

CTR/27/04
April 2004

Revisiting Lagrange Relaxation for Processing Large-Scale Mixed Integer Programming Problems

C Siamitros, G Mitra and C Poojari

Department of Mathematical Sciences and Department of
Economics and Finance
Brunel University, Uxbridge, Middlesex, UB8 3PH

Abstract

Lagrangean Relaxation has been successfully applied to process many well known instances of NP-hard Mixed Integer Programming problems. In this paper we present a Lagrangean Relaxation based generic solver for processing Mixed Integer Programming problems. We choose the constraints, which are relaxed using a constraint classification scheme. The tactical issue of updating the Lagrange multiplier is addressed through sub-gradient optimisation; alternative rules for updating their values are investigated. The Lagrangean relaxation provides a lower bound to the original problem and the upper bound is calculated using a heuristic technique. The bounds obtained by the Lagrangean Relaxation based generic solver were used to warm-start the Branch and Bound algorithm; the performance of the generic solver and the effect of the alternative control settings are reported for a wide class of benchmark models. Finally, we present an alternative technique to calculate the upper bound, using a genetic algorithm that benefits from the mathematical structure of the constraints. The performance of the genetic algorithm is also presented.

Table of Content

Abstract 1

1. Introduction and Background of MIP problems. 3
2. Literature review of Lagrangean Relaxation in processing MIP problems 4
3. Design of a general LR/MIP algorithm 5
3.1 Relaxation of constraints 6
3.2 Determination of the Lagrange multipliers 8
4. Implementing a generic LR/MIP solver 11
4.1 Classification and Relaxation of the Constraints 11
4.2 The Lagrange Multiplier 13
4.3 Structure of the generic solver 16
4.4 Efficiency and Speed-up of the solver 19
5. Computational Results 20
5.1 Collection of test problems 20
5.2 Analysis of Results 24
6. Upper bound using Genetic Algorithm 29
7. Discussions and Conclusions 33
8. References 34
Appendix I: Constraint Classes 37
Appendix II: Detailed Computational Results 43
Appendix III: Graphical Presentation of Algorithmic Behaviour 56

Revisiting Lagrange Relaxation for processing large-scale Mixed Integer Programming problems

1. Introduction and Background of MIP problems

The availability of fast and reliable commercial solvers such as CPLEX[15], Xpress-MP[5], OSL[14] and FortMP[7], and the easy access to public domain solvers such as NEOS[27] and OSP[28], the processing of large-scale linear programming has become easier. The processing of Mixed Integer Programming (MIP) problems, however, still remains non-trivial and poses significant mathematical and computational challenges. During the past years, 'branch and bound' approach monopolised the commercial solvers for solving MIP problems. In the recent times, the limitations of exact optimisation methods became increasingly apparent, since many problems are too complex to be solved exactly and it is computationally expensive. Therefore, many commercial solvers have been enhanced by using improved cut generation techniques, or non-exact optimisation methods, or by using new techniques, like pre-processing. In this paper, we discuss the Lagrangean Relaxation (LR) decomposition technique, which is, from computational point of view, a well-established approach to solve structured problems.

In this paper, we utilise the existing knowledge of processing MIP problems using LR and thereby design an algorithmic framework for applying LR dynamically to different classes of MIP problems. The outline of the paper is as follows. In section 2 we review the existing literature and refer to the different problem domains, where LR based methods have been applied. In general the efficiency and the effectiveness of the implementation depends on how well the knowledge about the structure of the underlying problem has been exploited. In section 3 we discuss the general issues
while applying LR and in particular address the challenges while applying the method to process large-scale MIP problems. In section 4 we present the details of implementing a generic LR based solver. We explain the alternative classification of the constraints, techniques for updating the Lagrange multipliers, re-use of information over iterations. In section 5, we present the computational results on a selection of benchmark problems. Additionally, we compare the performances of different options of the solver. In section 6, we introduce a Genetic Algorithm as an alternative approach to calculate the upper bound of the models and we present some primarily results. Finally, in section 7, we discuss the outstanding issues and give directions for further research into the field.

2. Literature review of Lagrangean Relaxation in processing MIP problems

Lagrangean Relaxation, also known as Lagrangean Decomposition, was introduced in the early 70's through the pioneering work of Held and Karp[11][12] on the travelling salesman problem. It was discovered that the relationship between the systematic travelling-salesman problem and the minimum spanning tree problem yields a sharp lower bound on the cost of an optimum tour. Thereafter, Held et al.[13] tried to test the effectiveness of subgradient optimisation for approximating the maximum of certain pairwise linear concave functions. The results that they obtained were promising for applying the method to general large-scale linear programming problems. Subsequently, Geoffrion [9] in the mid 70's developed a general theory for applying the method by exploiting special problem structures. Since then, many researchers worked in the field and tried to extend the current methodology [32][3][8] and to apply the method to different classes of Integer Programming (IP) and MIP problems of known structure. Mainly, most applications that can be found in the literature are based either on scheduling problems or on location problems.

Renato de Matta [29] used LR to find the schedule for producing products of a single level, capacitated line problem. The LR based approach that was used to solve the problem in question found near optimal solution faster than other exact optimisation methods. Kaskavelis and Caramanis [16] processed an industry size jobshop scheduling problem with more than 10000 resource constraints by using a

Lagrangean relaxation based algorithm. In their approach, they extended the algorithm by introducing two new features in the Lagrange multiplier updating procedure. Firstly, they replaced the dual cost estimation of all sub-problems and the update of the multipliers values by a surrogate dual cost function and a more frequent multipliers update. Secondly, they introduced an adaptive step size in the subgradientbased multipliers. Both of the added features produced a more robust algorithm with significant attenuated solution oscillations, better feasible schedules and faster convergence. Kobayashi et al. [24] extended the subgradient optimisation method for calculating the Lagrange multipliers and introduced an intelligent way of updating these multipliers. The computational results arise show that the suggested method is very effective in solving scheduling problems.

A wide variety of effective Lagrange relaxation applications to location problems were also designed [2][4][22][21][1][6][17][10][23][31]. One of the principal researchers in the field, Beasley, presented a framework for developing Lagrangean heuristics with respect to location problems[2]. These heuristics are based upon Lagrange relaxation and subgradient optimisation method for solving different types of location problems. The computational results presented, indicate that the suggested algorithmic framework is robust. In a similar application, Christofides and Beasley [4], attempted to improve the lower bound of capacitated location problem by using subgradient optimisation method.

Senne and Lorena [31], proposed the Lagrangean / Surrogate as an alternative relaxation, in order to correct the erratic behaviour of subgradient like methods. The proposed alternative approach was tested in p-median problems and from the computational results showed that Lagrangean/Surrogate relaxations are very stable (low oscillating) and are reaching equal quality results in less computational time than the Lagrangean alone heuristics.

3. Design of a general LR/MIP algorithm

Lagrangean Relaxation is a Price Directive decomposition technique[23], which in the first instance simplifies and reduces the problem in question by relaxing
groups of constraints. Lagrangean relaxation has been successfully used in processing many different instances of combinatorial optimisation problems, such as the Travelling salesman Problem [11], [3] and [22]. Many combinatorial optimisation problems consist of an easy problem that is complicated by the addition of extra constraints. Applying LR in these problems involves identifying these complicating constraints, and then relaxing them by attaching penalties to the complicating constraints and then absorbing them into the objective function. These penalties are known as the Lagrange multipliers. Due to the relaxation of the complicating constraints, the relaxed problem becomes much easier to solve. The next aim is to find tight upper and lower bounds to the problem by iteratively processing sequence of modified sub-problems.

LR involves addressing two important issues; one is a strategic issue and the other a tactical issue [3]. The strategic issue concerns the classification and relaxation of the constraints. The strategic question is of the form "What constraints are to be relaxed?" The tactical issue deals with the selection of a good technique for updating the Lagrange multipliers. The tactical questions are of the form, "How the reduced problem can be solved?" or "How can we calculate an efficient bound?".

3.1 Relaxation of constraints

Before defining the general MIP problem, lets identify the following index sets:
$B=\{1, \ldots,|B|\} \quad$ Index set for binary variables,
$\mathrm{I}=\{|\mathrm{B}|+1, \ldots,|\mathrm{~B}|+\mid \mathrm{II}\} \quad$ Index set for integer variables,
$\mathrm{C}=\{|\mathrm{B}|+|\mathrm{I}|+1, \ldots,|\mathrm{~B}|+|\mathrm{I}|+|\mathrm{C}|\} \quad$ Index set for continues variables,
$\mathrm{N}=\mathrm{B} \cup \mathrm{I} \cup \mathrm{C} \quad$ Index set for all variables.

Hence, the general MIP problem can be written as:

$$
\begin{align*}
& \min \quad \sum_{j \in N} c_{j} x_{j} \\
& \text { s.t. } \quad \sum_{j \in N} a_{k j} x_{j}\left\{\begin{array}{l}
\geq \\
=
\end{array}\right\} d_{k} \quad k=1, \ldots, m \\
& \tag{0}\\
& \sum_{j \in N} b_{l j} x_{j}\left\{\begin{array}{l}
\geq \\
=
\end{array}\right\} g_{l} \quad l=1, \ldots, n \\
& x_{j} \in R^{+} \quad \text { iff } \quad j \in C \\
& x_{j} \in\{0,1\} \quad \text { iff } \quad j \in B \\
& x_{j} \in Z^{+} \quad \text { iff } \quad j \in I
\end{align*}
$$

This initial problem P_{0} is known as the master problem. Since this master problem is difficult to solve, we relax a set of constraints, $C O \in[1, m]$, by attaching Lagrange multipliers ($\lambda_{\mathrm{k}} \geq 0$). Then, this relaxed group of constrints are appended to the objective function and forms the following Lagrange Lower Bound Problem (LLBP):

$$
\begin{align*}
& \min \quad \sum_{j \in N} x_{j}\left(c_{j}-\sum_{k=1}^{m} \lambda_{k} a_{k j}\right)+\sum_{k=1}^{m} \lambda_{k} d_{\kappa} \\
& \text { s.t. } \quad \sum_{j \in N} b_{l j} x_{j}\left\{\begin{array}{l}
\geq \\
=
\end{array}\right\} g_{l} \quad l=1, \ldots, n \\
& x_{j} \in R^{+} \quad \text { iff } \quad j \in C \\
& x_{j} \in\{0,1\} \quad \text { iff } \quad j \in B \\
& x_{j} \in Z^{+} \quad \text { iff } \quad j \in I
\end{align*}
$$

The Lagrange multipliers, λ_{k}, penalise the violation of the corresponding relaxed constraints introduced in the objective function. The selection of which set of constraints to be relaxed is a strategic issue and we address it in the later section.

After decomposing the master problem, we are interested in choosing the appropriate numerical values for the Lagrange multipliers (tactical issue) for the problem $P_{L(\lambda)}$. In particular, we are interested in finding the values for λ that gives the
maximum lower bound. The Lagrange lower bound problem is also known as the Lagrange dual program.

The best value for λ_{k} is calculated by applying iterative updating techniques to the above system ($\mathrm{P}_{\text {Dual }}$). There are two well-known techniques that have been widely used: Subgradient Optimisation and Multiplier Adjustment. In this paper, however, we will focus on the subgradient optimisation technique.

The estimation of a good solution to NP-hard problems by using a non-exact method, like LR, does not depend only on the calculation of a good lower bound. It is equally important to calculate good solutions that are feasible and provide upper bounds to the master problem. We thus reduce the duality gap and provide tight bound for the optimal solution. The duality gap is defined as the relative difference between the lower bound and the upper bound. In ideal instances, the Lagrange lower bound is equal to the upper bound. The upper bounds are usually calculated by using a Lagrange Heuristic (LH) [3]. An instant of a LH algorithm is to take the LLBP solution vector and to attempt to convert it to a feasible solution vector to the master problem.

3.2 Determination of the Lagrange multipliers

There have been two main techniques that have been successfully applied for finding Lagrange multipliers in a wide variety of problem instances. These are the subgradient optimisation and the multiplier adjustment. Sub-gradient optimisation is
an iterative procedure that, starting from an initial set of Lagrange Multipliers, attempts to improve the lower bound of the LLBP in a systematic way. Multiplier adjustment is also an iterative procedure, but modifies only one component of the multiplier in an iteration.

The literature and the experiences of the researchers in the field [3] suggest that subgradient optimisation is a preferable method to update the Lagrange multipliers for general discrete optimisation problems. Sub-gradient optimisation is straight forward to implement and can be applied without modifications for different problem instances. Multiplier adjustment is non-trivial and requires to be modified for different problems. Moreover, even the quality of the solution is better on using the sub-gradient technique. Therefore, in our attempt to apply Lagrangean Relaxation for general discrete optimisation problems, we have used subgradient technique for updating the Lagrange multipliers.

Algorithmic Framework of Subgradient Optimisation

Define C_{j} as the cost coefficient vector of the LLBP $\left(\mathrm{P}_{\mathrm{L}(\lambda)}\right)$. Hence,

$$
\begin{equation*}
C_{j}=c_{j}-\sum_{k i} \lambda_{k} a_{k j} \tag{eq.1}
\end{equation*}
$$

where $\mathrm{j}=1, \ldots, \mathrm{n}$ (number of coefficients) and $\mathrm{k}=1, \ldots, \mathrm{~m}$ (number of constraints).
The main steps that have to be followed to apply subgradient optimisation are set out below:

STEP1: Initialisation

Set π, which is a user-defined parameter, equal to 2 . ($0 \leq \pi \leq 2$)
Set the lower bounds to $-\infty$, and the upper bounds UB, Z_{UB} to $+\infty$.
Set N_LR $=0$ (number of Lagrange iterations).
Initialise the Lagrange Multipliers λ.

STEP2: Calculate lower bound

Solve the LLBP $\left(\mathrm{P}_{\mathrm{L}(\lambda)}\right)$ for the current set of λ_{k} to obtain the solution vector X_{j} and the lower bound $\mathrm{Z}_{\mathrm{LB} .}\left(Z_{L B}^{t}=\left\{\hat{x}_{j}\right\}\right)$

If the $\mathrm{Zlb}>\mathrm{LB}$, set $\mathrm{LB}=\mathrm{Z}_{\mathrm{LB}}$.
STEP3: Calculate upper bound

Apply a Lagrange Heuristic to find a feasible upper bound Z_{UB}. If $\mathrm{Z}_{\mathrm{UB}}<\mathrm{UB}$, set $\mathrm{UB}=\mathrm{Z}_{\mathrm{UB}}$.

STEP4: Update the multiplier

a. Calculate the Subgradients G_{k}^{t} for current solution vector X_{j}.

$$
\begin{equation*}
G_{k}^{t}=d_{k}-\sum a_{k j} x_{j} \quad k=1, \ldots, m \tag{eq.2}
\end{equation*}
$$

If all $\mathrm{G}_{\mathrm{i}} \leq 0$ for each ' \geq ' constraint, then Z_{LB} is feasible.
b. Define a scalar step size T.

$$
\begin{equation*}
T=\frac{\pi\left(Z_{U B}-Z_{L B}\right)}{\sum_{k=1}^{m}\left(G_{k}^{t}\right)^{2}} \tag{eq.3}
\end{equation*}
$$

c. Update the Lagrange Multipliers set

$$
\begin{equation*}
\lambda_{k}^{t+1}=\max \left(0, \lambda_{k}^{t}+T G_{k}^{t}\right) \quad k=1, \ldots, m \tag{eq.4}
\end{equation*}
$$

STEP 5: Stopping criteria

a. $\pi<0.005$
b. $(\mathrm{UB}-\mathrm{LB})=0.0$
c. $\quad \sum_{k=1}^{m}\left(G_{k}^{t}\right)^{2}=0$

If stopping rules as not satisfied then go to STEP 2.

The user-defined parameter, π controls the step size T. In the case wherein the lower bound did not improve for 30 consecutive iterations, we half this parameter. Generally speaking, the smaller the value of this parameter, the smaller is the oscillation of the resulted lower bound $\left(\mathrm{Z}_{\mathrm{LB}}\right)$. In fact, when the value of the π parameter is small, we are trying to improve the lower bound by searching on the "neighbourhood" of the LB.

There are three termination conditions of the algorithm. The algorithm terminates when the user-defined parameter becomes very small (i.e. 0.005), or when the dual gap (UB-LB) is equal to zero, or when the sum of squares of all the subgradients is equal to zero $\left(\sum_{k=1}^{m}\left(G_{k}^{t}\right)^{2}=0\right)$. The last termination condition implies that all the constraints are perfectly satisfied and therefore all the Slack variables of the model are equal to zero.

4. Implementing a generic LR/MIP solver

In order to implement successfully a generic LR solver we needed to resolve the following questions:

1. How to calculate good upper and lower bounds?
2. Which constraints to relax?
3. How to initialise λ, and update the same?

In addition we wanted the scheme to be generic such that it can be applied to wide problem MIP classes with minimal modifications. During the course of our research we encountered problems such as in some instances, the λ vector was not updated as expected and the generated Lagrange Lower Bound Problem became unbounded and the execution of the algorithm could not continue. We next discuss our investigations into the strategic issue involved in relaxing the appropriate constraints and the tactical issues in updating the Lagrange multipliers.

4.1 Classification and Relaxation of the Constraints

A constraint classification (CC) procedure [19][20] analyses the constraints of a given MIP problem and partitions them into different classes of known structure. As noted in [26], CC involves the identification of interesting special cases. There is no defined terminology and classification scheme in the literature. To classify constraints, we first distinguish binary variables from integer and continuous ones. All the linear constraints are analysed first one by one to see if they belong to any of our predefined well-known classes of constraints. The classified rows are taking into account several parameters. These parameters include the type of variable, the number of variables, the coefficient values, the type of bounds and the sense of the constraint. Using the above parameters the defined constraint classes are given in Table 1.

Class code	Extended name
Inequality	Constraints
KNA	Knapsack
INK	Invariant knapsack
BPK	Bin packing
CLQ	Clique
SCV	Set covering
PLN	Plant location
RPL	Reverse plant location
WKN	Weak (mixed) knapsack
WIK	Weak (mixed) invariant knapsack
VUB	Variable upper bound
VLB	Variable lower bound
SUB	Simple upper bound
SLB	Simple lower bound
Equality	Constraints
NDPQ	Non Diophantine equation
BDPQ	Binary Diophantine equation
MDPQ	Mixed Diophantine equation
IDPQ	Integer Diophantine equation
DGOQ	Discrete goal oriented equation
PFLD	P-fold alternative
XOR	Exclusive OR

Table 1: IP constraint classes

In the above-defined classes some classes are subclasses of other defined classes when they satisfy certain properties. The mathematical presentations [19] of the above classes are defined in Appendix I.

One of the key issues for obtaining good lower bounds, when Lagrange Relaxation is applied, is the integrality property. As described by Beasley [3] and Geoffrion [9], a Lagrange Lower Bound Problem, like ($\left.\mathrm{P}_{\mathrm{L}(\lambda)}\right)$ introduced above, is said to have the integrality property when the solution of the relaxed problem is unchained, even after the integrality constraint, $x \in(0,1)$, is replaced by its linear relation $0 \leq x \leq 1$. Lagrange Lower Bound Problems for which this property holds can not result in a better lower bound than the LP relaxed solution of the master problem. Hence, this property can be expressed by the following constraint:

$$
Z_{L P}=Z_{L R} \leq Z_{o p t}
$$

when the integrality property holds, otherwise by:

$$
Z_{L P} \leq Z_{L R} \leq Z_{\text {opt }}
$$

where $Z_{\text {opt }}$ is the optimal solution to the master problem, $Z_{L R}$ is the maxmin optimal solution to the LLBP and $Z_{L P}$ is the relaxed solution to the master problem.

In order to overcome this problem of integrality property and obtain lower bounds better than the relaxed solution we designed a simple Greedy Algorithm (GrA) to select an appropriate set of constraints to be relaxed. The design of this algorithm is based on the empirical observation that when all the constraints are relaxed or when the relaxed constraints are not independent, it is more likely the Lagrange relaxation problem to have the integrality property. The framework of this GrA is as follows. Initially, we apply the constraint classification routine in order to analyse the constraints that the model contains. Afterwards, we form a subset, CO, of constraint classes that we consider that are complicating the model and may be relaxed. From this subset of constraints, CO, we are trying to find the maximum number of "independent constraints". By the term "independent constraints" we define the subset of constraints, $C O_{I} \subseteq C O$, that do not contain a variable that is already contained in another constraint member of the subset CO_{I}. The constraints that are not members of CO_{I} are classified as "dependent constraints" and are members of the subset $\mathrm{CO}_{\mathrm{D}}\left(C O=C O_{I} \cup C O_{D}\right)$. In order to form these two subsets in a simple manner, we initially compute the total number of variables that each constraint of the set CO contains. Afterwards, starting from the constraint with the less number of variables, we start to insert new members to the subset CO_{I} until no further independent constraints can be found in CO. This Greedy algorithm may not guarantees that we obtain the maximum possible number of independent constraints, but for some of the tested models of our research worked sufficiently. As it will be presented in following section, where the obtained results will be presented and analysed, the application of this GrA was effective on improving the lower bound of the LLBP.

4.2 The Lagrange Multiplier

Within the sub-gradient optimisation we have experimented with three alternative rules for updating the Lagrange multipliers. The first one is the conventional method
as described in the sub-gradient optimisation section above (section 3.2). The other two strategies of updating the multipliers are more sophisticated and are based on the work done by Kobayashi et al.[24]. In these approaches, instead of applying the same rule for updating each component of the Lagrange multiplier, different rules are used depending on conditions of the corresponding constraint. Briefly, these conditions are described below, where ' k ' is the number of iterations and ' i ' is the entry of the λ vector:

If $\left(\mathrm{t}=1\right.$ or $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}>0\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}>0\right)$) then

$$
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}{ }^{\mathrm{t}}+\mathrm{T} \times \mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}, \quad \beta_{\mathrm{k}}{ }^{\mathrm{t}}=\mathrm{T} \times \mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}
$$

else if $\left(\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}>0\right.\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}<0\right)$ or $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}<0\right.$ and $\left.\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}<0\right)\right)$ then

$$
\begin{equation*}
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}{ }^{\mathrm{t}}-0.5 \mid \beta_{\mathrm{k}}{ }^{\mathrm{t}-1} \mathrm{I}, \quad \beta_{\mathrm{k}}{ }^{\mathrm{t}}=0.5 \beta_{\mathrm{k}}{ }^{\mathrm{t}-1} \tag{ExtSG1}
\end{equation*}
$$

else if $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}<0\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}>0\right)$ then

$$
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}^{\mathrm{t}}+0.5 \mid \beta_{\mathrm{k}}^{\mathrm{t}-1} \mathrm{I}, \quad \beta_{\mathrm{k}}{ }^{\mathrm{t}}=0.5 \beta_{\mathrm{k}}^{\mathrm{t}-1}
$$

else if $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}=0\right.$ or $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1} \leq 0\right.$ and $\left.\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}<0\right)\right)$ then

$$
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}{ }^{\mathrm{t}}, \quad \beta_{\mathrm{k}}{ }^{\mathrm{t}}=0
$$

else use first condition.

As it is demonstrated in Kobayashi et al.[24], this approach of updating the λ vector reduces the oscillation of the solution and decreases the number of iterations.

We have extended the above idea. In cases where the consecutive values of two subgradients, G_{k}, are of opposite sign, $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}>0\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}<0\right)$ or $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}<0\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}>0\right)$, we try to estimate the corresponding value of $\lambda_{k}{ }^{t}$ such that $\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}+1}$ tends to zero. For instance, suppose at the $t^{\text {th }}$ iteration the value of $G_{k}{ }^{t}=2, \lambda_{k}{ }^{t}=0.0$ and at the $t+1$ iteration $\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}+1}=-2$ and $\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=1.0$. Then, as the concept of our approach is illustrated in (Figure 1), we the desired λ value is 0.5 .

Figure 1, Two opposite sign subgradients

Briefly, the conditions of our approach are described below:

If $\left(\mathrm{t}=1\right.$ or $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}>0\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}>0\right)$) then

$$
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}{ }^{\mathrm{t}}+\mathrm{T} \times \mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}, \quad \beta_{\mathrm{k}}{ }^{\mathrm{t}}=\mathrm{T} \times \mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}
$$

else if $\left(G_{k}{ }^{t-1}<0\right.$ and $\left.G_{k}{ }^{t}<0\right)$ then

$$
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}^{\mathrm{t}}-0.5 \mathrm{I} \beta_{\mathrm{k}}^{\mathrm{t}-1} \mathrm{I}, \quad \beta_{\mathrm{k}}^{\mathrm{t}}=0.5 \beta_{\mathrm{k}}^{\mathrm{t}-1}
$$

else if $\left(\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1}>0\right.\right.$ and $\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}<0\right)$ or $\left(\mathrm{G}_{\mathrm{k}}^{\mathrm{t}-1}<0\right.$ and $\left.\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}>0\right)\right)$ then
(ExtSG2)

$$
\begin{aligned}
& \lambda_{k}^{t+1}=\lambda_{k}{ }^{\mathrm{t}}-\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}} \times\left(\lambda_{\mathrm{k}}^{\mathrm{t}-1}-\lambda_{\mathrm{k}}{ }^{\mathrm{t}}\right) /\left(\mathrm{G}_{\mathrm{k}}^{\mathrm{t}-1}-\mathrm{G}_{\mathrm{k}}^{\mathrm{t}}\right), \\
& \beta_{\mathrm{k}}{ }^{\mathrm{t}}=\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}} \times\left(\lambda_{\mathrm{k}}{ }^{\mathrm{t}-1}-\lambda_{\mathrm{k}}^{\mathrm{t}}\right) /\left(\mathrm{G}_{\mathrm{k}}^{\mathrm{t}-1}-\mathrm{G}_{\mathrm{k}}^{\mathrm{t}}\right)
\end{aligned}
$$

else if $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}=0\right.$ or $\left(\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}-1} \leq 0\right.$ and $\left.\left.\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{t}}<0\right)\right)$ then

$$
\lambda_{\mathrm{k}}{ }^{\mathrm{t}+1}=\lambda_{\mathrm{k}}{ }^{\mathrm{t}}, \quad \beta_{\mathrm{k}}{ }^{\mathrm{t}}=0
$$

else use first condition.

In case we deal with a ' \geq ' constraint, if the corresponding multiplier turns out to be negative, its set to zero so that the Lagrangean Relaxation theory will not be violated.

In order to speed up the algorithm of updating the Lagrange multipliers of our generic solver, an optional feature is included; the subgradient adjustment algorithm [3]. This procedure involves setting the subgradient G_{k} of a ' \geq ' inequality constraint to zero when the corresponding Lagrange multiplier is 0 and G_{k} is less than zero $\left(\mathrm{G}_{\mathrm{k}}<\right.$ 0). The reason for doing so is since λ_{k} will be zero, it is irrelevant to include G_{k} in calculating the denominator in (eq. 3) of subgradient optimisation.

4.3 Structure of the generic solver

In the generic solver we address the important strategic and the tactical issue (see Figure 2). We found that both these issues are equally important for successfully processing large-scale models using LR .

Figure 2, Framework of generic Lagrange Relaxation based solver

The solver is divided in two parts, the pre-processing and the main Lagrangean iterations. The pre-processing involves the constraint classification and all the operations carried out before applying LR, like initialising the solver, selecting the sets of constraints to be relaxed, generating the arrays for the Lagrange Lower Bound Problem (LLBP) and the Upper Bound problem, initialising the dimension and the data for the models, generating the statistics and selecting the options to be used
by the solver. We used FortMP to solve the MIP problems for calculating the upper and lower bounds at each iteration. Initially, we identify the number of integer and binary variables in each constraint and then we classify the constraints into different classes. We use FortMPOT[19][20] for classifying the constraints and calculating the cardinality of the resulting class.

The statistics generated during the pre-processing phase is used to identify the potential constraints that could be relaxed. Based on the information the user could:

1) Provide the list of constraints that should be relaxed. This procedure can become extremely tedious for large models.
2) Alternatively, the user could specify the index of the constraints, within each of the constraint class that should be relaxed.

Because in some models during the testing processes it was observed that some lower bound sub-problems are unbounded, the use of aggregation constraints was considered. By selecting to add an aggregation constraint for each relaxed constraint set, most of the cases, where an unbounded sub-problem was arisen, were resolved. In order to be able to introduce aggregation constraint(s), it necessitates that at least two constraints of the same constraint set to be relaxed. After selecting the constraints to be relaxed, the LLBP is generated. Then, for computational purposes all the remaining ' \leq ' constraints of the LLBP are transformed into ' \geq ' constraints.

We next address the issue of initialising the Lagrange multiplier. We have experimented with 3 alternative choices. The first involves setting all the entries of the Lagrange multiplier vector equal to a preferable value (usually 0). The second choice, allows the user to initialise the values of the Lagrange multiplier vector one at a time. The third option sets the entries of the Lagrange multipliers to the dual values obtained by solving the master problem to the first integer solution. Furthermore, in case we have a ' \geq ' constraint and the corresponding dual value found is negative, then the dual value is set to zero, since it can take only non-negative values in such instances.

Next, we discuss the phase corresponding to the main Lagrangean iterations. During our investigations, it was observed that for some models, when many constraints were relaxed, the resulting LLBP become unbounded. We tried to resolve
this 'unboundedness' by adding aggregation constraints as described before. Such constraint aggregation resolves the issue of 'unboundedness' for some models, however, the quality of the lower bounds was not that good. Therefore, we constructed a procedure that half the values of the Lagrange multipliers repeatedly until the LLBP sub-problem becomes bounded. Theoretically, when all the Lagrange multipliers are zero, the sub-problem is bounded as far as the master problem is bounded and all the cost coefficients are positive in a minimisation problem.

For the calculation of the upper bound we designed a heuristic algorithm that computes the upper bound using the solution vector returned from the LLBP. The upper bound sub-problem is generated by fixing the values of the integer and binary variables to the solution resulted in the LLBP. Fixing of the variables reduces the dimension of the model and thereby the computational complexity of processing the same. We do not arbitrarily fix the integer and binary variables. Instead, we consider the constraints that have been relaxed to generate the LLBP and identify which of these constraints satisfy the inequality. Then, in the original problem we fix integer and binary variables arising only in such constraints. This condition for selecting which integer and binary variables should be fixed is important to ensure that a feasible solution may exist. In case we omit this condition and we have a non-satisfied relaxed constraint that contains integer and/or binary variables, then the generated upper bound sub-problem will become infeasible, since it contains all the sets of constraints. The generated upper bound sub-problem is solved not to optimality, but to feasibility. This feasible solution of the upper bound sub-problem is also a feasible or the optimal solution of the master problem. This heuristic is illustrated by mathematical formulation as follows:

Set of violated relaxed constraints

$$
V_{C O}^{t}=\left\{k \mid\left(G_{k}^{t}<0 \text { for ' } \geq \text { 'constra int } s \vee G_{k}^{t} \neq 0 \text { for ' }=\text { ' constraint } s\right) \wedge k \in C O\right\}
$$

Set of indexes corresponds to binary variables to be fixed

$$
B_{F}^{t}=\left\{j \mid j \in B \wedge \quad\left(a_{k j} \neq 0 \Rightarrow k \notin V_{C O}^{t}\right)\right\}
$$

Set of indexes corresponds to integer variables to be fixed
$I_{F}^{t}=\left\{j \mid j \in I \wedge \quad\left(a_{k j} \neq 0 \Rightarrow k \notin V_{C O}^{t}\right)\right\}$

The corresponding upper bound problem to be solved is:

$$
\begin{aligned}
& \min \quad \sum_{j \in N} c_{j} x_{j} \\
& \text { s.t. } \quad \sum_{j \in N} a_{k j} x_{j}\left\{\begin{array}{l}
\geq \\
=
\end{array}\right\} d_{k} \quad k=1, \ldots, m \\
& \\
& \sum_{j \in N} b_{l j} x_{j}\left\{\begin{array}{l}
\geq \\
= \\
x_{j} \in g_{l} \quad l=1, \ldots, n \\
x_{j} \quad \text { iff } \quad j \in C, \\
x_{j} \in\{0,1\} \quad \text { iff } \quad j \in B \backslash B_{F}^{t}, \\
x_{j} \in Z^{+} \quad \text { iff } \quad j \in I \backslash I_{F}^{t}, \\
x_{j}
\end{array}=\left\{\hat{x}_{j}^{t} \mid j \in B_{F}^{t} \vee \quad j \in I_{F}^{t}\right\}\right.
\end{aligned}
$$

Finally, another optional feature was added in our generic solver called the best start for the Lagrange multiplier, which we found it speeds up the algorithm. This optional procedure has two alternatives. At the beginning of each outer iteration of the subgradient algorithm (when π is updated), the Lagrange multipliers vector will be set either to Lagrange multipliers vector that resulted when the best lower bound was obtained or to the Lagrange multipliers vector that resulted when the best upper bound was found so far. The concept of this procedure is to start the search in the next iteration set from a vector that returned the best result found so far.

4.4 Efficiency and Speed-up of the solver

The algorithm requires significant amount of house-keeping operations at each iteration, such as identify the sense of the constraints (that is $\geq, \leq \&=$) and the relaxed constraints. We have constructed the data structure so that such information are found with minimal search time. This requires us to store the auxiliary information and thus increases the memory requirement. But our experience shows that the resulting speedup in processing the problem offsets the memory requirement.

An implementation of an efficient generic LR solver requires the algorithm to be not only mathematically sound, but also efficient in the computational implementation. We spend significant time and effort in the coding of the functions, implementing alternative version prior to concluding the most efficient one. Our goal was to reduce the number of floating point operations (flops) in the program. We found that there was a trade-off in the number of calculations that the program needs to perform versus the amount of information that is stored in the memory. The algorithm showed significant computational speed-up if repeatedly used information were stored for later use. For instance, at each iteration we need to identify the sense of each constraint in order to select rule for updating the Lagrange multipliers vector. Instead of searching the data matrices for the sense of each constraint at each iteration, an array was created that contains that piece of information. Another example of improving the performance of the program was in the calculation of the subgradients. Instead of repeatedly searching the matrices of the master problem to find the relaxed constraints in order to calculate the subgradients at the end of each iteration, the data values of the relaxed constraints were stored in a different set of matrices. This storage increases the memory required by the program, as more arrays have to be generated, but certainly we speed up the solver.

5. Computational Results

We test the performance of the generic Lagrange Relaxation algorithm by using alternative benchmark models. Moreover, we test the effect that the different controls have on these models. We compare the computational performance of our implementation with other solvers such as CPLEX, FortMP, Xpress, OSL, BonsaiG and GLPK.

5.1 Collection of test problems

The selected model collection was drawn from: 1) H. Mittelmann [25], 2) ZIP [18] and 3) MIPLIB3.0 [30]. The statistics of the selected models are presented in the table below (Table 2). This table contains the number of rows, including the objective
row, the number of columns, the number of integer and binary variables and the number of non-zero elements of each model.

Benchmark	Model Name	rows	col	Int./Binary	nonzero
	10teams	231	2025	0/1800	14175
	ran8x32	297	512	0/256	1536
	ran12x21	286	504	0/252	1512
	irp	40	20315	0/20315	118569
	prod1	209	250	0/149	5351
	bienst1	577	505	0/28	2185
	bienst2	577	505	0/35	2185
	swath1	885	6805	0/2306	34966
	acc2	2521	1620	0/1620	15328
	acc5	3053	1339	0/1339	16135
\hat{N}	air04	824	8904	0/8904	81869
	air05	427	7195	0/7195	59316
	1152lav	98	1989	0/1989	11911
	misc07	213	260	0/259	8620
	rentacar	6804	9557	55/0	42019
	stein27	118	27	0/27	405
	stein45	332	45	0/45	1079
	vpm1	234	378	0/168	917
管					
	air06	826	8627	0/8627	79433
	p6000	2177	6000	0/6000	54238

Table 2, Model statistics of benchmark models

The table below, Table 3, illustrates the known solutions of the models, where the 'IntSol' and 'LP Sol' columns indicate the integer and linear solution of the model respectively.

Benchmark	Model Name	IntSol	LP Sol
	10teams*	924	917
	ran8x32*	5247	4937.5845
	ran12x21*	3664	3157.3774
	Irp*	12159.493	12123.5302
	prod1*	-56	-100
	bienst1	46.75	11.7241
	bienst2*	54.6	11.724138
	swath1*	379.069	334.4969
	acc2*	0	0
	acc5*	0	0
\hat{N}	air04*	56138	55535.436
	air05*	26374	25877.609
	1152lav*	4722	4656.36
	misc07	2810	1415.0
	rentacar*	30356761	28806137.64
	stein27	18	13.0
	stein45*	30	22.0
	vpm1*	20	15.4167
	air06*	49649	49616.364
	p6000*	-2451377	-2451537.325

Table 3, Integer and LP solution of models

In the following two tables, Table 4 a and Table 4 b , the time taken by different solvers to solve the selected models is illustrated. All the models were run in default mode for each solver except CPLEX for which "mipgap" was decreased to $1 . e-5$ from 1.e-4 and FortMP for which specially tuned control settings were used. The computational experiments were carried out on a Pentium 4 (1.5 GHz , 1GB RDRAM, Linux-2.4.18)[25], except those of FortMP, which were run on a Pentium 4 (2.4 GHz , 1GB DDR-RAM, Win2000). The column 'Best FortMPSol' denotes the best solution found by FortMP.

Benchmark	Model Name	$\begin{array}{\|c\|} \hline \text { FortMP } \\ \text { (sec) } \end{array}$	$\begin{gathered} \hline \text { CPLEX } \\ (\text { sec }) \end{gathered}$	$\begin{array}{\|l\|} \hline \text { XPRESS } \\ - \text { MP (sec) } \end{array}$	$\begin{aligned} & \hline \text { OSL } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	Best FortMPSol
	10teams*	1351.4	78	154	>10000	926
	ran8x32*	29.2	47	321	>15000	5382
	ran12x21*	25.6	629	16859	>15000	3744
	Irp*	3600	9	32	380	12159.493
	prod1*	17.8	234	>30000	>10000	-40
	bienst1	538	891	2228	3744	46.75
	bienst2*	995.6	12865	12906	>20000	55.5
	swath1*	708	250	16	41	379.0713
	acc2*	----**	412	542	144	----
	acc5*	----**	2174	2958	>10000	----
\hat{N}	air04*	3600	133	435	>10000	56576
	air05*	3600	180	1110	498	26456
	1152lav*	690.2	4	101	75	4722
	misc07	241	260	185	122	2810
	stein45*	79.05	54	131	376	30

Table 4a, Solution times of models by all solvers

Benchmark	Model Name	$\begin{array}{\|c\|} \hline \text { FortMP } \\ \text { (sec) } \end{array}$	Best FortMPSol
\hat{N}	rentacar*	586	29888573
	stein27	5	18
	vpm1*	36.6	20
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{m}} \\ & \stackrel{y}{\mathrm{~h}} \end{aligned}$			
	air06*	264	49649
	p6000*	2477	-2449956.2

*Integer solution found so far; Termination conditions of FortMP solver reached **FortMP solver couldn't find a single feasible solution

Table 4b, Solution times of models by FortMP

In the Table 5 below, the constraints of each model were classified. The abbreviations of the IP constraint classes are defined in Table 1.

Table 5, Constraint Classification of models

5.2 Analysis of Results

In order to test the performance of the generic solver, computational tests using different settings were carried out on several models presented in Table 2. Through this study, our aim was to identify the controls that are best suited. In order to rank different controls and analyse the quality of the results, we defined the following metric.

$$
\begin{equation*}
\varepsilon=\frac{Z_{U B}-Z_{L B}}{\left|\max \left(Z_{L B}, Z_{L P}\right)\right|+1} \tag{eq.5}
\end{equation*}
$$

where Z_{UB} is the upper bound solution, Z_{LB} is the lower bound solution and Z_{LP} is the relaxed solution. In perfect instances, where the lower bound is equal to the upper bound, the value of the metric, ε, becomes zero. Otherwise, in general the closer is the value of the metric to zero, the better is the quality of our result. The controls used for each model across all the experiments carried out are summarised in Table 6.

Instant ID	Lamda strategy	Adjust Subgradient Algorithm	Best Lamda Vector Option	tarting Lamda
$\mathbf{1}$	SG	YES	NONE	0.0
$\mathbf{2}$	SG	YES	NONE	0.5
$\mathbf{3}$	SG	YES	LB	0.5
$\mathbf{4}$	SG	YES	UB	0.5
$\mathbf{5}$	ExtSG1	YES	NONE	0.0
$\mathbf{6}$	ExSGG1	NO	NONE	0.5
$\mathbf{7}$	ExtSG1	NO	LB	0.5
$\mathbf{8}$	ExtSG1	NO	UB	0.5
$\mathbf{9}$	ExtSG2	NO	NONE	0.0
$\mathbf{1 0}$	ExtSG2	NO	NONE	0.5
$\mathbf{1 1}$	ExtSG2	NO	LB	0.5
$\mathbf{1 2}$	ExtSG2	NO	UB	0.5

Table 6, Settings used across all experiments
'Instant ID' is the ID of the each control parameters set. 'SG' denotes that the classical sub-gradient optimisation algorithm was used to update the Lagrange multipliers. 'ExtSG1' symbolises that the extended sub-gradient algorithm, based on the work of Kobayashi et al [24], presented in section 4.2 was used. 'ExtSG2' indicates that our approach on extending the above idea was used to update the Lagrange multipliers.

Using the control settings of Table 6, we carried out three sets of experiments. Initially, we found the set of constraints that is complicating each model and we relaxed all the constraints of that set. The best instances obtained from this experiment are summarised in Table 7, where 'Instant ID' refers to the control parameters set in Table 6.

Model name	Instant ID	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
10teams	1	908.802	924	705	0.0166	924	205
bienst1	1	9.38636	47.8	51	3.0190	47	100
bienst2	4	6.54243	55.8571	54	3.8757	55.7333	100
bienst2*	8	9.32143	55.7333	36	3.6476	55.7333	100
I152lav	11	4008.04	4750	404	0.1593	4734	150
misc07	1	1614.16	3130	353	0.9385	2810	100
prod1	8	-99.429	-50	125	0.4950	-55	12
Ran12x21	1	2772.81	4102	1.6	0.4208	3744	21
ran8x32	1	4448.14	5738	1.9	0.2612	5382	22
stein27	7	13	18	2.8	0.3571	18	2.2
stein45	11	22	31	2.9	0.3913	31	8.4
vpm1	2	15.4105	20	1.5	0.2796	20	5.4

* Aggregation constraint was used

Table 7, Best results by relaxing all constraints of a certain type and warm-start B\&B

As it can be observed by comparing the results obtained by the LR solver in Table 7 with the known solution of the models in Table 3, the best upper bound achieved by LR is close to the optimal solution. In two instances, 'stein27' and 'vpm1' model, the upper bound found is equal to the optimal solution. Furthermore, when the best found solution by LR was used to warm-start the Branch-and-Bound (B\&B) algorithm, the value of the upper bound was further improved in almost all the instances. Unfortunately, in the set of experiments the quality of the lower bound was not that good and only in one case, 'misc07' model, the lower bound was better than the known LP relaxed solution. As it was discussed above, this is an issue of the integrality property. In order to attempt to overcome this problem and attain better lower bounds, we carried out a set of experiments, where the constraints were relaxed according the Greedy Algorithm presented in previous section. The best instances obtained from this experiment are summarised in Table 8, where 'Instant ID' refers to the control parameters set in Table 6.

| Model
 name | Instant
 ID | BestLB | BestUB | LR
 solution
 time(sec) | $\boldsymbol{\varepsilon}$ | BestUB
 by B\&B | B\&B
 solution
 time(sec) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10teams | 2 | 0 | 940 | 204 | 1.0240 | 924 | 1004 |
| bienst1 | 6 | 46.2 | 52 | 1339 | 0.1229 | 47 | 100 |
| bienst2 | 3 | 0 | 65 | 365 | 5.1084 | 55.7333 | 100 |
| bienst2* | 9 | 0 | 62.6 | 362 | 4.9198 | 55.7333 | 100 |
| I152lav | 2 | 4542.63 | 4774 | 432 | 0.0497 | 4724 | 130 |
| misc07 | 11 | 2460 | 3060 | 377 | 0.2438 | 2810 | 100 |
| prod1 | 4 | $-\infty$ | -50 | 301 | -- | Not Started | |
| Ran12x21 | 1 | 2772.81 | 4102 | 1.6 | 0.4208 | 3744 | 21 |
| ran8x32 | 1 | 4448.14 | 5738 | 1.9 | 0.2612 | 5382 | 22 |
| stein27 | 5 | 15 | 19 | 10 | 0.2500 | 18 | 2.3 |
| stein45 | 6 | 20.9178 | 32 | 259 | 0.4818 | 30 | 10 |
| vpm1 | 2 | 15.4105 | 20 | 1.5 | 0.2796 | 20 | 5.4 |

* Aggregation constraint was used

Table 8, Best results using Greedy Algorithm and warm-start B\&B

By analysing the results of Table 8, it can be observed that in four models, 'bienst1', '1152lav', 'misc07' and 'stein27', the lower bounds were significantly improved and except '1152lav' model the integrality property problem was resolved. Unfortunately, for the remaining of the models, the results are not better than in the first experiment. This is due to the relaxation of only few constraints that the result in the formed LLBP not to be simplified sufficiently. Therefore, the external solver, FortMP, used to solve the LLBP at each iteration did not obtain high-quality lower bounds. In some instances, the limits of the generic LR solver or the external FortMP solver were reached and the process was terminated.

In the third set of experiments carried out, we attempted to use LR only as a booster to warm-start the $\mathrm{B} \& \mathrm{~B}$ algorithm. Therefore, we reduced the number of iterations and the time limit of the generic LR based solver. The summary of the results obtained is presented in Table 9, where 'Instant ID' refers to the control parameters set in Table 6.

Model name	Instant ID	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
10teams	3	827.673	924	273	0.1049	924	204
bienst1	8	4.33679	50	8.8	3.5887	46.75	100
bienst2	5	4.1571	58.1111	9	4.2403	55.7333	100
bienst2*	9	9.32143	59	8.4	3.9043	55.7333	100
I152lav	10	3834.44	4748	315	0.1962	4724	127
misc07	2	1544.5	3290	113	1.1294	2810	100
prod1	12	-100	-50	3.4	0.4950	-55	10
ran12x21	5	2417.12	4102	0.2	0.5335	3744	21
ran8x32	6	4008.64	5738	0.2	0.3502	5382	21
stein27	7	13	18	0.09	0.3571	18	1.8
stein45	11	22	31	0.2	0.3913	31	6.8
vpm1	8	14.4376	20	0.2	0.3388	20	5.3

* Aggregation constraint was used

Table 9, Best results using LR as a booster to warm-start B\&B

As it is noticeable by analysing the results in Table 9, even though the sum of the solution time of LR and $\mathrm{B} \& \mathrm{~B}$ is significant less than in the previous sets of experiments, the best solution found is not worst. However, in some models like 'bienst1' and '1152lav' the best solution found is better than in the previous experiments. The explanation of this fact is that the generic LR solver obtains a good upper bound at early iterations and thereafter is trying to improve it. While the solver is trying to improve its current best found solution, in some cases is moving to the wrong direction and is trapped in a worst local optimum. The complete set of results of all three experiments is presented in Appendix II.

In Appendix III, we present some graphs that illustrate the improvement of the bounds over the solution time. Figure A1, shows how the lower and upper bounds found are approaching the LP relaxed and optimal known solutions respectively. Similarly, in Figure A2 and Figure A3, are improving over the time and tend to the optimal solution. In Figure A4, the LLBP of the instant of model 'misc07' has not the integrality property, and therefore the solver finds successfully a better lower bound than the LP relaxed solution. Finally, in Figure A5, the generic LR based solver managed to improve the bounds of the 'vpm1' model rapidly.

6. Upper bound using Genetic Algorithm

After analysing the results of the generic LR based solver, we focus on improving further the upper bound. Since most of the models consist of binary variables, we designed a dynamic Genetic Algorithm (GA) based solver, which extracts information from the structure of the constraints. The structure of general GA is as follows. Initially a set of solutions has to be generated randomly, where the members may not be feasible or accepted solutions to the problem. This set is known as population. The generated solutions are represented by chromosomes and are assessed before forming a new population. The evaluation of the solutions is made by the fitness function. Afterwards, chromosomes are selected according to their fitness value to form pair. From each pair, two new chromosomes are generated known as offsprings. After evaluating the new generated chromosomes, a new population is formed that contains the fittest chromosomes. In this fashion, good characteristics are spread throughout the population over the generations. This process is repeated until a very good solution is found or until all the solutions (chromosomes) converge to one solution. The idea of GAs is to recombine chromosomes in order find a chromosome that minimises the fitness function. The search for such a chromosome is based mainly on the recombination of "fitter" chromosomes of the population, without ignoring the rest of the chromosomes, in order to avoid to be trapped in local optima. The GA has four main issues concerning its successful implementation that are coding, the fitness function, parent selection and reproduction. A detailed description of these issues can be found in any textbook of GAs.

The philosophy of the dynamic GA that we implemented is to use LR to create the initial population and to split the chromosome into smaller sub-chromosome of fixed size though the whole procedure. In order to define the size of the subchromosomes, we used a Greedy Algorithm described in previous section to identify a set of independent constraints. From the set of these constraints, we selected all the binary variables of each constraint to form the sub-chromosomes. Since each set of binary variables should satisfy the constraint that were emerged from, we decided not to create the initial population randomly, but make use of the existing knowledge. This knowledge was procured by applying LR. By generating the LLBP without relaxing the set of independent constraints found by the Greedy Algorithm, we know
that the resulting solution vector is a feasible instance for the members of each subchromosome. Therefore, we generated an initial population that contains values that do not violate a subset of constraints, set of independent constraints, of the model to be solved. By using information obtain from the structure of the constraints, we try to speed-up the GA and find feasible solutions to the master problem in a more meaningful manner. The GA forms a new population by using mainly a crossover operation. Instead of selecting a pair of chromosomes to generate two new offsprings, our designed GA is selecting randomly a triple of chromosomes and by applying randomly crossover at the defined sub-chromosomes is generating three new offsprings. Furthermore, in order to ensure that the algorithm is complete and explores more solution spaces, we introduce an operation that is swapping randomly two genes within a sub-chromosome. To evaluate the fitness of each chromosome, we use an external solver, FortMP, to solve the master problem when the binary variables are fixed to the value of the chromosome. The pseudo-code of our GA is illustrated in Figure 3 below.

Pre-processing (same as in LR based solver)

GA procedure

Analyse constraints and select set of constraints to form sub-chromosomes. Initialise arrays that store information related to the GA iterations.
Use information of analysed constraints to define sub-chromosomes.
Use external solver to find first feasible solution of model.
Use feasible solution to update initial Population.

Initialise LR

$\mathrm{pi}=2$
select starting λ vector
(Populate GA's initial Population of default size 20+1)
while iteration number $<=20$
Solve LLBP to optimality.
Use solution vector of LLBP to update initial population of GA.
Calculate fitness of updated Population.

Start GA iterations

while GA iteration < Max set number
Select randomly three Chromosomes from Population matrix.
while iteration $<=(20+1) / 3$
Randomly Crossover the sub-chromosomes of the three selected Chromosomes.
Calculate fitness of the three generated Chromosomes
Update Population. (keep three best Chromosomes)
while iteration <= Max Swap Number (default 3)
For all selected triples do
Select randomly to swap two genes of random selected sub-chromosome. Calculate fitness.

Update Population.

Display Best found Chromosome.

Figure 3, Genetic Algorithm Pseudo-code

The testing and analysis of the GA is currently at an early stage. Therefore, only preliminary results are presented, which are very promising. The GA was used as a booster to the $\mathrm{B} \& \mathrm{~B}$ algorithm for 'bienst1' and 'bienst2' model, where in both cases the best solution found by the GA is also the known optimal solution to the model. The solution time of the GA in both instances is extremely small. Especially, for the 'bienst2' model the GA managed to find the optimal solution in 144 seconds, when the industrial solvers require hundred of seconds to find a feasible solution and a few thousands of seconds to solve it to optimality (Table 4a).

	Sub- chrom.	Max genes per sub-chrom.	Best feasible Solution by GA	GA Solution time(sec)	Best Solution by B\&B	B\&B Solution time(sec)
bienst1	4	7	46.75	153	46.75	100
bienst2	5	7	54.6	144	54.6	100

Table 10, Primarily results using GA as a booster to warm-start B\&B

The following two figures, Figure 3 and Figure 4, illustrate the time needed to update the current best solution in the two solved model. As it can be observed, when these two figures are compared with Figure A2 and Figure A3 in the Appendix II, the genetic algorithm finds a better upper bound and faster.

Figure 3, "bienst1" model iterations when GA was used as a booster to warm-start B\&B

Figure 4, "bienst2" model iterations when GA was used as a booster to warm-start B\&B

Even though, the designed dynamic GA is highly based on information that can be extracted from the constraint structure of the model, the obtained results are ideal. Hence, we will try to improve further the algorithm and to apply it in different instances to monitor its behaviour.

7. Discussions and Conclusions

In this paper, we revisited the use of Lagrange Relaxation for processing combinatorial optimisation problems. We discuss issues related to the implementation of LR as a generic solver for processing large-scale MIP problem. By introducing some novel alternative strategies for updating the Lagrange multipliers vector and a heuristic for calculating the upper bound, we improve the solver performance. A feasible solution of the upper bound is calculated very fast, since the upper bound sub-problem is not solved to optimality in every iteration. In addition, as the lower bound approaches the upper bound, it is more than likely the variables of the upper bound sub-problem that will be fixed, will lead to an improvement of the current upper bound solution. A Greedy Algorithm was presented that is capable of resolving
in some instances the integrality property problem, this in turn lead to the improvement of the lower bound. The importance of constraint classification for selecting the sets of constraints to be relaxed has been emphasised. This generic LR solver provides the flexibility of adopting alternative strategies in the choice of the constraints to relax and updating the multipliers.

The generic solver was tested by solving a collection of benchmark problems using different control settings of the solver. The computational results obtained are promising, but further work has to be done on the calculation of the upper bounds. An alternatively procedure is introduced, which uses a dynamic genetic algorithm for calculating upper bounds. The dynamic Genetic Algorithm extracts information from the constraint structure of the model and uses Lagrange Relaxation to populate the initial population. The preliminary results obtain are very encouraging, but further analysis and testing are required.

8. References

[1] T. Aykin, (1994), Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problems, European Journals of Operational Research, 79, 501-523.
[2] J.E.Beasley, (1993), Lagrangean heuristics for location problems, European Journals of Operational Research, 65, 383-399.
[3] J.E. Beasley, (1993), Lagrangean relaxation, In "Modern heuristic techniques for combinatorial problems" (C.R. Reeves, ed), 243-303, Blackwell Scientific Publications.
[4] N. Christofides and J.E. Beasley, (1983), Extensions to a Lagrangean relaxation approach for the capacitated warehouse location problem, European Journals of Operational Research, 12, 19-28.
[5] Dash Optimisation, Xpress-Optimiser Reference manual, http://www.dashoptimization.com
[6] B. Dorhout, (1995), Solution of a tinned iron purchasing problem by Lagrangean relaxation, European Journal of Operational Research, 81, 597604.
[7] E. F. D. Ellison, M. Hajian, H. Jones, R. Levkovitz, I. Maros, G. Mitra and D. Sayers, Optirisk Systems, FortMP Reference manual, http://www.optirisksystems.com/
[8] M. Fisher, (1981), Lagrangian Relaxation Method for Solving Integer Programming Problems, Management Science, Vol. 27, No. 1.
[9] A.M. Geoffrion, (1974), Lagrangean relaxation for integer programming, Mathematical Programming Study, 2, 82-114.
[10] M. Guignard, (1988), A Lagrangean dual ascent algorithm for simple plant location problems, European Journals of Operational Research, 35, 193-200.
[11] M. Held and R.M. Karp, (1970), The Traveling Salesman problem and minimum spanning trees. Ops.Res., 18, 1138-1162.
[12] M. Held and R.M. Karp, (1971), The Traveling Salesman problem and minimum spanning trees: Part II. Math.Prog., 1, 6-25.
[13] M. Held, P. Wolfe and H.P. Crowder, (1973), Validation of subgradient optimisation, Mathematical Programming, 6, 62-88.
[14] IBM, OSL Reference manual, http://www.research.ibm.com/osl/
[15] ILOG, CPLEX Reference manual, http://www.ilog.com/products/cplex/
[16] C. Kaskavelis and M. Caramanis, Application of a Lagrangian Relaxation Based Algorithm to a Semiconductor Testing Facility, Proceedings of the 4th Intnl. Conference on Computer Integrated Manufacturing and Automation Technology, Troy, NY, October 10-12 1994.
[17] A. Klose, (1998), Obtaining Sharp Lower and Upper Bounds for Two-Stage Capacitated Facility Location Problems. In: B. Fleischmann, J.A.E.E. van Nunen, M.G. Speranza, P. Stähly (eds.), Advances in Distribution Logistics, Lecture Notes in Economics and Mathematical Systems 460, pp. 185-214, Springer, Berlin Heidelberg New York.
[18] Konrad-Zuse-Zentrum für Informationstechnik Berlin ftp://ftp.zib.de/pub/Packages/mp-testdata/ip/miplib/index.html
[19] K. Kularajan, (2000), Analysis of Integer Programming Problems and Development of Solution Algorithms, PhD Thesis, Brunel University, London.
[20] K. Kularajan, G. Mitra, E. F. D. Ellison and B. Nygreen, (2000), Constraint Classification, Preprocessing and a Branch and Relax Approach to Solving

Mixed Integer Programming Models, International Journals of Mathematical Algorithms, vol. 2, 1-45.
[21] C.Y. Lee, (1996), An algorithm for a two-staged distribution system with various types of distribution centers, INFOR, vol.34,no.2, 105-117.
[22] C. Lucas, S.A. MirHassani, G. Mitra and C.A. Poojari, (2001), An application of Lagrange relaxation to a capacity planning problem under uncertainty, Journals of the Operational Research Society, 52, 1256-1266.
[23] T.L. Magnanti and R.T. Wong, (1990), Decomposition Methods for Facility Location Problems. In: P. B. Mirchandani and R. L. Francis, Discrete Location Theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, p. 209-262, John Wiley \& Sons.
[24] Minoru Kobayashi, Takuya Yamaguchi, Kenji Muramatsu (2000), Updating of the Multiplier in the Lagrangean Decomposition Coordination Method of Scheduling Problems, Proceedings of the 1st World Conference on Production and Operations Management (CD-ROM Version), File Name=1161.pdf.
[25] H.D. Mittelmann, Arizona State University ftp://plato.la.asu.edu/pub/milpc.txt
[26] G.L. Nemhauser, M.P.W. Savelsbergh and G.C. Sigismondi, (1992), Constraint Classification for Mixed Integer Programming Formulations, COAL Bulletin-Committee on Algorithms of Mathematical Programming Society 20, 8-12
[27] NEOS, http://www-neos.mcs.anl.gov/neos/
[28] OSP, http://www.osp-craft.com/
[29] Renato de Matta (1994), A Lagrangean Decomposition Solution for the Single line Multiproduct Scheduling Problem, European Journal of Operational Research, Vol 79, pp. 24-37.
[30] RICE University (MIPLIB 3.0) http://www.caam.rice.edu/~bixby/miplib/miplib prev.html
[31] E.L.F. Senne and L.A.N. Lorena, (2000), Lagrangean/Surrogate Heuristics for p-Median Problems. In: Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Science and Operations Research, M. Laguna and J. L. Gonzalez-Velarde (Eds.), Kluwer Academic Publishers, pp. 115-130.
[32] J.F. Shapiro, (1979), Mathematical Programming: Structures and Algorithms, Wiley-Interscience.

Appendix I: Constraint Classes

Problem Definition [20]

Lets consider the Index sets, Data parameters and the Decision variables defined below:

Index sets

$\mathrm{B}=\{1, \ldots,|\mathrm{~B}|\} \quad$ Index set for binary variables,
$\mathrm{I}=\{|\mathrm{B}|+1, \ldots,|\mathrm{~B}|+|\mathrm{I}|\}$
$\mathrm{C}=\{|\mathrm{B}|+|\mathrm{I}|+1, \ldots,|\mathrm{~B}|+|\mathrm{I}|+|\mathrm{C}|\}$
$\mathrm{N}=\mathrm{B} \cup \mathrm{I} \cup \mathrm{C}$
$\mathrm{K}=\mathrm{I} \cup \mathrm{C}$

Index set for integer variables,

 Index set for continues variables, Index set for all variables, Index set for integer and continues variables.
Data parameters

$L_{j}, u_{j}, c_{j}, a_{i j}, b_{i} \quad$ are given values.

Decision variables

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{j}} \in\{0,1\} \\
& \text { and } \overline{x_{j}}=\left(1-\mathrm{x}_{\mathrm{j}}\right) \in\{0,1\}, \mathrm{j} \in B .
\end{aligned}
$$

other bounded variables

$$
\mathrm{x}_{\mathrm{j}} \in \mathrm{Z}, \mathrm{j} \in \mathrm{I}
$$

$$
\mathrm{x}_{\mathrm{j}} \in \mathrm{R}, \mathrm{j} \in \mathrm{C}
$$

$$
\mathrm{l}_{\mathrm{j}} \leq \mathrm{x}_{\mathrm{j}} \leq \mathrm{u}_{\mathrm{j}}, \mathrm{j} \in \mathrm{~K}
$$

For a general MIP problem of the form:

$$
\begin{array}{ll}
\min & \sum_{j \in N} c_{j} x_{j} \\
\text { s.t. } & \sum_{j \in N} a_{i j} x_{j}\left\{\begin{array}{l}
\leq \\
\geq
\end{array}\right\} b_{i,} \quad i=1, \ldots, \quad m
\end{array}
$$

The binary variable set B is further divided for row i as follows
$B_{i}^{+}=\left\{j \mid j \in B\right.$ and $\left.a_{i j}>0\right\}$,
$B_{i}^{-}=\left\{j \mid j \in B\right.$ and $\left.a_{i j}<0\right\}$,
$B_{i}=B_{i}^{+} \cup B_{i}^{-}$.

This means that:
$B=\left(\cup_{i} B_{i}\right)$.
Similarly,
$K_{i}^{+}=\left\{j \mid j \in K\right.$ and $\left.a_{i j}>0\right\}$,
$K_{i}^{-}=\left\{j \mid j \in K\right.$ and $\left.a_{i j}<0\right\}$,
$K_{i}=K_{i}^{+} \cup K_{i}^{-}$.
This means that:

$$
K=\left(\cup_{i} K_{i}\right)
$$

Using the same set of variables and their bounds on the MIP problem can be written in the expanded form as:

$$
\begin{array}{ll}
\min & \sum_{j \in N} c_{j} x_{j}+\sum_{j \in K} c_{j} x_{j} \\
\text { s.t. } & \sum_{j \in B_{i}} a_{i j} x_{j}+\sum_{j \in K_{i}} a_{i j} x_{j}\left\{\begin{array}{l}
\leq \\
\geq
\end{array}\right\} b_{i,} \quad \forall i
\end{array}
$$

and in a further expanded form as:

$$
\begin{array}{ll}
\min & \sum_{j \in N} c_{j} x_{j}+\sum_{j \in K} c_{j} x_{j} \\
\text { s.t. } & \sum_{j \in B_{i}^{+}} a_{i j} x_{j}+\sum_{j \in B_{i}^{-}} a_{i j} x_{j}+\sum_{j \in K_{i}^{+}} a_{i j} x_{j}+\sum_{j \in K_{i}^{-}} a_{i j} x_{j}\left\{\begin{array}{l}
\leq \\
\geq
\end{array}\right\} b_{i,} \quad \forall i
\end{array}
$$

The mathematical presentations of inequality constraint classes

Knapsack (KNA)

$$
\sum_{j \in B_{i}^{+}} a_{i j} x_{j} \leq b_{i} .
$$

Invariant knapsack (INK)
(Knapsack with $\left.\forall a_{i j}=1, \quad j \in B_{i}^{+}\right)$

$$
\sum_{j \in B_{i}^{+}} x_{j} \leq b_{i} .
$$

Bin packing (BPK)

$$
\sum_{j \in B_{i}^{+}} a_{i j} x_{j}+a_{i k} x_{k} \leq 0 \text { where } B_{i}^{-}=\{k\} .
$$

Clique (CLQ)
(Invariant knapsack with $b_{i}=1$)

$$
\sum_{j \in B_{i}^{+}} x_{j} \leq 1
$$

Set covering (SCV)

$$
\sum_{j \in B_{i}^{B}} x_{j} \geq 1 .
$$

We have used B_{i}^{-}here rather than B_{i}^{+}because we have reversed all \geqconstraints to \leq, so that the actual constraint form is:

$$
-\sum_{j \in B_{i}^{B}} x_{j} \leq-1 .
$$

Plant Location (PLN)

$$
\text { (Bin packing with } \left.a_{i j}=1, \quad \forall j \in B_{i}^{+}\right)
$$

$$
\sum_{j \in B_{i}^{+}} x_{j}+a_{i k} x_{k} \leq 0 \text { where } B_{i}^{-}=\{k\} .
$$

Reverse plant location (RPL)
(Bin packing with $\forall a_{i j}>0$ and $\forall a_{i j}=-1$)

$$
a_{i k} x_{k}-\sum_{j \in B_{i}^{-}} x_{j} \leq 0 \text { where } B_{i}^{+}=\{k\} .
$$

Weak (mixed) knapsack (WKN)

$$
\begin{array}{r}
\sum_{j \in B_{i}^{+}} a_{i j} x_{j}+\sum_{k \in K} a_{i k} x_{k} \leq b_{i}, \\
\text { where } l_{k} \text { is finite } k \in K_{i}^{+}, \\
u_{k} \text { is finite } k \in K_{i}^{-} .
\end{array}
$$

Weak (mixed) invariant knapsack (WIK)

$$
\sum_{j \in B_{i}^{+}} x_{j}+\sum_{k \in K} a_{i k} x_{k} \leq b_{i}
$$

where l_{k} is finite $k \in K_{i}^{+}$,

$$
u_{k} \text { is finite } k \in K_{i}^{-} .
$$

Variable upper bound (on x_{k}) (VUB)

$$
a_{i j} x_{j}+a_{i k} x_{k} \leq b_{i} \text { where } B_{i}=\{j\} \text { and } K_{i}^{+}=\{k\} .
$$

Variable lower bound (on x_{k}) (VLB)

$$
a_{i j} x_{j}+a_{i k} x_{k} \leq b_{i} \text { where } B_{i}=\{j\} \text { and } K_{i}^{-}=\{k\}
$$

Simple upper bound (SUB)

$$
a_{i j} x_{j} \leq b_{i} \text { where } K_{i}^{+}=\{j\} .
$$

Simple lower bound (SLB)

$$
a_{i j} x_{j} \leq b_{i} \text { where } K_{i}^{-}=\{j\}
$$

Mathematical presentations of the equality constraint classes

Integer Diophantine equation (IDPQ)

$$
\sum_{j \in I} a_{i j} x_{j}=b_{i} .
$$

Non Diophantine equation (NDPQ)

$$
\sum_{j \in B \cup I} a_{i j} x_{j}+\sum_{k \in C} a_{i k} x_{k}=b_{i} \text { where } C \neq \varnothing \text {. }
$$

Binary Diophantine equation (BDPQ)

$$
\sum_{j \in B} a_{i j} x_{j}=b_{i}
$$

Mixed Diophantine equation (MDPQ)

$$
\sum_{j \in B} a_{i j} x_{j}+\sum_{k \in I} a_{i k} x_{k}=b_{i} \text { where } B \neq \varnothing, I \neq \varnothing \text {. }
$$

Discrete goal oriented equation (DGOQ)

$$
\sum_{j \in B_{i}^{+}} a_{i j} x_{j}+x_{h}-x_{k}=b_{i} \text { where } K_{i}^{+}=\{h\} \text { and } K_{i}^{-}=\{k\},
$$

where x_{h} and x_{k} do not appear in any other constraints. To change a given constraint to a goal-oriented restriction these variables are given high costs in the objective function row.
P-fold alternative (PFLD)

$$
\sum_{j \in B_{i}^{+}} x_{j}=p \text { where } p \in Z^{+} .
$$

Exclusive OR (XOR)

Special case of p-fold alternative with $p=1$

$$
\sum_{j \in B_{i}^{+}} x_{j}=1 .
$$

Appendix II: Detailed Computational Results

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	120	XOR	908.802	924	705	0.0166	924	205
$\mathbf{2}$	120	XOR	908.517	924	707	0.0169	924	204
$\mathbf{3}$	120	XOR	887.419	924	699	0.0398	924	204
$\mathbf{4}$	120	XOR	905.109	924	701	0.0206	924	204
$\mathbf{5}$	120	XOR	882.003	924	703	0.0457	924	204
$\mathbf{6}$	120	XOR	880.781	924	733	0.0471	924	204
$\mathbf{7}$	120	XOR	877.541	924	699	0.0506	924	204
$\mathbf{8}$	120	XOR	865.114	924	750	0.0641	924	204
$\mathbf{9}$	120	XOR	887.325	924	704	0.0400	924	205
$\mathbf{1 0}$	120	XOR	886.166	924	705	0.0412	924	204
$\mathbf{1 1}$	120	XOR	883.513	924	714	0.0441	924	204
$\mathbf{1 2}$	120	XOR	861.947	926	704	0.0698	924	204

Table A1a, "10teams" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	40	XOR	0	940	237	1.0240	924	1004
$\mathbf{2}$	40	XOR	0	940	204	1.0240	924	1004
$\mathbf{3}$	40	XOR	0	940	204	1.0240	928	204
$\mathbf{4}$	40	XOR	0	940	205	1.0240	928	204
$\mathbf{5}$	40	XOR	0	940	233	1.0240	928	204
$\mathbf{6}$	40	XOR	0	940	205	1.0240	928	204
$\mathbf{7}$	40	XOR	0	940	204	1.0240	928	204
$\mathbf{8}$	40	XOR	0	940	204	1.0240	928	204
$\mathbf{9}$	40	XOR	0	940	204	1.0240	928	204
$\mathbf{1 0}$	40	XOR	0	940	204	1.0240	928	204
$\mathbf{1 1}$	40	XOR	0	940	204	1.0240	928	204
$\mathbf{1 2}$	40	XOR	0	940	204	1.0240	928	204

Table A1b, "10teams" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	120	XOR	878.148	924	245	0.0499	924	204
$\mathbf{2}$	120	XOR	882.006	924	191	0.0457	924	204
$\mathbf{3}$	120	XOR	827.673	924	273	0.1049	924	204
$\mathbf{4}$	120	XOR	864.844	940	214	0.0819	928	204
$\mathbf{5}$	120	XOR	847.878	924	200	0.0829	924	204
$\mathbf{6}$	120	XOR	846.098	940	226	0.1023	928	204
$\mathbf{7}$	120	XOR	837.514	930	248	0.1007	930	204
$\mathbf{8}$	120	XOR	819.05	924	227	0.1143	924	204
$\mathbf{9}$	120	XOR	856.372	924	197	0.0737	924	205
$\mathbf{1 0}$	120	XOR	854.184	924	308	0.0761	924	204
$\mathbf{1 1}$	120	XOR	839.735	930	210	0.0983	928	204
$\mathbf{1 2}$	120	XOR	831.972	924	218	0.1002	924	204

Table A1c, "10teams" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	124	NDPQ	9.38636	47.8	51	3.0190	47	100
$\mathbf{2}$	124	NDPQ	10.267	50.75	48	3.1816	46.75	100
$\mathbf{3}$	124	NDPQ	6.51929	48	43	3.2600	47	100
$\mathbf{4}$	124	NDPQ	7.26926	51	43	3.4368	47	100
$\mathbf{5}$	124	NDPQ	9.22613	49.6	44	3.1730	47	100
$\mathbf{6}$	124	NDPQ	9.60408	50	48	3.1748	46.75	100
$\mathbf{7}$	124	NDPQ	9.04056	50	41	3.2190	46.75	100
$\mathbf{8}$	124	NDPQ	6.03848	50	37	3.4550	46.75	100
$\mathbf{9}$	124	NDPQ	8.78757	50.4	45	3.2704	46.75	100
$\mathbf{1 0}$	124	NDPQ	8.99281	50.4	46	3.2542	46.75	100
$\mathbf{1 1}$	124	NDPQ	7.74407	49.6	43	3.2895	47	100
$\mathbf{1 2}$	124	NDPQ	7.51362	47.75	50	3.1622	46.75	100

Table A2a, "bienst1" model relaxing all constraints of a certain type and warm-start to
B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	4	NDPQ	46.2	60	1022	0.2924	46.75	404
$\mathbf{2}$	4	NDPQ	46.2	52	1341	0.1229	47	100
$\mathbf{3}$	4	NDPQ	46.2	52	1338	0.1229	47	100
$\mathbf{4}$	4	NDPQ	46.2	52	1338	0.1229	47	100
$\mathbf{5}$	4	NDPQ	46.2	60	1021	0.2924	47	100
$\mathbf{6}$	4	NDPQ	46.2	52	1338	0.1229	47	100
$\mathbf{7}$	4	NDPQ	46.2	52	1339	0.1229	47	100
$\mathbf{8}$	4	NDPQ	46.2	52	1338	0.1229	47	100
$\mathbf{9}$	4	NDPQ	46.2	60	1021	0.2924	47	100
$\mathbf{1 0}$	$\mathbf{4}$	NDPQ	46.2	52	1338	0.1229	47	100
$\mathbf{1 1}$	4	NDPQ	46.2	52	1338	0.1229	47	100
$\mathbf{1 2}$	$\mathbf{4}$	NDPQ	46.2	52	1338	0.1229	47	100

Table A2b, "bienst1" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	124	NDPQ	1.65299	53.5	9.172	4.0747	46.75	100
$\mathbf{2}$	124	NDPQ	2.99216	53.2	9.703	3.9459	47	100
$\mathbf{3}$	124	NDPQ	3.36057	54.25	9.641	3.9995	47	100
$\mathbf{4}$	124	NDPQ	1.2425	54.25	9.469	4.1659	47	100
$\mathbf{5}$	124	NDPQ	4.07778	54.6667	9.375	3.9758	47	100
$\mathbf{6}$	124	NDPQ	4.3164	50	9.25	3.5907	46.75	100
$\mathbf{7}$	124	NDPQ	4.03582	50	9.156	3.6124	46.75	100
$\mathbf{8}$	124	NDPQ	4.33679	50	8.8	3.5887	46.75	100
$\mathbf{9}$	124	NDPQ	4.56539	53.1667	9.4	3.8196	46.75	100
$\mathbf{1 0}$	124	NDPQ	3.90177	49.75	9.4	3.6033	47	100
$\mathbf{1 1}$	$\mathbf{1 2 4}$	NDPQ	3.56776	50.4	9.0	3.6806	46.75	100
$\mathbf{1 2}$	$\mathbf{1 2 4}$	NDPQ	3.9495	50.4	9.1	3.6506	46.75	100

Table A2c, "bienst1" model using LR as a booster to warm-start B\&B

Instant ID	umber of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	estUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	123	NDPQ	9.30145	58.6667	53	3.8797	56	100
$\mathbf{2}$	123	NDPQ	9.5066	56.5385	56	3.6963	55.7333	100
$\mathbf{3}$	123	NDPQ	7.03862	58	70	4.0051	56	100
$\mathbf{4}$	123	NDPQ	6.54243	55.8571	54	3.8757	55.7333	100
$\mathbf{5}$	123	NDPQ	9.52647	60.5	58	4.0061	55.7333	100
$\mathbf{6}$	123	NDPQ	10.1933	57.6	57	3.7257	56	100
$\mathbf{7}$	123	NDPQ	8.15316	57.6	53	3.8861	56	100
$\mathbf{8}$	123	NDPQ	7.71834	60.1667	53	4.1220	56	100
$\mathbf{9}$	123	NDPQ	9.86673	56.5385	51	3.6680	55.7333	100
$\mathbf{1 0}$	123	NDPQ	9.88596	57.6	64	3.7499	56	100
$\mathbf{1 1}$	123	NDPQ	7.65691	57.6	56	3.9251	56	100
$\mathbf{1 2}$	$\mathbf{1 2 3}$	NDPQ	6.23444	57.6	50	4.0369	56	100

Table A3a, "bienst2" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Relaxed Constr. of set(s)	Number of Relaxed Constr.	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	estUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	5	NDPQ	0	65	367	5.1084	55.7333	100
$\mathbf{2}$	5	NDPQ	0	65	364	5.1084	55.7333	100
$\mathbf{3}$	5	NDPQ	0	65	365	5.1084	55.7333	100
$\mathbf{4}$	5	NDPQ	0	65	376	5.1084	55.7333	100
$\mathbf{5}$	5	NDPQ	0	65	371	5.1084	55.7333	100
$\mathbf{6}$	5	NDPQ	0	65	372	5.1084	55.7333	100
$\mathbf{7}$	5	NDPQ	0	65	372	5.1084	55.7333	100
$\mathbf{8}$	5	NDPQ	0	65	373	5.1084	55.7333	100
$\mathbf{9}$	5	NDPQ	0	65	370	5.1084	55.7333	100
$\mathbf{1 0}$	5	NDPQ	0	65	370	5.1084	55.7333	100
$\mathbf{1 1}$	$\mathbf{5}$	NDPQ	0	65	375	5.1084	55.7333	100
$\mathbf{1 2}$	$\mathbf{5}$	NDPQ	0	65	374	5.1084	55.7333	100

Table A3b, "bienst2" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	123	NDPQ	2.37341	60.2	8.5	4.5447	55.7333	100
$\mathbf{2}$	123	NDPQ	1.17236	61.3333	9.1	4.7281	56	100
$\mathbf{3}$	123	NDPQ	0.61001	61	9.2	4.7461	56	100
$\mathbf{4}$	123	NDPQ	1.6039	58.1111	9.0	4.4410	55.7333	100
$\mathbf{5}$	123	NDPQ	4.1571	58.1111	9.0	4.2403	55.7333	100
$\mathbf{6}$	123	NDPQ	2.98605	62	9.2	4.6380	56	100
$\mathbf{7}$	123	NDPQ	4.27796	60.25	9.2	4.3989	55.7333	100
$\mathbf{8}$	123	NDPQ	4.1371	60.3333	9.2	4.4165	55.7333	100
$\mathbf{9}$	123	NDPQ	3.97392	62.2	8.9	4.5760	55.7333	100
$\mathbf{1 0}$	123	NDPQ	2.97919	57.6	9.3	4.2927	56	100
$\mathbf{1 1}$	123	NDPQ	4.4561	61	9.2	4.4438	56	100
$\mathbf{1 2}$	123	NDPQ	3.56479	60.8333	8.9	4.5008	56	100

Table A3c, "bienst2" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	123	NDPQ	10.4546	57.6	50	3.7052	56	100
$\mathbf{2}$	123	NDPQ	10.4546	57.6	49	3.7052	56	100
$\mathbf{3}$	123	NDPQ	9.32143	65	35	4.3758	55.7333	100
$\mathbf{4}$	123	NDPQ	9.32143	61.5	37	4.1008	56	100
$\mathbf{5}$	123	NDPQ	9.32143	65	40	4.3758	55.7333	100
$\mathbf{6}$	123	NDPQ	9.32143	65	39	4.3758	55.7333	100
$\mathbf{7}$	123	NDPQ	9.32143	65	37	4.3758	55.7333	100
$\mathbf{8}$	123	NDPQ	9.32143	55.7333	36	3.6476	55.7333	100
$\mathbf{9}$	123	NDPQ	9.32143	55.7333	31	3.6476	55.7333	100
$\mathbf{1 0}$	123	NDPQ	9.32143	55.7333	31	3.6476	55.7333	100
$\mathbf{1 1}$	123	NDPQ	9.32143	55.7333	37	3.6476	55.7333	100
$\mathbf{1 2}$	123	NDPQ	9.32143	56	33	3.6685	56	100

Table A4a, "bienst2" model relaxing all constraints of a certain type, Aggregation
Constraint and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	5	NDPQ	0	62.6	371	4.9198	55.7333	100
$\mathbf{2}$	5	NDPQ	0	65	371	5.1084	55.7333	100
$\mathbf{3}$	5	NDPQ	0	65	369	5.1084	55.7333	100
$\mathbf{4}$	5	NDPQ	0	65	362	5.1084	55.7333	100
$\mathbf{5}$	5	NDPQ	0	62.6	364	4.9198	55.7333	100
$\mathbf{6}$	5	NDPQ	0	65	364	5.1084	55.7333	100
$\mathbf{7}$	$\mathbf{5}$	NDPQ	0	65	364	5.1084	55.7333	100
$\mathbf{8}$	$\mathbf{5}$	NDPQ	0	65	364	5.1084	55.7333	100
$\mathbf{9}$	5	NDPQ	0	62.6	362	4.9198	55.7333	100
$\mathbf{1 0}$	5	NDPQ	0	65	364	5.1084	55.7333	100
$\mathbf{1 1}$	5	NDPQ	0	65	364	5.1084	55.7333	100
$\mathbf{1 2}$	$\mathbf{5}$	NDPQ	0	65	364	5.1084	55.7333	100

Table A4b, "bienst2" model using Greedy Algorithm, Aggregation Constraint and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	123	NDPQ	9.32143	60.8	8.4	4.0458	55.7333	100
$\mathbf{2}$	123	NDPQ	9.32143	60.8	8.4	4.0458	55.7333	100
$\mathbf{3}$	123	NDPQ	9.32143	65	8.3	4.3758	55.7333	100
$\mathbf{4}$	123	NDPQ	9.32143	65	8.9	4.3758	55.7333	100
$\mathbf{5}$	123	NDPQ	9.32143	65	9.4	4.3758	55.7333	100
$\mathbf{6}$	123	NDPQ	9.32143	65	9.4	4.3758	55.7333	100
$\mathbf{7}$	123	NDPQ	9.32143	65	9.1	4.3758	55.7333	100
$\mathbf{8}$	123	NDPQ	9.32143	65	9.0	4.3758	55.7333	100
$\mathbf{9}$	123	NDPQ	9.32143	59	8.4	3.9043	55.7333	100
$\mathbf{1 0}$	123	NDPQ	9.32143	59	8.4	3.9043	55.7333	100
$\mathbf{1 1}$	123	NDPQ	9.32143	65	8.8	4.3758	55.7333	100
$\mathbf{1 2}$	123	NDPQ	9.32143	59.3333	7.8	3.9305	55.7333	100

Table A4c, "bienst2" model with Aggregation Constraint using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	95	XOR	3770.12	4750	411	0.2104	4734	139
$\mathbf{2}$	95	XOR	3839.02	4750	455	0.1956	4734	150
$\mathbf{3}$	95	XOR	3059.27	4750	411	0.3630	4734	145
$\mathbf{4}$	95	XOR	2905.28	4750	429	0.3961	4734	143
$\mathbf{5}$	95	XOR	3819.6	4750	425	0.1998	4734	150
$\mathbf{6}$	95	XOR	3789.71	4751	408	0.2064	4734	150
$\mathbf{7}$	95	XOR	3689.08	4751	406	0.2280	4734	150
$\mathbf{8}$	95	XOR	3391.98	4751	405	0.2918	4734	150
$\mathbf{9}$	95	XOR	3933.87	4754	433	0.1761	4734	150
$\mathbf{1 0}$	95	XOR	3908.89	4750	415	0.1806	4734	148
$\mathbf{1 1}$	95	XOR	4008.04	4750	404	0.1593	4734	150
$\mathbf{1 2}$	95	XOR	3569.3	4750	423	0.2535	4734	150

Table A5a, "l152lav" model relaxing all constraints of a certain type and warm-start
to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	35	XOR	4539.8	4774	440	0.0503	4724	120
$\mathbf{2}$	35	XOR	4542.63	4774	432	0.0497	4724	130
$\mathbf{3}$	35	XOR	4533.01	4774	486	0.0517	4724	122
$\mathbf{4}$	35	XOR	4117.2	4774	242	0.1410	4724	122
$\mathbf{5}$	35	XOR	4290.89	4774	405	0.1037	4724	122
$\mathbf{6}$	35	XOR	4186.72	4774	415	0.1261	4724	126
$\mathbf{7}$	35	XOR	4208.51	4774	401	0.1214	4724	122
$\mathbf{8}$	35	XOR	4091.6	4774	330	0.1465	4724	123
$\mathbf{9}$	35	XOR	4523.51	4774	430	0.0538	4724	122
$\mathbf{1 0}$	35	XOR	4453.82	4774	405	0.0687	4724	123
$\mathbf{1 1}$	35	XOR	4448.29	4774	439	0.0699	4724	123
$\mathbf{1 2}$	35	XOR	4377.07	4774	206	0.0852	4724	122

Table A5b, "l152lav" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	95	XOR	3109.83	4750	114	0.3522	4734	119
$\mathbf{2}$	95	XOR	3479.98	4750	215	0.2727	4734	118
$\mathbf{3}$	95	XOR	2754.89	4750	205	0.4284	4734	118
$\mathbf{4}$	95	XOR	2152.72	4750	137	0.5577	4734	118
$\mathbf{5}$	95	XOR	3763.53	4750	348	0.2118	4734	117
$\mathbf{6}$	95	XOR	3718.84	4751	353	0.2216	4734	118
$\mathbf{7}$	95	XOR	3646.84	4751	368	0.2371	4734	118
$\mathbf{8}$	95	XOR	3341.75	4751	415	0.3026	4734	118
$\mathbf{9}$	95	XOR	3782.7	4758	417	0.2094	4724	121
$\mathbf{1 0}$	95	XOR	3834.44	4748	315	0.1962	4724	127
$\mathbf{1 1}$	95	XOR	3712.98	4770	310	0.2270	4722	142
$\mathbf{1 2}$	95	XOR	3499.59	4770	366	0.2728	4722	142

Table A5c, "1152lav" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	127	SCV	1614.16	3130	353	0.9385	2810	100
$\mathbf{2}$	127	SCV	1548.76	3130	351	1.0203	2810	100
$\mathbf{3}$	127	SCV	1531.49	3130	359	1.0431	2810	100
$\mathbf{4}$	127	SCV	1327.06	3290	327	1.3863	2810	100
$\mathbf{5}$	127	SCV	534.417	3290	372	1.9460	2810	100
$\mathbf{6}$	127	SCV	509.205	3290	362	1.9638	2810	100
$\mathbf{7}$	127	SCV	509.205	3290	362	1.9638	2810	100
$\mathbf{8}$	127	SCV	509.205	3290	362	1.9638	2810	100
$\mathbf{9}$	127	SCV	0	2810	365	1.9845	2810	100
$\mathbf{1 0}$	127	SCV	63.5	2895	360	1.9996	2810	100
$\mathbf{1 1}$	127	SCV	694.759	2895	377	1.5538	2810	100
$\mathbf{1 2}$	127	SCV	63.5	2810	365	1.9396	2810	100

Table A6a, "misc07" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	2	BPK	2460	3060	405	0.2438	2810	100
$\mathbf{2}$	2	BPK	2460	3060	400	0.2438	2810	100
$\mathbf{3}$	2	BPK	2460	3060	389	0.2438	2810	100
$\mathbf{4}$	$\mathbf{2}$	BPK	2460	3060	387	0.2438	2810	100
$\mathbf{5}$	2	BPK	2460	3060	381	0.2438	2810	100
$\mathbf{6}$	$\mathbf{2}$	BPK	2460	3060	215	0.2438	3060	2
$\mathbf{7}$	$\mathbf{2}$	BPK	2460	3060	216	0.2438	3060	2
$\mathbf{8}$	$\mathbf{2}$	BPK	2460	3060	215	0.2438	3060	2
$\mathbf{9}$	$\mathbf{2}$	BPK	2460	3060	378	0.2438	2810	100
$\mathbf{1 0}$	$\mathbf{2}$	BPK	2460	3060	382	0.2438	2810	100
$\mathbf{1 1}$	$\mathbf{2}$	BPK	2460	3060	377	0.2438	2810	100
$\mathbf{1 2}$	$\mathbf{2}$	BPK	2460	3060	377	0.2438	2810	100

Table A6b, "misc07" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	127	SCV	1226.77	3290	73	1.4571	2810	100
$\mathbf{2}$	127	SCV	1544.5	3290	113	1.1294	2810	100
$\mathbf{3}$	127	SCV	1441.13	3130	78	1.1711	2810	100
$\mathbf{4}$	127	SCV	1022.63	3290	59	1.6013	2810	100
$\mathbf{5}$	127	SCV	542.818	3290	400	1.9401	2810	100
$\mathbf{6}$	127	SCV	520.493	3290	362	1.9559	2810	100
$\mathbf{7}$	127	SCV	509.829	3160	385	1.8716	2810	100
$\mathbf{8}$	127	SCV	1006.52	3160	118	1.5208	2810	100
$\mathbf{9}$	127	SCV	0	2810	211	1.9845	2810	100
$\mathbf{1 0}$	127	SCV	63.5	2895	219	1.9996	2810	100
$\mathbf{1 1}$	127	SCV	724.379	2895	125	1.5329	2810	100
$\mathbf{1 2}$	127	SCV	63.5	2895	215	1.9996	2810	100

Table A6c, "misc07" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	100	KNA	-100	-50	300	0.4950	-55	13
$\mathbf{2}$	100	KNA	$-\infty$	-50	11	--	-55	13
$\mathbf{3}$	100	KNA	$-\infty$	-50	9	--	-55	18
$\mathbf{4}$	100	KNA	-100	-50	300	0.4950	-54	15
$\mathbf{5}$	100	KNA	-100	-50	302	0.4950	-55	12
$\mathbf{6}$	100	KNA	$-\infty$	-50	9	--	-55	13
$\mathbf{7}$	100	KNA	$-\infty$	-50	8	--	-55	12
$\mathbf{8}$	100	KNA	-99.429	-50	125	0.4950	-55	12
$\mathbf{9}$	100	KNA	-100	-50	301	0.4950	-55	12
$\mathbf{1 0}$	100	KNA	$-\infty$	-50	13	--	-55	12
$\mathbf{1 1}$	100	KNA	$-\infty$	-50	13	--	-55	12
$\mathbf{1 2}$	100	KNA	-100	-50	7.9	0.4950	-54	13

Table A7a, "prod1" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	$\mathbf{1}$	KNA	$-\infty$	-50	310	--	Not Started	
$\mathbf{2}$	1	KNA	$-\infty$	-50	304	--	Not Started	
$\mathbf{3}$	1	KNA	$-\infty$	-50	302	--	Not Started	
$\mathbf{4}$	1	KNA	$-\infty$	-50	301	--	Not Started	
$\mathbf{5}$	$\mathbf{1}$	KNA	$-\infty$	-50	306	--	Not Started	
$\mathbf{6}$	1	KNA	$-\infty$	-50	305	--	Not Started	
$\mathbf{7}$	$\mathbf{1}$	KNA	$-\infty$	-50	306	--	Not Started	
$\mathbf{8}$	$\mathbf{1}$	KNA	$-\infty$	-50	310	--	Not Started	
$\mathbf{9}$	$\mathbf{1}$	KNA	$-\infty$	-50	307	--	Not Started	
$\mathbf{1 0}$	$\mathbf{1}$	KNA	$-\infty$	-50	306	--	Not Started	
$\mathbf{1 1}$	$\mathbf{1}$	KNA	$-\infty$	-50	306	--	Not Started	
$\mathbf{1 2}$	$\mathbf{1}$	KNA	$-\infty$	-50	305	--	Not Started	

Table A7b, "prod1" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	100	KNA	-100	-50	51	0.4950	-55	10
$\mathbf{2}$	100	KNA	$-\infty$	-50	3.5	--	-55	11
$\mathbf{3}$	100	KNA	$-\infty$	-50	3.5	--	-55	11
$\mathbf{4}$	100	KNA	-100	-50	24	0.4950	-55	10
$\mathbf{5}$	100	KNA	-100	-50	50	0.4950	-55	10
$\mathbf{6}$	100	KNA	$-\infty$	-50	3.3	--	-55	10
$\mathbf{7}$	100	KNA	$-\infty$	-50	3.3	--	-55	10
$\mathbf{8}$	100	KNA	-100	-50	3.4	0.4950	-55	10
$\mathbf{9}$	100	KNA	-100	-50	52	0.4950	-55	10
$\mathbf{1 0}$	100	KNA	$-\infty$	-50	3.5	--	-55	10
$\mathbf{1 1}$	100	KNA	$-\infty$	-50	3.5	--	-55	10
$\mathbf{1 2}$	100	KNA	-100	-50	3.4	0.4950	-55	10

Table A7c, "prod1" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	252	VUB	2772.81	4102	1.6	0.4208	3744	21
$\mathbf{2}$	252	VUB	2759.8	4102	1.5	0.4250	3744	21
$\mathbf{3}$	252	VUB	2612.02	4102	1.7	0.4718	3744	21
$\mathbf{4}$	252	VUB	1966.13	4102	1.2	0.6763	3744	22
$\mathbf{5}$	252	VUB	2728.88	4102	2.0	0.4348	3744	21
$\mathbf{6}$	252	VUB	2749.69	4102	1.8	0.4282	3744	21
$\mathbf{7}$	252	VUB	2593.18	4102	1.9	0.4777	3744	21
$\mathbf{8}$	252	VUB	2353.72	4102	1.0	0.5535	3744	21
$\mathbf{9}$	252	VUB	643	4102	1.0	1.0952	3744	21
$\mathbf{1 0}$	252	VUB	803	4102	1.0	1.0445	3744	21
$\mathbf{1 1}$	252	VUB	2244.33	4102	1.9	0.5882	3744	21
$\mathbf{1 2}$	252	VUB	2089.79	4102	1.0	0.6371	3744	21

Table A8a, "ran12x21" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	252	VUB	2772.81	4102	1.6	0.4208	3744	21
$\mathbf{2}$	252	VUB	2759.8	4102	1.5	0.4250	3744	21
$\mathbf{3}$	252	VUB	2612.02	4102	1.7	0.4718	3744	21
$\mathbf{4}$	252	VUB	1966.13	4102	1.2	0.6763	3744	22
$\mathbf{5}$	252	VUB	2728.88	4102	2.0	0.4348	3744	21
$\mathbf{6}$	252	VUB	2749.69	4102	1.8	0.4282	3744	21
$\mathbf{7}$	252	VUB	2593.18	4102	1.9	0.4777	3744	21
$\mathbf{8}$	252	VUB	2353.72	4102	1.0	0.5535	3744	21
$\mathbf{9}$	252	VUB	643	4102	1.0	1.0952	3744	21
$\mathbf{1 0}$	252	VUB	803	4102	1.0	1.0445	3744	21
$\mathbf{1 1}$	252	VUB	2244.33	4102	1.9	0.5882	3744	21
$\mathbf{1 2}$	252	VUB	2089.79	4102	1.0	0.6371	3744	21

Table A8b, "ran12x21" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	252	VUB	1887.81	4102	0.2	0.7011	3744	21
$\mathbf{2}$	252	VUB	1933.99	4102	0.2	0.6864	3744	21
$\mathbf{3}$	252	VUB	1203.29	4102	0.2	0.9178	3744	21
$\mathbf{4}$	252	VUB	1156.71	4102	0.2	0.9325	3744	22
$\mathbf{5}$	252	VUB	2417.12	4102	0.2	0.5335	3744	21
$\mathbf{6}$	252	VUB	2406.02	4102	0.2	0.5370	3744	21
$\mathbf{7}$	252	VUB	1857.83	4102	0.2	0.7105	3744	21
$\mathbf{8}$	252	VUB	1865.61	4102	0.2	0.7081	3744	21
$\mathbf{9}$	252	VUB	643	4102	0.2	1.0952	3744	21
$\mathbf{1 0}$	252	VUB	803	4102	0.2	1.0445	3744	21
$\mathbf{1 1}$	252	VUB	1958.67	4102	0.2	0.6786	3744	21
$\mathbf{1 2}$	252	VUB	1870.57	4102	0.2	0.7065	3744	21

Table A8c, "ran12x21" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	256	VUB	4448.14	5738	1.9	0.2612	5382	22
$\mathbf{2}$	256	VUB	4438.41	5738	1.7	0.2632	5382	21
$\mathbf{3}$	256	VUB	4189.76	5738	1.8	0.3135	5382	23
$\mathbf{4}$	256	VUB	2685.43	5738	1.1	0.6181	5382	22
$\mathbf{5}$	256	VUB	4328.73	5738	1.9	0.2854	5382	21
$\mathbf{6}$	256	VUB	4328.87	5738	1.9	0.2853	5382	21
$\mathbf{7}$	256	VUB	4160.22	5738	1.9	0.3195	5382	21
$\mathbf{8}$	256	VUB	3797.44	5738	1.0	0.3929	5382	21
$\mathbf{9}$	256	VUB	861	5738	1.1	0.9875	5382	21
$\mathbf{1 0}$	256	VUB	1056	5738	1.1	0.9480	5382	21
$\mathbf{1 1}$	256	VUB	3136.56	5738	1.9	0.5268	5382	21
$\mathbf{1 2}$	256	VUB	2544.1	5738	1.0	0.6467	5382	21

Table A9a, "ran8x32" model relaxing all constraints of a certain type and warm-start
to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	256	VUB	4448.14	5738	1.9	0.2612	5382	22
$\mathbf{2}$	256	VUB	4438.41	5738	1.7	0.2632	5382	21
$\mathbf{3}$	256	VUB	4189.76	5738	1.8	0.3135	5382	23
$\mathbf{4}$	256	VUB	2685.43	5738	1.1	0.6181	5382	22
$\mathbf{5}$	256	VUB	4328.73	5738	1.9	0.2854	5382	21
$\mathbf{6}$	256	VUB	4328.87	5738	1.9	0.2853	5382	21
$\mathbf{7}$	256	VUB	4160.22	5738	1.9	0.3195	5382	21
$\mathbf{8}$	256	VUB	3797.44	5738	1.0	0.3929	5382	21
$\mathbf{9}$	256	VUB	861	5738	1.1	0.9875	5382	21
$\mathbf{1 0}$	256	VUB	1056	5738	1.1	0.9480	5382	21
$\mathbf{1 1}$	256	VUB	3136.56	5738	1.9	0.5268	5382	21
$\mathbf{1 2}$	256	VUB	2544.1	5738	1.0	0.6467	5382	21

Table A9b, "ran8x32" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	256	VUB	3394	5738	0.2	0.4746	5382	21
$\mathbf{2}$	256	VUB	3524.87	5738	0.2	0.4481	5382	21
$\mathbf{3}$	256	VUB	1841.12	5738	0.2	0.7891	5382	21
$\mathbf{4}$	256	VUB	1720	5738	0.2	0.8136	5382	22
$\mathbf{5}$	256	VUB	3936.98	5738	0.2	0.3647	5382	21
$\mathbf{6}$	256	VUB	4008.64	5738	0.2	0.3502	5382	21
$\mathbf{7}$	256	VUB	3359.76	5738	0.2	0.4816	5382	21
$\mathbf{8}$	256	VUB	2735.97	5738	0.2	0.6079	5382	21
$\mathbf{9}$	256	VUB	861	5738	0.2	0.9875	5382	21
$\mathbf{1 0}$	256	VUB	1056	5738	0.2	0.9480	5382	21
$\mathbf{1 1}$	256	VUB	1968.71	5738	0.2	0.7632	5382	21
$\mathbf{1 2}$	256	VUB	1973.67	5738	0.2	0.7622	5382	21

Table A9c, "ran8x32" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	117	SCV	13	19	2.1	0.4286	18	2.3
$\mathbf{2}$	117	SCV	13	19	2.1	0.4286	18	2.1
$\mathbf{3}$	117	SCV	13	18	3.5	0.3571	18	2.1
$\mathbf{4}$	117	SCV	13	19	3.1	0.4286	18	2.0
$\mathbf{5}$	117	SCV	13	19	5.8	0.4286	18	2.1
$\mathbf{6}$	117	SCV	13	19	6.2	0.4286	18	2.1
$\mathbf{7}$	117	SCV	13	18	2.8	0.3571	18	2.2
$\mathbf{8}$	117	SCV	13	19	3.2	0.4286	18	2.3
$\mathbf{9}$	117	SCV	13	19	4.0	0.4286	18	2.4
$\mathbf{1 0}$	117	SCV	13	19	6.0	0.4286	18	2.1
$\mathbf{1 1}$	117	SCV	13	18	3.0	0.3571	18	2.1
$\mathbf{1 2}$	117	SCV	13	19	5.9	0.4286	18	2.2

Table A10a, "stein27" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	9	SCV	15	19	11	0.2500	18	2.3
$\mathbf{2}$	9	SCV	14.9937	19	20	0.2505	18	2.3
$\mathbf{3}$	9	SCV	14.9937	19	20	0.2505	18	2.4
$\mathbf{4}$	9	SCV	14.9937	19	20	0.2505	18	2.1
$\mathbf{5}$	9	SCV	15	19	10	0.2500	18	2.3
$\mathbf{6}$	9	SCV	12	18	10	0.4286	18	2.3
$\mathbf{7}$	9	SCV	12	19	11	0.5000	18	2.3
$\mathbf{8}$	9	SCV	12	19	10	0.5000	18	2.5
$\mathbf{9}$	9	SCV	15	19	10	0.2500	18	2.4
$\mathbf{1 0}$	9	SCV	12	19	11	0.5000	18	2.3
$\mathbf{1 1}$	9	SCV	12	19	11	0.5000	18	2.4
$\mathbf{1 2}$	9	SCV	12	19	10	0.5000	18	2.4

Table A10b, "stein27" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	117	SCV	13	19	0.1	0.4286	18	1.7
$\mathbf{2}$	117	SCV	13	19	0.1	0.4286	18	1.7
$\mathbf{3}$	117	SCV	13	19	0.1	0.4286	18	1.7
$\mathbf{4}$	117	SCV	13	19	0.1	0.4286	18	1.8
$\mathbf{5}$	117	SCV	13	19	0.09	0.4286	18	1.7
$\mathbf{6}$	117	SCV	13	19	0.1	0.4286	18	1.8
$\mathbf{7}$	117	SCV	13	18	0.09	0.3571	18	1.8
$\mathbf{8}$	117	SCV	13	19	0.09	0.4286	18	1.7
$\mathbf{9}$	117	SCV	13	19	0.09	0.4286	18	1.7
$\mathbf{1 0}$	117	SCV	13	19	0.09	0.4286	18	1.8
$\mathbf{1 1}$	117	SCV	13	19	0.1	0.4286	18	1.7
$\mathbf{1 2}$	117	SCV	13	19	0.1	0.4286	18	1.8

Table A10c, "stein27" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	329	SCV	22	32	3.0	0.4348	32	8.8
$\mathbf{2}$	329	SCV	22	32	4.3	0.4348	32	8.5
$\mathbf{3}$	329	SCV	22	32	3.9	0.4348	32	8.6
$\mathbf{4}$	329	SCV	22	31	4.0	0.3913	31	7.8
$\mathbf{5}$	329	SCV	22	32	3.8	0.4348	32	8.5
$\mathbf{6}$	329	SCV	22	32	4.0	0.4348	31	8.7
$\mathbf{7}$	329	SCV	22	31	3.0	0.3913	31	8.4
$\mathbf{8}$	329	SCV	22	32	2.9	0.4348	32	8.3
$\mathbf{9}$	329	SCV	22	32	2.1	0.4348	32	8.6
$\mathbf{1 0}$	329	SCV	22	32	2.2	0.4348	32	8.7
$\mathbf{1 1}$	329	SCV	22	31	2.9	0.3913	31	8.4
$\mathbf{1 2}$	329	SCV	22	32	3.3	0.4348	32	8.8

Table A11a, "stein45" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	15	SCV	$-\infty$	31	53	--	30	10
$\mathbf{2}$	15	SCV	$-\infty$	32	85	--	30	10
$\mathbf{3}$	15	SCV	$-\infty$	31	68	--	30	10
$\mathbf{4}$	15	SCV	$-\infty$	31	51	--	30	10
$\mathbf{5}$	15	SCV	19.8572	32	261	0.5279	30	10
$\mathbf{6}$	15	SCV	20.9178	32	259	0.4818	30	10
$\mathbf{7}$	15	SCV	$-\infty$	33	15	--	30	10
$\mathbf{8}$	15	SCV	$-\infty$	33	12	--	30	10
$\mathbf{9}$	15	SCV	0	33	14	1.4348	30	10
$\mathbf{1 0}$	15	SCV	$-\infty$	33	14	--	30	10
$\mathbf{1 1}$	15	SCV	$-\infty$	32	14	--	30	10
$\mathbf{1 2}$	15	SCV	$-\infty$	33	13	--	30	10

Table A11b, "stein 45 " model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	329	SCV	22	32	0.2	0.4348	32	6.7
$\mathbf{2}$	329	SCV	22	32	0.2	0.4348	32	6.9
$\mathbf{3}$	329	SCV	22	32	0.2	0.4348	32	6.8
$\mathbf{4}$	329	SCV	22	32	0.2	0.4348	32	6.9
$\mathbf{5}$	329	SCV	22	32	0.1	0.4348	32	6.8
$\mathbf{6}$	329	SCV	22	32	0.1	0.4348	31	6.9
$\mathbf{7}$	329	SCV	22	32	0.2	0.4348	31	6.8
$\mathbf{8}$	329	SCV	22	32	0.1	0.4348	31	6.2
$\mathbf{9}$	329	SCV	22	32	0.1	0.4348	32	6.8
$\mathbf{1 0}$	329	SCV	22	32	0.1	0.4348	32	6.1
$\mathbf{1 1}$	329	SCV	22	31	0.2	0.3913	31	6.8
$\mathbf{1 2}$	329	SCV	22	32	0.1	0.4348	32	6.9

Table A11c, "stein45" model using LR as a booster to warm-start B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	168	VUB	15.4105	20	1.5	0.2796	20	5.5
$\mathbf{2}$	168	VUB	15.4105	20	1.5	0.2796	20	5.4
$\mathbf{3}$	168	VUB	15.4105	20	1.5	0.2796	20	5.4
$\mathbf{4}$	168	VUB	15.195	20	1.2	0.2927	20	5.4
$\mathbf{5}$	168	VUB	14.3131	22	1.2	0.4682	21	5.3
$\mathbf{6}$	168	VUB	14.4534	20	1.2	0.3379	20	5.5
$\mathbf{7}$	168	VUB	13.4676	20	1.1	0.3979	20	5.4
$\mathbf{8}$	168	VUB	14.8151	20	1.0	0.3158	20	5.5
$\mathbf{9}$	168	VUB	5.57087	22	0.9	1.0008	21	5.3
$\mathbf{1 0}$	168	VUB	7.70833	20	0.8	0.7487	20	5.5
$\mathbf{1 1}$	168	VUB	14.2774	20	1.0	0.3486	20	5.5
$\mathbf{1 2}$	168	VUB	14.6433	20	1.0	0.3263	20	5.5

Table A12a, "vpm1" model relaxing all constraints of a certain type and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	168	VUB	15.4105	20	1.5	0.2796	20	5.5
$\mathbf{2}$	168	VUB	15.4105	20	1.5	0.2796	20	5.4
$\mathbf{3}$	168	VUB	15.4105	20	1.5	0.2796	20	5.4
$\mathbf{4}$	168	VUB	15.195	20	1.2	0.2927	20	5.4
$\mathbf{5}$	168	VUB	14.3131	22	1.2	0.4682	21	5.3
$\mathbf{6}$	168	VUB	14.4534	20	1.2	0.3379	20	5.5
$\mathbf{7}$	168	VUB	13.4676	20	1.1	0.3979	20	5.4
$\mathbf{8}$	168	VUB	14.8151	20	1.0	0.3158	20	5.5
$\mathbf{9}$	168	VUB	5.57087	22	0.9	1.0008	21	5.3
$\mathbf{1 0}$	168	VUB	7.70833	20	0.8	0.7487	20	5.5
$\mathbf{1 1}$	168	VUB	14.2774	20	1.0	0.3486	20	5.5
$\mathbf{1 2}$	168	VUB	14.6433	20	1.0	0.3263	20	5.5

Table A12b, "vpm1" model using Greedy Algorithm and warm-start to B\&B

Instant ID	Number of Relaxed Constr.	Relaxed Constr. of set(s)	BestLB	BestUB	LR solution time(sec)	$\boldsymbol{\varepsilon}$	BestUB by B\&B	B\&B solution time(sec)
$\mathbf{1}$	168	VUB	10.8805	22	0.2	0.6773	21	5.2
$\mathbf{2}$	168	VUB	12.029	20	0.2	0.4855	20	5.5
$\mathbf{3}$	168	VUB	11.9624	20	0.2	0.4896	20	5.5
$\mathbf{4}$	168	VUB	11.9624	20	0.2	0.4896	20	5.4
$\mathbf{5}$	168	VUB	14.0615	22	0.2	0.4836	21	5.6
$\mathbf{6}$	168	VUB	14.0763	20	0.1	0.3608	20	5.4
$\mathbf{7}$	168	VUB	13.3762	20	0.1	0.4035	20	5.4
$\mathbf{8}$	168	VUB	14.4376	20	0.2	0.3388	20	5.3
$\mathbf{9}$	168	VUB	5.88697	22	0.1	0.9815	21	5.2
$\mathbf{1 0}$	168	VUB	7.70833	20	0.1	0.7487	20	5.3
$\mathbf{1 1}$	168	VUB	13.7828	20	0.1	0.3787	20	5.4
$\mathbf{1 2}$	168	VUB	13.7828	20	0.1	0.3787	20	5.3

Table A12c, "vpm1" model using LR as a booster to warm-start B\&B

Appendix III: Graphical Presentation of Algorithmic Behaviour

Figure A1, "10teams" model iterations when all constraints of a certain type were relaxed and warm-start to $\mathrm{B} \& \mathrm{~B}$

Figure A2, "bienstl" model iterations when all constraints of a certain type were relaxed and warm-start to B\&B

Figure A3, "bienst2" model iterations when all constraints of a certain type were relaxed and warm-start to $\mathrm{B} \& \mathrm{~B}$

Figure A4, "misc07" model iterations when all constraints of a certain type were relaxed and warm-start to $\mathrm{B} \& \mathrm{~B}$

Figure A5, "vpm1" model iterations when Greedy Algorithm was used and warmstart to B\&B

