expressed by the following constraint:

optLRLP ZZZ ≤=

when the integrality property holds, otherwise by:

Class code Extended name
Inequality Constraints

KNA Knapsack
INK Invariant knapsack
BPK Bin packing
CLQ Clique
SCV Set covering
PLN Plant location
RPL Reverse plant location
WKN Weak (mixed) knapsack
WIK Weak (mixed) invariant knapsack
VUB Variable upper bound
VLB Variable lower bound
SUB Simple upper bound
SLB Simple lower bound

Equality Constraints
NDPQ Non Diophantine equation
BDPQ Binary Diophantine equation
MDPQ Mixed Diophantine equation
IDPQ Integer Diophantine equation
DGOQ Discrete goal oriented equation
PFLD P-fold alternative
XOR Exclusive OR

 13

optLRLP ZZZ ≤≤

where optZ is the optimal solution to the master problem, LRZ is the maxmin optimal

solution to the LLBP and LPZ is the relaxed solution to the master problem.

In order to overcome this problem of integrality property and obtain lower

bounds better than the relaxed solution we designed a simple Greedy Algorithm

(GrA) to select an appropriate set of constraints to be relaxed. The design of this

algorithm is based on the empirical observation that when all the constraints are

relaxed or when the relaxed constraints are not independent, it is more likely the

Lagrange relaxation problem to have the integrality property. The framework of this

GrA is as follows. Initially, we apply the constraint classification routine in order to

analyse the constraints that the model contains. Afterwards, we form a subset, CO, of

constraint classes that we consider that are complicating the model and may be

relaxed. From this subset of constraints, CO, we are trying to find the maximum

number of “independent constraints”. By the term “independent constraints” we

define the subset of constraints, COCOI ⊆ , that do not contain a variable that is

already contained in another constraint member of the subset COI. The constraints

that are not members of COI are classified as “dependent constraints” and are

members of the subset COD (DI COCOCO ∪=). In order to form these two subsets

in a simple manner, we initially compute the total number of variables that each

constraint of the set CO contains. Afterwards, starting from the constraint with the

less number of variables, we start to insert new members to the subset COI until no

further independent constraints can be found in CO. This Greedy algorithm may not

guarantees that we obtain the maximum possible number of independent constraints,

but for some of the tested models of our research worked sufficiently. As it will be

presented in following section, where the obtained results will be presented and

analysed, the application of this GrA was effective on improving the lower bound of

the LLBP.

4.2 The Lagrange Multiplier

Within the sub-gradient optimisation we have experimented with three alternative

rules for updating the Lagrange multipliers. The first one is the conventional method

 14

as described in the sub-gradient optimisation section above (section 3.2). The other

two strategies of updating the multipliers are more sophisticated and are based on the

work done by Kobayashi et al.[24]. In these approaches, instead of applying the same

rule for updating each component of the Lagrange multiplier, different rules are used

depending on conditions of the corresponding constraint. Briefly, these conditions are

described below, where ‘k’ is the number of iterations and ‘i’ is the entry of the λ

vector:

If (t=1 or (Gk
t-1>0 and Gk

t>0)) then

 λk
t+1 = λk

t + T × Gk
t, βk

t = T × Gk
t

else if ((Gk
t-1>0 and Gk

t<0) or (Gk
t-1<0 and Gk

t<0)) then

 λk
t+1 = λk

t – 0.5 | βk
t-1 |, βk

t = 0.5 βk
t-1

else if (Gk
t-1<0 and Gk

t>0) then

 λk
t+1 = λk

t + 0.5 | βk
t-1 |, βk

t = 0.5 βk
t-1

else if (Gk
t=0 or (Gk

t-1≤0 and Gk
t<0)) then

 λk
t+1 = λk

t , βk
t = 0

else use first condition.

As it is demonstrated in Kobayashi et al.[24], this approach of updating the λ vector

reduces the oscillation of the solution and decreases the number of iterations.

We have extended the above idea. In cases where the consecutive values of

two subgradients, Gk, are of opposite sign, (Gk
t-1>0 and Gk

t<0) or (Gk
t-1<0 and Gk

t>0),

we try to estimate the corresponding value of λk
t such that Gk

t+1 tends to zero. For

instance, suppose at the tth iteration the value of Gk
t = 2, λk

t = 0.0 and at the t+1

iteration Gk
t+1 = -2 and λk

t+1 = 1.0. Then, as the concept of our approach is illustrated

in (Figure 1), we the desired λ value is 0.5.

(ExtSG1)

 15

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lamda values

S
ub

-g
ra

di
en

t

Figure 1, Two opposite sign subgradients

Briefly, the conditions of our approach are described below:

If (t=1 or (Gk
t-1>0 and Gk

t>0)) then

 λk
t+1 = λk

t + T × Gk
t, βk

t = T × Gk
t

else if (Gk
t-1<0 and Gk

t<0) then

 λk
t+1 = λk

t – 0.5 | βk
t-1 |, βk

t = 0.5 βk
t-1

else if ((Gk
t-1>0 and Gk

t<0) or (Gk
t-1<0 and Gk

t>0)) then

 λk
t+1 = λk

t - Gk
t×(λk

t-1 - λk
t) / (Gk

t-1 - Gk
t),

βk
t = Gk

t×(λk
t-1 - λk

t) / (Gk
t-1 - Gk

t)

else if (Gk
t=0 or (Gk

t-1≤0 and Gk
t<0)) then

 λk
t+1 = λk

t , βk
t = 0

else use first condition.

In case we deal with a ‘≥’ constraint, if the corresponding multiplier turns out to be

negative, its set to zero so that the Lagrangean Relaxation theory will not be violated.

In order to speed up the algorithm of updating the Lagrange multipliers of our

generic solver, an optional feature is included; the subgradient adjustment algorithm

[3]. This procedure involves setting the subgradient Gk of a ‘≥’ inequality constraint

to zero when the corresponding Lagrange multiplier is 0 and Gk is less than zero (Gk <

0). The reason for doing so is since λk will be zero, it is irrelevant to include Gk in

calculating the denominator in (eq. 3) of subgradient optimisation.

(ExtSG2)

 16

4.3 Structure of the generic solver

In the generic solver we address the important strategic and the tactical issue

(see Figure 2). We found that both these issues are equally important for successfully

processing large-scale models using LR.

Figure 2, Framework of generic Lagrange Relaxation based solver

The solver is divided in two parts, the pre-processing and the main

Lagrangean iterations. The pre-processing involves the constraint classification and

all the operations carried out before applying LR, like initialising the solver, selecting

the sets of constraints to be relaxed, generating the arrays for the Lagrange Lower

Bound Problem (LLBP) and the Upper Bound problem, initialising the dimension and

the data for the models, generating the statistics and selecting the options to be used

Initialisation

L a g r a n g e I t e r a t i o n s

Update the Lagrange
multipliers

Strategic
Issue

Tactical
Issue

P r e – p r o c e s s i n g

Classification
and

relaxation of
constraints

 17

by the solver. We used FortMP to solve the MIP problems for calculating the upper

and lower bounds at each iteration. Initially, we identify the number of integer and

binary variables in each constraint and then we classify the constraints into different

classes. We use FortMPOT[19][20] for classifying the constraints and calculating the

cardinality of the resulting class.

The statistics generated during the pre-processing phase is used to identify the

potential constraints that could be relaxed. Based on the information the user could:

1) Provide the list of constraints that should be relaxed. This procedure can

become extremely tedious for large models.

2) Alternatively, the user could specify the index of the constraints, within each

of the constraint class that should be relaxed.

Because in some models during the testing processes it was observed that some lower

bound sub-problems are unbounded, the use of aggregation constraints was

considered. By selecting to add an aggregation constraint for each relaxed constraint

set, most of the cases, where an unbounded sub-problem was arisen, were resolved. In

order to be able to introduce aggregation constraint(s), it necessitates that at least two

constraints of the same constraint set to be relaxed. After selecting the constraints to

be relaxed, the LLBP is generated. Then, for computational purposes all the

remaining ‘≤’ constraints of the LLBP are transformed into ‘≥’ constraints.

We next address the issue of initialising the Lagrange multiplier. We have

experimented with 3 alternative choices. The first involves setting all the entries of the

Lagrange multiplier vector equal to a preferable value (usually 0). The second choice,

allows the user to initialise the values of the Lagrange multiplier vector one at a time.

The third option sets the entries of the Lagrange multipliers to the dual values

obtained by solving the master problem to the first integer solution. Furthermore, in

case we have a ‘≥’ constraint and the corresponding dual value found is negative, then

the dual value is set to zero, since it can take only non-negative values in such

instances.

Next, we discuss the phase corresponding to the main Lagrangean iterations.

During our investigations, it was observed that for some models, when many

constraints were relaxed, the resulting LLBP become unbounded. We tried to resolve

 18

this ‘unboundedness’ by adding aggregation constraints as described before. Such

constraint aggregation resolves the issue of ‘unboundedness’ for some models,

however, the quality of the lower bounds was not that good. Therefore, we

constructed a procedure that half the values of the Lagrange multipliers repeatedly

until the LLBP sub-problem becomes bounded. Theoretically, when all the Lagrange

multipliers are zero, the sub-problem is bounded as far as the master problem is

bounded and all the cost coefficients are positive in a minimisation problem.

For the calculation of the upper bound we designed a heuristic algorithm that

computes the upper bound using the solution vector returned from the LLBP. The

upper bound sub-problem is generated by fixing the values of the integer and binary

variables to the solution resulted in the LLBP. Fixing of the variables reduces the

dimension of the model and thereby the computational complexity of processing the

same. We do not arbitrarily fix the integer and binary variables. Instead, we consider

the constraints that have been relaxed to generate the LLBP and identify which of

these constraints satisfy the inequality. Then, in the original problem we fix integer

and binary variables arising only in such constraints. This condition for selecting

which integer and binary variables should be fixed is important to ensure that a

feasible solution may exist. In case we omit this condition and we have a non-satisfied

relaxed constraint that contains integer and/or binary variables, then the generated

upper bound sub-problem will become infeasible, since it contains all the sets of

constraints. The generated upper bound sub-problem is solved not to optimality, but to

feasibility. This feasible solution of the upper bound sub-problem is also a feasible or

the optimal solution of the master problem. This heuristic is illustrated by

mathematical formulation as follows:

Set of violated relaxed constraints

})int''0int''0(|{ COksconstraforGsconstraforGkV t
k

t
k

t
CO ∈∧=≠∨≥<=

Set of indexes corresponds to binary variables to be fixed

)}0(|{ t
COkj

t
F VkaBjjB ∉	≠∧∈=

Set of indexes corresponds to integer variables to be fixed

 19

)}0(|{ t
COkj

t
F VkaIjjI ∉	≠∧∈=

The corresponding upper bound problem to be solved is:

}|ˆ{

,\

,\}1,0{

,

,...,1

,...,1..

min

t
F

t
F

t
jj

t
Fj

t
Fj

j

Nj
ljlj

Nj
kjkj

Nj
jj

IjBjxx

IIjiffZx

BBjiffx

CjiffRx

nlgxb

mkdxats

xc

∈∨∈=

∈∈

∈∈

∈∈

=
�
�
�

�
�
�

=
≥

=
�
�
�

�
�
�

=
≥

+

+

∈

∈

∈

�

�

�

Finally, another optional feature was added in our generic solver called the

best start for the Lagrange multiplier, which we found it speeds up the algorithm.

This optional procedure has two alternatives. At the beginning of each outer iteration

of the subgradient algorithm (when π is updated), the Lagrange multipliers vector will

be set either to Lagrange multipliers vector that resulted when the best lower bound

was obtained or to the Lagrange multipliers vector that resulted when the best upper

bound was found so far. The concept of this procedure is to start the search in the next

iteration set from a vector that returned the best result found so far.

4.4 Efficiency and Speed-up of the solver

The algorithm requires significant amount of house-keeping operations at each

iteration, such as identify the sense of the constraints (that is ≥, ≤ & =) and the relaxed

constraints. We have constructed the data structure so that such information are found

with minimal search time. This requires us to store the auxiliary information and thus

increases the memory requirement. But our experience shows that the resulting speed-

up in processing the problem offsets the memory requirement.

(PUB)

 20

An implementation of an efficient generic LR solver requires the algorithm to

be not only mathematically sound, but also efficient in the computational

implementation. We spend significant time and effort in the coding of the functions,

implementing alternative version prior to concluding the most efficient one. Our goal

was to reduce the number of floating point operations (flops) in the program. We

found that there was a trade-off in the number of calculations that the program needs

to perform versus the amount of information that is stored in the memory. The

algorithm showed significant computational speed-up if repeatedly used information

were stored for later use. For instance, at each iteration we need to identify the sense

of each constraint in order to select rule for updating the Lagrange multipliers vector.

Instead of searching the data matrices for the sense of each constraint at each

iteration, an array was created that contains that piece of information. Another

example of improving the performance of the program was in the calculation of the

subgradients. Instead of repeatedly searching the matrices of the master problem to

find the relaxed constraints in order to calculate the subgradients at the end of each

iteration, the data values of the relaxed constraints were stored in a different set of

matrices. This storage increases the memory required by the program, as more arrays

have to be generated, but certainly we speed up the solver.

5. Computational Results

We test the performance of the generic Lagrange Relaxation algorithm by using

alternative benchmark models. Moreover, we test the effect that the different controls

have on these models. We compare the computational performance of our

implementation with other solvers such as CPLEX, FortMP, Xpress, OSL, BonsaiG

and GLPK.

5.1 Collection of test problems

The selected model collection was drawn from: 1) H. Mittelmann [25], 2) ZIP

[18] and 3) MIPLIB3.0 [30]. The statistics of the selected models are presented in the

table below (Table 2). This table contains the number of rows, including the objective

 21

row, the number of columns, the number of integer and binary variables and the

number of non-zero elements of each model.

Table 2, Model statistics of benchmark models

The table below, Table 3, illustrates the known solutions of the models, where the

‘IntSol’ and ‘LP Sol’ columns indicate the integer and linear solution of the model

respectively.

Benchmark Model
Name rows col Int./Binary nonzero

10teams 231 2025 0/1800 14175
ran8x32 297 512 0/256 1536
ran12x21 286 504 0/252 1512
irp 40 20315 0/20315 118569
prod1 209 250 0/149 5351
bienst1 577 505 0/28 2185
bienst2 577 505 0/35 2185
swath1 885 6805 0/2306 34966
acc2 2521 1620 0/1620 15328

H
. M

itt
el

m
an

n

acc5 3053 1339 0/1339 16135

air04 824 8904 0/8904 81869
air05 427 7195 0/7195 59316
l152lav 98 1989 0/1989 11911
misc07 213 260 0/259 8620
rentacar 6804 9557 55/0 42019
stein27 118 27 0/27 405

Z
IP

stein45 332 45 0/45 1079
 vpm1 234 378 0/168 917

air06 826 8627 0/8627 79433

M
IP

L
IB

3.
0

p6000 2177 6000 0/6000 54238

 22

Benchmark Model
Name IntSol LP Sol

10teams* 924 917
ran8x32* 5247 4937.5845
ran12x21* 3664 3157.3774
Irp* 12159.493 12123.5302
prod1* -56 -100
bienst1 46.75 11.7241
bienst2* 54.6 11.724138
swath1* 379.069 334.4969
acc2* 0 0

H
. M

itt
el

m
an

n

acc5* 0 0

air04* 56138 55535.436
air05* 26374 25877.609
l152lav* 4722 4656.36
misc07 2810 1415.0
rentacar* 30356761 28806137.64
stein27 18 13.0

Z
IP

stein45* 30 22.0
 vpm1* 20 15.4167

air06* 49649 49616.364

M
IP

L
IB

3.
0

p6000* -2451377 -2451537.325

Table 3, Integer and LP solution of models

In the following two tables, Table 4a and Table 4b, the time taken by different

solvers to solve the selected models is illustrated. All the models were run in default

mode for each solver except CPLEX for which "mipgap" was decreased to 1.e-5 from

1.e-4 and FortMP for which specially tuned control settings were used. The

computational experiments were carried out on a Pentium 4 (1.5 GHz, 1GB RDRAM,

Linux-2.4.18)[25], except those of FortMP, which were run on a Pentium 4 (2.4GHz,

1GB DDR-RAM, Win2000). The column ‘Best FortMPSol’ denotes the best solution

found by FortMP.

 23

Benchmark Model
Name

FortMP
(sec)

CPLEX
(sec)

XPRESS
-MP (sec)

OSL
(sec)

Best
FortMPSol

10teams* 1351.4 78 154 >10000 926
ran8x32* 29.2 47 321 >15000 5382
ran12x21* 25.6 629 16859 >15000 3744
Irp* 3600 9 32 380 12159.493
prod1* 17.8 234 >30000 >10000 -40
bienst1 538 891 2228 3744 46.75
bienst2* 995.6 12865 12906 >20000 55.5
swath1* 708 250 16 41 379.0713
acc2* ----** 412 542 144 ----

H
. M

itt
el

m
an

n

acc5* ----** 2174 2958 >10000 ----

air04* 3600 133 435 >10000 56576
air05* 3600 180 1110 498 26456
l152lav* 690.2 4 101 75 4722
misc07 241 260 185 122 2810

Z
IP

stein45* 79.05 54 131 376 30

Table 4a, Solution times of models by all solvers

Benchmark Model
Name

FortMP
(sec)

Best
FortMPSol

rentacar* 586 29888573
stein27 5 18Z

IP

vpm1* 36.6 20

air06* 264 49649

M
IP

L
IB

3.
0

p6000* 2477 -2449956.2

*Integer solution found so far; Termination conditions of FortMP solver reached
**FortMP solver couldn’t find a single feasible solution

Table 4b, Solution times of models by FortMP

In the Table 5 below, the constraints of each model were classified. The

abbreviations of the IP constraint classes are defined in Table 1.

 24

 Model

Name INK CLQ PFLD XOR VUB NDPQ KNA OLE MLE BPK DGOQ SLB RNG SCV

10teams 45 50 15 120 - - - - - - - - - -
ran8x32 - - - - 256 40 - - - - - - - -
ran12x21 - - - - 252 33 - - - - - - - -
irp - - - 39 - - - - - - - - - -
prod1 - - - 7 100 1 100 - - - - - - -
bienst1 - - 4 - 196 124 - 252 - - - - - -
bienst2 - - 5 - 245 123 - 203 - - - - - -
swath1 - - 189 - - 314 - 247 133 - - - - -
acc2 387 1458 27 252 - - - - - - - - - 396

H
. M

itt
el

m
an

n

acc5 455 1938 33 244 - - - - - - - - - 382

air04 - - - 823 - - - - - - - - - -
air05 - - - 426 - - - - - - - - - -
l152lav - - 1 95 - - 1 - - - - - - -
misc07 42 3 27 7 - - 3 - - 2 1 - - 127
rentacar - - 19 - - 6273 - 478 - - - 31 2 -
stein27 1 - - - - - - - - - - - 117

Z
IP

stein45 1 1 - - - - - - - - - - - 329
 vpm1 - - - - 168 42 - 24 - - - - - -

air06 - - - 825 - - - - - - - - - -

M
IP

L
IB

3.
0

p6000 - 2046 - 123 - - 7 - - - - - - -

Table 5, Constraint Classification of models

5.2 Analysis of Results

In order to test the performance of the generic solver, computational tests

using different settings were carried out on several models presented in Table 2.

Through this study, our aim was to identify the controls that are best suited. In order

to rank different controls and analyse the quality of the results, we defined the

following metric.

1),max(+

−
=

ZZ
ZZ

LPLB

LBUBε

(eq. 5)

 25

where ZUB is the upper bound solution, ZLB is the lower bound solution and ZLP is the

relaxed solution. In perfect instances, where the lower bound is equal to the upper

bound, the value of the metric, ε, becomes zero. Otherwise, in general the closer is the

value of the metric to zero, the better is the quality of our result. The controls used for

each model across all the experiments carried out are summarised in Table 6.

 Table 6, Settings used across all experiments

‘Instant ID’ is the ID of the each control parameters set. ‘SG’ denotes that the

classical sub-gradient optimisation algorithm was used to update the Lagrange

multipliers. ‘ExtSG1’ symbolises that the extended sub-gradient algorithm, based on

the work of Kobayashi et al [24], presented in section 4.2 was used. ‘ExtSG2’

indicates that our approach on extending the above idea was used to update the

Lagrange multipliers.

Using the control settings of Table 6, we carried out three sets of experiments.

Initially, we found the set of constraints that is complicating each model and we

relaxed all the constraints of that set. The best instances obtained from this experiment

are summarised in Table 7, where ‘Instant ID’ refers to the control parameters set in

Table 6.

Instant
ID

Lamda
strategy

Adjust
Subgradient
Algorithm

Best Lamda
Vector Option

Starting
Lamda

1 SG YES NONE 0.0
2 SG YES NONE 0.5
3 SG YES LB 0.5
4 SG YES UB 0.5
5 ExtSG1 YES NONE 0.0
6 ExtSG1 NO NONE 0.5
7 ExtSG1 NO LB 0.5
8 ExtSG1 NO UB 0.5
9 ExtSG2 NO NONE 0.0

10 ExtSG2 NO NONE 0.5
11 ExtSG2 NO LB 0.5
12 ExtSG2 NO UB 0.5

 26

* Aggregation constraint was used

Table 7, Best results by relaxing all constraints of a certain type and warm-start B&B

As it can be observed by comparing the results obtained by the LR solver in

Table 7 with the known solution of the models in Table 3, the best upper bound

achieved by LR is close to the optimal solution. In two instances, ‘stein27’ and

‘vpm1’ model, the upper bound found is equal to the optimal solution. Furthermore,

when the best found solution by LR was used to warm-start the Branch-and-Bound

(B&B) algorithm, the value of the upper bound was further improved in almost all the

instances. Unfortunately, in the set of experiments the quality of the lower bound was

not that good and only in one case, ‘misc07’ model, the lower bound was better than

the known LP relaxed solution. As it was discussed above, this is an issue of the

integrality property. In order to attempt to overcome this problem and attain better

lower bounds, we carried out a set of experiments, where the constraints were relaxed

according the Greedy Algorithm presented in previous section. The best instances

obtained from this experiment are summarised in Table 8, where ‘Instant ID’ refers to

the control parameters set in Table 6.

Model
name

Instant
ID

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

10teams 1 908.802 924 705 0.0166 924 205
bienst1 1 9.38636 47.8 51 3.0190 47 100
bienst2 4 6.54243 55.8571 54 3.8757 55.7333 100
bienst2* 8 9.32143 55.7333 36 3.6476 55.7333 100
l152lav 11 4008.04 4750 404 0.1593 4734 150
misc07 1 1614.16 3130 353 0.9385 2810 100
prod1 8 -99.429 -50 125 0.4950 -55 12

Ran12x21 1 2772.81 4102 1.6 0.4208 3744 21
ran8x32 1 4448.14 5738 1.9 0.2612 5382 22
stein27 7 13 18 2.8 0.3571 18 2.2
stein45 11 22 31 2.9 0.3913 31 8.4
vpm1 2 15.4105 20 1.5 0.2796 20 5.4

 27

* Aggregation constraint was used

Table 8, Best results using Greedy Algorithm and warm-start B&B

By analysing the results of Table 8, it can be observed that in four models,

‘bienst1’, ‘l152lav’, ‘misc07’ and ‘stein27’, the lower bounds were significantly

improved and except ‘l152lav’ model the integrality property problem was resolved.

Unfortunately, for the remaining of the models, the results are not better than in the

first experiment. This is due to the relaxation of only few constraints that the result in

the formed LLBP not to be simplified sufficiently. Therefore, the external solver,

FortMP, used to solve the LLBP at each iteration did not obtain high-quality lower

bounds. In some instances, the limits of the generic LR solver or the external FortMP

solver were reached and the process was terminated.

In the third set of experiments carried out, we attempted to use LR only as a

booster to warm-start the B&B algorithm. Therefore, we reduced the number of

iterations and the time limit of the generic LR based solver. The summary of the

results obtained is presented in Table 9, where ‘Instant ID’ refers to the control

parameters set in Table 6.

Model
name

Instant
ID

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

10teams 2 0 940 204 1.0240 924 1004
bienst1 6 46.2 52 1339 0.1229 47 100
bienst2 3 0 65 365 5.1084 55.7333 100
bienst2* 9 0 62.6 362 4.9198 55.7333 100
l152lav 2 4542.63 4774 432 0.0497 4724 130
misc07 11 2460 3060 377 0.2438 2810 100
prod1 4 -∞ -50 301 -- Not Started

Ran12x21 1 2772.81 4102 1.6 0.4208 3744 21
ran8x32 1 4448.14 5738 1.9 0.2612 5382 22
stein27 5 15 19 10 0.2500 18 2.3
stein45 6 20.9178 32 259 0.4818 30 10
vpm1 2 15.4105 20 1.5 0.2796 20 5.4

 28

* Aggregation constraint was used

Table 9, Best results using LR as a booster to warm-start B&B

As it is noticeable by analysing the results in Table 9, even though the sum of the

solution time of LR and B&B is significant less than in the previous sets of

experiments, the best solution found is not worst. However, in some models like

‘bienst1’ and ‘l152lav’ the best solution found is better than in the previous

experiments. The explanation of this fact is that the generic LR solver obtains a good

upper bound at early iterations and thereafter is trying to improve it. While the solver

is trying to improve its current best found solution, in some cases is moving to the

wrong direction and is trapped in a worst local optimum. The complete set of results

of all three experiments is presented in Appendix II.

 In Appendix III, we present some graphs that illustrate the improvement of the

bounds over the solution time. Figure A1, shows how the lower and upper bounds

found are approaching the LP relaxed and optimal known solutions respectively.

Similarly, in Figure A2 and Figure A3, are improving over the time and tend to the

optimal solution. In Figure A4, the LLBP of the instant of model ‘misc07’ has not the

integrality property, and therefore the solver finds successfully a better lower bound

than the LP relaxed solution. Finally, in Figure A5, the generic LR based solver

managed to improve the bounds of the ‘vpm1’ model rapidly.

Model
name

Instant
ID

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

10teams 3 827.673 924 273 0.1049 924 204
bienst1 8 4.33679 50 8.8 3.5887 46.75 100
bienst2 5 4.1571 58.1111 9 4.2403 55.7333 100
bienst2* 9 9.32143 59 8.4 3.9043 55.7333 100
l152lav 10 3834.44 4748 315 0.1962 4724 127
misc07 2 1544.5 3290 113 1.1294 2810 100
prod1 12 -100 -50 3.4 0.4950 -55 10

ran12x21 5 2417.12 4102 0.2 0.5335 3744 21
ran8x32 6 4008.64 5738 0.2 0.3502 5382 21
stein27 7 13 18 0.09 0.3571 18 1.8
stein45 11 22 31 0.2 0.3913 31 6.8
vpm1 8 14.4376 20 0.2 0.3388 20 5.3

 29

6. Upper bound using Genetic Algorithm

After analysing the results of the generic LR based solver, we focus on

improving further the upper bound. Since most of the models consist of binary

variables, we designed a dynamic Genetic Algorithm (GA) based solver, which

extracts information from the structure of the constraints. The structure of general GA

is as follows. Initially a set of solutions has to be generated randomly, where the

members may not be feasible or accepted solutions to the problem. This set is known

as population. The generated solutions are represented by chromosomes and are

assessed before forming a new population. The evaluation of the solutions is made by

the fitness function. Afterwards, chromosomes are selected according to their fitness

value to form pair. From each pair, two new chromosomes are generated known as

offsprings. After evaluating the new generated chromosomes, a new population is

formed that contains the fittest chromosomes. In this fashion, good characteristics are

spread throughout the population over the generations. This process is repeated until a

very good solution is found or until all the solutions (chromosomes) converge to one

solution. The idea of GAs is to recombine chromosomes in order find a chromosome

that minimises the fitness function. The search for such a chromosome is based

mainly on the recombination of “fitter” chromosomes of the population, without

ignoring the rest of the chromosomes, in order to avoid to be trapped in local optima.

The GA has four main issues concerning its successful implementation that are

coding, the fitness function, parent selection and reproduction. A detailed description

of these issues can be found in any textbook of GAs.

The philosophy of the dynamic GA that we implemented is to use LR to create

the initial population and to split the chromosome into smaller sub-chromosome of

fixed size though the whole procedure. In order to define the size of the sub-

chromosomes, we used a Greedy Algorithm described in previous section to identify a

set of independent constraints. From the set of these constraints, we selected all the

binary variables of each constraint to form the sub-chromosomes. Since each set of

binary variables should satisfy the constraint that were emerged from, we decided not

to create the initial population randomly, but make use of the existing knowledge.

This knowledge was procured by applying LR. By generating the LLBP without

relaxing the set of independent constraints found by the Greedy Algorithm, we know

 30

that the resulting solution vector is a feasible instance for the members of each sub-

chromosome. Therefore, we generated an initial population that contains values that

do not violate a subset of constraints, set of independent constraints, of the model to

be solved. By using information obtain from the structure of the constraints, we try to

speed-up the GA and find feasible solutions to the master problem in a more

meaningful manner. The GA forms a new population by using mainly a crossover

operation. Instead of selecting a pair of chromosomes to generate two new offsprings,

our designed GA is selecting randomly a triple of chromosomes and by applying

randomly crossover at the defined sub-chromosomes is generating three new

offsprings. Furthermore, in order to ensure that the algorithm is complete and explores

more solution spaces, we introduce an operation that is swapping randomly two genes

within a sub-chromosome. To evaluate the fitness of each chromosome, we use an

external solver, FortMP, to solve the master problem when the binary variables are

fixed to the value of the chromosome. The pseudo-code of our GA is illustrated in

Figure 3 below.

Pre-processing (same as in LR based solver)

GA procedure

Analyse constraints and select set of constraints to form sub-chromosomes.

Initialise arrays that store information related to the GA iterations.

Use information of analysed constraints to define sub-chromosomes.

Use external solver to find first feasible solution of model.

Use feasible solution to update initial Population.

Initialise LR

pi = 2

select starting λ vector

(Populate GA’s initial Population of default size 20+1)

while iteration number <= 20

 Solve LLBP to optimality.

 Use solution vector of LLBP to update initial population of GA.

 Calculate fitness of updated Population.

 31

Start GA iterations

 while GA iteration < Max set number

 Select randomly three Chromosomes from Population matrix.

 while iteration <= (20+1)/3

 Randomly Crossover the sub-chromosomes of the three

selected Chromosomes.

 Calculate fitness of the three generated Chromosomes

 Update Population. (keep three best Chromosomes)

 while iteration <= Max Swap Number (default 3)

 For all selected triples do

Select randomly to swap two genes of

random selected sub-chromosome.

Calculate fitness.

Update Population.

Display Best found Chromosome.

Figure 3, Genetic Algorithm Pseudo-code

The testing and analysis of the GA is currently at an early stage. Therefore,

only preliminary results are presented, which are very promising. The GA was used as

a booster to the B&B algorithm for ‘bienst1’ and ‘bienst2’ model, where in both cases

the best solution found by the GA is also the known optimal solution to the model.

The solution time of the GA in both instances is extremely small. Especially, for the

‘bienst2’ model the GA managed to find the optimal solution in 144 seconds, when

the industrial solvers require hundred of seconds to find a feasible solution and a few

thousands of seconds to solve it to optimality (Table 4a).

 32

 Sub-
chrom.

Max genes
per

sub-chrom.

Best
feasible
Solution
by GA

GA
Solution
time(sec)

Best
Solution
by B&B

B&B
Solution
time(sec)

bienst1 4 7 46.75 153 46.75 100
bienst2 5 7 54.6 144 54.6 100

Table 10, Primarily results using GA as a booster to warm-start B&B

The following two figures, Figure 3 and Figure 4, illustrate the time needed to

update the current best solution in the two solved model. As it can be observed, when

these two figures are compared with Figure A2 and Figure A3 in the Appendix II, the

genetic algorithm finds a better upper bound and faster.

bienst1 model

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

time

bo
un

ds

Optimal
Solution

LP rel.
Solution

Figure 3, “bienst1” model iterations when GA was used as a booster to warm-start

B&B

 33

bienst2 model

0

10

20

30

40

50

60

70

0 50 100 150 200 250

time

bo
un

ds

Optimal
Solution

LP rel.
Solution

Figure 4, “bienst2” model iterations when GA was used as a booster to warm-start
B&B

Even though, the designed dynamic GA is highly based on information that

can be extracted from the constraint structure of the model, the obtained results are

ideal. Hence, we will try to improve further the algorithm and to apply it in different

instances to monitor its behaviour.

7. Discussions and Conclusions

In this paper, we revisited the use of Lagrange Relaxation for processing

combinatorial optimisation problems. We discuss issues related to the implementation

of LR as a generic solver for processing large-scale MIP problem. By introducing

some novel alternative strategies for updating the Lagrange multipliers vector and a

heuristic for calculating the upper bound, we improve the solver performance. A

feasible solution of the upper bound is calculated very fast, since the upper bound

sub-problem is not solved to optimality in every iteration. In addition, as the lower

bound approaches the upper bound, it is more than likely the variables of the upper

bound sub-problem that will be fixed, will lead to an improvement of the current

upper bound solution. A Greedy Algorithm was presented that is capable of resolving

 34

in some instances the integrality property problem, this in turn lead to the

improvement of the lower bound. The importance of constraint classification for

selecting the sets of constraints to be relaxed has been emphasised. This generic LR

solver provides the flexibility of adopting alternative strategies in the choice of the

constraints to relax and updating the multipliers.

The generic solver was tested by solving a collection of benchmark problems

using different control settings of the solver. The computational results obtained are

promising, but further work has to be done on the calculation of the upper bounds. An

alternatively procedure is introduced, which uses a dynamic genetic algorithm for

calculating upper bounds. The dynamic Genetic Algorithm extracts information from

the constraint structure of the model and uses Lagrange Relaxation to populate the

initial population. The preliminary results obtain are very encouraging, but further

analysis and testing are required.

8. References

[1] T. Aykin, (1994), Lagrangian relaxation based approaches to capacitated hub-

and-spoke network design problems, European Journals of Operational

Research, 79, 501-523.

[2] J.E.Beasley, (1993), Lagrangean heuristics for location problems, European

Journals of Operational Research, 65, 383-399.

[3] J.E. Beasley, (1993), Lagrangean relaxation, In "Modern heuristic techniques

for combinatorial problems" (C.R. Reeves, ed), 243-303, Blackwell Scientific

Publications.

[4] N. Christofides and J.E. Beasley, (1983), Extensions to a Lagrangean

relaxation approach for the capacitated warehouse location problem, European

Journals of Operational Research, 12, 19-28.

[5] Dash Optimisation, Xpress-Optimiser Reference manual,

http://www.dashoptimization.com

[6] B. Dorhout, (1995), Solution of a tinned iron purchasing problem by

Lagrangean relaxation, European Journal of Operational Research, 81, 597-

604.

 35

[7] E. F. D. Ellison, M. Hajian, H. Jones, R. Levkovitz, I. Maros, G. Mitra and D.

Sayers, Optirisk Systems, FortMP Reference manual, http://www.optirisk-

systems.com/

[8] M. Fisher, (1981), Lagrangian Relaxation Method for Solving Integer

Programming Problems, Management Science, Vol. 27, No. 1.

[9] A.M. Geoffrion, (1974), Lagrangean relaxation for integer programming,

Mathematical Programming Study, 2, 82-114.

[10] M. Guignard, (1988), A Lagrangean dual ascent algorithm for simple plant

location problems, European Journals of Operational Research, 35, 193-200.

[11] M. Held and R.M. Karp, (1970), The Traveling Salesman problem and

minimum spanning trees. Ops.Res., 18, 1138-1162.

[12] M. Held and R.M. Karp, (1971), The Traveling Salesman problem and

minimum spanning trees: Part II. Math.Prog., 1, 6-25.

[13] M. Held, P. Wolfe and H.P. Crowder, (1973), Validation of subgradient

optimisation, Mathematical Programming, 6, 62-88.

[14] IBM, OSL Reference manual, http://www.research.ibm.com/osl/

[15] ILOG, CPLEX Reference manual, http://www.ilog.com/products/cplex/

[16] C. Kaskavelis and M. Caramanis, Application of a Lagrangian Relaxation

Based Algorithm to a Semiconductor Testing Facility, Proceedings of the 4th

Intnl. Conference on Computer Integrated Manufacturing and Automation

Technology, Troy, NY, October 10-12 1994.

[17] A. Klose, (1998), Obtaining Sharp Lower and Upper Bounds for Two-Stage

Capacitated Facility Location Problems. In: B. Fleischmann, J.A.E.E. van

Nunen, M.G. Speranza, P. Stähly (eds.), Advances in Distribution Logistics,

Lecture Notes in Economics and Mathematical Systems 460, pp. 185-214,

Springer, Berlin Heidelberg New York.

[18] Konrad-Zuse-Zentrum für Informationstechnik Berlin

ftp://ftp.zib.de/pub/Packages/mp-testdata/ip/miplib/index.html

[19] K. Kularajan, (2000), Analysis of Integer Programming Problems and

Development of Solution Algorithms, PhD Thesis, Brunel University,

London.

[20] K. Kularajan, G. Mitra, E. F. D. Ellison and B. Nygreen, (2000), Constraint

Classification, Preprocessing and a Branch and Relax Approach to Solving

 36

Mixed Integer Programming Models, International Journals of Mathematical

Algorithms, vol. 2, 1-45.

[21] C.Y. Lee, (1996), An algorithm for a two-staged distribution system with

various types of distribution centers, INFOR, vol.34,no.2, 105-117.

[22] C. Lucas, S.A. MirHassani, G. Mitra and C.A. Poojari, (2001), An application

of Lagrange relaxation to a capacity planning problem under uncertainty,

Journals of the Operational Research Society, 52, 1256-1266.

[23] T.L. Magnanti and R.T. Wong, (1990), Decomposition Methods for Facility

Location Problems. In: P. B. Mirchandani and R. L. Francis, Discrete Location

Theory, Wiley-Interscience Series in Discrete Mathematics and Optimization,

p. 209-262, John Wiley & Sons.

[24] Minoru Kobayashi, Takuya Yamaguchi, Kenji Muramatsu (2000), Updating

of the Multiplier in the Lagrangean Decomposition Coordination Method of

Scheduling Problems, Proceedings of the 1st World Conference on Production

and Operations Management (CD-ROM Version), File Name=1161.pdf.

[25] H.D. Mittelmann, Arizona State University ftp://plato.la.asu.edu/pub/milpc.txt

[26] G.L. Nemhauser, M.P.W. Savelsbergh and G.C. Sigismondi, (1992),

Constraint Classification for Mixed Integer Programming Formulations,

COAL Bulletin-Committee on Algorithms of Mathematical Programming

Society 20, 8-12

[27] NEOS, http://www-neos.mcs.anl.gov/neos/

[28] OSP, http://www.osp-craft.com/

[29] Renato de Matta (1994), A Lagrangean Decomposition Solution for the Single

line Multiproduct Scheduling Problem, European Journal of Operational

Research, Vol 79, pp. 24-37.

[30] RICE University (MIPLIB 3.0)

http://www.caam.rice.edu/~bixby/miplib/miplib_prev.html

[31] E.L.F. Senne and L.A.N. Lorena, (2000), Lagrangean/Surrogate Heuristics for

p-Median Problems. In: Computing Tools for Modeling, Optimization and

Simulation: Interfaces in Computer Science and Operations Research, M.

Laguna and J. L. Gonzalez-Velarde (Eds.), Kluwer Academic Publishers, pp.

115-130.

[32] J.F. Shapiro, (1979), Mathematical Programming: Structures and Algorithms,

Wiley-Interscience.

 37

Appendix I: Constraint Classes

 38

Problem Definition [20]

Lets consider the Index sets, Data parameters and the Decision variables defined
below:

Index sets
B={1,…,|B|} Index set for binary variables,
I={|B|+1,…,|B|+|I|} Index set for integer variables,
C={|B|+|I|+1,…,|B|+|I|+|C|} Index set for continues variables,
N=B∪I∪C Index set for all variables,
K=I∪C Index set for integer and continues variables.

Data parameters
Lj, uj, cj, aij, bi are given values.

Decision variables
 xj ∈ {0,1},
 and jx = (1-xj) ∈ {0,1}, j ∈ B.

other bounded variables
 xj ∈ Z, j ∈ I,
 xj ∈ R, j ∈ C,
 lj ≤ xj ≤ uj, j ∈ K.

For a general MIP problem of the form:

The binary variable set B is further divided for row i as follows
i ij

i ij

ii i

B j j B and a

B j j B and a

B B B

+

−

+ −

= ∈ >
= ∈ <

= ∪

{ | },

{ | },

.

0

0

This means that:
B B

i
i= ∪() .

Similarly,
i ij

i ij

ii i

K j j K and a

K j j K and a

K K K

+

−

+ −

= ∈ >
= ∈ <

= ∪

{ | },

{ | },

.

0

0

This means that:
 K K

i
i= ∪() .

mibxats

xc

Nj
ijij

Nj
jj

,...,1..

min

, =
�
�
�

�
�
�

≥
≤

�

�

∈

∈

 39

Using the same set of variables and their bounds on the MIP problem can be written
in the expanded form as:

and in a further expanded form as:

The mathematical presentations of inequality constraint classes

Knapsack (KNA)

 a x bij j
j B

i

i∈ +
� ≤ .

Invariant knapsack (INK)

 (Knapsack with ∀ = ∈ +
ij ia j B1,)

 x bj
j B

i

i∈ +
� ≤ .

Bin packing (BPK)

a x a x where B kij j
j B

ik k i

i∈

−

+
� + ≤ =0 { } .

Clique (CLQ)

 (Invariant knapsack with bi = 1)

 x j
j Bi∈ +
� ≤ 1 .

ibxaxats

xcxc

i iBj
i

Kj
jijjij

Kj
jj

Nj
jj

∀
�
�
�

�
�
�

≥
≤

+

+

� �

��

∈ ∈

∈∈

,..

min

ibxaxaxaxats

xcxc

i i i iBj
i

Bj Kj Kj
jijjijjijjij

Kj
jj

Nj
jj

∀
�
�
�

�
�
�

≥
≤

+++

+

� � � �

��

+ − + −∈ ∈ ∈ ∈

∈∈

,..

min

 40

Set covering (SCV)

 x j
j Bi∈ −
� ≥ 1 .

We have used Bi
− here rather than Bi

+ because we have reversed all ≥ constraints to

≤, so that the actual constraint form is:

 − ≤ −
∈ −
� x j
j Bi

1 .

Plant Location (PLN)

(Bin packing with ij ia j B= ∀ ∈ +1,)

x a x where B kj
j B

ik k i

i∈

−

+
� + ≤ =0 { } .

Reverse plant location (RPL)

 (Bin packing with∀ > ∀ = −ij ija and a0 1)

 a x x where B kik k j
j B

i

i

− ≤ =
∈

+

−
� 0 { } .

Weak (mixed) knapsack (WKN)

a x a x b

where l is finite k K

u is finite k K

ij j
j B

ik k
k K

i

k i

k
i

i∈ ∈

+

−

+
� �+ ≤

∈

∈

,

,

.

Weak (mixed) invariant knapsack (WIK)

x a x b

where l is finite k K

u is finite k K

j
j B

ik k
k K

i

k i

k
i

i∈ ∈

+

−

+
� �+ ≤

∈

∈

,

.

Variable upper bound (on xk) (VUB)

a x a x b where B j and K kij j ik k i i i+ ≤ = =+{ } { } .

 41

Variable lower bound (on xk) (VLB)

 a x a x b where B {j} and K {k}ij j ik k i i i+ ≤ = =− .

Simple upper bound (SUB)

 a x b where K jij j i i≤ =+ { } .

Simple lower bound (SLB)

 a x b where K jij j i i≤ =− { } .

Mathematical presentations of the equality constraint classes

Integer Diophantine equation (IDPQ)

 a x bij j
j I

i
∈
� = .

Non Diophantine equation (NDPQ)

 a x a x b where Cij j
j B I

ik k
k C

i
∈ ∪ ∈
� �+ = ≠ ∅ .

Binary Diophantine equation (BDPQ)

 a x bij j
j B

i
∈
� = .

Mixed Diophantine equation (MDPQ)

 a x a x b where B Iij j
j B

ik k
k I

i
∈ ∈
� �+ = ≠ ∅ ≠ ∅, .

Discrete goal oriented equation (DGOQ)

 a x x x b where K h and K kij j
j B

h k i i i

i∈

+ −

+
� + − = = ={ } { } ,

where xh and xk do not appear in any other constraints. To change a given constraint to

a goal-oriented restriction these variables are given high costs in the objective

function row.

 42

P-fold alternative (PFLD)

 x p where p Zj
j Bi∈

+

+
� = ∈ .

Exclusive OR (XOR)

 Special case of p-fold alternative with p = 1

 x j
j Bi∈ +
� = 1 .

 43

Appendix II: Detailed Computational Results

 44

Table A1a, “10teams” model relaxing all constraints of a certain type and warm-start
to B&B

Table A1b, “10teams” model using Greedy Algorithm and warm-start to B&B

Table A1c, “10teams” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 120 XOR 908.802 924 705 0.0166 924 205
2 120 XOR 908.517 924 707 0.0169 924 204
3 120 XOR 887.419 924 699 0.0398 924 204
4 120 XOR 905.109 924 701 0.0206 924 204
5 120 XOR 882.003 924 703 0.0457 924 204
6 120 XOR 880.781 924 733 0.0471 924 204
7 120 XOR 877.541 924 699 0.0506 924 204
8 120 XOR 865.114 924 750 0.0641 924 204
9 120 XOR 887.325 924 704 0.0400 924 205

10 120 XOR 886.166 924 705 0.0412 924 204
11 120 XOR 883.513 924 714 0.0441 924 204
12 120 XOR 861.947 926 704 0.0698 924 204

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 40 XOR 0 940 237 1.0240 924 1004
2 40 XOR 0 940 204 1.0240 924 1004
3 40 XOR 0 940 204 1.0240 928 204
4 40 XOR 0 940 205 1.0240 928 204
5 40 XOR 0 940 233 1.0240 928 204
6 40 XOR 0 940 205 1.0240 928 204
7 40 XOR 0 940 204 1.0240 928 204
8 40 XOR 0 940 204 1.0240 928 204
9 40 XOR 0 940 204 1.0240 928 204
10 40 XOR 0 940 204 1.0240 928 204
11 40 XOR 0 940 204 1.0240 928 204
12 40 XOR 0 940 204 1.0240 928 204

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 120 XOR 878.148 924 245 0.0499 924 204
2 120 XOR 882.006 924 191 0.0457 924 204
3 120 XOR 827.673 924 273 0.1049 924 204
4 120 XOR 864.844 940 214 0.0819 928 204
5 120 XOR 847.878 924 200 0.0829 924 204
6 120 XOR 846.098 940 226 0.1023 928 204
7 120 XOR 837.514 930 248 0.1007 930 204
8 120 XOR 819.05 924 227 0.1143 924 204
9 120 XOR 856.372 924 197 0.0737 924 205

10 120 XOR 854.184 924 308 0.0761 924 204
11 120 XOR 839.735 930 210 0.0983 928 204
12 120 XOR 831.972 924 218 0.1002 924 204

 45

Table A2a, “bienst1” model relaxing all constraints of a certain type and warm-start to
B&B

Table A2b, “bienst1” model using Greedy Algorithm and warm-start to B&B

Table A2c, “bienst1” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 124 NDPQ 9.38636 47.8 51 3.0190 47 100
2 124 NDPQ 10.267 50.75 48 3.1816 46.75 100
3 124 NDPQ 6.51929 48 43 3.2600 47 100
4 124 NDPQ 7.26926 51 43 3.4368 47 100
5 124 NDPQ 9.22613 49.6 44 3.1730 47 100
6 124 NDPQ 9.60408 50 48 3.1748 46.75 100
7 124 NDPQ 9.04056 50 41 3.2190 46.75 100
8 124 NDPQ 6.03848 50 37 3.4550 46.75 100
9 124 NDPQ 8.78757 50.4 45 3.2704 46.75 100

10 124 NDPQ 8.99281 50.4 46 3.2542 46.75 100
11 124 NDPQ 7.74407 49.6 43 3.2895 47 100
12 124 NDPQ 7.51362 47.75 50 3.1622 46.75 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 4 NDPQ 46.2 60 1022 0.2924 46.75 404
2 4 NDPQ 46.2 52 1341 0.1229 47 100
3 4 NDPQ 46.2 52 1338 0.1229 47 100
4 4 NDPQ 46.2 52 1338 0.1229 47 100
5 4 NDPQ 46.2 60 1021 0.2924 47 100
6 4 NDPQ 46.2 52 1338 0.1229 47 100
7 4 NDPQ 46.2 52 1339 0.1229 47 100
8 4 NDPQ 46.2 52 1338 0.1229 47 100
9 4 NDPQ 46.2 60 1021 0.2924 47 100

10 4 NDPQ 46.2 52 1338 0.1229 47 100
11 4 NDPQ 46.2 52 1338 0.1229 47 100
12 4 NDPQ 46.2 52 1338 0.1229 47 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 124 NDPQ 1.65299 53.5 9.172 4.0747 46.75 100
2 124 NDPQ 2.99216 53.2 9.703 3.9459 47 100
3 124 NDPQ 3.36057 54.25 9.641 3.9995 47 100
4 124 NDPQ 1.2425 54.25 9.469 4.1659 47 100
5 124 NDPQ 4.07778 54.6667 9.375 3.9758 47 100
6 124 NDPQ 4.31164 50 9.25 3.5907 46.75 100
7 124 NDPQ 4.03582 50 9.156 3.6124 46.75 100
8 124 NDPQ 4.33679 50 8.8 3.5887 46.75 100
9 124 NDPQ 4.56539 53.1667 9.4 3.8196 46.75 100

10 124 NDPQ 3.90177 49.75 9.4 3.6033 47 100
11 124 NDPQ 3.56776 50.4 9.0 3.6806 46.75 100
12 124 NDPQ 3.9495 50.4 9.1 3.6506 46.75 100

 46

Table A3a, “bienst2” model relaxing all constraints of a certain type and warm-start to
B&B

Table A3b, “bienst2” model using Greedy Algorithm and warm-start to B&B

Table A3c, “bienst2” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 123 NDPQ 9.30145 58.6667 53 3.8797 56 100
2 123 NDPQ 9.5066 56.5385 56 3.6963 55.7333 100
3 123 NDPQ 7.03862 58 70 4.0051 56 100
4 123 NDPQ 6.54243 55.8571 54 3.8757 55.7333 100
5 123 NDPQ 9.52647 60.5 58 4.0061 55.7333 100
6 123 NDPQ 10.1933 57.6 57 3.7257 56 100
7 123 NDPQ 8.15316 57.6 53 3.8861 56 100
8 123 NDPQ 7.71834 60.1667 53 4.1220 56 100
9 123 NDPQ 9.86673 56.5385 51 3.6680 55.7333 100

10 123 NDPQ 9.88596 57.6 64 3.7499 56 100
11 123 NDPQ 7.65691 57.6 56 3.9251 56 100
12 123 NDPQ 6.23444 57.6 50 4.0369 56 100

Instant
ID

Relaxed
Constr. of

set(s)

Number of
Relaxed
Constr.

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 5 NDPQ 0 65 367 5.1084 55.7333 100
2 5 NDPQ 0 65 364 5.1084 55.7333 100
3 5 NDPQ 0 65 365 5.1084 55.7333 100
4 5 NDPQ 0 65 376 5.1084 55.7333 100
5 5 NDPQ 0 65 371 5.1084 55.7333 100
6 5 NDPQ 0 65 372 5.1084 55.7333 100
7 5 NDPQ 0 65 372 5.1084 55.7333 100
8 5 NDPQ 0 65 373 5.1084 55.7333 100
9 5 NDPQ 0 65 370 5.1084 55.7333 100
10 5 NDPQ 0 65 370 5.1084 55.7333 100
11 5 NDPQ 0 65 375 5.1084 55.7333 100
12 5 NDPQ 0 65 374 5.1084 55.7333 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 123 NDPQ 2.37341 60.2 8.5 4.5447 55.7333 100
2 123 NDPQ 1.17236 61.3333 9.1 4.7281 56 100
3 123 NDPQ 0.61001 61 9.2 4.7461 56 100
4 123 NDPQ 1.6039 58.1111 9.0 4.4410 55.7333 100
5 123 NDPQ 4.1571 58.1111 9.0 4.2403 55.7333 100
6 123 NDPQ 2.98605 62 9.2 4.6380 56 100
7 123 NDPQ 4.27796 60.25 9.2 4.3989 55.7333 100
8 123 NDPQ 4.1371 60.3333 9.2 4.4165 55.7333 100
9 123 NDPQ 3.97392 62.2 8.9 4.5760 55.7333 100

10 123 NDPQ 2.97919 57.6 9.3 4.2927 56 100
11 123 NDPQ 4.4561 61 9.2 4.4438 56 100
12 123 NDPQ 3.56479 60.8333 8.9 4.5008 56 100

 47

Table A4a, “bienst2” model relaxing all constraints of a certain type, Aggregation
Constraint and warm-start to B&B

Table A4b, “bienst2” model using Greedy Algorithm, Aggregation Constraint and
warm-start to B&B

Table A4c, “bienst2” model with Aggregation Constraint using LR as a booster to
warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 123 NDPQ 10.4546 57.6 50 3.7052 56 100
2 123 NDPQ 10.4546 57.6 49 3.7052 56 100
3 123 NDPQ 9.32143 65 35 4.3758 55.7333 100
4 123 NDPQ 9.32143 61.5 37 4.1008 56 100
5 123 NDPQ 9.32143 65 40 4.3758 55.7333 100
6 123 NDPQ 9.32143 65 39 4.3758 55.7333 100
7 123 NDPQ 9.32143 65 37 4.3758 55.7333 100
8 123 NDPQ 9.32143 55.7333 36 3.6476 55.7333 100
9 123 NDPQ 9.32143 55.7333 31 3.6476 55.7333 100

10 123 NDPQ 9.32143 55.7333 31 3.6476 55.7333 100
11 123 NDPQ 9.32143 55.7333 37 3.6476 55.7333 100
12 123 NDPQ 9.32143 56 33 3.6685 56 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 5 NDPQ 0 62.6 371 4.9198 55.7333 100
2 5 NDPQ 0 65 371 5.1084 55.7333 100
3 5 NDPQ 0 65 369 5.1084 55.7333 100
4 5 NDPQ 0 65 362 5.1084 55.7333 100
5 5 NDPQ 0 62.6 364 4.9198 55.7333 100
6 5 NDPQ 0 65 364 5.1084 55.7333 100
7 5 NDPQ 0 65 364 5.1084 55.7333 100
8 5 NDPQ 0 65 364 5.1084 55.7333 100
9 5 NDPQ 0 62.6 362 4.9198 55.7333 100
10 5 NDPQ 0 65 364 5.1084 55.7333 100
11 5 NDPQ 0 65 364 5.1084 55.7333 100
12 5 NDPQ 0 65 364 5.1084 55.7333 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 123 NDPQ 9.32143 60.8 8.4 4.0458 55.7333 100
2 123 NDPQ 9.32143 60.8 8.4 4.0458 55.7333 100
3 123 NDPQ 9.32143 65 8.3 4.3758 55.7333 100
4 123 NDPQ 9.32143 65 8.9 4.3758 55.7333 100
5 123 NDPQ 9.32143 65 9.4 4.3758 55.7333 100
6 123 NDPQ 9.32143 65 9.4 4.3758 55.7333 100
7 123 NDPQ 9.32143 65 9.1 4.3758 55.7333 100
8 123 NDPQ 9.32143 65 9.0 4.3758 55.7333 100
9 123 NDPQ 9.32143 59 8.4 3.9043 55.7333 100

10 123 NDPQ 9.32143 59 8.4 3.9043 55.7333 100
11 123 NDPQ 9.32143 65 8.8 4.3758 55.7333 100
12 123 NDPQ 9.32143 59.3333 7.8 3.9305 55.7333 100

 48

Table A5a, “l152lav” model relaxing all constraints of a certain type and warm-start
to B&B

Table A5b, “l152lav” model using Greedy Algorithm and warm-start to B&B

Table A5c, “l152lav” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 95 XOR 3770.12 4750 411 0.2104 4734 139
2 95 XOR 3839.02 4750 455 0.1956 4734 150
3 95 XOR 3059.27 4750 411 0.3630 4734 145
4 95 XOR 2905.28 4750 429 0.3961 4734 143
5 95 XOR 3819.6 4750 425 0.1998 4734 150
6 95 XOR 3789.71 4751 408 0.2064 4734 150
7 95 XOR 3689.08 4751 406 0.2280 4734 150
8 95 XOR 3391.98 4751 405 0.2918 4734 150
9 95 XOR 3933.87 4754 433 0.1761 4734 150

10 95 XOR 3908.89 4750 415 0.1806 4734 148
11 95 XOR 4008.04 4750 404 0.1593 4734 150
12 95 XOR 3569.3 4750 423 0.2535 4734 150

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 35 XOR 4539.8 4774 440 0.0503 4724 120
2 35 XOR 4542.63 4774 432 0.0497 4724 130
3 35 XOR 4533.01 4774 486 0.0517 4724 122
4 35 XOR 4117.2 4774 242 0.1410 4724 122
5 35 XOR 4290.89 4774 405 0.1037 4724 122
6 35 XOR 4186.72 4774 415 0.1261 4724 126
7 35 XOR 4208.51 4774 401 0.1214 4724 122
8 35 XOR 4091.6 4774 330 0.1465 4724 123
9 35 XOR 4523.51 4774 430 0.0538 4724 122

10 35 XOR 4453.82 4774 405 0.0687 4724 123
11 35 XOR 4448.29 4774 439 0.0699 4724 123
12 35 XOR 4377.07 4774 206 0.0852 4724 122

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 95 XOR 3109.83 4750 114 0.3522 4734 119
2 95 XOR 3479.98 4750 215 0.2727 4734 118
3 95 XOR 2754.89 4750 205 0.4284 4734 118
4 95 XOR 2152.72 4750 137 0.5577 4734 118
5 95 XOR 3763.53 4750 348 0.2118 4734 117
6 95 XOR 3718.84 4751 353 0.2216 4734 118
7 95 XOR 3646.84 4751 368 0.2371 4734 118
8 95 XOR 3341.75 4751 415 0.3026 4734 118
9 95 XOR 3782.7 4758 417 0.2094 4724 121

10 95 XOR 3834.44 4748 315 0.1962 4724 127
11 95 XOR 3712.98 4770 310 0.2270 4722 142
12 95 XOR 3499.59 4770 366 0.2728 4722 142

 49

Table A6a, “misc07” model relaxing all constraints of a certain type and warm-start to
B&B

Table A6b, “misc07” model using Greedy Algorithm and warm-start to B&B

Table A6c, “misc07” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 127 SCV 1614.16 3130 353 0.9385 2810 100
2 127 SCV 1548.76 3130 351 1.0203 2810 100
3 127 SCV 1531.49 3130 359 1.0431 2810 100
4 127 SCV 1327.06 3290 327 1.3863 2810 100
5 127 SCV 534.417 3290 372 1.9460 2810 100
6 127 SCV 509.205 3290 362 1.9638 2810 100
7 127 SCV 509.205 3290 362 1.9638 2810 100
8 127 SCV 509.205 3290 362 1.9638 2810 100
9 127 SCV 0 2810 365 1.9845 2810 100

10 127 SCV 63.5 2895 360 1.9996 2810 100
11 127 SCV 694.759 2895 377 1.5538 2810 100
12 127 SCV 63.5 2810 365 1.9396 2810 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 2 BPK 2460 3060 405 0.2438 2810 100
2 2 BPK 2460 3060 400 0.2438 2810 100
3 2 BPK 2460 3060 389 0.2438 2810 100
4 2 BPK 2460 3060 387 0.2438 2810 100
5 2 BPK 2460 3060 381 0.2438 2810 100
6 2 BPK 2460 3060 215 0.2438 3060 2
7 2 BPK 2460 3060 216 0.2438 3060 2
8 2 BPK 2460 3060 215 0.2438 3060 2
9 2 BPK 2460 3060 378 0.2438 2810 100
10 2 BPK 2460 3060 382 0.2438 2810 100
11 2 BPK 2460 3060 377 0.2438 2810 100
12 2 BPK 2460 3060 377 0.2438 2810 100

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 127 SCV 1226.77 3290 73 1.4571 2810 100
2 127 SCV 1544.5 3290 113 1.1294 2810 100
3 127 SCV 1441.13 3130 78 1.1711 2810 100
4 127 SCV 1022.63 3290 59 1.6013 2810 100
5 127 SCV 542.818 3290 400 1.9401 2810 100
6 127 SCV 520.493 3290 362 1.9559 2810 100
7 127 SCV 509.829 3160 385 1.8716 2810 100
8 127 SCV 1006.52 3160 118 1.5208 2810 100
9 127 SCV 0 2810 211 1.9845 2810 100

10 127 SCV 63.5 2895 219 1.9996 2810 100
11 127 SCV 724.379 2895 125 1.5329 2810 100
12 127 SCV 63.5 2895 215 1.9996 2810 100

 50

Table A7a, “prod1” model relaxing all constraints of a certain type and warm-start to
B&B

Table A7b, “prod1” model using Greedy Algorithm and warm-start to B&B

Table A7c, “prod1” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 100 KNA -100 -50 300 0.4950 -55 13
2 100 KNA -∞ -50 11 -- -55 13
3 100 KNA -∞ -50 9 -- -55 18
4 100 KNA -100 -50 300 0.4950 -54 15
5 100 KNA -100 -50 302 0.4950 -55 12
6 100 KNA -∞ -50 9 -- -55 13
7 100 KNA -∞ -50 8 -- -55 12
8 100 KNA -99.429 -50 125 0.4950 -55 12
9 100 KNA -100 -50 301 0.4950 -55 12

10 100 KNA -∞ -50 13 -- -55 12
11 100 KNA -∞ -50 13 -- -55 12
12 100 KNA -100 -50 7.9 0.4950 -54 13

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 1 KNA -∞ -50 310 -- Not Started
2 1 KNA -∞ -50 304 -- Not Started
3 1 KNA -∞ -50 302 -- Not Started
4 1 KNA -∞ -50 301 -- Not Started
5 1 KNA -∞ -50 306 -- Not Started
6 1 KNA -∞ -50 305 -- Not Started
7 1 KNA -∞ -50 306 -- Not Started
8 1 KNA -∞ -50 310 -- Not Started
9 1 KNA -∞ -50 307 -- Not Started

10 1 KNA -∞ -50 306 -- Not Started
11 1 KNA -∞ -50 306 -- Not Started
12 1 KNA -∞ -50 305 -- Not Started

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 100 KNA -100 -50 51 0.4950 -55 10
2 100 KNA -∞ -50 3.5 -- -55 11
3 100 KNA -∞ -50 3.5 -- -55 11
4 100 KNA -100 -50 24 0.4950 -55 10
5 100 KNA -100 -50 50 0.4950 -55 10
6 100 KNA -∞ -50 3.3 -- -55 10
7 100 KNA -∞ -50 3.3 -- -55 10
8 100 KNA -100 -50 3.4 0.4950 -55 10
9 100 KNA -100 -50 52 0.4950 -55 10

10 100 KNA -∞ -50 3.5 -- -55 10
11 100 KNA -∞ -50 3.5 -- -55 10
12 100 KNA -100 -50 3.4 0.4950 -55 10

 51

Table A8a, “ran12x21” model relaxing all constraints of a certain type and warm-start
to B&B

Table A8b, “ran12x21” model using Greedy Algorithm and warm-start to B&B

Table A8c, “ran12x21” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 252 VUB 2772.81 4102 1.6 0.4208 3744 21
2 252 VUB 2759.8 4102 1.5 0.4250 3744 21
3 252 VUB 2612.02 4102 1.7 0.4718 3744 21
4 252 VUB 1966.13 4102 1.2 0.6763 3744 22
5 252 VUB 2728.88 4102 2.0 0.4348 3744 21
6 252 VUB 2749.69 4102 1.8 0.4282 3744 21
7 252 VUB 2593.18 4102 1.9 0.4777 3744 21
8 252 VUB 2353.72 4102 1.0 0.5535 3744 21
9 252 VUB 643 4102 1.0 1.0952 3744 21

10 252 VUB 803 4102 1.0 1.0445 3744 21
11 252 VUB 2244.33 4102 1.9 0.5882 3744 21
12 252 VUB 2089.79 4102 1.0 0.6371 3744 21

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 252 VUB 2772.81 4102 1.6 0.4208 3744 21
2 252 VUB 2759.8 4102 1.5 0.4250 3744 21
3 252 VUB 2612.02 4102 1.7 0.4718 3744 21
4 252 VUB 1966.13 4102 1.2 0.6763 3744 22
5 252 VUB 2728.88 4102 2.0 0.4348 3744 21
6 252 VUB 2749.69 4102 1.8 0.4282 3744 21
7 252 VUB 2593.18 4102 1.9 0.4777 3744 21
8 252 VUB 2353.72 4102 1.0 0.5535 3744 21
9 252 VUB 643 4102 1.0 1.0952 3744 21

10 252 VUB 803 4102 1.0 1.0445 3744 21
11 252 VUB 2244.33 4102 1.9 0.5882 3744 21
12 252 VUB 2089.79 4102 1.0 0.6371 3744 21

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 252 VUB 1887.81 4102 0.2 0.7011 3744 21
2 252 VUB 1933.99 4102 0.2 0.6864 3744 21
3 252 VUB 1203.29 4102 0.2 0.9178 3744 21
4 252 VUB 1156.71 4102 0.2 0.9325 3744 22
5 252 VUB 2417.12 4102 0.2 0.5335 3744 21
6 252 VUB 2406.02 4102 0.2 0.5370 3744 21
7 252 VUB 1857.83 4102 0.2 0.7105 3744 21
8 252 VUB 1865.61 4102 0.2 0.7081 3744 21
9 252 VUB 643 4102 0.2 1.0952 3744 21

10 252 VUB 803 4102 0.2 1.0445 3744 21
11 252 VUB 1958.67 4102 0.2 0.6786 3744 21
12 252 VUB 1870.57 4102 0.2 0.7065 3744 21

 52

Table A9a, “ran8x32” model relaxing all constraints of a certain type and warm-start
to B&B

Table A9b, “ran8x32” model using Greedy Algorithm and warm-start to B&B

Table A9c, “ran8x32” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 256 VUB 4448.14 5738 1.9 0.2612 5382 22
2 256 VUB 4438.41 5738 1.7 0.2632 5382 21
3 256 VUB 4189.76 5738 1.8 0.3135 5382 23
4 256 VUB 2685.43 5738 1.1 0.6181 5382 22
5 256 VUB 4328.73 5738 1.9 0.2854 5382 21
6 256 VUB 4328.87 5738 1.9 0.2853 5382 21
7 256 VUB 4160.22 5738 1.9 0.3195 5382 21
8 256 VUB 3797.44 5738 1.0 0.3929 5382 21
9 256 VUB 861 5738 1.1 0.9875 5382 21

10 256 VUB 1056 5738 1.1 0.9480 5382 21
11 256 VUB 3136.56 5738 1.9 0.5268 5382 21
12 256 VUB 2544.1 5738 1.0 0.6467 5382 21

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 256 VUB 4448.14 5738 1.9 0.2612 5382 22
2 256 VUB 4438.41 5738 1.7 0.2632 5382 21
3 256 VUB 4189.76 5738 1.8 0.3135 5382 23
4 256 VUB 2685.43 5738 1.1 0.6181 5382 22
5 256 VUB 4328.73 5738 1.9 0.2854 5382 21
6 256 VUB 4328.87 5738 1.9 0.2853 5382 21
7 256 VUB 4160.22 5738 1.9 0.3195 5382 21
8 256 VUB 3797.44 5738 1.0 0.3929 5382 21
9 256 VUB 861 5738 1.1 0.9875 5382 21

10 256 VUB 1056 5738 1.1 0.9480 5382 21
11 256 VUB 3136.56 5738 1.9 0.5268 5382 21
12 256 VUB 2544.1 5738 1.0 0.6467 5382 21

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 256 VUB 3394 5738 0.2 0.4746 5382 21
2 256 VUB 3524.87 5738 0.2 0.4481 5382 21
3 256 VUB 1841.12 5738 0.2 0.7891 5382 21
4 256 VUB 1720 5738 0.2 0.8136 5382 22
5 256 VUB 3936.98 5738 0.2 0.3647 5382 21
6 256 VUB 4008.64 5738 0.2 0.3502 5382 21
7 256 VUB 3359.76 5738 0.2 0.4816 5382 21
8 256 VUB 2735.97 5738 0.2 0.6079 5382 21
9 256 VUB 861 5738 0.2 0.9875 5382 21

10 256 VUB 1056 5738 0.2 0.9480 5382 21
11 256 VUB 1968.71 5738 0.2 0.7632 5382 21
12 256 VUB 1973.67 5738 0.2 0.7622 5382 21

 53

Table A10a, “stein27” model relaxing all constraints of a certain type and warm-start
to B&B

Table A10b, “stein27” model using Greedy Algorithm and warm-start to B&B

Table A10c, “stein27” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 117 SCV 13 19 2.1 0.4286 18 2.3
2 117 SCV 13 19 2.1 0.4286 18 2.1
3 117 SCV 13 18 3.5 0.3571 18 2.1
4 117 SCV 13 19 3.1 0.4286 18 2.0
5 117 SCV 13 19 5.8 0.4286 18 2.1
6 117 SCV 13 19 6.2 0.4286 18 2.1
7 117 SCV 13 18 2.8 0.3571 18 2.2
8 117 SCV 13 19 3.2 0.4286 18 2.3
9 117 SCV 13 19 4.0 0.4286 18 2.4

10 117 SCV 13 19 6.0 0.4286 18 2.1
11 117 SCV 13 18 3.0 0.3571 18 2.1
12 117 SCV 13 19 5.9 0.4286 18 2.2

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 9 SCV 15 19 11 0.2500 18 2.3
2 9 SCV 14.9937 19 20 0.2505 18 2.3
3 9 SCV 14.9937 19 20 0.2505 18 2.4
4 9 SCV 14.9937 19 20 0.2505 18 2.1
5 9 SCV 15 19 10 0.2500 18 2.3
6 9 SCV 12 18 10 0.4286 18 2.3
7 9 SCV 12 19 11 0.5000 18 2.3
8 9 SCV 12 19 10 0.5000 18 2.5
9 9 SCV 15 19 10 0.2500 18 2.4

10 9 SCV 12 19 11 0.5000 18 2.3
11 9 SCV 12 19 11 0.5000 18 2.4
12 9 SCV 12 19 10 0.5000 18 2.4

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 117 SCV 13 19 0.1 0.4286 18 1.7
2 117 SCV 13 19 0.1 0.4286 18 1.7
3 117 SCV 13 19 0.1 0.4286 18 1.7
4 117 SCV 13 19 0.1 0.4286 18 1.8
5 117 SCV 13 19 0.09 0.4286 18 1.7
6 117 SCV 13 19 0.1 0.4286 18 1.8
7 117 SCV 13 18 0.09 0.3571 18 1.8
8 117 SCV 13 19 0.09 0.4286 18 1.7
9 117 SCV 13 19 0.09 0.4286 18 1.7

10 117 SCV 13 19 0.09 0.4286 18 1.8
11 117 SCV 13 19 0.1 0.4286 18 1.7
12 117 SCV 13 19 0.1 0.4286 18 1.8

 54

Table A11a, “stein45” model relaxing all constraints of a certain type and warm-start
to B&B

Table A11b, “stein45” model using Greedy Algorithm and warm-start to B&B

Table A11c, “stein45” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 329 SCV 22 32 3.0 0.4348 32 8.8
2 329 SCV 22 32 4.3 0.4348 32 8.5
3 329 SCV 22 32 3.9 0.4348 32 8.6
4 329 SCV 22 31 4.0 0.3913 31 7.8
5 329 SCV 22 32 3.8 0.4348 32 8.5
6 329 SCV 22 32 4.0 0.4348 31 8.7
7 329 SCV 22 31 3.0 0.3913 31 8.4
8 329 SCV 22 32 2.9 0.4348 32 8.3
9 329 SCV 22 32 2.1 0.4348 32 8.6

10 329 SCV 22 32 2.2 0.4348 32 8.7
11 329 SCV 22 31 2.9 0.3913 31 8.4
12 329 SCV 22 32 3.3 0.4348 32 8.8

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 15 SCV -∞ 31 53 -- 30 10
2 15 SCV -∞ 32 85 -- 30 10
3 15 SCV -∞ 31 68 -- 30 10
4 15 SCV -∞ 31 51 -- 30 10
5 15 SCV 19.8572 32 261 0.5279 30 10
6 15 SCV 20.9178 32 259 0.4818 30 10
7 15 SCV -∞ 33 15 -- 30 10
8 15 SCV -∞ 33 12 -- 30 10
9 15 SCV 0 33 14 1.4348 30 10

10 15 SCV -∞ 33 14 -- 30 10
11 15 SCV -∞ 32 14 -- 30 10
12 15 SCV -∞ 33 13 -- 30 10

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 329 SCV 22 32 0.2 0.4348 32 6.7
2 329 SCV 22 32 0.2 0.4348 32 6.9
3 329 SCV 22 32 0.2 0.4348 32 6.8
4 329 SCV 22 32 0.2 0.4348 32 6.9
5 329 SCV 22 32 0.1 0.4348 32 6.8
6 329 SCV 22 32 0.1 0.4348 31 6.9
7 329 SCV 22 32 0.2 0.4348 31 6.8
8 329 SCV 22 32 0.1 0.4348 31 6.2
9 329 SCV 22 32 0.1 0.4348 32 6.8

10 329 SCV 22 32 0.1 0.4348 32 6.1
11 329 SCV 22 31 0.2 0.3913 31 6.8
12 329 SCV 22 32 0.1 0.4348 32 6.9

 55

Table A12a, “vpm1” model relaxing all constraints of a certain type and warm-start to
B&B

Table A12b, “vpm1” model using Greedy Algorithm and warm-start to B&B

Table A12c, “vpm1” model using LR as a booster to warm-start B&B

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 168 VUB 15.4105 20 1.5 0.2796 20 5.5
2 168 VUB 15.4105 20 1.5 0.2796 20 5.4
3 168 VUB 15.4105 20 1.5 0.2796 20 5.4
4 168 VUB 15.195 20 1.2 0.2927 20 5.4
5 168 VUB 14.3131 22 1.2 0.4682 21 5.3
6 168 VUB 14.4534 20 1.2 0.3379 20 5.5
7 168 VUB 13.4676 20 1.1 0.3979 20 5.4
8 168 VUB 14.8151 20 1.0 0.3158 20 5.5
9 168 VUB 5.57087 22 0.9 1.0008 21 5.3

10 168 VUB 7.70833 20 0.8 0.7487 20 5.5
11 168 VUB 14.2774 20 1.0 0.3486 20 5.5
12 168 VUB 14.6433 20 1.0 0.3263 20 5.5

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 168 VUB 15.4105 20 1.5 0.2796 20 5.5
2 168 VUB 15.4105 20 1.5 0.2796 20 5.4
3 168 VUB 15.4105 20 1.5 0.2796 20 5.4
4 168 VUB 15.195 20 1.2 0.2927 20 5.4
5 168 VUB 14.3131 22 1.2 0.4682 21 5.3
6 168 VUB 14.4534 20 1.2 0.3379 20 5.5
7 168 VUB 13.4676 20 1.1 0.3979 20 5.4
8 168 VUB 14.8151 20 1.0 0.3158 20 5.5
9 168 VUB 5.57087 22 0.9 1.0008 21 5.3

10 168 VUB 7.70833 20 0.8 0.7487 20 5.5
11 168 VUB 14.2774 20 1.0 0.3486 20 5.5
12 168 VUB 14.6433 20 1.0 0.3263 20 5.5

Instant
ID

Number of
Relaxed
Constr.

Relaxed
Constr. of

set(s)

BestLB BestUB LR
solution
time(sec)

εεεε BestUB
by B&B

B&B
solution
time(sec)

1 168 VUB 10.8805 22 0.2 0.6773 21 5.2
2 168 VUB 12.029 20 0.2 0.4855 20 5.5
3 168 VUB 11.9624 20 0.2 0.4896 20 5.5
4 168 VUB 11.9624 20 0.2 0.4896 20 5.4
5 168 VUB 14.0615 22 0.2 0.4836 21 5.6
6 168 VUB 14.0763 20 0.1 0.3608 20 5.4
7 168 VUB 13.3762 20 0.1 0.4035 20 5.4
8 168 VUB 14.4376 20 0.2 0.3388 20 5.3
9 168 VUB 5.88697 22 0.1 0.9815 21 5.2

10 168 VUB 7.70833 20 0.1 0.7487 20 5.3
11 168 VUB 13.7828 20 0.1 0.3787 20 5.4
12 168 VUB 13.7828 20 0.1 0.3787 20 5.3

 56

Appendix III: Graphical Presentation of Algorithmic Behaviour

 57

10teams model

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900

time

bo
un

ds

Optimal
Solution

LP rel.
Solution

Figure A1, “10teams” model iterations when all constraints of a certain type were

relaxed and warm-start to B&B

bienst1 model

0

10

20

30

40

50

60

70

80

0 30 60 90 120 150

time

bo
un

ds

Opt imal

Solut ion

LP rel.

Solut ion

Figure A2, “bienst1” model iterations when all constraints of a certain type were

relaxed and warm-start to B&B

 58

bienst2 model

-30

-20

-10

0

10

20

30

40

50

60

70

80

0 30 60 90 120 150

time

bo
un

ds

Optimal

Solution

LP rel.

Solution

Figure A3, “bienst2” model iterations when all constraints of a certain type were

relaxed and warm-start to B&B

misc07 model

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450

time

bo
un

ds

Optimal

Solution

LP rel.

Solution

Figure A4, “misc07” model iterations when all constraints of a certain type were

relaxed and warm-start to B&B

 59

vpm1 model

0

5

10

15

20

25

0 5 10 15 20 25

time

bo
un

ds

Opt imal

Solut ion

LP rel.

Solut ion

Figure A5, “vpm1” model iterations when Greedy Algorithm was used and warm-

start to B&B

