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Abstract

Modelling of biochemical systems has received consideratiention over the last decade
from bioengineering, biochemistry, computer science,raathematics. This thesis inves-
tigates the applications of computational techniques toputational systems biology, for
the construction of biochemical models in terms of topolagy kinetic rates.

Due to the complexity of biochemical systems, it is natusat@nstruct models repre-
senting the biochemical systems incrementally in a piesewianner. Syntax and seman-
tics of two patterns are defined for the instantiation of congnts which are extendable,
reusable and fundamental building blocks for models coitipas We propose and imple-
ment a set of genetic operators and composition rules tdetagsues of piecewise com-
posing models from scratch. Quantitative Petri nets aréveddoy the genetic operators,
and evolutionary process of modelling are guided by the asition rules.

Metaheuristic algorithms are widely applied in BioModelgimeering to support intel-
ligent and heuristic analysis of biochemical systems imgeof structure and kinetic rates.
We illustrate parameters of biochemical models based ocHgimical Systems Theory,
and then the topology and kinetic rates of the models arepo&ted by employing evo-
lution strategy and simulated annealing respectively. ¥ hgbrid modelling framework
is proposed and implemented for the models constructiono Aewristic algorithms are
performed on two embedded layers in the hybrid frameworkowter layer for topology
mutation and an inner layer for rates optimization. Morepvariants of the hybrid piece-
wise modelling framework are investigated. Regarding ffigixy of these variants, various
combinations of evolutionary operators, evaluation gatand design principles can be
taken into account. We examine performance of five sets ofahants on specific aspects



Xi

of modelling. The comparison of variants is not to explicghow that one variant clearly
outperforms the others, but it provides an indication ofstdaring important features for
various aspects of the modelling. Because of the very heampatational demands, the
process of modelling is paralleled by employing a grid emwinent, GridGain. Applica-
tion of the GridGain and heuristic algorithms to analyzedmyical processes can support
modelling of biochemical systems in a computational manmich can also benefit math-
ematical modelling in computer science and bioengineering

We apply our proposed modelling framework to model biocloaingystems in a hy-
brid piecewise manner. Modelling variants of the framewar& comparatively studied
on specific aims of modelling. Simulation results show thatrmodelling framework can
compose synthetic models exhibiting similar species heavgenerate models with al-
ternative topologies and obtain general knowledge abouibi@delling features.
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Chapter 1

Introduction

This chapter introduces the motivation of the researchsgmes the contributions of the

investigation and summarizes the contents of the chaptehss thesis.

1.1 Motivation

Engineering models of biological systems has been invastijrecently by employing
computational methodologies in BioModel Engineering dpstematically designing, con-
structing and analyzing characteristics of target biaahsystems. BioModel Engineer-
ing [Brei 10] is inspired by concepts from software engimggand computer science, and
it is an interdisciplinary science at the interface of bgpengineering, mathematics and
computing science. Intracellular molecular processeg I@en examined and modelled
for explaining observations of the biological systems @dgcting behaviour exhibited by
the systems.
Systems biology and synthetic biology are two major studisdiplines of BioModel

Engineering. In the former, research focuses on the asabfsnolecular interactions in

biological systems at systematic level, for discoverirgg'ininciples of kinetic laws’ which



govern biological systems exhibiting behavior. In thedgtstudy focuses on the design of
new biological systems from scratch to obtain specific fiometlities.

The aims of synthetic biology are to synthesize biologicahplex and synthetic sys-
tems displaying novel functionalities that do not exist ature. Synthetic biology invents
new biological entities which interact with each other itifeal biological systems con-
sisting of designed properties, by utilizing knowledge xjperimental biology. Therefore,
it is essential to obtain primary knowledge of biochemicalrking mechanisms. Sys-
tems biology tries to discover biological patterns by systgcally analyzing molecular
interactions within intracellular environment, espéegiain metabolic, signalling and gene
regulatory networks.

Moreover, because modelling of biological systems in systdiology can be ap-
proached by top-down and bottom-up approaches, topolafiesodels can be built up
in alternative structures compared to the experimentas.ore other words, modelling
of biological systems in systems biology is able to validatperimental conclusions and
discover new biochemical patterns which are importantgliaation of synthetic biology

The maotivation of this work is to apply techniques from congsiscience to develop
a methodology enabling the behaviour driven constructfidnachemical models in terms
of topology and kinetic rates, by intelligently and heudally reusing components from
a user predefined library. The work in this thesis aims togbtire interests of communi-
ties of software engineering and mathematics to a muliplisary area, ‘intelligently and
heuristically modelling biochemical systems in systenwddgy’, which would gain more

and more attentions from academia and industry in neardutur



1.2 Contributions
The main contributions of our research can be summarizeollas/t:

1. We have defined two basic patterns for instantiating ekble and reusable biologi-
cal components in syntax and semantics, see Chapter 3. hesearch, biochemical
models under construction are also based on the compomnetdsiiated from these
patterns. The instantiated components can help improvstreaion of a founda-

tional bio-bricks library in synthetic biology and systebislogy.

2. We have proposed and implemented genetic operators angosition rules for
piecewise composing models of biochemical systems, seepté@td. Moreover,
since components and models manipulated by the operatdmaubas are presented
in Petri nets, our study addresses the evolution of quaingt&®etri nets and could
thus be applied to stochastic and hybrid Petri nets as walbasnuous Petri nets,
which can benefit mathematical modelling in engineeringyoter science and bio-

engineering;

3. We have implemented modelling of biochemical systems simaulated annealing
based one dimension hybrid modelling environment in teritsmology and kinetic
rates separately, see Chajter 4. A global search mecharasmapplied to the pro-
cesses of piecewise constructing the topology and finedguhmkinetic rates, driven
by target models behaviour. The study of piecewise construcs an implementa-

tion of fitting parameters of biochemical models;

4. We have adopted a hybrid approach for the model construstiterms of topology

and kinetic rates, and studied variants of the hybrid madgfpproach;



(a) We have proposed a two dimensions hybrid piecewise rioglélamework, in
which two heuristic algorithms are applied to manipulatgology and kinetic

rates of a biochemical model on two switchable layers raspdy;

(b) We have investigated different modelling variants @& bHybrid approach, and
summarized performance of these variants with the aim oérstanding ad-
vantage and disadvantage of compared variants focusingemifis modelling

aspects, see Chapfieér 4;

(c) We have applied the hybrid piecewise modelling framétomodel signalling
pathways of biochemical systems, see Chapter 6. Simusatesults and analy-
sis show it is feasible to apply our modelling framework teeamble alternative
models exhibiting similar species behaviour to desiredsan¢arget signalling
pathways, and it is possible to perform genetic operatark/eng models can-
didates. In addition, a tradeoff can be approached for &mtrtopology con-

struction and kinetic rates optimization while composingchemical models.

5. We have parallelized the hybrid piecewise modelling gsscfor improvement of
composing models, where topologies and kinetic rates ofatsathder construction

can be manipulated in parallel, see Chabpter 5;

6. We have developed two extendable components and moledsidis in a MySQL
database, see Chaptér 3. The database is integrated whlihid piecewise mod-
elling approach on a platform which is developed by Java parogning language

with an user-friendly interface, see Appendix B.



1.3 Publications

Parts of this thesis have been summarized and publishe@rr@éaewed conferences dur-

ing the course of this thesis.

e Z. Wu, Q. Gao, and D. Gilbert. Target driven biochemical r@tweconstruction
based on petri nets and simulated annealing. In: Procegdirtge 8th International
Conference on Computational Methods in Systems Biology 3342, ACM, New
York, NY, USA, 2010.

e Z.Wu, S. Yang, and D. Gilbert. A hybrid approach to piecewrsedelling of bio-
chemical systems. In: C. Coello Coello, V. Cutello, K. DebF8rrest, G. Nicosia,
and M. Pavone, Eds., Parallel Problem Solving from Natur@SW XII, pp. 519-
528, Springer Berlin Heidelberg, 2012.

1.4 Overview of Chapters

This thesis is organized as follows:

Chaptei 2 introduces the background of modelling biochehsigstems in this study
and describes the main aspects of biochemical models witbsgmonding presentations in
silico. We examine modelling issues related to the topolmgy kinetic rates, and present
popular simulators.

Chapte( B firstly defines binding and unbinding patternsiméd syntax and semantics
for instantiation of biological components and compositad models. Two libraries based
on a MySQL database technique are designed and implementaeéderve instantiated

components and constructed models during the process aflenmmzmposition. Then, three



genetic composition operators and a set of compositiors rarle proposed and illustrated
with demonstration examples. After fine tuning models bydbeaposition operators and
rules, manipulated models are studied to ensure generatddlsnin Petri nets are with

non-conflicting entities names, connective structureswamgue components.

Chaptei 4 proposes a modelling framework with differentrityinethodologies. The
hybrid modelling framwork has focused on construction ofiels by manipulating topol-
ogy or optimizing kinetic rates in an independently or hgbrianner.

Chaptefb develops introduce a grid technique to the two nioas hybrid piecewise
modelling framework to parallel the modelling process. Mitidg variants of the proposed
hybrid modelling approach are illustrated. Evaluation@ihposed models is investigated
by including pure Euclidean distance function and a rewand penalty function in an
objective function. Exploration of topologies of modelsigeated by our hybrid modelling
approaches is examined with quantitative and qualitatigthods in this chapter.

Chaptei b presents the application of our two dimensionsithylecewise modelling
approach and modelling variants to model biochemical pagisw Simulation results and
statistical analysis show that it is feasible to piecewsastruct alternative models exhibit-
ing similar species behaviour to the ones of target biocbalsiystems.

Chaptef¥ summarizes the research, draws conclusions froregearch and discusses

further research ideas raised from this thesis.



Chapter 2

Background of Modelling Biochemical
Systems

2.1 Introduction

This chapter introduces the system concept of modellinghamical systems in Sec-
tion[2.2. Section 2]3 gives an illustration of the aims anakcfions in systems biology
and synthetic biology which are two major research areasa¥iBdel Engineering. Two
different but complementary modelling strategies, topAad@nd bottom-up approaches,
are illustrated in Section 2.4 with related works of moahgjlof biochemical systems. In
Sectior 2.5, parameter variables of biochemical systerdeninvestigation are shown by
employing the Biochemical Systems Theory which represtr@diochemical processes
in a mathematical way.

Biochemical systems are represented and investigatedindde community of com-
putational biology. In Sectidn 2.6, we introduce three welined and implemented com-
puter based biochemical model formats, Petri Nets, SBMLR&Ystems, which are in a
graphical presentation or a XML based format. We presentgopular modelling simu-

lators in communities of systems and synthetic biology fodeis construction, analysis,



optimization and simulations in SectibnP.7. All these datars can work with biochemi-
cal models constructed in aforementioned biochemical ifod®aats by import and export
functionalities.

In Sectior 2.B, we present implementation of metaheusigtiecnodelling of biochemi-
cal systems, with a brief introduction of classification ahdracteristics of different algo-
rithms in the metaheuristics. Since we mainly apply two atgms, simulated annealing
and evolution strategy, to our proposed hybrid modellimgrfework, the basic principles
of these two algorithms are illustrated. Then we reviewteslavorks of applying the simu-
lated annealing and evolution strategy to develop modaistsires and to optimize kinetic
rates.

Sectior 2.D gives a brief summary of the contents of this @rap

2.2 Brief History

Modelling biochemical systems has been investigated widelcomputational biology,
especially in systems biology. Constructing models of bemical systems can be dated
back to three academic periods from theory preparationrtodtion of system concept and

development of modelling in systems biology. Details dresttated as follows.

e Before 1940s, preparation of theory foundation

Since 1854, Claude Bernard used a phr&&géeu intérieur (the environment within
in his works to refer to the extra-cellular fluid environmeititich is the physiological
capacity that provides protective stability for the tissaad organs of multicellular

living organisms. Furthermore, Bernard summarized it #eviong [Bern 74]:

The fixity of the milieu supposes a perfection of the orgarssich that the



external variations are at each instant compensated foeguntibrated....
All of the vital mechanisms, however varied they may be, reways one
goal, to maintain the uniformity of the conditions of life the internal
environment .... The stability of the internal environmisrthe condition

for the free and independent life.

Walter Bradford Cannon developed the ideaMifieu intérieur into Homeostasis
(mechanistig[Cann 32] in his book he wisdom of the Bodg 1932, and later Can-

non described the homeostasis systems as follows [Cann 35]:

A homeostatic system is an open system that maintains itstate and
functions by means of a multiplicity of dynamic equilibrigmigorously

controlled by interdependent regulatory mechanisms.

Since the concept d¥lilieu intérieur has been suggested by Bernard, it is possible
to obtain the foundation of understanding the internal piggy of cellular and ex-
tracellular basic systems. Moreover, dynamics of homeasiiathe communication

systems is benefit from the concept\dilieu intérieur with its developments.

From 1950s to 1980s, formalization of systems concept

Systems biology is a new interdisciplinary area in last decfar most biologists,
mathematicians, computer scientists and engineers, butahcept of system was
used to describe the application of systems and controkyhiobiology around
1960s. In 1960, the first computer model of the heart pacemaks presented
by Denis Noble[[Nobl 60]. Norbert Wiener defin€yberneticdWien 65] and the

mathematical formulation description of physiologicastgms in 1965. Then, the
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concepts of cybernetics and negative feedback were intextiinto the nervous sys-
tem and nonliving machines. Later, Ludwig von Bertalanfied to construct a
general systems theory [Bert/68] in 1968. But the theory wasgeneral and not
devised rigorously as a scientific discipline. Moreoveg toncepts of robustness
and feedback control were already discussed and investigatiely and extensively

at that time([Kita 02c].

Complex molecular systems, for instance metabolic coatralysis and biochemical
systems theory, were studied by employing several appesaftbm the 1960s to
1970s/[Kacs 73, Sava [76]. Quantitative modelling biololgicacesses was achieved
by progressing biochemical research throughout the 1986ki[88,/Mora 98]. In
1989, Christopher Langton and other scientists develdpeaties for living systems
by claiming concept of artificial life [Lang 89], but the thvées focused on the area

of engineering not the biological sciences.

In this period, genetic analysis of biochemical systems ateicular biology devel-
oped quickly, with basis of examining functions of composiaticellular level by uti-
lizing deductive approaches. But interactions and biogbaielationships among

components, such as genes and proteins, were not the sulljecientific research.

e After 1990s, development of modelling biochemical systeniis systems biology

Traditional study of genomics has focused on details ofcstpects of the ge-
nomic information, for instance DNA sequence or structusfter the completion
of the whole genome sequencing and implementation of tghughput measure-

ment technologies [Kita 02c], the community began to studgetling at systematic
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level. Functional genomics was developed under the framewafomolecular biol-

ogy. Information about functions and interactions amorgy dkenes, proteins and
other compounds can be obtained from the vast wealth of datluped by genomic
projects, for instance the Human Genome Project. Recehéynain subjects under
examination among these data are gene transcription|dtemsand protein-protein

interactions.

There are two distinct branches in the study of systems gyolknowledge discov-
ery and simulation-based analysis. The former one abstiaehidden patterns from
huge quantities of experimental data and the latter one sgiotheses with mod-
els in silico experiments [Kita 02b]. Regarding differefsgtween research of static
aspects of the genomic information and study of dynamicsietional genomics,
more realistic models can be constructed and analyzed byogmg high perfor-
mance computing techniquessilico to obtain knowledge from large quantity and

high quality data.

Therefore, systems biology has attracted much attentitmeiiscientific community
since 1990s, accompanying completion of various genonoiepts (such as genome
sequencing projects). High-throughput experimental oattalso provide great op-
portunities to investigate these interactions among camgs inside the cells, sup-
porting the rapid development of systems biology. Thusc@ss inside cells is stud-
ied by employing systems biology discipline in post-gentsrera, which has been
investigated on networks, states, and dynamics [Kita 02a].

General research in systems biology can be particularizedfellowing areas: re-

search of molecular/biochemical/cellular biology, corgonal studies and soft-

ware tools, analysis of dynamics of the system, technogofgiehigh-precision and
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comprehensive measurements. Furthermore, researchysténslevel understand-

ing in systems biology could be classified into four partddki2c]:

1. System Structure mainly involves the network and physical structure of the
system. For the network of gene regulation, metabolism athktransduc-
tion, structure study should be on elements, interactiomsng elements, and
parameters related in the system. There were methods oledioruon the net-
work modelling in early research stage, but these methods @fehe problems
of lacking precise data and knowledge for precision sinnutatAbove problem
was addressed later by the appearance of high-through@mgurenents. But
problems of structure study still exist, such as informatass and large noisy

data for system structure modelling.

2. System Behaviour could be understood in the analysis of the system from
steady state to dynamic state. The number of parameterstigatd would

affect the known level on the system behaviour.

3. System Control is employed in system biology after understanding systemsst
ture and behaviour. Drugs usage and treatment methods mafittfeom sys-
tem control, for example controlling the drug absorptiorpbysical interven-

tion.

4. System Design would be the application stage of system biology. It is passi
to construct models of biological systems for achievingcggdeaims, such as

curing diseases, by investigation of key issues of disedagbée models.
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While attempting to reveal working mechanisms in cellulad &xtracellular environ-
ment in biology, it is important to have the system concepbnigenomics to post ge-
nomics eras, investigated biological research is movea fygenomic level to systematic
level. Overall investigation of biology can be achieved bydalling biochemical systems
in systems biology. The study is supported by the state cathexperimental techniques

in wet-lab and analytical simulation tools in dry-lab.

2.3 Systems Biology and Synthetic Biology

Systems biologyl [Kita 024, Klip 05, Ferr 09, Valll10, Joyn Mach 11] and synthetic bi-
ology [Benn 05| Andr 06, Hein 06, Mukh 09, Khal!10, Step [12,0/bE] are two primary
application areas of BioModel Engineering. The former ongsao construct and analyze
biological models for illustrating observed charactécsof the systems and predicting be-
haviour of the experimental systems. The latter one attetopdesign and create artificial
biological systems from scratch for obtaining novel andcgefunctionalities in these
synthetic systems.

In systems biology, computational methodologies and higbughput experimental
data are employed to model biochemical processes, ingudietabolic pathways, sig-
nalling pathways and gene regulatory networks. Applicetiof systems biology include
validation of assumptions of experimental investigationsvo or in vitro, analysis of mul-
ticellular or intracellular interactions, explanationtwbchemical phenomena observed in
wet-lab, and prediction of biochemical systems behaviathr regard to biological knowl-
edge. Moreover, discovering of biochemical patterns isiatun systems biology. Re-
garding experimental restrictions in wet-lab, principdégoverning molecular interactions

which support life are very difficult to observe and obtairaBinations and conclusions of
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biochemical reactions patterns from application of systérology can enable researchers
to explore functions of biochemical entities within mufttfa-cellular environment, and
can support further research in synthetic biology to deargjficial biological systems and
to approach desired functionalities for specific requiretae

In synthetic biology, biochemical complex of artificial bgical systems are synthetic
from scratch to generate novel desired functionalitiesdioanot exist in nature. Thus life
forms can be engineered with specific aims to sort out comgretblems in our real world,
for instance pollution issues in environment protectiarergy production and therapy of
human disease. Principles of biochemical reactions inobiohl systems are obtained
from experimental investigation (e.g. wet-lab) or compiotaal simulations (e.g. dry-lab).
Therefore, different hierarchy of biological systems (sas individual molecules, whole
cells, tissues and organisms) can be engineered with gafdae obtained life principles
to design ‘artificial life’ in a rational and systematic mamn

Systems biology and synthetic biology focus on differemtli@ation areas of engineer-
ing biological systems, with attempts to validate, obtaid atilize biological knowledge.
Although different motivations of studying biological $gms exist in these two interdisci-
plinary subjects, exploration of life patterns in systenadgy and utilization of biological
principles in synthetic biology, it is essential for bottbgacts to understand details of bio-
logical systems at a systematic level for revealing biodbahprinciples forming our living

world.

2.4 General Modelling Approaches

Information on all individual parts and interactions in themical systems is required for

systems exhibiting behaviour and functions. Modelling @fchemical systems can be
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approached by utilizing two separate but complementagyesires: top-down and bottom-
up approaches.

The two approaches focus on discovering mechanisms anclgdas that underlie cell
function and formalizing meaningful biological processesells. In the top-down ap-
proach, a biological cellular system is reduced systeralfificntil essential parts remain
in a minimal cellular environment. In the bottom-up apptoaa whole or an aspect of
a target biological system is composed from componentsreftre, the top-down based
computational modelling approach simplifies the biolog®gstems and the bottom-up
based modelling approach complexifies the biological pypioal units. Bruggeman et
al. provided more details about classification of the topsd@and bottom-up approaches,
indicating the challenges faced by modelling in systemkland discussing limitations

of these two approaches which have already led to fruit&daleries|[Brug 07].

2.4.1 Top-down approach

In the top-down approach, a large biochemical system isyaedland decomposed for
discovering molecular mechanisms. Then these discoveehamisms are utilized to
determine correlations between concentrations of moéscuBiological assumptions are
generated and tested in further biochemical analysis créxpnts.

The top-down based studies on cell interactions deal withelalatasets and aim to
obtain knowledge of biochemical systems behaviour at sy$éeel. Discoveries of be-
havioural patterns can support the prediction of bioldgiwachanisms [Tayl 03, [hme 04]
and functional processes [Tana 04, Beye 06].

With respect to large omics data being ready for implemariatf top-down approach,

advantages of top-down approach based modelling are ctorptef analysis at genome
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level, and biochemical issues (such as metabolome, fluxtrarescriptome and/or pro-
teome) can be also tackled [West 04]. Thus, structures ahtblecular networks can also
be identified [[Khol 02| VIad 04] and values of parameters inegaetworks can be de-
termined [Mole 03 Krem 04], by employing the top-down dtres based modelling and

analysis of biochemical systems.

2.4.2 Bottom-up approach

In the bottom-up approach, basic components and relevésrmation (such as kinetic
laws of biochemical reactions) are utilized and integradg@ther from scratch, for discov-
ering biochemical patterns within a whole system. Thusctional properties of biochem-
ical systems are inferred from individual components aed thteractions. The bottom-up
approach formulates the interactions among componentsuib-&ystem by indicating the
interactive process, for instance enzymatic reactionsnTiiteractions among components
from different sub-systems enable the composed systemhibiekehaviours which are
compared and validated with the target ones from experiahéata. Therefore, small sys-
tems can be composed into a complex whole model for repiiegear entire biochemical
system in a bottom-up based construction manner.

Some concrete biochemical pathways have been studied bipgngpbottom-up ap-
proach in experimental examination: signaling network dsineam of the epidermal growth
factor receptor [Khol 99, Suen 04, Kiya|06], modelling of treahcarbon metabolism in Es-
cherichia coli[Krem 01, Schm 04, Bett/06], and Trypanosomedi [Albe 05].

Regarding difference of resources for modelling of biocloainsystems by utilizing
bottom-up approach, topologies of models have been takemactount for illustrating

concrete stoichiometric structures of biochemical systdmsome research, experimental
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examination enables precise determination of the kinetraqpeters and enzymatic prin-
ciples for the investigated systems. Moreover, fitting kmparameters by the bottom-
up approach can be supported with previous modelling irgesdns in literature review.

Therefore, some studies based on a bottom-up approach caworgeprecise than other

approaches on modelling of biochemical systems.

2.5 Parameters of Biochemical Models

In order to study the chemical processes in living organjdomschemistry is employed
to investigate the principals of life. All the living orgams and processes are governed
by the laws of biochemistry. Biochemical processes supihatcomplexity of life, by
controlling information and energy flow through biochenhisiginalling and metabolism.
Therefore, the structures, functions and interactionstifilar components are studied in
biochemistry. Furthermore, biochemical processes ar@ megiearch targets, rather than
individual molecules such as proteins, carbohydratedermuacids and other biochemical
entities.

Mike Savageau developed biochemical systems theory (B&hgilate 60s for mathe-
matical modelling of biochemical systems, based on orgliddferential equations (ODE),
in which biochemical processes are represented using gawegxpansions in variables
of the system [Sava 69a, Sava 69b, Sava 70]. One of major &dpemof implementation
of the BST is that a set of equations can be set up without keayd of exact mecha-
nism of each reaction in the model; moreover, biochemicalet®can be designed after
identifying the reactants with corresponding reactiomal eegulatory interactions.

Models of biochemical systems are composed from intergsfpecies, whose dynamic

evolution is determined by the occurrence of biochemicattiens. Species investigated
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in this thesis are the protein or protein complex which wakeactants involved in bio-
chemical reactions. A complex is grouped molecular spesiesh as a product of a protein
binding to an enzyme which is also a protein. A biochemicatietds fully characterized
by the initial amount of each molecular speciés(l > i > n) and the description of the
biochemical reactions; (1 > ¢ > m) with their kinetic rate laws [Ball 10]. In biochemical
models, the production or consumption of reactants areridbesicby the biochemical reac-
tions, presenting the regulations among these reactaimash@&mnical reactions involve zero
or more molecular species, while the species can be eithetargs or products. Stoichio-
metric coefficients associated with biochemical reactgpexify the number of molecules
that are consumed or produced for each molecular specielsy@a/in the reactions.
Parameters of a biochemical model can be introduced in geimeutilizing a definition

of dynamics of an involved species in the model. The reptaesien of the dynamics is

given by a differential equation as follows.

dX;
dt

= Y55 - L X (2.5.1)

where X; represents one species of the model, for instance metlgoliicentrations,
protein concentrations or levels of gene expressjaepresents the biochemical reaction
affecting the dynamics of the specigs; indicates the stoichiometric coefficient; indi-
cates rate constants; affigi stands for kinetic orders.

Models representing power-law based biochemical modesddferent from other
ODE models. In power-law models, kinetic orders can be mbeger and negative values.
For instance, if there is an inhibition, a negative kinetiday indicates the inhibition on the
dynamics of species by other species. Thus, power-law basdéls are much more flexi-

ble than other types of models for reproduction of non-liitgaf the biochemical models;
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and recently different kinds of biochemical models (met@hmathways, signalling path-
ways and gene regulatory networks) are modelled by empioyower-law expansions.
Mass-action kinetics and Michaelis Menten kinetics arewiaely used power-law kinet-
ics: Mass-action kinetics takes kinetic reaction rate asopqgrtional value to the amounts
of reactant and a kinetic constant; whereas Michaelis Mekiieetics relates the rate of
enzymatic reactions to the concentration of a substratenmodel. But it should note that
the Michaelis Menten kinetics only holds at the initial sagf a reaction before the con-
centration of the product is appreciable [Brei 08].

Parameters defined in Equation 215.1 are dynamic variabitéshvenable biochemi-
cal models exhibiting behaviour (dynamics of involved segt In this thesis, we are
interested in applying computational methodologies toreggh and optimize these pa-
rameters by performing evolutionary modelling of biocheahsystems. We take topology
and kinetic rates of a biochemical model to be target ingastid parameters, on which our

proposed hybrid modelling framework works.

2.6 Representation of Biochemical Systems in Silico

There are different methodologies employed to describehgimical systems in computa-
tional biology. In this chapter, we briefly introduce seVgrapular mathematical method-
ologies in communities of systems and synthetic biologyilfostrating biochemical pro-

cesses in cellular environment.
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2.6.1 Petri Nets

Preliminary qualitative and quantitative analysis of Ihiemical systems have been very
difficult to be approached, due to inherited complexity obdbiemical process. Petri
nets theory/[Mura 89] has been proposed for modelling biotb&l systems, for instance
metabolic pathways (including enzymic cascades and sigtierginding of ligands to en-
zymes).

Michael C. Kohn and William J. Letzkus applied the graphettyePetri nets to illustrate
a model of glycogen metabolism in 1983, by implementing f@roperations on a graph
of given network which leads to the identification of feedbatetabolites and enzymes
regulating the feedback. The systemic properties are sualated from the purely local
regulation of individual enzymes [Kohn 83]. Venkatramand¥dddy and other researchers
focused on tackling problems of quantitative analysis ofabelic pathways [Redd 93,
Redd 96] in the 1990s. Research of applying Petri nets t@sept biochemical processes
and indication of current research difficulties of constingbiochemical pathways by Petri
nets can be referred to [Pelel 05, Mats/06, Chao 07, Bald 10].

Moreover, many extensions of Petri nets, for instance celhtimed, stochastic, con-
tinuous, hybrid, hierarchical, functional Petri nets, édeen developed and applied to
different scientific disciplines for both qualitative andantitative analysis. Regarding
the versatility of different Petri nets extensions, theriRetts based modelling formalism
has been utilized for modelling of biochemical systems me¢htypes of pathway<]:
metabolic pathways [Kffn 00, Zeve 03, Koch!05], signalingwmrks [Sack 06, Chen 07,
Brei 08, Hard 08]; and gene regulatory networks [Chaa 04 001,

These primary research and achievements present recdetmmation of Petri nets

to model biochemical systems, including formal descriptbconstructed models in Petri
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nets and corresponding extensions formats. The Petri regtsahology is one of the graph-
ical theories to illustrate and model biochemical procgsard in this thesis we also focus

on the utilization of Petri nets in our hybrid modelling framork.

2.6.2 SBML

Regarding reality of generating computational models ofdgical systems via vast and
expanding quantities of data, we can employ computablediladts to present these mod-
els of biological systems. Systems Biology Markup Langu@&ML) is a free and open
interchange format for computer models of biological peses [SBML 12].

More standard, formal, and computable representationsotddical models are re-
quired for achieving the aims of rigorously analyzing anchpatationally simulating bio-
chemical processes with mathematical methods. For instargraphical diagram is useful
to visualize and illustrate the biological relationshipsang entities in a model, but it is
difficult to quantify the model to a computer based simulatmd analysis environment.
SBML is proposed and applied to tackle issues of mathematnzdysis and simulation of
the biological processes in silico.

In summary, SBML is a machine-readable format XML-like atation language for
representing biological models. Biological processes emtities involved in biological
systems can be described by employing SBML which is suittdrleepresenting models
of cellular metabolic pathways, signaling pathways, antegegulation networks. Details
about normative definitions of features of SBML can be ref@no most recent SBML

specification documer@BML Level 3 Version 1 Cofeluck 10].
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2.6.3 P Systems

One of the computational models in community of computeersme is a P system intro-
duced by Gheorghe Paun [Paun(98, Paun 99, Paun 00]. ThedPsyserform calculations
by utilizing a biologically inspired process, which is bdsen the structure of biological
cells from the way in which chemicals interact and cross welmbranes. Furthermore,
variations on the P systems led to formation of a researatichranembrane computing’.

P systems have been primarily employed to study modellisgeis by focusing on
computational model characteristics, but later it was afgaied to investigate modelling of
biochemical systems [Arde 03, Paun |06, Gheia 08, Rome 09, B/hkWVhile being applied
to model biochemical systems, a P system model is definedibyg asset of membranes
which contain biochemical entities and rules. These @stitt a P system model determine
the processes which the entities in the model may react withamother to form other
products. Rules may also cause biochemical entities tothassgh membranes or even
cause membranes to dissolve.

Moreover, in a cellular environment, a biochemical reactizay only take place while
required molecules collide and interact in a random maniers rules in a P system model
are implemented randomly, which results in a stochasticpedation in the model and
multiple simulation results being obtained in a repeatedmating process. Computation
in a P system model stops at a state in which no more reactrensrable. Therefore,
results of a P system based simulation illustrate a bioctemrocess that all entities are

passed to outside of the outermost membrane or into a speafidbrane.
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2.7 Modelling Simulators

There are different kinds of software environments dewveddpr modelling, analyzing and
simulating biochemical systems in the community of compioteal biology. Although dif-
ferent modelling simulators employ different model form&ir representing biochemical
systems and analyzing biochemical interactions in the isodeost of these modelling
simulators support importation and exportation of modeldar examination among dif-
ferent formats, for instance a SBML based model file can beorted and exported for
simulation in a simulator, Snoopy, by its own model format.

In this section, we specifically focus on introduction of es@l popular and powerful
modelling simulators for constructing models of biocheshgystems, fitting kinetic rates
and predicting compounds behaviour in a continuous/ssichend qualitative/quantitative

mannetr.

2.7.1 BioNessie

BioNessiel[Liu 08] is a free, state-of-the-art platforntépendent biochemical networks
simulation and analysis software environment. It is dgwetbby using Java technology
and can be run on many platforms that support Java Runtimedamvent (JRE) 1.5 or
higher.

A full user-friendly Graphical User Interface (GUI) is pided to allow users to im-
port, create, edit and export the biochemical models wighSBML standard. The unique
Concurrent Versions System (CVS) design helps users to tkaek of the version his-
tory of their SBML models during construction and subsedqueadification. The core
of BioNessie comprises the SOSIib (SBML ODE Solver libramyhich provides a pro-

gramming library for symbolic and numerical analysis of ateyn of ordinary differential
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equations derived from a chemical reaction network encad&BML format. BioNessie
can generate the changes of species amounts and parameés axzer time by simulat-
ing the SBML model numerically with SOSIib. The simulatia@sults can be generated in
many ways: raw data files, plots, xml files and report text fiB®Nessie is not only an

editor and simulator, but also an analyzer, supportingiplalfunctions such as:

e Multi-thread/core enabled parameter scans
e Sensitivity analysis
e Parameter estimation (model fitting)

Cooperating with National e-Science Centre at Glasgow erptbject ‘BioNessieG’,
benefits are obtained from a wide variety of high performammaputing resources across

the UK through Grid technologies to support larger scalelieonical simulations in BioNessie.

2.7.2 Snoopy

Snoopy [Rohr 10, Blat, Marw 12, Liu 12] is a software tool tsdgm and animate hierar-
chical graphs, among others Petri nets. The tool has beexiaged for using Petri nets
as a common communication platform for experimentalists theoreticians. Moreover,
Snoopy is also a unifying framework for the graphical digptaomputational modelling,
simulation, and bioinformatic annotation of biochemicatworks, such as bacterial regu-

latory networks. Main features available in Snoopy are shas/following:

e Hierarchies by subgraphs

e Logical (fusion) nodes
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o Different shapes for net elements

e Colouring of graph elements (e.g. paths or invariants)
e Automated layout by Graphviz library

¢ Digital signature by md5 hash function

e Animation of place/transition Petri nets

e Simulation of stochastic/continuous Petri nets

¢ Printing support: eps, Xfig, FrameMaker

e Import/export from/to analysis tools

e SBML import/export

e Support of web-based Petri net animation

Snoopy is in use for the verification of technical systemgpgeemlly software-based
systems, as well as for the validation of biochemical systdiris used for the design and
animation of hierarchical graphs of biomolecular networksupports different kinds of
Petri nets, and incorporates the exact Gillespie algorfttmstochastic nets and a variety

of ODE solvers for continuous nets.

2.7.3 COPASI

COPASI [Hoop 06] is a software application for simulatiordaanalysis of biochemical
networks and their dynamics. Itis a stand-alone programsthgports models in the SBML

standard and can simulate their behavior using ODEs or<pikkés stochastic simulation
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algorithm. Moreover, arbitrary discrete events can beudet! in the simulations. A list of

features in COPASI is given as following:
e Models construction

— Chemical reaction network

— Arbitrary kinetic functions

— ODEs for compartments, species, and global quantities

— Assignments for compartments, species, and global qiesmtit

— Initial assignments for compartments, species, and glplahtities

— SBML import and export
e Models analysis

— Stochastic and deterministic time course simulation
— Steady state analysis (including stability)

— Metabolic control analysis/sensitivity analysis

— Elementary mode analysis

— Mass conservation analysis

— Time scale separation analysis

— Calculation of Lyapunov exponents

— Parameter scans

— Optimization of arbitrary objective functions

— Parameter estimation using data from time course and/adgtstate experi-

ments simultaneously
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e Graphical User Interface (CopasiUl)

— Sliders for interactive parameter changes
— Color-coded tables

— 3D bar charts

— Plots and Histograms

— Network diagram visualization of results

Command Line (CopasiSE) for batch processing

Versions for MS Windows, Linux, Mac OS X, and Solaris SPARC

Loading of legacy Gepasi files

Export to Berkeley Madonna, XPPAUT, and C source code of th& Gystem gen-

erated from the model

Saving of mathematical formulas and ODEs in MathML or LaTeX

COPASI carries out analysis of the network and its dynamagsi it has extensive
support for parameter estimation and optimization. It gsavides means to visualize
data in customizable plots, histograms and animationstwfork diagrams. Details about
utilization of COPASI for modelling biochemical system® ajiven in works by Sahle,

Mendes and other researchers [Sahl 06, Mend 09a, Mend 09b].

2.7.4 CellDesigner

CellDesigner([Funa 03, Funal08] is a structured diagranoeéir drawing gene regula-

tory and biochemical networks. Networks are drawn basederptocess diagram, with
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graphical notation system proposed by Kitano [Kita 05], arelpreserved using the SBML
standard for representing models of gene regulatory arahbiaical networks. Moreover,
networks are able to link with simulation and other analymskages through Systems

Biology Workbench (SBW). Major features in CellDesignes aummarized as follows:

e Biochemical gene regulatory networks modeling with GUI

¢ Visual representation of biochemical semantics

e Comprehensive graphical notation: SBGN process diagram
e SBML compliant

¢ Direct integration with SBML ODE solver and Copasi

e Smooth linkage to SBW-powered simulation module

e Database connections

e Exportimage to image files including PDF and SVG format

CellDesigner supports simulation and parameter scan bgtagration with a SBML
ODE solver and Copasi. By using CellDesigner, users can seamd modify existing
SBML models with reference to biochemical models datahasiesulate and view the

dynamics through an intuitive graphical interface.
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2.8 Metaheuristics and Modelling of Biochemical Systems

2.8.1 Optimization methods and metaheuristics

Optimization methods are employed widely to formulate amldesoptimization problems

in science and engineering, especially the applicationethireuristics to modelling prob-
lems in biology in the last decade. Talbi introduced the iteet optimization methods

and summarized the classifications of theses optimizatiethaods [[Talb 09]. We briefly

introduce the background of optimization methods, befaseuwssing the implementation
of metaheuristics.

Optimization methods

P

Exact methods Approximate methods
Branch and X  Constraint Dynamic  A* IDA* Heuristic algorithms ~ APProximation

programming  programming algorithms

Metaheuristics Problem-specific

Branch and Branch and Branch and heurist?cs
bound cut price /\
Single-solution based Population-based
metaheuristics metaheuristics

Figure 2.1: Classification of optimization methods, geteztdy Talbi [Talb 09].

Figure 2.1 shows the diversity of classical optimizatiortimes which are summarized
and divided into two categories: exact methods and app@&bemethods. The exact meth-
ods can obtain optimal solutions and guarantee their ofitypand approximate methods
generate high quality solutions in a reasonable time foctpral use, but there is no guar-

antee of finding a global optimal solutidn [Talb/ 09].
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Moreover, the approximate methods can be summarized taeshewlgorithms (rea-
sonably approaching ‘good’ problem solutions in a reastnaine) and approximation
algorithms (offering problem solutions with provable gtyahnd run-time bounds). Meta-
heuristics and problem-specific heuristics are two clagttdee heuristic algorithms. Spe-
cific problems are addressed by the problem-specific hexgrishich are tailored and de-
signed for optimization constraints. Metaheuristics agaegal strategies which can be

utilized to tackle optimization problems.

1947 LS (47)
1962 % EP (62) GA (62)
1965 s
Greedy heuristic (71) .- | ES (65) "'
1973 , A : b
1977 A N
1983 ;7 SA(@83) : '
;o 3 R FUR A o
1986 - . LTS (86) SM(86); : S 11 AIs(8e)
GRASP (89) ¥ ' Pl L ceaTon ¢ ¢
1990 fowoh {CEA(90)/ |
TR0y Yy : v
1992 Ny ; Lo GP(92); ACO (92)
1993 GDA (93) H L NW(e3) v J
14 v DE(94) ' EDA,CA (94)
1995 VNS (95) GLS (95) v PSO (95)
1996 CMA-ES (96)  BC (96)
v
Time

Figure 2.2: Talbi[[Talb 09] summarized a genealogy of agpions of the metaheuristics.
Algorithms are listed by using abbreviations. Numbers iackets are years of original
applications of the algorithms. Arrows with dash lines oade genealogical relationships
among the algorithms.

There are numerous metaheuristics proposed and impledtenaeldress practical op-
timization and/or machine learning problems. Classicatameuristics include simulated
annealing, tabu search, evolutionary algorithms (EAs),calony optimization, estima-
tion of distribution algorithms, scatter search, pathnighg, greedy randomized adaptive

search procedure (GRASP), multi-start and iterated lazaich (ILS), guided local search,
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and variable neighborhood search (VNS), which have ind&idistorical backgrounds
and follow different paradigms and philosophies [Loza Fagure 2.2 shows a genealogy
of original applications of the metaheuristics which is saanized by Talbil[Talb 09].
Moreover, metaheuristics can be classified by criteriah ascthe natural/nonnatural
inspiration, with/without memory requirement, determstig/stochastic decision process,
population/single-solution based search, and iteragreedy search process. Details of

these criteria can be found as follows.

¢ Natural metaheuristics - being inspired from biology, swamtelligence and physics
e Memoryless metaheuristics - not using information presgiduring the search

e Deterministic metaheuristics - solving optimization pieshs by making determinis-

tic decisions
e Stochastic metaheuristics - applying random rules to bganacess
e Population based metaheuristics - evolving a set of salstio

¢ Single-solution based metaheuristics - manipulating glsisolution in search pro-

Cess

e |terative metaheuristics - starting from non-empty cortgkolution(s) and trans-

forming solution(s) at each iteration by search operators

e Greedy metaheuristics - starting from an empty solution ma#ting a decision at

each step, until generation of a complete solution
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Table[2.1 presents a classification of metaheuristics wdmietdivided by different cri-

teria. It should note that each family of metaheuristicsially shares many search mech-

anisms during optimization process, therefore classifinaif the metaheuristics based on

criteria is a demonstration of algorithms characteristics

Table 2.1: A classification of the metaheuristics by différeriteria.

MHs Criteria
Nat. | Mem.| Memles.| Det. | Sto.| Pop. | SinSol.| Ite. | Gre.

DE | o ° ° °
ES | e ° ° °

EAs EP | o ° ° °
GA | e ° ° °
GP | e ° ° °

AlIS °

ACO °

BC °

PSO ° °

SA ° ° °

ILS °

GRASP

TS ° °

Some of most used metaheuristics algorithms for modellitgazhemical systems are

given as following:

e Evolutionary algorithms

— Differential evolution

— Genetic algorithm

— Genetic programming

— Evolution strategy

— Evolution programming
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e Simulated annealing

e Tabu search

As reported in the literature, summarized algorithms hasenbused to improve the
general efficiency and precision of modelling biochemigatems in terms of topology
and kinetic rates. Simulated annealing and evolutionesgsatire two algorithms mainly
employed for our proposed hybrid modelling framework irsttiiesis. Section 4.5.3 and
Sectior 4.5.2 present the details of working mechanismspptications of SA and ES in

modelling of biochemical systems.

2.8.2 Simulated annealing
2.8.2.1 Principle of simulated annealing

Simulated annealing (SA) is one of the physically inspiradmoryless, stochastic, single-
solution based and iterative metaheuristics. The SA dlyoriwas firstly described by
Kirkpatrick et al. in 1983|[[Kirk 83], and it has been employeulely for addressing opti-
mization problems with/without constraint. By analogyhwé physical process of anneal-
ing in metallurgy, SA algorithm models the process of heptind lowering the system
temperature iteratively to reduce the system defects alat tioe system reach a minimum
energy status.

In application of SA to search optimum solutions, a new sotupoint is generated
randomly from current solution point at each step. The nelutmm point is estimated
by an objective function and accepted to replace currentisol point by an acceptance
probability. The acceptance probability involves fithes®waluated solution point and

current system temperature. For a minimization problemgtéebor ‘downhill’ solution
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point is selected in a random manner when the temperaturghsWwhen the temperature
going down, the point is selected in a strict manner. Accaegeof an ‘uphill’ solution

point during search process lets SA algorithm avoid beiagped in local minima and
be able to globally explore potential solutions in a largkisons space. This probability

based search procedure is repeated iteratively, and & stad stopping criterion reached:
1. Fitness of solution candidates converges to a satisfrepgera
2. There is no improvement in fitness after consequent genesa

3. System reaches minimum temperature.

Here we give a high level description of SA mechanism in Althon[1, and details of
applying SA to model or optimize biochemical systems in ®wohtopology and kinetic

rates are illustrated in Sectibn 4.4.

Require: Optimization Problem, Starting Solution Point, Objectiuanction, and
Parameters of SA
Ensure: Optimized Solution
while Stopping Criterion Not Reachetb
while Iterations Not Finishedo
Generate(New Solution Point);
Estimate(New Solution Point);
Accept(New Solution Point);
end while
Reset(Iterations);
Check(Stopping Criterion);
end while
Return Optimized Solution.

Algorithm 1: High level description of simulated annealing algorithm.

Given ‘Optimization Problem’, ‘Starting Solution PointQbjective Function’ and ‘Pa-

rameters of SA, SA algorithm starts the global optimizatprocedure from the ‘Starting
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Solution Point’ for creating a new neighbor solution by adam way in ‘Generate()’ func-
tion at each iteration. The new solution point is evaluatgd tEstimate()’ function which

employs the ‘Objective Function’ according to the ‘Optiatibn Problem’. Decision of
accepting the new solution point is based on estimated §itagd system probability in
an ‘Accept()’ function: if the new solution point is bettdran current starting solution
point, the starting solution point is replaced by the newssoh point; if it is not better but

there is a probability allowing the system to accept a woadati®n, the starting solution
point is still replaced by the worse new solution point foringolution search. Anily and
Federgruen have discussed the details of general pradtabécceptance of SA [Anil 87].
Iterations number will be reset for next round of solutioarsé at different system tem-
perature, and system stopping criterion is checked forpstgpglobal search to return

optimized solutions for given optimization problems.

2.8.2.2 SA based structure modelling

Optimization methodologies based on SA are effective feenge engineering problems in
bioengineering. SA has been used to optimize structuresodeia representing biochem-
ical systems from experimental data. For instance, gendatgy networks can be coded
in SA using an adjacency matrix to represent relationshipsrg genes. Interactions be-
tween two genes can be illustrated by an edge with weightegalwhich is preserved in
the adjacency matrix. We briefly review some of research eynpd) SA to study models
structures of biochemical systems.
Blower et al. [Blow 02] used simulated annealing and reeergartitioning to find

combinations of molecular descriptors. Process of seaaskdon SA was incorporated

into a recursive partitioning design to produce a regresse® for biological activity on the
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space of structural fingerprints. Using LeadScope stratfeatures as descriptors to mine
a biological database, the merging of Recursive Partitigaind SA consistently identifies
structurally homogeneous classes of highly potent anteaagents.

Wang et al. [Wang 04] proposed a two-level simulated anngdlTLSA) to explore
problems of inferring Bayesian structures which was emgiioyo study gene regulatory
networks. Aiming to find global optimized probability netikomodels, the proposed
TLSA algorithm globally searches ‘Golden Networks’ to gerte simulated data sets and
test Bayesian scores for inferring the strength of learmietyvork structures. Case study
shows that the TLSA can reach better structures with loweresalthough no ordering
information is available in advance. Furthermore, eqeingpattern of the optimized struc-
tures are more likely approached by the TLSA optimizatigoathm.

In order to visualize automatically the topological arebtures and facilitate under-
standing of functions of complex biochemical networks, hd&urata[Li 05] proposed a
layout algorithm to draw the networks which are modelled sggséem of interacting nodes
on squared grids. The layouts of networks are produced bymmaimg total cost gener-
ated from a discrete cost function between each pair of nodldéast algorithm involving
simulated annealing heuristics is designed and implerddnteninimize the discrete cost
function, by which candidate layouts can be produced effityieand better candidates can
be chosen to exhibit cluster structures clearly in relffie®mpact layout areas without
any prior knowledge.

Guimera and Amaral [Guim 05] proposed a methodology toaextand display in-

formation contained in complex networks. Specifically, duonal modules in complex
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networks can be found by employing simulated annealing teimmam modularity of net-
works. Nodes can be classified into universal roles accgrtbntheir pattern of intra-
module and inter-module connections. The proposed metietdisya ‘cartographic repre-
sentation of the complex networks. Moreover, Guimera dGlim 07] investigated how
to map the interactions between proteins and metabolitescomplex networks, and how
to group nodes and links in complex biochemical networks ensmall number of classes
by using SA algorithm. Methodology based on SA exploresituant of networks into
modules that maximizes the modularity, and assess sigmifcaf the modular structure of
each network for specifying essential and specific metalmaiworks.

Rodrigo et al.[[Rodr 07b] proposed a new tool to design tnapenal networks with
targeted behavior that could be used to better understande$ign principles of genetic
circuits. SA optimization algorithm is implemented for éxpng throughout the space of
transcription networks to obtain a specific behaviour. Atpatitranscriptional network
with all the corresponding kinetic parameters is describesBML format.

Ruz and Goles [Ruz 10] proposed a SA based framework witle thiraple neighbor-
hood search strategies to learn gene regulatory netwotkspnedefined attractors, under
the threshold Boolean network model updated sequentigig.robustness of the networks
is studied by employing the presented SA method for meaguhia@ number of different
updating sequences they can have without loosing the tttraé power law between
the frequency of the networks and the number of the sequescdsained, as well as a

decreasing robustness of the networks while the cycle tegrgiwing.
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2.8.2.3 SA based kinetic rates optimization

The SA has been applied successfully in computational gjolo estimate the parameters
of constructed models representing biochemical systems.

Braun et al.[[Brau 05] proposed a simple statistical paranféting algorithm and test
the efficacy of the algorithm by using two synthetic gene eks as cases study. After
measuring the deviation between experimental and sintut#déa by a cost function, an
adaptive simulated annealing (ASA) algorithm is employethinimize the cost function.
Because the measured cost is dependent on the set of kiaetimeters for the system,
parameter set returned from the minimum cost function fiesntodel most closely with
the experimental data. With respect to well constrainedesys, while the value of the
cost function approaches zero, the kinetic parameter asons should ideally approach
the actual biological parameters. Therefore, parametanason approach based on SA
methodology is feasible to recover kinetic parameter \&ahsasonably well for highly
constrained gene networks.

The ASA algorithm is also employed by Dunlop et al. [Dunl Oi]Jan identification
framework to estimate parameters of each candidate modeldtii-model selection. The
ASA algorithm based parameter estimation process is iatedrwith model comparison
process in the identification framework, which determinesst model from a set of given
candidate models for well describing experimental data.

Tomshine and Kaznessis [Toms 06] presented an optimizatethod based on SA to
locate combinations of kinetic parameters that producesaetbbehavior in a genetic net-
work. Due to inherently stochastic process of the gene sspe, simulation component
of SA optimization is conducted using an accurate multessahulation algorithm to cal-

culate an ensemble of network trajectories at each iteratddter applying the proposed
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method to a three-gene repressilator, it is shown that getwonk optimization is con-
ducted by using a mechanistically realistic model integptadtochastically. Moreover, the
repressilator is optimized to give oscillations of an adyiy specified period.

Gonzalez et al. [Gonz 07] described how SA algorithm with pprapriately con-
structed perturbation function can be used effectivelydtingate the parameters of bio-
chemical networks modeled as S-systems from time-coumsghémical data. In order to
demonstrate the efficacy and general applicability of théaheuristics, a proposed SA
method is tested by studying three artificial networks desigto simulate different net-
work topologies and behaviour, and the SA method is apptedreal-world problem by
creating a working model for theadBAsystem inEscherichia coli

A mass action model of immediate-early signaling involvigrpB14receptorsMAPK
andPI3K/Aktcascades, was constructed and analyzed by Chenlet al. [@h&ar Quanti-
fying signal flow througlErbB-activated pathways. By restricting the search to a suliset o
75 rate constants and initial conditions with the greataptict on an objective function, SA
is employed to search across a region of parameter spaca s&hof ODEs. Convergence
of parameter optimization is improved substantially. 8¢rdependence of parameter sen-
sitivity is found on the feature or condition under examioat which is informative with
respect to mechanisms of signal propagation.

Cirit et al. [Ciri 10] presented how to modify the standard &gorithm to generate a
large ensemble of ‘good’ parameter sets rather than oné fite$herefore, itis feasible to
obtain kinetic models of signaling networks trained on diskt diversity of quantitative
data, which can be reasonably comprehensive, accuratepraddttive in a dynamical

sense.
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Czeizler et al.l[[Czei 11] performed parameter estimatiatedures to fit both the val-
ues of the kinetic rates and initial concentrations of metitds in an existing well validated
computational model for a heat shock response. The modétédneat shock response is
incorporated with several (de)phosphorylation pathwaysl the quantitative control of
the pathways is analyzed over entire process in terms ofyeea estimation by using SA

algorithm in COPASI software package.

2.8.3 Evolution strategy
2.8.3.1 Principle of evolution strategy

Evolution strategy (ES) is one of the naturally inspired rmey, stochastic, population-
solution based and iterative metaheuristics, which wasded firstly by Rechenberg and
Schwefel at the Technical University of Berlin [Rech 65, R&8,/Schw 65, Schw 75].
Natural selection principle is imitated in ES simulatiom@ess by simulating ‘muta-
tions’ and ‘survival’ of individuals in nature. MoreoverSHollows two general rules for

driving individuals to achieve optimum status [Beye 02]:

1. Allvariables are changed at a time in a mostly small andeanmanner;

2. New generation of modified variables with goodness ar¢, keperwise old status
of the variables are rolled back as starting points for perfiog next modifications

on the variables.

In general, there are two forms of ES: two-membered (2-m)andimembered (m-m)
ES. The difference between these two forms of ES is the nuoflqgarental and children

members and corresponding selection schemes for gergeragm individuals. Table 2.2
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briefly illustrates and compares variants of two ES forms $ymbols: and\ in the two

forms of ES stand for the number of parents and children ctsedy.

Table 2.2: Two-membered and multimembered forms of ES.

Form | Versions | Selection Scheme

2-m | (1+1)-ES | An offspring is selected from two parental and childrenviiials
m-m | (u+1)-ES | Two of ; parental individuals at a time are selected randomly and
recombined to generate an offspring by discarding the veorst
m-m | (u+A)-ES | A > 1 children individuals are generated in a generation, and

u best out of allu+X individuals are selected as offspring

m-m | (4,A)-ES | A > p children individuals are generated in a generation, aretieh
of u offspring is taken place amorgchildren individuals only,
without considering fitness ¢f parental individuals

Require: Optimization Problem, Seeds, Objective Function, andrRaters of ES
Ensure: Optimized Seeds
Initiate(Seeds);
while Maximum Generations Not Reachdd
while Number of Children Individualg Not Reachedlo
Recombine(Parental Individuals);
Mutate(Recombined Parental Individuals);
end while
if (u+))-ESthen
Offspring = Seleci+\ Individuals);
end if
if ((u,A\)-ESthen
Offspring = Select{ Individuals);
end if
end while
Return Optimized Solution.

Algorithm 2: High level description of the evolution strategy algorithm

ES is one of the global optimization methods and is similastter evolutionary algo-
rithms, for instance genetic algorithms (GA), genetic paogming (GP) and evolutionary
programming (EP). But ES works in continuous space with alitithal capability of self-

adaption on the strategy parameters. A high level desenipif ES working process is



42

given in Algorithm[2, which indicates the process of offsirigeneration by different se-
lection scheme. More details of the self-adaptation, rotass and parallelization of ES
have been presented by Back and Hoffmeister [Back 94]. 8etal. [Mole 03] presented
an extensive review of applying evolutionary algorithmastigularly ES, to reverse engi-
neering regulatory networks, which indicated the outpenfof evolutionary algorithms
than other methods on optimization of biochemical modelouCand Voit[Chou 09] sum-
marized more recent developments in parameter estimatidstaucture identification of
biochemical and genomic systems. In Section 4.5, we idtistihe details of applying ES

to optimize biochemical systems in our hybrid modellingrieawork.

2.8.3.2 ES based structure modelling

ES has been applied to study optimization problems in coatjaual biology, for reverse
engineering issues in terms of system structure. We brieflggnt some research employ-
ing ES to study the topologies of biochemical systems.

Streichert et al/[Stre 04] compared two evolutionary atharns (genetic programming
and ES) on inferring gene regulatory networks, with respeclgorithms performance
on multiple problem instances with varying parameters. yTioeind that inferring gene
regulatory networks can be solved by means of ES, by fixingétwork model a priori and
reduce the inferring problem to a parameter optimizatiabjam. Results of comparison
shown that single problem instances are not sufficient togptioe effectiveness of a given
inferring strategy and that the GP approach is less pronariong instances than the ES.

Cao et al.[[Cao 10] proposed a methodology for the automagsiyd of cell models

for systems and synthetic biology. The modelling framewaas based on P systems, and
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a model represented by the P systems was discrete, stecragtnodular formal file stan-
dard. The automated design of biological models comprise@ptimization of the model
structure and its stochastic kinetic constants. Optindratvas performed using an evo-
lutionary algorithm which evolves model structures by camriy different modules taken
from a predefined module library and then it fine-tunes the@ated stochastic kinetic
constants. Four alternative objective functions for theeis calculation within the evolu-
tionary algorithm were investigated, namely equally weghsum method, normalization
method, randomly weighted sum method, and equally weigbteduct method. The ef-
fectiveness of the methodology was tested on four caseestudiincreasing complexity
including negative and positive autoregulation as welliasdene regulatory networks.
Thomas and Jir [Thom 12] studied issues of how to couple twpls regulatory mo-

tifs, one toggle switch and one self-sustained oscillatsing an evolutionary algorithm.

They evolved several complex dynamics for two differentr@mtions arrangements be
tween the oscillator and toggle switch networks in a masiteré set up, which confirms
the previously reported results achieved manually. Resuwdticate that it is feasible and
efficient to generate complex dynamics by coupling of sinmpteifs using simulated evo-
lutionary mechanisms.

Biological morphogenetic networks, such as gene regylatetworks (GRNs), are
modular with independent units and often show the reusecofrrieig patterns termed net-
work motifs. Inspired by biological morphogenesis and atioh and structure of network
motifs in biology, Meng and Gu¢ [Meng 12] proposed an evagvidRN-based approach
for self-organizing robotic swarms to autonomously geteedgnamic patterns in unknown

environments. Basic idea of the GRN-based model is thalfssteral network motifs are
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predefined as the basic building blocks for GRNs, then camag matrix adaptation evo-
lution strategy (CMA-ES) is applied to evolve parameterd e structures of the GRNs
model. Simulation and experimental results demonstrdtatithe proposed bio-inspired
model is effective for complex shape generation, and theainedobust to environmental

changes in complex unknown environments.

2.8.3.3 ES based kinetic rates optimization

ES has been applied successfully to estimate the paranoétepsstructed models repre-
senting biochemical systems.

Spieth et al.|[Spie 04] introduced enhancements to evalatipalgorithm optimization
process to infer parameters of non-linear system given bgmed data more reliably and
precisely. A method is proposed to use the advantages oblgexiathematical models to
separate the inference problem into two subproblems: totfiadopology or structure of
the network with genetic algorithm; and to optimize paraemebf a mathematical model
for the given topology with evolution strategy. Simulati@sults show that the proposed
method is suitable to infer gene regulatory systems in t&fsgructure and parameters.

Ji and Xu [Ji 06] implemented a C library, named [IbSRES, wlitate a fast imple-
mentation of computer software for studying non-lineachemical pathways. The library
implements ay, \)-ES evolutionary optimization algorithm that uses statitaanking as
the constraint handling technique. Regarding the amouobwiputing time, implementa-
tion of the library may face a parameter-estimation problé&m MPI version of lIbSRES
was provided for parallel implementation, as well as a sengder interface. The perfor-
mance of libSRES has been tested on various pathway para@sétaeation problems, and

performance of libSRES has been found to be satisfactory.
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Zi and Klipp [Z1.06] presented a SBML based parameter estondbol (SBML-PET).

It is designed to enable parameter estimation for bioldgiadels including signalling
pathways, gene regulation networks and metabolic pathv@§®IL-PET supports import
and export of the models in SBML format, and it can estimagegarameters by fitting
a variety of experimental data from different experimewtaiditions. Moreover, SBML-
PET has a unique feature of supporting event definition in 8M®dels which can also
be simulated. Stochastic ranking evolution strategy (SR&®Bcorporated in SBML-PET
for parameter estimation.

Fomekong-Nanfack et al. [Fome!07] showed that parametena&tsbn for pattern for-
mation models can be efficiently performed using ES. They aigpiantitative spatio-
temporal model of a regulatory network for early developte®rosophila melanogaster
as a case study. In order to estimate the parameters, sedukgults are compared to a
time series of gene products involved in the network obtaigh immunohistochemistry.
Results demonstrated thataX)-ES can be used to find good quality solutions in the pa-
rameter estimation. Moreover, they also showed that an E$ mltiple populations is
5-140 times as fast as parallel SA for the case study, ancctimbining ES with a local
search results in an efficient parameter estimation method.

Sun et al.[[Sun 12] presented a comprehensive review of gdessnestimation in sys-

tems biology by metaheuristics, including implementatdiS.

2.9 Summary

In this chapter, a brief introduction of systematic moahgjlbiochemical systems is given
firstly, and then general routes of modelling biochemicakems are presented. We have

illustrated what parameter variables in biochemical systare to be investigated in our
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research. Biochemical systems can be modehesilico by employing different model
standards, for instance graphical and XML formats. We hatr@duced three computer
models standards which are popular and useful in communigpmputational biology
for representing biochemical systems. Moreover, four Miogesimulators developed
with functionalities are illustrated for tackling problenof models construction, analy-
sis and simulation. Modelers who interest in these simwatan apply them to model
different kinds of biochemical processes, for instanceiooous/stochastic and quantita-
tive/qualitative biochemical reactions.

Biochemical systems are widely represented and investigathe community of com-
putational biology. We introduce three well defined and iempénted computer based bio-
chemical model formats, Petri Nets, SBML and P Systems,wduie in a graphical presen-
tation or a XML based format. After introducing the desaoptof models for representing
biochemical systems, we show four popular modelling sitougan systems and synthetic
biology for models construction, analysis, optimizatio aimulations. All these simula-
tors can work with biochemical models constructed in af@etioned biochemical model
formats by import and export functionalities. At end of tbigpter, background and clas-
sification of metaheuristics have been summarized andmexsebefore illustrating details
of two algorithms implemented in our research.

We present details of our proposed hybrid modelling frantéwdth cases study, in-
cluding basic definitions of biochemical components, gematitation operators and com-
position rules in Chaptér] 3, a hybrid modelling strategy imagter 4, investigations of

modelling variants in Chaptért 5, and cases study in Chapter 6



Chapter 3

Representation and Composition of
Biochemical Systems

3.1 Introduction

This chapter introduces the background of enzymatic re@astand mass action kinetics,
illustrates two patterns as templates for instantiating@onents, declares atomic com-
ponents and synthetic models, and describes two librasipseserve the components and
models for modelling biochemical systems. Compositiorratees and rules are illustrated
to compose models of biochemical systems. Generated mofdalschemical systems are
maintained in terms of synthetic species, composed conmpeaad generated structures.
The whole chapter is organized as follows: Seclion 3.2tilaiss the principle of an
enzymatic reaction and how an enzyme catalyzes the biochéneiactions; Mass action
kinetics law is shown in Sectidn 3.3 for describing the dymamof chemical reactions.
Three versions of mass action kinetics are presented inrfegstructures, as a fundamen-

tal preparation for the definitions of atomic components syrthetic models. Sectign 3.4

47
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illustrates binding and unbinding patterns as templategémeration of atomic compo-
nents, declares the atomic components and synthetic modsiatax and semantics. Sec-
tion[3.5 shows an entity relationship diagram of a MySQL dasg which maintains the
components and models preserved in two libraries.

Related works of applying Petri nets to model biologicalteys and how Petri net
models can be evolved in terms of places and transitions ragélybintroduced in Sec-
tion[3.6. Then three composition operators and a set of ceitipo rules are presented in
Section 3.7 for modifying the Petri net models of biochemgystems. Section 3.8 dis-
cusses how to maintain constructed Petri net models to enisarsynthetic models com-
prise of non-conflicting species, uniqgue components andectve topologies for further
modelling. Some simple examples of composing biochemicalets are demonstrated in

Sectior 3., followed a brief summary of this chapter in Be¢8.10.

3.2 Enzymatic Reaction

In biochemistry, a chemical reaction is a process of comgrnolecules of reactants into
products within a specific time period. The reactants arallysiénown as substrates in
biochemical reactions. In general, there are spontangulisrazymatic reactions in a bio-
chemical system.

The spontaneous reaction is a spontaneous decaying reactiwvhich a substrate A

decays to produce a product B, as shown in Equafion]3.2.1:

A—B (3.2.1)
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Moreover, due to forward and reverse reaction rates egistirthe biochemical reac-
tions, the spontaneous reaction can be reversible betvineesubstrate and product, for

instance product B decays back to form substrate A, as testcim Equation 3.212:

A= B (3.2.2)

Most biochemical reactions in cells and organisms are yzdl by specialized pro-
teins known as enzymes. The enzymes are very importanigialiccatalysts speeding up
rates of biochemical reactions in life, by a mechanism ofegsing the amount of energy
required in the reactions.

Therefore, an enzymatic reaction is a catalyzed biochémeeation, facilitating the
transformation of a set of substrates into a set of proddtts.catalysation of the reaction
is implemented by enzyme reducing the energy which is reduiy the reaction to reach
a higher energy transitional state [Berg 02, Voet 06].

An enzymatic reaction involves biochemical substratefsyyme(s) and product(s) in
a process of molecules conversion. For instance, a simplgretic reaction can be illus-
trated in Equatiof 3.2.3 to present interactions among ohstsate A, one product B and
an enzyme E.

E

AL B (3.2.3)

The enzymatic reaction can be taken as a basic building loficeky biological dynamic
system. Therefore, the enzymatic reactions can be usedtoildbe metabolic conversions,
the activation of signalling molecules and even trans@attions between various subcel-

lular compartments [Brei 08].



50

3.3 Mass Action Kinetics

Mass action kinetics are used in chemistry and chemicaheeging to describe the dynam-
ics of chemical reactions [Vija 09]. Three types of massaackinetics were introduced to
reveal the catalytic mechanism of an enzyme in enzymataticees and metabolism [Brei 08].
Details of enzymatic reactions described by the three tgp@sass action kinetics are il-
lustrated with corresponding graphic demonstrations in Rets as follows. Note that the

symbol | is used to indicate a complex formed from a substrate andhayree.

1. Mass Action 1 (MA1)

A MA1 model takes into account the mechanism by which the erezgcts, namely
by forming a complex with the substrate, modifying the stdistto form a product,
and releasing the product in a disassociation. Rate casstemassociated with each
reaction for a consideration of kinetic properties of mangyenes. The details of

MAZ1 [Brei 08] are shown in Equatidn3.3.1.

k1
BALN ks
A+E  AEMBLE (3.3.1)
H
ko

In a MA1 based enzymatic reaction, enzyimean combine with substrateto form
an intermediate called an enzyme-substrate comg|éxwith rate constant;; the
complexA|E can either dissociate back foand A with rate constant,, or form a
productB by transformingA in a dissociation with raté;. Graphic presentation of

the MA1 based enzymatic reaction in a Petri net is shown infe(@.1.

2. Mass Action 2 (MA2)
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.S

AJE

k2

Figure 3.1: An enzymatic reaction based on MAL. Spedies combined with enzymé&’
to produce a compled|E by a reaction with a kinetic rate;; The complexA|E can be
decomposed back to the specieand enzyme® by a reaction with a kinetic rate,, or to
produce a new specid$and E' by a reaction withks.
An intermediate transition state between substrate anduptaan exist in an enzy-
matic reaction. Moreover, the substrate and product birtthiéosame binding site
with highest affinity for the intermediate. In order to apgroate the intermediate

transition state, an extended MA2 [Brei 08] is formulatedrfeore detailed descrip-

tion of an enzymatic reaction in Equation 313.2.

A+E  AEX BIE  B+E (3.3.2)
o w

Only one bond is changed between the substrate and prodietméintaining com-
plexesA|E and B|E in the enzymatic reaction, thus association and disadsmtia
of a complexA|E and B|E are related. A simple assumption can be given that ki-
netic rate constants are approximated in the enzymati¢ioedzased on MA2, for

instancek; ~ k" andk, ~ k,'. Graphic presentation of the enzymatic reaction in a
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Petri net is shown in Figufe 3.2.

k1 k2’

o —~O) =

AlE k3’ BIE

/

/

k2 K1’

Figure 3.2: An enzymatic reaction based on MA2. Specias combined with enzyme
E to produce a compleX|E by a reaction with a kinetic rate;; The complexA|E can
be decomposed back to the specieand enzymer' by a reaction with a kinetic rate,.
There is a intermediate compléX £ transferred from thel| £ by a reaction with a kinetic
ratek}. The complexB|E is decomposed to a new specié¢sand E by a reaction withk,.
The complexB|E can be produced by combining tiieand £.

3. Mass Action 3 (MA3)

In a further complete description of an enzymatic reactdA3 [Brei 08], a sub-

strate can be associated with an enzyme to form a complexthandhe substrate
is modified to form a product which is still associated witk #tnzyme in the com-
plex. Finally the product and enzyme are released from thgptex. The detailed

description of above process is shown in Equdfion B.3.3.

LN LN kol
A+E AE B|[E B+E (3.3.3)

Y W W

2 4 1

In this case the association and disassociation amongratéysénzyme, complex
and product are described on different reversible stageshwnay offers guidance

to biochemists who could carry out further investigationtmological systems of
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interest. Graphic presentation of the enzymatic reactoa Petri net is shown in

Figure[3.3.
/Q\

k2 k4’ k1’

Figure 3.3: An enzymatic reaction based on MA3. As the enzymaaction based on
MA2, a new species3 can be produced, and an intermediate state of compléx is
formed from the compled|E by a reaction with a kinetic rat&,. Moreover, the complex
B|E is able to be transferred back the compl&¥’ by a reaction with a kinetic rate,.

3.4 Declarations of Component and Model

In this thesis, MAL is employed to describe an enzymatictreaovhich is used as a
template to define basic components for building compobased biochemical models.
Note that, the components defined by MA1 can be easily extetudthe ones defined by

other mass action kinetics which are introduced in secti@n 3

3.4.1 Patterns

Atomic components can be instantiated from two generakpatwhich are templates
for components instantiation. The two general patternsrdes how two species form

a species, or how one species decomposes into two species, fie-defined patterns
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in this thesis follow a simple binary format: either two toeostandard or one to two
standard. Other pattern formats, for instance three (oejgpecies form one species and
one species decomposes into three (or more) species, cakdredas development of our
simple pre-defined binary patterns. Any complex biochehrigactions can be described
by employing instantiations from the binary patterns, vatgpecies interact with each other
by composition of instantiations from the binary patter@pecies in our defined binary
patterns stands for biochemical reactant, complex or mioiuan enzymatic reaction.

Details of the patterns are illustrated as follows.

¢ Binding pattern - two reactants are merged into a complex avgpecific kinetic rate,

as shown in Equatidn3.4.1;

P+P -t p (3.4.1)

where theP; represents a reactant acting as a substfatdenotes a reactant acting
as an enzyme, angy (P; = P;|P,) is a complex synthesized frofy, and P, by
using a |" symbol to join the labels of two reactants. Graphic preagon of the

binding pattern in a Petri net is shown in Figlirel 3.4.

In Figure[3.4, there are two non-empty plades and P2, marked withm1 and
m2 as initial concentration values respectively. The two @taare associated by a

transition7'1 with a kinetic ratek1. PlaceP3 is a product of the transition.

e Unbinding pattern - a complex is disassociated back to aeé&t or converted to a

product and an enzyme with a specific kinetic rate, as iltstt in Equatiof 3.41.2.

J I NRLLENG S 2 (3.4.2)
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P1
T1

Figure 3.4: Binding patternP1 and P2 are two non-empty places, marked with initial
concentrationsn1 andm?2. The two places are associated to produce a platdy a

transition7'1 with a kinetic ratek1.

P2

where complex?; is either disassociated to two reactaftsand P, which form the
complex itself, or converted into a product and an enzymep@ic presentation of

the unbinding pattern in a Petri net is shown in Fiduré 3.5.

Table 3.1: A MA1 based enzymatic reaction and components.

Enzymatic Reaction and Components Petri net
k1l
— k3
A+ FE - AlE = B+ E
k2
k1
A+ FE — AlE
AE® A+ E

Therefore, the enzymatic reaction described by MA1 in Bqu&.3.1 can be compo-
sition of one component instantiated from binding pattem tavo components instantiated

from unbinding pattern. The details of instantiated congmis are given as follows.
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P1
T2

P2

Figure 3.5: Unbinding pattern. A plade3 is disassociated to two placéd and P2 by a
transition7'2 with a kinetic ratek2.

One instantiation of the binding patterA:+ F — A|E;
First instantiation of the unbinding patterA|E — A + E;
Second instantiation of the unbinding patteM¥ — B + E.

The instantiated components and enzymatic reaction in & fetare shown in Ta-
ble[3.1, where concentrations of species are indicated ing lebels and square brackets,
such as ‘{A]" and ‘[ A|ET.

These two patterns informally illustrate biochemical m®£in components which are
essential parts of an enzymatic reaction. A formal syntaksamantics of the components

are given in following sections for declaration of atomiergmnents for component-based

modelling.

3.4.2 Syntax of a component

Definition3.4.1 Component, SyntgxA component for constructing biochemical models

is given byC' = (P, T, f,v, mg), which is based on the structure of Petri nets, where
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P is a disjoint set of three continuouidaces

T is a singleton set containing one continudusinsition

f:((PxT)u(T x P)) — R defines a set of three directed arcs, weighted by

non-negative real numbers, such that there is at least orad "re form p — ¢’ and

at least one of the formt ‘— p’

e v : T — H assigns to the transition a firing rate function, wherebysttef all firing
rate functions i := J,., {h|he : R — R}, andu(t) = h, is for the transition

teT
e my: P — Ry gives the initial marking

Note that place names of a component can be simple (an alpteiwustring) or com-
posite (a series of simple place names each joined by tsymbol). Moreover, the number
of places of a component is limited to three and the numbeaokttions is limited to one.
Two components’; and Cj, instantiated from binding patterP; + P, LN Ps’in
Equatiori3.411 and unbinding patted,‘ 2 P, + P,’ in Equation3.4.2, can be described
via the Def[3.4.11 as follows.
Cy = (P, 11, f1,v1, my) where
P, ={P1, P2, P3}
Ty ={T1}
fi={(P1—=T1),(P2—T1),(T1— P3)}
vy ={T1:kl x P1 x P2}
my = {P1:ml, P2:m2 P3:0}

Cy = (P, Ty, fa,v2, my) Where
P, ={P1, P2, P3}
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T, = {T2}

fo={(P3—12),(T2 — P1),(T2 — P2)}
vy = {T2: k2 x P3}

my = {P3:0,P1:0,P2:0}

Therefore, according to the Dé&f._3.14.1, the enzymatic readbllowing MA1 kinetic
k1

_>

law in Equation 3.3]1,A + F A|lE %, B+ B, can be illustrated by composition of
<__
ko

three instantiated components 4+ E £ A|E; AIE 2 A+ F andA|E B B+ E.

The details of three composed instantiations are shownllasvfog:
ERya = {C1,Cy,Cs}
= {1, Th, fr,vr,ma) (P2, T, fo, v2,ma) (B3, T, f3,03,m3) }
={(P. T, f',v,m')}
where
P ={A E A|lE, B}
T ={T1,72,7T3}
f'={(A—-T1),(E—-T1),(T1 = A|lE),
(Al - T2),(T2 — A), (T2 — E),
(AIE - T3),(T3— E),(T2 — B)}
VV={T1:kl1x Ax E,T2:k2x A|E,T3: k3 x A|E}
m' ={A:ml,E:m2, AlE:0,B:0}

3.4.3 Semantics of a component

Definition3.4.2 Component, SemantijcsA component is a system of nonlinear ordinary

differential equations (ODES), illustrating the nonline@lationship among three involved



59

biochemical elements:

d[P) _
— = 2 TP xut) = Y F(P 1) xu(t) (3.4.3)

te* b; tepP;®

whereP, (i=1,2,3) is one of three continuoidaces in a disjoint continuous places set;
tis a continuoudransition; pre-transitions P; of the placeP,; are all reactions producing
the place, thus the continuous transitiois enabled irf P;, if the markings of all places
in pre-placest are available for firing the transition; the post-transis@;* of the place
P, are all reactions consuming the place, thus the continuausitiont is enabled in
P;*, if the markings of all places in post-placésare available for firing the transition;
f:(Pxt)u(tx P;)) — R{ defines a set of three directed arcs, weighted by non-negativ
real numbers, such that there are three arcs associatetheittontinuous transitionby
incoming arcP; — t or outgoing ar¢ — P;; v : t — H assigns to the transition a firing
rate function, whereby the set of all firing rate function&lis= |, {#:|h: : RI" — R},
andv(t) = h, is for the transitiont; [P] : P, — R{ gives the concentration of plade,

which is continuously changed over time.

It should be noted that the translation from Petri nets tdQb&s system is unique but

the reverse is not guaranteed [Brei 10].

3.4.4 Syntax of a model

Definition3.4.3 Model, Syntax A model of a biochemical system is a generalized form
of a component (but with no restrictions on the number of gdagnd transitions) and it is

defined byM = (P, T, f,v, my), which is based on the structure of Petri nets, where

e P is adisjoint set of at least three continud@&ices.
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T is a set containing at least one continu@usnsition.

f:((PxT)U(T x P)) — R} defines a set of directed arcs, weighted by non-

negative real numbers.

e v : T — H assigns to the transitions a firing rate function, whereleygét of all
firing rate functions isH := J,cp {hi|he : R — R}, andu(t) = h, is for the

transitiont € T'.

e my: P — R gives the initial marking.

Places in a Petri net model represent species in the tamgetdmical system. Markings
on the places denote initial concentrations of the spediég. transitions are firing rules
with assigned kinetic rates. In a sense, a single compomenbe taken as a model of a
specific biochemical system, because the model can only geenf essential three places

and one transition with regard to the syntax definition.

3.4.5 Semantics of a model

Definition3.4.4 Model, Semantigs A model is a system of ODESs, illustrating the nonlin-

ear relationship among at least three involved biochenaileshents:

dlP]
—o= > feP)xut)— Y f(Pt)x () (3.4.4)

te* PAteT tePeNteT

where P is a disjoint continuous places sef’( > 3) for the continuousPlaces in
the model;T" is a continuous transitions sef( > 1) for the T'ransitions in the model,
[ (PxT)U(T x P)) — R defines a set of at least three directed arcs, weighted by non-

negative real numbers;: 7' — H assigns to the transition a firing rate function, whereby
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the set of all firing rate functions i := J,., { k|l : R — R}, andu(t) = h, is for
the transitior; [P] : P — R{ gives the concentrations of places which are continuously

changed over time.

The ODEs system derived from a model describes the contshaeange of concen-
trations over time for the given species, and it is also a sratitical description of target
biochemical system. The same as a place in a component, kaehipthe model gets an
equation which belongs to the ODEs system. Note that thelaaion from a Petri net of a

model to a set of ODESs is unique, but the reverse is not guzedriBrei 10].

3.5 Libraries of Components and Models

In order to construct models of biochemical systems by cammgocomponents, a storage
place should be considered to keep synthetic componentsiaddls while modelling. A
database was designed by the MySQL database technique @hdravies were developed
to preserve the components and models.

Figurel 3.6 shows an entity relationship (ER) diagram thatdkes the aforementioned
database. The entity set is represented by a rectangle,raatirdoute of the entity is
described by an oval. The relationship between the entityis&lenoted by a diamond on
the ER diagram.

There are two entity sets in the ER diagraWodelsandComponentsThere are eight
attributes inModels ID, GenerationlD PopulationID, RatesLabelsRatesConstants-it-
ness Structureand Simulation Component$as six attributesiD, Reaction Element]

Element? Element3and Element4 The relationship betweedodelsand Componentss
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GenerationID I]|3 Simulation I]l:) Reaction
/

PopulationID | Models n Compose N Components —  Element1
/ \

RatesLabels FitJless Structure Elenllent4 ElEeiE

RatesConstants Element3

Figure 3.6: Entity relationship of models and componentthan database. ‘Models’ is
an entity in the database defined with following attributé®’ is an unique number for
a model under construction; Attributes ‘GenerationID’ dRdpulationID’ indicate the
model as one of seeds in an evolutionary generation; Atgititructure’ contains infor-
mation of the topology of the model; Reactions rates of the@hare indicated by ‘Rates-
Labels’ and ‘RatesConstants’; Attribute ‘Fitness’ is tivaleation result of the model and
‘Simulation’ is for the time series data of model behaviougntity ‘Components’ are
reactions of a model with following attributes: ‘ID’ stanftg an unique reaction; ‘Reac-
tion’ indicate the pattern of the reaction with details abstrates information; ‘Elementl’,
‘Element2’, ‘Element3’ and ‘Element4’ are for the labelssoibstrates and kinetic rate.

‘Composk The cardinality of relationshipComposeis ‘M:N’, which indicates each en-
tity in the Modelscan be associated with many entities in @@mponentsand each entity
in the Componentss associated with many entities in tModels Note that the ‘many’

could be one or more and sometimes zero.

3.5.1 Components Library

Components are created at initial stage, according to taeeftined patterns and definition
in Section(3.4. A components libray- was developed as a table in the database, to
preserve the generated components as atomic building $focknodelling biochemical
systems. The library.c maintains detailed information of these atomic componesutsh

as labels of involved species, constants of associatetiknages and structures of created

components.
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Table 3.2: Attributes of an entity componentiip

Index Type | Attributes| Example
Primary Key| ID 1

Index Reaction P1+P251+P3
Index Elementl| P,

Index Element2| P,

Index Element3| k;

Index Element4| Ps

Table[3.2 illustrates details of one componeht + P, LN P3’ with its attributes in
the library L. An entity component is reusable for piecewise modellirgghemical sys-
tems, and the attributes are mutable while composing madéhe systems. Attributdd
indicates the identification of the component; attribReactionpresents the structure of
the component; attributdslementl-4show the names of the species and the kinetic rate

constant of the reaction.

3.5.2 Models Library

Models can be constructed by the composition of reusablg@oaents from the library...

A models libraryL,, was developed with the component librdry in the same database
for preservation of synthetic models. The librdry; maintains information of the models,
including names of species, structures, kinetic ratestaatsand simulation results in time

series dataset.

k1
=L
Table[3.B shows details of a modél, '+ P, Py N P+ Py, Py +Ps LN Py with its
H
ko

attributes in the library,,. An entity model in thel,, is preserved for representing target
biochemical system and supporting a further evolutionasgefiing. AttributelD indicates

the identification of the model; attribut&enerationiDandPopulationIDshow the stage of
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Table 3.3: Attributes of an entity model i,

Index Type | Attributes Example
Primary Key| ID 1
Index GenerationID | 100
Index PopulationID | 25
Index RatesLabels | {k1, ko, k3, ka}
Index RatesConstants{0.03,1.23,0.6,0.0072}
Index Fitness 0.68
Index Structure {P+ P, LN P,
PPt P,
Py ES—) Py + Py,
P+ P 2 py)
Index Simulation Time Series Dataset

the model under construction in an evolutionary modelliracpss; attributeRateslLabels
and RatesConstantare the names and constants of the kinetic rates associitedhe
biochemical reactions; attributéstness Structureand Simulationdenote the evaluation

result, structure and simulation result of the model.

3.6 Modification of Petri Nets

Study of stepwise modification of Petri nets focused on tifieement and abstraction of
Petri nets by a bottom-up or top-down approach [Zhdu 92],civigreserved properties
of Petri nets such as liveness and boundedness. The bofiapproach was employed
to merge and/or link subnets to generate a final net, and thddan approach stepwise
refined a first-level Petri net model to increase details efrtét until reaching the desired
level. In general, modified parts of a Petri net were plagesisitions, arcs or subnets of
the entire Petri net[Vale 79, Suzu! 83, Zubé99, Paul 03, Gdshe 0

Since Petri nets theory was utilized firstly to describedmatal processes by Reddy et
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al. [Redd 93] in 1993, Petri net and its extensions were adplb model different types
of biological pathways, such as metabolic pathways, sigggbathways, gene regula-
tory networks and other integrated pathways[Marw/08, Matw\Wagl 11]. The models
of biological pathways represented in Petri nets were @bl employing evolutionary
algorithms. Mauch [Mauc 03] presented how to employ Petis a8 genomic representa-
tions for evolving a population of individuals in genetiimogramming. An approach was
proposed by Moore and Hahn [Moor|03] to use grammatical éxolumodelling gene in-
teractions in a Petri net model. Mayo [Mayo 05] applied a mmdthased on random hill
climbing to automatically build the Petri net models for tien-linear gene interactions.
Nummela and Julstrom [Numm 05] addressed the metabolicyagthprediction problem
by employing a genetic algorithm and a stochastic hill-tling step to search a space of
Petri nets representing the pathways. Durzinsky ét al [D8fzlescribed a method to auto-
matically reconstruct molecular and genetic networks fobsarete time series data. More
recently, Mayo and Beretta [Mayo [11] proposed a method basegenetic algorithms and
data mining to automatically construct Petri net modelseegnting the non-linear gene
interactions.

However, the above approaches evolve an existing netwodehty mutating the con-
nections among existing places and transitions withoutaegtion of new elements during
the evolutionary process, whereas our approach in thigstise® incrementally piecewise
construct a network by modifying and composing reusablepmrants. In synthetic bi-
ology, modelling of biochemical systems is feasible to achidesired functionalities by
constructing reduced systems. But it is restricted for @xpg different model structure,

because of modelling process being guided by functioealitiOur piecewise modelling
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approach is possible to try different composition of comgaas in a heuristic and evolu-
tionary manner. Moreover, it enables the exploration adraktive models space in terms
of topologies and kinetic rates for discovering biochermpecenciples, which is essential for
implementation of synthetic biology and other applicatameas in BioModel Engineering.
Note that a model under construction in this thesis could fiegle component, and a
simple model can be synthesized with atomic componentsrto éocomplicate model by
utilizing a set of composition operators and rules. Theitieththe operators and rules are

illustrated in following sections.

3.7 Composition Operators and Rules

Modelling biochemical systems can be achieved by applymmposition operators to
modify structures of Petri net models representing biogbahsystems. A set of compo-
sition operators are adapted from the evolutionary opation [Foge 94, Beye 02] to fine
tune the structures of the models. The composition opeyatiod corresponding symbols

utilized in this thesis are:

e Addition represented by a symbel
e Subtractionrepresented a symbel

e Crossoverrepresented by a symbal

Similar to the implementation of genetic operators in etiohary computation, the
proposed composition operators mimic the mutation of @dtsystems in an evolution-
ary process to evolve biochemical models. Furthermoreappdications of composition

operators are guided by a set of composition rules duringibaelling process.



67

In this thesis, piecewise composition rules are utilizedddding components to a
model, removing components from a model and crossing twenpar models to repro-
duce children models. Therefore, three sets of composititas employed to guide the
composition operators can be summarized briefly as follogferk illustrating details of

the rules:

1. Addition Rulesare employed to add a componéntto a model)M;

The component’, is selected randomly from a libray, and merged with a com-
ponentC,, randomly chosen fromd/. The addition rules allow the compone&fi
to be merged with(,,, into M by replacing parts of labels of the placesf with

labels of places front,,.

2. Subtraction Ruleare implemented to remove components from a madgl

The subtraction rules permit a componéht in M to be removed by deleting tran-
sition and incident arcs of th€,,, but keeping places af,, in M for maintenance

later.

3. Crossover Ruleare utilized to cross over two models for generating new rispde

The crossover rules let two models be cut and spliced by swgjparts of the models

via an approach ofCut and Splice

Models and components involved in the composition processlefined in Petri nets
structure, therefore all the composition operators aréopeed on the places and transi-
tions. Before illustrating the details of composition gjlkey points about the composition

are given as follows.
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e Any one of the three places of a componéjt(C,,) can be randomly chosen as the

composition site.

The composition sites in the componentsandC,, are places which are used for
labels comparison. Parts of the labels of the places aragegifor the integration of

the components.

e Labels of places in componefi, can be modified, but labels of places in component

C,, are not changed during the composition process.

We ‘borrow’ the structure of’, to develop the topology of the mod&! by adding
arcs, transition and synthetic species. It makes senserthathe labels of places in
the added component, are modified with the information from th€,, to ensure
the ‘synthesized’ species in a developed model are reléganprimary ‘version’ of

the model.

In this chapter,L; (: = 1,2,3) is used to present labels of placBs(: = 1,2,3) in
a component’, from the components librarj for additions;L,,, is used to denote the
label of a placeP,, in a component’,, randomly selected from a mod&f. The details
of composition rules are illustrated with simple compasitexamples in the following

sections.

3.7.1 Addition operator

Definition 3.7.1 Addition Operator,®). An addition operator is a function of merging a
component’, from a component library. with a component’,,, from an existing model

M to generate a new mod#f’:

Cm®@Cq
M Em&Cey pp
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The added component, is selected randomly from the libray.. Another compo-
nentC,, is chosen randomly from an existing modél Since the model and components
are presented in Petri net structures, the labels (hamgdacdés (species) of the compo-
nentsC, andC,, can be compared and merged according to specific rules. Aaeétidion
rules in Section 3.712 is applied to guide the addition psece

The topology of model/ is monotonically increased to the topology of modél,
because of no removal of places and transitions while apglthe addition operator. A
generated model of a biochemical system should be maintang reasonable structure,
which requires subtractions utilized on the syntheticcttrre of the model. A subtraction

operator is presented in Section 317.3 to achieve the airosrafolling generated models

structures.

3.7.2 Addition rules

Since the components are instantiated from the binding atdhding patterns in Sec-
tion[3.4.1, addition rules are proposed to deal with contfmzsiamong components in-
stantiated from different patterns. An overview of our pyeed addition rules is given in

Table[3.4.

Table 3.4: An overview of addition rules

Rules| Execution
RL | MergeS, andS,,, if S, = S,
R?% | ReplaceS, with S,,,, if S, # S, andsS,, is not a complex
R3 | Decompose,, and create a new component by partsgf
R: | Create a new component 8, and.S,

1. S,, is a species from the model for comparison;
2. S, is a species from the added component for comparison.
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Addition rules summarized in Table 8.4 are general desoriptof how to compare
species from an existing model and an added component, aat aplerations (merg-
ing, replacement, decomposition and creation) to be erdaatgarding different types of
species (complex or not). Details of addition rules arestlated with examples as follows.

A componentC, is added to a model/ by merging the places and transition @f
with a component”,, from a modelM. The C, is in a bindingP;, + P, LN P; or an
unbinding patterrP; k2, P, + P, whereL, L, and L3 are the labels of place’, P, and
P; respectively. The&,, is either in a binding pattern or in an unbinding pattern. Whe
a placeP; (labeled ad.,, L, or Ls3) is randomly selected from th&€, and compared with
a placeP,, (labeled asL,,) randomly chosen from th€’,,, proposed addition rules are

employed for performing the components addition.

e RL: If L,, = L; (i = 1,2,3), the componentC, is added to the model)/ by
adding the reaction equations ofC, to the set of reactions equations of\/ di-

rectly;

Example In Figure[3.7, there is a componefi} in the binding pattern. Placg, is
compared with plac#,, andL,, = L,. TheL,, = L, means ‘a species represented
by a placeP, in the component, exist in the modelM/ as well’. Then reaction
equations of”, can be added to the set of reaction equationd/directly without

any modification on thé’,,.

e RZ:If L,, # L; (i = 1,2), one of the labels ofZ; in C, are replaced byL,, and
reaction equations of modifiedC, are added to the set of reaction equations of
M;

Example In Figure[3.8, there is a componefif in the unbinding pattern. The place
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Figure 3.7: Component, is added to model/ without modification.

P, in C, is compared with placé,, andL,, # L,. TheL,, # L; means ‘two
compared species are different’. Therefore, the labels,oéxisting in theC, are
replaced by thd.,, and reaction equations of the modifi€d are added to the set of

reaction equations a¥/.

R%: If L, # L3 and P,, is a complex, labelL; in the C, is replaced by L,,,
label L is replaced by L,,; and L, is replaced by L,,,, where L,,; N L, = 0
and L,,; U L, = L,,, and reaction equations of modifiedC, are added to the
set of reaction equations of//. Moreover, another componentC’ is created by
replacing P; inthe C, with P,,, but other places in theC,, are not modified. Then
reaction equations of component’’, are added to the set of reaction equations

of M;

Example In Figure[3.9, there is a componefi} in the binding pattern. The place

P5 is compared with placé),, andL,, # Ls. ThelL,, # L3 means ‘two compared
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P1|P2
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CD/ P2
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Figure 3.8: Componertt, is modified by replacing labels and added to madel

species are different’. Because tHg is a complex, labelé; and L, existing in the

C, are replaced respectively by two partsigf: L,,; andL,,,. The L,,; and L,

are obtained by randomly splitting,,, whereL,,,; N L,,o = 0 andL,,; U L,,2 = L,,.
The reaction equations of the modifiéf are added to the set of reaction equations

of M.

° Rﬁe: If L,, # Lz and P,, is not a complex, the reaction equations of’, are added
to the set of reaction equations ofV/ firstly, and a new componentC’ is created
by binding P; with P,, to produce P,,| P; according to the binding pattern; then
the reaction equations of synthetia”’, are added to the set of reaction equations

of M.

Example In Figure[3.10, there is a componéntin the unbinding pattern. The place
P53 is compared with placé),, andL,, # Ls. ThelL,, # L3 means ‘two compared

species are different’. Because thg is not a complex (without §*in the labelL,,),
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Figure 3.9: Replacement of labels(af by the species id/.

a new component” will be created by using thé,,, and P; in a binding pattern:
P, + P; AN P,,|P;. The reaction equations of the componéptandC’, are added

to the set of reaction equations bf.

3.7.3 Subtraction operator

Definition 3.7.2 Subtraction Operators). A substraction operator is a function for re-

moving a component’,, from an existing modeM to generate a new mod#/!”:

M S ap

In graph theory, removal of nodes (places and transitiofini nets) could cause re-
cursive and uncontrolled operations to remove subgraplikid scenario, a fixed level(depth)
of nodes search in a graph can be introduced for the sulmnadt¥ith respect to graph de-

composition, we set the subtraction level to one, which ra¢la@re is only one component
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Figure 3.10: Creation of a new componéfjtby P; and P,,,.

to be removed from the topology of a model at each time.

After performing the subtraction operator during the mbdglprocess, the topology
of the model is shrunk. The subtraction operator appliedddifg the biochemical models
may satisfy the principle of Occam’s razor [Thor 15], whistieasible to help bioscientists
find a set of simple but interesting structures of biochehsgatems for further investiga-

tion in wet-lab.

3.7.4 Subtraction rules

A componentC,, is selected randomly from an existing modélfor the implementation
of subtraction by removing transition and incident arce.cEs incident to the removed arcs
are not deleted, because any removal of places could atteet ransitions which are not
involved in current subtraction. Takile B.5 shows an ovenaésubtraction rules proposed

for removing parts of a biochemical model.
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Table 3.5: An overview of subtraction rules.

Rule | Execution

RL | Do nothing, if there is only one component in a modél

Ré Delete transition with its incident arcs in a componét

from a model)M, if there are up to two components in the modél
R% Delete transition with its incident arcs in a componét

from a modeld/ and maintain modified modél/, if there are
more than three components in the modi&l

Notes:
1. M is a model to be modified;
2. C,, is a component to be subtracted from a madel

Subtraction of components from a model is very simple: toaeminkages among
places and transitions. As shown in Tabl€ 3.5, transiti@hiacident arcs of a component

are the removed parts for performing subtraction oper&ietails of subtraction rules are

illustrated as follows.

e R.: If a model M comprises only one component, subtraction operator is not

implemented;

Since atomic component is defined as an instantiation froenadriwo patterns, a
component is a basic and essential complete part within aemdtlis obviously
that a model must comprise at least one component for ekiglepecies behaviour

based on fundamental biochemical kinetic law, for instaviéd. in our research.

e RZ: If a model M comprises two components, one componetdt,, is selected
randomly from the model M to subtract from the topology of the model. The
subtraction is implemented by deleting transition7,,, with its incident arcs in the
componentC,,,. Another component and its reaction equations are presengein

the model M.
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Figure 3.11: Componeidt,, is removed directly from the modél.

Example In Figure[3.11, transitio"2 is removed with incident three arcs. There
are two isolated placeB4 and P5 which are cleaned up later, and plaée is kept

because of its connection to the remain parts of the mbfel

e R%: If a model M comprises of more than two components, a componert,,
is selected randomly from the modelM to subtract from the topology of the
model. Then a step of maintenance is applied to check the syrgsized places,

added components and connectivity of the structure of the mael;

Example In Figure[3.12, transitiol’1 is removed with incident three arcs. There
are three isolated subparts in the model after applyingractidn. In a process of
maintenance, place32 and P4 are selected randomly from two isolated subparts to
make a new componefit2 by associating a complex betweét2 and P4. Places
P3 and P6 are selected randomly from other two isolated subparts teraanew

componenf’3 by associating a complex betwe&3 and P6.

After removing the componertt,, from the modelM, species of’,, can be either

incident toM or isolated from\/:
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Transition T1 is deleted with arcs.
Two components are created.
Transitions T2 and T3 are added.

Figure 3.12: Removal aof’,, and linkages of isolated components.

¢ Incident places - places are incident to the madelwith incoming or outgoing arcs

linking to the main parts of the topology of/;

e Isolated places - places are isolated from the mddelwithout any connections

linking to the main parts of the topology of .

The incident places are still functional parts of other comgnts in the model/,
and the isolated places are cleaned up automatically by @gscof maintenance of the

synthetic model in terms of places, components and streiwctur

3.7.5 Crossover operator

Definition 3.7.3 Crossover Operatorg). A crossover operator is a function of crossing

two models)M; and M, to produce two new models, and the two new models compete to



78

be one survival model/’ as an individual:

M1®M2—>MI

In this thesis, the crossover operator is adapted from oomegover variants in genetic
algorithms:Cut and Splice The mechanism of cut and splice is illustrated in Figured3.1
by recombining two parents with different length to prodiawe children. Two separate
crossover points are randomly selected on the parentsg@f@pping parts of the parents
beyond the crossover points. There are two children pratlfroen the swapping, and the

characters of the parents are inherited.

Parents:

Children:

|

Figure 3.13: Mechanism @ut and Splice

With respect to the principle oEut and Splicethe crossed models typically inherit
many of the characteristics from the parental models. TaeFeit is possible to obtain a
set of components with good characteristics in synthetidet® Note that the good char-
acteristics of components in a model can be taken as thedmsaif producing interesting

behaviour of species or composing alternative topolodi¢srget biochemical systems.
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3.7.6 Crossover rules

Models are crossed over for generating offspring modelskimherit genes (components)
of parental models, ensuring evolutionary progress whibelefling biochemical systems.
An overview of crossover rules are given in Tdbld 3.6, desugihow to cut parts of models
under construction and to swap components between two shodel

Table 3.6: An overview of crossover rules.

Rule | Execution
R | Cut and swap parts of components in two mode}sandM; (i # 7)
Note: M; andM; are two different parental models for performing cross@ysrator.

Cutting and swapping components from two parental modgtsdduce two offspring
models follows the traditionalCut and Splicemechanism on individuals with binary rep-
resentation. Components are instances from pre-defingerpatin this thesis and the
presentation of components are not in binary format. Basitking mechanism of cut
and splice works on many evolutionary modelling issuess the employ these evolution-
ary operations to evolve our models under construction bydicing genetic crossover

mutation. Details of crossover rules are described asviatig:

e R;: Given model M/; and model M; (i # j), two cut and splice pointsp; and p;
are chosen randomly in the sets of components @f/; and M, respectively. Then
components ofM; (M;) beyond thep; (p;) are cut away from A; (M;), swapped
with components of M, (1;) beyond thep; (p;) and spliced to the rest of compo-
nents of M; (M;). Finally, two new generated models\/; and M are generated,
and maintenance is applied to}M; and M to reduce duplicate components and

link isolated components.

Example In Table[3.7, given two modeld/; and M, with /; andl, components
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Table 3.7: Crossover between two models

Status Models| Components (Reactions)
Before® | M, {rie, s rﬁl,rﬁjl, s 7"3141}

1 P2 p2F+1 [P

M, {’I’M2,...,7“M2,7’M21,...,7“;\42}
! 1 P1 P2+ 2

After ® M {TMI,...,er,'rM%rl,...,rfWQ}
/ 1 D2 P1 1

M;, {T’MQ,...,TMQ,T’MI ,...,er}

respectively, two pointg; andp, are selected randomly for crossover, where

p1 <lpandl < p; <ly:

— Model M - a set of componentgy, , ..., 7} , ri\’}fl..., rﬁ&dl}

— Model M, - a set of component§-}, , ..., rhz bzt vl )

After applying the crossover operation, there are two neidien models)/] and

M, generated with different sets of componehjtand!;, respectively, wheré, =

p1+ (lo — p2) andly = py + (1 — p1):

— Model M - a set of component§-i,,, ..., rhy .72t 1 )

— Model M - a set of componentgy, , ..., 717 rﬁfl, s rﬁ&dl}

Since two random cut and spliced points are chosen to beaessites in two parental
models, isolated and duplicated components can exist idreni models. The isolated
and duplicated components result in a non-connective ¢ggodr duplicated arcs among
compounds. In order to ensure models under constructiccoargected and reduced, more
operations should be applied to maintain the generated IsjoDetails of maintenance

operations are discussed in following section.
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3.8 Maintenance of Composed Models

Composition operators and rules are employed to modify #ta Ret models and to syn-
thesize new species in the models by renaming labels of gla8mce the labels can be

simple alphanumeric strings or a series of simple place sgoieed by the

° symbol,
the modified labels of species could create duplicate alpmanic parts, and repeat com-
ponents could be generated in the model. It is necessaryitdaimathe synthetic models
after composition. Therefore, three aspects of constiuttedels should be checked and

maintained: names (labels) of species (places), compsaeadttopologies.

3.8.1 Maintaining the species

During the composition process, all the components witblired species should be unique.
In order to uniquely identify the species and parametersntodel, a naming convention
was applied to refer species and parameters with the samesrardifferent models with-
out having to change the namés [Rand 08]. In our proposed Ismodmposition, partial
modification on the labels of places of synthetic compoumaigesult in duplicate alphanu-
meric parts joined by a symbdl. Therefore, the labels of places in a composed model will

be sorted in ascending order and clarified by removing dag@iparts between the symbol

", After manipulating the names of compounds, the speciastodel will be unique and
clarified for comparisons with other composed places imrtomposition.

An example of sorting and clarifying the label of a synthetenpound is illustrated
as follows. Given two labels of placds and L,, a labelL; composed fronl,; and L, is

synthesized by sorting and reducing the alphanumeric parts and L,:

o L,: {A1|B2|B3|C4} is the label of speci¢’;, where ‘A1, B2, B3 andC4’ are the
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names of other species in the model,

o Ly {A1|B3|C2|C3|C4|D1} is the label of specié, where ‘A1, B3, C2, C3, C4

and D1’ are the names of other species in a model;

o L3 {A1|B2|B3|C2|C3|C4| D1} is the label of speci@’; composed fronP; and P,

where duplicateA1, B3 andC'4’ are merged to indicate the new synthefic

Therefore, while modelling biochemical systems by our psgu species maintenance,
it is possible to enable modelers identifying the uniqusrdéghe synthetic components of

the composed models.

3.8.2 Maintaining the components

After applying addition and crossover operators to compoedels of biochemical sys-

tems, the constructed models could comprise of repeat coemp®. The duplicate com-
ponents are presented in Petri nets with duplicate arcirgxiamong the transitions and
places. The mapped ODEs system of the composed models etk ttuplicate com-

ponents contains duplicate mathematical equations, wiiatihematically illustrates the
corresponding models incorrectly. Consequently, the nsog&h duplicate components
should be reduced by removing duplicate reactions dire@déyple[3.B shows an example

of reducing a composed model with duplicate components.

3.8.3 Maintaining the structures

When an evaluation of a generated model is carried out bylating a set of ODEs mapped
from a corresponding Petri net of the synthetic model, itesassary to have a set of

mapped ODEs consisting with target biochemical system.n&sduced in Section 3.7.4
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Table 3.8: Maintaining components of a synthetic model

A Synthetic Model Duplicate Components The Reduced Model
M={P +P % p, M={P +P % p,
RNy Ry - PP,

P p+py, PP+ Py,

P optp, P pp

P+ P P, P+ P 2 P,

P+ P pg, P, + P s py

P 5 P+ Py} Py 2 P+ P}

and Section 3.716, isolated components and subparts castdrea composed model, after
modifying the structure of the model. In this scenario,asioin of subparts in a generated
model should be reconnected for mapping a set of relevantfORElevant ODEs enables
a synthetic model to be simulated and the behavior of spézies fit correctly during the

process of models construction.

P1 P2

T1

T2

Figure 3.14: An original model for subtraction

In this thesis, we proposed an approach to maintain the ctimitg of a Petri net model
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P1 P2

T2

Figure 3.15: One structure of the model after subtraction

by adding a new synthetic component. The added componergased in a binding pat-
tern by using places from the isolated components, and timpopent is composed to the
topology of Petri net model to link isolated parts. For imein Figuré 3,12, two separate
parts of the model will be linked by a component which is adatia binding place$’
and Py in a transitionT; to make a new comple®s|Ps. Related works of constructing
connective workflow nets can be referred|to [Poly 11].

An example of maintaining the structure of a generated misdgiven as follows. A
modelM is originally represented in Figure 3]14. If the transitifnis removed fromV,
two isolated place#; and P, can exist as shown in Figute 3115. If the transitibnis
removed fromM, two isolated components and one connected subpart dfitben exist

as shown in Figure 3.16.
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P1 P2

Figure 3.16: Another structure of the model after subtoarcti
3.9 Examples of Composing Biochemical Systems

There are three demonstration examples of component-nuoaebosition: MAL (See
Equationt3.3.11), 3-cascade pathway without feedback, ares8ade pathway with feed-
back. The details of construction and de-construction es¢ghexamples are illustrated
by composing instantiated components. Note that the comnpogrocess is simplified
for demonstration, and the composing of biochemical systisncarried out by a hybrid

evolutionary modelling approach which is illustrated inapref 4.

3.9.1 Composition of an enzymatic reaction based on MA1

Given two elements, three components can be instantiatadbmbinatorial method based
on the binding and unbinding patterns. An enzymatic readiesed on MA1 can be gener-
ated by composing the three instantiated components. Tthdsdef patterns, components

and composition of the enzymatic reaction are illustratetbowing:



86

e Templates for components instantiation:

— Binding pattern:P, + P, AN P;

— Unbinding patternp; k2, P+ P
¢ Input elements: A (acting as a substrate) aft(acting as an enzyme);
¢ Instantiated components:
— Component C14A + E LZN AlE
— Component C2A|E M A+ E
— Component C3A|E M AP+ E
e Composition process:
— Step 1: Randomly select component C2 as an initial seed teritirary:
AEE A+ E

— Step 2: Add component C3 to C2 by compariagy from C2 with A|E from
C3. Components C2 and C3 are composed directly because séanhe com-

pared places4| F):
A+ E& AE S AP+ E

— Step 3: Add component C1 to ‘G8 C2’ by comparingA from C1 with A|E
from C2. Placed|E is maintained in C2 but placé in C1 is replaced by |,

where C1 is modified as4|E + E =% A|E’. This composition of adding C1

is rejected, because modified component C1 against theTuéreé must be no

Placeto producePlaceitself, such as® + @ LiNy
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— Step 4: Add component C1 to ‘C8 C2’ by comparingt’ from C1 with £
from C3. Components C1 and C3 are composed directly becdube same

compared places):

k1
— ks
A+E  AEZ AP+ E
e
2

Then the enzymatic reaction based on MA1 kinetic law is gateerby ‘C1® C3 &

C2’ after performing aforementioned operators.

3.9.2 Composition of a 3-cascade pathway without feedback

The composition of a 3-cascade pathway without feedbackoeaobtained by applying
addition and subtraction operations to instantiated carapts. Specially, MA1 is used for

the generation of components instantiation in this denmatist.

e Templates for components instantiation:
— Binding pattern:P; + P, LN Py
— Unbinding pattern?; 2, P+ P

e Input elements: R, RR and RRR (which are acting as substrate) afit, P1, P2

and P3 (which acting as an enzyme)

¢ Instantiated components: There are three input elements acting as a substrate and
four elements acting as an enzyme. According to a combia&foinciple of choos-
ing input elements for instantiating components by MA1, 86ponents are gener-

ated and details of these components are shown in Table 3.9.

e Composition process:



Table 3.9: Instantiated components in a components library

NO. | Component Detalil NO. | Component Detail

Cl | R+5S1% RISt C19| R+ P2 £ R|P2

C2 | R|IS1% R+ 51 C20| RIP2 2% R+ P2

C3 | R|S1 & RP + 51 c21| RIP2 B RP + P2

C4 | RR+ S1 %5 RR|S1 C22| RR+ P2 %5 RR|P2

C5 | RR|S1 %% RR + S1 C23| RR|P2 %% RR + P2

C6 | RR|S1 2 RRP + S1 C24 | RR|P2 £ RRP + P2
C7 | RRR+5S1%5 RRR|S1 | C25| RRR + P2 £ RRR|P2
C8 | RRR|S1 % RRR+S1 |C26| RRR|P2 %% RRR + P2
C9 | RRR|S1 2 RRRP + S1 | C27| RRR|P2 £ RRRP + P2
C10| R+ P15 RIP1 c28| R+ P34 R|P3

C11| R|P1 % R+ P1 Cc29| RIP3 X R+ P3

c12| rRIP1 £ RP + P1 C30| R|P3 L RP+ P3

C13| RR+ P15 RR|P1 C31| RR+ P35 RR|P3

C14| RR|P1 2 RR + P1 C32| RR|P3 £ RR + P3

C15| RR|P1 £ RRP + P1 C33| RR|P3 £ RRP + P3
C16 | RRR+ P15 RRR|P1 | C34| RRR + P35 RRR|P3
C17 | RRR|P1 25 RRR+ P1 | C35| RRR|P3 %% RRR + P3
C18 | RRR|P1 £ RRRP + P1 | C36 | RRR|P3 £ RRRP + P3

— Step 1: Randomly select C3 as an initial seed:

R|S1 2 RP + 51

— Step 2: C3» C2:

R+ 5142 RIS1E RP + 51

— Step 3: C3p C2¢ C19:

R+ 514 R|S1E RP + 51

88
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R+ P2 R|P2

— Step4: C3p C2¢ C19¢ C1:

LiN N
R+S1 __ RISL= RP+ 51

ko
R+ P2 & R|P2

— Step 5: C3p C2® C19¢ C1l o C19. Transition oftY in C19 component
‘R+ P2 1 R| P2 is removed with incident arcs directly. Placé® and

R| P2 are cleaned up after checking the topology connectivitgofain parts:

13

R+S1  R|S1% RP+ 51

l

— Step 6: C35 C2d C196¢ Clo C196 C10. Placesk in component C10 is
replaced byR P:

R+S1  R|S1% RP+ 51

Tl

RP|P1 &S RP + P1

— Step7: C3p C2® C19¢ Clo C19¢ C104 C11. Placesk in component
Cl1lisreplaced by P:

R+S1  R|S1% RP+ 51

Tl

puil

RP|P1  RP+P1
T
2

— Step 8: C3p C2@® C19@ C1 o C19¢ C10¢ Cll® C11. Placesk in
component C11 is compared withP|P1 in M, then ‘RP|P1 Y R+ Plis
created and added. Component CR1P1 ' R+ P1'is added:
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LN .

R+S1  RISL' RP 481
H
)

k1

H

R+ P1+— RP|P1 RP+ P1
ko —

)

R+ P14 R|P1

— Step 9: C3p C2@¢ C196¢ Cle C194 C104 C11e Clleo C11. Transition
of £ in component C11R + P1 & R|P1’ is removed with incident arcs
directly. PlaceR|P1 is cleaned up after checking the topology connectivity of
remain parts:

k1

RN ks

R+S1  R|S1% RP+S1
é_
ko

k1

<__

R+ P1+— RP|P1 RP + P1
ko k—)

The 1st cascade layer is generated by Step 1-9, and the 2ri@rdundiscade
layers can be generated in a similar manner, for instanee [dftSteps and

N+M Steps respectively as follows.

— StepN: The 2nd cascade layer is generated:

= .

RR+S1  RR|S1 % RRP + S1
e

k1

Pl

RR + P2 <k— RRP|P2 . RRP + P2

ko

— StepN+M: The 3rd cascade layer is generated:

RRR+S1  RRR|S1% RRRP + S1

T I
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k1
é_
RRR + P3 <l<;_ RRRP|P3 . RRRP + P3
2
ko

The 3-cascade pathway without feedback is generated aftembre steps of

composition as follows.

— StepN+M+1: ‘l1st-cascaded 2rd-cascade’ is composed by replacifig in

2nd-cascade witlk P:

k1
— ks
R+S1  R|S1™ RPy 51
H
ko
k1
<__
R+ P1+— RP|P1 RP+ P1
ko —
ko
k1
— ks
RR + RP RR|RP = RRP + RP
e
k1
H
RR + P2 <— RRP|P2 RRP + P2
ko ;—)
2

— StepN+M+1+1: ‘1st-cascadeb 2rd-cascaded 3rd-cascade’ is composed by

replacingS1 in 3rd-cascade witlR R P:

R+S1  RISL' RP 481
—
ko
k1
L
R+ P1+— RP|P1 RP+ P1
ko —
ko
k1
— ks
RR+ RP “ RR|RP = RRP + RP
ko

T

RR + P2 — RRP|P2 RRP + P2
2

7]
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k1
__)

RRR + RRP RRR|RRP ks RRRP + RRP

e

k1
H

RRR + P3 <k— RRRP|P3 . RRRP + P3
)

Then the 3-cascade pathway without feedback is generasrdagplication of addition

and subtraction operations.

3.9.3 Composition of a 3-cascade pathway with feedback

More composition steps can be applied to a generated 3dampeshway without feedback
to compose a 3-cascade pathway with feedback, by addingawengs C1 and C2 from

the Tablé 3.9 in previous section.

e Composition process:

— Step 1: ‘a 3-cascade pathway without feedback1’. R in C1 is replaced by

RRRP which is from the 3-cascade pathway without feedback:

R+S1  R|S1™ RPy 51
—
ko
k1
<__
R+ Pl+ RP|P1  RP+ Pl
k2 —
ko
k1
— ks
RR + RP RR|RP = RRP + RP
.
k1
H
RR + P2 <—k— RRP|P2 RRP + P2
: P
ﬁl_)
RRR+ RRP " RRR|RRP s, RRRP + RRP
ko
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puil

RRR + P3 <k— RRRP|P3 RRRP + P3
2 —
)

RRRP + S1 %% RRRP|S1

— Step 2: ‘a 3-cascade pathway without feedbaclkcl & C2'. R in C2 is re-
placed byRRRP from the ‘3-cascade pathway without feedbaekC1'":

R+S1  R|S1% RP+S1
—
ko
k1
<__
R+ Pl« RP|P1  RP+ Pl
ko —
ko
k1
— ks
RR + RP - RR|RP = RRP + RP
ko

RR + P2 — RRP|P2 RRP + P2

L 1

k1

%

RRR+ RRP RRR|RRP s, RRRP + RRP
e

k1

i

RRR + P3 <l<;_ RRRP|P3 RRRP + P3

2 P

k1

H

RRRP + S1 RRRP|S1

e

Then a 3-cascade pathway with feedback is generated afjges $tand 2 by composing

component C1 and C2 to a 3-cascade pathway without feedback.
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3.10 Summary

In this chapter, we have presented binding and unbindingpestas two templates for in-
stantiating components. An enzymatic reaction can be dposad into three components
instantiated from the two patterns. Moreover, a set of MAzyematic reactions is em-
ployed to present biochemical systems in this thesis, laatiens based on other two mass
action kinetics MA2 and MA3 can be also utilized to investegaore complex biochemi-
cal systems in further research. The atomic componentsyantidetic models are defined in
syntax and semantics for modelling biochemical systems liwvaries are proposed and
implemented in a MySQL database to preserve the componeditsiadels respectively.

We have presented how to modify Petri net models of biochamnsicstems by using a
set of composition operators and rules. The compositiomabpes are adapted from evo-
lutionary algorithms in computer science, which allowstlgtic models to inherit char-
acteristics of parental models. The composition rules @sed in our research guide the
implementation of composition operators to modify the Hett models, which makes sure
composed models are biological relevance and controllddeeover, plausible structures
of Petri net models can be generated by our proposed conguosperators and rules.
These alternative models present target biochemicalragstea different view, and biolo-
gists in wet-lab would interest in these synthetic alteweainodels in further experimental
investigation.

In order to obtain models with non-conflicting species, ueigomponents and con-
nective topologies after composing models, we have itistt how to maintain these syn-
thetic Petri net models by manipulating the places, compisrend structures of models in
a maintenance procedure.

Some simple examples of modelling biochemical systems bhaea demonstrated by
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applying composition operators and rules to compose atoamgonents. More details of
implementations of the composition operators, compasitides and model maintenance

are illustrated in a hybrid piecewise modelling framewariChaptef 4.



Chapter 4

Hybrid Modelling of Biochemical
Systems

4.1 Introduction

This chapter firstly introduces related works of modellingchemical systems via differ-
ent types of hybrid approaches, points out the importanbglofid modelling biochemical
models in terms of structure and kinetic rates, and presgysoaches of piecewise hy-
brid composing biochemical systems. The hybrid modellipgraaches focus on different
aspects of biochemical systems: one approach is a one domdngrid model generator
based on SA algorithm for manipulating model topology amekc rates separatively; an-
other approach is a two dimensions hybrid piecewise maagfiamework, which shows
an integration of ES and SA on a two-layer modelling envirentrfor composing bio-
chemical models in terms of both topology and kinetic rates.

Sectior4.R introduces related works of modelling bioctuainsystems which has fo-
cused on utilizing different metaheuristics and compatatl models to construct biochem-
ical systems in computational biology. The employed maitgakgcs include memetic al-

gorithms, simulated annealing and genetic algorithm. Sesys and P systems are used

96
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to describe the computational models. Gene regulatoryorksrand other transcriptional
networks have been investigated as test cases for topotogstraction and kinetic rates
optimization.

Sectiorl 4.8 introduces a general framework of modellingtémical systems in com-
putational biology and illustrates our modelling strat@égyhis thesis. The basic concep-
tions of our hybrid modelling methodologies are illustchbefore the one and two dimen-
sions modelling approaches are illustrated.

Sectiori 4.4 presents our one dimension hybrid models gemel@veloped by employ-
ing SA to construct structures and optimize kinetic rat@meatively. In the one dimension
hybrid approach, topology mutation is performed iterdyil®y piecewise adding compo-
nents to a model seed under construction, and kinetic ratscmted with reactions of a
model are mutated by the Gaussian distribution and glologitimized by SA. Moreover,
there are two ways to refine kinetic rates at each iteratialevapplying the SA to the mod-
elling process: only one kinetic rate associated with onel®mical reaction is mutated;
or all kinetic rates associated with all biochemical reatdiare mutated. Our proposed one
dimension hybrid models generator can approach these tvatikirates optimization.

Section[ 4.5 presents a two dimensions hybrid piecewise limagléramework, which
is proposed and implemented with the aims of automaticalty iatelligently modelling
biochemical systems from scratch in an integrated tworlapgironment in terms of both
topology and kinetic rates. Evolution strategy (ES) is esypt to compose models by
adding components to (or removing components from) the hoashelidates. SA is utilized
to perform optimization of kinetic rates of the reactionsrindels. Swapping between ES
and SA implementation is performed by exchanging modelsrination between a ES

based outer layer and a SA based inner layer in a hybrid framew
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A brief summary of this chapter is given in Sectionl4.6 whicimsnarizes the work-
ing mechanisms of the one dimension and two dimensions dhydeicewise modelling

approaches.

4.2 Related Works of Hybrid Modelling

Models can be constructed in systems biology to predict apthm exhibiting behaviour
of biochemical systems, or as templates for designing noeehemical systems in syn-
thetic biology. It is still an open question regarding howbtold and verify models of the
biochemical systems, involving intelligent methods ardtable computational tools.

Traditionally the structures of models are inferred fromaas experimental observa-
tions, and the kinetic rates are estimated computationadjgrding kinetic laws [Brei 08,
Gilb 09]. Given static topologies of models representing tiochemical systems, it is
feasible to fit kinetic rates of the models to drive behaviotimodels coinciding with
observations of given physical systems [Feng 04, Mar| 04ndviEl]. It is also feasible
to construct biochemical models by identification of altdive topologies of the target
biochemical systems, and then to optimize the topologi¢s which kinetic rates con-
stants are associated, generating models with similanimmiveto target biochemical sys-
tems [Fran 04, Vysh 08].

As topologies and kinetic rates associated with biochenmezctions are both very
crucial for biochemical systems exhibiting observed béhay it is necessary to model
the systems in terms of both topology and kinetic rates by laidlymethod. One of
the challenging aims of hybrid modelling research is to tgva robust method for au-

tomated models construction from descriptions of the olezkor desired behaviour of
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target biochemical systems, by manipulating both topolagg kinetic rates in an in-
tegrated and iterative manner. Some previous research des darried out in hybrid
modelling of biochemical systems with respect to the toggland kinetic rates issues,
for instance a memetic method and S-systems based infecéngene regulatory net-
works [Spie 04], an ODEs and SA based optimization of smatigcriptional networks
and kinetic parameters [Rodr 07a, Rodr/07b], a nested GA aysdtems based modelling
framework [Cao 10, Rome 08].

Previous research of hybrid modelling mainly relies on tutsing models topolo-
gies, starting from existing biochemical networks. In thesdated works, initial topologies
of models seeds are modified and evaluated by different retestics, with optimizing
kinetic rates. Whereas our developed hybrid modelling @gqgdn in this thesis is to incre-

mentally piecewise construct a network from a single conepdnwhich starts modelling

from a simple structure to a complex one. Moreover, kineties associated with the struc
ture under construction can be optimized in different stagfedeveloping topology in an
evolutionary and automatic manner.

A brief introduction of general modelling framework is givn Sectiori 4.8, before our
one dimension hybrid models generator is presented in@ddtd and two dimensions
hybrid piecewise modelling approach is presented in Se@ib. The simple models gen-
erator is designed regarding SA mechanism, and it is impiéadeto generate topology
and optimize kinetic rates separatively. The two dimersioybrid modelling approach is
proposed by taking mechanisms of ES and SA into account \pleleewise constructing

topology and globally optimizing kinetic rates.
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4.3 General Framework of Hybrid Modelling

4.3.1 General framework

Modelling of biochemical systems driven by target behavican be illustrated in Fig-
ure[4.1. Given a biochemical system with information of alaed behaviour from experi-
mental examination in wet-lab, a synthetic model can be thelby manipulating topol-
ogy and kinetic rates associated with biochemical reastionthe model seed. Behaviour
of species in the synthetic model can be described and usedcfamparison between the
target modelled biochemical system and the synthetic mé@eldback from the compari-
son results can be provided to biologists in wet-lab fortfertexperiments, and refinement
can be suggested and passed to modelers in dry-lab to madipenpies of the synthetic
model, such as topology and kinetic rates, for improvingliquaf the synthetic model.
Similar work of designing biochemical systems by compuatermethodologies has been
investigated. Cooling et al. focused on how to use stangaiion of biological parts to
develop libraries of standard virtual parts in the form oftineanatical models that can be
combined to inform system design. An online Repository wasented to use a collec-
tion of standardized models that can readily be recombioadddel different biological
systems using the inherent modularity [Cool 10].

We apply metaheuristics to evolve topology and optimizetarates of models while
composing representations of target biochemical systan®Nis format. The behaviour
of biochemical systems and synthetic models utilized bymadelling approach are time
series data which is the change of species concentratiorsmaalation time. Comparison
of behaviour between target and generated model is appddnhmeasuring behaviour

difference, which provides positive or negative inforroatabout composed models under
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Figure 4.1: A general framework of modelling biochemicaitgyns.

estimation. Then modelling approach can fine tune the madetrms of topology and

kinetic rates, for exhibiting improved synthetic behaviou

4.3.2 Hybrid approach

In this thesis, we apply two metaheuristics, evolutiontstyg (ES) and simulated anneal-
ing (SA), in computer science to tackle issues of modellilmgiemical systems in terms
of topology and kinetic rates. Since two aspects (topolawyraaction rates) of a biochem-
ical system are investigated by employing two differenbaltpms in a hybrid manner, our
hybrid modelling is illustrated in Figuie 4.2.

In general, ifModelConstructionMethod(Topology, Ratespapplied toM(T, R) indi-
cating that topology and rates of a biochemical model arstcocted by different methods.
We can have different combinations of hybrid applicatiomathods to the topology and
rates:M(Tgs, Rsa) andM(Ts 4, Rgs). In this thesis, we investigatd(7zs, Rs4), Which

is a hybrid implementation of ES and SA on topology and ra¢spectively. As shown
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Figure 4.2: Construction of systems operates over two a&speaopology and kinetic
rates. Each aspect can be taken as one dimension which releedsrtanipulated by the
same/different method.

in Figure[4.2, while modelling biochemical systems, thestorction operates over two
aspects of the systems: topology and kinetic rates. We &aretach aspect as one dimen-
sion which needs to be manipulated by the same/differerttadetin this thesis, we have
two hybrid approaches which apply different methods toedéht dimensions while mod-
elling biochemical systems: a one-dimensional (1D) apgv@and a two-dimensional (2D)
approach.

In 1D approach, the algorithm is applied to tackle one proldéeach time, for instance
SA can be used to fit kinetic rates on x-axis by a combinatioi®Af-Kinetic Rates’, or
construct topology on y-axis by a combination of ‘SA+Toply and ES can be utilized to

develop topology by a combination of ‘ES+Topology’ on x&@r optimize kinetic rates
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by a combination of ‘ES+Kinetic Rates’ on y-axis.

In 2D approach, two algorithms are used to solve modelliagas in a combinatorial
manner. For example, in the clockwise direction, ES can led &3 fit kinetic rates of a
model and the topology of the model is constructed by SA, wWitse modelling stages
being repeated by using ES and SA in turn; or in the anticles&wlirection, ES is em-
ployed to develop topology of a model under constructionkanetic rates associated with
biochemical reactions are optimized by SA, then modellipgrations swap between im-
plementations of ES on topology and SA on kinetic rates watiisfying the termination
criteria.

ES is a population-based metaheuristics and it is good @idating alternative solu-
tions with a probability, we utilize ES to tackle the topojagpmposition in our 2D hybrid
modelling approach. Moreover, SA is a single-solution dasetaheuristics which obtains
optimal solutions by a global search, we employ SA to optatiee kinetic rates associated
with reactions in the models under composition. Thus, a éoation of ‘ES+Topology’
and ‘SA+Kinetic Rates’ is fundamental hybrid mechanismha tesearch of modelling

biochemical systems by our 2D hybrid approach in this thesis

4.4 A 1D Hybrid Modelling Approach

SA has been employed to set up a modelling environment in aybifichmodels genera-
tor for the construction of biochemical systems. The 1D ld/brodels generator has two
functions: to piecewise build models of biochemical systeand to iteratively optimize
kinetic rates in given biochemical models. The topologidsiachemical systems are con-
structed in the models generator by manipulating pre-deéfacoenponents and adding the

components to model seeds. The kinetic rates of given bimida models are optimized
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in the models generator globally and iteratively.

4.4.1 Topology generation
4.4.1.1 Development of topology

The topology of a model is constructed by assembling prexdéftcomponents together to
form a complex structure representing target biochemigstesn. During the development
of topology, components are added to develop the topolaggmentally, but kinetic rates
associated with reactions in these composed componentsoaraodified. Interactions
among species of a model can be represented by arcs in contpevigch are instantiated
from the PNs templates defined in Chapter 3. The iterativétiaddf arcs from added
components to a model seed develops the topology of the arddhe topology space is
explored by using the global search mechanism of SA.

An algorithmBNRSA(Biochemical Network Reconstruction based on Simulated An
nealing) is proposed and implemented in the models gendmaiitustrate how piecewise
developing topologies of models by adding reusable comqisnie a SA based 1D hybrid
modelling approach [Wu 10]. The pseudo-code in Algorifime3atibes the details of the
algorithmBNRSA

Given a library preserving reusable components and amlisigtting (initial and min-
imum temperatures, cooling rate, iterations number andirmoncentrations of species)
for running the 1D hybrid models generator, the piecewipeltagy construction starts as
follows.

A component is selected randomly from the components laiaran initial biochem-

ical model seed. Another component is chosen randomly franlibrary to develop the
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Require: Dy, S, Ty, Trin, CoolingRate, N and M, ;sia
Ensure: DeltaDistance, ModelT opology andSimuResult
1: while T" > T,,;, do
2. while N # (0 do
NewTopology < Add(Component, OldT opology);
A C = Cost(NewT opology)-CostOldT opology);
if AC' < 0 then
OldTopology <— NewT opology;
else
if exp(—(AC/T)) > Random(0,1) then
OldTopology < NewT opology;
10: end if
11: end if
12: N+ (N —1);
13:  end while

©CoNakrw

14: ResetNV
15: T <« (CoolingRate x T)
16: end while

Algorithm 3: Algorithm BNRSA(Biochemical network reconstruction based on sim-
ulated annealing).
model seed by addition of species and reactions. A new desdlmodel topology is es-
timated on the cost which is the difference of species belawetween developed and
target model. The calculation of behaviour difference isdobon the Euclidean distance
equation. The behaviour difference betweéésnuvT opology andOldT opology is computed

and compared by a ‘Cost(Topology)’ function.
A C = Cost(NewT opology)-CostOldT opology)

The ‘Cost(Topology)’ function is implemented by simulafithe given topology with
information of species concentrations and kinetic ratdsclvprovides behaviour infor-
mation of the given topology in time series data format. Adarg to the probabilistic
mechanism of SA, there are two methods to accept a new gedeaogiology representing

the model under construction:
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1. If the cost of NewT opology is less than th&ld T opology, that ISAC < 0, then the

OldT opology is replaced by théVewT opology;

2. If the NewT opology is worse than th€!dT opology, that iSAC > 0, but there is a
probabilityexp(—(AC/T)) satisfying a conditiomzp(—(AC/T)) > Random(0, 1),
where Random(0,1) is a random double value between zero and one, then the

OldT opology is still replaced by théVewT opology.

The addition of components and evaluation of developedltgpes are repeatety
iterations at each system temperatiitel he temperatur@’ is lowered by a cooling mech-
anism CoolingRate x T" for driving SA system to reach a minimum temperatdig,, .
When a frozen state of SA system is approached, the mode&aenworking on the
development of model structure stops to return a final dpesldopology representing the
target biochemical system.

Note that the kinetic rates associated with reactions irgteerated topology by the
models generator are not modified during the modelling mac&ection 4.412 illustrates
an investigation of employing SA to optimize kinetic ratesgiven models with fixed
topologies, driving species behaviour to approach desiregs in the target biochemical

systems.

4.4.1.2 Experimental results

Signalling pathways play a pivotal role in many key cellyfaocesses [Elli 02]. The ab-
normality of cell signalling can cause the uncontrollakigsion of cells, which may lead
to cancer. For instance, tiras/Raf-1/MEK/ERIsignalling pathway (also called tHieRK

pathway) is one of the most important and intensively saidignalling pathways, which

transfers the mitogenic signals from the cell membrane e¢onticleus([Yeun 00]. In the
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ERK pathway, theRaf-1kinase inhibitor proteinRKIP) inhibits the activation oRaf-1
by binding to it, disrupting the interaction betweBaf-1and MEK, thus playing a part
in regulating the activity of th&€RK pathway [Yeun 99]. Figure 4.3 shows a graphical
representation of thERK signaling pathway regulated RKIP.
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Figure 4.3: A graphical representation of tlERK signaling pathway regulated by
RKIP [Cho 03

A number of computational models have been developed i tdenderstand the role
of RKIPin the pathway and to develop new therapies ultimately [Chiadald 04]. A well
studied model of th&KIP inhibitedERK pathway described by Cho et al. [Cho 03] is used
as an example to test our 1D hybrid simple models generattir,thhe aims of piecewise

constructing and global searching the model topology baseslA algorithm.
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Gilbert et al. [Gilb 06] have shown that analysis based onsardie Petri net model
of the ERK signaling pathway regulated BKIP can be used to derive the sets of initial
concentrations required by the corresponding continuddi @odel, and no other initial
concentrations produce meaningful steady states. We bhsestdte 13 derived from the
analysis, mapping from the qualitative values of [0,1] te tiriginal quantitative values
of [0,2.5] in the model of th&kKIP inhibited ERK pathway given by Cho et al. [Cho 03].

Table[4.1 shows the details of the initial concentrationspefcies.

Table 4.1: Initial concentrations of species.

Species uM
Raf1 2.5
RKIP 0
Rafl| RKIP 0
Rafl| RKIP| ERKPP| O
ERK 0
RKIPP 25
MEKPP 25
MEPP | ERK 0
ERKPP 2.5
RP 2.5
RKIPP | RP 0

For the implementation of SA algorithm, to find the minimunagjiven fitness function
depends on many parameters. The parameters have a signifipact on the effectiveness
of generated solutions for a given optimization problenrkk83]. Because there is not a
general way to find the best setting for initial parameterSAf we apply an empirically
derived setting to our test. The setting of parameters we t®eSA platform is listed in
Table[4.2, which can be investigated and optimized for $jpatiodelling of biochemical

pathways in further research.
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Table 4.2: Setting of SA parameters for topology generation

Parameter Meaning Value
Trnitial Initial temperature 50
Torin Minimum temperature 0.01
Q@ Temperature cooling rate | 0.95
N Iterations at each temperaturd 0

We employed théBioNessigLiu 08] platform to simulate model of thRKIP inhib-
ited ERK pathway, and generated time course data as a set of targeatibhof species
in the model. The information of behaviour in time coursead@rmat is used to drive
the modelling process by comparing the behaviour distahsperies between generated
and target model. The measurement of behaviour distandgtasned by employing the
Euclidean distance function.

The topology of targeRKIP inhibited ERK signalling pathway is developed from
scratch by iteratively adding components to an initial Meged. After iterative additions
in the model generator, we can obtain a constructed modelhatas a similar topology
to the target one. A ‘similar’ topology described in thisdlsepresents a topology which
has major common species and their interactions of thetttygelogy. Some species and
interactions may be missed in the similar topology, as wekxdtra species not in target
topology being generated with interactions.

In Table[4.8 we give a comparison between one generated eget taodel in terms
of species. Compared to the original 11 species in the tangelel of theRKIP inhibited
ERK signalling pathway, there are two species missed from overgeed model:Ra f1 |
RKIP | ERKPP and‘RKIPP | RP'. The symbol{ in the names of species indicates
that these species are complex associated from differeciesp In addition to the nine

matched species in both generated and target model, theralssr another nine ‘new’
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Table 4.3: Comparison of generated and target speciesaogy

Species Target Model| Generated Model
Rafl

RKIP

Rafl | RKIP

Rafl | RKIP | ERKPP
ERK

RKIPP

MEKPP

MEKPP | ERK
ERKPP

RP

RKIPP | RP

ERKPP | Rafl -
RKIPP | Raf1 -
ERK | Rafl -
ERKPP| MEKPP -
RKIPP| MEKPP -
RKIPP | Rafl -
ERK | RP -
RKIP | RP -
ERKPP | RP -

NESEN

SENENENENENE

SNENENENENENENENENENEN

SNENENENENENENENENE

species generated in the developed model. But these nehesignspecies are not in the
target model of th&KIP inhibited ERK signalling pathway.

Therefore, our model generator can construct target madeé oy piece, by adding
pre-defined components. The main parts of the topology gétanodel can be obtained.
Extra structure information of the target model is provideth new synthetic species.
Biologists may be interested in the new synthetic speciesalise these new specie could
exist in concrete biochemical system but are not being obdeor measured in wet-lab

experiments.
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4.4.2 Kinetic rates optimization
4.4.2.1 Optimization of kinetic rates

Regarding extremely complicate and interconnected cglaliip among species in bio-
chemical systems, it is very difficult to understand the esysbehaviour without clearly
comprehending the mechanism of enzymatic reactions amdiagsd quantitative kinetic
rates, even when there is general knowledge about the w@ipslof the biochemical sys-
tems. Moreover, kinetic rates are not always possible or eaieasure in wet-lab exper-
iments, because of experimental constraints, cost and tirherefore, it is important to
guantitatively study the kinetic rat@s silico by computational methodologies, especially
after obtaining the model topologies for the biochemicatemns.

Given a model with fixed topology, kinetic rates associatéth weactions can be op-
timized by employing SA algorithm in the models generatoglabally explore the rates
space for the model exhibiting desired behaviour. Expentaledata of the biochemical
systems, for instance behaviour of species, can be used/é&tke optimization of kinetic
rates by comparing behaviour difference between genemtddarget model. The dif-
ference of behaviour contributes to an objective functimnthe estimation of optimized
kinetic rates.

We proposed Algorithril4 to describe optimization of kinetites in a given model
for obtaining desired behaviour of the biochemical syst&men a vector of kinetic rates
K (M) for a model with fixed topology, kinetic rates in th& 1) are modified in the mod-
els generator by employing SA. After initiating the paraensiof SA system on initial and
minimum temperatures, cooling rate, and iterations nupbaussian distributiofV (1, o)
is utilized in a function ‘Modify(<,Y.;, (M), N(u,0)) to manipulate values ik (M) at

SA system temperatufg and Nth iteration.
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Require: Tp, Tyyin, CoolingRate, My, N, M and KX, (M)
Ensure: K(M)
1: while T, > T,,;, do
2. while N # (0 do
KX, (MY < Modify(K . (M), N (1, 0));
A C = Cost{; Ly, (M))-Cost(, Ly, (M));
if AC' < 0then
K g (M) « KLq (M)
else
if exp(—(AC/T)) > Random(0,1) then
Klq, (M) = KiZq, (M)
10: end if
11: end if
12: N+ (N —1);
13:  end while
14: ResetN
15: Ty < (CoolingRate x Tp)
16: end while

Algorithm 4: Algorithm KROSA(Kinetic rates optimization based on simulated an-
nealing).

N R

All modified kinetic rates in the<(M) at each iteration are evaluated by comparing
the behaviour distance between the given and target modet b&€haviour distance is

calculated by using a cost function ‘Cakt()/))’ based on Euclidean distance.
AC=Cost X (M)")-Cost X, (M))

Modification of the vector' (M) is accepted or rejected by following a classical SA
probabilistic mechanism of solutions acceptance. Thega®of optimizing/X (M) stops
when the system temperatuteeaching a minimum temperatufe,;, by cooling rate
CoolingRate, and returns a final modified vectéf(A/) with optimized kinetic rates for

given model exhibiting desired behaviour.
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4.4.2.2 Experimental results

We use the model dRKIP inhibited ERK signalling pathway introduced in Section 4.411.2
as a study case for simulations of kinetic rates optimiratidhe topology of target model
is fixed without modification, while the associated kinetitas are optimized by employing
SA in the models generator.

The values of kinetic rates of the target model for fitting assigned with the rates
constants of state 13 in the model investigated by Gilbedl.efGilb 0€], as shown in
Table[4.4, which are in accordance with the range given irotiginal paper by Cho et
al. [Cho 03].

Table 4.4: Original kinetic rates.

Kinetic Rate| Initial Value | Kinetic Rate| Initial Value
k1 0.53 k7 0.0075
k2 0.0072 k8 0.071
k3 0.625 k9 0.92
k4 0.00245 k10 0.00122
k5 0.0315 k11l 0.87
k6 0.6

A set of ODEs mathematically representing the target maatebe used for simulations

on optimized kinetic rates. Details of the ODEs are desdribélable 4.5 as follows.

Figurel4.4 presents all the behaviour of species in the nafdeRK signaling pathway

regulated byRKIP, which is generated by simulation on a set of given ODEs anwapg

of original kinetic rates.

In the models generator, the values of kinetic rates are dimed by Gaussian distribu-

tion N(u, o) with meany and standard deviation. Furthermore, there are two ways to
optimize the kinetic rates in a given model at each iteratmo8A system: to mutate one

rate only and to mutate all the rates.
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d[Raf1]
dt

d[RKIP]
dt

d[RKIP|Raf1]
dt

d[ERK|RP]
dt

d[ERKPP|RKIP|Raf1]

dt

d[RKIPP]
dt

d[ERK)]

dt

d[RP]
dt

d[RKIPP|RP]
dt

d[ERK|MEK PP]
di

d[MEKPP]
dt

k2 % [RKIP|Raf1] + k5 « [ERK PP|RKIP|Raf1]
—kl*[Rafl] x [RKIP]

k2 % [RKIP|Raf1] + k11 % [RKIPP|RP]
—kl*[Rafl] « [RKIP]

k1% [Rafl] * [RKIP] + k4 « [ERK PP|RKIP|Raf1]
—k2 % [RKIP|Raf1] — k3« [RKIP|Raf1] * [ERK|RP]
k4« [ERKPP|RKIP|Rafl]+ k8 x [ERK|MEK PP]
—k3 % [RKIP|Raf1] + [ERK|RP]

k3« [RKIP|Raf1] * [ERK|RP]

—kd * [ERK PP|RKIP|Raf1] — k5 * [ERK PP|RKIP|Raf1]
k5« [ERK PP|RKIP|Raf1] + k10 « [RKIPP|RP)]
—k9 % [RKTPP] % [RP]

k5« [ERK PP|RKIP|Raf1] + k7 * [ERK|MEK PP]
—k6 % [ERK] % [MEK PP]

k10 % [RKIPP|RP) + k11] « [RKIPP|RP)]

—k9 % [RKIPP] % [RP]

k9 « [RKIPP] % [RP] — k10  [RKIPP|RP]

—k11 % [RKIPP|RP]

k6 « [ERK] « [MEKPP) — k7 % [ERK|MEK PP]
k8 % [ERK|MEK PP]

k7« [ERK|MEKPP] + k8 x [ERK|MEK PP

—k6 % [ERK] % [MEK PP]

Table 4.5: A set of ODEs for the simulations of optimized kioeates.

1. To mutate one kinetic rate associated with one biochdmgaation at each iteration.

In this scenario, we are interested in fitting one specificlémical reaction at each
iteration, while other kinetic rates associated with rdsteactions are fixed with-
out modifications. The single-reaction based optimizatibkinetic rates can offer
an opportunity to fit a specific rate in the biochemical syswenich is difficult to

measure or observe in wet-lab experiments.

Figure[4.5 shows results of fitting one kinetic ratefrom the vectork (M), which
simulations are based on the set of given ODEs. The valuatadted k1 is firstly

assigned with a value from the range of (0, 1] randomly, aed this modified by
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Figure 4.4: Behaviour of all speciesHRK signaling pathway regulated BRKIP.

Gaussian distributiodV(u, o), wherep = k1 ande = 0.00001. The parameters
of implementing SA are set as following: initial and minimt@emperatures are 100

and 1 respectively, cooling rate is 0.95 and iterations rentgn10.

The optimized value of1 in the given model oERK signaling pathway regulated

by RKIP is 0.64, which is close to the original value 0.53 as showreibld[4.4.

2. To mutate kinetic rates associated with all reactionsel éeration.

Due to complicated interactions among species usuallytiegign a given model,

all kinetic rates associated with biochemical reactiores ierportant and relevant
to exhibiting species behaviour. It is also very difficultastimate or fit constants
of kinetic rates of a given system within uncertain rangetusliour approach of

optimizing all the rates at the same time enables the corepeafe study of kinetic
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Figure 4.5: Behaviour of RKIP model from optimization of one kinetic rate.

rates.

Table 4.6: Comparison between initial and fitted kinetiesat

Kinetic Rate| Original Value| Fitted Value
k1 0.53 0.67
k2 0.0072 0.17
k3 0.625 0.22
k4 0.00245 0.85
k5 0.0315 0.77
k6 0.6 0.63
K7 0.0075 0.53
k8 0.071 0.28
k9 0.92 0.29
k10 0.00122 0.20
k11 0.87 0.31

Figurel4.6 shows the results of model behaviour after fiilihthe rates in the vector

K (M) by arandom walk in a range of (0, 1]. The rates values{a/) are modified

by Gaussian distributioV (11, o), wherey = K;(M), ¢ is theith kinetic rate and

o = 0.00001 for fine tuning all the given rates. The parameters of impiaing SA
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Figure 4.6: Behaviour of RKIP model from optimization of all kinetic rates.

are set as following: initial and minimum temperatures &€ and 1 respectively,

cooling rate is 0.95 and iterations number is 10.

Compared to target species behaviouERK signaling pathway regulated BRKIP

in Figure[4.4, it is clear that our models generator can fitkihetic rates of a bio-
chemical system by employing Gaussian distribution anddiking the behaviour
of species in the model to exhibit similarly to the target @andable[ 4.6 shows a
comparison of fitted kinetic rates obtained from our modelsagator and original

kinetic rates given by Cho et al. [Chol03].

4.4.3 Discussion

Models of biochemical systems can be obtained by employkgngtaheuristics to add
components together and the topology of a model under aanti&tn is developed from
simple to complex incrementally. Kinetic rates associat@ti reactions in these synthe-

sized models can be optimized globally by utilizing SA, esaky for the estimation of
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kinetic rates which are difficult to be obtained in wet-lab.
There are two major issues existing in developed modeldgevapiplying SA to con-
struct topology and optimize kinetic rates, which detaflsnodelling issues are illustrated

as follows.

1. Model topology is developed incrementally without cohtdue to lack of removal

operations on the structure while modelling.

Without implementation of removing components from a madw®ler construction,
the topology of the model is expanded by linking subnetwoeigesented in PNs
incrementally. Regarding the probabilistic acceptanceharism of SA, a model
assembled iteratively by the addition operator could be imgaly interconnected
and complicated structure. These models with intricateltapes need to be reduced
to simple ones by controlling the number of components ofribdels. The removal
operations can be carried out by removing places (speaiegyansitions (reactions)
of the components represented in PNs, for controlling tpeltoies in a reasonable

size in accordance with the target biochemical systems.

2. Synthetic species are created without supervision,atleetbiological meaningless

of addition rules applied to manipulate components.

Regarding the mechanism of addition operator in compasitikes applied to mod-
els generation, it is easy to increase linkages among speete/een the added com-
ponents and the model seed under construction. The linkagesbtained by merg-
ing names of species from different components directlyrédweer, added compo-
nents are instantiated from two pre-defined templates biyeagpa combinatorial

mechanism to a set of input species. That means synthettesp@ components
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before and after components addition are not tested or @gpdrby biologists or
following biochemical knowledge. Thus synthesized speaegenerated models
could not exist in target biochemical systems. Models witexpected synthesized

species are difficult to be checked and validated in wet-lab.

More sophisticate operations should be introduced anditigated to manipulate mod-
els in terms of topology, such as components subtractiomardkls crossover. Instantia-
tions of components and composition rules need to be deseélfy synthesizing species
and merging components in a sophisticated manner to prgesmration of meaningless
species. In this thesis, subtraction and crossover operate proposed and implemented
to tackle aforementioned modelling issues while compobinghemical models. Details

of these operators are illustrated in Secfion 4.5.

4.5 A 2D Hybrid Modelling Approach

In this thesis, we aim to solve a topology construction peabby iteratively piecewise
assembling components represented by quantitative PINsdraser pre-defined library,
combined with optimizing kinetic rates associated withchiemical reactions. We devel-
oped a 2D hybrid piecewise modelling approach which integr&S and SA together,
for piecewise composing topologies of models and globgllynoizing kinetic rates of the
models.

Regarding application of metaheuristics to modelling ofchiemical systems, there are
some questions which need to be discussed before illugiréttie details of our hybrid

modelling approach.

1. Why using ES and SA, but not other metaheuristics?
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The ‘No Free Lunch (NFL) theorems’ is the first reason we ckdeS and SA from
a set of metaheuristics for the investigation of evolutrgmaodelling. The NFL
theorems are described as ‘An algorithm performs well ontaiceclass of problems,
then it necessarily pays for that with degraded performandée set of all remaining
problems’ by Wolpert and Macready [Wolp|97]. The NFL theoseshow that any
pair of algorithms has identical average performance osttitéc and time dependent
optimization problems. In other words, if an algoritiperforms better than another
algorithmB over some class of optimization problems, then the algorithmust
perform better than the algorithd over a set of all other optimization problems.
Therefore, we can take the point of view that there is not agdrand universal

optimization scheme suitable for any optimization proldem

In addition, metaheuristics have been employed to studynibeelling of biochem-
ical systems in computational biology, for instance GA aril [&is still necessary
to investigate different metaheuristics and their appilices to model biochemical
systems in terms of topology and kinetic rates, for a complaary and overall re-
search of utilizing metaheuristics in computational bggloThat is why we choose
ES and SA as our methodologies to set up a hybrid modellingamment and model

biochemical systems in a piecewise manner.

. What is the major difference of applying ES, SA and GA torttalelling process?

In general, ES and GA are both population-based optimizatiethodologies. They
can start from a set of solution candidates and evolve thesdidates to approach op-
timal solutions for the optimization problems. The majdfatence between GA and
ES is that GA stresses chromosomal operators, whereas Bfasings behavioural

changes at the level of the individual [Foge 94]. We are eg&d in the change of
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behaviour of manipulated individuals by a hybrid piecewisadelling approach in
this thesis, therefore it is better to employ ES to addres&t#olutionary modelling

issues.

SA is a single-solution based global optimization metaiséigs. It is easy to shift
the search strategy from global optimum to local optimum avieontrollable pa-
rameter, imitating a temperature cooling scheme in theipalysnvironment. The
evolved model candidates in the hybrid modelling framevargkusually very com-
plicate, because of uncertain kinetic rates with/withowawledge of models topolo-
gies. Itis essential to start the fitting of kinetic ratesédach model candidate from a
global level to a local level, especially while the topolegof these models are being
mutated on a population-based modelling platform. Thathy we choose SA to
examine the kinetic rates of each model under construcatiadha hybrid piecewise

modelling framework.

. Why hybridizing ES and SA, not applying ES and SA in a seniahner for building

and optimizing models in terms of topology and kinetic rageparatively?

Metaheuristics are often inspired from natural environta@ul very powerful in sort-
ing out optimization problems. Dozen of metaheuristics tedr variants have been
developed and utilized to tackle the optimization problemghe real world. It is

definitely useful to apply one metaheuristics to the optatian problems. But an-
other promising way to get much valuable optimization rssigl to develop hybrid
metaheuristics and investigate the implementation ofethgdbridized metaheuris-
tics, which concerns the combination of several searchriggos with strong spe-

cialization in intensification and/or diversification [LaZ.0].
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Therefore, we hybridize ES and SA in a two-layer piecewise@tiog framework

which iteratively composes the structures of models anohopes the kinetic rates
in a combinatorial manner. The aims of hybridizing ES and $Ata tackle the
problems of manipulating models in terms of topology ancekorates via an intel-
ligent and automatic swapping mechanism, and to find a patéradde-off between

composing models structures and optimizing reactions taeristically.

Regarding characteristics of ES and SA metaheuristics,diferent but switchable
layers are designed and developed for applying ES to mutatiehtopology and SA to
optimize kinetic rates in a hybrid manner. Details of thegmsed 2D hybrid piecewise

modelling approach are presented in following sections.

4.5.1 A general flowchart of the hybrid modelling

A hybrid evolutionary and heuristic piecewise modellingpegach has been developed by
hybridizing two metaheuristics algorithms on two layeigpdlogies of the models repre-
senting a target biochemical system are evolved by empidy® at outer layer, and SA is
applied to optimize kinetic rates associated with the reastin these evolved models at
inner layer. The operations of evolving topologies androfing rates are switchable on
the two layers, and information of models under construcigsoexchanged for simulation

of the models and evaluation of the modifications on topolmgy kinetic rates.
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Figure 4.7: A flowchart of hybridizing ES and SA to model bieafical systems.

A general flowchart is shown in Figute 4.7 to illustrate thétigizing between ES
and SA for models construction. As shown in the modelling @bart, the modelling
process is based on a scheme of piecewise composing comgadtezatively. A set of
initial model seeds is given to compose components, ancoting@ased models are mutated

and evaluated at ES outer layer. Before going to crossoesetbhomposed models at the
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end of the modelling process at ES outer layer, kinetic ratdbese composed models
are optimized globally at SA inner layer. The optimizationt@pologies stops after a
pre-defined number of generations at ES outer layer, andptm@iaation of kinetic rates
stops after the system reaches a minimum temperature at g layer. A set of best
synthetic models is returned at the end of the hybrid piesewiodelling process, providing
information of alternative models with similar behavioarthe target system.

With respect to related works of hybrid modelling biocheahisystems [Cao 10], our
work differs from them in terms of underlying representataf biochemical models: we
use Petri nets and they use P-systems. Moreover, we campdrforemental piecewise
addition of basic components resulting in new compoundsduhe modelling process,
as well as genetic operations due to our use of ES with mutatperators, while their

approach is confined to genetic operations.

4.5.2 Topology construction based on ES outer layer

Outer layer of the hybrid modelling approach is designedfmiementation of ES to com-
pose topologies of models under construction. A classicel)-ES [Beye 02] is utilized to
piecewise assemble components from components librahetmbdels iteratively, where
1 and\ are the numbers of parental and children individuals, resgdy. The (1+)\)-ES
starts from an initial population of model individuals whiare single components selected
randomly from the components library.

Three composition operator&ddition, SubtractiorandCrossove) are applied to mod-
ify topologies of the individuals. Because the compositoperators are adapted from
evolutionary algorithms in computer science which are weitlied for mimicking natural

selections, it is feasible to employ these operators tovevgibchemical models in terms of



125

topology. In general, thAddition operator is used to integrate components to an existing
model. TheSubtractioroperator is utilized to subtract components of a model byoreny
transitions with incident arcs of these components. Chessoveroperator is employed to
apply a ‘cut and splice’ method to swap parts of two modelseuednstruction to generate
new models. In Sectidd 3, the composition operators anésponding composition rules

are illustrated in detail.

Require: CompLib, ModLib andComposRules
Ensure: BioNpges
1: Initiate the population;
2: while Not reach maximum generation (ES laydo
3: for Each individual in the populatiotio
Modify the topology of individual by Additior® or Subtractiore;
Check the topology of modified individual,
Evaluate the modified individual,
Optimize kinetic rates of modified model (SA layer);
end for
Cross over the individuals by Crossover
10:  Select offsprings for next generation;
11: end while
12: ReturnBioNpges:.

Algorithm 5: A ES based outer layer for model topology composition.

©oNakr

Algorithm[5 shows the pseudo-code for model topology corntiposat ES outer layer.
Before constructing the models of biochemical systems|itwariesCompLibandModLib
are set up for preserving instantiated components and ceadpnodels, respectively. The
atomic components in the libra@ompLibare instantiated from binding and unbinding
patterns as defined in Sectionl3.4. Preserved componeritased on information of input
substrates, and a combinatorial mechanism is applied tergencomponents among these
substrates. Moreover, the components are reusat@emmpLih and the libraryCompLib

is accessible during the modelling process for compone&hstson and composition with
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model individuals. The libraryvlodLib preserves synthetic models which are alternative
models for illustrating target biochemical systems in tewhtopologies and behaviours.
Composition rule€omposRuleare applied to compose components to the model seeds in
an initial population.

The ES outer layer in the hybrid modelling approach is in geasf modifying the
structures of models by composition operators and ruleserAfeing modified on the
topologies, models are checked for connective and reduedamponents. Then the mod-
els are evaluated by using Euclidean distance function imbgective function to measure
the behaviour distance of species between generated gad tandel.

Kinetic rates of these composed models are optimized at ®Aritayer, whereas
topologies of these composed models at this layer are fixétbwi modification. The
details of implementation of SA at inner layer are descrilnefdllowing Sectiorf 4.5.3.

Before stopping topologies construction at ES outer laiy@me is a crossover opera-
tion applied to synthetic models. The aims of applying couss operation are to mate
model individuals in the same population and to allow modisippings inheriting genetic
chromosomes (good biochemical reactions and specieshéonéxt generation. At the
end of the piecewise hybrid modelling approach, a group st bmdels in terms of simi-
lar behaviour to the target biochemical system is returmetpeserved in models library

ModLib for further investigation.

4.5.3 Kinetic rates optimization based on SA inner layer

SA s a heuristic optimization algorithm for searching faglabal optimal solution in a very
large solutions space, avoiding local optimum solutionsur previous work [Wu 10], we

have applied SA to piecewise construct and explore the tgjed of models representing
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biochemical systems. In this thesis, SA is integrated wiin ES based outer layer as an
inner layer to optimize the kinetic rates of composed modktained from ES outer layer.
The topologies of these synthetic models are fixed at SA ilayer, while corresponding

kinetic rates are optimized.

Require: M, K(M), Iter Num, o, T and Ty,
Ensure: M andK'(M)
while T' > T, do
while Iter Num! = 0 do
Mutate K (M) by Gaussian distributioV (u, o);
Evaluate the model/;
AcceptM based on the Metropolis algorithm;
end while
Resetlter Num;
LowerT by «;
end while
ReturnM with optimized kinetic rates i’ (M ).

Algorithm 6: SA based inner layer for model kinetic rates optimization.

Algorithm[6 shows the pseudo-code for optimizing kinetitesaat SA inner layer. The
kinetic rates associated with biochemical reactions ivargmodel) are coded in a vector
K(M) = (Kt KL, ..., kP), wherel is the number of reactionsis the current SA system tem-
peraturet = T', andk! is a constant rate of thg¢h biochemical reaction; (i = 1,2, ...,1).

The vectorK (M) is mutated by the Gaussian distributidi{:, o) with Iter Num itera-
tions at each system temperature. The mutdféd/) of the model is evaluated at each
iteration, by comparing the Euclidean distance of speadmbiour between the mod&l
and the target pathway.

The evaluated modél! with optimizedK (M) is accepted or rejected, according to a
classical Metropolis mechanism. Acceptelis preserved as a new start seed for the next

run of K (M) optimization. The same modéll with different rates values i (M) is
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optimized at different SA system temperatures by a coobteyr. The whole optimization
process stops when system temperature reaches a minimyoarstorel ;..

Due to probabilistic behaviour of random procedure of SAIl&f], a mutated vector
K (M) which causes a bad estimated fitness of the mbfiebuld be generated. Therefore,
it is possible to have a model returned from SA inner layegrafiptimizing associated
kinetic rates in a fixed topology that is worse than the onagdifrom ES outer layer to

SA inner layer in the hybrid modelling approach.

4.6 Summary

In this chapter, one dimension and two dimensions hybridetiod) approaches are devel-
oped and illustrated for piecewise modelling biochemigatesms in terms of topology and
kinetic rates.

The one dimension hybrid modelling approach is implemeimedsimple models gen-
erator, which is developed by using SA to iteratively exp#ma model structure, and to
globally explore the kinetic rates values of biochemicalct®ns. The main advantages
of the models generator are to build models structures fronateh for describing target
biochemical systems and optimizing kinetic rates itesdyiby single-reaction and all-
reactions based methods. Previous research of employanmetaheuristics to model bio-
chemical systems has focused on mutating structures tanabtadels exhibiting desired
systems behaviour, and research of optimizing kineticsrages been carried out by fitting
rates associated with a small group of biochemical reastidime simple models genera-
tor developed in this thesis improve the topologies corsitin by a piecewise modelling
methodology and the kinetic rates optimization by an oVveaéés exploration.

The two dimensions hybrid modelling approach is perfornmed two-layer piecewise
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modelling framework, which integrates ES and SA togetherefmlutionary composing
topologies and globally optimizing kinetic rates in a hgbmanner. Because ES is a
population-based heuristical evolutionary algorithms iteasible to evolve a set of model
candidates by using mutation operators on the topologidsleVévolving the topologies
of models, the kinetic rates of each model can be optimizgdtively by SA which is a
single-solution based heuristic algorithm. The two dimemns hybrid piecewise modelling
approach benefits the process of modelling biochemicaésystregarding structures and
rates at the same time, which is very difficult to be tackled/@t-lab experiments.

The two dimensions hybrid piecewise modelling approachbmdeveloped with re-
spect to different modelling variants on topology and kineates. In addition, a grid
technique based parallelize methodology can be introdiccedprove the sequential sim-
ulation process, which can speed up the simulation perfiocenay using multiple proces-
sors. Details about the modelling variants and the paiatiplementation are illustrated in

Chaptefb.



Chapter 5

Variants of Hybrid Modelling Approach

5.1 Introduction

This chapter describes variants of the two dimensions Hypiecewise modelling ap-
proach, including implementation of a parallelizationheicque, methods of evaluating
composed models and synthesized topologies, and mode#imants in terms of topology
and kinetic rates. The whole chapter is organized as follows

Section 5.2 firstly introduces the motivation of parallelgz our proposed 2D hybrid
modelling approach. Then the GridGain is applied to paiadethe hybrid modelling
and simulation process. Two flowcharts are presented ttidite assignments of different
jobs (mutation of models topologies and optimization o#tiarates) to different working
nodes in the GridGain pool. An example of parallel modelimgwestigated to illustrate
improved modelling performance by employing the GridGdihe improved performance
of hybrid modelling includes reduced simulation time, whis quantitatively measured
and discussed by a comparison between the sequential aljpanplementation. Further
issues of parallel modelling, for instance idle nodes inGhnielGain pool while modelling,

are pointed out and discussed. With respect to charaatsrist the parallel technique,
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some potential solutions for addressing aforementionedietting issues are suggested.
Section[5.B describes methods to evaluate synthetic moldeisg the models con-
struction. In order to estimate the quality of composed ngdeehaviour of species in
synthetic models are compared with the ones in target broma systems. Two methods
of computing the behaviour distance are givétveragemethod andMaximummethod.
The average method calculates the mean of behaviour desstanong compared species
in an objective function, and an average fitness value ignmetuto represent the quality
of analyzed model. The maximum method chooses a speciegwatimum behaviour
difference from a set of compared species, which is only Wieba difference calculated
in the objective function, and a fitness value is returnechdicate the quality of the eval-
uated model. Moreover, regarding the piecewise modellinggss, it is possible to obtain
species which are generated in synthetic models but ndirexis target biochemic sys-
tem. In this scenario, a mechanism of giving reward and pgnalfitness values in the
objective function is included as a complement of behavibstance measurement based
on the Euclidean distance function. The included reward@arhlty measurement sup-
ports an overall estimation of the generated models duhegrtodelling process.
Sectiori 5.4 introduces exploration of the topologies spgdbe proposed hybrid mod-
elling methodology. Two mathematical methods are presetaeuantitatively measure
common interactions between generated and target modgllofaion of topologies space
provides an opportunity for obtaining different strucgiid models for biochemical sys-
tems. The models with different interactions among biodbahentities can reveal work-

ing mechanisms in biochemical systems which are difficutttiserve or verify in wet-lab.
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According to specific modelling aims, variants of the praggblybrid piecewise mod-
elling can be explored, for instance to obtain similar oemative topologies, desired be-
haviour and optimized kinetic rates. There is a large vaoétvays in which evolutionary
methods can be designed for performing genetic operatonsparing species behaviour
and evaluating generated models. Sedtioh 5.5 presentschmwestigate the advantages
and disadvantages of some of the variants for the piecewiskeiing, with an emphasis
on the effect of mutation operators and evaluation critefidne overall hybrid methods.

Sectior 5.6 gives a brief summary of the suggested varidte @D hybrid piecewise
modelling approach. Further discussion about the devetoprof modelling variants is

given with simulation results in Chap{er 6.

5.2 A GridGain based Parallelized 2D Hybrid Modelling
Approach

GridGain [Grid] is a leading JVM-based distributed compgtmiddleware which works

on any managed infrastructure. Since first release of Giid@&2007, GridGain enables
users to easily build highly scalable real-time computing data intensive distributed ap-
plications that work on many different infrastructures;tsas a small local cluster, private
grid, and large private, public and hybrid clouds. Two fumeéatal technologies are inte-
grated into one product, which supports the co-locatedlparation of process and data

access:

e Computational Grid

¢ In-Memory Data Grid
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In this thesis, we are interested in applying the computatigrid of GridGain to par-
allelize the hybrid modelling process. Therefore, the cotatonal grid is employed to
parallelize the hybrid modelling and details of the compateal grid is introduced as fol-

lows.

C - Computation

C= -~ R - Result

T - Time duration
Rin T

Without Compute Grid
Compute Grid
cl

R, Node,
c C=C,+C,+C, /

N

R, Node,

S I c

With Compute Grid
Node,

Figure 5.1: Implementation of computational grid in Grid&fGrid].

In general, computational grid technology provides metthagies for distribution of
processing logic. Figure 5.1 shows how to split an origina eomputational task into
multiple subtasks, executing these subtasks in parallahgmmanaged infrastructure and
aggregating (reducing) results back to one final result. Gared to the implementation
of computation without a grid technique, the final result banreturned irfi’/3 process-
ing time (if there are three nodes in the GridGain pool, aredhginal total processing
time for only one node ). Therefore, GridGain is one of best parallel environment f
parallelizing the hybrid modelling process. The motivatamd performance of applying
GridGain to develop our 2D hybrid modelling approach issthated firstly in following

sections.
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5.2.1 Motivation

While modelling target biochemical systems, the model @hatds in a population pool
are independent, before crossing over and mating with athes. Operations are applied
to improve the models in terms of topology and kinetic ratepology of each individual
model is evolved by addition and subtraction operators opla8orm, associated kinetic
rates of the model are optimized globally on SA platform, estimation of mutation and
optimization of the model is carried out by mapping PNs ofrtiadel to a set of ODEs for
simulation. With respect to characteristics of indepemndeodels, a parallelization tech-
nique can be applied to tackle heavy computation issuesirgxim sequential simulation
process. Details of reasons causing heavy computatiomjuesdéial simulation process are

described as following:

e Piecewise compose components to models under construmtiaading and sub-

tracting operators on ES platform

A model under construction is presented in PNs format. Aaldiand subtraction
of components requires the import and outport of the PNs inoefere and after
the topology modification, which takes time to update theesponding vector of

models on the modelling platform.

¢ Globally search for the kinetic rates of each model undestantion by fine tuning

rates values on SA platform

Models generated and passed from ES outer layer to SA inper ée used to op-
timize the kinetic rates without modifying topologies. Bleekinetic rates associated
with biochemical reactions are fine tuned by employing Giansdistribution, and

corresponding modification on rates values are evaluatecbmparing behaviour
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distance of current optimized model and target model. Batdifitation and evalu-
ation of kinetic rates are repeated in an iterative manneigintakes time to calculate

the real values.

e Iteratively map PNs models to a set of ODEs for evaluatinglimgies mutation and

rates optimization

All models under construction are described by PNs formatrasdefined in this

thesis. An ODE simulator is used to simulate synthetic notiebbtain time course
data for describing species behaviour in these modelkdstame to map the PNs to
a corresponding set of ODEs for quantitatively computingireanatical descriptions

of models.

With regard to advantages of parallel technique, the Grid@an improve simulation
performance by speeding up the processes of mutating mtajetogies, searching for
kinetic rates values, and mapping ODEs to simulate matheahaodels for generating

species behaviour data.

5.2.2 Parallelized modelling process

Our hybrid modelling process is improved by using the GrithGa parallelize topologies
mutation and kinetic rates optimization. Figlrel5.2 shovpaia of sequential and paral-
lelized hybrid modelling process.

Sequential hybrid modelling process applies mutationatpes to modify topology of
each individual model by ES, and then associated kinetsrate optimized by using SA.
After all individual models are manipulated on topologiesl aates, a crossover operator

is applied to cut and splice two individuals for generatiffgmrings in next generation.
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Serial Hybrid ES and SA Parallelized Hybrid ES and SA

ES
Platform

T 1

Mutate Topologies
Mutat
urate on GridGain

Topology
SA
SA
Platform I
Mutate Mutate Rates on
Rates GridGain
Stop Stop

Figure 5.2: Sequential and parallelized hybrid modellingcpsses.

Parallelized hybrid modelling process allows all indivédlinodels to be mutated on
topology at the same time on different nodes in a GridGairl.péssociated kinetic rates
of each individual model are optimized after the topologytation, by calling nodes in the
GridGain pool. At the end of the parallelized modelling pss, all the individual models
are copied to each node, and the crossover operation iedgplparallel and genetically

produce offsprings on the nodes.
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Initiate
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Stop?

Output best
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Figure 5.3: Implementation of GridGain to individual moslel

Figure[5.B describes the details of applying GridGain tkleaproblems of sequentially
mutating and optimizing models under construction in teofnisoth topology and kinetic
rates. The GridGain based parallel modelling contribute¢lé improvement of construct-

ing biochemical systems by speeding up the process of addisgbtracting topologies
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and optimizing kinetic rates of models on different nodesaath generation. The estima-
tion of composed models is obtained by firstly mapping PN rwottesets of ODEs, and
then simulating ODEs based mathematical representatiamokls in a parallel manner.
Before moving from the current evolutionary generationh® mext generation, individual
models are mated by cut and splice on reactions (containibgtsictures and rates) to
obtain new offsprings. Finally, a set of best generated nsodegenerated at the end of

GridGain based parallel hybrid piecewise modelling preces

5.2.3 Parallel performance

In order to evaluate performance of applying GridGain taeslap the modelling process,
we have employed thRKIP pathway as our test case and carried out five runs of parallel
modelling with different number of working nodes in Grid@a&nvironment.

Initial setting of running parallel simulation at each runthe same for instantiating
components, indicating compared species, running ES andI&§#ithms, and applying
addition, subtraction and crossover operators. Detailsetiing are listed as follows: a
set of fixed compared specieRKIP, Rafl and RKIP—Raf], parameters of SA ‘Initial
temperature=10, Cooling rate=0.8, Minimum temperatuydtetation numbers=10’; ini-
tial settings of ES and SA ‘Maximum Generations=500, Indlinals=50, subtraction at
every two generations, crossover with the best model, opaition of rates at every 100
generations, objective function is based on Euclideamcs function’.

The only difference among these five runs is the initial papah of model seeds,
because population is initiated by randomly selecting comepts as models seeds from
the components library.

Figure[5.4 shows that simulation time can be reduced by usimg computing nodes
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Figure 5.4: Performance of GridGain implementation.

in the GridGain pool. Here, the nodes are cores of proces$uch are used as computing
nodes in the GridGain pool. A big task can be divided into asks$ according to the
number of available working nodes, and then the subtaskiseonddes can be executed to

obtain partial results which are integrated into a final itegturned for further operations.

5.2.4 Discussion

Parallelization can benefit the simulation process by mdaimg the models under con-
struction from the same generation on different nodes iGtt@Gain pool. While applying
GridGain to parallelize the piecewise modelling procesgther research can be investi-

gated to address two important issues which exist in cupardllel implementation:

1. How to handle ‘idle’ nodes, when loaded jobs are finishethese nodes;
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2. How much benefit we can obtain, when the GridGain technisapplied to par-
allelize a heavy task by splitting a big job to small jobs, @xéeng the small jobs,

combining and returning the results.

A working node in the GridGain pool is in charge of dealinghmmodelling issues:
a subtask of mutating topology or optimizing kinetic rat&ue to different size of the
model, the processing period on each node is different. efbez, subtasks on the nodes
can be finished in different simulation stages. When theaslistassigned to the nodes are
finished and there is no other subtasks waiting for assighitodre proceed, these nodes
are idle in the pool. These idle nodes wait for other busy sditkéshing subtasks assigned
to them. When all the subtasks on nodes are finished at cureemtration, nodes are reset
and assigned new subtasks for next run of simulation.

In some extremely scenario, if there is a large models pdoipualaonly one node still
works for the subtask assigned to itself but other nodesdieethe whole modelling pro-
cess at current generation is held and the modelling prdeess$o wait for the last busy
node finishing the subtask. This scenario makes a low pedioca of parallel simulation,
which degrades the benefit of parallelization.

One of the methods to tackle the above issue of idle nodes iistrimduce a cloud
technique to assign nodes, according to requirements eadskgy Moreover, idle nodes
can be released for other subtasks. During the modellingess) there are more feasible
models generated from a small set of initial model seeds.nféxehanism of releasing idle
nodes allows different number of nodes on the parallel ptatfcan be used. Adaptive
number of available nodes accompanying dynamic (increasetecreased) number of
plausible models can broadly explore the solutions spaadke wmodelling biochemical

systems.
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In general, estimation on the cost of executing one big taskthe cost of dealing
with multiple subtasks can reveal how much improvement weaiztain by utilizing the
GridGain parallel technique. Thus if the cost of task agsignt is higher than the benefits
obtained from parallelization, the implementation of @ain is not suitable for improving

hybrid modelling process.

5.3 Evaluation of Composed Models

A synthetic model is evaluated by comparing its behaviotin vé@rget biochemical system.
A behaviour is presented by time series data which is medstorecentration values of
species spaced at uniform time intervals. The species mivan a target system can be
obtained from a reference biochemical model or by obsematof a biochemical system

from the wet-lab.

5.3.1 Behaviour comparison

Given a set of reference data for the behaviour of targeesysi, there areN generated
time seriesX; = (X1, Xs, ..., Xv) which represent the behaviour NfspeciesN > 1.
There areP data points in each time seri&s = (x},2?,...,2F),i =1, ..., N. There areM
time seriesX; = (X1, X, ..., X)) describing the behaviour & species in a constructed
model Mg, and there ar® data points for each time serié§~ = (g“c},fc?, ...,g“cf), j =

1, ..., M. The intersection betweeW and M of species is defined b¥c = X+ N X5 =
(X1, X, ..., X,), 1 < n < N. Therefore, behaviour difference between ftie and M

is calculated by averaging the difference of behaviour ahespecies inX by a paired

comparison of th& data points.
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As shown in Equation 5.3.1, the difference of behaviour fog species(;., X, € X¢,
is measured by the Euclidean distance function, whesethe total number of compared
species inX¢.

Because species i are selected for behaviour comparison, the difference df ea
compared pair of species behaviour could be in a differesiescThere are two ways to
compute the overall behaviour distance between generatbtheget model as final esti-
mated value representing the quality of composed modedragemethod andviaximum
method. In general, the average method focuses on the avkeqgviour distance of all
compared species froli- as the estimated value representing the model under evalua-
tion, but the maximum method chooses the maximum behaviffarehce of one species
in X to represent the quality of the evaluated model. Detaila@tivo methods are given

as follows.

5.3.1.1 Average method

The average method allows generated models to be evaluat@@dsuring behaviour of
all involved species in the models without bias. Behaviastahce of each species in a
composed model is computed firstly, and then an average géthese behaviour distance
is calculated for describing the distance between gerceeatd target model.

As shown in Equatioh 5.3.3; is the total number of compared species from a vector
Xc. In average method, evaluation of behaviour distance istbasn = |X|. Thus,
all the behaviour information of species are utilized dgrine model evaluation process,

which is useful and precise in the scenario of compared spdaing specified in advance.



143

5.3.1.2 Maximum method

In maximum method, one species with maximum behaviourmiffee from the vectaK

is used to evaluate the general distance between compodddrget model. Behaviour
distance of all the species K¢ is measured firstly, and then the maximum behaviour dis-
tance of one species K¢ is utilized in Equation 5.3]1 for measuring the whole congabs
model, thus) = 1.

The benefit of using maximum method to evaluate a composecetinmtb drive the
modelling process quickly by rejecting models with the wpesrformance in terms of fur-
thest behaviour distance. During the initial stages of gg@se modelling, it is easy to
generate some species whose behaviour distance is far esmayife ones in target model,
because of incorrect interactions among species and &irs8s associated with the bio-
chemical reactions. Therefore, a quick model evaluatiahccbe obtained by avoiding the

acceptance of synthetic models which consist of specidsfuithest behaviour distance.

5.3.2 Reward and penalty

While evaluating the generated model, the species for hetagomparison can be spec-
ified by the user. A vectoX/ can be used to preserve these specified species, where
| X(| = n' andn’ is the number of species iki;,. Due to indication of compared species

in advance, there could be some synthetic entities in a geaeemodelM/; but not in the
target modelM . Therefore, if a substrate is specified for comparisod/in, whereas

the species does not exist M, then M should be punished for a constraint of further
modelling. If a species for comparison exists both\iz and M, a reward can be given

to M, for an encouragement of correct modelling.

A Reward and Penaltjunction ®(X}) in Equation’5.3.2 is proposed to improve the
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models evaluation, as the reward and penalty is a compleaighe Euclidean distance
function for measuring the total behaviour distance.
—E&1, If X e Xag N X, ¢ Xr

B(X,) = (5.3.2)
€9, If X, € XgNX, e Xy

wherees; ande, are reward and penalty values, respectively. Both, @ndes, are non
negative real values and defined by users at the initial stabee returned result @ ()
can partly contribute to the final fithess value of a model urdaluation in the objective

function F'(x) in Equatiori5.3.3 as described in following section.

5.3.3 Objective function

With regard to comparison of behaviour difference and a meidm of reward and penalty,
composed models can be evaluated by utilizing EquatioBSvBich consists of the Equa-
tion[5.3.1 and Equatidn 5.3.2 for an overall estimation effttness during the construction

process.

F(Mg) = dagyons (Xi) + % > (Xy) (5.3.3)
k=1

wheren = n if the compared species are from the intersecfign andn = »’ if the
compared substrates are from the specific. In this thesis, modelling of biochemical
systems is a minimization problem, therefore the smalleretvaluated fithess value, the

better the generated model.
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5.4 Exploration of Topologies Space

Alternative topologies can be explored while modellingdbiemical systems for under-
standing the relationships among the compounds. Obtaitehative topologies can be
provided to biologists who work in wet-lab to study the sugfjgd models by experimental
methods. In our previous work [Wu 12], generation of altémeamodels has been in-
vestigated by employing ES algorithm to explore the modpécs. A set of alternative
topologies with similar behaviour to the target ones has lmdxained from our 2D hybrid

piecewise modelling approach.

5.4.1 Construction and evaluation of composed topologies

While utilizing the 2D hybrid piecewise modelling approachconstruct models for in-

teresting biochemical systems, returned synthetic tapetoenable the models exhibiting
similar behaviour to the target ones in biochemical systdRegarding interactions among
species in the models, generated topologies can be cldssiftethree categories without

respect to values of kinetic rates associated with theseactions:

1. Composed topology is the same as the target 088 ,0sca = TTarget;
2. Composed topology covers most of the target A€,posed N Trarget 7 0;

3. Composed topology is an alternative topolo@¥:..posca 7 Trarget-

The models with the same or major parts of a target topolagesisually used to ver-
ify the modelling of biochemical systemssilico. But there must be primary biochemical
knowledge about the biochemical systems in the interastodrspecies, in order to com-

pare the generated and target model in terms of topologgttlireMoreover, the number
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of species involved in the biochemical system should be a&teot namely no covered
species existing in the system. In this scenario, the aimookitucting models for tar-

get biochemical systems is to reconstruct structures o$ysems and verify the feasible
piecewise components composition. Estimation of thesthsyic models on topologies is
obtained by computing the coverage of interactions amoegisp between the synthetic
and target model.

The 2D hybrid piecewise modelling approach allows genanatif models with dif-
ferent topologies to the target systems, while exhibitimgilar species behaviour to the
target ones. In biological experiments, biologists maynberested in biochemical systems
with different topologies which produce close behaviouserved on a system level. It is
important to investigate and discover different workingcimenisms, especial on the mul-
tiple regulatory interactions among genes, proteins angpdex, for overall understanding
the biochemical systems. Therefore, generation of altemopologies provides an op-
portunity to unveil the biochemical systems under invegtan in an efficient and precise
manner.

The evaluation of these three types of generated modeldgd can be performed
by quantitative estimation in terms of coverage of intecaxst among biochemical entities.

The details of the quantitative evaluation are illustratefbllowing sections.

5.4.2 Quantitative evaluation of topologies

In order to evaluate the synthetic model structures quaivaly, two measures are em-
ployed: Compressiorand Coverage Both measures vary from O (worst) to 1 (best). If

either compression or coverage is low for a particular maot@hdicates the topology of



147

generated model is very different from the target biochaimsystem, even if their be-
haviours are similar.

5.4.2.1 Compression

Compressiorfadapted from([Braz 98] and [Gilb 03]) measures the percgntd matched

common arcs between synthetic and target model, whichlslera given as follows:

|Intersection|
Mazx(|Target|,|Generated|)

(5.4.1)

Compression =

where|Intersection| represents the number of matched arcs between target aed gen
ated topology|T'arget| is the number of arcs in the target topolog¥enerated| denotes
the number of arcs in the generated topology, &hdc(|Target|, |Generated)) is the big-
ger number of arcs between the target and generated model.

5.4.2.2 Coverage

Coveragecalculates the ratio of matched arcs in the target modeltasdjiven by:

|Intersection|

(5.4.2)

C —
overage |Ta7’get|

where|Intersection| represents the number of matched arcs between target and gen

erated topology, anff'arget| is the number of arcs in target topology.
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5.5 Variants of Hybrid Piecewise Modelling

In our previous research [Wull2], a 2D hybrid piecewise madglapproach has been
proposed and investigated. The 2D hybrid piecewise madgdpproach is a hybrid two-
layer design applied to model biochemic systems by itezbtiassembling components
from a user pre-defined library and globally optimizing Kingates. The hybrid mod-
elling process is briefly described as follows: firstly, tbpdlogies of models representing
biochemical systems are piecewise composed and evolvetllizyng ES algorithm at an
outer layer; then SA algorithm is employed at an inner lageydtimize kinetic rates asso-
ciated with reactions of these synthetic models. Impleaténts of ES and SA swap, after
a predefined number of iterations or generations. At the éntbdelling process, a set of
best generated models is returned, offering alternatpeltgies with similar behaviour to
the target system.

Regarding different modelling processes in terms of muggitbpology and optimizing
kinetic rates, variants of the 2D hybrid piecewise modglioan be explored for specific
modelling aims, for instance generation of similar or alggive topologies, desired be-
haviour and optimized kinetic rates. Due to a large variétyways in which evolutionary
methods can be designed, for performing genetic operatomsparing species behaviour
and evaluating generated models during the constructmeegs, we investigate the advan-
tages or disadvantages of some variants for the piecewidelfimy, with an emphasis on
the effect of genetic operators and evaluation criterignefdverall hybrid methods. Five
sets of specific modelling variants are compared and gedesakiptions of these variants

are given as follows.

1. Methods related to the data driven, involved in evalugtite composed models:
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e Fixed: behaviour of a fixed set of species to be compared

e Dynamic: behaviour of a dynamic set of species to be compared

2. Methods of survival selection:

e SES: standard (1+1)-evolution strategy
e PES: probabilistic (1+1)-evolution strategy, probatidially accept a worse

model

3. Methods of applying mutation operator (mutation cossistdding and/or subtract-

ing a component to/from the topology):

e Fixed: a fixed frequency of switching the addition/removhlaocomponent
to/from the model
e Random: a random way of switching the addition/removal obegonent

to/from the model
4. Methods of performing crossover:

e Best: each individual mates with the best individual in tbeyiation
e Random: each individual mates with a randomly selectedviddal from the
population

5. Methods of evaluating generated models in an objectivetion:

e ED: the objective function represents the Euclidean degdnnction

e ED+RP: the objective function is a combination of a reward penalty mech-

anism and the Euclidean distance function
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Variants of these five sets are compared in performance dijgiog high quality mod-
els with similar behaviour, best fithess, compression andrage. Before we demonstrate

the details of generated models, these compared variantieacribed in detail as follows.

5.5.1 Methods of driving models composition

Time series data presenting behaviour of species in a thrgehemical system is used
to drive the modelling process via reducing the behaviostiagice between generated and
target model. Given a target biochemical system and a gegkeraodel which consist
of N andM species respectively, there are two sets of time seriesdésiaibing species

behaviour in the target and generated model:

X7 = (Xl,XQ, ...,XN), whereN >1
Xo = (X1, Xo, ..., Xur), whereM > 1

There is a set of species in a vectof: which contains species for comparison of be-
haviour between the generated and target model. It is easgderstand that compared
species inX¢ can be selected via a fixed or dynamic method: modelers castigate
interesting species in target biochemical system by usiinged method to drive the mod-
elling process, whereas a dynamic method allows modeletsve the modelling process

by an adaptive manner in terms of matched species betweenaged and target model.

55.1.1 Fixed method

In the fixed method, the species in a fixed &€t are specified by users at initial stage as

follows:

Xg = (Xl, Xz, ceey Xn)
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where X; (: = 1,2,...,n) is the species assigned for comparisar(l < n < N)
is a non-variable constant indicating the number of speides/ for the whole model
evaluation\N is the total number of species X of target biochemical system.

The species specified by user are referred to a target biochesystem. Therefore,
all the information (names, concentrations and behavioumne series data format) of
these compared species is provided without uncertaintgaiing the process of piece-
wise modelling, a composed modg}; which is constructed at initial stages or evolved by
mutation after many generations could only consist of lesgecies than the target model.
Thus some of the specified species for comparisotiircould be missed in th& . In this
scenario, the difference between generated and targetl mdldee computed by using an
objective function based on Euclidean distance equatiareward and penalty function

which are introduced in Section 5.3.

5.5.1.2 Dynamic method

In the dynamic method, the species for comparison in a dynaetiX ' are generated and
preserved according to the existence of species in bothrgteleand target models during
the modelling process. Thus the species will be the commeniap fromX; and X,

which is given as:
X = XpnXg={X1, X0, ..., Xp} N {X1, Xs, ..., Xus}

The number of species ik will be a dynamic variable in a range of [0, N]: if there is
no common species in both generated and target mpdgl, = 0; if all the species inXr

are also generated K¢, | XZ| = | Xr| = N; otherwisep < | XZ| < N.
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5.5.2 Methods of selecting survival models

Inspired by SA algorithm, a probabilistic evolution sty PES) is proposed, which dif-
fers from the standard evolution strategy (SES). Regarttisgorobabilistic mechanism,
PES can accept worse models by a probability while seardhimgolutions space. This
may be helpful in avoiding local optima. Theoretically, algghl optimum model could be
approached for a target system, if an optimization algoritk run for an enough amount

of time.

55.2.1 SES method

SES is a traditional evolutionary process, selecting modetlidates as offsprings for fur-
ther evolution in following generations. The criteria fargival models is based on im-
proved fitness. Thus if fitness value of one mutated modelttetidan the fitness value of
the model before mutation, the mutated model with improweéés values can be survival.
The main process of SES can be referred to Algorithm 5, andekels of selecting
offsprings can be illustrated as following: firstly, a modé] is mutated as a new model
M, 1; then models\/; and M, , are evaluated by an objective function to obtain fitness
valuesf(M;) and f (M), respectively. Iff (M) > f(M;), modelM, ., survives and
replaces model/; as an offspring for further modelling; otherwise, the methtnodel
M, is rejected and/, is mutated again for generating a new model mutation fomesti

tion.

5.5.2.2 PES method

PES mimics the natural annealing process, such as a phgsocass of annealing in met-

allurgy, for enabling the search of optimum models in a lagkitions space. The basic
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idea of PES is to introduce an acceptance probability intostages of choosing survival
models, which is integrated within the normal model setatstages of SES. Regarding
the probabilistic process of SA, it is reasonable to invaywobability of accepting worse
models during the modelling process. The search for optimodels can benefit from
probabilistic acceptance of worse models, avoiding lopéihaal traps.

A brief description is given to illustrate the process ofeqmiing and discarding worse

models based on a probability during the modelling process:
1. Initiate model seeds in population;
2. For a modelV/; in the population, Mutated(;) — My;
3. Evaluatel/;) — f(M,);
4. Evaluate{ly) — f(My);
5. Calculate fitness differend® C = f(My/)-f (M,);

6. If AC' > 0, Model M, is an improved synthetic model aid. is accepted to replace

M; as a new offspring;

7. f AC < 0ande T > Random(0, 1), Model M, is a worse synthetic model, but

M, is still accepted to replackl; as a new offspring;
8. Else ModelMy is rejected and/; is kept as an offspring;

9. Repeat steps 2 to 8 to mutate, evaluate and compare otlgeisio the population

in the same way for generation of other new offsprings.
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The probabilistic acceptance of worse models involvesyhteems temperatufg of the
PES system and enables the modelling process jumping froah dptima to a global op-
timum. While the system temperatufedecreasing, the probability from the ** should

be a decreasing values between 0 and 1, which constraine¢bptance of worse models.

5.5.3 Methods of implementing mutation operators

The mutation operators consist of addition/subtractiocoofiponents to/from models. The
addition operator is utilized by linking components withstg models, and subtraction
operator is used by removing the transitions and assocaatsdof the PNs of the compo-
nents in the models. The addition and subtraction operafgpied to mutate the models
during the modelling process can be implemented by a fixetiodetr a random method.
The fixed and random methods allow the piecewise modellirgjad the composition of

components from scratch but with different frequency ofiagddnd subtracting compo-
nents. The topologies of models under construction can bel@ged by implementations

of addition and subtraction operators.

5.5.3.1 Fixed method

In the fixed method, the two mutation operators can be peddrin turn, for instance
being applied to the models at every two generations. Thed fixethod allows users to
construct models with simple topologies: defining a higlyfiency of using the subtrac-
tion operator for removing components from the models urdeastruction. Otherwise,
complicated models can be developed after performing toayncamponents additions.
Moreover, a model under construction should contain at le@s component, therefore a

single-component based model will be skipped while a fixethowkis utilized.
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5.5.3.2 Random method

In the random method, addition and subtraction are apptiedddels at every generation
randomly. In this scenario, the topologies of models are pmmsad with more compo-
nents (species and reactions among these species) orfgohply removing species and
linked reactions from the PNs of these models. Mutation oflehcandidates in the pop-
ulation is randomness, which allows the process of seagabytimal topologies without
bias. The only issue of randomly applying addition or sutitoe operators is that a single-
component based model could be mutated by the subtracteratop. Therefore, regarding
the constraint of at least one component in the model, thigaetlon would not be carried

out continually but skipped from a model with only one comgain

5.5.4 Methods of performing crossover operator

The crossover operator mates two individual models undestoaction by a cut and splice
method. New offsprings are generated from the combinatigratental models in terms
of components (reactions and species). The parental maddlsffsprings compete and
only one of them can be survival as a model candidate in thelptpn for evolution in

next generation. There are two ways to perform the crossmwerator: best and random

methods.

55.4.1 Best method

In the best method, each model under construction from tpalption is recombined with
a model with best fithess from the same population. It is nespby the elitism based
individuals selection in genetic algorithm. As implemehiie genetic algorithm, elitism is

a selection method which copies (a set of) best chromosQnte(ew population firstly,
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and then the rest of chromosomes are selected in otheradhsgys, such as Roulette
Wheel selection, Rank selection and Steady-state sateclive elitism based mechanism
of selection can increase the evolutionary performancellisay preventing the lost of
best found problem solutions.

The best method of implementing crossover operator mirheglitism based selection
of model candidates. The best method enables the creatioemofnodels population by
crossing over an elitist model with other models from the sgopulation. The fitness
values of models under construction can converge quicklyabse of introduction of best
chromosomes from elitist models into the evolved model whatds. Specially, if a model
under crossover is a best model in the population while implging the best method to
choose model for crossover, the model will be preservectijras a survival offsprings
for next run of evolution.

One potential problem of applying the best method is thatstsach easily trapping
into local optimal solutions. The models are evolved for atioh with bias of choosing
specific elitist models during the construction. If chosétise models are local optimal
solutions, genetic chromosomes (components with reaecaod species) of these models
are inherited to offsprings. A promising way for addresdimgal optimal solutions traps
is to employ PES method which is introduced and discussedeniqus sections. By
using PES, worse and local optimal models are acceptedemteg] regarding a probability,

which sorts out aforementioned problems of trapping intal@ptima.

5.5.4.2 Random method

In the random method, each model in the population will bessed over with another

model chosen randomly from the same population withoutidensg the fithess. The
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crossing over between two models for generation of offgiiollows the mechanism of
random selection in nature. It is feasible to approach agtimodels by evolving model
candidates in a reasonable number of generations, witkecetpsuccessful implementa-
tion of evolutionary algorithms to drive the modelling pess in computational biology.
While applying the random method to choose a model for cressi is easy to choose
a model itself for the crossover, especially in a small saeypation. Therefore, if a current
evolved model is selected randomly for crossing over wilff the random model selec-
tion will be executed again until a different model beingatezd in the same population.
This mechanism of crossover between different models ptevaodelling process from
applying meaningless operations to evolve models, bedbdises not benefit the evolution

by swapping components from the model itself.

5.5.5 Methods of evaluating models

The difference between generated and target model is etdcliby employing an objective
function. In the objective function, there are two methotv@aluating the composed mod-
els: a Euclidean distance (ED) based method, and a Euclalstamnce with a reward and

penalty mechanism (ED+RP) based method. These two evaluatthods can deal with

estimations of models involving compared species whiclmatd&oth existent in generated
and target model. Evaluation in the objective function isdzhon a classical estimation of
behaviour difference which is computed between two setsra series data representing

behaviour of generated and target model.
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5.,5.5.1 ED method

As mentioned in Section 5.3, a basic evaluation method islmutate the behaviour dis-
tance of species in generated and target model by emplaydgional ED equation. The
ED is an ordinary distance between two points on the timesetata for the species be-
haviour from generated and target model. Moreover, thewdcst between the two points
on the behaviour data is the absolute value of their numietitfarence.

Therefore, several points on a pair of time series data setsrfe species behaviour
between generated and target model can be specified for tasuneenent, for instance
every specific simulation time in minutes and correspondjmecies concentration. These
specific behaviour data points are used to quantitativéimese the difference of generated
and target model in terms of one specified species behawier species behaviour could
be included and calculated in the objective function base& D equation for the models
evaluation. In this scenario, the objective function carlude the overall calculation of
behaviour difference among all the given species behawodifferent sets of time series
data.

The premise of applying ED equation to the models evaluasitimat all the compared
species should both exist in generated and target modelh M#pect to the piecewise
modelling process, there is a chance that some synthetielsxdd not consist of specified
species for comparison during the models constructionrefbee, a sophisticated evalua-
tion method should be developed, for instance giving a pet@invalid compared species.
The development of models evaluation with reward and pgmaldescribed in following

section.
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5.5.5.2 ED+RP method

A formal model estimation method involving a mechanism eirgg reward or penalty to
generated models is defined and illustrated in Se€tidn H:8.iAclusion of the reward and
penalty in an objective function is intended to prioritinelividual models whose compo-
nents are among the ones existing in the target model. Ramnics, if a species is generated
in a synthetic model and the species is also among the orggexin the target model, fit-
ness will be improved by giving a reward value; otherwise,fitness will be penalized by
giving a penalty. Regarding different behaviour scalesajet biochemical systems under
construction, different values of the reward and penaltylmaimplemented. According to
our preliminary experiments, we choose 0.01 and 1000 asetherd and penalty values

respectively in our cases study.

5.6 Summary

In this chapter, we have presented variants of the 2D hyheicevise modelling approach
in details. The developments of modelling approaches deimplementation of a grid
technique to parallelize the sequential modelling and kitran process, two mathematical
methods of evaluating constructed models on the topolpgresvariants of the modelling
in terms of topologies mutation and kinetic rates optimaat

The basic aim of applying the GridGain to modelling proces®iimprove the perfor-
mance of simulation. Because it takes time to calculate tygpad ODESs of the composed
models and to estimate the mutations of kinetic rates iretinesdels, the modelling pro-
cess can be very slow. The GridGain can support the assigrohelfferent modelling

jobs, for instance mutating topologies, optimizing kinatites and mating models from
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the same population, to working nodes in the GridGain pooafparallel jobs execution.
The jobs on the nodes are executed independently and résultshe nodes are summa-
rized for further operations. Therefore, sequential miateprocess can be improved by
the GridGain to obtain good modelling performance. A patalhse study with simulation
results is given to demonstrate the improved performansedan the GridGain.

Composed models can be evaluated by different methodasldigieinstance regarding
specific species or all the species in a model. These diffenethods of evaluating syn-
thetic models support the investigation of specific speitigarget biochemical systems,
whereas it is difficult for biologists in wet-lab to perforimet same species estimation.

Regarding complicated mechanisms in biology and high actesns among biochem-
ical entities, it is difficult to investigate topologies oblbhemical systems in a biological
experiments manner. Therefore, it is necessary to exghertopologies space, for obtain-
ing knowledge of target biochemical systems in terms ofaigrg cascades and reactions
rates. In order to measure the quality of generated modptddgies, two mathematical
measurements are used to calculate the ratio of commonetneedn generated and target
model.

This chapter describes variants of the hybrid piecewiseattiad in terms of modelling
topology and optimizing kinetic rates with different criee These variants are proposed
and illustrated in details of working mechanisms. The athges and disadvantages of
these proposed variants are investigated by comparing alglzing simulation results

obtained from implementations of these variants in Chéiter



Chapter 6

Cases Study

6.1 Introduction

In this chapter, we have applied the 2D hybrid piecewise iodeapproach to model two
signalling pathways. Synthetic models of two given signglpathways can be composed
automatically from scratch, driven by target behaviouthef pathways.

We evaluate synthetic models by comparing similarity ofdsébur of species in the
composed and target model, analyzing the convergence e$éitvalues of synthetic mod-
els, and calculating compression and coverage scores tifeti;imodels for quantitative
analysis. Moreover, we have shown that alternative moodgislogies of given signalling
pathways can be obtained by employing the 2D hybrid pie@wisdelling approach. In
biology, alternative structures of biochemical systenesaways important and valuable
for understanding the signalling transduction paths.

We developed the 2D hybrid piecewise modelling approachiap@i b by considering
different variants, for instance different implementatiaf target data driven, individuals
selections, mutation operators and models estimationadstiSynthetic models are com-

posed by utilizing different implementations of modellwayiants and their combinations.

161
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In this chapter, we statistically analyze synthetic modetaposed by five paired modelling
variants. A summary of the performance of these comparéerdift modelling variants in
terms of generating similar or alternative topology andilsinbbehaviour is given. Conclu-
sions about effects of modelling variants focusing on dmeniodelling aspects describe
whether a modelling variant performs better, worse or tineesas another one it is directly

compared with.

6.2 RKIP Pathway

Signalling pathways play a pivotal role in many key cellyfaocesses [Elli 02]. The ab-
normality of cell signalling can cause uncontrollable gign of cells, which may lead
to cancer. There is one of the most important and intensateigied signalling pathways:
ERK pathway (thdRas/Raf-1/MEK/ERIsignalling pathway) which transfers the mitogenic
signals from the cell membrane to the nucleus [Yeun 00]. HRK pathway is de-regulated
in various diseases, ranging from cancer to immunologdmmatory and degenerative
syndromes and thus represents an important drug target.

A brief illustration of regulations among proteins and cdexpbased on signalling
transduction in th&RK pathway is given as followdkasis activated by an external stimu-
lus, via one of many growth factor receptors; it then bindsrtd activate®af-1to become
Raf-1* or activatedRaf, which in turn activatemMAPK/ERK KinaséMEK) which in turn
activate€xtracellular signal Regulated KinageRK). Cell differentiation is controlled by
following cascade of protein interactioriRaf-1— Raf-1* -+ MEK — ERK

The effect of regulation is dependent upon the activite®K The Raf-1kinase in-
hibitor protein RKIP) inhibits the activation oRaf-1by binding to it, disrupting the in-

teraction betweemRaf-1 and MEK, thus playing a part in regulating the activity of the
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ERK pathway [Yeun 99]. A number of computational models havenlsseloped in or-
der to understand the role &KIP in the pathway and ultimately to develop new thera-

pies [Cho 03, Cald 04].

MEK-PP ERK RKIP-P RP

Figure 6.1: A graphical representation of tBRK signaling pathway regulated BKIP,
reproduced from Cho [Cho 03]: a circle represents a statinéoconcentration of a protein
and a bar indicates a kinetic parameter of reaction to beattd. The directed arc (arrows)
connecting a circle and a bar represents a direction of alilgw. The bi-directional thick
arrows represent an association and a dissociation raaengttsme. The thin unidirectional
arrows represent a production rate of products.

A concrete example, th&KIP pathway’ which is a subset of tHERK signalling path-
way, is employed as our first case study in this thesis. A dgcaplPNs representation
of the RKIP pathway is shown in Figurle 6.1 which is suggested by Cho dCalo 03].

We employed this graphic&KIP pathway as a target biochemical system for testing our
hybrid piecewise modelling approach. In Figlrel 6.1, a sti@ protein concentration is
represented by a circle; a bar indicates a kinetic paranaétarbiochemical reaction to

be estimated; A direction of a signal flow between protein geattion is illustrated by
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a directed arc connecting the circle and bar; associatidnrdesassociation rates are rep-
resented by the bi-directional thick arrows, and the thiidwectional arrows represent a
production rate of products.

Simulation results suggest that it is feasible to employ2iditybrid piecewise mod-
elling approach with its variants to model biochemical syst from scratch and obtain
models with similar or alternative topologies exhibitinghdar behaviour as the ones in
the target biochemical systems. Analysis of simulatiomltsss illustrated in details as

follows.

6.2.1 Generation of similar behaviour

One of main aims of applying the hybrid methodology to modejét biochemical sys-
tems is to construct synthetic models which exhibit simil@haviour to the ones in target
biochemical systems. In our simulations on the test cR&&P pathway’, a group of best
models is generated by piecewise composing componentsaba given model seeds
under construction, and evolving the composed models mgaf topology and kinetic
rates.

Similar behaviour of species among these synthetic model®ltained, regarding
species behaviour given in the targ®KIP pathway. There are 11 species in the target
RKIP pathway, but more or less proteins or complex could be g&ebia the composed
models, with respect to piecewise modelling process. Wealjnabmpare the behaviour
of species existing in both generated and target model. in&gty of compared species
behaviour are shown in the following figures. Some behavaiwspecies of composed
models from a group of best returned models are very sinul#re target ones. But some

behaviour of species from a small subgroup of returned nsoded not similar, due to
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different topologies and kinetic rates in these generatedeais.
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0 - - 0
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Indl —— Ind14 Ind27 - Ind40

Ind2 - Ind15 Ind28 —— Ind41

Ind3 - Ind16 - - - - Ind29 -~ Ind42

Ind4 Ind17 -~ Ind30 -------- Ind43 - -- - -
Ind5 Ind18 -~ Ind31 Ind44 ———
Ind6 Ind19 —— Ind32 Ind45 -
Ind7 - - - - Ind20 -~ Ind33 Ind46 ——
Indg — - Ind21 -------- Ind34 - - --- Ind47 -
Ind9 - Ind22 Ind35 ——~ Ind48 --------
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Figure 6.2: Comparison of speciBsiflbehaviour.
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Figure 6.3: Comparison of speciB&IP behaviour.

Figure[6.2 and Figure_8.3 show comparison of behaviour ofisp®afl and RKIP

between target RKIP pathway and 50 generated models. Frerdidigrams, it is clear
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that most of synthetic models exhibiting similar behaviouspeciedRRaflandRKIP to the

target ones ifRRKIP pathway.
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Figure 6.4: Comparison of speciB&IP|Raflbehaviour.

Because biochemical reactions between speR@&fd and RKIP are very important
for signal transduction in the pathway, it is necessary t@stigate interactions among
specieRafl RKIP and the compleRKIP|Raflformed by bindingRafland RKIP. The
interactions can be described in the following two biochehreactions: binding reac-
tion ‘Rafl + RKIP — RKIP|Raf1 and unbinding reactionRaf1 + RKIP <«
RKIP|Raf1'.

Moreover, behaviour of compléXKIP|Raflprovided from the targeRKIP pathway is
one of the species behaviour for driving during the modeglpnocess. Composed models
can be investigated for generation of the two binding andndibg reactions by comparing
the behaviour of specid?3KIP|Rafl

Figure[6.4 shows that most of generated models exhibit airbiéhaviour of the com-

plex RKIP|Raflas the target one. The generation of nonsinfR&iP|Raflbehaviour in
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the figure suggests that two binding and unbinding reactwag be interrupted by other
biochemical reactions associated wRhf1andRKIP in corresponding composed models,
which could be investigated for the details in terms of toggl

In RKIP pathway, the same mechanism of binding and unbinding ictierss exists
in two biochemical reactions between sped#K andMEKPP. ‘ERK + MEKPP —
ERK|MEKPP and ‘ERK + MEKPP < FERK|IMEKPP".

As shown in Figuré 615, Figute 6.6 and Figlre 6.7, behavidspeciesERK, MEKPP
and compleXERKMEKPPin generated models from the hybrid piecewise modelling&a

work are also similar to the target ones.
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Figure 6.5: Comparison of speciERK behaviour.
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Figure 6.7: Comparison of speciERKMEKPP behaviour.
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Figure 6.9: Comparison of speciB&IPP behaviour.

Regarding specieRP and RKIPP involved in two binding and unbinding reactions,

there should be similar species behaviouR&andRKIPP exhibited in generated models.

Figure[6.8 shows that speci@®behaviour among most of returned best models are similar



170

to the target one iRKIP pathway.

But the specie®RKIPP behaviour in Figuré 619 indicate that just about four congglos
models exhibiting specidRKIPP behaviour, and other composed models can not generate
similar specieRKIPP behaviour because concentrations of species in these snacel
zero during the whole simulation time as shown in the Figuge 6

The reason of resulting missed similar species behaviouiddoe some extra inter-
actions existing in the composed models. These extra citers are not the ones in
targetRKIP pathway, which may have influence on the association anddassiociation
of speciesRKIPP during the simulationn silico. That is why generated models exhibit
different RKIPP behaviour, event though the binding and unbinding reastiwas been

generated.
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Figure 6.10: Comparison of specie&IPPIRP behaviour.
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Figure 6.11: Comparison of speciERKPRRKIP|Raflbehaviour.
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Figure 6.12: Comparison of specieRKPPbehaviour.

Furthermore, the existing extra interactions in the coredasodels may have an effect
on the generation of some target complex, because the tamygtlex cannot be produced

if its forming materials (proteins and other complex) areilited or not produced by the
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extra interactions. For instance, the generation of corfRKIPP|RPrelies on biochemical
binding and unbinding reactiondK /PP + RP — RKIPP|RP andRKIPP + RP «+
RKIPP|RP. If the specieRKIPPis not obtained correctly in the composed models (for
instanceRKIPP behaviour is missed in Figure 6.9), the generation of cormRIKEIPPIRP

is affected and behaviour &KIPP|RPis not exhibited in the composed models, as shown
in Figure[6.10.

The same problems of missed similar species behaviour hapfERKPRRKIP|Rafl
andERKPR, due to extra biochemical reactions or missed interact&wnsng the species
and complex. As shown in Figure 6111 and Figure 6.12, onlysym¢hetic model exhibits
specieEERKPRRKIP|RaflandERKPPbehaviour respectively. The behaviour of species
ERKPRRKIP|RaflandERKPPare still far away from the target ones.

After comparing species behaviour in the composed modéls aairresponding ones
in target biochemical system, it is feasible to generate et®ogresenting similar species
behaviour in time series data format. But regarding lackiwilar species behaviour in
the synthetic models, these obtained best models shoutddied by comparison with the
target biochemical system in terms of topology, in orderabdate or improve the quality

of synthetic models generated by the 2D hybrid piecewiseatfiod approach.

6.2.2 Convergence of composed model fithess

The piecewise construction of models can be driven to appridee target RKIP pathway
by improving the fitness. Composed models can be evaluataetiarning estimated fit-
ness value for each model, and the returned fitness valuddstmverge with increasing

number of running generations during the modelling pracess
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Figure 6.13: Average and five best fitness values of syntRi® models.

As shown in Figur€ 6.13, there is an average fitness valudfsybthetic models, con-
verging to a minimum value with the increased number of gai@rs in the simulation.
In our current implementation, the hybrid piecewise madglprocess is set to call the
SA layer to optimize the kinetic rates of each model at ev&® @enerations within total
pre-defined 1000 running generations for the simulatione @uthe probabilistic mecha-
nism of accepting a worse solution by SA, there is a jump ofaye fithess convergence
for the models at each end of run of calling SA layer to optartize kinetic rates. The
average fitness value converges again after move back toyE6 fallowing a traditional
evolutionary process, until reaching the end of simulation

Moreover, in order to investigate the fithess convergencedoh developed model, we
choose to analyze the fithess convergence among five symthetiels from 50 composed
models. In Figur€ 6.13, fitness values of the five best modeigerge as the average one

with increased number of generations, and jump at each regallig SA layer. Thus a
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group of returned best models from the modelling framewsdtose to the target biochem-

ical pathway in terms of behaviour measurement based ondeacl distance function.

6.2.3 Quantitative analysis of composed topologies

6.2.3.1 Compression

Figure[6.14 illustrates the compression scores from coisgabetween the 50 synthetic
models and target RKIP pathway in terms of topology. Thesguased 50 models are from
one run based on the same simulation setting of the hybrodpise modelling framework.
Here we attempt to compare the generated models with tamgtdmical pathway in terms
of matched arcs (interconnections among species or copmpbexllustrating quantitative

analysis on the topologies of composed model.
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Figure 6.14: Compression analysis of the synthetic topetg

As shown in Figuré_6.14, compression scores of the synthedidels are very poor,

ranging over [0, 0.18]. There are even two composed modelshwhcluding no matched



175

arcs on the topologies, compared to the target structuRKdP pathway. According to

the definition and description of compression in SecfionZ.fbw compression score
means less matched topologies in synthetic models, whdibates generation of models
with various structures. In wet-lab, biologists might beenested in models with differ-
ent topologies but exhibiting similar behaviour. Thus,seaeomposed models with low

compression scores can be provided to biologists for fugkperimental investigation.

6.2.3.2 Coverage

Quantitative analysis on generated model in terms of tapot@an be performed by com-
puting coverage scores of these models, as an complememéagurement to the analysis

based on compression.
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Figure 6.15: Coverage analysis of the synthetic topologies

Figure[6.1b shows that most of coverage scores of synthetaet for targeRKIP

pathway is in the ranges of [0, 0.53], including two modelgwziero coverage score as the
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estimation of compression. Regarding the low compressidncaverage scores for these
generated models, we can say models obtained from the hylardtklling framework are
very different to the targeRKIP pathway in terms of topology. Therefore, these different

models are obtained and preserved as a good resource fogicalresearch in wet-lab.

6.2.4 Generation of alternative topologies

In order to illustrate generation of different topologiassynthetic models, we compared
one of generated models from our simulation with taig&tP pathway in terms of reac-
tions. By analyzing how many reactions in target pathway lmamgenerated in the com-
posed model, we can quantitatively measure difference eofatternative topology com-

pared with target one.

Table 6.1: Comparison of one synthetic model WRKIP pathway.

Reactions in One Generated Model
ERK|RP ™% ERKP + RP
ERKPP|\MEKPP 2, ERKPP + MEKPP

Reactions irRKIP pathway
*Rafl+ RKIP X% RKIP|Rafl
*RKIP|Rafl %5 Rafl+ RKIP

RKIP|Rafl+ ERKPP %5 ERKPP|RKIP|Rafl
ERKPP|RKIP|Rafl % RKIP|Rafl + ERKPP
ERKPP|RKIP|Rafl 5 Raf1+ ERK + RKIPP

ERK|RP + ERKPP|RKIPP 2 ERK|ERKPP|RKIPP|RP
ERK + RKIP|Rafl ™ ERK|RKIP|Raf1
*RKIP + Rafl > RKIP|Raf1

*ERK + MEKPP ™% ERK|MEK PP

ERKPP|MEKPP + MEKPP|RKIPP 5 ERKPP|MEKPP|RKIPP
RKIP + ERK|RP ™ ERK|RKIP|RP

*RKIP|Rafl ™% RKIP + Rafl

ERK|IMEKPP ™% ERKP + MEKPP

RKIP|Rafl + ERKP ™ ERKP|RKIP|Rafl

12

*ERK|MEKPP — ERK + MEKPP

*ERK + MEKPP £ ERK|MEKPP
*ERK|MEKPP Y, ERK + MEKPP
ERK|MEKPP Y, MEKPP + ERKPP
RKIPP + RP %, RKIPP|RP
RKIPP|RP % RKIP + RP

RKIPP|RP ™% RKIPP + RP

As shown in Tablé 6]1, four reactions marked with star in@aRKIP pathway are
generated in a synthetic model. The synthetic model cansfst2 reactions that four of
them being identical to the ones RKIP pathway. Regarding a low coverage score of the

compared synthetic model, we can find that the hybrid maodgliamework can obtain
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alternative topologies of composed models exhibiting lsinbehaviour to the target ones
in biochemical systems.

Alternative topologies in synthetic models illustrategitrbiochemical system in a dif-
ferent way, providing templates to biologists in wet-lab fiarther experimental examina-

tion at the properties of the biochemical systems.

6.3 Levchenko Pathway

In biochemical systems, in addition to preventing crogséahong related signaling path-
ways, scaffold proteins might facilitate signal transdwuttby preforming multimolecu-
lar complexes that can be rapidly activated by incomingaligin many cases, such as
mitogen-activated protein kinasklAPK) cascades, scaffold proteins are necessary for full
activation of a signalling pathway [Levc 00].

Levchenko et al. investigated a quantitative computer mofd®IAPK cascade with a
generic scaffold protein to suggest a detailed biochenmzadel of scaffold action. From
the analysis of the suggested model, Levchenko et al. shavsgecificity, efficiency and
amplitude of signal propagation can be regulated by usimgdtion of scaffold-kinase
complexes.

In this thesis, the model studied by Levchenko et/al. [Levici®Gmployed as our
second test case; details of the model can be obtained froid?lels database(Model
NO. BIOMDO0000000011) [Li 10]. We call the utilized model thevchenko2000 model.

Figurel6.16 shows the structure of the Levchenko2000 model.
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Figure 6.16: Three signalling cascades of Levchenko200femeeproduced from [Li 10].
This is a representation of the signalling cascades, nd®¢fe net.

6.3.1 Generation of similar behaviour

Similar species behaviour in composed models of Levcheb®@zre shown in figures.
Figure[6.1V to Figuré 6.23 show the generated models witlasitmehaviour of species
Raf RafP, RasGTRRafRasGTR Phase3MEK andMEKP to the target ones for present-

ing MAPK cascades signalling pathway.
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Figure 6.23: Comparison of specig=KP behaviour.

6.3.2 Convergence of composed model fithess

While modelling the Levchenko2000, the same parametersrafing hybrid modelling

are utilized for applying ES layer to evolve model seeds atryegeneration and calling

SA layer at every 250 generations to optimize kinetic ratesaated with reactions in

these model seeds. Figlire 68.24 shows that an average fimlasedar 50 synthetic models

converge to a minimum value with the increased number of gdioas in the simulation.
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Figure 6.24: Average and four best fitness values of symthetrchenko2000 models.

Regarding the probability of models selection during thel&&ed optimization pro-
cess, worse models with bad performance in terms of behaglistance can be accepted.
Therefore, there is jump in the fitness values of the modeleuconstruction in the figure.
We also analyze the fitness values of the four best modelsebt&rom the set of returned
models. The fitness values of the four best models converd¢uamp with the increased
generation numbers, as the converged average fitness shawe same figure. There-
fore, itis feasible to apply our proposed 2D hybrid piecewisodelling approach to obtain
models with converged fitness (indicating the models to beecto target biochemical sys-
tem) and similar behaviour (suggesting correct generaifdsochemical interactions in

the synthetic models).
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6.3.3 Quantitative analysis of composed topologies

6.3.3.1 Compression

Constructed models of Levchenko2000 are analyzed on tgigsldy employing one of

the quantitative measuremen@ympressionFigure[6.25 shows that 50 synthetic models
are compared with the target Levchenko2000 and correspgratimpression scores are

computed.
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Figure 6.25: Compression analysis of the synthetic topetg

As shown in Figuré 6.25, compression scores of the synthebidels are very poor,
which are distributed in a range of [0, 0.07]. There is one gosed model not including
matched arcs on the structure. The poor compression scwlieate that synthetic models
are very different to the target model. In order to inveseghe characteristics of various
structures among these constructed models, we also dtdizether quantitative measure-

ment, Coverage to analyze the composed models. The details of analysiewrage

scores are illustrated in next section.
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6.3.3.2 Coverage

Coverage scores of constructed models are calculated amshsh Figurd 6.25.

0.3 T T T T T T T T T
Coverage of Models —+—
m I I [ |
025 b || i I (- \ \
[ it i I | \
\ |
\ I ‘
| | | |
[ I [ ‘ o
ozt | R IR AN .
+ H By % i—o—o—o—o—o—o—o—o—o—‘r | T I | T [
% \ L ]
& 015 . | I | [
3 \ | A AN
© | | [
| | | | | |
| Ly ||
0.1 - ‘\ \“ “u“ M‘ ‘\ | I\ 1
H ! || L 1
‘\
|
|
0.05 |- ||
I
I
‘4‘
0 . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50

Figure 6.26: Coverage analysis of the synthetic topologies

A set of very low coverage scores of synthetic models forelatgevchenko2000 is
obtained, ranging over [0, 0.27]. The same as the illusiratenpression scores of these
synthetic models, a constructed model having zero coves@me suggests that no matched
arcs exist in the model. Therefore, regarding both low ca@sgion and coverage scores of
these obtained synthetic models, we can conclude thatraotest models from the hybrid
piecewise modelling are very different to the given targetbemical pathway in terms of
topology, but most of the species or complex among thesésiratmodels exhibit similar

behaviour to the target ones in Levchenko2000.
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6.3.4 Generation of alternative Topologies

We compare one of composed model with target Levchenko2@@@hto present genera-
tion of alternative topologies from our approach. There3reeactions in Levchenko2000

and 31 reactions are generated in a synthetic model.

Table 6.2: Comparison of one synthetic model with Levch@ik®.

Reactions in Levchenko2000 model

Reactions in One Generated Model

*Raf + RasGTP %% Raf|RasGTP
Raf|RasGTP %% RasGTP + Raf
Raf|RasGTP %% RafP + RasGTP
Phasel + RafP %% Phasel|RafP
Phasel|RafP %% Phasel + RafP
Phasel|Raf P 2% Raf + Phasel

RafP+ MEK %5 MEK|RafP
*MEK|RafP 2 RafP + MEK
MEK|RafP %5 MEKP + Raf P

RafP+ MEKP O MEK P|RafP
MEKP|RafP ™% RafP+ MEKP
*MEKP|RafP "% MEKPP + RafP
Phase2 + MEKPP X% MEKPP|Phase2
MEK PP|Phase2 S Phase2 + MEKPP
MEKPP|Phase2 " Phase2 + MEKP
*Phase2 + MEKP % MEK P|Phasc2
MEK P|Phase2 2% Phase2 + MEKP
MEK P|Phase2 X% MEK + Phase2
MEKPP + ERK 5 ERK|MEKPP
*ERK|MEKPP *2% MEKPP + ERK
ERK|MEKPP LN ERKP+ MEKPP
MEKPP + ERKP *2 ERKPIMEK PP
ERKP|MEKPP ¥ MEKPP + ERKP
ERKP|MEKPP % ERKPP + MEKPP
Phase3 + ERKPP A2, ERKPP|Phase3
ERKPP|Phase3 2 Phase3 + ERK PP
ERK PP|Phase3 X2 Phase3 + ERK P
Phase3 + ERK P *2 BRI P|Phase3
ERK P|Phase3 LN Phase3 + ERK P
ERK P|Phase3 *2 ERK + Phase3

*MEKP|RafP " MEKPP + RafP

*MEK|RafP % MEK + RafP

MEK + RasGTP 5 MEK|RasGTP

ERKPPP|Raf ™5 ERKPPP + Raf

MEKPP|Raf ™ MEKPP + Raf

ERK|RasGTP 8, MEK|Phasel + RasGTP

ERK|Raf + Phase3 5 ERK|Phase3|Raf

MEKP|RasGTP 5 MEKPP + RasGTP

*ERK|MEKPP ™ ERK + MEKPP

MEK|MEK PP|Phasel + ERK|MEK P|Phase2 2% ERK|MEK|MEK P|MEK PP|Phasel| Phase2
ERK|Phase3 + ERK|MEK PP ™% ERK|MEK PP|Phase3

Raf|RafP ™% RafP + Raf

*Raf + RasGTP ™% Raf|RasGTP

Raf|RasGTP ™% Raf|RafP + RasGTP

ERK + ERK|RasGTP " ERK|RasGTP

ERK + MEKP|Phase2 "% ERK|MEK P|Phasc2

MEK|RasGTP ™5 MEKP + RasGTP

*MEKP + Phase2 ™ MEK P|Phase2

MEK P|RasGTP + MEK|RasGTP ™% MEK|MEK P|RasGTP
ERK|Phase3|Raf + Raf “ ERK|Phase3|Raf

ERK|Phase3|Raf + MEK|RasGTP 2% ERK|MEK|Phase3|Raf|RasGTP
ERK PP|Phasel + ERK|M EK|Phase3|Raf|RasGTP 2% ERK|ERK PP|MEK|Phasel| Phase3|Raf|RasGT P
MEK + MEKP|RasGTP "2 MEK|MEK P|RasGTP

MEK|MEKPP % MEK + MEKPP

Raf + ERKPPP "2 ERKPPP|Raf

MEKP + MEKPP ™% MEKP|MEKPP

ERK + ERK|Phase3 2% ERK|Phase3

MEK|RasGTP 2% MEK + RasGTP

MEK + ERK|MEK P|Phase2|Raf % ERK|MEK|MEK P|Phase2|Raf
MEK|RafP + ERK|MEKPP " ERK|MEK|MEK PP|RafP
MEKP|Phase2 + Raf "% MEKP|Phase2|Raf

As shown in Tablé 6]2, five reactions in the synthetic modeldentical to the ones in
original Levchenko2000. The identical reactions are maskeh star in the table, indicat-
ing that an alternative topology of Levchenko2000 can baiabt with similar behaviour

from our hybrid modelling approach.
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6.4 Simulations and statistical analysis on modelling vari
ants

In order to quantitatively study various modelling vargnwe utilized statistical method-
ology to analyze the performance of modelling variants byjgaring fithess values, com-
pression and coverage scores which are acquired from a sghtfetic models represent-
ing targetRKIP pathway. Firstly, we describe simulation settings for gatieg synthetic
models to compare the modelling variants, then detailsatissical analysis and summaries

of variants comparison are given.

6.4.1 Simulation settings

There are five pairs of modelling variants compared and tigeted by employing the
2D hybrid piecewise modelling approach. For analyzing $aton results and summariz-
ing conclusions about performance of modelling variardsnfa large group of composed
models, each pair of compared modelling variants is utllizecompose models in 10 runs.
Details of simulation settings are given in Tablel 6.3 asofed.

As shown in Tablé 613, there are 10 runs for implementatioeaah modelling vari-
ant on the hybrid modelling platformiRuns=10. The hybrid modelling platform calls the
subtraction operator at every two generations, Sub@Ge4x15 &lled to optimize kinetic
rates in each model individual at every 25 generations, @ei® Ge=25; reward; and
penaltys, of models construction are 0.01 and 1000 respectivel.01 and=,=1000.
ES and SA are employed to compose models of biochemicalrsgstaéerefore the stan-

dard settings of ES and SA are utilized. The number of geioaisin one run of ES is 100,
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Modelling Variants| Hybrid Modelling | ES SA GaussianV(u, o)
Data Driven: fRuns = 10 GeSi=100| T;,, = 10 u=0

Fixed vs Dynamic | Sub@Ge= 2 PopSi =50| CoRate = 0.8 ¢=0.00001
Survival Selection:| OptRate@Ge = 2% Trin =1

SES vs PES £:=0.01 Iter =10

Mutation: £,=1000

Fixed vs Random
Recombination:
Best vs Random
Fitness Function:
ED vs (ED+RP)

GeSi=100; the number of population (models seeds) in onergéan is 50, PopSi=50. Ini-
tial SA system temperature is 10,,,=10; cooling rate of SA system is 0.8, CoRate=0.8;
minimum temperature for stopping simulation is'll,;,=1; and iterations at each sim-
ulated annealing temperature are 10, Iter=10. The meand standard deviation of
Gaussian distributioV (y, o) are 0 and 0.000014=0 ando=0.00001. Other properties
of the simulation setting during the modelling process atedfiwithout modification ex-
cept the two compared modelling variants, which allows adamparison between two
modelling variants in each pair in terms of performance aregation of synthetic models.
Since there are 50 models seeds initiated at each run forlmdeeeslopment and 10 runs
simulation for examination of each modelling variant, thare2 x 500 composed models

obtained for comparison and analysis of each pair of madglariants.

6.4.2 Statistical analysis

Since we compare pairs of modelling variants with speciftsaon modelling biochem-

ical systems, it is necessary to statistically investiglgevariances of modelling variants
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in each pair for the generations and evaluations of symtmetidels. Two-sample based
statistical methods for analysis of two groups of simulatiesults, for instance compres-
sion scores, coverage scores and fitness values of compaskdsyneed to be performed
for understanding if the variances of the variants are th&esan some specific modelling
aims. Two statistical measuresiRpackagel[R De 09], ‘var.test(X, Y)" and ‘t.test(X, Y)’,

are employed to perform the statistical analysis.

Fitness values, compression and coverage scores of signtimlels are used to calcu-
late p-value in ‘var.test(X, Y) and ‘t.test(X, Y)’ for funter statistical analysis. Obtained p-
value in two statistical measures are compared with a teedik significant level ‘p=0.05’,
and the ratios of variances among generated models froereiiffimplementation of mod-
elling variants are also compared. Conclusions are suraethfrom results of statistical
analysis, which is shown with comparison of fithess, congiogsand coverage among
these synthetic models. Appendix A gives a short explanaifawo samples tests iR

package for ‘var.test(X, Y) and ‘t.test(X, Y)'.

Table 6.4: Statistical analysis of average fithess sets

var.test(X, Y) t.test(X, Y)
NO. | XvsY - -
p-value TVariances || P-value X Y
1.1 | Dripizea VS Dripy, | 0.0229 0.6309 < 2.2e-16 3.1602
1.2 | SESvsPES 0.4574 1.1616 0.837 4.2289

1.3 | Mpizea VS Mpan 0.6821 0.9208 0.0262 4.2474| 4.035
1.4 | QRran VS @Best 1.07e-03 | 1.9448 0.5737 4.2019

1.5 | ED vs (ED+RP) < 2.2e-16| 6.15e-06 || < 2.2e-16 348.78
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After obtaining sets of generated models from simulatiorsrioased on different mod-
elling variants of 2D hybrid piecewise modelling approaekierage of fithess of these
models among all runs can be calculated for statisticalyarslTablé 6.4 shows statistical
analysis results on the synthetic models from simulati@set on each pair of compared
modelling variants: p-value and ratio of variances fromteat() measure; and p-value and
means of fithess of models constructed by employing modgliamiants.

The compression and coverage scores of these composedsncaddbe measured for
further statistical analysis. Talle 6.5 and Tdbleé 6.6 sHwmt tompression and coverage
scores of synthetic models from different simulation ruasdal on different modelling
variants are analyzed to obtain p-value, ratio of varianaed means of these scores in
var.test() and t.test() statistical measurements. By eoimg@ the statistical analysis results
in each pair of modelling variants, advantage and disadggf the variants for modelling

biochemical systems can be illustrated quantitatively.

Table 6.5: Statistical analysis of average compression.

var.test(X, Y) t.test(X, Y)
NO. | XvsY - -
p-value | rvariances || P-value X Y
1.1 | Dripizea VS Dripy, | 0.0096 | 0.4713 < 2.2e-16 0.025
1.2 | SESvsPES 0.0461 | 1.7802 6.78e-16 0.0361

1.3 | Mpizea VS MRan 0.75 1.0958 0.0296 0.0526| 0.0567
1.4 | ®Rran VS @Best 1.60e-06| 0.2387 < 2.2e-16 0.1033
1.5 | ED vs (ED+RP) 1.25e-05| 3.6546 0.0004 0.0469
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Table 6.6: Statistical analysis of average coverage.

var.test(X, Y) t.test(X, Y)
NO. | XvsY - -
p-value | 7variances | P-value X Y
1.1 | Dripjzea VS Drip,, | 6.74e-12| 8.4369 < 2.2e-16 0.0731
1.2 | SESvs PES 0.4961 | 1.2161 0.0261 0.2065

1.3 | Mpizea VS Mpan 0.062 1.7147 6.63e-05 | 0.2322| 0.2765
1.4 | QRran VS @Best 0.3373 | 1.317/8 0.1888 0.2174
1.5 | ED vs (ED+RP) 9.39e-05| 0.3163 1.05e-14 0.3967

Details of advantage and disadvantage of applying diftaresdelling variants to con-
struct models are described in next section with the quaivt comparison of modelling
variants. Moreover, since the synthetic models in a geioerare independent during the
construction process, the corresponding compression evetage scores of the models
can be analyzed in a cumulative ascending order, as a coraptany analysis of the sta-

tistical analysis results.

6.4.3 Comparison of modelling variants
6.4.3.1 Fixed vs Dynamic - Data driven

Here is a brief summary of comparing data driven modellingawvas which are in fixed or

dynamic manner:

e For generating desired behaviour: dynamic variant is b#éttn fixed one;

e For generating similar topologies: fixed variant is bettert dynamic one;
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e For generating alternative topologies: dynamic variabeter than fixed one.

Figure[6.2¥ shows that the dynamic version converges macklgin terms of fithess
function than the fixed one. In Takle 6.4 (1.1) The two p-vaitiear.test() and t.test() are
both smaller than the significance level 0.05 which meandhleasariances of fixed variant
is smaller than the dynamic one and the mean fitness of thedixeds greater than that of

the dynamic one.

7

Average Fitness
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Dynamic
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Generations

Figure 6.27: Data Driven: Fixed vs Dynamic, Comparison @&frage fithess of models.

Regarding the exploration of alternative topologies, th@apression values of the mod-
els generated by dynamic variant is significantly differieain the one generated by the
fixed variant, see Table 6.5 (1.1) where both p-value arelenthlan 0.05. The variance
of the dynamic variant is greater than the variance of fixedbwé indicating there is a
significant variance in the topologies generated.

In terms of similarity to the target topology, the coveragéue of generated models

by the fixed variant is greater than that of the dynamic onshasvn in Figuré 6.28a and



0.7
0. |
0.5 lJ
0.4 ]

'_, ll e Fixed_Cover
0.3 I_'

| === Dynamic_Cover
0.2
| —
o ] |

1 51 101 151 201 251 301 351 401 451

(a) Ordered non-cumulative coverage

140

120

/
Z /

40 /

. S/
. __/ /

1 51 101 151 201 251 301 351 401 451

Fixed_CoverSum

=== Dynamic_CoverSum

(c) Ordered cumulative coverage

0.25

0.2

0.15

0.05

0

/

7

—

1 51 101 151 201 251 301 351 401 451

193

e Fixed_Compre

=== Dynamic_Compre

(b) Ordered non-cumulative compression

/

/

/

/

S S

—

1 51 101 151 201 251 301 351 401 451

e Fixed_CompreSum

== Dynamic_CompreSum

(d) Ordered cumulative compression

Figure 6.28: Data Driven: Fixed vs Dynamic. (a)-(b) ordemad non-cumulative coverage
and compression; (c)-(d) ordered and cumulative coveragecampression. Horizontal
axes in the subfigures are cumulative number of generateeImotfertical axes in the

subfigures are cumulative/non-cumulative scores of coeeoa compression.

Figure[6.28c. As evident from Table 6.6 (1.1), the p-valuessmaller than 0.05 which

indicates a significant difference between the two variaMsreover, the variances and

means of the fixed variant are greater than the correspomdings of the dynamic one,

indicating a higher coverage of structure by the fixed vdriahhe compression values

shown in Figur€6.28b and Figure 6.28d also support thislosiu.
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6.4.3.2 SES vs PES - Survival selection

A summary of comparison of implementing survival selecthiased on SES and PES vari-

ants is given as following:

e For generating desired behaviour: the experiments do ot atdifference between

the implementation of SES and PES;
e For generating similar topologies: SES is better than PES;

e For generating alternative topologies: SES is better thz®. P

Figure[6.29 shows that SES and PES have a similar perforntagaeding the conver-
gence of fitness values. As evident from Tallles 6.4 (1.2) a8q162), the p-values are
larger than the significant level 0.05 which means the vagamnd mean fitness values are
the same for the two variants.

7
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Figure 6.29: Survival Selection: SES vs PES, Comparisonerfage fithess of models
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For exploring alternative topologies, the compressiomeslof the models generated
by SES are slightly different from the ones generated by PEBI¢[6.5 (1.2), p-value
of var.test() is 0.04608 around the significant level 0.0H)e ratio of variances between
SES and PES is larger than 1, which suggests that SES is tetePES for exploring

alternative topologies to the target biochemical system.
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Figure 6.30: Survival Selection: SES vs PES. (a)-(b) odlarel non-cumulative coverage
and compression; (c)-(d) ordered and cumulative coveragecampression. Horizontal
axes in the subfigures are cumulative number of generatecImotfertical axes in the

subfigures are cumulative/non-cumulative scores of cgeoa compression.

Figure[6.30R and Figufe 6.30c show that a larger range ofageevalues can be gen-
erated by SES. Furthermore, in Tablel6.6 (1.2), the p-valugest() is smaller than 0.05,

which means the coverage of models by SES is larger than therawvided by PES. The
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compression values shown in Figures 6]30b[and 6.30d algmwstthis finding.

6.4.3.3 Fixed vs Random - Mutation operator

There are conclusions from the comparison of implementingation operator based on

fixed and random modelling variants:

e For generating desired behaviour and similar topologiasdom variant is better

than fixed one;

¢ alternative topologies: random variant is the same as fixed o

Figure[6.31 shows the convergence of the fitness values oélsmgénerated by fixed
and random variants. In Takle 6.4 (1.3) and Tablé 6.6 (1h8)two p-value of t.test() are
both smaller than the significance level 0.05, indicating irean fitness of fixed variant
is significantly different from the random one. It suggesist the mean fithess value of
random variant is smaller (more close to the desired bebaviban the fixed one; and the
mean of coverage of random variant is larger (more coveragffigedarget structure) than
the fixed one.

For exploring alternative topologies, the random variarthe same as the fixed one,
supported by Figurie 6.3Pa and Figlire 6]132c for similar cayeiscores, and Figure 6.32b
and Figuré 6.32d for similar compression scores. In TalBlg£3), the variances of fixed
and random variants are not different (p-value of var.}éstjreat larger than 0.05), which
indicates that the fixed and random variants have the sarty @biexploring alternative

structures.
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Figure 6.31: Mutation: Fixed vs Random, Comparison of ayef@ness of models.
6.4.3.4 Bestvs Random - Crossover operator

Following conclusions are from the comparison of impleraéoh of crossover operator

based on best and random modelling variants:

e For generating desired behaviour and similar topologi@gandom selection of mate

for recombination works the same as the selection of theibésidual;

e For generating alternative topologies: selection of hadividual for recombination

is better than the random selection.

Figure[6.38 shows the convergence of the fitness values. le[&B4 (1.4) and Ta-
ble[6.6 (1.4), the two p-values of t.test() are both largantkhe significant level 0.05,
indicating that the mean fitness and coverage values of titora variant are the same as
the ones of the best variant. It suggests that the best agdmamechanisms of select-
ing individual for crossover have the same performance rimseof approaching desired

behaviour and generating similar topology.
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Figure 6.32: Mutation: Fixed vs Random. (a)-(b) ordered aod-cumulative coverage
and compression; (c)-(d) ordered and cumulative coveragecampression. Horizontal
axes in the subfigures are cumulative number of generateeImotfertical axes in the
subfigures are cumulative/non-cumulative scores of cgeoa compression.

In Table[6.5 (1.4), the variances of random and best stegeaye significantly differ-

ent (p-value of var.test() is smaller than 0.05), and th ratt variances is smaller than

1, supporting the conclusion that the best variant is bétim the random one exploring

various structures of the target biochemical pathway. Thisclusion is also supported

by comparing the coverage values in Figure 6.34a and Fig@dtfand the compression
values in Figur€ 6.34b and Figure 6.84d.
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Figure 6.33: Recombination: Best vs Random, Comparisomerbge fitness of models.

6.4.3.5 ED vs ED+RP - Objective function

A summary of comparison of implementing ED and ED+RP bassthdce estimation in

objective function is given as follows:

e For generating similar topologies: ED+RP variant is bettan ED one;

e For generating alternative topologies: ED variant is lvettan ED+RP one.

In Table[6.4 (1.5), the p-value is much smaller than 0.05icatthg a significant dif-
ference between ED and ED+RP variants. Figure|6.35 desdtileeaverage fitness values
from the objective functions involving a measurement ofepbiD, or a mechanism of re-
ward and penalty in the distance estimation function.

As shown in Figuré 6.36a and Figure 6.86c, the average ogeeralues are signif-
icantly different between ED and ED+RP, illustrated in EBl6 (1.5). Moreover, the

average coverage value is larger for the models estimat&D®RP which suggests that
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the ED+RP variant can be better than the ED variant in terngeoérating similar topolo-
gies. But the p-value of var.test() in Taly[e]6.5 (1.5) is demathan 0.05 and the ratio of

variances is larger than 1.
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6.4.4 A summary of findings

After performing simulations on modelling variants, résudre generated for representing
advantage and disadvantage of these variants regardiofspenctions of modelling bio-
chemical systems. In addition, statistical analysis ofdbmposed models from different
implementation of modelling variants are carried out. A suary of findings about the per-
formance of these variants focusing on specific modellingpets is obtained. Details of
the summary is shown in Tallle 6.7 which describes whetherdeliiog variant performs

better, worse or the same as another one it is directly caedpaith.

Table 6.7: A summary of performance between compared mogefariants.

Desired Similar  Alternative
Modelling Variants| Behaviours Topologies Topologies
Data Driven:
Fixed vs Dynamic| Dynamic Fixed Dynamic
Survival Selection:
SES vs PES = SES SES
Mutation:
Fixed vs Random| Random X =
Recombination:
Best vs Random = X Best
Fitness Function:
ED vs (ED+RP) X ED+RP ED

Notes: x means not comparable; ‘=" means the same.

Note that some of the modelling variants are not directly parable, because the sta-
tistical values are not in the same measurement scale. §tanice, the modelling variants
ED and ED+RP are not comparable in terms of fithess values $ire mechanism of re-
ward and penalty generates a different fitness scale. Betfadomparison and summaries
among pairs of modelling variants are given in Section 6.418e conclusions about the
performance of modelling variants are based on the stalsinalysis of average fitness,

compression and coverage scores of the composed modelstiorfig.4.2.
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6.5 Summary

This chapter focuses on the implementation of our 2D hyhkiedgwise modelling approach
on concrete signalling pathways, comparing performanadiftefrent modelling variants.
Alternative topologies of synthetic models obtaimedilico can be taken as general guides
for biologists to examine and understand biochemical systay experimental techniques
in wet-lab. Moreover, these composed models with altereatiructures can be used as
templates for researchers in synthetic biology to devepagisic functions of biochemical
systems. Summaries about the performance of applyingreiiffenodelling variants to
develop models are useful for further models constructidgh vespect to specific aims of

modelling biochemical systems.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The research in this thesis presents a hybrid piecewiselimgieamework based on evo-
lutionary algorithms and graph theory to model biochemsyaktems in terms of topology
and kinetic rates, driven by target species behaviour. We applied the modelling frame-
work in which both topology and kinetic rates are manipudatBurthermore, variants of
the proposed modelling framework are investigated for tstdading which features are
important for modelling various aspects of biochemicateyssin silico.

Regarding dynamic continuous behaviour which is of intea@sl exists in signalling
pathways, we focus on modelling of signalling pathways bypsaposed hybrid modelling
approach. Metabolic pathways and gene regulatory netwamksot in the scope of this
research, since there is steady state in metabolic pathavaysnly stochastic behaviour
exists in gene regulatory networks. Investigation of miiglmetabolic pathways can
be found in recent literatures, for example Lodhi and Gillfleodh] studied parameters
estimation by use of bootstrapping for time series dataatarized by noise. In gene

regulatory networks, the inputs are proteins (for instamaascription factors produced

204
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from signal transduction or metabolic activity) which cafiuence the expression of genes.
In addition, enzymatic activity plays no direct role in theng regulatory networks, but the
products of gene regulatory networks can have an influentieeirtranscription of other
proteins, or can act as enzymes in signalling or metabotiovwsys[Brei 08]. Therefore,
we only apply our hybrid piecewise modelling framework tadst dynamic continuous
behaviour in the signalling pathways.

We have introduced background of modelling biochemicatiesys, with brief descrip-
tions of how to present and simulate biochemical systendrirlab’ based on current dif-
ferent formal mathematical tools, especially examiniregitisues of modelling biochemical
systems in terms of topology and kinetic rates, see Chapter 2

To achieve the aims of hybrid modelling biochemical systeim&haptef B we have
defined basic components and synthetic models in formahgyarid semantics to repre-
sent given biochemical systems in our study. Mass-actiandtik law has been employed
to define atomic components which can be reused during tleegsaf piecewise models
composition. In order to preserve defined atomic comporemiscomposed models for
reuse while modelling biochemical systems, two librariagehbeen designed and imple-
mented to support the piecewise development of models., epresented three genetic
composition operators and a set of composition rules folempntation. Because com-
ponents and models are described in Petri nets format, csitiggooperators are proposed
to evolve Petri nets for manipulation of synthetic modeldemconstruction and genera-
tion of similar species behaviour to the target ones. Intamdiwe have discussed issues
of fine tuning Petri nets models by the composition operadois rules. Note that Petri
net is chosen for graphical representations of biochenpatiways, because of follow-

ing reasons: firstly, computational ODEs can be directly peaipfrom the Petri nets for
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estimations of synthetic models; secondly, graph operataf addition, subtraction and
crossover can be easily applied to Petri nets for compositionodels. Although there are
other possible graph representations for biochemicammath, such as compound graph,
reaction graph and hypergraph, Petri nets are a naturalsaablished notation for describ-
ing biochemical reaction networks both share the bipaptitgerty without any ambigu-
ity [Hein 11,/Hein 12].

We applied two types of hybrid modelling approaches to aositnodels of biochem-
ical systems in Chaptéf 4: a models generator based on thgtriziipiecewise modelling
which focuses on construction of models by manipulatin@togy and optimizing kinetic
rates separately; a 2D hybrid piecewise modelling appreddbh composes biochemi-
cal models by employing two evolutionary and heuristic alfpons to set up a two-layer
hybrid modelling environment. The 2D hybrid piecewise nibdg approach addresses
the challenges of constructing models of biochemical systeith respect to involving
topology and kinetic rates.

Our proposed hybrid modelling framework is developed byohtiction of a grid tech-
nique to parallelize modelling process, and comparisoragbmts of the hybrid modelling
approach, see Chapter 5. The GridGain technique has bedoyato parallelize the
topology construction and kinetic rates optimization extjely. By using GridGain based
hybrid piecewise modelling approach, models from the saanegtion in the evolutionary
modelling process can be composed and optimized indeptyndsimulation process can
be speeded up, because the parallel execution of modetsmesraddition, subtraction,
crossover operators and rates optimization to models wwtestruction. Regarding spe-
cific modelling aims, modelling variants have been expldenhvestigate the advantages

or disadvantages of functions in these variants for piesewiodelling, with an emphasis
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on the effect of mutation operators and evaluation critefithe overall hybrid methods.
Moreover, measurements of composed models have beendstbgliencluding pure Eu-

clidean distance function and a reward and penalty fundtioan objective function to

estimate behaviour difference between generated anct tarxgeel. We have presented
how to evaluate composed models in terms of topology by ducong quantitative and

gualitative methods.

We have applied the 2D hybrid piecewise modelling approaith ¥g variants to con-
crete signalling pathways for constructing models exmmgisimilar behaviour with alter-
native topologies, see Chapfér 6. Simulation results shait is feasible to compose
models from scratch and develop models topologies piecedng palong with optimiza-
tion of kinetic rates associated with the biochemical rieastin these models. Examina-
tion of modelling variants with analyzed simulation reswdtiggest a set of conclusions can
be obtained for indicating advantage and disadvantage dflffiiog variants on specific
modelling aspects.

In summary, this thesis presents a hybrid modelling franmkvbased on quantitative
Petri nets to piecewise model and optimize biological systén terms of topology and
kinetic rates. Performance of modelling variants in a hylwo-layer framework is also

investigated. Simulation results are statistically apadl; providing conclusions about im

plementation of modelling variants in the hybrid modellgryironment.

Our simulation results do not clearly show that one modglariant clearly outper-
forms the others, but it provides an indication regardingcifieatures are important to be
considered for various aspects of the modelling problenes€&ltonclusions about the vari-

ants performance in a hybrid modelling environment can bpleyed to improve further
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modelling issues. Moreover, our study in this thesis adareshe evolution of quantita-
tive Petri nets and could thus be applied to stochastic abddetri nets as well as the

continuous Petri nets, which can benefit mathematical niiagel

7.2 Future Work

Theoretical and practical study has been investigatedignthiesis for modelling of bio-

chemical systems. A list of potential research directisroposed as follows.

1. To develop patterns for instantiation of atomic compdsiey using MA2, MA3 and

MM kinetic laws for piecewise modelling;

Different kinetic laws guide biochemical reactions in bigical systems. It could
confuse many experimentalists in wet-lab, if only applyM#&1 kinetics to model

biochemical systems. Moreover, an active enzymatic re@ad measured by the
MM kinetics, and it is difficult to obtain rates for the atonm&actions. Therefore, a
sophisticated modelling strategy including differenttpats developed for different

kinetic laws could enhance the piecewise modelling.

2. To apply more biological constraints to define and implehecemposition rules;

Components are instantiated by following a set of givendgmlal principles. Mod-

els are constructed by applying composition rules predefineusers according to
given biological constraints. Regarding complex workingamanisms among sub-
strates in biochemical systems, it is necessary to involeeemrecise and concrete
biological knowledge which can guide the instantiation wiaic components and
generation of biochemical interactions, for approachimgeiological relevant syn-

thetic models.
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3. To use concrete biological values, including kinetiesatonstants and initial con-

centrations, while fitting parameters of biochemical syste

Random choices of kinetic constants and initial conceioinatare feasible while
modelling biochemical systems in silico, but these randperations are strange for
experimentalists in wet-lab. Therefore, it is better tolgmmncrete kinetic values
from literature or biochemical databases to the varialdes@ated with biochemical

reactions while modelling.

4. To optimize kinetic rates by employing Multiobjective @pization;

Modification of kinetic rates associated with reactions ldoresult in composed
models exhibiting different behaviour. Fine tuning one ediation rates in a model
may affect other reactions, therefore multiple objectip&raization methodologies

can be employed to analyze the effects of rates modification.

5. To account matched structures and topology sizes of ceegppmodels in the objec-

tive function for the overall estimation of generated magel

While fitness of composed models converge to optimal valu#s imcreased gen-
erations, the topology sizes of composed models could gritiwowt control, even
thought subtraction and crossover operations are appietahipulate the models.
The objective function can account for a weighted estinmtibmatched interac-
tions between generated and target model, for approackimtpetic models with

‘optimal’ fitness and ‘minimal’ topologies.

6. To take improvement of synthetic models across gen@&siitto account for mod-

elling stop criteria;
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It is important to apply criterion to stop the modelling pess automatically, for
avoiding anomalies of generating meaningless interastéanong substrates in the
models. For instance, if there is no improvement after @kdd number of gener-

ations, the modelling process can stop and return currdimhalresults.

. To study hybrid implementation of SA and ES at differentdelong stages, for
instance in a rough manner at initial generations and in aiggenanner at final

generations;

Modelling in a rough manner means aspects of generated madelnot strictly
treated, then criteria of estimating synthetic models ateigorous. Whereas mod-
elling in a precise manner means criteria can be tough fasfgaig modelling re-
guirements. Combination and implementation of rough aedipe modelling stages
allow models to be developed without rejection even thougioss problems ex-
isting, and later these models can be checked by strictieriier more meaningful

synthetic models.

. Toindependently construct submodels with driving infation from different exper-
imental stages in wet-lab, and then to compose these sultenatte an integrated

model representing target biochemical system.

A biochemical system is difficult to be observed and measoredoncentrations
in wet-lab, because of the natural complex of biochemicractions. It is com-
mon to only consider specific experimental stages from wimébrmation of the
biochemical system can be obtained. Parts of a model (sules)dvithin different
experimental time slots can be generated independengly,ttitese submodules can

be composed together into an integrated model.
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In summary, we take the hybrid piecewise modelling framéworbe only a first trial
towards automatically modelling of biochemical systenosfiscratch by employing meta-
heuristics and reusing definable atomic components, diwetarget species behaviour
information. Regarding availability of generating modietsn scratch with basic building
blocks and biochemical knowledge, we argue that it is a gopabrtunity for computa-
tional biology research to construct alternative and ca@hensible models which can be
useful for biologists discovering hidden biochemical kiedge and heuristically building
biochemical systems. We would like to share our opinionsotéptial research directions
and encourage other software engineers and biological lersde contribute their efforts

to this developing interdisciplinary area.
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Appendix A

Statistical Analysis of Two-sample Tests
In R

Common operation of comparing aspects of two samples in Rpgeimentation of two-
sample tests. An example is given to illustrate how to olatdmrmation of two given sam-

ples. Consider the following sets of data on the latent higiteofusion of ice([R De 09].

Method A:  79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02
Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

To test for the equality of the means of the two examples, weusa an unpaired t-test

by ‘Welch Two Sample t-test’ as follows.

> t.test(A, B)

data: Aand B

t=3.2499, df =12.027, p-value = 0.00694

alternative hypothesis: true difference in means is noakpuo
95 percent confidence interval: 0.01385526 0.07018320
sample estimates:

mean of x = 80.02077

mean of y = 79.97875
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which does indicate a significant difference, assuming mtityn By default the R
function does not assume equality of variances in the twopkssn We can use the F
test to test for equality in the variances, provided thattth® samples are from normal

populations. Details of the test are given as follows.

> var.test(A, B)

data: Aand B

F =0.5837, num df = 12, denom df = 7, p-value = 0.3938
alternative hypothesis: true ratio of variances is not etyua
95 percent confidence interval: 0.1251097 2.1052687
sample estimates: ratio of variances = 0.5837405

The about analysis result shows no evidence of a signifiagdatehce.



Appendix B

A Hybrid Piecewise Modelling
Environment

In order to run piecewise modelling of biochemical systems iJava based modelling
environment, see Figuie B.1, we need to input elements astratds and enzymes for
generation of components by a combination mechanism. Btance, RKIPP, ERKPR,
RKIP andERK are input as substrates, arf@dfl, MEKPPandRP are input as enzymes.

After instantiating components by pre-defined two bindimgl ainbinding patterns,
there is a library for preserving these instantiated coreptsm As shown in Figurie B.2,
instantiated component with details of reactants, pradantl kinetic rates are preserved
in the library.

While composing models in a piecewise manner, models carobmpased and pre-
served in a models library. As shown in Figlre B.3, final ojted synthetic models
are kept for investigating details of the composed modelse models library provides
information about the optimization results, for instancedels obtained at which gener-
ation (RandomNum) and model candidates (lterationNum)apupation pool, what are
the fitness values of these models (DeltaDistance) compeitadhe target biochemical
system, what are the topologies (GenerateODES) and whahe@smulation results for
exhibiting species behaviour (SimulationResult).

Details of composed topology and corresponding simulagsalt of a synthetic model
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A Hybrid Piecewise Modelling Environment for Biochemical Systems {(V9GridGainX)

Input the times of running whole procedurs of constructing pathways : |1 ml - [Ext ]

Step1i Substrates REIPP,ERKPR,RKIP,ERK | add |
Concentrations of substrates : 0,0,2.5,2.5

Raf1,MEKPP,RP )

Ereymes : [ add |

Concentrations of enzymes © |2.5,2.5,2.5

Initial rates in atomic companent: k_binding: |0.53

Step 2: Construct and Store Atomic Componerts in Library and Database :

Step3: | Choose Target Driving Method | Compared species: Ratio!
Step 4: Select Algorith : Featur Selection | Initisl number of added campanents: |1 [ Run
Tatal simulation time ; 60 (mins) Step time 1 {mins)
Generationof FS 1 |10 Modificatians for each individual : |12 | Pt |
Iniial Temperature © 10 Codling Rate | (0.5

Minimnum Temperabure ;1 Tteration Num: |10

ESRums: |1 Generation; | 100 Individuals: |z0

Step S: *** {Ta perform hybrid optimization of topology and kinetic rates based on ES and 54 hybrid plaform) *+*

Optinizs Topology | Chaose haw to Subtract companents = | 2 Ratio: [ Run |
Crossover individual with. .. -

Opitirnize Kinetic Ratss; | Choose Haw to Optimize Rates = Wt
Gaussian Distribution: Mean |0 Standard Devistion |1 Ratio:

Obijective Function: | ED | Reward Penalty

Select checked propertiesin generated models: [#] CON [ FPTFD [/] Duplicated Reactions

| Mormalized FitFun

Step &: *** (To analyze the simulation results From SA and ES platforms) ***

Tabls inDB ¢ v9es_120216k_run3 Run{Seed Mum in Table: |1 | vin Distance |
; . [P |

Behaviours: Generation | 1000 Soltion 50 |- |50 (e )
%00 |-len ¥ loo -lzs Plot from Fles |

Species: |RKIP,Raf1,RKIP|RaF1 ERK,MEKPF, ERK|MEKFP, ERKFF, RF, RKIPP,RKIPP |RF, ERKPF|RKIP|Raf 1

Generation From [1000 To 1000 | Individual From |1 To 50 1 | FPlat ‘
Analyze FitFun: Generation 1000 | Solution |1 andlyse |
Compressions between paired solutions: Generation From (100 | To |100 [Pt |

| Piot || Piotavecnes |

[ Aralyze and Pl |

Compression and Percentage batween Target and Generated solutions:

Kinetic rates of matched reactions in Target and Generated solutions:

Compressions betwesn paired sclutions: |T‘
Compression of interesting solution: Generation From |0 Ta 70 |W\
Topolagy Analysis (Tar Y5 Ge Modsls): Generation 1000 | Ind From |1 Toiz0 [ Analyse |

Fitness 30 Flot: GenerationFrom 0 | To |35 i 0 vilto | ziso [ Pet |

Fitness Analysis: Mean | Generation From [0 To | 1000 anlyze |

Rates Analysis: Generation |1000 | Individuals: |20 |m\

ES/SA Rum: |1 IterFrom |0 | To 4320 Generstion 1000

Cluster | [ Plok Fit-Mo

ES Run: |1 SES: aopulationtablevees_110122_SES_3 Fs: | plot Fit-Compression |

PES: aopulationtablsvéss_110122_ PES_3

|The input number of substrates is :4
|RRIFP

|ERKPP .
|REIP

|ERE

|The input number of snzywes is :3

|Raf1

|MEEPP

|RP

|Connect DE successfully!!

|ArrAtoComp Elements :

RKIPP+Rafl- (k1) ->RKIPP|Rafl RKIPP Rafl k1 RKIPP|Rafl
RKIPF|Rafl- (kz) ->REIFF+Rafl RKIFP|Rafl kz RKIPF Rafil
RKIPP|Rafl- (k3) ->REIPPP+Rafl RKIPP|Fafl k3 RKIPPP Rafl

bw o ow

Figure B.1: A hybrid piecewise modelling environment foodhemical systems.

can be found in the cells indexed with ‘GenerateODESs’ anahi8ationResult’ in the mod-

els library, respectively. Thus, we can get a set of ODEs wisenathematical description

of a synthetic model and mapped from its topology presemadomponent style in ‘Gen-

erateODES’ column, as shown in Figlire B.4. Moreover, sitimieof composed models

can examine generated species behaviour of these modéts, béhaviour are presented

in the time series data format, as shown in Fidure B.5.
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select * From tdbnr_db.at.., x

BEEEEER @K < ? | PageSize: |30 |1 TotalRows: 36 Pags:lof L1 Matching Rows:
# AtomicComponenthumber  AtomicCompanentReaction Element1 Elementz  Element3  Element
1 RKIPF+Raf 1-{k1 - >RKIPP|RaFL RKIPP RafL ki RKIPP[RaFL
2 RKIPP|RaF1-(k2)->RKIPP+RaF1 RKIPPIREFL k2 RKIPP Raf1
3 RKIPP|RaFL-(K3)- >RKIPPP-+RaF L RKIPPIRSFL k3 RKIPPP  Rafl
4 ERKPP+Raf 1-(k1)- >ERKPP|Raf1 ERKPP Raft ke ERKPP|Raf1
5 ERKPP|Raf1-(kZ)- >ERKPP+RaF L ERKPPIRSFL k2 ERKPP RaFL
6 ERKPF|Raf1-(k3)- >ERKPPP-+Raf1 ERKPF|Raf1 k3 ERKPFP Raf1
7 RKIP-HRaF1-(kL)}->RKIP|RaF L RKIP Rafl Kl RKIP|RaFL
8 RKIP|R.a 1-(k2)- >RKIP+RaF 1 RKIPRafl k2 RKIP RaFL
9 RKIP|R.af1-(k3)- >RKIPP+Raf1 RKIPIRaf1 k3 RKIPP Raf1
10 ERK-+Raf1-{(k1)- ERK RafL ERK Raf1 ki ERK|RafL
11 ERK|Raf1-(k2)- >ERK-+Raf 1 ERKIRafL k2 ERK Rafl
12 ERK|RafL-(k3)- >ERKP+Raf1 ERK|RafL k3 ERKP RaFL
13 MEKPP+RKIPP-(k1}- »MEKPP|RKIPP MEKPP REIPP k1 MEKPP|REIPP
14 MEKPPRKIPP-{k2)- >MEKPPHRKIPP  MEKPFIRKIPP k2 MEKPP  RKIPP =
15 MEKPP|RKIPP-(k3)- »RKIPPP4+MEKPP  MEKPP|RKIFP k3 RKIFPP MEKPP
16 ERKPP+MEKPP-(k1)- >ERKPP|MEKPP  ERKPP MEKPP ki ERKPP[MEKPP
17 ERKPP|MEKPP-(k2)- »ERKPPHMEKPP  ERKPPIMEKFP k2 ERKPP MEKFP
18 ERKPP|MEKPP-(k3)- »ERKPPP-MEKPP  ERKPPIMEKFP k3 ERKPPF  MEKPP
19 MEKPP+RKIP-{k1)- sMEKPP [RKTP MEKFP RKIP ki MEKFPIRKIP
20 MEKPP[RKIP-(kz)- MEKPP+RKIP MEKPPIRKIP k2 MEKFP  RKIP
21 MEKPP|RKIP-(k3)->RKIPP4+VMEKPP  MEKPPIRKIP k3 RKIPP MEKFP
22 ERKAMEKPP-(k1)- 2ERK|MEKPP ERK MEKPP ki ERK|MEKPP
23 ERK|MEKPP-(k2)- SERK-HMEKPF ERKIMEKPF k2 ERK MEKFP
24 ERK|MEKPP-(k3)- >ERKP+MEKFPP ERK|MEKPP k3 ERKP MEKPP
25 RKIPP+RP-(k1)->RKIPP|RP RKIPP AP k1 RKIPPIRP
26 RKIFF|RP-(k2)- >RKIPP+RP RKIPP|RP k2 RKIPP RP
27 RKIPF|RP-(k3)->RKIPPP+RP RKIPP|RP k3 RKIPPP  RP
28 ERKPP+RP-(k1)-=ERKPF|RP ERKPP RP ki ERKPR|RP
29 ERKPP|RP-{kz)- >ERKPP+RP ERKPP|RP k2 ERKPP RP
30 ERKPFIRP-(K3)- >ERKFRP+RP ERKPPIRF k3 ERKPFF  RP
31 RKIP+RP-(k1 J->RKIP|RP REIP RP ki RKIF|RP o

Figure B.2: A library for preserving instantiated compotssior composition.

| select Randamium, Tterati... x |

iz & % 31 | PageSize: 20 |1 TotalRows: 50 Page:lof3) Matehing Rows:
# Randomblum ITterationhum DeltaDistance GenerateODES SimulationResult ;5'
1 1000 1 1.68763020811422 ERKPP|RaF1-(r1)- >ERKPP-+Raf IERK-+MEKPP-(r2)- ... [Time]|[ERKPP|Raf )| [ERKPPI|[Raf 11| [ERK]IMEKFF. .. .
2 1000 2 2.10149131336586 ERK-+MEKFP-(r |} =ERK|MEKPPRKIR [RP-[rZ)- >RKIP. .. [Time]|[ERK]|[MEKFP]|[ERK|MEKFP]|[RKIP|RF]I[RKT. .

3 1000 3 1.88539530640095 RKIPP|RP-(r1)->RKIPPP+RPERK-H+MEKPP-(r2)-ER... [Time]|[RKIPPIRF]I[RKIPPP]I[RPII[ERK][MEKPPIIE. .

4 1000 4 1.83381816118455 RKIPP|RP-(r1)- >RKIPPF+RPERK+MEKFR-(r2)->ER... [Time]|[RKIPRIRF]|[RKIPPR]I[RP]I[ERK]MEKFRIIE. .

3 1000 5 1.47105766621239 ERKPP|Raf1+MEKPP-{r1)->ERKPP|MEKPF|Raf 1ERK. .. [Time]|[ERKPP|Raf1]|[MEKPF]|[ERKFR|MEKFP|Raf1]. ..

13 1000 & 1.92598369903208 RKIPP+Raf1-{r1}->RKIPP|RaF 1ERKPP|MEKPP-+RP-(... [Time]|[RKIPP]|[RaFL]|[RKIPP|RaF 1]|[ERKPPMEKPP. .

7 1000 7 2.01791077704345 RKIPP+RP-{(r1)- >RKIFF|RPERK-HMEKPP-(r2)- ERK]... [Tme]|[RKIPP][RPII[RKIPFREJI[ERK]|[MEKPP|[ER...

& 1000 8 1.90086016957471 ERKPPIRP-(r1)- =ERKPPIRaFL-+RPERK-AMEKPP-(r2)-... [TmelI[ERKPRIRF]IERKPPIRFITIIRPIIERKIIIMEKP. ..

] 1000 9 1.B153906713675 |MEKPP-{rL}- »ERKPP-HH" | ... [Time]|[ERKPP|MEKPF]|[ERKPP] [MEKPP] [RP][ERK...

10 1000 10 2.07724465027238 ERK+MEKPP-(r 1)- >ERK|MEKPPREIP+ERK|MEKPP-(t ... [Time]|[ERK]|[MEKFF]|[ERK|MEKPP]|[REIF]|[ERK|M. ..

11 1000 11 1.32216069355701 RKIPP|RP+MEKPP-(r1)->MEKPP|RKIPP|RPERK-AME. . [Time]|[RKIPPIRP]|[MEKPP]I[MEKPPRKIPP|RF]I[ER.

12 1000 12 1,B5445047504566 MEKPP|RKIP-(r 1) =MEKPP-+RKIPERK+MEKPP-(r2)-,.. [Time]|[MEKFPIRKIP]|[MEKFP]|[RKIP][ERK]|[ERKIM. .

13 1000 13 1.67541123826473 RKIP|RP-(r1)->RKIPP-+RPMEKPP+RKIPP-(r2)-=MEK. .. [Time]|[RKIP|RP]|[RKIPP]|[RP]|[MEKPP]|[MEKPR|RK. ..

14 1000 14 2.1B16335799579 ERKPP|RP-{r1)- >ERKPP|Raf1-+RPERK-+MEKPP-(r2)-... [Time]|[ERKPP|RR]|[ERKPP|RaFL]|[RP]I[ERK]I[MEKP.

15 1000 15 2,22575077636152 ERKPR|RPIR A 1-{r1}- >ERKPF|RaF1+RPERKFF|MEK. . [Time]|[ERKPR|RF|RaF 1]|[ERKPP|RSFLT|[RFII[ERKFF ..

16 1000 16 1.53438130392365 RKIPP|RP-(r1)- >RKIPPP+RPRKIPPRPHERKIRaFI-(... [Tme]|[RKIPPIRP]I[RKIPPP]I[RPII[ERK|RAFIIIERK] .

17 1000 17 1.76093126155958 RKIPP|RP-(r1)- >RKIPFP+RPERK+MEKPP-(r2)}- >ER... [Time]|[RKIPP|RP]|[RKIPPF]|[RP|[ERK]|[MEKPP]|[E.

15 1000 18 1.60992605330662 ERKPP|RP-(r1}- »ERKPPP+RPMEKPP-+RKIPP-(r2)- ... [Time]|[ERKPP|RP]|[ERKPPP]|[RP][MEKPP]|[RKIFP]. ..

19 1000 19 1.3007640880141 1 RKIPP|RP-(r1)->RKIPP-+RPMEKPPIRKIPP-(r2)}->ME... [Time]|[RKIPP|RP]I[RKIPP]IIRPIIIMEKPPIRKIPPI|[M. .

|20 1000 20 1.66723572321552 RKIPP+RP-(r1}- >RKIPPIRPMEKFPIRKIFP-(r2)- =ER... [Time]|[RKIPF]I[RF]I[RKIPF|RF]|[MEKPRRKIFFIILE. .

Figure B.3: A library for preserving composed models.
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ERKPP|Raf1-(r1)- >ERKPP+RaF1
ERK+MEKPP-(r2)- =ERK|MEKPP
ERK|MEKPP-(r3)- =ERKP+MEKFPP
RKIPP|RP+ERK|R.aF1-(r4)- =ERK |RKIPP|RP|RaF1
RKIP+Raf1-{r5)- =RKIP|Raf1
MEKPP+ERKPP|RP-(r6)- =ERKPP|MEKPF|RP
ERKPP|MEKPP+RP-(r7}- =ERKPP |MEKPFP|RP
MEKPP|RKIP+RP-(r&)- »MEKPP|RKIP|RP
ERKP+RKIP|RaF1-(r3)- =ERKP|RKIP|RaF1
ERKPP|RP+ERK-(r10}- =ERK|ERKPP|RP

| Ok :H Cancel ]

Figure B.4: An example of generated ODEs illustrating a cosegl model.

smutontesut | R =

0]0.0|2,15393075936861 94E-5|0.0|0.0|0,01 1880055485 7986200001 10100001010

Figure B.5: Results of simulating a composed model.
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