Parallel Mixed Integer Programming - A
Status Review

V. Nwana and G. Mitra
Department of Mathematical Sciences,
Brunel University, West London,
UBS8 3PH, UK

Email: mapgvin@brunel.ac.uk, gautam.mitra@brunel.ac.uk

Abstract

Integer programs (IP) and mixed integer programs (MIP) are com-
putationally intractable (NP-Hard). Considerable theoretical and ap-
plied research has been expended to design progressively superior solu-
tion methods for processing this class of problems. In addition to theo-
retical progress, algorithms and solution techniques that exploit novel
computing technologies also achieve improvements in computational
performance. Maturing of parallel computing hardware platforms and
software tools have motivated many researchers to develop algorithms
which achieve processing speed-up and robust fault tolerant perfor-
mance. In this paper, we review the leading issues in designing and
implementing such solution methods. In particular, we discuss parallel
architectures that have been chosen to implement branch and bound,
the de facto algorithm for solving integer and mixed integer problems.
We also review the current state-of-the-art of MIP parallel solvers by
examining critically the parallelisation strategies used and assess how
well these strategies capture the structure of the MIP solution algo-
rithm.

KEYWORDS: Mixed Integer Programming, Branch and bound, Par-
allel computing

Parallel Mixed Integer Programming — A Status Review 2

Contents
1 Introduction and overview 3
2 MIP Models and Algorithms 4
2.1 The MIP Model Definition 4
2.2 Serial B&B algorithm 0oL 5
2.3 Computational behaviour of B&B 7
3 Parallel computing - The relevant issues 9
3.1 Motivation 9
3.2 Parallel architectures 9
3.3 Choice of platform for PB&B for MIP 11
3.4 Performance Measures of Parallel Algorithms for MIP 12
3.5 Efficiency in Processor-Resource Utilisation. 13
3.6 Fault Tolerance 13
4 Computational structure of MIP parallel algorithms 14
4.1 Challenges in implementing PB&B for MIP 14
4.2 Classification and types of PB&B Algorithms 15
4.3 Branch and cut (B&C) extensions 16
4.4 Information sharing across processors and subproblems 17
5 A Review and Critique of Existing MIP Parallel Algorithms 20
5.1 A Short Literature Review 20
5.2 A Critical Analysis of Some PB&B Implementations. 22
6 Conclusions and directions for future work 29
6.1 Current trends 29
6.2 Directions for future research 30
7 Appendix 1: An insight into the computational structure of

B&B 37

Parallel Mixed Integer Programming — A Status Review 3

1 Introduction and overview

There are numerous practical problems that are modelled and solved as in-
teger programs (IP) and mixed integer programs (MIP) and the range of
applications continue to grow. Vehicle and crew scheduling, VLSI routing,
graph theoretic problems, production planning and several combinatorial op-
timisation problems are typical examples of such applications. The context of
these problems sometimes requires real-time solutions, hence there is a need
to solve the problems within acceptable time frame. There is also a need to
solve progressively larger MIP models that arise in industrial settings.

Unfortunately, MIPs are extremely difficult to solve and even small models
can require vast computational resources, commensurate with the theoretical
NP-Hard [25] classification of these problems. While many algorithms have
been successfully developed for particular instances of MIPs, the development
of a generic algorithm that efficiently tackles the general MIP problem re-
mains the "holy grail” of optimisation research. Most of the solution methods
developed for the general MIP are based on the branch and bound (B&B)
algorithm — a ’divide and conquer’ technique which progressively searches
for an integer feasible solution in successively smaller subspaces of the entire

search space defined by the MIP.

Two problems plague the applicability of B&B in solving MIPs. Firstly,
although there have been considerable algorithmic advances (such as intro-
duction of cuts, intelligent heuristics for variable and node choices, better
bounding techniques), the overall usefulness of the algorithm may sometimes
be limited by unrealistic solution times. Secondly, branch and bound proves
optimality by a complete (albeit implicit) enumeration of the search space.
Quite often, proving optimality becomes intractable because of the sheer
size of the problem and one is more often than not, content with a ’good’
solution in place of an optimal’ one. In this case, B&B behaves as a heuristic.

Parallel computing has been put forward as a method of overcoming the
limitations of the serial B&B algorithm. [27][59][3]. Parallel computing tech-
nologies have continued to advance and their benefits have been noted in
other scientific fields such as digital image processing, pattern recognition,
and distributed artificial intelligence (DAI). The solution techniques for these
applications share a common characteristic: they consist of several demand-
ing loosely-coupled independent processing operations which can be naturally
executed on multiple processors concurrently. The tree structure of B&B for
MIP, with its independent nodes, each requiring a substantial amount of pro-
cessing, makes it a natural candidate for parallel computing.

Parallel Mixed Integer Programming — A Status Review 4

Most of the established methods for solving the general MIP rely upon the
B&B algorithm structure. It can therefore be said that 'parallel MIP solu-
tion techniques’ is tantamount to ’parallel branch and bound for MIP’. In
this paper, our main goal is to review the broad area of parallel mixed integer
programming. We position MIP optimisation within the context of parallel
computing and appraise the rationales, design objectives and challenges of
the resulting algorithms. We also evaluate some of the state-of-the-art im-
plementations in academic and industrial research settings.

The contents of the paper are organised in the following way. In section
2, we present the MIP model definition and outline the essential aspects of
B&B — the de facto solution technique for MIP. We also provide an insight
into those features of the B&B algorithm that can be fine-tuned to improve
its efficiency. Over the last two decades, research in High Performance Com-
puting has led to alternative models of parallel computing - each with its
strengths and weaknesses. In section 3, we provide a brief overview of par-
allel computing and highlight the concepts therein that may be useful in
parallelising B&B. We also investigate the alternative parallel platforms and
parallelisation strategies with a view to assessing their suitability for paral-
lelising B&B for MIP. We also discuss the assessment criteria for measuring
the performance of the resultant parallel MIP algorithms, as well as issues
pertaining to the effective use of the parallel architecture in implementing the
algorithms. In section 4 we discuss the computational structure of parallel
B&B (PB&B) as well as its extension, parallel branch and cut (PB&C). In
Section 5, we review and critically analyse the leading implementations of
parallel MIP reported in the literature. We conclude and suggest possible
areas of extension of research into parallel mixed integer programming.

2 MIP Models and Algorithms

2.1 The MIP Model Definition

We define the MIP reference model using the following index sets and model
coefficients.

Index sets

B=A1,---,|B|}, index set for binary variables;
I=A{|B|+1,---,|B|+ ||}, index set for integer variables;
C=A{|Bl+|I|+1,---,|B|+ [I|+|C]}, index set for continuous variables;
N=BUluUC(C, index set for all variables;

M={1,--- |M|}. index set for all the constraints

Parallel Mixed Integer Programming — A Status Review 5

Model coefficients

lj,uj,cj,ai5,b;,(0 € M,j € N) are given values of the vector and matrix
coefficients used to describe the problem.

The general MIP is defined compactly as

Min — Zuyip =Y ¢z (1)
JEN
subject to
Ea”;zzjgbz Z:177|M| (2)
JEN
l]‘ S :L‘j § u]‘ (3)

In an expanded form, the MIP can be defined as

Min ZMIP = ECJ‘LE]'—I-ZCJ'CL‘]‘—I- EC]‘:E]' (4)
JEB jeI jEC
subject to
ZCE”J}]—I-ZGUZ’]—I-ECL”J}JSZ)Z Zzl,,|M| (5)
JEB jeI jEC
i<z <u (6)

If B,I =0 then N =C. The problem simplifies to a linear program (LP).
It I,C = @ then N = B. This problem is called a Binary Integer Program
(BIP) or Pure Zero-One Integer Problem (PZIP).
If C = ® then N = BU . This problem defines a Pure Integer Program
(PIP).
It I = then N = BUC. This problem is called a Mixed Binary Integer
Program (MBIP). This class of IP can also be referred to as Mixed Zero-One
Integer Program (MZIP).

For further discussions on the model definition and problem classification,
the reader is referred to Nemhauser and Wolsey [51].

2.2 Serial B&B algorithm

The term branch and bound (B&B) refers to an enumerative technique which
was initially used by Little et al [41] for solving the Travelling Saleman Prob-
lem (TSP). It was first used by Land and Doig [37] to solve the general MIP
problems. A B&B algorithm follows the familiar idea of divide and con-
quer. In other words, if it i1s too difficult to consider the set of all integer

Parallel Mixed Integer Programming — A Status Review 6

feasible points at once, the solution space is partitioned and the problem is
solved by optimising severally over smaller sets and then putting the results

together. The reader is referred to [47][4][5][41] for the original ideas in B&B.

The B&B procedure in its simplest form can be described as a tree search
which is characterised by the rules which perform the branching and bounding
of the solution space. The tree to be searched is composed of nodes, repre-
senting subproblems, and branches on variables on which lower and upper
bounds are imposed. A node corresponds to a subproblem which is created
from its parent (previously created subproblem). A branch links two nodes
(parent and son) where the latter is derived from the former by setting a new
integer bound on one of its integer variables with non-integer value in the par-
ent’s solution. The objective function value of the parent is the lower bound
on the objective function of its son. At each node of the tree, a relaxation to
the MIP, usually the linear programming relazation (LPR), which drops all
integrality constraints, is solved. If there is no feasible solution to the LPR
of a sub-problem/node then this node is terminated. If the solution of the
LPR of a subproblem has no fractional value for its integer variables then the
objective function value of this subproblem is set as an upper bound for all
remaining subproblems (waiting nodes). The subproblem /node is then called
the incumbent node and its optimum objective function value is called the
incumbent value. After each branching, those subproblems with an objective
function lower bound that exceeds the incumbent value are excluded from
further branching. The branching continues until the best integer feasible
solution is found and its optimality is proven by examining all the eligible
nodes in the search tree.

The efficiency of B&B lies in the fact that the algorithm does not require a
complete enumeration of all feasible solutions in the search space. In fact,
a reasonable way of assessing how well B&B performs in arriving at a given
feasible solution within a given time frame is by considering the number of
nodes in the B&B tree. If a complete enumeration of the search space defined
by an MIP model were to be carried out, the B&B procedure will have 2"
nodes (assuming a tree which, when fathomed has a depth of n branches),
each of the same complexity as the LP. It is essential therefore to exploit
the advances in LP research so as to reduce the total amount of processing
time taken to solve the LLPs within B&B. An analysis of the computational
behaviour of L.Ps is given in appendix 1.

Since a large proportion of the time and computational effort in B&B is
spent on solving LPs, a logical way of improving the speed and efficiency of
the algorithm is to limit the number of nodes that are investigated by B&B.
Limiting the number of nodes in a B&B tree is tantamount to avoiding un-

Parallel Mixed Integer Programming — A Status Review 7

necessary branching. A large amount of branching can be forestalled by
obtaining a good feasible solution early-on in the search. This effectively ex-
cludes portions of the search space that would otherwise have been searched.
A second approach to curtailing the size of the tree is by dynamically adding
cutling planes to the subproblems/nodes in the B&B tree. This has the effect
of ’cutting off” portions of the search space, thereby improving the linear
programming relaxation polytope for the MIP.

Inherent within the branching operation are two choices that can influence
the level of success of B&B for MIP. First, is the choice of node to branch off
from and second a non-integer (fractional) variable to perform branching on.
The theory that guides these choices is beyond the scope of this paper. Some
techniques for choosing a branching variable include pseudocosts or priority
ordering (based on some a priori knowledge of the problem), while commonly
used node choice strategies are depth-first, breadth-first and best-first. The
reader is referred to Nemhauser and Wolsey [51], Johnson et al [31], Lin-
deroth and Savelsbergh [39] and Mitra [48] for a discussion of these issues.
The combination a variable choice technique and node choice technique is
referred to as a search heuristic and a good choice of a search heuristic may
result in smaller trees.

2.3 Computational behaviour of B&B

MIP problems are usually processed by first computing their LP relaxed
solutions which provide immediate lower bounds. For large LPs, interior
point methods (IPM) have proved to be most successful [45]. However, in the
context of B&B, when a family of LP relaxed subproblems are considered,
IPM loses out to SSX. This is because it is not possible to make good use of
optimum solution values for a given LP to compute the optimum solution to
another “neighbouring” LP with slightly revised model (bounds) parameters.
The process of solving slightly modified problems using previously known
optimum solution of the original problem is referred to as warm start. It
has been well known for some time that the SSX possesses very good warm-
start properties. Thus simplex solvers are well positioned to exploit the B&B
hierachical tree structure of the family of subproblems. This is because the
use of the stored optimum basis of the parent subproblem and applying the
dual algorithm provides an “advanced starting point” in the solution of the
subproblem. For a detailed discussion of issues pertaining to SSX, the reader
is referred to Maros and Mitra [46].

However, as shown in Figure 1, there are several alternative ways of applying
the simplex method to the subproblems. SSX can be used to solve the LPs
at each node in one of the following ways:

Parallel Mixed Integer Programming — A Status Review 8

Preprocessing —IPM

LP Solution Technique SSX—]
Cutting planes
Postprocessing
Problem-Specific Heuristic

[{-Primal
— Dual

Root Node - Level 0

Saved Basis
Basis not saved

SSX Primal without Saved Basis
SSX Primal with Saved Basis
SSX Dual with Saved Basis
Cutting Planes

Pre/Post Processing

Heuristics

Sibling Nodes-
Level 1

Figure 1: Alternatives at nodes of B&B tree

1. Each subproblem is solved ’afresh’; not taking into account the optimal
basis of the parent node and ignoring the hierarchical relationships
expressed in the tree. This is of course a 'naive’ approach.

2. The hierarchical tree relationship is taken into account by saving the
basis of the optimal solution of a parent node. The saved optimal basis
of the parent node is then used as a starting basis for the phase 1 primal
SSX, in solving the sibling node.

3. Given the optimal basis of a parent problem, each of that node’s sub-
problems is dual feasible and primal infeasible (bound violated). It is
then meaningful to apply a dual or parametric algorithm that takes
advantage of this property.

4. Recently, methods of pre-analysis of LP problems prior to applying the
simplex algorithm have been introduced within the B&B search proce-
dure. In this approach, both the relaxed LLP and the IP problem are
analysed with a view to reduction, simplification and inferencing. This
is usually done by applying a bound analysis procedure now well known
as presolve or preprocessing due to Brearley et al [1]. Further work on
preprocessing has been reported by Savelsbergh [60] and Kularajan et
al [34]. LP and IP preprocessing may be applied at the root node and
at any or all of the other nodes in the B&B search tree.

These four alternatives represent a progressively sophisticated approach which
encapsulates the structure of SSX algorithm. The results of a simple exper-
iment illustrating the usefulness of capturing the hierachical relationship in
the tree (1, 2, 3) and the structure of the model (4) is reported in appendix
1 and [53].

Parallel Mixed Integer Programming — A Status Review 9

3 Parallel computing - The relevant issues

3.1 Motivation

There have been meteoric improvements in the performance of Von neumann
single-processor computers. Even with these improvements some MIPs can-
not be solved in an acceptable time. A newer model of computation, parallel
computing, 1s designed so that several processing elements combine and co-
operate in solving a single large task. Whereas in the traditional model a
large task is performed serially, one step followed by the other, the parallel
model decomposes a task into smaller sub-tasks that can be performed con-
currently, that is, in parallel, with some degree of coordination. To identify
a task for parallel implementation, one may either decompose the series of
operations inherent in the task, or partition the data that is processed by the
same set of operations. The former is referred to as functional or control de-
composition, and the latter as domain or data decomposition of the problem.
Kumar et al [35] outline issues which need to be examined in order to use
parallel computing effectively. These include the design and choice of parallel
computers, languages and software tools, which we classify as hardware and
system-software issues and, the design of efficient and portable parallel algo-
rithms as well as methods for evaluating them are classified as software issues.

As far as the implementation of parallel B&B for MIP is concerned, there
is less versatility in the hardware and system software issues. The amount
of control we have in these issues is limited to choice of the best parallel
computer, language and computer tools, respectively. We have more con-
trol, however, in the software issues — we can design PB&B algorithms effi-
ciently to exploit the chosen platform, implement programs that are portable
from one platform to another and/or devise different methods for evaluat-
ing algorithms. This section discusses issues pertaining to “hardware and
system-software” issues and the following section addresses specific issues in
developing parallel software based on branch and bound for MIP.

3.2 Parallel architectures

There are different ways of classifying computer architectures. One of the
most used classifications [49][13][27] in parallel computing literature was pro-
posed by Flynn [24]. Flynn’s taxonomy captures the essential aspects of
the parallel computing model and is based on the relationship between the
instruction and data streams of the processor(s), sometimes referred to as
the control parameter. The four classes that constitute the classification
are: single instruction stream single data stream(SISD), single instruction

Parallel Mixed Integer Programming — A Status Review 10

stream multiple data stream (SIMD), multiple instruction stream multiple
data stream (MIMD) and multiple instruction stream single data stream
(MISD) models. In the SISD model, individual processing units perform a
similar set of instructions simultaneously on a single data set. The classic von
neumann computer is an example of such an architecture. The SIMD model
represents a very specialized kind of computers in which multiple processors
carry out the same instruction on different pieces of data. This model, while
appealing because of its potential reduction in hardware and software com-
plexities, can only be applied to problems characterised by a high degree of
regularity. For example, they can be used in image processing. Examples of

such computers are the MasPar MP-1, MasPar MP-2, CM-2 and MPP.

In MIMD, each of the multiple processors has a control unit that acts in-
dependently on the data provided. This gives a programmer sufficient versa-
tility to run different sections of the program in parallel. SIMD and MIMD
architectures are bespoke to the SPMD (Single Program, Multiple Data)
parallel programming model because of their ability to handle multiple data
simultaneously. The multiple processors that act on the multiple data sets
are usually coupled via shared memory or communication links. Shared
memory is characteristic of a multiprocessor computer while communication
links usually involve a multicomputer network with distributed memory. In
the former, processors may read and write to a common accessible memory
location, while in the latter, communication between the processors is via
message passing. In message passing systems, the network topology deter-
mines how the communication is achieved. The topology can either be farm,
ring, mesh or tree [8].

The strengths and weaknesses of shared memory and distributed memory
MIMD computers are as a consequence of their respective design philoso-
phies. In the former, there are few communication issues to be considered;
thus simplifying its programming. However, the concept of processors reading
and writing to a common memory in an asynchronous way is highly theo-
retical as the limited bandwidth of the interconnection network (bus) limits
the speed of access of information from the common memory. Moreover,
a memory hierarchy is usually used to prioritise access of information from
the shared address. The main advantage in a distributed memory model is
scalability; meaning that there is no theoretical limit to the number of proces-
sors that comprise the parallel machine. The programming of a distributed
memory computer is considerably more complicated than a shared memory
computer because the programmer needs to control the communication be-
tween the processors. However, several message passing systems have been
developed to aid the programmer with communication issues and this model
of parallel computing is arguably the most widely used model. Consequently,

Parallel Mixed Integer Programming — A Status Review 11

it is worth identifying the communication issues involved in using a MIMD
model and how best to deal with them.

Communication bottlenecks in distributed MIMD emerge from three sources.
First, by definition, there are communication overheads inherent in the net-
work topology. Secondly, the message passing systems usually incur commu-
nication overheads in packing, sending and unpacking messages(instructions)
and data over a network. Finally, the amount of useful information shared
over the network is the programmer’s responsibility and can be instrumental
in designing a good parallel algorithm. The size of data handled by each
processor is referred to as the granularity of the algorithm. Fine-grain algo-
rithms handle small amounts of data while coarse grain algorithms deal with
larger data sizes.

Several system software exist to harness the computing power of a distributed
network (or distributed networks) of workstations/Pcs. Parallel Virtual Ma-
chine (PVM)[26] and Message Passing Interface (MPI1)[62] are some of the
most widely used message passing systems. MPI and PVM share some simi-
lar goals; MPI however strives to define syntax and semantics of its message
passing library in a bid to establish a message-passing standard which en-
sures portability. PVM has been used in a majority of parallelisations of
the general parallel B&B as well as parallel B&B for MIP [49] [30] [15] [29]
[17]. Other parallel software platforms that have been used for parallel MIP
include TreadMarks [33] by Bixby et al.

3.3 Choice of platform for PB&B for MIP

Linderoth [40] notes that the current trend in implementing PB&B algo-
rithms 1s skewed towards a distributed memory architecture. He advances
two main reasons for this. First, since dedicated parallel computers are very
expensive, a network of personal computers presents a rational as well as an
economic way of achieving parallel processing capabilities. Second, there are
no physical limits to the number of processors that can be used within a dis-
tributed network system to form a massively parallel machine. Theoretically
at least, if we use this model of parallel computing, computational power
may be appended when needed for larger models. In practice however, the
communication costs incured by having a large number of processors inhibits
the use of too many processors. Moreover, a distributed memory machine
with a large number of processors requires very fine-grain implementations
of algorithms. This sets a dangerous precedence as the implementer may be
faced with a situation in which it takes longer to instruct the worker (node)
what to do than how long it takes to do it. Laundy [38] is more ambitious
in his choice of platform for implementing PB&B. He advocates the develop-

Parallel Mixed Integer Programming — A Status Review 12

ment of a system which runs well on both a dedicated parallel computer and
on heterogeneous networks of PCs and workstations. In our opinion, the ad-
vantages of low cost and scalability make a distributed memory architecture
the most viable type of architecture for parallelising MIP algorithms. In fact,
as seen in section 5, most of the state-of-the-art implementations of parallel
B&B use distributed MIMD as the parallel implementation platform.

3.4 Performance Measures of Parallel Algorithms for
MIP

The rationale for applying parallel computing techniques to MIP is to im-
prove solution times of problems as well as to solve larger problems in ac-
ceptable time. Speed-up and scale-up defined contextually below are two
measures that have been proposed to capture the extent to which a parallel
MIP algorithm achieves one or both of the above objectives.

Speed-up

If we are faced with solving an MIP and suppose that the 'best’ time taken
by a serial algorithm to solve the problem is t;. Assuming that the same
amount of work 1s done by a parallel algorithm in solving the same problem
using n processors in 1, seconds. We define speed-up, p as:

p= - (7)

, the ratio of wall clock times for the serial and parallel executions of the
algorithm. We ideally want a linear speed-up but, Amdahl’s law [2] implies
that speed-up in a program that consists of sequential and parallel compu-
tational components is bounded. The reader is referred to [2],[35] and [8] for
the implications of amdahl’s law.

Scale-up

Scale-up in the context of an MIP problem makes it a more realistic and
challenging design goal of a parallel algorithm which may be used to solve it
[49]. Its superiority as a parallel algorithm evaluator lies in the fact that un-
like speed-up, scale-up does not consider the sequential parts of the program.
Mitra [49] contextually describe scale-up for as follows:

“...Since this problem simply cannot be solved on a serial ma-
chine within a reasonable time, a much simpler instance of the
same problem for the same wall clock solution time is considered.
The ratio of the problem sizes is defined as the potential scale-up
of the parallel algorithm.”

Scale-up viewed from another dimension may be considered as the number
of processors needed to work together to solve a problem that was hitherto,

Parallel Mixed Integer Programming — A Status Review 13

intractable. In such a case we assume that the intractability of the problem
is due to insufficient computational power for examining the search space.
For a more indepth study of perfomance measures for parallel algorithms,

the reader is referred to [49] [17] [29].

3.5 Efficiency in Processor-Resource Utilisation

Load balancing is a technique of evenly spreading the amount of useful work
throughout the network of processors during execution and keeping the pro-
cessors nearly equally busy. We therefore aim to achieve a scenario which
guarantees that all available processors be in use so far as there is any pend-
ing work. In order to obtain the advantages of speed-up and scale-up for
MIP in a parallel framework, the algorithm implementor has to make sure
that the search space is efficiently divided amongst all available processors.
A monitoring process is usually set up which detects an idle processor and
assigns part of the search tree to it. In designing load balancing strategies,
one strives to assign the most promising unexplored portion of the search tree
(judged by some user-set criteria) to the idle processor. In so doing there are
improved chances of finding good solutions quickly as well as making sure
that the idle processor is assigned useful work for processing. Use of efficient
load balancing strategies improves the efficiency of a parallel MIP algorithm.
Some efficiency considerations for PB&B are reported in [58]. Load balanc-
ing is discussed in detail in Ma et al [44], Pardalos et al [54] [18] and Liiling
el al [43].

3.6 Fault Tolerance

In many critical applications, fault tolerant hardware that employed the use
of multiple processors were designed. Fault tolerance was achieved using
these computers by running multiple copies of the exact program image on
all the processors whereby, failure of one processor still allowed for computa-
tion to pursue on the other processors. Achieving fault tolerance for MIP in
this way is not a viable way as it hinders both speed-up and scale-up. Fault
tolerance, with respect to MIP parallel algorithms, pertains to the instituting
measures to ensure that the robustness of the entire algorithm is preserved in
the event of sudden availability of one or more processors. Fault Tolerance as
highlighted by Chen and Ferris [15] and Laundy [38] is of prime importance
within a distributed processing environment. In practical situations, a par-
allel B&B algorithm run over a distributed network of processors in use by
other persons and consequently, subject to abrupt shutdown. The parallel
B&B algorithm has to take this into account and make “contingency” plans
either to reconstruct lost sections of the tree or to transfer work load of the
exiting processor amongst the others that form the parallel machine.

Parallel Mixed Integer Programming — A Status Review 14

4 Computational structure of MIP parallel
algorithms

4.1 Challenges in implementing PB&B for MIP

Our main goal in employing parallelised algorithms in solving MIP prob-
lems is to achieve speed-up and scale-up. However, many implementations
of PB&B for MIP exhibit some anomalous behaviour in the solution times.
This behaviour is usually due to a degree of non-determism that PB&B in-
herits from the serial B&B algorithm, whereby different implementations of
the same algorithm may vary greatly in their processing time [49].
Anomalous behaviour is one of the major problems in converting serial al-
gorithms to a parallel environment. It makes predictability of the possible
advantages of a parallel implementation over its serial counterpart difficult
to perceive. These anomalies are classified into three categories, namely,
acceleration, deceleration and detrimental anomalies. Ideally, if T, was the
amount of time taken by n processors to solve an MIP which was solved in
Ts on a sequential machine, we would expect

T
T,=— 8
: (8
to hold.
However, in practice, one of the following may occur.
T
T, < — 9
<L (9
3 TS
T, > — 10
= (10)

Deceleration anomalies are observed when the time taken to solve the
MIP by the parallel algorithm is greater than that taken by the serial al-
gorithm as depicted in (9). Acceleration anomalies on the other hand is
depicted by (10) in which the time taken by the serial algorithm is smaller
than the expected time T,,. A more extreme and undesirable anomaly is
detrimental anomalies in which the parallel execution time is more than the
sequential one. One of the key ways of avoiding deceleration and detrimental
anomalies is by achieving good load balancing (see section 3.4) schemes. For
further discussions on the anomalous behaviour of PB&B algorithms see Lai

& Sahni [36] and de Bruin et al [17]

Many parallel algorithms which have been developed both for MIP and for
other problems have not stood the test of time. The current trend in both
industry and academia is to develop algorithms that can work on a single

Parallel Mixed Integer Programming — A Status Review 15

serial processor and if need be, can be ported over a cluster of processors to
achieve speed-up and scale-up. Achieving this goal for MIP can be a chal-
lenging problem for the following reason — in achieving MIP parallelism, we
have to capture both the entire structure of the branch and bound algorithm
as well as information stored at each node explored in the sub-problems.
Typically, the factorisation of the basis matrix in an linear programming re-
lazation solution and the status of all variables (lower and upper bounds)
have to be stored separately for each sub-problem. In addition, the structure
of the subtrees has to be stored in such a way that the union of the subtrees
gives the full branch and bound tree. When a B&B algorithm for MIP is de-
signed and implemented with the above considerations, the resulting parallel
algorithm, barring anomalous behaviour, will solve benchmark problems to
achieve both speed-up and scale-up. We refer to any MIP parallel algorithm
that conforms to this criterion as being serial to parallel robust.

Finally, Linderoth [40] notes a dilemma that faces the implementor of paral-
lel B&B - sharing globally useful information that the algorithm generates.
It is easily seen that there is a tradeoff between complete sharing of infor-
mation between processors, requiring potentially significant overheads, and
little sharing of information, where potentially valuable information is lost.

4.2 Classification and types of PB&B Algorithms

The classification of PB&B algorithms of Gendron and Crainic [27] provides
a good framework for classifying MIP parallel algorithms. In section 5, we
have used it as one of the criteria for comparing and analysing alternative im-
plementations of MIP parallel algorithms. Gendron and Crainic [27]identified
three design approaches to PB&B, namely:

Parallelism of Type 1

This class of parallelism is akin to low level parallelism in which the indepen-
dent operations (that can be parallelised) within serial B&B are parallelised.
The basic structure of serial B&B is maintained with the innermost cycles of
the algorithm implemented in parallel. The bounding operation or the node
selection procedure may be implemented in parallel. The philosophy of this
approach is that the sum of the gains in the independent parallelised parts of
the algorithm is likely to improve on the speed and scalability of the entire
algorithm.

Parallelism of Type 2

This approach is diametrically opposed in philosophy to parallelism of type
1. Whereas in the former, parallelism is applied within independent sub-
problems in a B&B tree, in parallelism of type 2, several sub-problems of a
branch and bound tree are explored simultaneously. This kind of parallelism
can also be referred to as high level parallelism.

Parallel Mixed Integer Programming — A Status Review 16

Parallelism of Type 3

This class of parallelism is based on the fact that B&B has parameters which
can be altered. Different search parameters result in different B&B trees.
Parallelism of type 3 is achieved when several distinct B&B trees are ex-
plored simultaneously.

4.3 Branch and cut (B&C) extensions

Through the addition of cuts at each node, the B&C approach (exploiting
the B&B algorithm structure) finds better lower bounds as it tightens the
convex hull of the integer feasible solution space. Whereas the computation
of a B&C node is more time consuming than a B&B node, the number of
nodes in a B&C tree are normally smaller than the number of the nodes in

the B&B tree.

Implementing parallel branch and cut (PB&C) is significantly more complex,
depending on the parallelisation strategy employed than PB&B. Ralphs [56]
outlines three ways of parallelising B&C together with their advantages and
drawbacks. The first approach is processing several subproblems in parallel.
In this mode, cuts are generated and applied at the subproblems as part of
the LP solution process. This method can lead to both faster enumeration
and large search trees. Secondly, parallelism could be applied at the level of
a single subproblem with one processor solving the LPR and another gener-
ating the cuts in parallel. In this instance, cut generation could be outphased
by the quick and frequent reoptimisation of the LPR. Finally, in a parallelism
of type 3, multiple search trees can be investigated and the cuts found on one
tree is used in another tree. Irrespective of the stretegy used to parallelise
B&C, it is evident that managing the generation and application of cuts is
of prime importance. This is usually referred to as cut management and as
noted by Linderoth [40], has not been extensive investigated — leaving room
for further research.

Addition of cuts increase the LPR solution time and as a consequence, cuts
are not usually generated at every node of the search tree in serial B&B.
Linderoth [40] also considers two cut-assessment measures to evaluate the
effectiveness of the cut with respect to the overall effectiveness of the al-
gorithm. The importance therefore of an effective cut management strategy
which controls the generation, application and deleting of cutting planes from
the cut pool cannot be overemphasized. It becomes even more important in
PB&B since cuts generated by different processors solving different LPs can
be shared and used by other processors. Issues pertaining to cut management

within PB&C are discussed in Linderoth [40].

Parallel Mixed Integer Programming — A Status Review 17

4.4 Information sharing across processors and subprob-
lems

It has been well known to designers of B&B algortims for MIP [7] [5] [48]
that strategic use of certain model and solution information (bounds, opti-
mal basis, pseudocosts and global cuts amongst others) dramatically enhance
the performance of the solution algorithm. The importance of sharing such
information in a multiprocessor environment is both natural and important.
Assuming a distributed MIMD architecture for implementing PB&B, all pro-
cessors are furnished with the model information and solution parameters at
the start of the execution. However, it is more important in PB&B algorithms
to study how information generated at one processor may be beneficial to
the computations on another processor.

Information that is dynamically shared during the execution of PB&B in-
clude bounds (lower and upper bounds), optimal basis, global cuts from the
cut pool(s), pseudocost information and the structure of the B&B tree. The
structure of the B&B tree is useful for the purposes of (quality) load bal-
ancing while the other shared information types influence the structure of
the B&B algorithm. In an ideal setting, we would like to broadcast all in-
formation found on one processor to all other processors that constitute the
“parallel machine”. However, this will increase the complexity and usually,
there is a trade-off between excessive exchange of information and communi-
cation overheads. It is important therefore to identify the information that
should be shared amongst the processors and the possible advantages or oth-
erwise, of sharing the information. Linderoth [40] identifies four goals of an
information sharing system. These include maximising the sharing of “use-
ful” information, minimising latency of access to information, minimising the
number of messages passed, and minimising memory use. An in-depth study
of information sharing is contained in Trienekens [63] and Linderoth[40].

Bounds

The most important piece of information that is shared is the upper bound
(for a minimisation problem). It is well known that these bounds are very
useful in pruning the B&B search tree. Sharing such bounds is even more
important therefore in a parallel environment as bounds found on one pro-
cessor may affect the tree development in another. The efficiency of a PB&B
algorithm may also be affected by the mechanisms through which critical
information is evaluated and shared. The following two ways of evaluating
and sharing bounds illustrates this point.

1. Every processor stores the best global upper bound found so far. If
a processor finds a feasible integer solution, it tests its value against

Parallel Mixed Integer Programming — A Status Review 18

the value of the best global upper bound. If the new bound is better,
it updates the bound and broadcasts the value of the new best global
upper bound. Otherwise, the new bound is ignored, thus necessitating
no communication. We refer to this as type 1 bound analysis.

2. The second option is for the processor to immediately broadcast the
bound each time a feasible solution is found — thus leaving the testing
procedure (to check whether the bound received is better than the
existing best global bound) to the individual processors. This approach
is used by Linderoth [40], and Eckstein [20]. We refer to this approach
as type 2 bound analysts.

Communicating a bound, a scalar, is not very computationally expensive
and either of the approaches outlined above could be used. However, there
are potentially higher testing iterations in the latter approach. Moreover,
using the latter approach may result in redundant bounds being broadcast.
Sharing bounds is important if the PB&B algorithm is using parallelism of
types 2 or 3 strategies. Best lower bounds may also be shared periodically
to reduce the duality gap.

Variable choice information

The strategies for choice of branching variable within serial branch and bound
are briefly discussed, and references provided in section 2 of this paper. In
some implementations of PB&B, a strategy is specified at the start of the
search. In case of parallelism of type 3, use of different variable choice strate-
gies (possibly in conjunction with node choice strategies) result in different
trees being explored by different processors [49]. In Parallelism of type 2, a
fixed user-specified variable choice rule may be used. Sharing pseudocosts
(the most widely used variable choice technique) within a PB&B environ-
ment is very important as indicated by Linderoth [40]. He asserts that while
good initialisation of psuedocosts is essential in serial B&B, it is even more
important in PB&B as choice of a “bad” branching variable may lead to
useless work on some or all of the processors of the parallel machine. He uses
the following example to illustrate his point: if a variable z; is established
to be a bad branching variable on one processor and this information is not
made known to the other processors, then the these processors may carry
on their search by branching on this variable, thus not benefitting from the
knowledge found on one of the processors in the parallel machine.

Cutting planes

One of the advantages of serial B&C over B&B is a reduction in the num-
ber of nodes investigated for a given model. Effective sharing of cuts in a
distributed enviromnent may further improve the number of nodes investi-
gated. There are two possible reasons for this. First, since cuts generated

Parallel Mixed Integer Programming — A Status Review 19

at different processors are generated for different LP solutions occuring at
possibly distant locations in the B&B tree, sharing cuts among processors
may have the effect of building a “complementary” set of cuts to tighten the
LPR. Second, a cut found at one processor may cut off the fractional solu-
tion at another processor. Since many cuts may be generated in the course
of the algorithm, it is imperative to mimimise the amount of cut information
shared by employing effective cut assessment procedures. Cut sharing also
depends on the way in which cuts are generated and stored. On the one
hand, a single cut pool may be employed in which cuts are generated at the
individual processors are stored in the global cut pool. Alternatively, there
may be multiple cut pools, typically one pool per processor in which each
processor stores its generated cuts. Assuming a master-slave paradigm, cut
management in single cut-pool algorithms is usually performed by the master
processor. In multiple cut-pool algorithms, however, each processor has to do
local cut management and exchange of cuts is usually more computationally
expensive than in single cut-pool algorithms.

Tree information

Finally there is information about the actual search tree that is transferred
from one processor to another. This information usually comprises the unex-
plored nodes on one processor. When a load balancing procedure is initiated,
there is a need to transfer a section of the search tree together with optimal
basis, bounds, psuedocosts and cuts (discussed in the previous section). The
amount of data involved in transferring a section of a tree from one processor
to another is larger than in all the previously identified items of shared infor-
mation and as a result demands higher memory and storage requirements.
Moreover, the information has to be shared in such a way as to preserve
the overall B&B tree structure. It is therefore important to design effec-
tive data structures that store the tree as compactly as possible. Effective
storage of tree information also helps in analysis prior to load balancing in
the following way. In load balancing, the aim is to make sure that the node
that is transferred to the idle processor is a “promising” node thus ensuring
that all the processors are not only busy, but also are busy searching use-
ful (promising) regions. Linderoth [40] refers to this approach of transferring
the “optimal” section of the tree to an idle processor as quality load balancing.

Factors affecting information sharing

Information sharing depends to a large extent on the storage of the items
of information to be shared. Gendron and Crainic [27] use a notion of a
work pool — the location where processors find and store their units of work
(generated subproblems) to classify parallel algorithms. When there is a cen-
tralised memory location to which the work units are stored, the algorithm
is said to be a single pool algorithm, as opposed to a multiple pool algorithm

Parallel Mixed Integer Programming — A Status Review 20

in which there are several memory locations (typically one per processor) for
storing the units of work. Single pool algorithms can be achieved within a
distributed memory platform via the master-slave paradigm, in which one
processor, the master manages and allocates the work units to the other pro-
cessors, the slaves. The slaves in turn send back their results to populate the
work pool. Single and multiple pool algorithms have their drawbacks as far
as communication is concerned. In single pool algorithms for example, run-
ning via the master/slave paradigm, there is a possibility of the master being
“overwhelmed” with information such that there may be delayed action for
a received message, thereby reducing the efficiency of the parallel algorithm.
Secondly, over-reliance on a master is an obvious drawback as any physical
problems with the master processor may destabilise the entire algorithm.
Here again, fault tolerant measures [38][15] should be put in place. However,
Goux et al [28] have shown that the master-slave paradigm can be used to
circumnavigate implementation difficulties encountered in implementing dis-
tributed computations. On the other hand, a multiple pool algorithm, the
individual processors assume a pseudo-master role, maintaining the internal
mechanisms of their search and broadcasting “useful” information when they
become available.

5 A Review and Critique of Existing MIP
Parallel Algorithms

In this section we first provide a brief literature review of the implementations
of PB&B for MIP and identify those algorithms which are considered for a
critical review. In section 5.2, we intoduce a framework for comparing and
analysing these algorithms and present an analysis of each implementation
in tabular form, followed by a brief discussion.

5.1 A Short Literature Review

Branch and bound fits naturally with the parallel computing paradigm and
there is a wealth of literature on approaches and experiences with paral-
lel branch and bound. However, given the vast amount of research done
on parallel branch and bound, there is relatively little material that focuses
specifically on the general MIP.

Boehning et al [11] present an implementation of a simple linear program-
ming based branch and bound algorithm for solving MIP, but incorporate no
"advanced’ techniques into the procedure.

Parallel Mixed Integer Programming — A Status Review 21

Cannon and Hoffman [12] were the first to report results of a parallel branch
and cut implementation. Their code performed most of the ’advanced’ tech-
niques in integer programming. However, because parallel computing tools
were not as developed as today, Cannon and Hoffman resorted to operating
system constructs in order to perform many of the required parallelisation
tasks. They report results on a small suite of problems of up to eight pro-
CEssoTs.

Ashford et al [3] present a more sophisticated branch and bound algorithm
for a transputer network of up to eight nodes.

Eckstein [20] developed a PB&B code for a specific dedicated parallel com-
puter, Thinking Machines CM-5. Some advanced features of his algorithm
were reduced cost fixing, a primal heuristic, and pseudocost branching.
Bixby et al [9] use a parallel software platform called TreadMarks [33] in or-
der to implement a parallel branch and cut algorithm. Computational results
and detailed analyses are reported on a parallel system of eight workstations.
Junger and Stormer [32] describe an implementation of a parallel branch and
cut for the Travelling Salesman Problem (TSP). Their algorithm follows a
novel parallelisation approach whereby a number of processors are dedicated
to tasks such as performing heuristics and managing cutting planes in addi-
tion to the processors exploring the branch and bound search tree.

Laundy [38] has described the parallel implementation of the XPRESS-MP
commercial IP solver. A main emphasis of this work is to build a fault-
tolerant system — a system that works if some of the processors become un-
available during the algorithm’s execution. In order to build fault-tolerance
into the system, the parallelisation strategy used is somewhat simple. Ex-
perimental results on a network of up to four workstations are reported.
Chen and Ferris [15] also implement a fault tolerant parallel MIP system that
incorporates some of the more advanced branch and bound enhancements.
Homeister [30] gives a relatively simple implementation of the branch and
cut algorithm.

Mitra et al [49] describe a novel, two stage parallel scheme for solving MIP.
In the first stage, all processors begin searching in (possibly overlapping)
portions of the search space. The second stage is the more classical branch
and bound approach. Limited results on a configuration of up to thirty work-
stations are reported.

PARINO [40] is also designed to be a general purpose parallel branch and
cut solver which includes a most of the advanced MIP solution techniques.
Ralphs and Landanyi [57] and Eckstein al [23] both provide a framework for
PB&B algorithms for MIP. SYMPHONY [57] is a modular extensible library
generic subroutines while PICO [23] seeks greater versatility in hardware
platformes.

Finally, there are tools such as PPBB-Lib [64], BoB [6] and PUBB [61],

Parallel Mixed Integer Programming — A Status Review 22

emanating mainly from the computer science community which can be used
for implementing the general branch and bound algorithm.

5.2 A Critical Analysis of Some PB&B Implementa-
tions

In order to compare these algorithms, we have introduced a number of param-
eters, which, taken together, provide a qualitative framework for analysing
the five chosen state-of-the-art implementations. These algorithm parameters
are based on earlier analyses in this paper of issues pertaining to parallelism
and the B&B algorithm structure and are set out below.

Parallel Architecture — The particular hardware architecture(s) on
which the implementaion was made and tested. See section 3.2

Parallel software tools employed — Specialized parallel
programming software tools (such as PVM, TreadMarks e.t.c)
employed by the implementaion. See section 3.2

Type(s) of parallelism employed — Type 1, Type 2 or Type 3
parallelism. See section 4.2

”Basic” design — Pertains to the parallel programming paradigm
that is employed e.g. master-slave, or distributed programming
paradigm. See sections 3.2 and 3.3

Program control and node list management — Addresses node
storage mechanism (centralised or distributed) and consequently
node management for the B&B tree. See section 4.4

Incumbent value sharing mechanism — Ways in which the
different B&B-sensitive information most notably, bounds are
stored and shared. See section 4.4

IP techniques — Any advanced IP techniques employed such as
preprocessing, cutting planes, heuristics, advanced branching
rules e.t.c. See sections 2.2 and 2.3

Fault tolerance mechanisms Implicit or explicit fault tolerant
mechanisms considered. See section 3.6

Parallel Mixed Integer Programming — A Status Review

23

Bixby et al [9], 1997

‘ Parallel Mixed Integer Programming

Algorithm Parameter Description

Parallel Architecture Network of workstations consisting of up to 8
SPARC20s’

Parallel ~ Software Tools | TreadMarks

employed

Types of Parallelism

Type 2 Parallelism — High level parallelism

Basic Design

“Fmulating” shared memory design — Shared memory,
but using message passing

Program Control and Node
List Management

Centralised control — Global list of active nodes accessed
by individual processors using best bound strategy.

Incumbent Value Sharing
Mechanism

Best bound is stored in global shared memory

Advanced IP Techniques

Preprocessing, cutting planes and use of specialised

heuristic.

Fault Tolerance | No explicit fault tolerance mechanisms used

Mechanisms

Analysis of Implementation

The ’start-up’ phase of the algorithm exploits ’advanced’ TP techniques to
tighten the IP feasible region prior to the actual start of parallel B&B. The
implementation benefits from the advantages of shared memory architectures
as discussed in section 3.2. Since the best bound is only obtained by proces-
sors after fetching a new node, there is a chance of wasted computation that
could adversely affect speed-up. All parallel "administrative’ duties (such
as locking mechanisms to prevent jams during simultaneous access of global
information) are acheived through the use of TreadMarks. However, the
overheads incurred by using TreadMarks were not investigated.

The authors performed experiments on the complete test suite of MIPLIB
[10] benchmark problems, albeit using up to eight processors. Although lin-
ear speed-up was not always achieved, the parallelisation strategies employed
clearly justify the use of parallel computing in solving MIP problems.

Parallel Mixed Integer Programming — A Status Review

24

Mitra et al [49], 1997

A distributed processing algorithm for solving
IPs

Algorithm
Parameter

Description

Parallel Architecture

Cluster of up to 32 SUN-IPC work-stations

Parallel Software
Tools employed

Parallel Virtual Machine (PVM)

Types of Parallelism

Parallelism of Type 3 in stage 1 and Parallelism of Type
2 in stage 2

Basic Design

Master-slave paradigm is used in the stage 2 of the
algorithm.

Program Control and

The master processor stores a 'master list’ list of nodes.
The slave processors independently store their individ-
ual node lists. The master’s node list is used for load
balancing procedures - itselects nodes from overloaded
processors, stores the ’relieved nodes’ in its lists (to-
gether with their priority order) and distributes them

to less busy processors

Node List
Management
Incumbent Value

Sharing Mechanism

New bounds are immediately broadcast and stored lo-
cally by individual processors in both stages of the
algorithm

Advanced IP | Use of the standard IP techniques in the FortMP solver
Techniques

Fault Tolerance | While fault tolerance was not explicitly stated a s a de-
Mechanisms sign objective, Stage 1 of the algorithm has inherrent

fault tolerance since the search trees being examined by

processors are independent

Analysis of Implementation

While the implementation did not fully exploit some integer programming
enhancements like preprocessing and cutting planes, the nature of the imple-
mentation — retaining the serial branch and bound code as much as possible,
makes the incorporation of these enhancement features easy [52] . The ratio-
nale behind the implementation is novel and promises to be worthwhile, and
to our knowledge, it is the only parallel branch and bound implementation of
MIP that exploits Parallelism of type 3. Stage 1 of the algorithm is, in effect,
a number of independent serial searches run in parallel and enhanced by shar-
ing bounds. The use of co-operating, processing multiple branch and bound
trees in stage 1 presents a higher chance of finding good feasible solutions.
The transition between stage 1 and stage 2 of the algorithm was controlled by
static criteria based on a cut off on time or number of nodes. However, there

Parallel Mixed Integer Programming — A Status Review 25

is potential to do a more robust analysis of the trees generated from stage 1,
in order to choose the potential ’best’ search tree to be investigated in stage 2.

Experimental results are reported in this paper are restricted to a small set
of MIPLIB problems and show near-linear speedups when the code is tested
on some MIPLIB models.

Laundy [38], 7998

Implementation of PB&B Algorithms in

XPRESS-MP

Algorithm
Parameter

Description

Parallel Architecture

Network of PC’s consisting of up to four 200 MHz COM-
PAQ Pentium Pros and one 133 MHz

Parallel Software
Tools employed

HPPVM - The high performance version of PVM

Types of Parallelism

Type 2 parallelism and to a limited extent, type 1 par-
allelism in order to exploit the advantages of the search
strategies of the serial algorithm

Basic Design

The master-slave (farming) paradigm is used in the
implementation

Program Control and

The approach to parallelism is based on a centralised
control in which the master processor holds the list of
unsolved nodes which are distributed to slave processors

The author does not explicitly report the way in which
the best bounds are shared

XPRESS-MP is a commercial solver which has mature
and well tested heuristics and search strategies embed-
ded in the serial B&B code. Consequently, one of the
key design objectives of the parallel code was to include
insofar as possible all the advanced IP features in the
serial code.

Node List
Management
Incumbent Value
Sharing Mechanism
Advanced 1P
Techniques

Fault Tolerance
Mechanisms

Fault tolerance is one of the stated design goals of the
implementation and processor failures are detected by
using PVM calls to check their status. If there is an
processor error in the master, then the failure is con-
sidered as unrecoverable. However, if failure occurs at
a slave processor, the implementation ensures that the
master re-schedules the destroyed node to another pro-
cessor for re-exploration. The rescheduling of nodes is
easily achieved since the master keeps a record of all jobs
that are sent to slave processors.

Analysis of Implementation

Parallel Mixed Integer Programming — A Status Review 26

In this paper, the author describes the implemention of parallel B&B for
a leading commercial solver, XPRESS-MP, and as such pays particular im-
portance to fault-tolerance — ensuring that the software is robust for running
in a volatile office environment in which machines can easily crash or are
turned off by their owners. The approach in achieving fault tolerance puts
the onus on the user of the system to ensure that they possess control of the
master processor, thereby minimising the risk of unrecoverable failures.

As discussed in section 4.1, it is desireable to design algorithms for MIP
that can run on a single processor, as well as on several processors (if need
be). This implementation captures that model especially because the par-
allel implementation seeks to benefit from the hybrid depth-first/best-first
strategy (as well as other advanced heuristics) that have been developed to

solve MIP using XPRESS-MP on a single processor.

Another key feature described in the implementation is the portability of
the code. Their overriding design philosophy is “to develop a system which
runs well both on dedicated parallel computers and on heterogeneous net-
work of PC’s and workstations.”

Since the implementation is centralised, it suffers from the drawbacks (as dis-
cussed in section 3) of such an approach. However, the author also suggests
a multi-master/multi-slave paradigm that could be implemented on shared-
memory machines with many processors and fast communication links. Such
an implementation will require considerable load-balancing measures which
are not neccessary in the implementation described in the paper.

Breadth-wise experimental results are reported for a small subset of “harder”
MIPLIB [10] models. Comparisons are made between serial execution times
and parallel execution times based on different number of slave processors.
In general, linear speed-ups are obtained in a comparible number of nodes
with the serial algorithm.

Parallel Mixed Integer Programming — A Status Review 27

Chen et al | FATCOP 1.0 and FATCOP 2.0
[15][14],1998, 1999

Algorithm Description

Parameter

Parallel Architecture

Network of up to 100 (heterogeneous) workstations

Parallel Software
Tools employed

Condor-PVM [55] — an extension to the regular PVM
that may obtain more computational power in an op-
portunistic way

Types of Parallelism

Type 2 parallelism — High level parallelism

Basic Design

Two separate programs are used in a master-slave
paradigm. The master farms out subproblems to slave
Processors.

Program Control and

There is a one central work pool consisting of uninvesti-

Node List | gated subproblems. Subproblems are stored in a multi-
Management indexed data structure to facilitate the searching rules.
Incumbent Value | The master process updates the best bound information

Sharing Mechanism

in the work pool. This new bound is used when new

subproblems are being farmed out to slave processors.

Advanced IP | Preprocessing is used in FATCOP 1.0 and global cuts
Techniques and global pseudocosts are used in FATCOP 2.0

Fault Tolerance | Fault tolerance is one of FATCOP’s main design objec-
Mechanisms tives. Consequently, rigourous fault tolerance mecha-

nisms are employed

Analysis of Implementation

FATCOP 1.0 [15] and to a greater extent FATCOP 2.0 [14] combine the
goals of using freely available distributed computational power — typical of
office networks, with a B&B code which incorporates many advanced solu-
tion features. Unlike the all the other implementations of PB&B which have
a pre-determined number of parallel processors, FATCOP can dynamically
add and delete hosts depending on their availability. It achieves this by using
a Condor-PVM environment which extends the functionality of the regular
PVM. Greedy acquisition of processors to populate the Condor pool has the
potential advantage of providing scalability on the fly if required by larger
MIP models.

FATCOP 2.0 improves on FATCOP 1.0 both at a parallelisation and B&B
code level. In FATCOP 2.0, a more coarse grain implementation is sort in
order to limit contention effects at the master. In addition, more advanced
integer programming features, namely, global cuts and global pseudocosts
are appended to improve on the implementation. Rigid fault tolerance mea-
sures are employed such that there is at least a partial recovery of search

Parallel Mixed Integer Programming — A Status Review 28

process even in the extreme and unlikely case of unavailability of the master
processor. Extensive results and analysis are carried out for a subset of MI-
PLIB [10] models and the implementation shows the benefits of using their

approach.

Eckstein et al 2000

PICO: An Object-Oriented Framework for Par-
allel Branch and Bound

Parameter

Description

Parallel Architecture

Aims to work on a variety of parallel architectures. It is
however designed using a distributed model using mes-
sage passing.

Parallel Software Tools
employed

Message Passing Interface (MPI)

Types of Parallelism

Framework approach gives user the flexibility to choose
the type of parallelism to implement

Basic Design

A flexible master-slave paradigm is employed. The mas-
ter can also function as a worker

Program Control and Node
List Management

Each of the slave processors hold their own pool of active
nodes — hence a distributed strategy

Incumbent Value Sharing
Mechanism

Best bounds found at individual processors are imme-
diately broadcast. FEach receiving processor performs

bound analysis of type 2

Advanced IP Techniques Preprocessing and pseudocosts
Fault Tolerance | No explicit fault tolerance mechanisms are discussed
Mechanisms

Analysis of Implementation

The design philosophy of PB&B algorithms in this work is different from
all the other works described. The authors use a framework approach — an
object oriented approach which provides a set of classes (objects that share
a common structure and behaviour) that embodies an abstract design for
solutions to a number of related problems. The implementation provides a
hierachical class of serial and parallel layers thereby making it very modular
and flexible. The classes of the serial layer store and manipulate data per-
taining to the nodes of the B&B tree, while the corresponding classes of the
parallel layer behave similarly for a PB&B tree.

The implementation of PICO is largely based on CMMIP [20][19][22][21].
However, the implementation extends CMMIP by being more versatile with
respect to the parallel architecture employed — the system can be configured
at run-time to suit shared memory or distributed memory architectures. A
“pseudo” master-slave paradigm may also be employed in which the master

Parallel Mixed Integer Programming — A Status Review 29

performs the administrative duties of the code, and simultaneously acts as a
slave by solving subproblems.

Results are reported for a small subset of MIPLIB [10] models and the imple-
mentation is shown to achieve linear speed-ups for between 32-48 processors.
PICO does not include some “advanced IP techniques” such as cutting planes
or node-level preprocessing.

6 Conclusions and directions for future work

Our investigation of the recent research and development in parallel MIP al-
gorithms shows that there is a growing interest and steady progress in both
academic and industrial settings. The main motivation for using parallel
algorithms for MIP is to solve challenging industrial problems which are oth-
erwise intractable. For the end user it is also desirable that the parallel MIP
software bears close resemblance to its serial counterpart; the main differ-
ence being the possibility of specifying the use of multiple processors. In
this paper, we have examined some of the leading design issues pertaining
to exploiting parallel platforms for branch and bound. We have highlighted
the algorithmic components in branch and bound that benefit from parallel
computation and discussed aspects of the parallel architectures that are now
used by the leading of MIP parallel algorithms. Finally, we have critically
examined the parallelisation strategies employed in five major PB&B imple-
mentations. In conclusion, we summarise the current trends in parallel MIP
algorithms and identify some areas for further research.

6.1 Current trends

The following four aspects summarise the current trend in parallel MIP al-
gorithms.

1. Tt is well known that serial B&B algorithms can be enhanced by intro-
ducing suitable preprocessing, use of global and local cuts, and com-
puting pseudocosts. To gain full advantages in performance, algorithm
designers are introducing these features intelligently into PB&B algo-
rithms.

2. A distributed architecture, consisting of loosely-coupled workstations
and PCs has become the de facto platform for implementing MIP par-
allel algorithms. This architecture provides an inexpensive and readily
available platform for reaping the benefits of parallel computing and
has been adopted by many implementors.

Parallel Mixed Integer Programming — A Status Review 30

6.2

One or more computers within a distributed network (usually of office
computers) are prone to sudden unavailability. There is therefore an
emphasis on developing fault-tolerant solver software so that the effect
of losing a processor during a run has minimal impact on the PB&B
algorithm.

Most of the parallel MIP implementations show a near-linear speed-up
— somewhat emphasising the fact that the B&B tree is “embarassingly
bespoke to parallel computing.” Consequently, at least three indus-
trial strength MIP solvers have their parallel versions available on a

commercial basis [50] [38] [16]

Directions for future research

The employment of cutting planes within serial B&B is arguably an art
in which success is determined by the type of cuts generated, their stor-
age and their application at different levels of the B&B tree. In PB&B
there is a need for efficient cut management strategies, in which cuts
generated by different processors can be evaluated with a view to always
having an optimal set of cuts for application throughout the parallel
algorithm. Experiments with single and multiple cut-pool algorithms
can also give varying performances in PB&B implementations. There
is also scope for using processors to carry out dedicated tasks such as
generating and managing cuts or pseudocosts. Junger and Stormer [32]
investigated this approach with some success for TSP. Finally, natural
extension for consideration in PB&B algorithms will be the branch and
price algorithm.

In our opinion, parallelism of type 3 as applied to MIP parallel algo-
rithms deserves more investigation. Mitra al [49] showed promising
results by investigating different branch and bound trees in parallel.
Systems like Condor [42] provide extensive computational resources to
experiment with several different trees in the hope of finding good in-
teger solutions.

Taking into account parallelism of type 3, we can further combine the
branch and bound approach with special-purposed and meta heuristics
such as simulated annealing and tabu search.

The availibility of potentially massive ditributed systems such as Con-
dor [42] provides a platform for testing current implementations on
larger systems so as to investigate the number of (heteregeneous) pro-
cessors needed to obtain maximum speed-up and scale-up in a PB&B
algorithm. Such investigations will undoubtedly provide more insight

Parallel Mixed Integer Programming — A Status Review 31

into the best way of allocating processes in a PB&B algorithm. The
possibility of using new processors which are added on the fly to a
parallel machine also present enhanced searching opportunities in a
PB&B algorithm. It is therefore desirable to design algorithms that
can dynamically reconfigure themselves — adding or removing comput-
ing resources during the course of a run.

5. There is an emergence of computers with multi (two or four) symmet-
ric processors that use a shared memory architecture. Set against this
background, there exists the possibility of combining message pass-
ing and shared memory configurations within MIP parallel algorithms.
Such an example may be particularly useful, for problems whose LLPRs
are difficult to solve. A parallel dual-simplex algorithm may be used
on the symmetric multiprocessor machine for solving LPRs whereas the
PB&B algorithm may run on a distributed network of such worksta-
tions.

The main objective of this paper has been to review the current state-of-
the-art and issues pertaining to the design, implementation and evaluation
of PB&B algorithms for MIP. We hope that our analyses have made a useful
contribution which the designers of parallel algorithms for MIP will find
valuable in their further work.

Parallel Mixed Integer Programming — A Status Review 32

References

1]

[11]

[12]

Brearley A.L., G. Mitra, and H.P. Williams. Analysis of mathematical
programming problems prior to applying the simplex algorithm. Math-
ematical Programming, 8:54-83, 1975.

G. M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. AFIPS Conf. Proc., 30:483-485,
1967.

R.W. Ashford, P. Connard, and R. Daniel. Experiments in solving mixed
integer programming problems on a small array of transputers. Journal

of the Operational Research Society, 43:519-531, 1992.

M. Balinski. Integer programming: Methods, Uses, Computation. Man-
agement Seci, 12:253-313, 1965.

E.M.L. Beale. Branch and bound methods for mathematical program-
ming systems. Annals of Discrete Mathematics, 5:201-219, 1969.

M. Benachouche, V-D. Cung, S. Dowaji, B. Le Cun, T. Mautor, and
C. Roucairol. Building a parallel branch and bound library. In Solving
combinatorial optimisation problems in parallel, Lecture Notes in Com-
puter Science, pages 201-231. Springer, Berlin, 1996.

M. Benichou, J.M. Gauthier, P. Girodet, G. Hehntges, G. Ribiere, and
O. Vincent. Experiments in mixed integer linear programming. Mathe-
matical Programming, 1:76-94, 1971.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation,
Numerical Methods. Prentice-Hall, 1989.

R. Bixby, W. Cook, A. Cox, and Lee E. Parallel mixed integer pro-
gramming. Technical Report CRPC-TR95554, Rice University, Center
for Parallel Computation, 1995.

R. E. Bixby, S. Ceria, C. M. McZeal, and M.W.P. Savelsbergh. An
updated mixed integer programming library: MIPLIB 3.0. Optima,
58:12-15, 1998.

R.L. Boehning, R.M. Butler, and B. E. Gillett. A parallel integer lin-
ear programming algorithm. Furopean Journal of Operational Research,

34:393-398, 1988.

T.L. Cannon and K.L. Hoffman. Large scale 0-1 linear programming on
distributed workstations. Annals of Operations Research, 22:181-271,
1990.

Parallel Mixed Integer Programming — A Status Review 33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algorithms
and Applications. Oxford University Press, 1997.

M. Chen, Q. Ferris and J. Linderoth. Fatcop 2.0: Advanced features in
an opportinistic mixed integer programming solver. Technical report,
University of Wisconsin, Madison, Department of Computer Sciences,

Madison, WI 53706, December 1999.

Q). Chen and M. Ferris. A fault tolerant condor-pvim mixed integer pro-
gram solver. Technical report, University of Wisconsin-Madison, De-
partment of Computer Sciences, Madison, W1 53706, 1999.

Inc. CPLEX Optimization. Using the CPLEX Callable Library. Using
the CPLEX Callable Library, 1995.

A. de Bruin, G.A.P Kindervater, and H.W.J.M. Trienekens. Assyn-
chronous parallel branch and bound and anomalies. In IRREGULAR 95,
LNCS, volume 980, pages 363377, 1995.

C.G. Diderich and M. Gengler. Some strategies for load balancing. In
IRREGULAR’94, pages 395-409. Kluwer, 1995.

J. Eckstein. Control strategies for parallel mixed integer branch and
bound. In Proceedings of Supercomputing ’94, Los Alamitos, CA, 1994.
IEEE Computer Society Press.

J. Eckstein. Parallel branch-and-bound algorithms for general mixed
integer programming on CM-5. SIAM Journal on Oplimization, 4:794—
814, 1994.

J. Eckstein. Distributed versus centralized storage and control for par-
allel branch and bound: Mixed integer programming on CM-5. Compu-
tational Optimization and Applications, 7:199-220, 1997.

J. Eckstein. How much communication does parallel branch and bound

need? INFORMS Journal on Computing, 9:15-29, 1997.

J. Eckstein, C.A. Phillips, and W. Hart. Pico: An object-oriented frame-
work for parallel branch and bound. Technical Report RRR 40-2000,
Rutgers University, Rutgers University, New Jersey, August 2000.

M.J. Flynn. Some computer organisations and their effectiveness. IKKFE
Transactions on Computers, 21:948-960, 1972.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co, 1979.

Parallel Mixed Integer Programming — A Status Review 34

[26]

32]

33]

[34]

[35]

[36]

37]

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM 3 User’s Guide and Reference Manual. Oak Ridge National
Laboratory, Oak Ridge, TN 37831-6367, 1994.

B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms:
Survey and synthesis. Operations Research, 42(6):1042-1066, 1994.

J. Goux, J. Linderoth, and M. Yoder. Metacomputing and the master-
worker paradigm. Technical Report, Argonne National Laboratory,
Available from hilp://www.cs.wisc.edu/condor/muw.

[. Hai. Integer programming on parallel computers. Master’s thesis,
Brunel University, 1994.

D. Homeister. Efficient implementation of parallel branch and cut. Pre-
sented at the Fifth STAM Conference on Optimization, Victoria, B.C.,
Canada, 1996.

E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh. Progress
in linear programming-based algorithms for integer programming. [IN-

FORMS Journal on Computing, 12(1):2-23, 2000.

M. Jinger and P. Stormer. Solving large scale travelling salesman prob-
lems with parallel branch-and-cut. Technical Report 95.191, Universitat
zu Koln, Zentrum fur Paralleles Rechnen, 1995.

P. Keheler, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks:
Distributed memory on standard workstations and operationg systems.
In Proceedings of the 1994 Winter Useniz Conference, pages 115-131,
1994.

K. Kularajan, G. Mitra, F. Ellison, and B. Nygreen. Constraint classifi-
cation, preprocessing and a branch and relax approach to solving mixed
integer programming models. International Journal of Mathematical

Algorithms, 2, 2000.

V. Kumar and A. Grama. [ntroduction to parallel computing — design
and analysis of algorithms. Benjamin/Cummings, 1994.

T. H. Lai and S. Sahni. Anomalies in parallel b&b algorithms. Res.
Contrib, 27:594-602, 1984.

A. Land and A. Doig. An automatic method for solving discrete pro-
gramming problems. Fconometrica, 28(3):497-520, 1960.

Parallel Mixed Integer Programming — A Status Review 35

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. S. Laundy. [Implementation of branch and bound algorithms in
XPRESS-MP. in Operational Research in Industry, T. Ciriani et al.
eds. Macmillan Press, 1999.

J.T. Linderoth and M.W.P Savelsbergh. A computational study of
search strategies in mixed integer programming. INFORMS Journal
on Computing, 11(2):173-187, 1999.

J.T. Lindertoth. Topics in Parallel Integer Optimization. PhD thesis,
Georgia Institute of Technology, 1998.

J.D.C Little, K.G. Murty, D.W. Sweeney, and C. Karel. An algorithm
for the travelling salesman problem. Operations Research, 11:972-989,
1963.

M. Litzkov, M.J. Livny and M. W. Mutka. Condor: A hunter of idle
workstations. In Proceedings of Sth International Conference on Dis-
tributed Computing Systems, pages 104—111, June 1988.

R. Liling and B. Monien. Load balancing for distributed branch and
bound algorithms. In Proceedings of the international Parallel Com-

puting Symposium, pages 543-549. ITEEE Computer Society Press, Los
Angeles, CA, 1992.

R.P. Ma, F. Tsung, and M. Ma. A load balancer for a parallel branch
and bound algorithm. In Proceedings of 3rd Conference on Hypercube
Concurrent Computers and applications, 1988.

[. Maros and G. Mitra. Simplex algorithms for linear programming,
chapter 1. in Advances in Linear and integer programming, J. Beasley.

Oxford University Press, 1996.

I. Maros and G. Mitra. Investigating the sparse simplex algorithm on
a distributed memory multiprocessor. Parallel Computing, 26:151-170,
2000.

I.. G. Millen. Branch and bound methods: General formulations and
properties. Operations Research, 18:24-34, 1970.

G. Mitra. Investigation of some branch and bound strategies for the
solution of mixed integer linear programs. Mathematical Programming,

4:155-170, 1973.

G. Mitra. A distributed processing algorithm for solving integer pro-
grams using a cluster of workstations. Parallel Computing, 23:733-753,
1997.

Parallel Mixed Integer Programming — A Status Review 36

[50]
[51]

[52]

[58]

[59]

[60]

[61]

NAG Ltd. FORTMP Reference Manual.

G.L Nemhauser and L.A Wolsey. Integer and Combinatorial Optimisa-
tion. Wiley, 1989.

V. Nwana, E.F. Ellison, G. Mitra, and K. Kularajan. A two-stage par-
allel branch and cut algorithm for mixed integer programs. Document
in preparation, July 2000.

V. Nwana and G. Mitra. Parallel mixed integer programming: A status
review. Technical Report TR/02/00, Brunel University, Department of
Mathematical Sciences, January 2000.

P. Pardalos and X. Li. Parallel branch and bound algorithms for com-
binatorial optimisation. Technical report, The Pennsylvania State Uni-
versity, Department of Computer Science, 1990.

J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cy-
cles of workstation clusters. Journal on Future Generations of Computer
Systems, 12, 1996.

T.K. Ralphs. Computational experience with generic parallel branch and
cut. Presented at the Institute of Operations Research and Management

Science Conference, Seattle, WA, October 1998, October 1998.

T.K. Ralphs and L. Landanyi. Symphony: A parallel framework for
branch, cut and price. Technical report, Rice University, Department
of Computational and Applied Mathematics, Rice University, Houston,
Texas 88005, December 1999.

V.J. Rayward Smith, S.A. Rush, and G.P. Mckeown. Efficiency consid-
erations in the implementation of branch and bound algorithms. Annals

of Operations Research, 43:123-145, 1993.

C. Roucairol. Parallel Branch and bound algorithms; An Overview, pages
153-163. Parallel and Distributed Algorithms. Elsevier Science Publish-
ers, 1988.

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed
integer programming models. ORSA Journal on Computing, 6:445-454,
1994.

Y. Shinano, M. Higaki, and R. Hirabayashi. Generalized utility for par-
allel branch and bound algorithms. In Proceedings of the 1995 Seventh
IEEFE Symposium on Parallel and Distributed Processing, pages 382—401.
IEEE Computer Society Press, Los Angeles, CA, 1995.

Parallel Mixed Integer Programming — A Status Review 37

[62] M. Snir, S.W. Otto, D.W. Walker, and J. Dongarra. MPI: The Complete
Reference. MIT Press, Cambridge, MA, 1996.

[63] HW.J.M Trienekens and A. de Bruin. Towards a taxonomy of par-
allel branch and bound algorithms. Technical Report EUR-CS-92-01,

Erasmus University, Rotterdam, 1992.

[64] S. Tschoke and T. Polzer. Portable Parallel Branch-and-Bound Library
PPBB-Lib User Manual, Library Version 2.0. Department of Computer
Science, University of Paderborn, 1996.

7 Appendix 1: An insight into the computa-
tional structure of B&B

This section highlights aspects of the key information shared across the nodes
of the B&B tree in order to construct a serial as well as parallel B&B algo-
rithm. The aspects considered here include:

1. Sharing of improving lower and upper bounds
2. Use of optimal basis

3. Choice of algorithm for subproblem solution
4. Integer preprocessing

To illustrate these points, the following experiment was performed for five
MIPLIB [10] models. The aim of the experiment was to investigate the
improvement in the computational perfomance of a simplex-based B&B so-
lution algorithm. By progressively refining the “solution processing” of the
subproblems reflecting the choices highlighted above, we notice a commen-
surate performance gain. The same set of node and variable choice methods
were used in solving five instances of MIPLIB [10] problems. The time limit
for running B&B was set for two hours in all cases. [P(opt) refers to the
optimal or best integer feasible solution obtained by the search while T'(best)
is the time taken to obtain the best integer solution. T'(total) is the total
time taken to complete the search.The node and variable choice strategies
used in solving all the models are not necessarily the best for each problem.

Table 1. shows the computational behaviour of B&B when the alternative
ways of applying SSX in solving subproblems are used. Code refers to the
mode in which B&B was run. In B&B(Crash), each node is solved inde-
pendently, that is, no starting basis is used. In B&B(Primal), the primal
simplex algorithm used the basis of the optimal solution of a parent node to

Parallel Mixed Integer Programming — A Status Review 38

solve the child node, while in B&B(Dual), the optimal basis of the parent is
used with the dual simplex method. The column IP(opt) contains the best
or optimal solution achieved by the B&B code and T(total) represents the
time taken to achieve the solution. [terations is the number of iterations
performed by the code, while nodes is the number of nodes investigated by
the code. BE&B(Prep) refers to the B&B code run with similar settings as
B&B(Dual), with preprocessing applied at the root node (only). Similarly,in
B&B (Prepall) preprocessing was applied to all nodes in the tree.

Model Code IP(opt) | T(total) | Iterations | Nodes
10TEAMS | B&B(Crash) 948* > 7200 344817 874
B&B(Primal) 924 2978.56 12848 1456

B&B(Dual) 924 2698.43 10653 1258

B&B(Prep) 924 2098.67 9846 897

B&B(Prepall) 924 2045.67 9785 899

P0201 BB(Crash) 7615 110.38 473080 987
B&B(Primal) 7615 21.77 65583 1792

B&B(Dual) 7615 13.71 26243 3323

B&B(Prep) 7615 7.54 13783 1648

B&B(Prepall) 7615 6.34 11324 1265

BLEND2 B&B(Crash) | 7.5989850 6295.65 25856468 | 204250

B&B(Primal) | 7.5989850 1066.67 2270419 | 212940

B&B(Dual) | 7.5989850 | 787.28 302585 | 208210

B&B(Prep) | 75980850 | 179.02 171759 | 112262

B&B(Prepall) | 7.598950 | 165.43 141324 | 90267

NWO4 B&B(Crash) 16862° | > 7200 229954 477
B&B(Primal) 16362 | 4321.13 15425 | 2987

B&B(Dual) 16862 | 3973.23 12073 | 2635

B&B(Prep) 16362 | 3999.14 12073 | 2635

B&B(Prepall) 16862 | 3654.09 11324 | 2465

L152LAV | B&B(Crash) 4769% | > 7200 | 30975852 | 89067
B&B(Primal) 4722 | 3867.65 | 2340876 | 147687

B&B(Dual) 4722 | 2876.98 | 1825444 | 136754

B&B(Prep) 4722 | 2878.59 | 1825444 | 136754

B&B(Prepall) 4722 | 2566.30 | 1756234 | 126565

*” means tree search was not completed while > 7200’ means the time limit

was exceeded.
Table 1: Results of alternative LLP-solution strategies

It can be seen that the number of iterations, as well as ratio of iterations
to nodes are very high for B&B(Crash)in all five models. This can be at-
tributed to the excessive work done in re-solving each node from ’scratch’.

Parallel Mixed Integer Programming — A Status Review 39

B&B crash also has undesirable effects on the time taken to solve the prob-
lems and may result in sub-optimal solutions. B&B(Dual) is shown in the
models to be of superior quality to B&B(Primal).

