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Abstract 
Lagrangean Relaxation has been successfully applied to process many well known 

instances of NP-hard Mixed Integer Programming problems. In this paper we present 

a Lagrangean Relaxation based generic solver for processing Mixed Integer 

Programming problems. We choose the constraints, which are relaxed using a 

constraint classification scheme. The tactical issue of updating the Lagrange 

multiplier is addressed through sub-gradient optimisation; alternative rules for 

updating their values are investigated. The Lagrangean relaxation provides a lower 

bound to the original problem and the upper bound is calculated using a heuristic 

technique. The bounds obtained by the Lagrangean Relaxation based generic solver 

were used to warm-start the Branch and Bound algorithm; the performance of the 

generic solver and the effect of the alternative control settings are reported for a wide 

class of benchmark models. Finally, we present an alternative technique to calculate 

the upper bound, using a genetic algorithm that benefits from the mathematical 

structure of the constraints. The performance of the genetic algorithm is also 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

 

Table of Content 
 

 

Abstract ................................................................................................................ 1 

1. Introduction and Background of MIP problems............................................. 3 

2. Literature review of Lagrangean Relaxation in processing MIP problems ... 4 

3. Design of a general LR/MIP algorithm............................................................ 5 

3.1 Relaxation of constraints ....................................................................... 6 

3.2 Determination of the Lagrange multipliers........................................... 8 

4. Implementing a generic LR/MIP solver......................................................... 11 

4.1 Classification and Relaxation of the Constraints................................ 11 

4.2 The Lagrange Multiplier ..................................................................... 13 

4.3 Structure of the generic solver............................................................. 16 

4.4 Efficiency and Speed-up of the solver ................................................. 19 

5. Computational Results ................................................................................... 20 

5.1 Collection of test problems .................................................................. 20 

5.2 Analysis of Results ............................................................................... 24 

6. Upper bound using Genetic Algorithm.......................................................... 29 

7. Discussions and Conclusions .......................................................................... 33 

8. References ....................................................................................................... 34 

Appendix I: Constraint Classes ......................................................................... 37 

Appendix II: Detailed Computational Results .................................................. 43 

Appendix III: Graphical Presentation of Algorithmic Behaviour.................... 56 

 

 

 

 

 

 

 

 

 

 



 3 

 

 

 

 

 

Revisiting Lagrange Relaxation for processing large-scale 

Mixed Integer Programming problems 
  
 
 

 
1. Introduction and Background of MIP problems 
 

The availability of fast and reliable commercial solvers such as CPLEX[15], 

Xpress-MP[5], OSL[14] and FortMP[7], and the easy access to public domain solvers 

such as NEOS[27] and OSP[28], the processing of large-scale linear programming has 

become easier. The processing of Mixed Integer Programming (MIP) problems, 

however, still remains non-trivial and poses significant mathematical and 

computational challenges. During the past years, ‘branch and bound’ approach 

monopolised the commercial solvers for solving MIP problems. In the recent times, 

the limitations of exact optimisation methods became increasingly apparent, since 

many problems are too complex to be solved exactly and it is computationally 

expensive. Therefore, many commercial solvers have been enhanced by using 

improved cut generation techniques, or non-exact optimisation methods, or by using 

new techniques, like pre-processing. In this paper, we discuss the Lagrangean 

Relaxation (LR) decomposition technique, which is, from computational point of 

view, a well-established approach to solve structured problems.  

 

In this paper, we utilise the existing knowledge of processing MIP problems 

using LR and thereby design an algorithmic framework for applying LR dynamically 

to different classes of MIP problems. The outline of the paper is as follows. In section 

2 we review the existing literature and refer to the different problem domains, where 

LR based methods have been applied. In general the efficiency and the effectiveness 

of the implementation depends on how well the knowledge about the structure of the 

underlying problem has been exploited. In section 3 we discuss the general issues 
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while applying LR and in particular address the challenges while applying the method 

to process large-scale MIP problems. In section 4 we present the details of 

implementing a generic LR based solver. We explain the alternative classification of 

the constraints, techniques for updating the Lagrange multipliers, re-use of 

information over iterations. In section 5, we present the computational results on a 

selection of benchmark problems. Additionally, we compare the performances of 

different options of the solver. In section 6, we introduce a Genetic Algorithm as an 

alternative approach to calculate the upper bound of the models and we present some 

primarily results. Finally, in section 7, we discuss the outstanding issues and give 

directions for further research into the field.  

 

2. Literature review of Lagrangean Relaxation in processing MIP 

problems 
 

Lagrangean Relaxation, also known as Lagrangean Decomposition, was 

introduced in the early 70’s through the pioneering work of Held and Karp[11][12] on 

the travelling salesman problem. It was discovered that the relationship between the 

systematic travelling-salesman problem and the minimum spanning tree problem 

yields a sharp lower bound on the cost of an optimum tour. Thereafter, Held et al.[13] 

tried to test the effectiveness of subgradient optimisation for approximating the 

maximum of certain pairwise linear concave functions. The results that they obtained 

were promising for applying the method to general large-scale linear programming 

problems. Subsequently, Geoffrion [9] in the mid 70’s developed a general theory for 

applying the method by exploiting special problem structures. Since then, many 

researchers worked in the field and tried to extend the current methodology [32][3][8] 

and to apply the method to different classes of Integer Programming (IP) and MIP 

problems of known structure. Mainly, most applications that can be found in the 

literature are based either on scheduling problems or on location problems. 

 

Renato de Matta [29] used LR to find the schedule for producing products of a 

single level, capacitated line problem. The LR based approach that was used to solve 

the problem in question found near optimal solution faster than other exact 

optimisation methods. Kaskavelis and Caramanis [16] processed an industry size job-

shop scheduling problem with more than 10000 resource constraints by using a 



 5 

Lagrangean relaxation based algorithm. In their approach, they extended the 

algorithm by introducing two new features in the Lagrange multiplier updating 

procedure. Firstly, they replaced the dual cost estimation of all sub-problems and the 

update of the multipliers values by a surrogate dual cost function and a more frequent 

multipliers update. Secondly, they introduced an adaptive step size in the subgradient-

based multipliers. Both of the added features produced a more robust algorithm with 

significant attenuated solution oscillations, better feasible schedules and faster 

convergence. Kobayashi et al. [24] extended the subgradient optimisation method for 

calculating the Lagrange multipliers and introduced an intelligent way of updating 

these multipliers. The computational results arise show that the suggested method is 

very effective in solving scheduling problems. 

 

A wide variety of effective Lagrange relaxation applications to location 

problems were also designed [2][4][22][21][1][6][17][10][23][31]. One of the 

principal researchers in the field, Beasley, presented a framework for developing 

Lagrangean heuristics with respect to location problems[2]. These heuristics are based 

upon Lagrange relaxation and subgradient optimisation method for solving different 

types of location problems. The computational results presented, indicate that the 

suggested algorithmic framework is robust. In a similar application, Christofides and 

Beasley [4], attempted to improve the lower bound of capacitated location problem by 

using subgradient optimisation method.  

 

Senne and Lorena [31], proposed the Lagrangean / Surrogate as an alternative 

relaxation, in order to correct the erratic behaviour of subgradient like methods. The 

proposed alternative approach was tested in p-median problems and from the 

computational results showed that Lagrangean/Surrogate relaxations are very stable 

(low oscillating) and are reaching equal quality results in less computational time than 

the Lagrangean alone heuristics. 

 

 

3. Design of a general LR/MIP algorithm 
 

Lagrangean Relaxation is a Price Directive decomposition technique[23], 

which in the first instance simplifies and reduces the problem in question by relaxing 
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groups of constraints. Lagrangean relaxation has been successfully used in processing 

many different instances of combinatorial optimisation problems, such as the 

Travelling salesman Problem [11], [3] and [22]. Many combinatorial optimisation 

problems consist of an easy problem that is complicated by the addition of extra 

constraints. Applying LR in these problems involves identifying these complicating 

constraints, and then relaxing them by attaching penalties to the complicating 

constraints and then absorbing them into the objective function. These penalties are 

known as the Lagrange multipliers. Due to the relaxation of the complicating 

constraints, the relaxed problem becomes much easier to solve. The next aim is to find 

tight upper and lower bounds to the problem by iteratively processing sequence of 

modified sub-problems. 

  

LR involves addressing two important issues; one is a strategic issue and the 

other a tactical issue [3]. The strategic issue concerns the classification and relaxation 

of the constraints. The strategic question is of the form “What constraints are to be 

relaxed?” The tactical issue deals with the selection of a good technique for updating 

the Lagrange multipliers.  The tactical questions are of the form, “How the reduced 

problem can be solved?” or “How can we calculate an efficient bound?”.  

 

3.1 Relaxation of constraints 

 
Before defining the general MIP problem, lets identify the following index sets: 

 

B={1,…,|B|}    Index set for binary variables, 

I={|B|+1,…,|B|+|I|}   Index set for integer variables, 

C={|B|+|I|+1,…,|B|+|I|+|C|}  Index set for continues variables, 

N=B∪I∪C    Index set for all variables. 

 

Hence, the general MIP problem can be written as: 
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This initial problem 0P  is known as the master problem. Since this master 

problem is difficult to solve, we relax a set of constraints, ],1[ mCO ∈ , by attaching 

Lagrange multipliers (λk ≥ 0).  Then, this relaxed group of  constrints are appended to 

the objective function and forms the following Lagrange Lower Bound Problem 

(LLBP): 
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The Lagrange multipliers, λk, penalise the violation of the corresponding relaxed 

constraints introduced in the objective function. The selection of which set of 

constraints to be relaxed is a strategic issue and we address it in the later section. 

 

After decomposing the master problem, we are interested in choosing the 

appropriate numerical values for the Lagrange multipliers (tactical issue) for the 

problem )(λLP . In particular, we are interested in finding the values for λ that gives the 

(P0) 

(PL(λ)) 
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maximum lower bound. The Lagrange lower bound problem is also known as the 

Lagrange dual program.  
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The best value for λk is calculated by applying iterative updating techniques to the 

above system (PDual). There are two well-known techniques that have been widely 

used: Subgradient Optimisation and Multiplier Adjustment. In this paper, however, 

we will focus on the subgradient optimisation technique.  

 

The estimation of a good solution to NP-hard problems by using a non-exact 

method, like LR, does not depend only on the calculation of a good lower bound. It is 

equally important to calculate good solutions that are feasible and provide upper 

bounds to the master problem.  We thus reduce the duality gap and provide tight 

bound for the optimal solution. The duality gap is defined as the relative difference 

between the lower bound and the upper bound. In ideal instances, the Lagrange lower 

bound is equal to the upper bound. The upper bounds are usually calculated by using a 

Lagrange Heuristic (LH) [3]. An instant of a LH algorithm is to take the LLBP 

solution vector and to attempt to convert it to a feasible solution vector to the master 

problem. 

 

3.2 Determination of the Lagrange multipliers  

 

There have been two main techniques that have been successfully applied for 

finding Lagrange multipliers in a wide variety of problem instances. These are the 

subgradient optimisation and the multiplier adjustment. Sub-gradient optimisation is 

(PDual) 
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an iterative procedure that, starting from an initial set of Lagrange Multipliers, 

attempts to improve the lower bound of the LLBP in a systematic way. Multiplier 

adjustment is also an iterative procedure, but modifies only one component of the 

multiplier in an iteration.  

 

The literature and the experiences of the researchers in the field [3] suggest 

that subgradient optimisation is a preferable method to update the Lagrange 

multipliers for general discrete optimisation problems. Sub-gradient optimisation is 

straight forward to implement and can be applied without modifications for different 

problem instances. Multiplier adjustment is non-trivial and requires to be modified for 

different problems. Moreover, even the quality of the solution is better on using the 

sub-gradient technique. Therefore, in our attempt to apply Lagrangean Relaxation for 

general discrete optimisation problems, we have used subgradient technique for 

updating the Lagrange multipliers.  

 
Algorithmic Framework of Subgradient Optimisation 

Define Cj as the cost coefficient vector of the LLBP (PL(λ)). Hence, 

�−=
ki

kjkjj acC λ  

where j = 1,…, n (number of coefficients) and k = 1,…, m (number of constraints).  

The main steps that have to be followed to apply subgradient optimisation are set out 

below: 

 
 
STEP1: Initialisation 

Set  π, which is a user-defined parameter, equal to 2. ( 0≤π≤2) 

Set the lower bounds  to -∞,  and the upper bounds UB, ZUB  to +∞. 

Set N_LR = 0 (number of Lagrange iterations). 

Initialise the Lagrange Multipliers λ.  

STEP2: Calculate lower bound 

Solve the LLBP (PL(λ))  for the current set of λk to obtain the solution vector Xj 

and the lower bound ZLB. ( }ˆ{ j
t
LB xZ = ) 

If the Zlb > LB, set LB= ZLB. 

STEP3: Calculate upper bound 

(eq. 1) 



 10 

Apply a Lagrange Heuristic to find a feasible upper bound ZUB. If ZUB <UB, 

set UB =ZUB. 

STEP4: Update the multiplier 
a. Calculate the Subgradients t

kG for current solution vector Xj. 

If all Gi ≤ 0 for each ‘≥’ constraint, then ZLB is feasible. 

b. Define a scalar step size T. 

 
c. Update the Lagrange Multipliers set  

 

STEP 5: Stopping criteria 
a. π < 0.005 

b. (UB - LB) = 0.0 

c. 0)(
1

2 =� =

m

k
t
kG  

If stopping rules as not satisfied then go to STEP 2. 

 

 
The user-defined parameter, π controls the step size T. In the case wherein the 

lower bound did not improve for 30 consecutive iterations, we half this parameter. 

Generally speaking, the smaller the value of this parameter, the smaller is the 

oscillation of the resulted lower bound (ZLB). In fact, when the value of the π 

parameter is small, we are trying to improve the lower bound by searching on the 

“neighbourhood” of the LB. 

 

There are three termination conditions of the algorithm. The algorithm 

terminates when the user-defined parameter becomes very small (i.e. 0.005), or when 

the dual gap (UB-LB) is equal to zero, or when the sum of squares of all the 

subgradients is equal to zero ( 0)(
1

2 =� =

m

k

t
kG ). The last termination condition implies 

that all the constraints are perfectly satisfied and therefore all the Slack variables of 

the model are equal to zero.  

 

mkxadG jkjk
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4. Implementing a generic LR/MIP solver 
 

In order to implement successfully a generic LR solver we needed to resolve 

the following questions: 

 

1. How to calculate good upper and lower bounds? 

2. Which constraints to relax? 

3. How to initialise λ , and update the same? 

 

In addition we wanted the scheme to be generic such that it can be applied to wide 

problem MIP classes with minimal modifications. During the course of our research 

we encountered problems such as in some instances, the λ vector was not updated as 

expected and the generated Lagrange Lower Bound Problem became unbounded and 

the execution of the algorithm could not continue. We next discuss our investigations 

into the strategic issue involved in relaxing the appropriate constraints and the tactical 

issues in updating the Lagrange multipliers.  

 
4.1 Classification and Relaxation of the Constraints 

 
A constraint classification (CC) procedure [19][20] analyses the constraints of 

a given MIP problem and partitions them into different classes of known structure.  

As noted in [26], CC involves the identification of interesting special cases. There is 

no defined terminology and classification scheme in the literature. To classify 

constraints, we first distinguish binary variables from integer and continuous ones. All 

the linear constraints are analysed first one by one to see if they belong to any of our 

predefined well-known classes of constraints. The classified rows are taking into 

account several parameters. These parameters include the type of variable, the number 

of variables, the coefficient values, the type of bounds and the sense of the constraint. 

Using the above parameters the defined constraint classes are given in Table 1. 
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Table 1: IP constraint classes 

 

In the above-defined classes some classes are subclasses of other defined classes 

when they satisfy certain properties. The mathematical presentations [19] of the above 

classes are defined in Appendix I.  

 

One of the key issues for obtaining good lower bounds, when Lagrange 

Relaxation is applied, is the integrality property. As described by Beasley [3] and 

Geoffrion [9], a Lagrange Lower Bound Problem, like (PL(λ)) introduced above, is said 

to have the integrality property when the solution of the relaxed problem is unchained, 

even after the integrality constraint, )1,0(∈x , is replaced by its linear relation 

10 ≤≤ x . Lagrange Lower Bound Problems for which this property holds can not 

result in a better lower bound than the LP relaxed solution of the master problem. 

Hence, this property can be expressed by the following constraint: 

optLRLP ZZZ ≤=  

when the integrality property holds, otherwise by: 

Class code Extended name 
Inequality  Constraints 

KNA Knapsack 
INK Invariant knapsack 
BPK Bin packing 
CLQ Clique 
SCV Set covering  
PLN Plant location 
RPL Reverse plant location 
WKN Weak (mixed) knapsack 
WIK Weak (mixed) invariant knapsack 
VUB Variable upper bound 
VLB Variable lower bound 
SUB Simple upper bound 
SLB Simple lower bound 

Equality  Constraints 
NDPQ Non Diophantine equation 
BDPQ Binary Diophantine equation 
MDPQ Mixed Diophantine equation 
IDPQ Integer Diophantine equation 
DGOQ Discrete goal oriented equation 
PFLD P-fold alternative 
XOR Exclusive OR 
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optLRLP ZZZ ≤≤  

where optZ  is the optimal solution to the master problem, LRZ is the maxmin optimal 

solution to the LLBP and LPZ  is the relaxed solution to the master problem. 

 

In order to overcome this problem of integrality property and obtain lower 

bounds better than the relaxed solution we designed a simple Greedy Algorithm 

(GrA) to select an appropriate set of constraints to be relaxed. The design of this 

algorithm is based on the empirical observation that when all the constraints are 

relaxed or when the relaxed constraints are not independent, it is more likely the 

Lagrange relaxation problem to have the integrality property. The framework of this 

GrA is as follows. Initially, we apply the constraint classification routine in order to 

analyse the constraints that the model contains. Afterwards, we form a subset, CO, of 

constraint classes that we consider that are complicating the model and may be 

relaxed. From this subset of constraints, CO, we are trying to find the maximum 

number of “independent constraints”. By the term “independent constraints” we 

define the subset of constraints, COCOI ⊆ , that do not contain a variable that is 

already contained in another constraint member of the subset COI. The constraints 

that are not members of COI are classified as “dependent constraints” and are 

members of the subset COD ( DI COCOCO ∪= ). In order to form these two subsets 

in a simple manner, we initially compute the total number of variables that each 

constraint of the set CO contains. Afterwards, starting from the constraint with the 

less number of variables, we start to insert new members to the subset COI until no 

further independent constraints can be found in CO. This Greedy algorithm may not 

guarantees that we obtain the maximum possible number of independent constraints, 

but for some of the tested models of our research worked sufficiently. As it will be 

presented in following section, where the obtained results will be presented and 

analysed, the application of this GrA was effective on improving the lower bound of 

the LLBP. 

 

4.2 The Lagrange Multiplier 

 

Within the sub-gradient optimisation we have experimented with three alternative 

rules for updating the Lagrange multipliers. The first one is the conventional method 
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as described in the sub-gradient optimisation section above (section 3.2). The other 

two strategies of updating the multipliers are more sophisticated and are based on the 

work done by Kobayashi et al.[24]. In these approaches, instead of applying the same 

rule for updating each component of the Lagrange multiplier, different rules are used 

depending on conditions of the corresponding constraint. Briefly, these conditions are 

described below, where ‘k’ is the number of iterations and ‘i’ is the entry of the λ 

vector: 

 

If (t=1 or (Gk
t-1>0 and Gk

t>0)) then 

 λk
t+1 = λk

t + T × Gk
t,  βk

t = T × Gk
t 

else if ((Gk
t-1>0 and Gk

t<0) or (Gk
t-1<0 and Gk

t<0)) then 

 λk
t+1 = λk

t – 0.5 | βk
t-1 |, βk

t = 0.5 βk
t-1 

else if (Gk
t-1<0 and Gk

t>0) then 

 λk
t+1 = λk

t + 0.5 | βk
t-1 |, βk

t = 0.5 βk
t-1 

else if (Gk
t=0 or (Gk

t-1≤0 and Gk
t<0)) then 

 λk
t+1 = λk

t ,   βk
t = 0 

else use first condition. 

 
As it is demonstrated in Kobayashi et al.[24], this approach of updating the λ vector 

reduces the oscillation of the solution and decreases the number of iterations. 

 

We have extended the above idea. In cases where the consecutive values of 

two subgradients, Gk, are of opposite sign, (Gk
t-1>0 and Gk

t<0) or (Gk
t-1<0 and Gk

t>0), 

we try to estimate the corresponding value of λk
t such that Gk

t+1 tends to zero. For 

instance, suppose at the tth iteration the value of Gk
t = 2, λk

t = 0.0 and at the t+1 

iteration Gk
t+1 = -2 and λk

t+1 = 1.0. Then, as the concept of our approach is illustrated 

in (Figure 1), we the desired λ value is 0.5.  

(ExtSG1) 
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Figure 1, Two opposite sign subgradients 

 

Briefly, the conditions of our approach are described below: 

 

If (t=1 or (Gk
t-1>0 and Gk

t>0)) then 

 λk
t+1 = λk

t + T × Gk
t,  βk

t = T × Gk
t 

else if (Gk
t-1<0 and Gk

t<0) then 

 λk
t+1 = λk

t – 0.5 | βk
t-1 |, βk

t = 0.5 βk
t-1 

else if ((Gk
t-1>0 and Gk

t<0) or (Gk
t-1<0 and Gk

t>0)) then 

 λk
t+1 = λk

t - Gk
t×(λk

t-1 - λk
t) / (Gk

t-1 - Gk
t),  

βk
t = Gk

t×(λk
t-1 - λk

t) / (Gk
t-1 - Gk

t) 

else if (Gk
t=0 or (Gk

t-1≤0 and Gk
t<0)) then 

 λk
t+1 = λk

t ,   βk
t = 0 

else use first condition. 

 

In case we deal with a ‘≥’ constraint, if the corresponding multiplier turns out to be 

negative, its set to zero so that the Lagrangean Relaxation theory will not be violated. 

 
In order to speed up the algorithm of updating the Lagrange multipliers of our 

generic solver, an optional feature is included; the subgradient adjustment algorithm 

[3]. This procedure involves setting the subgradient Gk of a ‘≥’ inequality constraint 

to zero when the corresponding Lagrange multiplier is 0 and Gk is less than zero (Gk < 

0). The reason for doing so is since λk will be zero, it is irrelevant to include Gk in 

calculating the denominator in (eq. 3) of subgradient optimisation. 

(ExtSG2) 
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4.3 Structure of the generic solver 

 

In the generic solver we address the important strategic and the tactical issue 

(see Figure 2). We found that both these issues are equally important for successfully 

processing large-scale models using LR. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2, Framework of generic Lagrange Relaxation based solver 

 

The solver is divided in two parts, the pre-processing and the main 

Lagrangean iterations. The pre-processing involves the constraint classification and 

all the operations carried out before applying LR, like initialising the solver, selecting 

the sets of constraints to be relaxed, generating the arrays for the Lagrange Lower 

Bound Problem (LLBP) and the Upper Bound problem, initialising the dimension and 

the data for the models, generating the statistics and selecting the options to be used 

Initialisation 

L a g r a n g e  I t e r a t i o n s 
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by the solver.  We used FortMP to solve the MIP problems for calculating the upper 

and lower bounds at each iteration. Initially, we identify the number of integer and 

binary variables in each constraint and then we classify the constraints into different 

classes. We use FortMPOT[19][20] for classifying the constraints and calculating the 

cardinality of the resulting class. 

 

The statistics generated during the pre-processing phase is used to identify the 

potential constraints that could be relaxed. Based on the information the user could: 

1) Provide the list of constraints that should be relaxed. This procedure can 

become extremely tedious for large models. 

2) Alternatively, the user could specify the index of the constraints, within each 

of the constraint class that should be relaxed. 

Because in some models during the testing processes it was observed that some lower 

bound sub-problems are unbounded, the use of aggregation constraints was 

considered. By selecting to add an aggregation constraint for each relaxed constraint 

set, most of the cases, where an unbounded sub-problem was arisen, were resolved. In 

order to be able to introduce aggregation constraint(s), it necessitates that at least two 

constraints of the same constraint set to be relaxed. After selecting the constraints to 

be relaxed, the LLBP is generated. Then, for computational purposes all the 

remaining ‘≤’ constraints of the LLBP are transformed into ‘≥’ constraints.  

 

We next address the issue of initialising the Lagrange multiplier. We have 

experimented with 3 alternative choices. The first involves setting all the entries of the 

Lagrange multiplier vector equal to a preferable value (usually 0). The second choice, 

allows the user to initialise the values of the Lagrange multiplier vector one at a time. 

The third option sets the entries of the Lagrange multipliers to the dual values 

obtained by solving the master problem to the first integer solution. Furthermore, in 

case we have a ‘≥’ constraint and the corresponding dual value found is negative, then 

the dual value is set to zero, since it can take only non-negative values in such 

instances. 

 

Next, we discuss the phase corresponding to the main Lagrangean iterations. 

During our investigations, it was observed that for some models, when many 

constraints were relaxed, the resulting LLBP become unbounded. We tried to resolve 
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this ‘unboundedness’ by adding aggregation constraints as described before. Such 

constraint aggregation resolves the issue of ‘unboundedness’ for some models, 

however, the quality of the lower bounds was not that good. Therefore, we 

constructed a procedure that half the values of the Lagrange multipliers repeatedly 

until the LLBP sub-problem becomes bounded. Theoretically, when all the Lagrange 

multipliers are zero, the sub-problem is bounded as far as the master problem is 

bounded and all the cost coefficients are positive in a minimisation problem. 

 

For the calculation of the upper bound we designed a heuristic algorithm that 

computes the upper bound using the solution vector returned from the LLBP. The 

upper bound sub-problem is generated by fixing the values of the integer and binary 

variables to the solution resulted in the LLBP. Fixing of the variables reduces the 

dimension of the model and thereby the computational complexity of processing the 

same. We do not arbitrarily fix the integer and binary variables. Instead, we consider 

the constraints that have been relaxed to generate the LLBP and identify which of 

these constraints satisfy the inequality. Then, in the original problem we fix integer 

and binary variables arising only in such constraints. This condition for selecting 

which integer and binary variables should be fixed is important to ensure that a 

feasible solution may exist. In case we omit this condition and we have a non-satisfied 

relaxed constraint that contains integer and/or binary variables, then the generated 

upper bound sub-problem will become infeasible, since it contains all the sets of 

constraints. The generated upper bound sub-problem is solved not to optimality, but to 

feasibility. This feasible solution of the upper bound sub-problem is also a feasible or 

the optimal solution of the master problem. This heuristic is illustrated by 

mathematical formulation as follows: 

 

Set of violated relaxed constraints 

})int''0int''0(|{ COksconstraforGsconstraforGkV t
k

t
k

t
CO ∈∧=≠∨≥<=

 

Set of indexes corresponds to binary variables to be fixed 

)}0(|{ t
COkj

t
F VkaBjjB ∉	≠∧∈=  

 

Set of indexes corresponds to integer variables to be fixed 
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The corresponding upper bound problem to be solved is: 
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Finally, another optional feature was added in our generic solver called the 

best start for the Lagrange multiplier, which we found it speeds up the algorithm. 

This optional procedure has two alternatives. At the beginning of each outer iteration 

of the subgradient algorithm (when π is updated), the Lagrange multipliers vector will 

be set either to Lagrange multipliers vector that resulted when the best lower bound 

was obtained or to the Lagrange multipliers vector that resulted when the best upper 

bound was found so far. The concept of this procedure is to start the search in the next 

iteration set from a vector that returned the best result found so far.  

 

4.4 Efficiency and Speed-up of the solver 

 

The algorithm requires significant amount of house-keeping operations at each 

iteration, such as identify the sense of the constraints (that is ≥, ≤ & =) and the relaxed 

constraints. We have constructed the data structure so that such information are found 

with minimal search time. This requires us to store the auxiliary information and thus 

increases the memory requirement. But our experience shows that the resulting speed-

up in processing the problem offsets the memory requirement.  

(PUB) 



 20 

 

An implementation of an efficient generic LR solver requires the algorithm to 

be not only mathematically sound, but also efficient in the computational 

implementation. We spend significant time and effort in the coding of the functions, 

implementing alternative version prior to concluding the most efficient one. Our goal 

was to reduce the number of floating point operations (flops) in the program. We 

found that there was a trade-off in the number of calculations that the program needs 

to perform versus the amount of information that is stored in the memory. The 

algorithm showed significant computational speed-up if repeatedly used information 

were stored for later use. For instance, at each iteration we need to identify the sense 

of each constraint in order to select rule for updating the Lagrange multipliers vector. 

Instead of searching the data matrices for the sense of each constraint at each 

iteration, an array was created that contains that piece of information. Another 

example of improving the performance of the program was in the calculation of the 

subgradients. Instead of repeatedly searching the matrices of the master problem to 

find the relaxed constraints in order to calculate the subgradients at the end of each 

iteration, the data values of the relaxed constraints were stored in a different set of 

matrices. This storage increases the memory required by the program, as more arrays 

have to be generated, but certainly we speed up the solver.  

 

 

5. Computational Results 
 

We test the performance of the generic Lagrange Relaxation algorithm by using 

alternative benchmark models. Moreover, we test the effect that the different controls 

have on these models. We compare the computational performance of our 

implementation with other solvers such as CPLEX, FortMP, Xpress, OSL, BonsaiG 

and GLPK.   

 

5.1 Collection of test problems 

 

The selected model collection was drawn from: 1) H. Mittelmann [25], 2) ZIP 

[18] and 3) MIPLIB3.0 [30]. The statistics of the selected models are presented in the 

table below (Table 2). This table contains the number of rows, including the objective 



 21 

row, the number of columns, the number of integer and binary variables and the 

number of non-zero elements of each model.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2, Model statistics of benchmark models 

 

The table below, Table 3, illustrates the known solutions of the models, where the 

‘IntSol’ and ‘LP Sol’ columns indicate the integer and linear solution of the model 

respectively. 

 

 

 

 

 

 

 

 

Benchmark Model 
Name rows col Int./Binary nonzero 

           
10teams 231 2025 0/1800 14175 
ran8x32 297 512 0/256 1536 
ran12x21 286 504 0/252 1512 
irp 40 20315 0/20315 118569 
prod1 209 250 0/149 5351 
bienst1 577 505 0/28 2185 
bienst2 577 505 0/35 2185 
swath1 885 6805 0/2306 34966 
acc2 2521 1620 0/1620 15328 

H
. M

itt
el

m
an

n 

acc5 3053 1339 0/1339 16135 
         

air04 824 8904 0/8904 81869 
air05 427 7195 0/7195 59316 
l152lav 98 1989 0/1989 11911 
misc07 213 260 0/259 8620 
rentacar 6804 9557 55/0 42019 
stein27 118 27 0/27 405 

Z
IP

 

stein45 332 45 0/45 1079 
 vpm1 234 378 0/168 917 

          

air06 826 8627 0/8627 79433 

M
IP

L
IB

3.
0 

p6000 2177 6000 0/6000 54238 
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Benchmark Model 
Name IntSol LP Sol 

     

10teams* 924 917
ran8x32* 5247 4937.5845
ran12x21* 3664 3157.3774
Irp* 12159.493 12123.5302
prod1* -56 -100
bienst1 46.75 11.7241
bienst2* 54.6 11.724138
swath1* 379.069 334.4969
acc2* 0 0

H
. M

itt
el

m
an

n 

acc5* 0 0
   

air04* 56138 55535.436
air05* 26374 25877.609
l152lav* 4722 4656.36
misc07 2810 1415.0
rentacar* 30356761 28806137.64
stein27 18 13.0

Z
IP

 

stein45* 30 22.0
 vpm1* 20 15.4167

  

air06* 49649 49616.364

M
IP

L
IB

3.
0 

p6000* -2451377 -2451537.325

 
Table 3, Integer and LP solution of models 

 

In the following two tables, Table 4a and Table 4b, the time taken by different 

solvers to solve the selected models is illustrated. All the models were run in default 

mode for each solver except CPLEX for which "mipgap" was decreased to 1.e-5 from 

1.e-4 and FortMP for which specially tuned control settings were used. The 

computational experiments were carried out on a Pentium 4 (1.5 GHz, 1GB RDRAM, 

Linux-2.4.18)[25], except those of FortMP, which were run on a Pentium 4 (2.4GHz, 

1GB DDR-RAM, Win2000). The column ‘Best FortMPSol’ denotes the best solution 

found by FortMP. 
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Benchmark Model 
Name 

FortMP 
(sec) 

CPLEX 
(sec) 

XPRESS
-MP (sec) 

OSL 
(sec) 

Best 
FortMPSol 

             
10teams* 1351.4 78 154 >10000 926
ran8x32* 29.2 47 321 >15000 5382
ran12x21* 25.6 629 16859 >15000 3744
Irp* 3600 9 32 380 12159.493
prod1* 17.8 234 >30000 >10000 -40
bienst1 538 891 2228 3744 46.75
bienst2* 995.6 12865 12906 >20000 55.5
swath1* 708 250 16 41 379.0713
acc2* ----** 412 542 144 ---- 

H
. M

itt
el

m
an

n 

acc5* ----** 2174 2958 >10000 ---- 
             

air04* 3600 133 435 >10000 56576
air05* 3600 180 1110 498 26456
l152lav* 690.2 4 101 75 4722
misc07 241 260 185 122 2810

Z
IP

 

stein45* 79.05 54 131 376 30
 

Table 4a, Solution times of models by all solvers 
 
 

Benchmark Model 
Name 

FortMP 
(sec) 

Best 
FortMPSol 

       
rentacar* 586 29888573
stein27 5 18Z

IP
 

vpm1* 36.6 20
      

air06* 264 49649

M
IP

L
IB

3.
0 

p6000* 2477 -2449956.2

 
*Integer solution found so far; Termination conditions of FortMP solver reached 
**FortMP solver couldn’t find a single feasible solution 
 

Table 4b, Solution times of models by FortMP 

 

In the Table 5 below, the constraints of each model were classified. The 

abbreviations of the IP constraint classes are defined in Table 1. 
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 Model 

Name INK CLQ PFLD XOR VUB NDPQ KNA OLE MLE BPK DGOQ SLB RNG SCV 

                               
10teams 45 50 15 120 - - - - - - - - - - 
ran8x32 - - - - 256 40 - - - - - - - - 
ran12x21 - - - - 252 33 - - - - - - - - 
irp - - - 39 - - - - - - - - - - 
prod1 - - - 7 100 1 100 - - - - - - - 
bienst1 - - 4 - 196 124 - 252 - - - - - - 
bienst2 - - 5 - 245 123 - 203 - - - - - - 
swath1 - - 189 - - 314 - 247 133 - - - - - 
acc2 387 1458 27 252 - - - - - - - - - 396 

H
. M

itt
el

m
an

n 

acc5 455 1938 33 244 - - - - - - - - - 382 
                 

air04 - - - 823 - - - - - - - - - - 
air05 - - - 426 - - - - - - - - - - 
l152lav - - 1 95 - - 1 - - - - - - - 
misc07 42 3 27 7 - - 3 - - 2 1 - - 127 
rentacar - - 19 - - 6273 - 478 - - - 31 2 - 
stein27 1 - -  - - - - - - - - - 117 

Z
IP

 

stein45 1 1 - - - - - - - - - - - 329 
 vpm1 - - - - 168 42 - 24 - - - - - - 

                

air06 - - - 825 - - - - - - - - - - 

M
IP

L
IB

3.
0 

p6000 - 2046 - 123 - - 7 - - - - - - - 

 
Table 5, Constraint Classification of models 

 
 
 

5.2 Analysis of Results 

 

In order to test the performance of the generic solver, computational tests 

using different settings were carried out on several models presented in Table 2. 

Through this study, our aim was to identify the controls that are best suited. In order 

to rank different controls and analyse the quality of the results, we defined the 

following metric. 

 

1),max( +

−
=

ZZ
ZZ

LPLB

LBUBε  

 

(eq. 5) 
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where ZUB is the upper bound solution, ZLB is the lower bound solution and ZLP is the 

relaxed solution. In perfect instances, where the lower bound is equal to the upper 

bound, the value of the metric, ε, becomes zero. Otherwise, in general the closer is the 

value of the metric to zero, the better is the quality of our result. The controls used for 

each model across all the experiments carried out are summarised in Table 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Table 6, Settings used across all experiments 
 
‘Instant ID’ is the ID of the each control parameters set. ‘SG’ denotes that the 

classical sub-gradient optimisation algorithm was used to update the Lagrange 

multipliers. ‘ExtSG1’ symbolises that the extended sub-gradient algorithm, based on 

the work of Kobayashi et al [24], presented in section 4.2 was used. ‘ExtSG2’ 

indicates that our approach on extending the above idea was used to update the 

Lagrange multipliers. 

 

Using the control settings of Table 6, we carried out three sets of experiments. 

Initially, we found the set of constraints that is complicating each model and we 

relaxed all the constraints of that set. The best instances obtained from this experiment 

are summarised in Table 7, where ‘Instant ID’ refers to the control parameters set in 

Table 6.  

 

Instant 
ID 

Lamda 
strategy 

Adjust 
Subgradient 
Algorithm 

Best Lamda 
Vector Option 

Starting 
Lamda 

1 SG YES NONE 0.0 
2 SG YES NONE 0.5 
3 SG YES LB 0.5 
4 SG YES UB 0.5 
5 ExtSG1 YES NONE 0.0 
6 ExtSG1 NO NONE 0.5 
7 ExtSG1 NO LB 0.5 
8 ExtSG1 NO UB 0.5 
9 ExtSG2 NO NONE 0.0 

10 ExtSG2 NO NONE 0.5 
11 ExtSG2 NO LB 0.5 
12 ExtSG2 NO UB 0.5 
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* Aggregation constraint was used 
 
Table 7, Best results by relaxing all constraints of a certain type and warm-start B&B 

 

As it can be observed by comparing the results obtained by the LR solver in 

Table 7 with the known solution of the models in Table 3, the best upper bound 

achieved by LR is close to the optimal solution. In two instances, ‘stein27’ and 

‘vpm1’ model, the upper bound found is equal to the optimal solution. Furthermore, 

when the best found solution by LR was used to warm-start the Branch-and-Bound 

(B&B) algorithm, the value of the upper bound was further improved in almost all the 

instances. Unfortunately, in the set of experiments the quality of the lower bound was 

not that good and only in one case, ‘misc07’ model, the lower bound was better than 

the known LP relaxed solution. As it was discussed above, this is an issue of the 

integrality property. In order to attempt to overcome this problem and attain better 

lower bounds, we carried out a set of experiments, where the constraints were relaxed 

according the Greedy Algorithm presented in previous section. The best instances 

obtained from this experiment are summarised in Table 8, where ‘Instant ID’ refers to 

the control parameters set in Table 6.   

 

Model 
name 

Instant 
ID 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

10teams 1 908.802 924 705 0.0166 924 205 
bienst1 1 9.38636 47.8 51 3.0190 47 100 
bienst2 4 6.54243 55.8571 54 3.8757 55.7333 100 
bienst2* 8 9.32143 55.7333 36 3.6476 55.7333 100 
l152lav 11 4008.04 4750 404 0.1593 4734 150 
misc07 1 1614.16 3130 353 0.9385 2810 100 
prod1 8 -99.429 -50 125 0.4950 -55 12 

Ran12x21 1 2772.81 4102 1.6 0.4208 3744 21 
ran8x32 1 4448.14 5738 1.9 0.2612 5382 22 
stein27 7 13 18 2.8 0.3571 18 2.2 
stein45 11 22 31 2.9 0.3913 31 8.4 
vpm1 2 15.4105 20 1.5 0.2796 20 5.4 
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* Aggregation constraint was used 

Table 8, Best results using Greedy Algorithm and warm-start B&B 

 

By analysing the results of Table 8, it can be observed that in four models, 

‘bienst1’, ‘l152lav’, ‘misc07’ and ‘stein27’, the lower bounds were significantly 

improved and except ‘l152lav’ model the integrality property problem was resolved. 

Unfortunately, for the remaining of the models, the results are not better than in the 

first experiment. This is due to the relaxation of only few constraints that the result in 

the formed LLBP not to be simplified sufficiently. Therefore, the external solver, 

FortMP, used to solve the LLBP at each iteration did not obtain high-quality lower 

bounds. In some instances, the limits of the generic LR solver or the external FortMP 

solver were reached and the process was terminated.  

 

In the third set of experiments carried out, we attempted to use LR only as a 

booster to warm-start the B&B algorithm. Therefore, we reduced the number of 

iterations and the time limit of the generic LR based solver. The summary of the 

results obtained is presented in Table 9, where ‘Instant ID’ refers to the control 

parameters set in Table 6. 

 

Model 
name 

Instant 
ID 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

10teams 2 0 940 204 1.0240 924 1004 
bienst1 6 46.2 52 1339 0.1229 47 100 
bienst2 3 0 65 365 5.1084 55.7333 100 
bienst2* 9 0 62.6 362 4.9198 55.7333 100 
l152lav 2 4542.63 4774 432 0.0497 4724 130 
misc07 11 2460 3060 377 0.2438 2810 100 
prod1 4 -∞ -50 301 -- Not Started 

Ran12x21 1 2772.81 4102 1.6 0.4208 3744 21 
ran8x32 1 4448.14 5738 1.9 0.2612 5382 22 
stein27 5 15 19 10 0.2500 18 2.3 
stein45 6 20.9178 32 259 0.4818 30 10 
vpm1 2 15.4105 20 1.5 0.2796 20 5.4 
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* Aggregation constraint was used 
 

Table 9, Best results using LR as a booster to warm-start B&B 

 

As it is noticeable by analysing the results in Table 9, even though the sum of the 

solution time of LR and B&B is significant less than in the previous sets of 

experiments, the best solution found is not worst. However, in some models like 

‘bienst1’ and ‘l152lav’ the best solution found is better than in the previous 

experiments. The explanation of this fact is that the generic LR solver obtains a good 

upper bound at early iterations and thereafter is trying to improve it. While the solver 

is trying to improve its current best found solution, in some cases is moving to the 

wrong direction and is trapped in a worst local optimum. The complete set of results 

of all three experiments is presented in Appendix II. 

 

 In Appendix III, we present some graphs that illustrate the improvement of the 

bounds over the solution time.  Figure A1, shows how the lower and upper bounds 

found are approaching the LP relaxed and optimal known solutions respectively. 

Similarly, in Figure A2 and Figure A3, are improving over the time and tend to the 

optimal solution. In Figure A4, the LLBP of the instant of model ‘misc07’ has not the 

integrality property, and therefore the solver finds successfully a better lower bound 

than the LP relaxed solution. Finally, in Figure A5, the generic LR based solver 

managed to improve the bounds of the ‘vpm1’ model rapidly. 

 

 

 

Model 
name 

Instant 
ID 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

10teams 3 827.673 924 273 0.1049 924 204 
bienst1 8 4.33679 50 8.8 3.5887 46.75 100 
bienst2 5 4.1571 58.1111 9 4.2403 55.7333 100 
bienst2* 9 9.32143 59 8.4 3.9043 55.7333 100 
l152lav 10 3834.44 4748 315 0.1962 4724 127 
misc07 2 1544.5 3290 113 1.1294 2810 100 
prod1 12 -100 -50 3.4 0.4950 -55 10 

ran12x21 5 2417.12 4102 0.2 0.5335 3744 21 
ran8x32 6 4008.64 5738 0.2 0.3502 5382 21 
stein27 7 13 18 0.09 0.3571 18 1.8 
stein45 11 22 31 0.2 0.3913 31 6.8 
vpm1 8 14.4376 20 0.2 0.3388 20 5.3 
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6. Upper bound using Genetic Algorithm 
 

After analysing the results of the generic LR based solver, we focus on 

improving further the upper bound. Since most of the models consist of binary 

variables, we designed a dynamic Genetic Algorithm (GA) based solver, which 

extracts information from the structure of the constraints. The structure of general GA 

is as follows. Initially a set of solutions has to be generated randomly, where the 

members may not be feasible or accepted solutions to the problem. This set is known 

as population. The generated solutions are represented by chromosomes and are 

assessed before forming a new population. The evaluation of the solutions is made by 

the fitness function. Afterwards, chromosomes are selected according to their fitness 

value to form pair. From each pair, two new chromosomes are generated known as 

offsprings. After evaluating the new generated chromosomes, a new population is 

formed that contains the fittest chromosomes. In this fashion, good characteristics are 

spread throughout the population over the generations. This process is repeated until a 

very good solution is found or until all the solutions (chromosomes) converge to one 

solution. The idea of GAs is to recombine chromosomes in order find a chromosome 

that minimises the fitness function. The search for such a chromosome is based 

mainly on the recombination of “fitter” chromosomes of the population, without 

ignoring the rest of the chromosomes, in order to avoid to be trapped in local optima. 

The GA has four main issues concerning its successful implementation that are 

coding, the fitness function, parent selection and reproduction. A detailed description 

of these issues can be found in any textbook of GAs.  

 

The philosophy of the dynamic GA that we implemented is to use LR to create 

the initial population and to split the chromosome into smaller sub-chromosome of 

fixed size though the whole procedure. In order to define the size of the sub-

chromosomes, we used a Greedy Algorithm described in previous section to identify a 

set of independent constraints. From the set of these constraints, we selected all the 

binary variables of each constraint to form the sub-chromosomes. Since each set of 

binary variables should satisfy the constraint that were emerged from, we decided not 

to create the initial population randomly, but make use of the existing knowledge. 

This knowledge was procured by applying LR. By generating the LLBP without 

relaxing the set of independent constraints found by the Greedy Algorithm, we know 
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that the resulting solution vector is a feasible instance for the members of each sub-

chromosome. Therefore, we generated an initial population that contains values that 

do not violate a subset of constraints, set of independent constraints, of the model to 

be solved. By using information obtain from the structure of the constraints, we try to 

speed-up the GA and find feasible solutions to the master problem in a more 

meaningful manner. The GA forms a new population by using mainly a crossover 

operation. Instead of selecting a pair of chromosomes to generate two new offsprings, 

our designed GA is selecting randomly a triple of chromosomes and by applying 

randomly crossover at the defined sub-chromosomes is generating three new 

offsprings. Furthermore, in order to ensure that the algorithm is complete and explores 

more solution spaces, we introduce an operation that is swapping randomly two genes 

within a sub-chromosome. To evaluate the fitness of each chromosome, we use an 

external solver, FortMP, to solve the master problem when the binary variables are 

fixed to the value of the chromosome. The pseudo-code of our GA is illustrated in 

Figure 3 below. 

 
_____________________________________________________________________ 
Pre-processing (same as in LR based solver) 
 

GA procedure 

Analyse constraints and select set of constraints to form sub-chromosomes. 

Initialise arrays that store information related to the GA iterations. 

Use information of analysed constraints to define sub-chromosomes. 

Use external solver to find first feasible solution of model. 

Use feasible solution to update initial Population. 

Initialise LR  

pi = 2 

select starting λ vector 

 

(Populate GA’s initial Population of default size 20+1) 

while iteration number <= 20 

  Solve LLBP to optimality. 

  Use solution vector of LLBP to update initial population of GA. 

  Calculate fitness of updated Population. 
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Start GA iterations 

  while GA iteration < Max set number 

   Select randomly three Chromosomes from Population matrix. 

 

   while iteration <= (20+1)/3 

    Randomly Crossover the sub-chromosomes of the three  

selected Chromosomes. 

    Calculate fitness of the three generated Chromosomes 

    Update Population. (keep three best Chromosomes) 

 

    while iteration <= Max Swap Number (default 3) 

     For all selected triples do 

Select randomly to swap two genes of  

random selected sub-chromosome. 

Calculate fitness. 

     

Update Population. 

 

Display Best found Chromosome. 

_____________________________________________________________________ 
 

Figure 3, Genetic Algorithm Pseudo-code 
 
 
 

The testing and analysis of the GA is currently at an early stage. Therefore, 

only preliminary results are presented, which are very promising. The GA was used as 

a booster to the B&B algorithm for ‘bienst1’ and ‘bienst2’ model, where in both cases 

the best solution found by the GA is also the known optimal solution to the model. 

The solution time of the GA in both instances is extremely small. Especially, for the 

‘bienst2’ model the GA managed to find the optimal solution in 144 seconds, when 

the industrial solvers require hundred of seconds to find a feasible solution and a few 

thousands of seconds to solve it to optimality (Table 4a).  
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 Sub-
chrom. 

Max genes 
per  

sub-chrom. 

Best 
feasible 
Solution 
by GA 

GA 
Solution 
time(sec) 

Best 
Solution 
by B&B 

B&B 
Solution 
time(sec) 

bienst1 4 7 46.75 153 46.75 100 
bienst2 5 7 54.6 144 54.6 100 

 
Table 10, Primarily results using GA as a booster to warm-start B&B 

 
 
 

The following two figures, Figure 3 and Figure 4, illustrate the time needed to 

update the current best solution in the two solved model. As it can be observed, when 

these two figures are compared with Figure A2 and Figure A3 in the Appendix II, the 

genetic algorithm finds a better upper bound and faster.  
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Figure 3, “bienst1” model iterations when GA was used as a booster to warm-start 

B&B 
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bienst2 model
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Figure 4, “bienst2” model iterations when GA was used as a booster to warm-start 
B&B 

 
 

Even though, the designed dynamic GA is highly based on information that 

can be extracted from the constraint structure of the model, the obtained results are 

ideal. Hence, we will try to improve further the algorithm and to apply it in different 

instances to monitor its behaviour. 

 

 

7. Discussions and Conclusions 
 

In this paper, we revisited the use of Lagrange Relaxation for processing 

combinatorial optimisation problems. We discuss issues related to the implementation 

of LR as a generic solver for processing large-scale MIP problem. By introducing 

some novel alternative strategies for updating the Lagrange multipliers vector and a 

heuristic for calculating the upper bound, we improve the solver performance. A 

feasible solution of the upper bound is calculated very fast, since the upper bound 

sub-problem is not solved to optimality in every iteration. In addition, as the lower 

bound approaches the upper bound, it is more than likely the variables of the upper 

bound sub-problem that will be fixed, will lead to an improvement of the current 

upper bound solution. A Greedy Algorithm was presented that is capable of resolving 
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in some instances the integrality property problem, this in turn lead to the 

improvement of the lower bound. The importance of constraint classification for 

selecting the sets of constraints to be relaxed has been emphasised. This generic LR 

solver provides the flexibility of adopting alternative strategies in the choice of the 

constraints to relax and updating the multipliers.  

 

The generic solver was tested by solving a collection of benchmark problems 

using different control settings of the solver. The computational results obtained are 

promising, but further work has to be done on the calculation of the upper bounds. An 

alternatively procedure is introduced, which uses a dynamic genetic algorithm for 

calculating upper bounds. The dynamic Genetic Algorithm extracts information from 

the constraint structure of the model and uses Lagrange Relaxation to populate the 

initial population. The preliminary results obtain are very encouraging, but further 

analysis and testing are required.  
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Problem Definition [20] 
 
Lets consider the Index sets, Data parameters and the Decision variables defined 
below: 
 
Index sets 
B={1,…,|B|}    Index set for binary variables, 
I={|B|+1,…,|B|+|I|}   Index set for integer variables, 
C={|B|+|I|+1,…,|B|+|I|+|C|}  Index set for continues variables, 
N=B∪I∪C    Index set for all variables, 
K=I∪C    Index set for integer and continues variables. 
 
Data parameters 
Lj, uj, cj, aij, bi    are given values. 
 
Decision variables 
  xj ∈ {0,1}, 
  and jx  = (1-xj) ∈ {0,1}, j ∈ B. 

other bounded variables 
  xj ∈ Z, j ∈ I, 
  xj ∈ R, j ∈ C, 
  lj ≤ xj ≤ uj, j ∈ K. 
 
  
For a general MIP problem of the form: 

 

The binary variable set B is further divided for row i as follows 
i ij

i ij

ii i

B j j B and a

B j j B and a

B B B

+

−

+ −

= ∈ >
= ∈ <

= ∪

{ | },

{ | },

.

0

0        

 
This means that: 
B B

i
i= ∪( ) . 

Similarly, 
i ij

i ij

ii i

K j j K and a

K j j K and a

K K K

+

−

+ −

= ∈ >
= ∈ <

= ∪
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{ | },

.

0

0        

This means that: 
 K K

i
i= ∪( ) .          

mibxats
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Nj
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�
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∈
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Using the same set of variables and their bounds on the MIP problem can be written 
in the expanded form as: 

      

 
and in a further expanded form as: 

 
 
The mathematical presentations of inequality constraint classes 
 
Knapsack (KNA)  

 a x bij j
j B

i

i∈ +
� ≤ .  

        

Invariant knapsack (INK)     

 (Knapsack with ∀ = ∈ +
ij ia j B1, )  

 x bj
j B

i

i∈ +
� ≤ .   

       

Bin packing (BPK) 

a x a x where B kij j
j B

ik k i

i∈

−

+
� + ≤ =0 { } .   

    

Clique (CLQ) 

 (Invariant knapsack with bi = 1) 

 x j
j Bi∈ +
� ≤ 1 .     

     

ibxaxats

xcxc

i iBj
i
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jj
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Set covering (SCV) 

 x j
j Bi∈ −
� ≥ 1 .        

We have used Bi
−  here rather than Bi

+  because we have reversed all ≥ constraints to 

≤, so that the actual constraint form is: 

 − ≤ −
∈ −
� x j
j Bi

1 .  

        

Plant Location (PLN) 

(Bin packing with ij ia j B= ∀ ∈ +1, ) 

x a x where B kj
j B

ik k i

i∈

−

+
� + ≤ =0 { } .  

 

     

Reverse plant location (RPL) 

    (Bin packing with∀ > ∀ = −ij ija and a0 1 ) 

 a x x where B kik k j
j B

i

i

− ≤ =
∈

+

−
� 0 { } .  

    

Weak (mixed) knapsack (WKN)  

a x a x b

where l is finite k K

u is finite k K

ij j
j B

ik k
k K

i

k i

k
i

i∈ ∈

+

−

+
� �+ ≤

∈

∈

,

,

.

   

     

Weak (mixed) invariant knapsack (WIK)  

 

x a x b

where l is finite k K

u is finite k K

j
j B

ik k
k K

i

k i

k
i

i∈ ∈

+

−

+
� �+ ≤

∈

∈

,

.

   

     

Variable upper bound (on xk) (VUB)  

a x a x b where B j and K kij j ik k i i i+ ≤ = =+{ } { } .    
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Variable lower bound (on xk) (VLB)  

 a x a x b where B {j} and K {k}ij j ik k i i i+ ≤ = =− .    

 

Simple upper bound (SUB)  

 a x b where K jij j i i≤ =+ { } .       

 

Simple lower bound (SLB)  

 a x b where K jij j i i≤ =− { } .       

 

Mathematical presentations of the equality constraint classes 
 
Integer Diophantine equation (IDPQ) 

 a x bij j
j I

i
∈
� = .         

 

Non Diophantine equation (NDPQ) 

 a x a x b where Cij j
j B I

ik k
k C

i
∈ ∪ ∈
� �+ = ≠ ∅  .     

 

Binary Diophantine equation (BDPQ) 

 a x bij j
j B

i
∈
� = .         

 

Mixed Diophantine equation (MDPQ) 

 a x a x b where B Iij j
j B

ik k
k I

i
∈ ∈
� �+ = ≠ ∅ ≠ ∅, .     

 

Discrete goal oriented equation (DGOQ) 

 a x x x b where K h and K kij j
j B

h k i i i

i∈

+ −

+
� + − = = ={ } { } ,   

where xh and xk do not appear in any other constraints. To change a given constraint to 

a goal-oriented restriction these variables are given high costs in the objective 

function row. 
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P-fold alternative (PFLD) 

 x p where p Zj
j Bi∈

+

+
� = ∈ .       

 

Exclusive OR (XOR) 

 Special case of p-fold alternative with p = 1 

 x j
j Bi∈ +
� = 1 .    
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Table A1a, “10teams” model relaxing all constraints of a certain type and warm-start 
to B&B 

Table A1b, “10teams” model using Greedy Algorithm and warm-start to B&B 
 

Table A1c, “10teams” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 120 XOR 908.802 924 705 0.0166 924 205 
2 120 XOR 908.517 924 707 0.0169 924 204 
3 120 XOR 887.419 924 699 0.0398 924 204 
4 120 XOR 905.109 924 701 0.0206 924 204 
5 120 XOR 882.003 924 703 0.0457 924 204 
6 120 XOR 880.781 924 733 0.0471 924 204 
7 120 XOR 877.541 924 699 0.0506 924 204 
8 120 XOR 865.114 924 750 0.0641 924 204 
9 120 XOR 887.325 924 704 0.0400 924 205 

10 120 XOR 886.166 924 705 0.0412 924 204 
11 120 XOR 883.513 924 714 0.0441 924 204 
12 120 XOR 861.947 926 704 0.0698 924 204 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 40 XOR 0 940 237 1.0240 924 1004 
2 40 XOR 0 940 204 1.0240 924 1004 
3 40 XOR 0 940 204 1.0240 928 204 
4 40 XOR 0 940 205 1.0240 928 204 
5 40 XOR 0 940 233 1.0240 928 204 
6 40 XOR 0 940 205 1.0240 928 204 
7 40 XOR 0 940 204 1.0240 928 204 
8 40 XOR 0 940 204 1.0240 928 204 
9 40 XOR 0 940 204 1.0240 928 204 
10 40 XOR 0 940 204 1.0240 928 204 
11 40 XOR 0 940 204 1.0240 928 204 
12 40 XOR 0 940 204 1.0240 928 204 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 120 XOR 878.148 924 245 0.0499 924 204 
2 120 XOR 882.006 924 191 0.0457 924 204 
3 120 XOR 827.673 924 273 0.1049 924 204 
4 120 XOR 864.844 940 214 0.0819 928 204 
5 120 XOR 847.878 924 200 0.0829 924 204 
6 120 XOR 846.098 940 226 0.1023 928 204 
7 120 XOR 837.514 930 248 0.1007 930 204 
8 120 XOR 819.05 924 227 0.1143 924 204 
9 120 XOR 856.372 924 197 0.0737 924 205 

10 120 XOR 854.184 924 308 0.0761 924 204 
11 120 XOR 839.735 930 210 0.0983 928 204 
12 120 XOR 831.972 924 218 0.1002 924 204 
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Table A2a, “bienst1” model relaxing all constraints of a certain type and warm-start to 
B&B 

Table A2b, “bienst1” model using Greedy Algorithm and warm-start to B&B 
 

Table A2c, “bienst1” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 124 NDPQ 9.38636 47.8 51 3.0190 47 100 
2 124 NDPQ 10.267 50.75 48 3.1816 46.75 100 
3 124 NDPQ 6.51929 48 43 3.2600 47 100 
4 124 NDPQ 7.26926 51 43 3.4368 47 100 
5 124 NDPQ 9.22613 49.6 44 3.1730 47 100 
6 124 NDPQ 9.60408 50 48 3.1748 46.75 100 
7 124 NDPQ 9.04056 50 41 3.2190 46.75 100 
8 124 NDPQ 6.03848 50 37 3.4550 46.75 100 
9 124 NDPQ 8.78757 50.4 45 3.2704 46.75 100 

10 124 NDPQ 8.99281 50.4 46 3.2542 46.75 100 
11 124 NDPQ 7.74407 49.6 43 3.2895 47 100 
12 124 NDPQ 7.51362 47.75 50 3.1622 46.75 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 4 NDPQ 46.2 60 1022 0.2924 46.75 404 
2 4 NDPQ 46.2 52 1341 0.1229 47 100 
3 4 NDPQ 46.2 52 1338 0.1229 47 100 
4 4 NDPQ 46.2 52 1338 0.1229 47 100 
5 4 NDPQ 46.2 60 1021 0.2924 47 100 
6 4 NDPQ 46.2 52 1338 0.1229 47 100 
7 4 NDPQ 46.2 52 1339 0.1229 47 100 
8 4 NDPQ 46.2 52 1338 0.1229 47 100 
9 4 NDPQ 46.2 60 1021 0.2924 47 100 

10 4 NDPQ 46.2 52 1338 0.1229 47 100 
11 4 NDPQ 46.2 52 1338 0.1229 47 100 
12 4 NDPQ 46.2 52 1338 0.1229 47 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 124 NDPQ 1.65299 53.5 9.172 4.0747 46.75 100 
2 124 NDPQ 2.99216 53.2 9.703 3.9459 47 100 
3 124 NDPQ 3.36057 54.25 9.641 3.9995 47 100 
4 124 NDPQ 1.2425 54.25 9.469 4.1659 47 100 
5 124 NDPQ 4.07778 54.6667 9.375 3.9758 47 100 
6 124 NDPQ 4.31164 50 9.25 3.5907 46.75 100 
7 124 NDPQ 4.03582 50 9.156 3.6124 46.75 100 
8 124 NDPQ 4.33679 50 8.8 3.5887 46.75 100 
9 124 NDPQ 4.56539 53.1667 9.4 3.8196 46.75 100 

10 124 NDPQ 3.90177 49.75 9.4 3.6033 47 100 
11 124 NDPQ 3.56776 50.4 9.0 3.6806 46.75 100 
12 124 NDPQ 3.9495 50.4 9.1 3.6506 46.75 100 
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Table A3a, “bienst2” model relaxing all constraints of a certain type and warm-start to 
B&B 

Table A3b, “bienst2” model using Greedy Algorithm and warm-start to B&B 
 

Table A3c, “bienst2” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 123 NDPQ 9.30145 58.6667 53 3.8797 56 100 
2 123 NDPQ 9.5066 56.5385 56 3.6963 55.7333 100 
3 123 NDPQ 7.03862 58 70 4.0051 56 100 
4 123 NDPQ 6.54243 55.8571 54 3.8757 55.7333 100 
5 123 NDPQ 9.52647 60.5 58 4.0061 55.7333 100 
6 123 NDPQ 10.1933 57.6 57 3.7257 56 100 
7 123 NDPQ 8.15316 57.6 53 3.8861 56 100 
8 123 NDPQ 7.71834 60.1667 53 4.1220 56 100 
9 123 NDPQ 9.86673 56.5385 51 3.6680 55.7333 100 

10 123 NDPQ 9.88596 57.6 64 3.7499 56 100 
11 123 NDPQ 7.65691 57.6 56 3.9251 56 100 
12 123 NDPQ 6.23444 57.6 50 4.0369 56 100 

Instant 
ID 

Relaxed 
Constr. of 

set(s) 

Number of 
Relaxed 
Constr. 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 5 NDPQ 0 65 367 5.1084 55.7333 100 
2 5 NDPQ 0 65 364 5.1084 55.7333 100 
3 5 NDPQ 0 65 365 5.1084 55.7333 100 
4 5 NDPQ 0 65 376 5.1084 55.7333 100 
5 5 NDPQ 0 65 371 5.1084 55.7333 100 
6 5 NDPQ 0 65 372 5.1084 55.7333 100 
7 5 NDPQ 0 65 372 5.1084 55.7333 100 
8 5 NDPQ 0 65 373 5.1084 55.7333 100 
9 5 NDPQ 0 65 370 5.1084 55.7333 100 
10 5 NDPQ 0 65 370 5.1084 55.7333 100 
11 5 NDPQ 0 65 375 5.1084 55.7333 100 
12 5 NDPQ 0 65 374 5.1084 55.7333 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 123 NDPQ 2.37341 60.2 8.5 4.5447 55.7333 100 
2 123 NDPQ 1.17236 61.3333 9.1 4.7281 56 100 
3 123 NDPQ 0.61001 61 9.2 4.7461 56 100 
4 123 NDPQ 1.6039 58.1111 9.0 4.4410 55.7333 100 
5 123 NDPQ 4.1571 58.1111 9.0 4.2403 55.7333 100 
6 123 NDPQ 2.98605 62 9.2 4.6380 56 100 
7 123 NDPQ 4.27796 60.25 9.2 4.3989 55.7333 100 
8 123 NDPQ 4.1371 60.3333 9.2 4.4165 55.7333 100 
9 123 NDPQ 3.97392 62.2 8.9 4.5760 55.7333 100 

10 123 NDPQ 2.97919 57.6 9.3 4.2927 56 100 
11 123 NDPQ 4.4561 61 9.2 4.4438 56 100 
12 123 NDPQ 3.56479 60.8333 8.9 4.5008 56 100 
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Table A4a, “bienst2” model relaxing all constraints of a certain type, Aggregation 
Constraint and warm-start to B&B 

Table A4b, “bienst2” model using Greedy Algorithm, Aggregation Constraint and 
warm-start to B&B 

Table A4c, “bienst2” model with Aggregation Constraint using LR as a booster to 
warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 123 NDPQ 10.4546 57.6 50 3.7052 56 100 
2 123 NDPQ 10.4546 57.6 49 3.7052 56 100 
3 123 NDPQ 9.32143 65 35 4.3758 55.7333 100 
4 123 NDPQ 9.32143 61.5 37 4.1008 56 100 
5 123 NDPQ 9.32143 65 40 4.3758 55.7333 100 
6 123 NDPQ 9.32143 65 39 4.3758 55.7333 100 
7 123 NDPQ 9.32143 65 37 4.3758 55.7333 100 
8 123 NDPQ 9.32143 55.7333 36 3.6476 55.7333 100 
9 123 NDPQ 9.32143 55.7333 31 3.6476 55.7333 100 

10 123 NDPQ 9.32143 55.7333 31 3.6476 55.7333 100 
11 123 NDPQ 9.32143 55.7333 37 3.6476 55.7333 100 
12 123 NDPQ 9.32143 56 33 3.6685 56 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 5 NDPQ 0 62.6 371 4.9198 55.7333 100 
2 5 NDPQ 0 65 371 5.1084 55.7333 100 
3 5 NDPQ 0 65 369 5.1084 55.7333 100 
4 5 NDPQ 0 65 362 5.1084 55.7333 100 
5 5 NDPQ 0 62.6 364 4.9198 55.7333 100 
6 5 NDPQ 0 65 364 5.1084 55.7333 100 
7 5 NDPQ 0 65 364 5.1084 55.7333 100 
8 5 NDPQ 0 65 364 5.1084 55.7333 100 
9 5 NDPQ 0 62.6 362 4.9198 55.7333 100 
10 5 NDPQ 0 65 364 5.1084 55.7333 100 
11 5 NDPQ 0 65 364 5.1084 55.7333 100 
12 5 NDPQ 0 65 364 5.1084 55.7333 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 123 NDPQ 9.32143 60.8 8.4 4.0458 55.7333 100 
2 123 NDPQ 9.32143 60.8 8.4 4.0458 55.7333 100 
3 123 NDPQ 9.32143 65 8.3 4.3758 55.7333 100 
4 123 NDPQ 9.32143 65 8.9 4.3758 55.7333 100 
5 123 NDPQ 9.32143 65 9.4 4.3758 55.7333 100 
6 123 NDPQ 9.32143 65 9.4 4.3758 55.7333 100 
7 123 NDPQ 9.32143 65 9.1 4.3758 55.7333 100 
8 123 NDPQ 9.32143 65 9.0 4.3758 55.7333 100 
9 123 NDPQ 9.32143 59 8.4 3.9043 55.7333 100 

10 123 NDPQ 9.32143 59 8.4 3.9043 55.7333 100 
11 123 NDPQ 9.32143 65 8.8 4.3758 55.7333 100 
12 123 NDPQ 9.32143 59.3333 7.8 3.9305 55.7333 100 
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Table A5a, “l152lav” model relaxing all constraints of a certain type and warm-start 
to B&B 

Table A5b, “l152lav” model using Greedy Algorithm and warm-start to B&B 
 

Table A5c, “l152lav” model using LR as a booster to warm-start B&B 
 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 95 XOR 3770.12 4750 411 0.2104 4734 139 
2 95 XOR 3839.02 4750 455 0.1956 4734 150 
3 95 XOR 3059.27 4750 411 0.3630 4734 145 
4 95 XOR 2905.28 4750 429 0.3961 4734 143 
5 95 XOR 3819.6 4750 425 0.1998 4734 150 
6 95 XOR 3789.71 4751 408 0.2064 4734 150 
7 95 XOR 3689.08 4751 406 0.2280 4734 150 
8 95 XOR 3391.98 4751 405 0.2918 4734 150 
9 95 XOR 3933.87 4754 433 0.1761 4734 150 

10 95 XOR 3908.89 4750 415 0.1806 4734 148 
11 95 XOR 4008.04 4750 404 0.1593 4734 150 
12 95 XOR 3569.3 4750 423 0.2535 4734 150 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 35 XOR 4539.8 4774 440 0.0503 4724 120 
2 35 XOR 4542.63 4774 432 0.0497 4724 130 
3 35 XOR 4533.01 4774 486 0.0517 4724 122 
4 35 XOR 4117.2 4774 242 0.1410 4724 122 
5 35 XOR 4290.89 4774 405 0.1037 4724 122 
6 35 XOR 4186.72 4774 415 0.1261 4724 126 
7 35 XOR 4208.51 4774 401 0.1214 4724 122 
8 35 XOR 4091.6 4774 330 0.1465 4724 123 
9 35 XOR 4523.51 4774 430 0.0538 4724 122 

10 35 XOR 4453.82 4774 405 0.0687 4724 123 
11 35 XOR 4448.29 4774 439 0.0699 4724 123 
12 35 XOR 4377.07 4774 206 0.0852 4724 122 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 95 XOR 3109.83 4750 114 0.3522 4734 119 
2 95 XOR 3479.98 4750 215 0.2727 4734 118 
3 95 XOR 2754.89 4750 205 0.4284 4734 118 
4 95 XOR 2152.72 4750 137 0.5577 4734 118 
5 95 XOR 3763.53 4750 348 0.2118 4734 117 
6 95 XOR 3718.84 4751 353 0.2216 4734 118 
7 95 XOR 3646.84 4751 368 0.2371 4734 118 
8 95 XOR 3341.75 4751 415 0.3026 4734 118 
9 95 XOR 3782.7 4758 417 0.2094 4724 121 

10 95 XOR 3834.44 4748 315 0.1962 4724 127 
11 95 XOR 3712.98 4770 310 0.2270 4722 142 
12 95 XOR 3499.59 4770 366 0.2728 4722 142 
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Table A6a, “misc07” model relaxing all constraints of a certain type and warm-start to 
B&B 

 

Table A6b, “misc07” model using Greedy Algorithm and warm-start to B&B 
 

Table A6c, “misc07” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 127 SCV 1614.16 3130 353 0.9385 2810 100 
2 127 SCV 1548.76 3130 351 1.0203 2810 100 
3 127 SCV 1531.49 3130 359 1.0431 2810 100 
4 127 SCV 1327.06 3290 327 1.3863 2810 100 
5 127 SCV 534.417 3290 372 1.9460 2810 100 
6 127 SCV 509.205 3290 362 1.9638 2810 100 
7 127 SCV 509.205 3290 362 1.9638 2810 100 
8 127 SCV 509.205 3290 362 1.9638 2810 100 
9 127 SCV 0 2810 365 1.9845 2810 100 

10 127 SCV 63.5 2895 360 1.9996 2810 100 
11 127 SCV 694.759 2895 377 1.5538 2810 100 
12 127 SCV 63.5 2810 365 1.9396 2810 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 2 BPK 2460 3060 405 0.2438 2810 100 
2 2 BPK 2460 3060 400 0.2438 2810 100 
3 2 BPK 2460 3060 389 0.2438 2810 100 
4 2 BPK 2460 3060 387 0.2438 2810 100 
5 2 BPK 2460 3060 381 0.2438 2810 100 
6 2 BPK 2460 3060 215 0.2438 3060 2 
7 2 BPK 2460 3060 216 0.2438 3060 2 
8 2 BPK 2460 3060 215 0.2438 3060 2 
9 2 BPK 2460 3060 378 0.2438 2810 100 
10 2 BPK 2460 3060 382 0.2438 2810 100 
11 2 BPK 2460 3060 377 0.2438 2810 100 
12 2 BPK 2460 3060 377 0.2438 2810 100 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 127 SCV 1226.77 3290 73 1.4571 2810 100 
2 127 SCV 1544.5 3290 113 1.1294 2810 100 
3 127 SCV 1441.13 3130 78 1.1711 2810 100 
4 127 SCV 1022.63 3290 59 1.6013 2810 100 
5 127 SCV 542.818 3290 400 1.9401 2810 100 
6 127 SCV 520.493 3290 362 1.9559 2810 100 
7 127 SCV 509.829 3160 385 1.8716 2810 100 
8 127 SCV 1006.52 3160 118 1.5208 2810 100 
9 127 SCV 0 2810 211 1.9845 2810 100 

10 127 SCV 63.5 2895 219 1.9996 2810 100 
11 127 SCV 724.379 2895 125 1.5329 2810 100 
12 127 SCV 63.5 2895 215 1.9996 2810 100 
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Table A7a, “prod1” model relaxing all constraints of a certain type and warm-start to 
B&B 

Table A7b, “prod1” model using Greedy Algorithm and warm-start to B&B 
 

Table A7c, “prod1” model using LR as a booster to warm-start B&B 
 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 100 KNA -100 -50 300 0.4950 -55 13 
2 100 KNA -∞ -50 11 -- -55 13 
3 100 KNA -∞ -50 9 -- -55 18 
4 100 KNA -100 -50 300 0.4950 -54 15 
5 100 KNA -100 -50 302 0.4950 -55 12 
6 100 KNA -∞ -50 9 -- -55 13 
7 100 KNA -∞ -50 8 -- -55 12 
8 100 KNA -99.429 -50 125 0.4950 -55 12 
9 100 KNA -100 -50 301 0.4950 -55 12 

10 100 KNA -∞ -50 13 -- -55 12 
11 100 KNA -∞ -50 13 -- -55 12 
12 100 KNA -100 -50 7.9 0.4950 -54 13 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 1 KNA -∞ -50 310 -- Not Started 
2 1 KNA -∞ -50 304 -- Not Started 
3 1 KNA -∞ -50 302 -- Not Started 
4 1 KNA -∞ -50 301 -- Not Started 
5 1 KNA -∞ -50 306 -- Not Started 
6 1 KNA -∞ -50 305 -- Not Started 
7 1 KNA -∞ -50 306 -- Not Started 
8 1 KNA -∞ -50 310 -- Not Started 
9 1 KNA -∞ -50 307 -- Not Started 

10 1 KNA -∞ -50 306 -- Not Started 
11 1 KNA -∞ -50 306 -- Not Started 
12 1 KNA -∞ -50 305 -- Not Started 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 100 KNA -100 -50 51 0.4950 -55 10 
2 100 KNA -∞ -50 3.5 -- -55 11 
3 100 KNA -∞ -50 3.5 -- -55 11 
4 100 KNA -100 -50 24 0.4950 -55 10 
5 100 KNA -100 -50 50 0.4950 -55 10 
6 100 KNA -∞ -50 3.3 -- -55 10 
7 100 KNA -∞ -50 3.3 -- -55 10 
8 100 KNA -100 -50 3.4 0.4950 -55 10 
9 100 KNA -100 -50 52 0.4950 -55 10 

10 100 KNA -∞ -50 3.5 -- -55 10 
11 100 KNA -∞ -50 3.5 -- -55 10 
12 100 KNA -100 -50 3.4 0.4950 -55 10 
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Table A8a, “ran12x21” model relaxing all constraints of a certain type and warm-start 
to B&B 

Table A8b, “ran12x21” model using Greedy Algorithm and warm-start to B&B 
 

Table A8c, “ran12x21” model using LR as a booster to warm-start B&B 
 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 252 VUB 2772.81 4102 1.6 0.4208 3744 21 
2 252 VUB 2759.8 4102 1.5 0.4250 3744 21 
3 252 VUB 2612.02 4102 1.7 0.4718 3744 21 
4 252 VUB 1966.13 4102 1.2 0.6763 3744 22 
5 252 VUB 2728.88 4102 2.0 0.4348 3744 21 
6 252 VUB 2749.69 4102 1.8 0.4282 3744 21 
7 252 VUB 2593.18 4102 1.9 0.4777 3744 21 
8 252 VUB 2353.72 4102 1.0 0.5535 3744 21 
9 252 VUB 643 4102 1.0 1.0952 3744 21 

10 252 VUB 803 4102 1.0 1.0445 3744 21 
11 252 VUB 2244.33 4102 1.9 0.5882 3744 21 
12 252 VUB 2089.79 4102 1.0 0.6371 3744 21 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 252 VUB 2772.81 4102 1.6 0.4208 3744 21 
2 252 VUB 2759.8 4102 1.5 0.4250 3744 21 
3 252 VUB 2612.02 4102 1.7 0.4718 3744 21 
4 252 VUB 1966.13 4102 1.2 0.6763 3744 22 
5 252 VUB 2728.88 4102 2.0 0.4348 3744 21 
6 252 VUB 2749.69 4102 1.8 0.4282 3744 21 
7 252 VUB 2593.18 4102 1.9 0.4777 3744 21 
8 252 VUB 2353.72 4102 1.0 0.5535 3744 21 
9 252 VUB 643 4102 1.0 1.0952 3744 21 

10 252 VUB 803 4102 1.0 1.0445 3744 21 
11 252 VUB 2244.33 4102 1.9 0.5882 3744 21 
12 252 VUB 2089.79 4102 1.0 0.6371 3744 21 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 252 VUB 1887.81 4102 0.2 0.7011 3744 21 
2 252 VUB 1933.99 4102 0.2 0.6864 3744 21 
3 252 VUB 1203.29 4102 0.2 0.9178 3744 21 
4 252 VUB 1156.71 4102 0.2 0.9325 3744 22 
5 252 VUB 2417.12 4102 0.2 0.5335 3744 21 
6 252 VUB 2406.02 4102 0.2 0.5370 3744 21 
7 252 VUB 1857.83 4102 0.2 0.7105 3744 21 
8 252 VUB 1865.61 4102 0.2 0.7081 3744 21 
9 252 VUB 643 4102 0.2 1.0952 3744 21 

10 252 VUB 803 4102 0.2 1.0445 3744 21 
11 252 VUB 1958.67 4102 0.2 0.6786 3744 21 
12 252 VUB 1870.57 4102 0.2 0.7065 3744 21 
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Table A9a, “ran8x32” model relaxing all constraints of a certain type and warm-start 
to B&B 

Table A9b, “ran8x32” model using Greedy Algorithm and warm-start to B&B 
 

Table A9c, “ran8x32” model using LR as a booster to warm-start B&B 
 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 256 VUB 4448.14 5738 1.9 0.2612 5382 22 
2 256 VUB 4438.41 5738 1.7 0.2632 5382 21 
3 256 VUB 4189.76 5738 1.8 0.3135 5382 23 
4 256 VUB 2685.43 5738 1.1 0.6181 5382 22 
5 256 VUB 4328.73 5738 1.9 0.2854 5382 21 
6 256 VUB 4328.87 5738 1.9 0.2853 5382 21 
7 256 VUB 4160.22 5738 1.9 0.3195 5382 21 
8 256 VUB 3797.44 5738 1.0 0.3929 5382 21 
9 256 VUB 861 5738 1.1 0.9875 5382 21 

10 256 VUB 1056 5738 1.1 0.9480 5382 21 
11 256 VUB 3136.56 5738 1.9 0.5268 5382 21 
12 256 VUB 2544.1 5738 1.0 0.6467 5382 21 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 256 VUB 4448.14 5738 1.9 0.2612 5382 22 
2 256 VUB 4438.41 5738 1.7 0.2632 5382 21 
3 256 VUB 4189.76 5738 1.8 0.3135 5382 23 
4 256 VUB 2685.43 5738 1.1 0.6181 5382 22 
5 256 VUB 4328.73 5738 1.9 0.2854 5382 21 
6 256 VUB 4328.87 5738 1.9 0.2853 5382 21 
7 256 VUB 4160.22 5738 1.9 0.3195 5382 21 
8 256 VUB 3797.44 5738 1.0 0.3929 5382 21 
9 256 VUB 861 5738 1.1 0.9875 5382 21 

10 256 VUB 1056 5738 1.1 0.9480 5382 21 
11 256 VUB 3136.56 5738 1.9 0.5268 5382 21 
12 256 VUB 2544.1 5738 1.0 0.6467 5382 21 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 256 VUB 3394 5738 0.2 0.4746 5382 21 
2 256 VUB 3524.87 5738 0.2 0.4481 5382 21 
3 256 VUB 1841.12 5738 0.2 0.7891 5382 21 
4 256 VUB 1720 5738 0.2 0.8136 5382 22 
5 256 VUB 3936.98 5738 0.2 0.3647 5382 21 
6 256 VUB 4008.64 5738 0.2 0.3502 5382 21 
7 256 VUB 3359.76 5738 0.2 0.4816 5382 21 
8 256 VUB 2735.97 5738 0.2 0.6079 5382 21 
9 256 VUB 861 5738 0.2 0.9875 5382 21 

10 256 VUB 1056 5738 0.2 0.9480 5382 21 
11 256 VUB 1968.71 5738 0.2 0.7632 5382 21 
12 256 VUB 1973.67 5738 0.2 0.7622 5382 21 
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Table A10a, “stein27” model relaxing all constraints of a certain type and warm-start 
to B&B 

Table A10b, “stein27” model using Greedy Algorithm and warm-start to B&B 
 

Table A10c, “stein27” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 117 SCV 13 19 2.1 0.4286 18 2.3 
2 117 SCV 13 19 2.1 0.4286 18 2.1 
3 117 SCV 13 18 3.5 0.3571 18 2.1 
4 117 SCV 13 19 3.1 0.4286 18 2.0 
5 117 SCV 13 19 5.8 0.4286 18 2.1 
6 117 SCV 13 19 6.2 0.4286 18 2.1 
7 117 SCV 13 18 2.8 0.3571 18 2.2 
8 117 SCV 13 19 3.2 0.4286 18 2.3 
9 117 SCV 13 19 4.0 0.4286 18 2.4 

10 117 SCV 13 19 6.0 0.4286 18 2.1 
11 117 SCV 13 18 3.0 0.3571 18 2.1 
12 117 SCV 13 19 5.9 0.4286 18 2.2 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 9 SCV 15 19 11 0.2500 18 2.3 
2 9 SCV 14.9937 19 20 0.2505 18 2.3 
3 9 SCV 14.9937 19 20 0.2505 18 2.4 
4 9 SCV 14.9937 19 20 0.2505 18 2.1 
5 9 SCV 15 19 10 0.2500 18 2.3 
6 9 SCV 12 18 10 0.4286 18 2.3 
7 9 SCV 12 19 11 0.5000 18 2.3 
8 9 SCV 12 19 10 0.5000 18 2.5 
9 9 SCV 15 19 10 0.2500 18 2.4 

10 9 SCV 12 19 11 0.5000 18 2.3 
11 9 SCV 12 19 11 0.5000 18 2.4 
12 9 SCV 12 19 10 0.5000 18 2.4 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 117 SCV 13 19 0.1 0.4286 18 1.7 
2 117 SCV 13 19 0.1 0.4286 18 1.7 
3 117 SCV 13 19 0.1 0.4286 18 1.7 
4 117 SCV 13 19 0.1 0.4286 18 1.8 
5 117 SCV 13 19 0.09 0.4286 18 1.7 
6 117 SCV 13 19 0.1 0.4286 18 1.8 
7 117 SCV 13 18 0.09 0.3571 18 1.8 
8 117 SCV 13 19 0.09 0.4286 18 1.7 
9 117 SCV 13 19 0.09 0.4286 18 1.7 

10 117 SCV 13 19 0.09 0.4286 18 1.8 
11 117 SCV 13 19 0.1 0.4286 18 1.7 
12 117 SCV 13 19 0.1 0.4286 18 1.8 
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Table A11a, “stein45” model relaxing all constraints of a certain type and warm-start 
to B&B 

 

Table A11b, “stein45” model using Greedy Algorithm and warm-start to B&B 
 

Table A11c, “stein45” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 329 SCV 22 32 3.0 0.4348 32 8.8 
2 329 SCV 22 32 4.3 0.4348 32 8.5 
3 329 SCV 22 32 3.9 0.4348 32 8.6 
4 329 SCV 22 31 4.0 0.3913 31 7.8 
5 329 SCV 22 32 3.8 0.4348 32 8.5 
6 329 SCV 22 32 4.0 0.4348 31 8.7 
7 329 SCV 22 31 3.0 0.3913 31 8.4 
8 329 SCV 22 32 2.9 0.4348 32 8.3 
9 329 SCV 22 32 2.1 0.4348 32 8.6 

10 329 SCV 22 32 2.2 0.4348 32 8.7 
11 329 SCV 22 31 2.9 0.3913 31 8.4 
12 329 SCV 22 32 3.3 0.4348 32 8.8 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 15 SCV -∞ 31 53 -- 30 10 
2 15 SCV -∞ 32 85 -- 30 10 
3 15 SCV -∞ 31 68 -- 30 10 
4 15 SCV -∞ 31 51 -- 30 10 
5 15 SCV 19.8572 32 261 0.5279 30 10 
6 15 SCV 20.9178 32 259 0.4818 30 10 
7 15 SCV -∞ 33 15 -- 30 10 
8 15 SCV -∞ 33 12 -- 30 10 
9 15 SCV 0 33 14 1.4348 30 10 

10 15 SCV -∞ 33 14 -- 30 10 
11 15 SCV -∞ 32 14 -- 30 10 
12 15 SCV -∞ 33 13 -- 30 10 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 329 SCV 22 32 0.2 0.4348 32 6.7 
2 329 SCV 22 32 0.2 0.4348 32 6.9 
3 329 SCV 22 32 0.2 0.4348 32 6.8 
4 329 SCV 22 32 0.2 0.4348 32 6.9 
5 329 SCV 22 32 0.1 0.4348 32 6.8 
6 329 SCV 22 32 0.1 0.4348 31 6.9 
7 329 SCV 22 32 0.2 0.4348 31 6.8 
8 329 SCV 22 32 0.1 0.4348 31 6.2 
9 329 SCV 22 32 0.1 0.4348 32 6.8 

10 329 SCV 22 32 0.1 0.4348 32 6.1 
11 329 SCV 22 31 0.2 0.3913 31 6.8 
12 329 SCV 22 32 0.1 0.4348 32 6.9 
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Table A12a, “vpm1” model relaxing all constraints of a certain type and warm-start to 
B&B 

Table A12b, “vpm1” model using Greedy Algorithm and warm-start to B&B 
 

Table A12c, “vpm1” model using LR as a booster to warm-start B&B 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 168 VUB 15.4105 20 1.5 0.2796 20 5.5 
2 168 VUB 15.4105 20 1.5 0.2796 20 5.4 
3 168 VUB 15.4105 20 1.5 0.2796 20 5.4 
4 168 VUB 15.195 20 1.2 0.2927 20 5.4 
5 168 VUB 14.3131 22 1.2 0.4682 21 5.3 
6 168 VUB 14.4534 20 1.2 0.3379 20 5.5 
7 168 VUB 13.4676 20 1.1 0.3979 20 5.4 
8 168 VUB 14.8151 20 1.0 0.3158 20 5.5 
9 168 VUB 5.57087 22 0.9 1.0008 21 5.3 

10 168 VUB 7.70833 20 0.8 0.7487 20 5.5 
11 168 VUB 14.2774 20 1.0 0.3486 20 5.5 
12 168 VUB 14.6433 20 1.0 0.3263 20 5.5 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 168 VUB 15.4105 20 1.5 0.2796 20 5.5 
2 168 VUB 15.4105 20 1.5 0.2796 20 5.4 
3 168 VUB 15.4105 20 1.5 0.2796 20 5.4 
4 168 VUB 15.195 20 1.2 0.2927 20 5.4 
5 168 VUB 14.3131 22 1.2 0.4682 21 5.3 
6 168 VUB 14.4534 20 1.2 0.3379 20 5.5 
7 168 VUB 13.4676 20 1.1 0.3979 20 5.4 
8 168 VUB 14.8151 20 1.0 0.3158 20 5.5 
9 168 VUB 5.57087 22 0.9 1.0008 21 5.3 

10 168 VUB 7.70833 20 0.8 0.7487 20 5.5 
11 168 VUB 14.2774 20 1.0 0.3486 20 5.5 
12 168 VUB 14.6433 20 1.0 0.3263 20 5.5 

Instant 
ID 

Number of 
Relaxed 
Constr. 

Relaxed 
Constr. of 

set(s) 

BestLB BestUB LR 
solution 
time(sec) 

εεεε BestUB 
by B&B 

B&B 
solution 
time(sec) 

1 168 VUB 10.8805 22 0.2 0.6773 21 5.2 
2 168 VUB 12.029 20 0.2 0.4855 20 5.5 
3 168 VUB 11.9624 20 0.2 0.4896 20 5.5 
4 168 VUB 11.9624 20 0.2 0.4896 20 5.4 
5 168 VUB 14.0615 22 0.2 0.4836 21 5.6 
6 168 VUB 14.0763 20 0.1 0.3608 20 5.4 
7 168 VUB 13.3762 20 0.1 0.4035 20 5.4 
8 168 VUB 14.4376 20 0.2 0.3388 20 5.3 
9 168 VUB 5.88697 22 0.1 0.9815 21 5.2 

10 168 VUB 7.70833 20 0.1 0.7487 20 5.3 
11 168 VUB 13.7828 20 0.1 0.3787 20 5.4 
12 168 VUB 13.7828 20 0.1 0.3787 20 5.3 
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Appendix III: Graphical Presentation of Algorithmic Behaviour 
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Figure A1, “10teams” model iterations when all constraints of a certain type were 

relaxed and warm-start to B&B 
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Figure A2, “bienst1” model iterations when all constraints of a certain type were 

relaxed and warm-start to B&B 
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bienst2 model
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Figure A3, “bienst2” model iterations when all constraints of a certain type were 

relaxed and warm-start to B&B 
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Figure A4, “misc07” model iterations when all constraints of a certain type were 

relaxed and warm-start to B&B 
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Figure A5, “vpm1” model iterations when Greedy Algorithm was used and warm-

start to B&B 
 
 
 
 


