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Further Topics in the Analysis of 
Non-Stationary Time Series

6.1 Introduction

In this chapter three further topics are considered in some detail: estimation
of models with I(2) variables; forecasting; and structural models with short-
run behaviour driven by expectations. Though mathematically the notions of
order of integration and cointegration are exact, in practice they are valid to
the best approximation or resolution that the data may permit. To define an
order of integration as a specific integer quantity is to assume that the series is
approximated by a single well-defined time series process across the sample.
Time series data for developed economies have exhibited many features, from
behaviour that might be viewed as purely stationary through to series that
require first or second differencing to render them stationary. Some nominal
series in first differences may require further differencing, which suggests that
the original nominal series are of order I(2) or higher when further differenc-
ing is required. In this chapter, discussion is limited to processes up until I(2).

The condition required for a series to be considered to be I(1), as compared
with one exhibiting further features only consistent with I(2) behaviour, is
necessary and sufficient for cointegration amongst I(1) series, but beyond
testing this condition, there is a well defined procedure for inference and esti-
mation of I(2) processes (Johansen 1992, 1995). It might often be difficult to
distinguish between an I(1) and an I(2) series, which suggests that series,
which appear to be I(2), are being approximated to some order of accuracy by
second differences. Alternatively, these series may be better modelled using
non-integer orders of differencing (Granger and Joyeux 1980; Hosking 1981).
To this end, the question of fractional processes and long-memory will be dis-
cussed briefly after the section on I(2) behaviour. A further reason why it
might be difficult to detect the order of integration of a series may be due to
the existence of structural breaks. This opens up a plethora of potential
difficulties for any form of structural modelling. Breaks in structure have a
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number of forms when conventional (I(0)) linear econometrics is considered,
but beyond slope and intercept shifts, there are other types of intercept cor-
rection used in macro modelling (see Clements and Hendry 1998, 2001). The
break may also apply to the cointegrating relations (co-breaks) or in the order
of integration and cointegration. Testing was limited in chapter 4 to recursive
break tests and tests with a known break in structure that could be corrected
by the use of dummy variables. In this chapter forecast performance is com-
pared by considering the difference between forecasts made with and without
the imposition of cointegration. Specifically, the simulation results of Hendry
and Clements and Lin and Tsay are evaluated.

Once the notion of forecast failure is considered, then issues associated with
our ability to detect short-run structure arise. In this context, there can be no
difference between estimating a structural relationship as compared with a
reduced form, except for the added efficiency that might derive from the
imposition of further restrictions on the long-run and short-run parameters.
There are a number of approaches to defining structural models under cointe-
gration of which the best defined follows from the work of Pesaran et al.
(2000). The elegance of the Johansen approach is lost once the long-and the
short-run coefficients are interrelated, as testing for a unit root in multivariate
processes cannot be readily disentangled from the estimation of the long-run
and short-run parameters. In particular, when the long-run parameters are
embedded within the short run, as occurs with models with future expecta-
tions, then testing for cointegration is less straightforward. Here, the impact of
forward-looking behaviour is considered in terms of exogenous processes that
are weakly and cointegrating exogenous and then processes that have unit
roots in the exogenous variables. The simple method suggested by Dolado et
al. (1991) is considered along with an extension of this method to the multi-
variate context by Engsted and Haldrup (1997). An alternative maximum like-
lihood approach is discussed here, though the inference is contaminated by
both the unit root and generated regressor problem.

6.2 Inference and estimation when series are not I(1)

In this section the I(2) approach advanced in Johansen (1992a), is considered
along with some discussion of multi-cointegrated and fractional processes.
Whether a series is I(1), close to I(1) in levels or differences, is a matter of
debate. To some extent cointegration operates beyond the framework of this
debate, because long memory processes may also interact, as has been
observed recently by Abadir and Talmain (2002). From the original definition
of cointegration due to Engle and Granger (1987) series of order I(j) cointe-
grate and I(1) and I(0) series may also combine in the manner described by
Flôres and Szafarz (1996). One estimator, which combines I(0), I(1) and I(2)
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processes is that given in Johansen (1992a). This assumes that differenced
series are of integer order, which rules out the possibility that series such as
inflation rates are fractional processes. The distinction between long memory
and non-stationarity might be viewed as semantic for the data sets readily
available, but one cannot dismiss the possibility that series may move across
orders of integration from non-stationarity through long-memory to sta-
tionarity. In this light the series might never be purely stationary or non-
stationary. Where this would appear to accord with sound economic principle
then one might have to look for the best approximation.1

6.2.1 Cointegration when series are I(2)

Consider the cointegration case developed by Engle and Granger (1987),
where all the series are I(2). It follows from our discussion of cointegration in
chapter 4 that second differences have the following Wold decomposition:

and �xt cointegrate when �′I(2) C (1) = 0 and �′I(2) �xt = �I(2)t ~ I(0). If a left-hand
factor can be extracted in the manner described in section 4.5, then:

It is possible to transform the Wold form into an error-correcting VARMA
when FC(1) = 0, and F is an idempotent matrix. Therefore:

When C1 (L) has no more unit roots, then an I(2) cointegrating VAR exists in
second differences:

where �I(2) = �I(2)�′I(2) = F. This has been called balanced I(2) behaviour by
Juselius (1995). Now consider the case where C(1) has further unit roots, then
it might be possible to undertake a further factorization when a left-hand term
C01(L) = (I – GL) can be extracted and GC1(1) = 0. Therefore:

The following I(2) representation can be readily derived from multiplying
through the two left-hand divisors above. Therefore:

transforming to the VAR by inverting C11(L) and applying the reparameteriza-
tion (A(1)L + (1 – L)A*(L)) to produce terms in first differences and (A(0) + 
(1 – L)A+(L) + (1 – L)2A++(L)) terms in levels,
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or

where %(L) = (A(L) – A*(L)(F + G)L + A++(L)GFL2), Ax(1) = A(0)–1A(1) and 
Ax(0) = A(0)–1A+(0). Assuming a VAR(2) system with A(1)F = ��⊥(�′⊥��⊥)–1"′�′,
F = H–1MI(2)H, MI(2) = diag(1 … 1, 0 … 0), A(0)G = ��′�′ and (Ax(1)G – Ax(0)GF) =
�!′, then (6.5) is a restricted version of the I(2) representation in Hansen and
Johansen (1998):

In the notation of Hansen and Johansen, � is n × r, � is (r + s) × r, � is
n × (r + s), ! is n × r, " is (r + s) × (n – r) and � is n × n.

Next the approach due to Johansen (1992) is considered for testing for coin-
tegration in I(2) systems, then an example is discussed along with
identification and estimation.

6.2.1.1 The Johansen procedure for testing cointegrating rank with I(2) variables

Prior to any discussion of the appropriate method of estimation the more con-
ventional VECM for the I(2) case is presented (Johansen 1995a):

Where  = ��⊥(�′⊥��⊥)–1"′�′ + �!′, � and �′ = �′�′ are the conventional loadings
and cointegrating vectors for the case in which series of any order may col-
lapse to a stationary linear combination. If  = 0, then this is the cointegration
case considered by Engle and Granger (1987) where all the series are I(2) and:

Alternatively, when ��′ = 0 and the differenced I(1) series have linear com-
binations that are stationary:

where – = (�′⊥)–1"′�′ = �I(2)�′I(2) as �′⊥ has full rank, because ��′ = 0 implies 
� = 0 and � = 0. The full I(2) case allows for the possibility of cointegration
amongst I(2) series that become I(0) in combination, and cointegration
amongst I(1) series that become I(0).

Clearly, (6.8) can be estimated using the Johansen procedure, except the re-
gression that is purged of short-run behaviour in, for example the VAR(1) case is:
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and decomposition and testing follows in the usual way (see sections 4.3–4.4).
Alternatively, for the VAR(1) case associated with (6.9) the estimation

procedure is in every respect the same as that derived by Johansen (1991),
except the data are first and second differenced. For the VAR(1) case this
involves estimating the following model:

This becomes more complicated when the two types of cointegration are com-
bined, then (6.7) needs to be estimated, but this requires two blocks of reduced
rank tests to be undertaken. One procedure for undertaking this analysis would
be to consider the unit roots associated with cointegration amongst I(2) series
whose first differences cointegrate. However: when ��′ ≠ 0, then the model to
be estimated will either require very long lags as the moving average terms 
�′xt–1 = J(L)εt–1 have been omitted or the Johansen approach might be applied
to a VARMA(1,q) model. To see this re-write (6.2) as:

If (6.10) were to be estimated, then the method must account for roots on the
unit circle as when the level terms cointegrate, C1(L) contains further unit
roots. Otherwise, the conventional VAR associated with this problem is of
infinite order and not conventionally invertible. There is no unique way 
of deriving the estimator and in general the existence of the time series
representation cannot be proven.

In general, the case with both I(2) and I(1) interdependencies can be
handled by considering the solution to two reduced rank problems:

where � and � are (n – r) × s dimensioned matrices. To simplify the exposition
quadratic trends are not considered here. Johansen (1995) suggests the
problem is made tractable by correcting the short-run behaviour firstly for the
usual cointegration case as the I(2) series collapse to linear combinations that
are stationary. When the Frisch–Waugh theorem is applied to purge the short-
run relationship of the nuisance terms, then �2xt and xt–1 are both regressed
on �xt–1 and �x2

t–i i = 1, 2, …, n – 1 by ordinary least squares. The residuals
from these regressions will not be correlated with the lagged second differ-
ences and the influence of the first form of cointegration will be removed.
Again R0,t and R1,t are, in essence, the n × 1 residual vectors from regressions
with �xt and xt–1 as the dependent variables. The following regressions, yield
estimates of the first long-run parameter matrix:

Now � is calculated by solving the conventional eigenvalue problem for the
I(1) case and the usual I(1) analysis is undertaken to determine cointegrating
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rank (section 4.4). To confirm that the I(1) analysis is valid the test for I(2)
components discussed previously in 4.4.5 needs to be undertaken, this relates
to the solution to the second reduced rank problem, that is rank(�′⊥�⊥) = 
n – r. Should this matrix not have full rank, then there are I(2) components
not accounted for. Next an analysis of the I(2) components of the model is
undertaken, controlling for the I(1) variables. Subject to knowledge of (�, �, r)
the I(1) terms are eliminated by pre-multiplying (6.7) by �′⊥:

This is an n – r dimensioned system and in the pure I(1) case rank(�′⊥) = n – r.
The test for further I(2) trends is undertaken by regressing �′⊥�2xt and �′⊥�xt–1

on �′⊥�x2
t–i i = 1, 2, …, n – 1. The residuals from the regressions of R0,t and R1,t

for this case yield an eigenvalue problem that can be solved in the usual way.
The Johansen test for this case determines the rank (�′⊥�⊥) = s, where 0 ≤ s ≤
n – r and associated with s significant eigenvalues is the s × n – r matrix of
eigenvectors �′ that define common trends. If all the variables are I(1), then
the system separates into r stationary variables (�′xt–1) and n – r common
trends �′�xt– 1. Otherwise there are s common trends and n – r – s, I(2) trends.

To complete the I(2) analysis, (6.7) is now multiplied by the r × n matrix �–′:

where �–′� = Ir. Subtracting (6.13) from $ × (6.12):

where $ = ���⊥ �–1
�⊥�⊥, ���⊥ = �–′��⊥ and ��⊥�⊥ = �′⊥��⊥ The errors of (6.12) and

(6.14) are independent by construction. While the parameters of (6.12), (�′⊥,
�′⊥%i��⊥�⊥) and (6.14), ($,(�–′ – $�′⊥),(�–′ – $�′⊥)%i, (�–′ – $�′⊥)N0) are variation
free. It follows that the parameters (, %i, N0, �) can be disentangled from the
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above reparameterization. If there are no further cross-equation restrictions on
the higher-order dynamics and cointegration, then (6.12) and (6.14) can be
analyzed separately, while the dependence that operates on the common
trends applies to (6.12) alone.

The second reduced rank hypothesis is:

where 0 ≤ s ≤ n – r. Using the identity I = �
–
�′ + �⊥�

–′⊥, the variables �′�xt–1 and
�
–′�xt–1 may be introduced into (6.12):

The parameters (, %i for i = 1, … n – 1 N0) can be estimated by regressing 
�–′�2xt – �′xt–1 on �′⊥�2xt, �xt–1, �2xt–i and Dt. The dependence amongst the s
common trends can be determined from the regression:

where R0,t and R1,t are residuals based on regressing �′⊥�2xt and �
–′⊥�xt respec-

tively on �′�xt–1, �2xt–i for i = 1, … p – 1 and Dt. The likelihood ratio test statis-
tic is based on the solution to the eigenvalue problem |	S1,1- S1,0 S–1

0,0S0,1| = 0,
calculated from sample product moments derived for the I(2) case using:

It follows that s is selected by calculating the maximal eigenvalue test:

and for an appropriate choice of s the matrix �′ is the matrix whose columns
are the eigenvectors associated with the first s significant eigenvalues.

An alternative approach is derived in Johansen (1997) and Hansen and
Johansen (1998) using (6.6) where the parameters to be estimated that are
variation free are (�, �, �, �, ", !).

6.2.1.2 An example of I(2)

Identification and model selection in the I(2) case is more complicated than in
the I(1) case and partial consideration of the null of cointegration conditioned
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on the notion that the series are all I(1) may not be valid (Paruolo 1996).
When the series are I(2) they become stationary by virtue of a combination of
I(1) and I(2) processes and from (6.6) the cointegrating relations have the
following form:

Engle and Yoo (1989) defined cointegrating relationships of the form �′xt–1 –
!′�xt–1 as polynomial cointegration. To observe this re-write the cointegrating
vectors as a lag polynomial �(L) in x:

The cointegrating vectors reduce to linear combinations (�′xt′) of xt–1 (Engle
and Granger 1987, when either !′ = 0 or !′ = �⊥ and  = "′�′. In general, (6.7)
has r linear combination of I(2) variables that are I(0), s independent linear
combinations of I(1) variables that are I(0) and n – r – s variables that follow
I(2) trends. If, in addition,  = "′�′ = 0, then s = 0 and there are n – r, I(2)
trends rendered stationary by the second difference operator; the case consid-
ered by Engle and Granger (1987).

It was suggested in Hunter (1992a) that some of the series analyzed by
Johansen and Juselius (1992) were I(2). In response to this suggestion Hunter
and Simpson (1995) analyzed a system in which the UK inflation series enters
the model in first difference form, but they based their analysis on a longer data
set. Here, the extended VAR(2) model estimated by Hunter (1992a) is tested for
I(2) behaviour. For this example, n = 6, x′t = [p0tp1tp2te12tr1tr2t], the variables are
described in section 4.3.1.2 and the statistics are calculated for the period
1973Q2–1987Q3. When the first reduced rank regression (6.11) is undertaken to
calculate ��′, the intercept is unrestricted and a trend is introduced into the
model. At the second stage the trend is restricted to exclude quadratic trends.
The problem is addressed firstly using the approach adopted by Paruolo (1996)
and this is then compared with that described in Johansen (1995).

Paruolo (1996) derives critical values for the test of the joint hypothesis:2

The test statistic (1Qr,s) is compared with associated points on the null distribu-
tion, the comparison is made either with [p.value] calculated by PCGIVE 10.1
(Doornik and Hendry 2001) or 5% critical values (cr,n–r–s (5%)) taken from
Paruolo (1996). It is suggested in Doornik and Hendry (2001) that testing is
applied from the top left of the table, while Paruolo (1996) suggests progress-
ing from the top to the bottom of each column to a point at which the null
can no longer be rejected. Paruolo (1996) advises that tests are applied to 
the specific case, moving to the general or from the most restricted to less
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restricted cases. Following this approach, the first diagonal element implies 
r = 0, n – r – s = 6 and the test statistic for the case with unrestricted constant
(�I ≠ 0) is 1Q0,0 = 314.01 > c0,6 (5%) = 240.35. Based on the calculated statistic
the null hypothesis (rank() = s = rank(�) = r = 0) cannot be accepted.
Progressing to the next column, where r = 0 and n – r – s = 5, 1Q0,1 = 254.23 >
c0,5(5%) = 203.12, the null is rejected, that rank() = s = 1 and rank(�) = r = 0.
At this point using Paruolo’s (1996) suggestion to move down the column, 
r = 1, n – r – s = 4, s = 1, the joint test statistic 1Q0,1 = 203.82 > c0,5(5%) = 177.89
and the [p-value]=.0009 confirms that the null hypothesis cannot be accepted
at either the 5% or the 1% level. Now the next column is considered, r = 0, 
n – r – s = 4, s = 2 and the [p-value]=0.0031 implies the null (rank() = s = 2,
rank(�) = r = 0) cannot be accepted.

Following this approach, testing stops and the correct decomposition of the
long-run is detected once a null in the above table is accepted. Looking at the
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Table 6.1 I(2) Cointegration tests

1Qr,s(Q??
r,s)

r [5% c.v.] Q*r cn–r cr,n-r-s

[p.value]

n-r-s 6 5 4 3 2 1

314.01 254.23 199.22 163.69 141.7 126.62

0 [194.32] [134.54] [79.53] [44.0 [22.01] [6.93]

240.35 203.12 174.83 148.54 126.69 109.21 119.69 93.92

[0.0000] [0.0000] [0.0031] [0.0105] [0.0073] [0.0028]

203.82 148.4 114.58 90.026 74.347

1 [134.96] [79.539] [45.719] [21.165] [5.486]

171.89 142.57 117.63 97.97 81.93 68.861 68.68

[0.0009] [0.0429] [0.1335] [0.2082] [0.1840]

124.56 88.233 65.029 49.417

2 [80.184] [43.857] [20.653] [5.041]

116.31 91.41 72.99 57.95 44.376 47.21

[0.0226] [0.1234] [0.2247] [0.2537]

3 83.798 56.535 35.023

[59.868] [32.605 [11.093]

70.87 51.35 38.82 23.938 29.38

[0.0039] [0.0176] [0.1215]

48.922 27.513

4 [35.512] [14.103]

36.12 22.6 13.413 15.34

[0.0016] [0.0084]

5 13.576

[8.392] 5.184 3.84

12.93

[0.0601]

c*n-r-s 75.33 53.35 35.07 20.17 9.09



[p.values] in the column headed n – r – s = 4, there is no case where the null
hypothesis can be accepted. The final rejection of the null implies that there
are at least r = 2 cointegrating vectors and 6 – r – s ≤ 3, I(1) trends. Now pro-
gression is from the top of the next column (n – r – s = 3) and again to a point
at which the null cannot be rejected. From the size of the [p.value] = 0.1335,
this occurs when r = 1, n – r – s = 3 and s = 2. The Paruolo approach implies
that there are r = 1 stationary linear combinations (cointegrating vectors), 
n – r – s = 6 – 1 – s = 3, I(1) trends and s = 2, I(2) trends. Were one to follow the
direction in Doornik and Hendry (2001), to progress down and to the right,
then this suggests shifting to the next column at the point at which r = 2 and
then progressing down that column.3 The direction of Doornik and Hendry is
consistent with the proposition that the first step of the Johansen I(2) estim-
ator correctly determines the number, but not necessarily the exact nature of
the cointegrating vectors.

In comparison, Johansen (1995a) suggests that the cointegrating rank calcu-
lated from the first step estimation is still reliable, which suggests testing the
hypothesis associated with I(2) trends conditional on selecting a particular
value for r. The null hypothesis that Johansen (1995a) tests is:

Based on the first rank test it is suggested that r = 2 is selected and then s is
determined by moving along that row to the point at which the null cannot
be rejected. The Johansen test along each row considers the specific case and
moves towards the more general, but this now occurs for different values of 
n – r – s, which for fixed r imply different values of s. Given r = 2, the test 
statistic Q2,s is considered for s = 0, 1, 2, 3. Starting from the left n – r – s =
6 – 2 – 0 = 4, the Johansen tests statistic is Q2,0 = 80.184, which exceeds the 5%
critical value (c*6–2–0 = 53.35) taken from Johansen (1995a), implying that the
null (r = 2, s = 0) cannot be accepted. Continuing along the row where r = 2,
the null eventually cannot be rejected when n – r – s = 6 – 2 – 2 and s = 2 
(Q2,2 = 20.653 < c*6–2–2 = 20.17). In line with Doornik and Hendry, the Johansen
testing procedure implies that there are r = 2 stationary linear combinations
(cointegrating vectors), n – r – s = 6 – 2 – s = 2, I(1) trends and s = 2, I(2)
trends.

The two test procedures advanced by Johansen (1995a) and Paruolo (1996)
imply that s = 2, but they disagree about the number of cointegrating vectors
and I(1) trends. Johansen (1995a) shows that by progressing from s = 0, 1, 2, 3,
the Q2,2 test has the same optimal properties in the limit as the Johansen test
statistic for cointegration. Furthermore, looking at the Johansen I(2) tests pre-
sented in the table above (Qr,s), when r = 0, 1, 2 the tests are not materially dif-
ferent whatever value n – r – s is selected. Partial confirmation of the
optimality of the test may be observed by comparing values of Qr,s. For the
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column headed n – r – s = 3, Q0,3 = 44 & Q1,2 = 45.719 & Q2,1 = 43.857 and all
these values exceed the critical value (c*6–2–2 = 35.07) at the 5% level.

Inspection of the roots of the companion matrix of the VAR is often viewed
as a useful tool in determining the number of unit roots and as a result some
idea of the likely number of non-stationary processes driving xt (Johansen
1995a). The VAR(2) written as a first order model in state space from is:

or

Dhrymes (1984) shows that the characteristic roots of the dynamic process
described by the polynomial A(L) can be calculated from the eigenroots of the
companion matrix Ac. The eigenvalues (roots) for the VAR(2) model estimated
above and for comparison a similar VAR(1) are given in Table 6.2.

The Australian exchange rate example in Johansen (1991a), summarized in
Johansen (1995a), yields the clear-cut conclusion that there are three unit
roots when n – r = 5 – 2 = 3. By contrast, the VAR(2) case considered here
appears to reveal three roots close to the unit circle, a real root (.9719) and a
complex conjugate pair of roots with modulus (.9001), but, according to the
I(2) test produced by Johansen, n – r = 4. This suggests that detecting the
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Table 6.2 Eigenvalues of companion matrix

VAR(2) VAR(1)

real imag modulus real imag modulus

–0.01897 0.3874 0.3879
–0.01897 –0.3874 0.3879

0.1327 0.0000 0.1327
0.4550 0.3193 0.5559
0.4550 –0.3193 0.5559
0.9719 0.0000 0.9719 0.9574 0.0000 0.9574
0.8877 0.1486 0.9001 0.9222 0.1115 0.9289
0.8877 –0.1486 0.9001 0.9222 –0.1115 0.9289
0.6553 0.2302 0.6946 0.6587 0.2145 0.6927
0.6553 –0.2302 0.6946 0.6587 –0.2145 0.6927
0.4910 0.0000 0.4910 0.9252 0.0000 0.9252
0.7729 0.0000 0.7729



number of unit roots from the companion matrix is not always straight-
forward. Firstly, a VAR(2) system can be decomposed into two stationary
processes (r = 2), two non-stationary processes (either n – 2 – s = 2 or s = 2) and
a pair of common I(2) or I(1) trends driven by a single unit root. Secondly,
should the roots of the VAR(1) be considered for comparison, then the esti-
mates are quite consistent with the proposition that there are n – r = 4 unit
roots. Analysis associated with both sets of eigenvalues for the two companion
matrices does not appear to support the approach due to Paruolo (1996),
which suggests r = 1 and n – r = 4.

Having found that some of the series are I(2), the usual cointegrating
vectors may not be valid as the stationary linear combinations may require
combinations of I(2) processes that are I(1) to make them stationary or poly-
nomial cointegration. Consider these following suggestions for the long-run
relationships associated with the VAR(2) system developed above. Based on
the findings in Hunter (1992a) and Johansen and Juselius (1992), there are
two cointegrating vectors that accept PPP and UIRP restrictions. The conclu-
sion of the I(2) analysis for PPP is that the series may only be rendered station-
ary when the cointegrating vector is augmented by differences in I(2)
variables. For example, relative movements in the cross-country inflation rates
may be what is required. With s = 2 common I(2) trends driving the price
series (p0p1p2) then the cointegrating vectors could take the following form:

A similar type of long run occurs with polynomial cointegration (Engle and
Yoo 1991; Gregoir and Laroque 1993):

where x′t = [p0t p1t p2t e12t r1t r2t]. The two forms of I(2) cointegration are equiva-
lent when �51 = 0, �61 = 0 and �12 = 0. Unfortunately, prior to any evaluation
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of the long run, the system needs to be identified, but identification of the
type discussed in chapter 4 is considerably more complicated in the I(2) case
as three sets of matrices lack identification:121

Hence, the same likelihood can be defined for (6.6) using parameters [�, �′, �′,
"′, !′, �′⊥] and [�*, �+′, �*′, "+′, !*′, �*′⊥ ]. The two sets of parameterizations are
observationally equivalent and observational equivalence leads to a funda-
mental loss of identification.

Although inflation seemed to be I(1) in the late 1980s and early 1990s the
argument appears less compelling in a world where inflation is predominantly
under control, which suggests that economic and financial time series might
be better described as long-memory.

6.2.2 Fractional cointegration

The notion of fractional differenced series was introduced in chapter 2. When
such processes are considered then the possibility of fractional cointegration
ought to be entertained. Robinson and Yajima (2002) explain that this notion
of fractional cointegration is quite consistent with the original definition of
cointegration due to Engle and Granger (1987). Consider a pair of series x1t

and x2t that require fractional differencing for them to be rendered stationary,
then:

where                                              For and a = –l, l = 0, 

1, …, (a) has simple poles with residues        otherwise (a) = (a + 1)/a. It
follows that xt is cointegrated when:

Proofs exist for the analysis of stationary fractional series with –.5 < d < .5
(Robinson and Yajima 2002). The conventional question arises over the rank
of the matrix of cointegrating vectors, rank(�) = r. Do there exist r linear com-
binations of variables xt that require the fractional difference operator (1 – L)d

to be applied for the series to be I(0). Robinson (1994) explains how to use
non-parametric estimates of the dynamic process to calculate the cointegrat-
ing relationships when series have the same order of integration. Robinson
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and Marinucci (1998) apply this approach to stationary fractionally integrated
series to estimate the long-run parameters from the equation:

The estimator is similar to that used by Phillips and Hansen (1990) to estimate
long-run parameters when the series are I(1). The unknown moving average
parameters in J(L) are captured by a frequency domain estimator, which also
appears to compare well with Phillips and Hansen (1990) when the series are
I(1) (Marinucci and Robinson 2001). Although there is evidence that this type
of approach is able to estimate long-run parameters when r is known or not
large, the method, though efficient in calculating well-known long-run rela-
tionships, does not provide a formal test of the proposition that either frac-
tional or integer integrated series are cointegrated. The method can determine
the extent to which the variables in the regression are related by determining
whether �1 is significant or not. Clearly, any such conclusion is conditional
on the appropriateness of this normalization.

Robinson and Yajima have attempted to determine the order of integration
and cointegration by two different methods. They consider three different
crude oil prices (WTI, Dubai and Brent). Based on an Augmented Dickey–
Fuller test with an intercept, the three series are found to be stationary at the
5% level of significance. But when the order of difference is assumed to be
fractional, the estimates of d for the three series are [.5336, .4367, .4538].5

Robinson and Yajima (2002) suggest two approaches to the problem of
selecting the cointegrating rank, but they use one of them in their example.
Consider the Vector Auto-Regressive Fractionally Integrated Moving Average
(VARFIMA) model:

where E(L) = diag[(1 – L)d1, (1 – L)d2 … (1 – L)dn].6 The series are ordered on the
basis of the prior estimate of the difference order. The test is based as is usually
the case on the rank of the matrix C(1), which, under conventional cointegra-
tion, has rank n – r associated with the extent to which there is any over-
differencing. The test, as is the case with integer cointegration, progresses
from the most restricted model, where C(1) has full rank, n – r = n and r = 0,
there is no cointegration to the cointegration cases, r = 1, 2, 3. The test for
fractional cointegration is:

To make the test operational, Robinson and Yajima use the following non-
parametric estimator of G:
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Where Ij = $(	j)$(	j)′, $(	j) = ($1(	j)$2(	j) … $n(	j))′, Re{·} is the real component,

and m < T—
2 . It has been assumed that

da is replaced by a pooled estimate d
–
* = (d̂ 1 + d̂ 2 + d̂ 3)/3 and $a(	j) = 

is the discrete Fourier transform of the original data. The effec-
tive bandwidth m1 is set to increase at a faster rate than m to counteract the
effect of using an estimate of da Robinson and Yajima (2002) provide estimates
of G evaluated with m = 13 and m1 = 15:

where Ĝ has the following eigenvalues [.01807, .000275, .000124]. The most
important eigenvector is associated with the largest root, which given that the
other two roots are small suggests that n – r = 1 or with n = 3 variables then
there are r = 2 cointegrating relationships. Robinson and Yajima (2002)
proceed to analyze the case where the three series have two distinct orders of
differencing. This suggests that the WTI oil price series is handled differently
than that for Brent and Dubai. Once Brent and Dubai crude prices are consid-
ered together with two types of difference, the reduced rank calculation is
applied to a 2 × 2 sub-matrix, which from the obvious rank deficiency in Ĝ
above implies r = 1.

6.3 Forecasting in cointegrated systems

6.3.1 VMA analysis

Cointegration describes how, in the long run, the levels of a set of variables
should move together. A similar property should therefore be expected of
forecasts from such a system. That is, the forecasts of a set of variables from a
cointegrated system should be related to one another such that, although
individually subject to the implications of non-stationarity, there remain
linear combinations of the forecasts that are zero, or constant (depending on
the deterministic terms in the model). If valid long-run relationships are
imposed on an empirical model of the data, this ought to improve the
quality of long-run forecasts, as additional information is being exploited.
But is the value of the long-run restrictions, in terms of forecast improve-
ment, greater than for other types of restriction, or restrictions on stationary
systems? Engle and Yoo (1987) provide an analysis of this problem in the
CI(1, 1) case.
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Consider the usual VMA representation of an n × 1, CI(1, 1) system consi-
dered in section 4.2:

where                       rank (C(1)) = n – r, and C0 = In. In order to obtain an

expression for xt, which is to be the object of the forecast, sum both sides of
(6.18) from i = 1, …, t to give

In addition, assume initial values x0 and �q, q = 0 are zero. Then,

and so

Equation (6.19) can be rewritten in terms of �s, S = 1, …, t

Moving forward another h periods,

and redefining the index on the last summation to emphasize that it contains
terms in the disturbances beyond t only, gives

Equation (6.20) expresses xt+h as the sum of two terms that partition the dis-
turbances between those occurring up to and including time t, and later
values.

The forecast of xt+h based on information available at time t is the expected
value of xt+h given the information, and is denoted xt+h|t. In this context, h is
known as the forecast horizon and t is called the forecast origin. Using the fact
that the conditional expectation of a future disturbance term is zero, and the
conditional expectation of any current or past value is the expectation of a
realized value, from (6.20),
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This does not yet establish that the forecasts are linearly related. The require-
ment for this is for there to exist a linear combination of the forecasts that is
zero (in the absence of deterministic terms). That is, there must exist an n × 1
vector � such that �′xt+h|t = 0. From (6.21), a sufficient condition for this is 
that

But this does not follow from the properties of the VMA, as it requires each of

s = 1, …, t to be of reduced rank and to have the same null space. 

However, cointegration is a long-run property and its implications can only be
expected to follow in the long run. In a forecasting context, this means that
any special properties of the forecast arising from cointegration can only be
expected to become apparent as the forecast horizon, h, becomes large. So

consider the limit of              as h → ∞:

and define what can be called the long-run forecast, x∞|t, as:

Then, from (6.21) and (6.22), x∞|t, is given by

The long-run forecast therefore follows a linear combination of the realized
value of a vector stochastic trend. But rank (C(1)) = n – r, and so there exist r
linearly independent vectors, that is the cointegrating vectors, �, such that
�′C(1) = 0. Therefore:

The extent to which fixed horizon forecasts approximate to (6.24) depends
how quickly the matrix coefficients Ci,i = 0, 1 …, decay. From (6.21)

Further Topics 175

 
′ =

=

+ −

∑� Cr
r

t h s

0
0

.

Cr
r

t h s

,
=

+ −

∑
0

Cr
r

t h s

,
=

+ −

∑
0

Lim C C Ch r
r

t h s

r
r

→∞
=

+ −

=

∞

= =∑ ∑
0 0

1( ), (6.22)

x Lim xt h t h t∞ →∞ += [ ]. (6.23)

 

x Lim x Lim C

Lim C C

t h t h t h r s
r

t h s

s

t

h r
r

t h s

s s
s

t

s

t

∞ →∞ + →∞
=

+ −

=

→∞
=

+ −

==

= [ ] = 











=












=

∑∑

∑ ∑∑

�

� �

01

0 11

1( ) .

 
′ = ′ =∞

=
∑� � �x Ct s
s

t

( ) .1 0
1

(6.24)

 

x C C x Ct h t r
r t h s

s t r s
r t h ss

t

s

t

+
= + − +

∞

∞
= + − +

∞

==

= −












= −∑ ∑∑∑ ( )1
1 111

� �



and so

Thus the smallest index on the Cr is r = h + 1, indicating that, assuming the Cr

do decay with r, the greater is the forecast horizon, the smaller will be the
deviation of the forecasts from their long-run relationship. Thus, empirically,
the evidence for cointegration restrictions improving forecasts should be
weaker for short horizons, than longer ones. The more rapidly the coefficients
decay, the fewer steps ahead the forecasts need to be before they display a
functional relationship similar to the cointegrating relations.

Turning to the h-step ahead forecast error, denoted et + h|t, and its variance,
from (6.20) and (6.21), this error is

and, since the disturbances are not autocorrelated

where ' = E (�te′t), for all t. That is, the forecast error variance grows with h.
Interestingly, it is also the case that the forecast errors are cointegrated, with
precisely the same time series structure as the original process, xt, under the
condition that all forecasts are made using the same information, that avail-
able at time t. To see this use (6.25) to construct the forecast error difference
process

where the initial values are now relative to the forecast origin, and consistent
with the original VMA, have been set to zero. Thus
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and hence, from the original VMA, all h-step ahead forecast errors are cointe-
grated of order (1,1). That is, the difference between the h-step ahead and the
h – 1-step ahead forecast errors, both made conditional on information avail-
able at time t, is stationary, but the sequence of h-step ahead forecast errors,
for h = 1,2, …, is I(1).

An intuition for the non-stationarity of the forecast error can be provided
by expressing a future value of the process as a sum of the forecast and the
forecast error,

Since, xt+h|t depends only on realized values (the disturbance values at time t
and before), it is non-stochastic. Thus the stochastic non-stationarity proper-
ties of xt+h and et+h|t must be the same, so they must both be integrated of order
1. Applying the initial value condition �q = 0, q ≤ t, equation (6.26) gives 
xt+h|t = x∞|t and hence:

from which, pre-multiplication by the cointegrating vector gives

The left-hand side of (6.27) is I(0) from the VMA, and therefore so is �′et + h|t,
hence et+h|t is CI(1,1).

6.3.2 Forecasting from the VAR

The property that the long-run forecasts should be linearly constrained can
also be obtained from a VAR. Again, let xt be an n × 1 CI(1,1) vector, this time
having the VAR(p) structure

Reparameterize this in the usual way as the VECM

where, again � = ��′ with � and � dimensioned n × r. Following Lin and Tsay
(1996), in order to understand how the forecasts from (6.28) have the same
long-run properties as the series themselves, note that �xt is I(0), and that
forecasts of a stationary series converge to the expected value of the process as
the forecast horizon tends to infinity. That is

where ��x = E (�xt). The properties of the forecasts of the difference process are
used to obtain those of the levels via the VECM. Using (6.29), the h-step ahead
forecast equation for the difference process is
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In order to derive the properties of the long-run forecasts, take the limit of
(6.31) as h → ∞, and substitute from (6.30) to give

Rearranging, and using the notation of (6.23) for the long-run forecast of the
level,

The right-hand side of (6.32) is a constant matrix, and so shows that the long-
run forecasts, x∞|t, are tied together. The analysis can be taken further to com-
plete the analogy with equation (6.24) for the VMA case. Pre-multiplying
(6.32) by �′ and replacing � by ��′ gives

where (�′�) is non-singular, so that

This is directly comparable with (6.24) (except that in 6.24 initial values have
been set to zero), and shows that each cointegrating vector constitutes a con-
straint on the long run forecasts.

6.3.3 The mechanics of forecasting from a VECM

In order to benefit from any perceived advantages to forecasting from cointe-
grated models, it is necessary to impose the cointegrating relationships. In the
VAR setting, this may be undertaken as follows.

For given � and by implication, known cointegrating rank, r, construct coin-
tegrating combinations �t = �′xt, and estimate the VECM, conditional on r, as

Estimation may be performed by OLS, to give

where �̂=�̂�′. Now, rearrange the VECM as the VAR
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The h-step ahead forecasts can then be produced recursively using

where xt + h–i|t = xt + h–i for h ≤ i. If r and � are unknown, they may be replaced by
values r̂  and �̂ estimated using the Johansen procedure. This is the approach
used by Lin and Tsay (1996).

The order of the forecasting VAR in (6.33), and that used for the Johansen
pre-whitening, should be the same, determined, for example, using an infor-
mation criterion, such as the Schwarz (SIC) (see Reimers 1992; Lütkepohl
1991). Otherwise, as was explained in section 4.3.3, programs such as PCGIVE
provide systems and single equation diagnostic test for each equation in the
VAR (Doornik and Hendry 2001).

The details of information criteria vary according to the weight put on addi-
tional parameters, but they are generally of the form

where f(T) is an increasing function of T, m = pn2, the number of estimated
coefficients in an unrestricted VAR, and �̂ t the vector of VAR residuals. A 
criterion which often preferred is the SIC, for which Amongst the
criteria most commonly used, this penalizes additional parameters (increasing
VAR order) the most heavily, leading to relatively parsimonious models. The
favoured model is that for which the information criterion value is mini-
mized. When used in this way, the SIC provides consistent model selection in
the sense that, as the sample size tends to infinity, it will select the correct
model order with probability tending to one.

6.3.4 Forecast performance

The imposition of cointegrating restrictions on a model of I(1) series should
lead to forecast improvements for two reasons. Firstly, valid long-run relation-
ships should improve the accuracy of long-run forecasts by exploiting infor-
mation about the interrelatedness of the series. Secondly, fewer parameters are
estimated. In the unrestricted VECM, � has n2 elements, whereas when
restricted, it has 2nr. However, a number of practical issues arise:

(i) How useful is the long-run information in providing long but finite time
horizon forecasts?
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(ii) How are short-run forecasts affected?
(iii) What are the costs of mistakenly identifying series as I(1) when they are

really I(0)?
(iv) What is the cost of incorrectly estimating r?
(v) What is the cost of imposing invalid long-run restrictions (getting the

cointegrating vectors wrong)?

These issues are discussed by Clements and Hendry (1995, 1998), Lin and Tsay
(1996) and Engle and Yoo (1987), among others. The three studies report
Monte Carlo results; their findings are summarized below.

6.3.4.1 Engle and Yoo

These authors consider a bivariate model (representable as a first-order VAR)
and discuss two types of forecast that can be made from it, one ignoring any
long-run restrictions, and one imposing them. These forecasts are based on an
unrestricted VAR (UVAR) and the Engle and Granger two-step methodology
(EG) respectively. In the latter case, at each replication, a preliminary static
regression is used to estimate the cointegrating relations and the lagged
residuals from this model being included as the lagged levels term in a
dynamic ECM.7 The putative long relations are not subject to prior testing for
cointegration.

The sample size is 100 and the forecast horizon from 1 to 20, so that in this
case, a long-run forecast is being defined as one with a horizon 20 per cent
beyond the sample, if not less. The finding is that, in terms of the mean
square forecast error as measured by the trace of the sample covariance matrix
of the forecast errors (see section 6.3.4.4 for more detail on forecast evalua-
tion), the unrestricted VAR provides superior forecasts up to and including the
5-step ahead forecast (5 per cent of sample size), thereafter, the imposition of
estimated long run restrictions improve the forecast monotonically, to an
advantage of 40 per cent over the unrestricted forecast at 20 steps ahead. This
is, of course, against a background of worsening forecast performance as fore-
cast horizon increases.

6.3.4.2 Clements and Hendry

In their book and earlier paper, Clements and Hendry (1998, 1995) generalize
the study of Engle and Yoo. They present the results of a bivariate VAR(1)
system estimated on 100 observations, but for a wider range of parameter
values and models. In addition to UVAR and EG, they consider the Johansen
maximum likelihood estimator (ML) and a misspecified model in differences
alone (DV), the lagged levels term being excluded. The DV model can be 
used to forecast the level of the process by adding successive forecasts of the
differences to the known value of the level at the forecast origin. They also
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introduce another issue, which is the form of the process used to compare
forecasts: the levels, the differences, or the stationary combinations. The last
of these representations is obtained by transforming the model to one in
terms of the cointegrating combinations and the differenced common trends.
Thus, the number of processes is unaltered, and their integration and cointe-
gration properties preserved. Their notation for the I(0) variables is wt where
w′t = (x′t� �′⊥�xt). Consider the partition �′ = (�′a �′b) with �a dimensioned
r × r and �b dimensioned r × (n – r) and defining

the representation is

Clements and Hendry produce forecasts of xt and �xt using each of the four
estimation methods, UVAR, ML, EG, and DV. These primary forecasts are
transformed to produce forecasts of each of xt, �xt and wt. That is, each fore-
cast is one of xt or �xt, initially, but all are transformed (as necessary) into xt,
�xt and wt. The purpose of the exercise is to emphasize that the superiority of
one forecast method over another depends not only on what model is used to
produce the forecast, but also on what properties of the forecast are being
compared.

In particular, in comparing EG and UVAR to forecast xt, the level of the
process, the importance of the imposition of a valid long-run restriction is
examined. But the question then arises as to whether it matters that the
restriction is specifically a long-run restriction. In other words, are the advan-
tages available from the imposition of correct restrictions markedly different
in a non-stationary cointegrated environment compared to a stationary one?
The way to get at this issue is to transform the forecasts to stationarity before
comparing them, effectively filtering out long-run variation. The appropriate
transformation is that of equation (6.35), applied to the forecasts. This proce-
dure is only available in the context of simulations (using parameter values
from the DGP), since the UVAR, by its very nature, brings with it no estima-
tion of the cointegrating combinations. It is still the case that the forecasts
differ in the method of their production, but are now being compared on a
more appropriately matched basis – that is, in stationary terms. If relative
forecasting performance is different in stationary space, then it suggests that
the long-run nature of the restrictions is relevant in determining forecast
behaviour.

If it is the long run nature of the restrictions that improve the long-run fore-
casts, then direct comparisons of the forecasts of the level of the process
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where the restrictions are, and are not imposed, should favour the forecasts
made subject to the restrictions. However, if the long-run components are
removed prior to comparison, these transformed forecasts should not differ
significantly. Equation (6.35) is a very useful device for decomposing the
causes of relative forecast behaviour.

In their simplest case (among 13 parameterizations), Clements and Hendry
generate data according to a bivariate VECM model with a single lag,

Forecast comparisons are made in a number of ways, the simplest of which is
based on the trace of the estimated variance–covariance matrix of the forecast
errors (see section 6.3.4.4 for more detail on forecast evaluation). One para-
meterization is very similar to that used by Engle and Yoo, and therefore com-
parable with the earlier results. It is shown that, at longer forecast horizons,
material improvement in the levels forecast are available by imposing cointe-
grating restrictions. That is, EG and ML are superior in levels forecasting to
UVAR when the forecast horizon is relatively long. In addition, the superiority
is more marked with smaller sample sizes due to the enhanced role of the
degrees of freedom saved by imposing the restrictions.

When the forecasts are transformed to stationarity (using equation (6.35))
and compared again, UVAR is no longer inferior. This suggests that the gains
in forecast performance from the imposition of the restrictions are due to
their long-run characteristics, as no further restrictions have been imposed. In
contrast to these findings, the misspecified DV model performs only slightly
worse than EG and ML (and therefore better than UVAR) in levels forecasts at
longer forecast horizons, but notably under-performs the other three when
the forecasts are compared in stationary space.

These findings must be interpreted with care because, in practice, VAR order
and cointegration rank are decided from the data. In addition, systems will
normally consist of more than two variables. Clements and Hendry summa-
rize the results of their more widely parameterized study using response sur-
faces, presenting their conclusions with a number of warnings about the
additional complexities that enter in the practical forecasting setting. The
results represent a benchmark case only.

6.3.4.3 Lin and Tsay

Lin and Tsay (1996) generalize the model for forecast performance compar-
isons to one involving four variables. Their Monte Carlo study is necessarily
restricted in terms of the parameter values used, but the DGPs used are chosen
to mimic observed data characteristics, so in this sense are calibrated so as to
apply to a relevant parameter space. The structures used have the following
characteristics.
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(i) All systems are second order (VAR(2)).
(ii) Five DGPs are considered in all, being respectively, from model 1 to

model 5, strongly stationary, but with two roots close to the unit circle,
stationary with two roots very close to the unit circle, non-stationary
system with cointegrating rank 2, non-stationary and non-cointegrating.8

Of these, the stationary and unit root non-cointegrated cases are diagonal.
(iii) The in-sample period consists of 400 observations, with 100 additional

out-of-sample data points generated for forecasting comparison. Forecast
horizons of 1 to 60 are used. Each replication gives rise to a set of fore-
casts at each forecast horizon.

(iv) All models are estimated as ECMs with cointegrating rank r = 0, 1, 2, 3, 4
using Johansen’s (1988, 1991, 1995) approach, and then recast as VECMs
for the purpose of forecasting the levels.

(v) The forecasting metric, E(L), where L is the forecast horizon (see equation
6.36), is based on the trace of the estimated variance–covariance matrix
of the forecast errors. Each replication gives rise to an estimated vari-
ance–covariance matrix of forecast errors, and these are then averaged
across replications. The larger is the statistic, the poorer the forecast.

The results of these exercises are presented in Figure 6.1.
Lin and Tsay gather their conclusions on these results into the following

principal points:

(i) When the system is stationary the long-run forecasts approach a constant
quickly as the forecast horizon increases. (The size of the forecast errors,
in terms of their variance is also relatively small.)

(ii) If the system is stationary, then under-specifying the rank of the long-run
matrix leads to under-performance. That is, imposing long-run restric-
tions that do not exist in practice (which are not valid) damages long-run
forecast performance. The more of these there are, the worse the perfor-
mance of the forecasts.

(iii) Unless the system is very close to non-stationarity (the near non-
stationary DGP is model 3), correct specification of the cointegrating rank
is best.

(iv) Under specification of the cointegrating rank is not serious if the
processes concerned are non-stationary. This should be contrasted with
the stationary case, where, although cointegration is not defined, the
rank of the long-run matrix still is, and where this is under-specified,
there is a deterioration in forecast performance.

Clearly, non-stationary and near non-stationary systems are harder to fore-
cast than stationary ones. As a matter of design, it should be noted that while
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Lin and Tsay control carefully for the roots of the processes involved, only
their cointegrated structure displays common features, in this case of the unit
root. All the other models are diagonal, meaning that, in the case of model 3
for example, although there are roots very close to being unit roots, they do

184 Modelling Non-Stationary Time Series

Figure 6.1 Forecasting performance from Lin and Tsay study, by model



not constitute a common feature. For this to be so, the determinant of the
VAR lag operator evaluated at that root would have to be less than full rank,
but not zero. Diagonality results in its being zero (Burke 1996).9 Model 3 also
has the interesting property that the quality of forecasts is least affected by the
choice of (cointegrating) rank.

By grouping these results differently, a further conclusion can be made.
Instead of looking at the results by model and varying the cointegrating rank
imposed, it is possible to fix the imposed cointegrating rank, and see which
model is easiest or hardest to forecast for that restriction. Figure 6.2 demon-
strates the case for the imposition of rank 2, which is correct for model 4. It is
immediately obvious that, using the trace measure (see Forecast Evaluation
below), the cointegrated system is the hardest to forecast at medium and 
long horizons. It is even harder to forecast than the non-stationary non-
cointegrated case.10 In fact, no matter what cointegrating rank is imposed 
(0 to 4), the cointegrated system is the most difficult to forecast, in the sense
that it has the largest trace statistic. However, it remains the case that, if the
system is cointegrated, it is best to impose the appropriate cointegrating rank 
(figure 6.1d).11

These forecast comparisons are more limited since they are compared in
levels terms only. Clements and Hendry demonstrate that once transformed
to stationarity, there is much less difference between forecasts based on differ-
ent procedures. It is not clear from Lin and Tsay if the same transformation
would result in less obvious distinctions between the forecasts based on the
imposition of different cointegrating ranks at the estimation stage. Broadly
speaking, the extension to the multivariate case is not found to undermine
the findings on Clements and Hendry for the bivariate case. However, the
four-variable setting makes it even more difficult to generalize the findings,
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Figure 6.2 Lin and Tsay results, all models, rank 2 system



and the multiplicity of possible cases should lead to reticence when interpret-
ing the results in a wider setting.

In order to reduce the impact of such criticisms, Lin and Tsay present two
real data examples, one financial and one macroeconomic. They observe that
the problem of roots close to the unit circle, but not actually being unit roots,
is observable in data (that is, similarity to model 2, or, more extremely, model 3).
In such circumstances, the under-specification of the rank (imposing unit
roots that are not present) can be expected to result in poor long term fore-
casts.12 Secondly, they observe that forecast error variances from a stationary
system converge fairly rapidly as a function of forecast horizon. This is used to
explore the stationarity of a system of bond yields. In this case, the unit root
and cointegration tests performed suggest cointegration. This could be a case
where the process is near non-stationary, and with a common feature, but the
common feature is a root close to, but not on, the unit circle. It is clear from
their investigations that, at a practical level, cointegrating restrictions cannot
be assumed to improve long term forecasts, even where there is within-sample
statistical evidence to support them.

6.3.4.4 Forecast evaluation

In both the Lin and Tsay and Clements and Hendry studies, the basic measure
of forecast accuracy is the trace of the Monte Carlo estimate of the
variance–covariance matrix of the forecasts. It has the following form. Let 
ek,t (j) be the j–step ahead vector forecast error made at time t arising from the
kth replication. Let the total number of replications be K. Then let

One of the measures used by Clements and Hendry, and the one relevant to
most of the results reported above, is

which is referred to as the trace mean-square forecast error (TMSFE). Lin and
Tsay use a modified version of this criterion since each replication gives rise to
a set of j–step ahead forecasts, as a result of rolling forward the forecast origin
within the same replication. They construct a within replication estimate of
the forecast error variance–covariance matrix as
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This is then averaged across replications, the final measure being

Clements and Hendry (1998) discuss the choice of criterion, and use others in
addition to TMSFE. An important aspect of these is their sensitivity to linear
transformations of the data, although extensive use continues to be made of it.

6.3.4.5 Other issues relevant to forecasting performance in practice

In practice, forecasting will be subject to a number of other possible sources of
error (Clements and Hendry, 1998, chapter 7, for a taxonomy). In the context
of forecasting in cointegrated systems, these include the uncertainties associ-
ated with the selection of VAR order, the reliability of unit root and cointegra-
tion tests, and the estimation of the cointegrating vectors. This analysis has
dealt exclusively with CI(1, 1) systems, elsewhere in this book, the case of
cointegration in I(2) systems has been considered. This raises the question not
just of how forecasting might be affected by choice of cointegration rank, but
also types of (linear) cointegration, especially where there exists the possibility
of variables being integrated of order up to 2.

All forecasting is predicated on at least two assumptions regarding model
stability. That is, that the model structure has remained constant during the
in-sample period, and that this same structure will remain into the forecasting
period. Clements and Hendry (2001) have considered the implications for
forecasting of some types of model instability in depth. Other procedures
allow model switching (usually in a univariate setting, however), or non-linear
adjustment to equilibrium. Any or all of these methods may be appropriate
where a simple linear approximation fails to provide adequate forecasting
performance.

Typically, the order of underlying VAR model is chosen by the optimization
of some form of parsimonious information criterion, such as the SIC. These do
not all have the same model selection properties, however (Reimers 1992). A
potentially important variant of these criteria is to jointly select over VAR
order and cointegrating rank. The criteria given by equation (6.34) are easily
modified for this purpose. The VAR(p) can be estimated as a VECM as this 

does not alter the value of the                  but cointegrating restrictions can 

be placed on the long-run matrix, via the Johansen procedure for example,
such that
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such that there are only 2nr parameters of � to be freely estimated. The infor-
mation criterion is therefore of the form of (6.34) with m = (p – 1)n2 + 2nr, the
selected model being that for which the criterion is minimized over a grid of
values of p and r = 0, 1 …, n (the upper limit on the range of r allowing for sta-
tionarity). The evidence on the appropriate form of the penalty term, f(T), is
mixed (Reimers 1992), and while SIC can dominate, relative performance
depends on simulation design. In practice, it is best to compute a range of crite-
ria and search for corroborative evidence amongst them as to model order and
cointegrating rank, and, if there is significant deviation in the findings, to check
that subsequent inferences are not sensitive across the set of models suggested.13

Lin and Tsay (1996) point out that a model should be selected (and estimated)
according to its purpose. In their paper they develop the idea that if the objec-
tive of the model is to forecast at a long-term forecast horizon, then it should be
optimized to do this. Since standard methods of estimation and the form of
information criteria are based on one step-ahead errors, it would not be surpris-
ing that such models were sub-optimal in terms of, say, 50-step ahead forecasts.

6.4 Models with short-run dynamics induced by expectations

A number of papers have considered the issue of estimating the linear
quadratic cost of adjustment models under the type of dependence associated
with cointegration (Dunne and Hunter 1998; Hunter 1989; and Engsted and
Haldrup 1997). It should be understood that other forms of dependence might
lead to similar types of problems. However, none of these are insurmountable.
One issue which has been much discussed in the literature is the question of
identification. As much of the analysis to date has concerned single equa-
tions, then the identification of the discount rate is of concern (Hendry et al.
1983; or Sargan 1982a). In general identification of parameters in structural or
quasi-structural relationships is feasible (Arellano et al. 1999; Hunter 1989,
1992; and Pesaran 1981, 1987). A significant issue, as far as identification of
forward-looking behaviour is concerned, is that both the IV and GMM estima-
tors do not bind the solution based on the minimum of the optimization
problem to the restrictions associated with the terminal condition (Nickel
1985; Hunter and Ioannidis 2000). Tests of over-identifying restrictions do not
impose burdensome conditions on the estimator, and satisfaction of the
necessary conditions follows without difficulty with the exception of highly
non-persistent processes (Stock, Wright and Yogo 2002).

This section considers the impact of cointegration amongst endogenous 
and exogenous variables on rational expectations solutions and reveals a
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computationally efficient estimation procedure that can readily be adapted to
incorporate dependent I(1) processes either in the endogenous or the exoge-
nous variables. The necessary and sufficient conditions for separation into two
forms of long-run process is discussed in Hunter (1989, 1990), in terms of the
types of condition discussed under cointegrating exogeneity in chapter 5.
Otherwise efficient estimation of the long run requires the existence of a
number of weakly exogenous variables either for the system or a sub-system
for which behaviour is predominantly forward looking. This is intimately
related to the notion of super exogeneity which may negate the practical use
value of the Lucas critique (Lucas 1976; Hendry 1988; and Hendry and Favero
1992).

6.4.1 Linear quadratic adjustment cost models

Consider the following objective function based on Kollintzas (1985), though
for ease of exposition the interaction between yt and (yt – vt) is excluded 
here:

Let (6.37) define a control problem (Chow 1978), yt is an n1 vector of endoge-
nous variables, vt an n1 vector of unobserved targets, that can be defined as a
linear function of n2 exogenous variables, zt, where vt = Azt + wt, A is a matrix
of long-run multipliers, wt = zt – E(zt|'t) is a n1 vector of white noise innova-
tions and � is the discount rate. With fixed initial conditions y0 = y–, then from
Kollintzas (1985) the Lagrange–Euler first-order condition after substituting
out for vt is:

where Q0 = (1 + �) K + H and Q1 = K.
Consider the process when it approaches its terminal value (at T* = T + N):

Stationarity is one precondition traditionally accepted for the transversality
condition to be satisfied (Pesaran 1987), but when the structure includes a dis-
count factor this assumption is too strong. In general all that is required is for
(6.39) to be bounded as T* → ∞.

To reveal a standard symmetric solution to the forward-looking problem,
(6.39) is scaled by �–1–2(T* + 1):
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Simplifying (6.40):

Re-defining (6.41) in terms of y*T* = �–1–2(T*) yT* and z*T* = �–1–2(T*) zT* gives rise to
the symmetric solution:

In the limit (6.42) is bounded when the roots of the processes driving zt and yt

are of mean order less than �–1–2 as:

Notice that (6.42) is bounded even when y and z have univariate time 
series representations that are non-stationary. Now consider the cointegration
case. Dividing (6.38) by �t and transforming yields an error correction
representation:

It follows that (6.43) is bounded in the limit when:

From the above discussion, a regular solution (see Pesaran 1987) to (6.42)
exists, if and only if: (a) Qo is symmetric; (b) K is non-singular; and (c) 	 < �–1–2.
Dividing through (6.38) by �t yields the following difference equation:

Redefining (6.45) using the forward (L–1) and backward (L) lag operators:

Now Q(L) = (QoI – Q1L–1 – Q′1L) has the following factorization:

where G1 = �F, F = P�P–1 and � is a matrix whose diagonal elements are the
stable eigenroots of the system. Therefore:

It follows that the solution of the system can be written as:

(Sargent (1978). Where Ro= (�(F – I) + F–1 – I) and Mt satisfies the martingale
property E(Mt+1|'t) = (G1) Mt (Pesaran 1987).
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Reversing the transformation and applying it to (6.48):

The first two terms on the right-hand side simplify, while the Koyck operator
annihilates the bubble behaviour. Therefore:

Assuming that there are no bubbles and a forcing process zt = B(L)wt (wt is
white noise), then:

and

Now reversing the Koyck lead and setting                              gives rise to a
forward-looking representation, which depends on future values of zt.
Therefore:

It is possible to estimate the above model by FIML using the following
recursion:

A fixed initial condition can be handled by recursively de-meaning the depen-
dent variable (Taylor 1999), the problem of selecting an appropriate terminal
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condition is solved by introducing a large enough future horizon or setting
(G1)sht+s+1 = 0.

Alternatively, the solution has the following backward representation, by
substituting terms of the form E(zt+s|'t) using the Wiener–Kolmogorov predic-
tion formula, which gives rise to the reduced form:

where ((L) = ((0 + (1L + … (s–1Ls–1) is a function of �, H, K, A and �(L) = 
(I + �1L + … �sLs). However, this is a more complex set of non-linear relations
to deal with (Hunter 1995; or Johansen and Swensen 1999).

It is also possible to give (6.49) a recursive structural form as long as K–1

exists. Notice that Ro = K–1 H and:

As in a conventional system (Sargan 1988), to identify K, H and F, then 
n1 – 1 additional restrictions are required (Hunter 1992a). Subject to knowl-
edge of K and F, then H can be calculated from the following restriction 
K Ro = K(�(F – I) + F–1 – I) = H as Ro = K–1 H commutes. Essentially, identi-
fication of K follows from the additional restrictions, while identification of H
follows from F, given knowledge of K and any additional restrictions to the
system.

6.4.2 Models with forward behaviour and n2 weakly exogenous I(1) 
variables.

If one considers the backward-looking form of the forward-looking model,
then this is a VAR. The cointegrating VAR takes the from

where any further dynamic can be incorporated in an appropriate time series
representation of the error process. It follows for weak exogeneity relative to
the long run, that [�21 : �22] = [0 : 0]. As a result:

where � = [�′1.�′2.] and �2t = C(L)wt. Notice that inference on the short-
run parameters is not appropriate as the coefficients of the ARMA error 
process forcing �yt depend on the MA process forcing �1t. It follows that the
cointegrating relations are defined in the equations for �yt. Now consider the
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solution to the forward-looking relationship given above, then the long-run
behaviour that is important applies to the equation for yt.

where RoF = (�(F2 – F) + I – F) = (�F(F – I) + I – F) = (I – F)(I – �F). It follows that:

Now it follows from the results in Engsted and Haldrup (1997) that (6.56) has
an error correction type representation in differences and levels. Furthermore:

In the error correction form �1 = (I – F) and the cointegrating relations are
normalized with respect of n2 weakly exogenous variables as follows, 
� = (I : A). The representations in Dolado et al. (1991) and Engsted and
Haldrup (1997) rely on the existence of exactly n2 weakly exogenous variables
for the long-run to be estimated from the equations on yt alone. It then
follows that the above system can be estimated in two steps. Firstly the long
run might be estimated using a regression or the Johansen Procedure, and
then the short run relationship is estimated. There is no separate long-run
relationship amongst the endogenous variables. Alternatively, consider a
solved form similar to the one dealt with in sections 6.4.1:

Reversing the Koyck transformation:
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or

It follows from the Granger representation theorem that �zt has the following
Wold form �zt = C(L)wt and

Substituting back into the forward-looking model:

Now reversing the Koyck lead and setting                                       gives rise to
a forward-looking representation, which depends on future values of �zt:

Now decompose the last relationship as follows:

Therefore:
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Re-writing the above into an equation purely in levels:

Re-indexing the second sum and gathering terms, yields a levels relationship:

It is possible to estimate the above model by FIML using the following
recursion:

In such circumstances the above relationship has the same forward recursion
as was considered before, except the transversality condition relies on the
existence of cointegration. Decompose (6.44) as follows:

The conditions for cointegration (Engle and Granger 1987) are sufficient for
this to be satisfied. That is yt ~ I(1) and (yt – Azt) ~ I(0), yt and zt cointegrate.
Furthermore, (6.57) has an error correction form:

In the next section the case with dependence amongst the endogenous vari-
ables is considered.

6.4.3 Models with forward behaviour and unit roots in the process 
driving yt

There are a number of reasons for finding dependence amongst the endoge-
nous processes, one of which would be cointegration, the other would be the
type of dependence that exists amongst series that might satisfy an adding up
type constraint. In the former case the cause of rank failure is the existence of
a unit root and it can be shown that the original objective function can be
solved in the usual way (Hunter 1989a).
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Consider the loss function

where the rank(H) = r1 As a result, the following decomposition exists: H = E′E
and rank(E) = r1. Now define M such that the matrix [E′ : M′] has full rank.
Now we can redefine the loss function in terms of new variables:

where and v*t conformable with 

y*t. It follows that the loss function has the following form:

Re-writing the above relationship in terms of a new set of stationary variables,
then y+′t = [y*′1t �y*′2t] and here it is assumed that the long-run target for v*2t = 0
and ��y2t = 0. Therefore:

Now differentiating with respect to y+
1t gives rise to the following first-order

condition:

and with respect of y+
2t:

Subtracting the above equation from its forward value and re-writing:

Now consider the system:

Now divide through by �t and reverse the transformation:
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Hence, irrespective of the existence of cointegration, the same first-order con-
dition exists as does the solution dealt with before, except that H is rank
deficient. Therefore R0 = K–1H is rank deficient, F has n1 – r1 unit roots and 
R0 = (I – F)(I – �F)F–1 is rank deficient as can be observed from the following
decomposition:

Where the rank((I – F)(I – �F)) = r1, when there are n1 – r1 unit roots. Hence the
rank of the matrix H determines the number of unit roots. Now it is probably
better to consider the recursive representation (6.57):

If I – F is rank deficient, then there is also the possibility of cointegration
amongst the endogenous and exogenous variables. Notice the dependence
also feeds forward into the relations in differences.

6.4.4 Estimation and inference

The benefit of the above approach is that it reduces the dimension of the esti-
mation problem when forward-looking behaviour needs to be considered.
Especially in terms of the need to estimate and store future predictions.
However, the downside is that inference is made more complicated.

As far as estimation is concerned, then the usual likelihood function
applies, where:

and ut = yt – Fyt–1 – ht. Now concentrating out � yields the quasi-likelihood:

where                        is a consistent estimate of �. The likelihood is maximized
using a Quasi-Newton algorithm such as Gill, Murray and Pitfield (see Sargan
1988) or an equivalent method. The method due to Gill, Murray and Pitfield
has the advantage of using the Cholesky factors from the inverse of the
Hessian. They are then bounded to be positive definite subject to an appropri-
ately conditioned Hessian matrix.

However, the conventional estimates of the parameter variance based on
the information matrix are not valid, even when the model for the endoge-
nous equations is estimated as a system. The correct estimate needs to take
account of the generated regressors and their parameter estimates. The follow-
ing algorithm is suggested to do this. Initial estimates of the exogenous
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variables are estimated as a VAR, then the residuals are saved. The VMA repre-
sentation is estimated by OLS using the method described by Spliid (1983). In
state space form:

Hence, the OLS estimator of the parameters is given by:

where W(o) contains the initial estimates of the surprises, unobserved values of
the residual are set to zero and %(0) are the initial estimates of the parameters.
Once the system has been estimated, then the likelihood is re-estimated based
on B = 200, bootstrap re-samplings of the original residuals vector w, where
each iteration reallocates a block of residuals wi by the new residual set w(b)

used to provide new estimates of the VMA parameters (%(b) for b = 1, …, B).
Then given the maximum likelihood estimates of the parameters (�, H, K, A)
an empirical distribution for the estimated test statistics are generated 
from the bootstrap re-sampling regime. A sample of 400 is created by the 
use of antithetic variance technique, providing at each bootstrap replication 
a pair of residuals w(b) and –w(b) (see Hendry 1995). Then percentiles of 
the empirical distribution can be used to determine critical values for the
estimated parameters.

6.5 Conclusion

In this chapter a number of more advanced issues have been addressed: coin-
tegration amongst series with different orders of integration; forecasting with
cointegrating relationships; and cointegration combined with short-run struc-
ture defined by rational expectations.
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With orders of integration in excess of I(1), inference is similar to the I(1)
case except that there are now three types of process that evolve to generate
the data. Cointegration not only occurs in the usual way amongst the levels,
but may also occur between levels and differenced series, there are I(1)
common trends and also I(2) trends. However, identification is a fundamental
problem for the estimation of long-run behaviour in the I(2) case as three sets
of parameters are potentially ill-defined.

When the order of integration is less than 1, then series are not likely to
have the same fractional order of differencing. One approach is to consider
the average non-integer order of differencing for a group of series. Estimation
of the cointegrating vectors can be undertaken in a similar way as that for 
I(1) series when a non-parametric approach is considered (Robinson and
Marinucci 1998), but testing is more complex (Robinson and Yajima 2002). It
is relatively straightforward to compare the order of difference between series
and to calculate the cointegrating rank, but there is no conventional proce-
dure for inference.

Forecasting in cointegrated systems occurs at two levels – the short run and
the long run and cointegration influences both of these. Short-run forecasts
are less influenced by cointegration, but long-run forecasts may be strongly
influenced. The literature is unclear as to whether gains in forecast accuracy
depend on the restrictions that cointegration imposes on the long-run process
or the interrelationship that cointegration imposes on the long-run forecasts.
It appears that there is little difference between long-run forecasts derived
from models that imposed the long-run restrictions as the forecasr evolves
when they are compared with forecasts that ex-post have the cointegrating
restriction imposed on them. This might suggest that the benefits to long-run
forecasting associated with cointegration follow from the imposition of the
restriction rather than cointegration per se. This would appear to be an issue
for further investigation, though the authors would conjecture that cointegra-
tion has a role in the accuracy of long-run forecasts.

Estimation of the structural parameters of optimizing models has become
enormously popular. It has become common practice to suggest that the VAR
is a solution to a forward-looking model, but then not to consider the relation
between the long-run and the short-run behaviour of the model. However,
both the Engle–Granger and the Johansen procedure have been applied to
models with forward-looking behaviour. The final section of this chapter con-
sidered the impact of unit root processes in the endogenous and exogenous
variables on the solution and estimation of forward-looking models with
rational expectations. Inference is significantly more complicated in these
cases and has thus far had to derive from the proposition that series are
cointegrated.
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