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Abstract 

This paper examines the dynamics of stock prices in Ukraine by estimating the degree of 

persistence of the PFTS stock market index. Using long memory techniques we show that 

the log prices series is I(d) with d slightly above 1, implying that returns are characterised 

by a small degree of long memory and thus are predictable using historical data. 

Moreover, their volatility, measured as the absolute and squared returns, also displays 

long memory. Finally, we examine if the time dependence is affected by the day of the 

week; the results indicate that Mondays and Fridays are characterised by higher 

dependency, consistently with the literature on anomalies in stock market prices. 
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1. Introduction 

This paper analyses the behaviour of stock prices in Ukraine by modelling the PFTS 

stock market index. Specifically, it examines its degree of dependence, noting that if the 

order of integration of the series is equal to 1, it is possible for the efficiency market 

hypothesis to be satisfied provided the differenced process is uncorrelated. Moreover, it 

tests the hypothesis of mean reversion (orders of integration below 1 in prices) or 

alternatively, long memory returns (orders of integration above 1 in the log prices) by 

using long memory and fractional integration techniques. These are more general than the 

standard approaches based on integer degrees of differentiation, and provide much more 

flexibility in modelling the dynamics of the process. Finally, the degree of dependence 

for each day of the week is investigated in order to establish whether there are any day-

of-the-week effects. 

 We use daily data from January 2007 to February 2013 and the main results in the 

paper can be summarised as follows. First, we find that the log-prices series are 

fractionally integrated or I(d) with an order of integration, d, which is slightly above 1 

implying that the underlying returns exhibit a small degree of long memory behaviour. 

The same evidence of long memory is obtained for the absolute and squared returns, 

which are used as proxies for volatility. These results are consistent with those reported 

for other stock markets. More importantly, we also find evidence of higher degrees of 

dependence on Mondays and Fridays than during the other days of the week, validating 

the hypothesis that there is an anomaly in the form of a “day of the week” effect in the 

Ukrainian stock market.  

 The layout of the paper is as follows. Section 2 describes the methodology. 

Section 3 presents the data and the main empirical results, while Section 4 contains some 

concluding comments. 
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2. Long memory and fractional integration 

Long memory is a feature of the data that implies that observations far apart in time are 

highly correlated. There are two main definitions, one in the time domain and the other in 

the frequency domain. Starting with the former, given a covariance stationary process {xt, 

t = 0, ±1, … }, with autocovariance function E(xt –Ext)(xt-j-Ext) = γj, according to 

McLeod and Hipel (1978), xt is said to be characterised by long memory if 

∑ γ
=

−=
∞→

Tj

Tj
jTlim      (1) 

is infinite. The alternative definition, based on the frequency domain, is the following. 

Suppose that xt has an absolutely continuous spectral distribution function, implying that 

it has a spectral density function, denoted by f(λ), and defined as 

.,jcos
2
1)(f

j

j́
j π≤λ<π−∑ λγ

π
=λ

∞=

−∞
  (2)  

Then, xt displays the property of long memory if the spectral density function has a pole 

at some frequency λ in the interval [0, π), i.e.,  

).,0[,as,)(f ** π∈λλ→λ∞→λ   (3) 

The empirical literature has focused on the case where the singularity or pole in the 

spectrum occurs at the 0 frequency, i.e., (λ* = 0). This is the standard case of I(d) models 

of the form: 

,...,1,0t,ux)L1( tt
d ±==−    (4) 

where d can be any real value, L is the lag-operator (Lxt = xt-1) and ut is I(0), defined for 

our purposes as a covariance stationary process with a spectral density function that is 

positive and finite at the zero frequency. 
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 Given the parameterisation in (4) we can distinguish several cases depending on 

the value of d. Thus, if d = 0, xt = ut, xt is said to be “short memory” or I(0), and if the 

observations are autocorrelated (i.e. AR) they are of a “weakly” form, in the sense that 

the values in the autocorrelations are decaying at an exponential rate; if d > 0, xt is said to 

be “long memory”, so named because of the strong association between observations far 

distant in time. If d belongs to the interval (0, 0.5) xt is still covariance stationary, while d 

≥  0.5 implies nonstationarity. Finally, if d < 1, the series is mean reverting in the sense 

that the effects of shocks disappear in the long run, contrary to what happens if d ≥ 1 

when they persist forever. 

There exist several methods for estimating and testing the fractional differencing 

parameter d. Some of them are parametric while others are semiparametric and can be 

specified in the time or in the frequency domain. In this paper, we use a Whittle estimate 

of d in the frequency domain (Dahlhaus, 1989) along with a testing procedure, which is 

based on the Lagrange Multiplier (LM) principle and that also uses the Whittle function 

in the frequency domain. It tests the null hypothesis: 

,dd:H oo =      (5) 

for any real value do, in a model given by the equation (4), where xt can be the errors in a 

regression model of the form: 

....,,2,1t,xzy tt
T

t =+β=    (6) 

where yt is the observed time series, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with 

a linear time trend (zt = (1, t)T), or any other type of deterministic processes. Robinson 

(1994) showed that, under certain very mild regularity conditions, the LM-based statistic 

:)r̂(  

,Tas)1,0(Nr̂ d ∞→→     (7) 
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where “ →d “ stands for convergence in distribution, and this limit behaviour holds 

independently of the regressors zt used in (6) and the specific model for the I(0) 

disturbances ut in (4). 

As in other standard large-sample testing situations, Wald and LR test statistics 

against fractional alternatives have the same null and limit theory as the LM test of 

Robinson (1994). Lobato and Velasco (2007) essentially employed such a Wald testing 

procedure, although it requires a consistent estimate of d; therefore the LM test of 

Robinson (1994) seems computationally more attractive. A semiparametric Whittle 

approach (Robinson, 1995) will also be implemented in the paper. 

 

3. Data and empirical results 

The series examined is the PFTS Ukrainian Stock Index. It is registered with the 

Ukrainian SEC stock exchange, which has been in operation since 1997 and currently is 

the largest marketplace in Ukraine. The PFTS index is calculated based on the results of 

trading. The daily trade volume is about $30–60 million. Approximately 220 companies 

are listed on the PFTS, with a total market capitalisation around $140 billion. We use 

daily data from January 9, 2007 to February 27, 2013. 

[Insert Figure 1 about here] 

 Figure 1 displays the original time series, along with the corresponding returns, 

obtained as the first differences of the log-transformed data, and also the corresponding 

correlograms and periodograms. The original series appears to fluctuate throughout the 

sample period, while the returns are very stable. The correlogram of the returns, however, 

has many significant values, even for some lags far away from zero, and the periodogram 

has the highest value at the zero frequency, which suggests some degree of long memory 

in the return series. 
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 As a first step we estimate a model of the form given by equations (4) and (6), 

with zt = (1,t)T, t ≥ 1, 0, otherwise, i.e., 

....,,2,1t,ux)L1(,xty tt
d

t10t ==−+β+β=   (8) 

where yt is the log-transformed price. 

We report in Table 1 the estimates of d in (8) for the three standard cases of no 

regressors in the undifferenced regression (i.e., β0 = β1 = 0 in (8)), an intercept (β0 

unknown and β1 = 0), and an intercept with a linear time trend (β0 and β1 unknown) along 

with the 95% confidence interval of the non-rejection values of d using Robinson (1994) 

parametric approach. 

 [Insert Table 1 about here] 

 The results are reported for the cases of both uncorrelated and autocorrelated 

errors. In the latter case, we assume first that ut is an AR(1) process, but then also model 

the disturbances following the more general specification proposed by Bloomfield 

(1973). His is a non-parametric approach that approximates ARMA models with only a 

few parameters. The t-values for the deterministic terms (not reported) imply that the 

model with an intercept is the most adequate specification for all three types of 

disturbances. The estimated coefficient for the fractional differencing parameter is 

slightly above 1 in all three cases and, more importantly, the I(1) hypothesis is rejected in 

favour of higher orders of integration. This implies that the underlying returns are 

characterised by long memory, with an order of integration of about 0.21 in the case of 

uncorrelated errors, and slightly smaller if the errors are autocorrelated. This implies that 

market efficiency does not hold in the Ukrainian stock market since there is some degree 

of predictability based on historical data. 

[Insert Figure 2 about here] 
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Next we examine the volatility of the series measured as its absolute and squared 

returns.1 Both series are displayed in Figure 2 along with their corresponding 

correlograms and periodograms. It can be seen that the sample autocorrelation values 

now decay very slowly, and the periodograms display large peaks at the zero frequency. 

This is clearly consistent with the I(d) process presented in Section 2 with a positive d. 

[Insert Tables 2 and 3 about here] 

Tables 2 and 3 provide the same information as Table 1 but for absolute and 

squared returns respectively. The former appear to be characterised by long memory in 

all cases, with the estimated values of d ranging from 0.245 (with white noise errors) to 

0.343 (Bloomfield disturbances). Slightly smaller values are obtained for squared returns 

(see Table 3), these ranging from 0.183 (white noise ut) to 0.310 (with Bloomfield 

autocorrelated errors). This evidence of long memory in the volatility of the series is in 

line with previous studies of other stock markets and suggests that other approaches 

based on autoregressive conditional heteroscedasticity models (ARCH, Engel, 1982;  

GARCH, Bollerslev 1986) should be extended to the fractional case (e.g., FIGARCH-

type models, Baillie, Bollerslev and Mikkelsen, 1996) when looking at stock market 

prices.  

The results presented so far are based on a parametric approach (though a 

nonparametric method, Bloomfield, was also implemented for the I(0) disturbances), and 

should therefore be taken with caution given the possibility of misspecification. 

Therefore, we also conducted the analysis using a semiparametric method where no 

functional form is imposed on the I(0) error term. In particular, we used a Whittle 

approached developed by Robinson (1995) and later extended by Velasco (1999), 

Velasco and Robinson (2000), Phillips and Shimotsu (2004, 2005), Abadir et al. (2007) 

                                                           
1 Absolute returns were employed by Ding et al. (1993), Granger and Ding (1996), Bollerslev and Wright 
(2000) and Gil-Alana (2003), whereas squared returns were used in Lobato and Savin (1998) and Gil-Alana 
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and others. This method is essentially a local ‘Whittle estimator’ in the frequency 

domain, which uses a band of frequencies that degenerates to zero. The estimator is 

implicitly defined by: 

,log12)(logminargˆ
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

m

s
sd m

ddCd λ (9)  

,0,2,)(1)(
1

2 →=∑=
= T

m
T

sI
m

dC s
m

s

d
ss

πλλλ    

where m is a bandwidth parameter, I(λs) is the periodogram of the raw time series, xt, 

given by: 

,
2

1)(
2

1
∑=
=

T

t

tsi
ts ex

T
I λ

π
λ  

and d ∈ (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995) proved that: 

,)4/1,0()ˆ( ∞→→− TasNddm do  

where do is the true value of d. This estimator is robust to a certain degree of conditional 

heteroscedasticity (Robinson and Henry, 1999) and is more efficient than other more 

recent semi-parametric competitors. 

[Insert Figure 3 and Table 4 about here] 

 Figure 3 displays the estimates of d for the return series and the absolute and 

squared returns, specifically the whole range of values of the bandwidth parameter along 

with the 95% confidence interval for the I(0) case. It can be seen that the estimated values 

are slightly above the interval in the case of returns and much higher for the two volatility 

series. Table 4 displays the estimates for some specific bandwidth parameters – these are 

significant and positive in all cases. 

                                                                                                                                                                             
(2005). 
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As a final step we examine whether there are any anomalies related to the days of 

the week, as extensively documented in the financial literature (Osborne, 1962, Cross, 

1973; French, 1980 and Gibbons and Hess, 1981). For instance, Osborne (1962) and 

Cross (1973) using data of the S&P 500 found that returns were lower on Mondays than 

on Fridays. A similar results was reported by Gibbons and Hess (1981) for the DJIA 

series and in other studies for a number of countries including Canada, Australia, Japan 

and the UK (Jaffe and Westerfield, 1985); France (Solnik and Bousquet, 1990); and 

South Korea, Malaysia, the Philippines, Taiwan and Thailand (Brooks and Persand, 

2001). 

[Insert Figure 4 and Tables 5 - 8 about here] 

 Figure 4 displays the PFTS index for each day of the week. It can be seen that the 

five series display a very similar pattern. Tables 5 -7 report the estimates of d for the 

three cases of white noise, autoregressive and Bloomfield disturbances respectively. 

Consistently with the results shown in Table 1, the estimates are above 1 in all cases. 

Their most interesting feature is that in all three cases the highest degrees of persistence 

are obtained for Mondays and Fridays, and the lowest for the mid-days of the week. 

Thus, stock market prices are more persistent on Mondays and Fridays than during the 

other days of the week, implying a higher degree of predictability of their behaviour on 

these days. The same evidence is obtained when using the semiparametric approach of 

Robinson (1995) and Abadir et al. (2007) (see Table 8 for some selected bandwidth 

parameters). 

[Insert Tables 9 and 10 about here] 

Finally, the analysis for the absolute and squared returns by day of the week (in 

Tables 9 and 10) also shows higher estimates of d for Mondays and Friday (especially 

Mondays) than for the other days of the week.  
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4. Conclusions 

In this paper we have examined the properties of the Ukranian stock market by estimating 

the order of integration of the PFTS series, daily, from January 9, 2007 until February 27, 

2013. The main findings are the following. First, the log-prices series is highly persistent, 

with an order of integration significantly above 1, which implies that stock returns are 

characterised by long memory behaviour. Second, the same feature is detected in the 

absolute and squared returns which are used as a measure of volatility. Finally, the 

analysis by day of the week produces evidence of higher degrees of dependence on 

Mondays and Fridays than on the other days of the week. 
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Figure 1: Time series plots, correlograms and periodograms 
i) PFTS stock market prices 

 

ii) Stock market returns 
 

iii) Correlogram of the stock market returns* 
 

iv) Periodogram of the tock market returns** 
 

*: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
**: The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Figure 2: Absolute and squared returns, correlograms and periodograms 

Absolute returns Squared returns 
  

Correlogram absolute returns* Correlogram squared returns* 
  

Periodogram absolute returns** Periodogram squared returns** 
  

*: The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
**: The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Figure 3: Estimates of d based on the semiparametric approach of Robinson (1995) 

i) Stock market returns 
 

ii)  Absolute returns  
 

iii)  Squared returns 
 

The horizontal axis concerns the bandwidth parameter while the vertical one refers to the estimated value of d. 
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Table 1: Estimates of the fractional differencing parameter in the log of PFTS series 
 No regressors An intercept A linear time trend 

White noise 1.009 
(0.979,   1.043) 

1.218 
(1.181,   1.261) 

1.218 
(1.181,   1.261) 

AR(1) 1.381 
(1.321,   1.450) 

1.095 
(1.049,   1.148) 

1.095 
(1.049,   1.148) 

Bloomfield 1.009 
(0.960,   1.068) 

1.101 
(1.060,   1.154) 

1.101 
(1.061,   1.154) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
 
Table 2: Estimates of the fractional differencing parameter in the absolute returns 

 No regressors An intercept A linear time trend 

White noise 0.256 
(0.232,   0.283) 

0.245 
(0.222,   0.273) 

0.243 
(0.218,   0.271) 

AR(1) 0.341 
(0.303,   0.382) 

0.326 
(0.287,   0.373) 

0.324 
(0.283,   0.374) 

Bloomfield 0.359 
(0.312,   0.417) 

0.343 
(0.280,   0.404) 

0.342 
(0.281,   0.404) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
 
 
Table 3: Estimates of the fractional differencing parameter in the squared returns 

 No regressors An intercept A linear time trend 

White noise 0.186 
(0.163,   0.211) 

0.183 
(1.159,   0.209) 

0.180 
(0.157,   0.207) 

AR(1) 0.276 
(0.241,   0.315) 

0.272 
(0.237,   0.312) 

0.270 
(0.234,   0.310) 

Bloomfield 0.322 
(0.271,   0.372) 

0.310 
(0.274,   0.367) 

0.310 
(0.261,   0.381) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
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Table 4: Semiparametric estimates of d: Robinson (1995) and Abadir et al. (2007) 
Bandwidth number Stock market returns Absolute returns Squared returns 

10 0.102 0.215 0.227 
20 0.093 0.36 0.306 
25 0.194 0.334 0.326 
30 0.179 0.267 0.290 
35 0.243 0.305 0.319 

39*** 0.299 0.328 0.317 
45 0.299 0.301 0.262 
50 0.245 0.339 0.287 
60 0.241 0.405 0.324 
70 0.192 0.450 0.385 
80 0.205 0.492 0.429 
90 0.200 0.433 0.334 
100 0.161 0.423 0.307 

***: Bandwidth number corresponding to (T)0.5. 
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Figure 4: PFTS by day of the week 

i) Mondays 
 

Ii) Tuesdays 
 

iii)  Wednesdays 

 

iv)  Thursdays 

 

v)  Fridays 
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Table 5: Estimates of the fractional differencing parameter with white noise errors 
 No regressors An intercept A linear time trend 

Monday 1.017 
(0.952,   1.100) 

1.187 
(1.124,   1.366) 

1.187 
(1.124,   1.365) 

Tuesday 1.016 
(0.951,   1.099) 

1.144 
(1.085,   1.219) 

1.144 
(1.085,   1.218) 

Wednesday 1.013 
(0.949,   1.096) 

1.135 
(1.077,   1.208) 

1.135 
(1.077,   1.208) 

Thursday 1.013 
(0.948,   1.095) 

1.164 
(1.102,   1.244) 

1.164 
(1.102,   1.243) 

Friday 1.014 
(0.949,   1.097) 

1.212 
(1.146,   1.296) 

1.212 
(1.146,   1.295) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
Table 6: Estimates of the fractional differencing parameter with AR(1) errors 

 No regressors An intercept A linear time trend 

Monday 1392 
(1.280,   1.552) 

1.253 
(1.130,   1.413) 

1.252 
(1.130,   1.408) 

Tuesday 1.387 
(1.266,   1.542) 

1.222 
(1.121,   1.353) 

1.221 
(1.121,   1.350) 

Wednesday 1.376 
(1.258,   1.528) 

1.207 
(1.105,   1.327) 

1.206 
(1.105,   1.324) 

Thursday 1.375 
(1.256,   1.526) 

1.174 
(1.069,   1.293) 

1.173 
(1.069,   1.293) 

Friday 1.384 
(1.266,   1.537) 

1.228 
(1.095,   1.385) 

1.227 
(1.095,   1.380) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
Table 7: Estimates of the fractional differencing parameter with Bloomfield errors 

 No regressors An intercept A linear time trend 

Monday 1.012 
(0.911,   1.147) 

1.242 
(1.123,   1.400) 

1.242 
(1.123,   1.402) 

Tuesday 1.002 
(0.901,   1.147) 

1.231 
(1.111,   1.397) 

1.230 
(1.111,   1.386) 

Wednesday 1.003 
(0.902,   1.046) 

1.213 
(1.091,   1.366) 

1.212 
(1.091,   1.375) 

Thursday 0.991 
(0.906,   1.132) 

1.177 
(1.061,   1.321) 

1.177 
(1.061,   1.319) 

Friday 1.001 
(0.894,   1.131) 

1.219 
(1.102,   1.380) 

1.218 
(1.101,   1.377) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
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Table 8: Semiparametric estimates of d: Robinson (1995) and Abadir et al. (2007) 
Bandwith nb. Monday Tuesday Wednesday Thursday Friday 

5 0.130 0.128 0.138 0.154 0.138 
10 0.500 0.500 0.500 0.500 0.500 
15 0.101 0.089 0.093 0.106 0.105 

18*** 0.096 0.093 0.096 0.101 0.097 
20 0.084 0.093 0.100 0.095 0.085 
25 0.181 0.191 0.100 0.200 0.189 
30 0.186 0.182 0.191 0.198 0.192 

***: Bandwidth number corresponding to (T)0.5. 
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Table 9: Estimates of the fractional differencing parameter in the absolute returns 

 No regressors An intercept A linear time trend 

Monday 0.281 
(0.212,   0..363) 

0.255 
(0.183,   0.338) 

0.253 
(0.180,   0.339) 

Tuesday 0.257 
(0.181,   0.341) 

0.238 
(1.171,   0.322) 

0.235 
(0.161,   0.322) 

Wednesday 0.245 
(0.182,   0.323) 

0.224 
(0.162,   0.302) 

0.218 
(0.151,   0.300) 

Thursday 0.206 
(0.143,   0.281) 

0.187 
(0.128,   0.261) 

0.182 
(0.122,   0.258) 

Friday 0.248 
(0.182,   0.329) 

0.225 
(0.163,   0.305) 

0.221 
(0.158,   0.303) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
 
 
 
Table 10: Estimates of the fractional differencing parameter in the squared returns 

 No regressors An intercept A linear time trend 

Monday 0.245 
(0.172,   0..325) 

0.236 
(0.166,   0.326) 

0.233 
(0.150,   0.326) 

Tuesday 0.203 
(0.134,   0.291) 

0.198 
(1.129,   0.286) 

0.193 
(0.122,   0.284) 

Wednesday 0.206 
(0.147,   0.289) 

0.203 
(0.142,   0.283) 

0.198 
(0.134,   0.281) 

Thursday 0.185 
(0.121,   0.260) 

0.181 
(0.121,   0.256) 

0.177 
(0.111,   0.254) 

Friday 0.196 
(0.126,   0.289) 

0.191 
(0.123,   0.277) 

0.190 
(0.1119,   0.276) 

   The values in parentheses give the 95% confidence band for the non-rejection values of d. In bold, the 
values corresponding to significant deterministic terms. 
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