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Abstract

Modelling of biochemical systems has received considerable attention over the last decade

from bioengineering, biochemistry, computer science, andmathematics. This thesis inves-

tigates the applications of computational techniques to computational systems biology, for

the construction of biochemical models in terms of topologyand kinetic rates.

Due to the complexity of biochemical systems, it is natural to construct models repre-

senting the biochemical systems incrementally in a piecewise manner. Syntax and seman-

tics of two patterns are defined for the instantiation of components which are extendable,

reusable and fundamental building blocks for models composition. We propose and imple-

ment a set of genetic operators and composition rules to tackle issues of piecewise com-

posing models from scratch. Quantitative Petri nets are evolved by the genetic operators,

and evolutionary process of modelling are guided by the composition rules.

Metaheuristic algorithms are widely applied in BioModel Engineering to support intel-

ligent and heuristic analysis of biochemical systems in terms of structure and kinetic rates.

We illustrate parameters of biochemical models based on Biochemical Systems Theory,

and then the topology and kinetic rates of the models are manipulated by employing evo-

lution strategy and simulated annealing respectively. A new hybrid modelling framework

is proposed and implemented for the models construction. Two heuristic algorithms are

performed on two embedded layers in the hybrid framework: anouter layer for topology

mutation and an inner layer for rates optimization. Moreover, variants of the hybrid piece-

wise modelling framework are investigated. Regarding flexibility of these variants, various

combinations of evolutionary operators, evaluation criteria and design principles can be

taken into account. We examine performance of five sets of thevariants on specific aspects

x



xi

of modelling. The comparison of variants is not to explicitly show that one variant clearly

outperforms the others, but it provides an indication of considering important features for

various aspects of the modelling. Because of the very heavy computational demands, the

process of modelling is paralleled by employing a grid environment, GridGain. Applica-

tion of the GridGain and heuristic algorithms to analyze biological processes can support

modelling of biochemical systems in a computational manner, which can also benefit math-

ematical modelling in computer science and bioengineering.

We apply our proposed modelling framework to model biochemical systems in a hy-

brid piecewise manner. Modelling variants of the frameworkare comparatively studied

on specific aims of modelling. Simulation results show that our modelling framework can

compose synthetic models exhibiting similar species behaviour, generate models with al-

ternative topologies and obtain general knowledge about key modelling features.
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Chapter 1

Introduction

This chapter introduces the motivation of the research, presents the contributions of the

investigation and summarizes the contents of the chapters in this thesis.

1.1 Motivation

Engineering models of biological systems has been investigated recently by employing

computational methodologies in BioModel Engineering, forsystematically designing, con-

structing and analyzing characteristics of target biological systems. BioModel Engineer-

ing [Brei 10] is inspired by concepts from software engineering and computer science, and

it is an interdisciplinary science at the interface of biology, engineering, mathematics and

computing science. Intracellular molecular processes have been examined and modelled

for explaining observations of the biological systems or predicting behaviour exhibited by

the systems.

Systems biology and synthetic biology are two major studieddisciplines of BioModel

Engineering. In the former, research focuses on the analysis of molecular interactions in

biological systems at systematic level, for discovering the ‘principles of kinetic laws’ which

1
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govern biological systems exhibiting behavior. In the latter, study focuses on the design of

new biological systems from scratch to obtain specific functionalities.

The aims of synthetic biology are to synthesize biological complex and synthetic sys-

tems displaying novel functionalities that do not exist in nature. Synthetic biology invents

new biological entities which interact with each other in artificial biological systems con-

sisting of designed properties, by utilizing knowledge of experimental biology. Therefore,

it is essential to obtain primary knowledge of biochemical working mechanisms. Sys-

tems biology tries to discover biological patterns by systematically analyzing molecular

interactions within intracellular environment, especially on metabolic, signalling and gene

regulatory networks.

Moreover, because modelling of biological systems in systems biology can be ap-

proached by top-down and bottom-up approaches, topologiesof models can be built up

in alternative structures compared to the experimental ones. In other words, modelling

of biological systems in systems biology is able to validateexperimental conclusions and

discover new biochemical patterns which are important for application of synthetic biology

The motivation of this work is to apply techniques from computer science to develop

a methodology enabling the behaviour driven construction of biochemical models in terms

of topology and kinetic rates, by intelligently and heuristically reusing components from

a user predefined library. The work in this thesis aims to bring the interests of communi-

ties of software engineering and mathematics to a multidisciplinary area, ‘intelligently and

heuristically modelling biochemical systems in systems biology’, which would gain more

and more attentions from academia and industry in near future.
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1.2 Contributions

The main contributions of our research can be summarized as follows:

1. We have defined two basic patterns for instantiating extendable and reusable biologi-

cal components in syntax and semantics, see Chapter 3. In ourresearch, biochemical

models under construction are also based on the components instantiated from these

patterns. The instantiated components can help improve construction of a founda-

tional bio-bricks library in synthetic biology and systemsbiology.

2. We have proposed and implemented genetic operators and composition rules for

piecewise composing models of biochemical systems, see Chapter 3. Moreover,

since components and models manipulated by the operators and rules are presented

in Petri nets, our study addresses the evolution of quantitative Petri nets and could

thus be applied to stochastic and hybrid Petri nets as well ascontinuous Petri nets,

which can benefit mathematical modelling in engineering, computer science and bio-

engineering;

3. We have implemented modelling of biochemical systems in asimulated annealing

based one dimension hybrid modelling environment in terms of topology and kinetic

rates separately, see Chapter 4. A global search mechanism was applied to the pro-

cesses of piecewise constructing the topology and fine tuning the kinetic rates, driven

by target models behaviour. The study of piecewise construction is an implementa-

tion of fitting parameters of biochemical models;

4. We have adopted a hybrid approach for the model construction in terms of topology

and kinetic rates, and studied variants of the hybrid modelling approach;
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(a) We have proposed a two dimensions hybrid piecewise modelling framework, in

which two heuristic algorithms are applied to manipulate topology and kinetic

rates of a biochemical model on two switchable layers respectively;

(b) We have investigated different modelling variants of the hybrid approach, and

summarized performance of these variants with the aim of understanding ad-

vantage and disadvantage of compared variants focusing on specific modelling

aspects, see Chapter 4;

(c) We have applied the hybrid piecewise modelling framework to model signalling

pathways of biochemical systems, see Chapter 6. Simulations results and analy-

sis show it is feasible to apply our modelling framework to assemble alternative

models exhibiting similar species behaviour to desired ones in target signalling

pathways, and it is possible to perform genetic operators evolving models can-

didates. In addition, a tradeoff can be approached for switching topology con-

struction and kinetic rates optimization while composing biochemical models.

5. We have parallelized the hybrid piecewise modelling process for improvement of

composing models, where topologies and kinetic rates of models under construction

can be manipulated in parallel, see Chapter 5;

6. We have developed two extendable components and models libraries in a MySQL

database, see Chapter 3. The database is integrated with thehybrid piecewise mod-

elling approach on a platform which is developed by Java programming language

with an user-friendly interface, see Appendix B.
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1.3 Publications

Parts of this thesis have been summarized and published in peer-reviewed conferences dur-

ing the course of this thesis.

• Z. Wu, Q. Gao, and D. Gilbert. Target driven biochemical network reconstruction

based on petri nets and simulated annealing. In: Proceedings of the 8th International

Conference on Computational Methods in Systems Biology, pp. 33-42, ACM, New

York, NY, USA, 2010.

• Z. Wu, S. Yang, and D. Gilbert. A hybrid approach to piecewisemodelling of bio-

chemical systems. In: C. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia,

and M. Pavone, Eds., Parallel Problem Solving from Nature - PPSN XII, pp. 519-

528, Springer Berlin Heidelberg, 2012.

1.4 Overview of Chapters

This thesis is organized as follows:

Chapter 2 introduces the background of modelling biochemical systems in this study

and describes the main aspects of biochemical models with corresponding presentations in

silico. We examine modelling issues related to the topologyand kinetic rates, and present

popular simulators.

Chapter 3 firstly defines binding and unbinding patterns in formal syntax and semantics

for instantiation of biological components and composition of models. Two libraries based

on a MySQL database technique are designed and implemented to preserve instantiated

components and constructed models during the process of models composition. Then, three
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genetic composition operators and a set of composition rules are proposed and illustrated

with demonstration examples. After fine tuning models by thecomposition operators and

rules, manipulated models are studied to ensure generated models in Petri nets are with

non-conflicting entities names, connective structures andunique components.

Chapter 4 proposes a modelling framework with different hybrid methodologies. The

hybrid modelling framwork has focused on construction of models by manipulating topol-

ogy or optimizing kinetic rates in an independently or hybrid manner.

Chapter 5 develops introduce a grid technique to the two dimensions hybrid piecewise

modelling framework to parallel the modelling process. Modelling variants of the proposed

hybrid modelling approach are illustrated. Evaluation of composed models is investigated

by including pure Euclidean distance function and a reward and penalty function in an

objective function. Exploration of topologies of models generated by our hybrid modelling

approaches is examined with quantitative and qualitative methods in this chapter.

Chapter 6 presents the application of our two dimensions hybrid piecewise modelling

approach and modelling variants to model biochemical pathways. Simulation results and

statistical analysis show that it is feasible to piecewise construct alternative models exhibit-

ing similar species behaviour to the ones of target biochemical systems.

Chapter 7 summarizes the research, draws conclusions from our research and discusses

further research ideas raised from this thesis.



Chapter 2

Background of Modelling Biochemical
Systems

2.1 Introduction

This chapter introduces the system concept of modelling biochemical systems in Sec-

tion 2.2. Section 2.3 gives an illustration of the aims and functions in systems biology

and synthetic biology which are two major research areas of BioModel Engineering. Two

different but complementary modelling strategies, top-down and bottom-up approaches,

are illustrated in Section 2.4 with related works of modelling of biochemical systems. In

Section 2.5, parameter variables of biochemical systems under investigation are shown by

employing the Biochemical Systems Theory which representsthe biochemical processes

in a mathematical way.

Biochemical systems are represented and investigated widely in the community of com-

putational biology. In Section 2.6, we introduce three welldefined and implemented com-

puter based biochemical model formats, Petri Nets, SBML andP Systems, which are in a

graphical presentation or a XML based format. We present four popular modelling simu-

lators in communities of systems and synthetic biology for models construction, analysis,

7
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optimization and simulations in Section 2.7. All these simulators can work with biochemi-

cal models constructed in aforementioned biochemical model formats by import and export

functionalities.

In Section 2.8, we present implementation of metaheuristics in modelling of biochemi-

cal systems, with a brief introduction of classification andcharacteristics of different algo-

rithms in the metaheuristics. Since we mainly apply two algorithms, simulated annealing

and evolution strategy, to our proposed hybrid modelling framework, the basic principles

of these two algorithms are illustrated. Then we review related works of applying the simu-

lated annealing and evolution strategy to develop models structures and to optimize kinetic

rates.

Section 2.9 gives a brief summary of the contents of this chapter.

2.2 Brief History

Modelling biochemical systems has been investigated widely in computational biology,

especially in systems biology. Constructing models of biochemical systems can be dated

back to three academic periods from theory preparation to formation of system concept and

development of modelling in systems biology. Details are illustrated as follows.

• Before 1940s, preparation of theory foundation

Since 1854, Claude Bernard used a phrase ‘Milieu intérieur’ ( the environment within)

in his works to refer to the extra-cellular fluid environmentwhich is the physiological

capacity that provides protective stability for the tissues and organs of multicellular

living organisms. Furthermore, Bernard summarized it as following [Bern 74]:

The fixity of the milieu supposes a perfection of the organismsuch that the
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external variations are at each instant compensated for andequilibrated....

All of the vital mechanisms, however varied they may be, havealways one

goal, to maintain the uniformity of the conditions of life inthe internal

environment .... The stability of the internal environmentis the condition

for the free and independent life.

Walter Bradford Cannon developed the idea ofMilieu intérieur into Homeostasis

(mechanistic) [Cann 32] in his bookThe wisdom of the Bodyin 1932, and later Can-

non described the homeostasis systems as follows [Cann 35]:

A homeostatic system is an open system that maintains its structure and

functions by means of a multiplicity of dynamic equilibriums rigorously

controlled by interdependent regulatory mechanisms.

Since the concept ofMilieu intérieur has been suggested by Bernard, it is possible

to obtain the foundation of understanding the internal physiology of cellular and ex-

tracellular basic systems. Moreover, dynamics of homeostasis in the communication

systems is benefit from the concept ofMilieu intérieur with its developments.

• From 1950s to 1980s, formalization of systems concept

Systems biology is a new interdisciplinary area in last decade for most biologists,

mathematicians, computer scientists and engineers, but the concept of system was

used to describe the application of systems and control theory to biology around

1960s. In 1960, the first computer model of the heart pacemaker was presented

by Denis Noble [Nobl 60]. Norbert Wiener definedCybernetics[Wien 65] and the

mathematical formulation description of physiological systems in 1965. Then, the



10

concepts of cybernetics and negative feedback were introduced into the nervous sys-

tem and nonliving machines. Later, Ludwig von Bertalanffy tried to construct a

general systems theory [Bert 68] in 1968. But the theory was too general and not

devised rigorously as a scientific discipline. Moreover, the concepts of robustness

and feedback control were already discussed and investigated widely and extensively

at that time [Kita 02c].

Complex molecular systems, for instance metabolic controlanalysis and biochemical

systems theory, were studied by employing several approaches from the 1960s to

1970s [Kacs 73, Sava 76]. Quantitative modelling biological processes was achieved

by progressing biochemical research throughout the 1980s [DeLi 88, Mora 98]. In

1989, Christopher Langton and other scientists developed theories for living systems

by claiming concept of artificial life [Lang 89], but the theories focused on the area

of engineering not the biological sciences.

In this period, genetic analysis of biochemical systems in molecular biology devel-

oped quickly, with basis of examining functions of compounds at cellular level by uti-

lizing deductive approaches. But interactions and biochemical relationships among

components, such as genes and proteins, were not the subjects of scientific research.

• After 1990s, development of modelling biochemical systemsin systems biology

Traditional study of genomics has focused on details of static aspects of the ge-

nomic information, for instance DNA sequence or structures. After the completion

of the whole genome sequencing and implementation of high-throughput measure-

ment technologies [Kita 02c], the community began to study modelling at systematic
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level. Functional genomics was developed under the framework of molecular biol-

ogy. Information about functions and interactions among the genes, proteins and

other compounds can be obtained from the vast wealth of data produced by genomic

projects, for instance the Human Genome Project. Recently,the main subjects under

examination among these data are gene transcription, translation and protein-protein

interactions.

There are two distinct branches in the study of systems biology: knowledge discov-

ery and simulation-based analysis. The former one abstracts the hidden patterns from

huge quantities of experimental data and the latter one tests hypotheses with mod-

els in silico experiments [Kita 02b]. Regarding differencebetween research of static

aspects of the genomic information and study of dynamics of functional genomics,

more realistic models can be constructed and analyzed by employing high perfor-

mance computing techniquesin silico to obtain knowledge from large quantity and

high quality data.

Therefore, systems biology has attracted much attention inthe scientific community

since 1990s, accompanying completion of various genomic projects (such as genome

sequencing projects). High-throughput experimental methods also provide great op-

portunities to investigate these interactions among compounds inside the cells, sup-

porting the rapid development of systems biology. Thus, process inside cells is stud-

ied by employing systems biology discipline in post-genomics era, which has been

investigated on networks, states, and dynamics [Kita 02a].

General research in systems biology can be particularized into following areas: re-

search of molecular/biochemical/cellular biology, computational studies and soft-

ware tools, analysis of dynamics of the system, technologies for high-precision and
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comprehensive measurements. Furthermore, research with system-level understand-

ing in systems biology could be classified into four parts [Kita 02c]:

1. System Structure mainly involves the network and physical structure of the

system. For the network of gene regulation, metabolism and signal transduc-

tion, structure study should be on elements, interactions among elements, and

parameters related in the system. There were methods of simulation on the net-

work modelling in early research stage, but these methods were of the problems

of lacking precise data and knowledge for precision simulation. Above problem

was addressed later by the appearance of high-throughput measurements. But

problems of structure study still exist, such as information loss and large noisy

data for system structure modelling.

2. System Behaviour could be understood in the analysis of the system from

steady state to dynamic state. The number of parameters investigated would

affect the known level on the system behaviour.

3. System Control is employed in system biology after understanding system struc-

ture and behaviour. Drugs usage and treatment methods may benefit from sys-

tem control, for example controlling the drug absorption orphysical interven-

tion.

4. System Design would be the application stage of system biology. It is possible

to construct models of biological systems for achieving special aims, such as

curing diseases, by investigation of key issues of diseasesin the models.
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While attempting to reveal working mechanisms in cellular and extracellular environ-

ment in biology, it is important to have the system concept. From genomics to post ge-

nomics eras, investigated biological research is moved from genomic level to systematic

level. Overall investigation of biology can be achieved by modelling biochemical systems

in systems biology. The study is supported by the state of theart experimental techniques

in wet-lab and analytical simulation tools in dry-lab.

2.3 Systems Biology and Synthetic Biology

Systems biology [Kita 02a, Klip 05, Ferr 09, Vall 10, Joyn 11,Mach 11] and synthetic bi-

ology [Benn 05, Andr 06, Hein 06, Mukh 09, Khal 10, Step 12, Voig 12] are two primary

application areas of BioModel Engineering. The former one aims to construct and analyze

biological models for illustrating observed characteristics of the systems and predicting be-

haviour of the experimental systems. The latter one attempts to design and create artificial

biological systems from scratch for obtaining novel and specific functionalities in these

synthetic systems.

In systems biology, computational methodologies and high-throughput experimental

data are employed to model biochemical processes, including metabolic pathways, sig-

nalling pathways and gene regulatory networks. Applications of systems biology include

validation of assumptions of experimental investigationsin vivoor in vitro, analysis of mul-

ticellular or intracellular interactions, explanation ofbiochemical phenomena observed in

wet-lab, and prediction of biochemical systems behaviour with regard to biological knowl-

edge. Moreover, discovering of biochemical patterns is crucial in systems biology. Re-

garding experimental restrictions in wet-lab, principlesof governing molecular interactions

which support life are very difficult to observe and obtain. Examinations and conclusions of
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biochemical reactions patterns from application of systems biology can enable researchers

to explore functions of biochemical entities within multi/intra-cellular environment, and

can support further research in synthetic biology to designartificial biological systems and

to approach desired functionalities for specific requirements.

In synthetic biology, biochemical complex of artificial biological systems are synthetic

from scratch to generate novel desired functionalities that do not exist in nature. Thus life

forms can be engineered with specific aims to sort out concrete problems in our real world,

for instance pollution issues in environment protection, energy production and therapy of

human disease. Principles of biochemical reactions in biological systems are obtained

from experimental investigation (e.g. wet-lab) or computational simulations (e.g. dry-lab).

Therefore, different hierarchy of biological systems (such as individual molecules, whole

cells, tissues and organisms) can be engineered with guidesof the obtained life principles

to design ‘artificial life’ in a rational and systematic manner.

Systems biology and synthetic biology focus on different application areas of engineer-

ing biological systems, with attempts to validate, obtain and utilize biological knowledge.

Although different motivations of studying biological systems exist in these two interdisci-

plinary subjects, exploration of life patterns in systems biology and utilization of biological

principles in synthetic biology, it is essential for both subjects to understand details of bio-

logical systems at a systematic level for revealing biochemical principles forming our living

world.

2.4 General Modelling Approaches

Information on all individual parts and interactions in biochemical systems is required for

systems exhibiting behaviour and functions. Modelling of biochemical systems can be
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approached by utilizing two separate but complementary strategies: top-down and bottom-

up approaches.

The two approaches focus on discovering mechanisms and principles that underlie cell

function and formalizing meaningful biological processesin cells. In the top-down ap-

proach, a biological cellular system is reduced systematically until essential parts remain

in a minimal cellular environment. In the bottom-up approach, a whole or an aspect of

a target biological system is composed from components. Therefore, the top-down based

computational modelling approach simplifies the biological systems and the bottom-up

based modelling approach complexifies the biological prototypical units. Bruggeman et

al. provided more details about classification of the top-down and bottom-up approaches,

indicating the challenges faced by modelling in systems biology and discussing limitations

of these two approaches which have already led to fruitful discoveries [Brug 07].

2.4.1 Top-down approach

In the top-down approach, a large biochemical system is analyzed and decomposed for

discovering molecular mechanisms. Then these discovered mechanisms are utilized to

determine correlations between concentrations of molecules. Biological assumptions are

generated and tested in further biochemical analysis or experiments.

The top-down based studies on cell interactions deal with large datasets and aim to

obtain knowledge of biochemical systems behaviour at system level. Discoveries of be-

havioural patterns can support the prediction of biological mechanisms [Tayl 03, Ihme 04]

and functional processes [Tana 04, Beye 06].

With respect to large omics data being ready for implementation of top-down approach,

advantages of top-down approach based modelling are completion of analysis at genome
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level, and biochemical issues (such as metabolome, fluxome,transcriptome and/or pro-

teome) can be also tackled [West 04]. Thus, structures of themolecular networks can also

be identified [Khol 02, Vlad 04] and values of parameters in gene networks can be de-

termined [Mole 03, Krem 04], by employing the top-down direction based modelling and

analysis of biochemical systems.

2.4.2 Bottom-up approach

In the bottom-up approach, basic components and relevant information (such as kinetic

laws of biochemical reactions) are utilized and integratedtogether from scratch, for discov-

ering biochemical patterns within a whole system. Thus, functional properties of biochem-

ical systems are inferred from individual components and their interactions. The bottom-up

approach formulates the interactions among components in asub-system by indicating the

interactive process, for instance enzymatic reactions. Then interactions among components

from different sub-systems enable the composed system to exhibit behaviours which are

compared and validated with the target ones from experimental data. Therefore, small sys-

tems can be composed into a complex whole model for representing an entire biochemical

system in a bottom-up based construction manner.

Some concrete biochemical pathways have been studied by employing bottom-up ap-

proach in experimental examination: signaling network downstream of the epidermal growth

factor receptor [Khol 99, Suen 04, Kiya 06], modelling of central carbon metabolism in Es-

cherichia coli [Krem 01, Schm 04, Bett 06], and Trypanosome brucei [Albe 05].

Regarding difference of resources for modelling of biochemical systems by utilizing

bottom-up approach, topologies of models have been taken into account for illustrating

concrete stoichiometric structures of biochemical systems. In some research, experimental
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examination enables precise determination of the kinetic parameters and enzymatic prin-

ciples for the investigated systems. Moreover, fitting kinetic parameters by the bottom-

up approach can be supported with previous modelling investigations in literature review.

Therefore, some studies based on a bottom-up approach can bemore precise than other

approaches on modelling of biochemical systems.

2.5 Parameters of Biochemical Models

In order to study the chemical processes in living organisms, biochemistry is employed

to investigate the principals of life. All the living organisms and processes are governed

by the laws of biochemistry. Biochemical processes supportthe complexity of life, by

controlling information and energy flow through biochemical signalling and metabolism.

Therefore, the structures, functions and interactions of cellular components are studied in

biochemistry. Furthermore, biochemical processes are main research targets, rather than

individual molecules such as proteins, carbohydrates, nucleic acids and other biochemical

entities.

Mike Savageau developed biochemical systems theory (BST) in the late 60s for mathe-

matical modelling of biochemical systems, based on ordinary differential equations (ODE),

in which biochemical processes are represented using power-law expansions in variables

of the system [Sava 69a, Sava 69b, Sava 70]. One of major advantages of implementation

of the BST is that a set of equations can be set up without knowledge of exact mecha-

nism of each reaction in the model; moreover, biochemical models can be designed after

identifying the reactants with corresponding reactional and regulatory interactions.

Models of biochemical systems are composed from interacting species, whose dynamic

evolution is determined by the occurrence of biochemical reactions. Species investigated
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in this thesis are the protein or protein complex which work as reactants involved in bio-

chemical reactions. A complex is grouped molecular species, such as a product of a protein

binding to an enzyme which is also a protein. A biochemical model is fully characterized

by the initial amount of each molecular speciesXi (1 ≥ i ≥ n) and the description of the

biochemical reactionsrj (1 ≥ i ≥ m) with their kinetic rate laws [Ball 10]. In biochemical

models, the production or consumption of reactants are described by the biochemical reac-

tions, presenting the regulations among these reactants. Biochemical reactions involve zero

or more molecular species, while the species can be either reactants or products. Stoichio-

metric coefficients associated with biochemical reactionsspecify the number of molecules

that are consumed or produced for each molecular species involved in the reactions.

Parameters of a biochemical model can be introduced in general by utilizing a definition

of dynamics of an involved species in the model. The representation of the dynamics is

given by a differential equation as follows.

dXi

dt
= Σjµij · γjΠkX

fjk
k (2.5.1)

whereXi represents one species of the model, for instance metabolite concentrations,

protein concentrations or levels of gene expression;j represents the biochemical reaction

affecting the dynamics of the species;µij indicates the stoichiometric coefficient;γj indi-

cates rate constants; andfjk stands for kinetic orders.

Models representing power-law based biochemical models are different from other

ODE models. In power-law models, kinetic orders can be non-integer and negative values.

For instance, if there is an inhibition, a negative kinetic order indicates the inhibition on the

dynamics of species by other species. Thus, power-law basedmodels are much more flexi-

ble than other types of models for reproduction of non-linearity of the biochemical models;
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and recently different kinds of biochemical models (metabolic pathways, signalling path-

ways and gene regulatory networks) are modelled by employing power-law expansions.

Mass-action kinetics and Michaelis Menten kinetics are twowidely used power-law kinet-

ics: Mass-action kinetics takes kinetic reaction rate as a proportional value to the amounts

of reactant and a kinetic constant; whereas Michaelis Menten kinetics relates the rate of

enzymatic reactions to the concentration of a substrate in amodel. But it should note that

the Michaelis Menten kinetics only holds at the initial stage of a reaction before the con-

centration of the product is appreciable [Brei 08].

Parameters defined in Equation 2.5.1 are dynamic variables which enable biochemi-

cal models exhibiting behaviour (dynamics of involved species). In this thesis, we are

interested in applying computational methodologies to approach and optimize these pa-

rameters by performing evolutionary modelling of biochemical systems. We take topology

and kinetic rates of a biochemical model to be target investigated parameters, on which our

proposed hybrid modelling framework works.

2.6 Representation of Biochemical Systems in Silico

There are different methodologies employed to describe biochemical systems in computa-

tional biology. In this chapter, we briefly introduce several popular mathematical method-

ologies in communities of systems and synthetic biology forillustrating biochemical pro-

cesses in cellular environment.
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2.6.1 Petri Nets

Preliminary qualitative and quantitative analysis of biochemical systems have been very

difficult to be approached, due to inherited complexity of biochemical process. Petri

nets theory [Mura 89] has been proposed for modelling biochemical systems, for instance

metabolic pathways (including enzymic cascades and synergistic binding of ligands to en-

zymes).

Michael C. Kohn and William J. Letzkus applied the graph-theory Petri nets to illustrate

a model of glycogen metabolism in 1983, by implementing formal operations on a graph

of given network which leads to the identification of feedback metabolites and enzymes

regulating the feedback. The systemic properties are thus isolated from the purely local

regulation of individual enzymes [Kohn 83]. Venkatramana N. Reddy and other researchers

focused on tackling problems of quantitative analysis of metabolic pathways [Redd 93,

Redd 96] in the 1990s. Research of applying Petri nets to represent biochemical processes

and indication of current research difficulties of constructing biochemical pathways by Petri

nets can be referred to [Pele 05, Mats 06, Chao 07, Bald 10].

Moreover, many extensions of Petri nets, for instance coloured, timed, stochastic, con-

tinuous, hybrid, hierarchical, functional Petri nets, have been developed and applied to

different scientific disciplines for both qualitative and quantitative analysis. Regarding

the versatility of different Petri nets extensions, the Petri nets based modelling formalism

has been utilized for modelling of biochemical systems in three types of pathways [?]:

metabolic pathways [Kffn 00, Zeve 03, Koch 05], signaling networks [Sack 06, Chen 07,

Brei 08, Hard 08]; and gene regulatory networks [Chao 04, Chao 08].

These primary research and achievements present recent implementation of Petri nets

to model biochemical systems, including formal description of constructed models in Petri
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nets and corresponding extensions formats. The Petri nets methodology is one of the graph-

ical theories to illustrate and model biochemical processes, and in this thesis we also focus

on the utilization of Petri nets in our hybrid modelling framework.

2.6.2 SBML

Regarding reality of generating computational models of biological systems via vast and

expanding quantities of data, we can employ computable file formats to present these mod-

els of biological systems. Systems Biology Markup Language(SBML) is a free and open

interchange format for computer models of biological processes [SBML 12].

More standard, formal, and computable representations of biological models are re-

quired for achieving the aims of rigorously analyzing and computationally simulating bio-

chemical processes with mathematical methods. For instance, a graphical diagram is useful

to visualize and illustrate the biological relationships among entities in a model, but it is

difficult to quantify the model to a computer based simulation and analysis environment.

SBML is proposed and applied to tackle issues of mathematical analysis and simulation of

the biological processes in silico.

In summary, SBML is a machine-readable format XML-like annotation language for

representing biological models. Biological processes andentities involved in biological

systems can be described by employing SBML which is suitablefor representing models

of cellular metabolic pathways, signaling pathways, and gene regulation networks. Details

about normative definitions of features of SBML can be referred to most recent SBML

specification documentSBML Level 3 Version 1 Core[Huck 10].
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2.6.3 P Systems

One of the computational models in community of computer science is a P system intro-

duced by Gheorghe Pǎun [Paun 98, Paun 99, Paun 00]. The P systems perform calculations

by utilizing a biologically inspired process, which is based on the structure of biological

cells from the way in which chemicals interact and cross cellmembranes. Furthermore,

variations on the P systems led to formation of a research branch ‘membrane computing’.

P systems have been primarily employed to study modelling issues by focusing on

computational model characteristics, but later it was alsoapplied to investigate modelling of

biochemical systems [Arde 03, Paun 06, Gheo 08, Rome 09, Blak11]. While being applied

to model biochemical systems, a P system model is defined by using a set of membranes

which contain biochemical entities and rules. These entities in a P system model determine

the processes which the entities in the model may react with one another to form other

products. Rules may also cause biochemical entities to passthrough membranes or even

cause membranes to dissolve.

Moreover, in a cellular environment, a biochemical reaction may only take place while

required molecules collide and interact in a random manner.Thus rules in a P system model

are implemented randomly, which results in a stochastic computation in the model and

multiple simulation results being obtained in a repeated computing process. Computation

in a P system model stops at a state in which no more reactions are enable. Therefore,

results of a P system based simulation illustrate a biochemical process that all entities are

passed to outside of the outermost membrane or into a specificmembrane.
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2.7 Modelling Simulators

There are different kinds of software environments developed for modelling, analyzing and

simulating biochemical systems in the community of computational biology. Although dif-

ferent modelling simulators employ different model formats for representing biochemical

systems and analyzing biochemical interactions in the models, most of these modelling

simulators support importation and exportation of models under examination among dif-

ferent formats, for instance a SBML based model file can be imported and exported for

simulation in a simulator, Snoopy, by its own model format.

In this section, we specifically focus on introduction of several popular and powerful

modelling simulators for constructing models of biochemical systems, fitting kinetic rates

and predicting compounds behaviour in a continuous/stochastic and qualitative/quantitative

manner.

2.7.1 BioNessie

BioNessie [Liu 08] is a free, state-of-the-art platform-independent biochemical networks

simulation and analysis software environment. It is developed by using Java technology

and can be run on many platforms that support Java Runtime Environment (JRE) 1.5 or

higher.

A full user-friendly Graphical User Interface (GUI) is provided to allow users to im-

port, create, edit and export the biochemical models with the SBML standard. The unique

Concurrent Versions System (CVS) design helps users to keeptrack of the version his-

tory of their SBML models during construction and subsequent modification. The core

of BioNessie comprises the SOSlib (SBML ODE Solver library), which provides a pro-

gramming library for symbolic and numerical analysis of a system of ordinary differential
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equations derived from a chemical reaction network encodedin SBML format. BioNessie

can generate the changes of species amounts and parameter values over time by simulat-

ing the SBML model numerically with SOSlib. The simulation results can be generated in

many ways: raw data files, plots, xml files and report text files. BioNessie is not only an

editor and simulator, but also an analyzer, supporting multiple functions such as:

• Multi-thread/core enabled parameter scans

• Sensitivity analysis

• Parameter estimation (model fitting)

Cooperating with National e-Science Centre at Glasgow on the project ‘BioNessieG’,

benefits are obtained from a wide variety of high performancecomputing resources across

the UK through Grid technologies to support larger scale biochemical simulations in BioNessie.

2.7.2 Snoopy

Snoopy [Rohr 10, Blat, Marw 12, Liu 12] is a software tool to design and animate hierar-

chical graphs, among others Petri nets. The tool has been developed for using Petri nets

as a common communication platform for experimentalists and theoreticians. Moreover,

Snoopy is also a unifying framework for the graphical display, computational modelling,

simulation, and bioinformatic annotation of biochemical networks, such as bacterial regu-

latory networks. Main features available in Snoopy are shown as following:

• Hierarchies by subgraphs

• Logical (fusion) nodes
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• Different shapes for net elements

• Colouring of graph elements (e.g. paths or invariants)

• Automated layout by Graphviz library

• Digital signature by md5 hash function

• Animation of place/transition Petri nets

• Simulation of stochastic/continuous Petri nets

• Printing support: eps, Xfig, FrameMaker

• Import/export from/to analysis tools

• SBML import/export

• Support of web-based Petri net animation

Snoopy is in use for the verification of technical systems, especially software-based

systems, as well as for the validation of biochemical systems. It is used for the design and

animation of hierarchical graphs of biomolecular networks. It supports different kinds of

Petri nets, and incorporates the exact Gillespie algorithmfor stochastic nets and a variety

of ODE solvers for continuous nets.

2.7.3 COPASI

COPASI [Hoop 06] is a software application for simulation and analysis of biochemical

networks and their dynamics. It is a stand-alone program that supports models in the SBML

standard and can simulate their behavior using ODEs or Gillespie’s stochastic simulation
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algorithm. Moreover, arbitrary discrete events can be included in the simulations. A list of

features in COPASI is given as following:

• Models construction

– Chemical reaction network

– Arbitrary kinetic functions

– ODEs for compartments, species, and global quantities

– Assignments for compartments, species, and global quantities

– Initial assignments for compartments, species, and globalquantities

– SBML import and export

• Models analysis

– Stochastic and deterministic time course simulation

– Steady state analysis (including stability)

– Metabolic control analysis/sensitivity analysis

– Elementary mode analysis

– Mass conservation analysis

– Time scale separation analysis

– Calculation of Lyapunov exponents

– Parameter scans

– Optimization of arbitrary objective functions

– Parameter estimation using data from time course and/or steady state experi-

ments simultaneously
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• Graphical User Interface (CopasiUI)

– Sliders for interactive parameter changes

– Color-coded tables

– 3D bar charts

– Plots and Histograms

– Network diagram visualization of results

• Command Line (CopasiSE) for batch processing

• Versions for MS Windows, Linux, Mac OS X, and Solaris SPARC

• Loading of legacy Gepasi files

• Export to Berkeley Madonna, XPPAUT, and C source code of the ODE system gen-

erated from the model

• Saving of mathematical formulas and ODEs in MathML or LaTeX

COPASI carries out analysis of the network and its dynamics,and it has extensive

support for parameter estimation and optimization. It alsoprovides means to visualize

data in customizable plots, histograms and animations of network diagrams. Details about

utilization of COPASI for modelling biochemical systems are given in works by Sahle,

Mendes and other researchers [Sahl 06, Mend 09a, Mend 09b].

2.7.4 CellDesigner

CellDesigner [Funa 03, Funa 08] is a structured diagram editor for drawing gene regula-

tory and biochemical networks. Networks are drawn based on the process diagram, with
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graphical notation system proposed by Kitano [Kita 05], andare preserved using the SBML

standard for representing models of gene regulatory and biochemical networks. Moreover,

networks are able to link with simulation and other analysispackages through Systems

Biology Workbench (SBW). Major features in CellDesigner are summarized as follows:

• Biochemical gene regulatory networks modeling with GUI

• Visual representation of biochemical semantics

• Comprehensive graphical notation: SBGN process diagram

• SBML compliant

• Direct integration with SBML ODE solver and Copasi

• Smooth linkage to SBW-powered simulation module

• Database connections

• Export image to image files including PDF and SVG format

CellDesigner supports simulation and parameter scan by an integration with a SBML

ODE solver and Copasi. By using CellDesigner, users can browse and modify existing

SBML models with reference to biochemical models databases, simulate and view the

dynamics through an intuitive graphical interface.
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2.8 Metaheuristics and Modelling of Biochemical Systems

2.8.1 Optimization methods and metaheuristics

Optimization methods are employed widely to formulate and solve optimization problems

in science and engineering, especially the application of metaheuristics to modelling prob-

lems in biology in the last decade. Talbi introduced the details of optimization methods

and summarized the classifications of theses optimization methods [Talb 09]. We briefly

introduce the background of optimization methods, before discussing the implementation

of metaheuristics.

Optimization methods

Exact methods Approximate methods

Heuristic algorithms Approximation 
   algorithms

Problem-specific 
      heuristics

Metaheuristics

Single-solution based 
     metaheuristics

Population-based 
   metaheuristics

Branch and X   Constraint 
programming

   Dynamic 
programming

Branch and 
    bound

Branch and 
     cut

Branch and 
     price

A*, IDA*

Figure 2.1: Classification of optimization methods, generated by Talbi [Talb 09].

Figure 2.1 shows the diversity of classical optimization methods which are summarized

and divided into two categories: exact methods and approximate methods. The exact meth-

ods can obtain optimal solutions and guarantee their optimality, and approximate methods

generate high quality solutions in a reasonable time for practical use, but there is no guar-

antee of finding a global optimal solution [Talb 09].
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Moreover, the approximate methods can be summarized to heuristic algorithms (rea-

sonably approaching ‘good’ problem solutions in a reasonable time) and approximation

algorithms (offering problem solutions with provable quality and run-time bounds). Meta-

heuristics and problem-specific heuristics are two classesof the heuristic algorithms. Spe-

cific problems are addressed by the problem-specific heuristics which are tailored and de-

signed for optimization constraints. Metaheuristics are general strategies which can be

utilized to tackle optimization problems.

Greedy heuristic (71)

TS (86)

SA (83)

Time

1977

1983

1986

LS (47)

SS (77)

GA (62)

VNS (95)

ACO (92)1992

1990 TA (90)
ILS (91)

GDA (93)1993

GRASP (89)

1995 GLS (95)

ES (65)

1973

EDA, CA (94)

GP (92)

PSO (95)

EP (62)1962

1965

DE (94)

SM (86)

NM (93)

1996 BC (96)

AIS (86)

CMA-ES (96)

CEA (90)

1947

Figure 2.2: Talbi [Talb 09] summarized a genealogy of applications of the metaheuristics.
Algorithms are listed by using abbreviations. Numbers in brackets are years of original
applications of the algorithms. Arrows with dash lines indicate genealogical relationships
among the algorithms.

There are numerous metaheuristics proposed and implemented to address practical op-

timization and/or machine learning problems. Classical metaheuristics include simulated

annealing, tabu search, evolutionary algorithms (EAs), ant colony optimization, estima-

tion of distribution algorithms, scatter search, path relinking, greedy randomized adaptive

search procedure (GRASP), multi-start and iterated local search (ILS), guided local search,
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and variable neighborhood search (VNS), which have individual historical backgrounds

and follow different paradigms and philosophies [Loza 10].Figure 2.2 shows a genealogy

of original applications of the metaheuristics which is summarized by Talbi [Talb 09].

Moreover, metaheuristics can be classified by criteria, such as the natural/nonnatural

inspiration, with/without memory requirement, deterministic/stochastic decision process,

population/single-solution based search, and iterative/greedy search process. Details of

these criteria can be found as follows.

• Natural metaheuristics - being inspired from biology, swarm intelligence and physics

• Memoryless metaheuristics - not using information preserved during the search

• Deterministic metaheuristics - solving optimization problems by making determinis-

tic decisions

• Stochastic metaheuristics - applying random rules to search process

• Population based metaheuristics - evolving a set of solutions

• Single-solution based metaheuristics - manipulating a single solution in search pro-

cess

• Iterative metaheuristics - starting from non-empty complete solution(s) and trans-

forming solution(s) at each iteration by search operators

• Greedy metaheuristics - starting from an empty solution andmaking a decision at

each step, until generation of a complete solution
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Table 2.1 presents a classification of metaheuristics whichare divided by different cri-

teria. It should note that each family of metaheuristics actually shares many search mech-

anisms during optimization process, therefore classification of the metaheuristics based on

criteria is a demonstration of algorithms characteristics.

Table 2.1: A classification of the metaheuristics by different criteria.

MHs Criteria
Nat. Mem. Memles. Det. Sto. Pop. SinSol. Ite. Gre.

DE • • • •
ES • • • •

EAs EP • • • •
GA • • • •
GP • • • •

AIS •
ACO •
BC •
PSO • •
SA • • • • •
ILS • • •
GRASP • •
TS • • •

Some of most used metaheuristics algorithms for modelling of biochemical systems are

given as following:

• Evolutionary algorithms

– Differential evolution

– Genetic algorithm

– Genetic programming

– Evolution strategy

– Evolution programming



33

• Simulated annealing

• Tabu search

As reported in the literature, summarized algorithms have been used to improve the

general efficiency and precision of modelling biochemical systems in terms of topology

and kinetic rates. Simulated annealing and evolution strategy are two algorithms mainly

employed for our proposed hybrid modelling framework in this thesis. Section 4.5.3 and

Section 4.5.2 present the details of working mechanisms andapplications of SA and ES in

modelling of biochemical systems.

2.8.2 Simulated annealing

2.8.2.1 Principle of simulated annealing

Simulated annealing (SA) is one of the physically inspired,memoryless, stochastic, single-

solution based and iterative metaheuristics. The SA algorithm was firstly described by

Kirkpatrick et al. in 1983 [Kirk 83], and it has been employedwidely for addressing opti-

mization problems with/without constraint. By analogy with a physical process of anneal-

ing in metallurgy, SA algorithm models the process of heating and lowering the system

temperature iteratively to reduce the system defects and tolet the system reach a minimum

energy status.

In application of SA to search optimum solutions, a new solution point is generated

randomly from current solution point at each step. The new solution point is estimated

by an objective function and accepted to replace current solution point by an acceptance

probability. The acceptance probability involves fitness of evaluated solution point and

current system temperature. For a minimization problem, a better or ‘downhill’ solution
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point is selected in a random manner when the temperature is high; when the temperature

going down, the point is selected in a strict manner. Acceptance of an ‘uphill’ solution

point during search process lets SA algorithm avoid being trapped in local minima and

be able to globally explore potential solutions in a large solutions space. This probability

based search procedure is repeated iteratively, and it stops until stopping criterion reached:

1. Fitness of solution candidates converges to a satisfied range;

2. There is no improvement in fitness after consequent generations;

3. System reaches minimum temperature.

Here we give a high level description of SA mechanism in Algorithm 1, and details of

applying SA to model or optimize biochemical systems in terms of topology and kinetic

rates are illustrated in Section 4.4.

Require: Optimization Problem, Starting Solution Point, ObjectiveFunction, and
Parameters of SA

Ensure: Optimized Solution
while Stopping Criterion Not Reacheddo

while Iterations Not Finisheddo
Generate(New Solution Point);
Estimate(New Solution Point);
Accept(New Solution Point);

end while
Reset(Iterations);
Check(Stopping Criterion);

end while
Return Optimized Solution.

Algorithm 1: High level description of simulated annealing algorithm.

Given ‘Optimization Problem’, ‘Starting Solution Point’,‘Objective Function’ and ‘Pa-

rameters of SA’, SA algorithm starts the global optimization procedure from the ‘Starting
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Solution Point’ for creating a new neighbor solution by a random way in ‘Generate()’ func-

tion at each iteration. The new solution point is evaluated by a ‘Estimate()’ function which

employs the ‘Objective Function’ according to the ‘Optimization Problem’. Decision of

accepting the new solution point is based on estimated fitness and system probability in

an ‘Accept()’ function: if the new solution point is better than current starting solution

point, the starting solution point is replaced by the new solution point; if it is not better but

there is a probability allowing the system to accept a worse solution, the starting solution

point is still replaced by the worse new solution point for next solution search. Anily and

Federgruen have discussed the details of general probabilistic acceptance of SA [Anil 87].

Iterations number will be reset for next round of solution search at different system tem-

perature, and system stopping criterion is checked for stopping global search to return

optimized solutions for given optimization problems.

2.8.2.2 SA based structure modelling

Optimization methodologies based on SA are effective for reverse engineering problems in

bioengineering. SA has been used to optimize structures of models representing biochem-

ical systems from experimental data. For instance, gene regulatory networks can be coded

in SA using an adjacency matrix to represent relationships among genes. Interactions be-

tween two genes can be illustrated by an edge with weight values, which is preserved in

the adjacency matrix. We briefly review some of research employing SA to study models

structures of biochemical systems.

Blower et al. [Blow 02] used simulated annealing and recursive partitioning to find

combinations of molecular descriptors. Process of search based on SA was incorporated

into a recursive partitioning design to produce a regression tree for biological activity on the
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space of structural fingerprints. Using LeadScope structural features as descriptors to mine

a biological database, the merging of Recursive Partitioning and SA consistently identifies

structurally homogeneous classes of highly potent anticancer agents.

Wang et al. [Wang 04] proposed a two-level simulated annealing (TLSA) to explore

problems of inferring Bayesian structures which was employed to study gene regulatory

networks. Aiming to find global optimized probability network models, the proposed

TLSA algorithm globally searches ‘Golden Networks’ to generate simulated data sets and

test Bayesian scores for inferring the strength of learningnetwork structures. Case study

shows that the TLSA can reach better structures with lower score, although no ordering

information is available in advance. Furthermore, equivalent pattern of the optimized struc-

tures are more likely approached by the TLSA optimization algorithm.

In order to visualize automatically the topological architectures and facilitate under-

standing of functions of complex biochemical networks, Li and Kurata [Li 05] proposed a

layout algorithm to draw the networks which are modelled as asystem of interacting nodes

on squared grids. The layouts of networks are produced by minimizing total cost gener-

ated from a discrete cost function between each pair of nodes. A fast algorithm involving

simulated annealing heuristics is designed and implemented to minimize the discrete cost

function, by which candidate layouts can be produced efficiently, and better candidates can

be chosen to exhibit cluster structures clearly in relatively compact layout areas without

any prior knowledge.

Guimerà and Amaral [Guim 05] proposed a methodology to extract and display in-

formation contained in complex networks. Specifically, functional modules in complex
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networks can be found by employing simulated annealing to maximum modularity of net-

works. Nodes can be classified into universal roles according to their pattern of intra-

module and inter-module connections. The proposed method yields a ‘cartographic repre-

sentation of the complex networks. Moreover, Guimerà et al. [Guim 07] investigated how

to map the interactions between proteins and metabolites onto complex networks, and how

to group nodes and links in complex biochemical networks into a small number of classes

by using SA algorithm. Methodology based on SA explores partition of networks into

modules that maximizes the modularity, and assess significance of the modular structure of

each network for specifying essential and specific metabolic networks.

Rodrigo et al. [Rodr 07b] proposed a new tool to design transcriptional networks with

targeted behavior that could be used to better understand the design principles of genetic

circuits. SA optimization algorithm is implemented for exploring throughout the space of

transcription networks to obtain a specific behaviour. An output transcriptional network

with all the corresponding kinetic parameters is describedin SBML format.

Ruz and Goles [Ruz 10] proposed a SA based framework with three simple neighbor-

hood search strategies to learn gene regulatory networks with predefined attractors, under

the threshold Boolean network model updated sequentially.The robustness of the networks

is studied by employing the presented SA method for measuring the number of different

updating sequences they can have without loosing the attractor. A power law between

the frequency of the networks and the number of the sequencesis obtained, as well as a

decreasing robustness of the networks while the cycle length growing.
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2.8.2.3 SA based kinetic rates optimization

The SA has been applied successfully in computational biology to estimate the parameters

of constructed models representing biochemical systems.

Braun et al. [Brau 05] proposed a simple statistical parameter fitting algorithm and test

the efficacy of the algorithm by using two synthetic gene networks as cases study. After

measuring the deviation between experimental and simulated data by a cost function, an

adaptive simulated annealing (ASA) algorithm is employed to minimize the cost function.

Because the measured cost is dependent on the set of kinetic parameters for the system,

parameter set returned from the minimum cost function fits the model most closely with

the experimental data. With respect to well constrained systems, while the value of the

cost function approaches zero, the kinetic parameter estimations should ideally approach

the actual biological parameters. Therefore, parameter estimation approach based on SA

methodology is feasible to recover kinetic parameter values reasonably well for highly

constrained gene networks.

The ASA algorithm is also employed by Dunlop et al. [Dunl 07] in an identification

framework to estimate parameters of each candidate model for multi-model selection. The

ASA algorithm based parameter estimation process is integrated with model comparison

process in the identification framework, which determines abest model from a set of given

candidate models for well describing experimental data.

Tomshine and Kaznessis [Toms 06] presented an optimizationmethod based on SA to

locate combinations of kinetic parameters that produce a desired behavior in a genetic net-

work. Due to inherently stochastic process of the gene expression, simulation component

of SA optimization is conducted using an accurate multiscale simulation algorithm to cal-

culate an ensemble of network trajectories at each iteration. After applying the proposed
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method to a three-gene repressilator, it is shown that gene network optimization is con-

ducted by using a mechanistically realistic model integrated stochastically. Moreover, the

repressilator is optimized to give oscillations of an arbitrary specified period.

Gonzalez et al. [Gonz 07] described how SA algorithm with an appropriately con-

structed perturbation function can be used effectively to estimate the parameters of bio-

chemical networks modeled as S-systems from time-course biochemical data. In order to

demonstrate the efficacy and general applicability of the metaheuristics, a proposed SA

method is tested by studying three artificial networks designed to simulate different net-

work topologies and behaviour, and the SA method is applied to a real-world problem by

creating a working model for thecadBAsystem inEscherichia coli.

A mass action model of immediate-early signaling involvingErbB14receptors,MAPK

andPI3K/Aktcascades, was constructed and analyzed by Chen et al. [Chen 09] for quanti-

fying signal flow throughErbB-activated pathways. By restricting the search to a subset of

75 rate constants and initial conditions with the greatest impact on an objective function, SA

is employed to search across a region of parameter space witha set of ODEs. Convergence

of parameter optimization is improved substantially. Strong dependence of parameter sen-

sitivity is found on the feature or condition under examination, which is informative with

respect to mechanisms of signal propagation.

Cirit et al. [Ciri 10] presented how to modify the standard SAalgorithm to generate a

large ensemble of ‘good’ parameter sets rather than one ‘best’ fit. Therefore, it is feasible to

obtain kinetic models of signaling networks trained on a sufficient diversity of quantitative

data, which can be reasonably comprehensive, accurate, andpredictive in a dynamical

sense.
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Czeizler et al. [Czei 11] performed parameter estimation procedures to fit both the val-

ues of the kinetic rates and initial concentrations of metabolites in an existing well validated

computational model for a heat shock response. The model forthe heat shock response is

incorporated with several (de)phosphorylation pathways,and the quantitative control of

the pathways is analyzed over entire process in terms of parameter estimation by using SA

algorithm in COPASI software package.

2.8.3 Evolution strategy

2.8.3.1 Principle of evolution strategy

Evolution strategy (ES) is one of the naturally inspired, memory, stochastic, population-

solution based and iterative metaheuristics, which was founded firstly by Rechenberg and

Schwefel at the Technical University of Berlin [Rech 65, Rech 73, Schw 65, Schw 75].

Natural selection principle is imitated in ES simulation process by simulating ‘muta-

tions’ and ‘survival’ of individuals in nature. Moreover, ES follows two general rules for

driving individuals to achieve optimum status [Beye 02]:

1. All variables are changed at a time in a mostly small and random manner;

2. New generation of modified variables with goodness are kept, otherwise old status

of the variables are rolled back as starting points for performing next modifications

on the variables.

In general, there are two forms of ES: two-membered (2-m) andmultimembered (m-m)

ES. The difference between these two forms of ES is the numberof parental and children

members and corresponding selection schemes for generating new individuals. Table 2.2
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briefly illustrates and compares variants of two ES forms. The symbolsµ andλ in the two

forms of ES stand for the number of parents and children respectively.

Table 2.2: Two-membered and multimembered forms of ES.

Form Versions Selection Scheme
2-m (1+1)-ES An offspring is selected from two parental and children individuals
m-m (µ+1)-ES Two of µ parental individuals at a time are selected randomly and

recombined to generate an offspring by discarding the worstone
m-m (µ+λ)-ES λ ≥ 1 children individuals are generated in a generation, and

µ best out of allµ+λ individuals are selected as offspring
m-m (µ,λ)-ES λ ≥ µ children individuals are generated in a generation, and selection

of µ offspring is taken place amongλ children individuals only,
without considering fitness ofµ parental individuals

Require: Optimization Problem, Seeds, Objective Function, and Parameters of ES
Ensure: Optimized Seeds

Initiate(Seeds);
while Maximum Generations Not Reacheddo

while Number of Children Individualsλ Not Reacheddo
Recombine(Parental Individuals);
Mutate(Recombined Parental Individuals);

end while
if (µ+λ)-ES then

Offspring = Select(µ+λ Individuals);
end if
if ((µ,λ)-ES then

Offspring = Select(λ Individuals);
end if

end while
Return Optimized Solution.

Algorithm 2: High level description of the evolution strategy algorithm.

ES is one of the global optimization methods and is similar toother evolutionary algo-

rithms, for instance genetic algorithms (GA), genetic programming (GP) and evolutionary

programming (EP). But ES works in continuous space with an additional capability of self-

adaption on the strategy parameters. A high level description of ES working process is
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given in Algorithm 2, which indicates the process of offspring generation by different se-

lection scheme. More details of the self-adaptation, robustness and parallelization of ES

have been presented by Bäck and Hoffmeister [Back 94]. Moles et al. [Mole 03] presented

an extensive review of applying evolutionary algorithms, particularly ES, to reverse engi-

neering regulatory networks, which indicated the outperforms of evolutionary algorithms

than other methods on optimization of biochemical models. Chou and Voit [Chou 09] sum-

marized more recent developments in parameter estimation and structure identification of

biochemical and genomic systems. In Section 4.5, we illustrate the details of applying ES

to optimize biochemical systems in our hybrid modelling framework.

2.8.3.2 ES based structure modelling

ES has been applied to study optimization problems in computational biology, for reverse

engineering issues in terms of system structure. We briefly present some research employ-

ing ES to study the topologies of biochemical systems.

Streichert et al. [Stre 04] compared two evolutionary algorithms (genetic programming

and ES) on inferring gene regulatory networks, with respectto algorithms performance

on multiple problem instances with varying parameters. They found that inferring gene

regulatory networks can be solved by means of ES, by fixing thenetwork model a priori and

reduce the inferring problem to a parameter optimization problem. Results of comparison

shown that single problem instances are not sufficient to prove the effectiveness of a given

inferring strategy and that the GP approach is less prone to varying instances than the ES.

Cao et al. [Cao 10] proposed a methodology for the automated design of cell models

for systems and synthetic biology. The modelling frameworkwas based on P systems, and
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a model represented by the P systems was discrete, stochastic and modular formal file stan-

dard. The automated design of biological models comprised the optimization of the model

structure and its stochastic kinetic constants. Optimization was performed using an evo-

lutionary algorithm which evolves model structures by combining different modules taken

from a predefined module library and then it fine-tunes the associated stochastic kinetic

constants. Four alternative objective functions for the fitness calculation within the evolu-

tionary algorithm were investigated, namely equally weighted sum method, normalization

method, randomly weighted sum method, and equally weightedproduct method. The ef-

fectiveness of the methodology was tested on four case studies of increasing complexity

including negative and positive autoregulation as well as two gene regulatory networks.

Thomas and Jin [Thom 12] studied issues of how to couple two simple regulatory mo-

tifs, one toggle switch and one self-sustained oscillator,using an evolutionary algorithm.

They evolved several complex dynamics for two different connections arrangements be-

tween the oscillator and toggle switch networks in a master/slave set up, which confirms

the previously reported results achieved manually. Results indicate that it is feasible and

efficient to generate complex dynamics by coupling of simplemotifs using simulated evo-

lutionary mechanisms.

Biological morphogenetic networks, such as gene regulatory networks (GRNs), are

modular with independent units and often show the reuse of recurring patterns termed net-

work motifs. Inspired by biological morphogenesis and evolution and structure of network

motifs in biology, Meng and Guo [Meng 12] proposed an evolving GRN-based approach

for self-organizing robotic swarms to autonomously generate dynamic patterns in unknown

environments. Basic idea of the GRN-based model is that firstly several network motifs are
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predefined as the basic building blocks for GRNs, then covariance matrix adaptation evo-

lution strategy (CMA-ES) is applied to evolve parameters and the structures of the GRNs

model. Simulation and experimental results demonstrated that the proposed bio-inspired

model is effective for complex shape generation, and the model is robust to environmental

changes in complex unknown environments.

2.8.3.3 ES based kinetic rates optimization

ES has been applied successfully to estimate the parametersof constructed models repre-

senting biochemical systems.

Spieth et al. [Spie 04] introduced enhancements to evolutionary algorithm optimization

process to infer parameters of non-linear system given by observed data more reliably and

precisely. A method is proposed to use the advantages of flexible mathematical models to

separate the inference problem into two subproblems: to findthe topology or structure of

the network with genetic algorithm; and to optimize parameters of a mathematical model

for the given topology with evolution strategy. Simulationresults show that the proposed

method is suitable to infer gene regulatory systems in termsof structure and parameters.

Ji and Xu [Ji 06] implemented a C library, named libSRES, to facilitate a fast imple-

mentation of computer software for studying non-linear biochemical pathways. The library

implements a (µ, λ)-ES evolutionary optimization algorithm that uses stochastic ranking as

the constraint handling technique. Regarding the amount ofcomputing time, implementa-

tion of the library may face a parameter-estimation problem. An MPI version of libSRES

was provided for parallel implementation, as well as a simple user interface. The perfor-

mance of libSRES has been tested on various pathway parameter-estimation problems, and

performance of libSRES has been found to be satisfactory.
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Zi and Klipp [Zi 06] presented a SBML based parameter estimation tool (SBML-PET).

It is designed to enable parameter estimation for biological models including signalling

pathways, gene regulation networks and metabolic pathways. SBML-PET supports import

and export of the models in SBML format, and it can estimate the parameters by fitting

a variety of experimental data from different experimentalconditions. Moreover, SBML-

PET has a unique feature of supporting event definition in SMBL models which can also

be simulated. Stochastic ranking evolution strategy (SRES) is incorporated in SBML-PET

for parameter estimation.

Fomekong-Nanfack et al. [Fome 07] showed that parameter estimation for pattern for-

mation models can be efficiently performed using ES. They usea quantitative spatio-

temporal model of a regulatory network for early development in Drosophila melanogaster

as a case study. In order to estimate the parameters, simulated results are compared to a

time series of gene products involved in the network obtained with immunohistochemistry.

Results demonstrated that a (µ,λ)-ES can be used to find good quality solutions in the pa-

rameter estimation. Moreover, they also showed that an ES with multiple populations is

5-140 times as fast as parallel SA for the case study, and thatcombining ES with a local

search results in an efficient parameter estimation method.

Sun et al. [Sun 12] presented a comprehensive review of parameters estimation in sys-

tems biology by metaheuristics, including implementationof ES.

2.9 Summary

In this chapter, a brief introduction of systematic modelling biochemical systems is given

firstly, and then general routes of modelling biochemical systems are presented. We have

illustrated what parameter variables in biochemical systems are to be investigated in our
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research. Biochemical systems can be modelledin silico by employing different model

standards, for instance graphical and XML formats. We have introduced three computer

models standards which are popular and useful in community of computational biology

for representing biochemical systems. Moreover, four modelling simulators developed

with functionalities are illustrated for tackling problems of models construction, analy-

sis and simulation. Modelers who interest in these simulators can apply them to model

different kinds of biochemical processes, for instance continuous/stochastic and quantita-

tive/qualitative biochemical reactions.

Biochemical systems are widely represented and investigated in the community of com-

putational biology. We introduce three well defined and implemented computer based bio-

chemical model formats, Petri Nets, SBML and P Systems, which are in a graphical presen-

tation or a XML based format. After introducing the description of models for representing

biochemical systems, we show four popular modelling simulators in systems and synthetic

biology for models construction, analysis, optimization and simulations. All these simula-

tors can work with biochemical models constructed in aforementioned biochemical model

formats by import and export functionalities. At end of thischapter, background and clas-

sification of metaheuristics have been summarized and presented, before illustrating details

of two algorithms implemented in our research.

We present details of our proposed hybrid modelling framework with cases study, in-

cluding basic definitions of biochemical components, genetic mutation operators and com-

position rules in Chapter 3, a hybrid modelling strategy in Chapter 4, investigations of

modelling variants in Chapter 5, and cases study in Chapter 6.



Chapter 3

Representation and Composition of
Biochemical Systems

3.1 Introduction

This chapter introduces the background of enzymatic reactions and mass action kinetics,

illustrates two patterns as templates for instantiating components, declares atomic com-

ponents and synthetic models, and describes two libraries to preserve the components and

models for modelling biochemical systems. Composition operators and rules are illustrated

to compose models of biochemical systems. Generated modelsof biochemical systems are

maintained in terms of synthetic species, composed components and generated structures.

The whole chapter is organized as follows: Section 3.2 illustrates the principle of an

enzymatic reaction and how an enzyme catalyzes the biochemical reactions; Mass action

kinetics law is shown in Section 3.3 for describing the dynamics of chemical reactions.

Three versions of mass action kinetics are presented in Petri net structures, as a fundamen-

tal preparation for the definitions of atomic components andsynthetic models. Section 3.4

47
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illustrates binding and unbinding patterns as templates for generation of atomic compo-

nents, declares the atomic components and synthetic modelsin syntax and semantics. Sec-

tion 3.5 shows an entity relationship diagram of a MySQL database which maintains the

components and models preserved in two libraries.

Related works of applying Petri nets to model biological systems and how Petri net

models can be evolved in terms of places and transitions are briefly introduced in Sec-

tion 3.6. Then three composition operators and a set of composition rules are presented in

Section 3.7 for modifying the Petri net models of biochemical systems. Section 3.8 dis-

cusses how to maintain constructed Petri net models to ensure the synthetic models com-

prise of non-conflicting species, unique components and connective topologies for further

modelling. Some simple examples of composing biochemical models are demonstrated in

Section 3.9, followed a brief summary of this chapter in Section 3.10.

3.2 Enzymatic Reaction

In biochemistry, a chemical reaction is a process of converting molecules of reactants into

products within a specific time period. The reactants are usually known as substrates in

biochemical reactions. In general, there are spontaneous and enzymatic reactions in a bio-

chemical system.

The spontaneous reaction is a spontaneous decaying reaction, in which a substrate A

decays to produce a product B, as shown in Equation 3.2.1:

A→ B (3.2.1)
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Moreover, due to forward and reverse reaction rates existing in the biochemical reac-

tions, the spontaneous reaction can be reversible between the substrate and product, for

instance product B decays back to form substrate A, as described in Equation 3.2.2:

A ⇄ B (3.2.2)

Most biochemical reactions in cells and organisms are catalyzed by specialized pro-

teins known as enzymes. The enzymes are very important biological catalysts speeding up

rates of biochemical reactions in life, by a mechanism of decreasing the amount of energy

required in the reactions.

Therefore, an enzymatic reaction is a catalyzed biochemical reaction, facilitating the

transformation of a set of substrates into a set of products.The catalysation of the reaction

is implemented by enzyme reducing the energy which is required by the reaction to reach

a higher energy transitional state [Berg 02, Voet 06].

An enzymatic reaction involves biochemical substrate(s),enzyme(s) and product(s) in

a process of molecules conversion. For instance, a simple enzymatic reaction can be illus-

trated in Equation 3.2.3 to present interactions among one substrate A, one product B and

an enzyme E.

A
E
−→ B (3.2.3)

The enzymatic reaction can be taken as a basic building blockof any biological dynamic

system. Therefore, the enzymatic reactions can be used to describe metabolic conversions,

the activation of signalling molecules and even transport reactions between various subcel-

lular compartments [Brei 08].
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3.3 Mass Action Kinetics

Mass action kinetics are used in chemistry and chemical engineering to describe the dynam-

ics of chemical reactions [Vija 09]. Three types of mass action kinetics were introduced to

reveal the catalytic mechanism of an enzyme in enzymatic reactions and metabolism [Brei 08].

Details of enzymatic reactions described by the three typesof mass action kinetics are il-

lustrated with corresponding graphic demonstrations in Petri nets as follows. Note that the

symbol ‘|’ is used to indicate a complex formed from a substrate and an enzyme.

1. Mass Action 1 (MA1)

A MA1 model takes into account the mechanism by which the enzyme acts, namely

by forming a complex with the substrate, modifying the substrate to form a product,

and releasing the product in a disassociation. Rate constants are associated with each

reaction for a consideration of kinetic properties of many enzymes. The details of

MA1 [Brei 08] are shown in Equation 3.3.1.

A+ E

k1−→

←−
k2

A|E
k3−→ B + E (3.3.1)

In a MA1 based enzymatic reaction, enzymeE can combine with substrateA to form

an intermediate called an enzyme-substrate complexA|E with rate constantk1; the

complexA|E can either dissociate back toE andA with rate constantk2, or form a

productB by transformingA in a dissociation with ratek3. Graphic presentation of

the MA1 based enzymatic reaction in a Petri net is shown in Figure 3.1.

2. Mass Action 2 (MA2)
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E

A B

k1

k2

k3

A|E

Figure 3.1: An enzymatic reaction based on MA1. SpeciesA is combined with enzymeE
to produce a complexA|E by a reaction with a kinetic ratek1; The complexA|E can be
decomposed back to the speciesA and enzymeE by a reaction with a kinetic ratek2, or to
produce a new speciesB andE by a reaction withk3.

An intermediate transition state between substrate and product can exist in an enzy-

matic reaction. Moreover, the substrate and product bind tothe same binding site

with highest affinity for the intermediate. In order to approximate the intermediate

transition state, an extended MA2 [Brei 08] is formulated for more detailed descrip-

tion of an enzymatic reaction in Equation 3.3.2.

A + E

k1−→

←−
k2

A|E
k3

′

−→ B|E

k2
′

−→

←−
k1

′

B + E (3.3.2)

Only one bond is changed between the substrate and product while maintaining com-

plexesA|E andB|E in the enzymatic reaction, thus association and disassociation

of a complexA|E andB|E are related. A simple assumption can be given that ki-

netic rate constants are approximated in the enzymatic reaction based on MA2, for

instancek1 ≃ k1
′ andk2 ≃ k2

′. Graphic presentation of the enzymatic reaction in a
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Petri net is shown in Figure 3.2.

E

A B

k1

k2

B|EA|E k3’

k2’

k1’

Figure 3.2: An enzymatic reaction based on MA2. SpeciesA is combined with enzyme
E to produce a complexA|E by a reaction with a kinetic ratek1; The complexA|E can
be decomposed back to the speciesA and enzymeE by a reaction with a kinetic ratek2.
There is a intermediate complexB|E transferred from theA|E by a reaction with a kinetic
ratek′

3. The complexB|E is decomposed to a new speciesB andE by a reaction withk′
2.

The complexB|E can be produced by combining theB andE.

3. Mass Action 3 (MA3)

In a further complete description of an enzymatic reaction,MA3 [Brei 08], a sub-

strate can be associated with an enzyme to form a complex, andthen the substrate

is modified to form a product which is still associated with the enzyme in the com-

plex. Finally the product and enzyme are released from the complex. The detailed

description of above process is shown in Equation 3.3.3.

A+ E

k1−→

←−
k2

A|E

k3
′

−→

←−
k4

′

B|E

k2
′

−→

←−
k1

′

B + E (3.3.3)

In this case the association and disassociation among substrate, enzyme, complex

and product are described on different reversible stages, which may offers guidance

to biochemists who could carry out further investigation onbiological systems of
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interest. Graphic presentation of the enzymatic reaction in a Petri net is shown in

Figure 3.3.

E

A B

k1

k2

B|EA|E

k3’ k2’

k1’k4’

Figure 3.3: An enzymatic reaction based on MA3. As the enzymatic reaction based on
MA2, a new speciesB can be produced, and an intermediate state of complexB|E is
formed from the complexA|E by a reaction with a kinetic ratek′

3. Moreover, the complex
B|E is able to be transferred back the complexA|E by a reaction with a kinetic ratek′

4.

3.4 Declarations of Component and Model

In this thesis, MA1 is employed to describe an enzymatic reaction which is used as a

template to define basic components for building component-based biochemical models.

Note that, the components defined by MA1 can be easily extended to the ones defined by

other mass action kinetics which are introduced in section 3.3.

3.4.1 Patterns

Atomic components can be instantiated from two general patterns which are templates

for components instantiation. The two general patterns describe how two species form

a species, or how one species decomposes into two species. Thus, pre-defined patterns
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in this thesis follow a simple binary format: either two to one standard or one to two

standard. Other pattern formats, for instance three (or more) species form one species and

one species decomposes into three (or more) species, can be taken as development of our

simple pre-defined binary patterns. Any complex biochemical reactions can be described

by employing instantiations from the binary patterns, which species interact with each other

by composition of instantiations from the binary patterns.Species in our defined binary

patterns stands for biochemical reactant, complex or product in an enzymatic reaction.

Details of the patterns are illustrated as follows.

• Binding pattern - two reactants are merged into a complex with a specific kinetic rate,

as shown in Equation 3.4.1;

P1 + P2
k1
−→ P3 (3.4.1)

where theP1 represents a reactant acting as a substrate,P2 denotes a reactant acting

as an enzyme, andP3 (P3 = P1|P2) is a complex synthesized fromP1 andP2 by

using a ‘|’ symbol to join the labels of two reactants. Graphic presentation of the

binding pattern in a Petri net is shown in Figure 3.4.

In Figure 3.4, there are two non-empty placesP1 andP2, marked withm1 and

m2 as initial concentration values respectively. The two places are associated by a

transitionT1 with a kinetic ratek1. PlaceP3 is a product of the transition.

• Unbinding pattern - a complex is disassociated back to reactants, or converted to a

product and an enzyme with a specific kinetic rate, as illustrated in Equation 3.4.2.

P3
k2
−→ P1 + P2 (3.4.2)
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P1 m1

P2 m2

P3

T1

k1

Figure 3.4: Binding pattern.P1 andP2 are two non-empty places, marked with initial
concentrationsm1 andm2. The two places are associated to produce a placeP3 by a
transitionT1 with a kinetic ratek1.

where complexP3 is either disassociated to two reactantsP1 andP2 which form the

complex itself, or converted into a product and an enzyme. Graphic presentation of

the unbinding pattern in a Petri net is shown in Figure 3.5.

Table 3.1: A MA1 based enzymatic reaction and components.

Enzymatic Reaction and Components Petri net

A+ E
k1
−→
←−
k2

A|E
k3
−→ B + E

E5

BA|EA

4 k3

T3

k2

T2

k1
T1A+ E

k1
−→ A|E

A|E
k2
−→ A+ E

A|E
k3
−→ B + E
[A] = 4
[E] = 5

[A|E] = [B] = 0

Therefore, the enzymatic reaction described by MA1 in Equation 3.3.1 can be compo-

sition of one component instantiated from binding pattern and two components instantiated

from unbinding pattern. The details of instantiated components are given as follows.
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P1

P2

P3

T2

k2

Figure 3.5: Unbinding pattern. A placeP3 is disassociated to two placesP1 andP2 by a
transitionT2 with a kinetic ratek2.

One instantiation of the binding pattern:A+ E → A|E;

First instantiation of the unbinding pattern:A|E → A+ E;

Second instantiation of the unbinding pattern:A|E → B + E.

The instantiated components and enzymatic reaction in a Petri net are shown in Ta-

ble 3.1, where concentrations of species are indicated by using labels and square brackets,

such as ‘[A]’ and ‘[A|E]’.

These two patterns informally illustrate biochemical process in components which are

essential parts of an enzymatic reaction. A formal syntax and semantics of the components

are given in following sections for declaration of atomic components for component-based

modelling.

3.4.2 Syntax of a component

Definition3.4.1 (Component, Syntax). A component for constructing biochemical models

is given byC = 〈P, T, f, v,m0〉, which is based on the structure of Petri nets, where
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• P is a disjoint set of three continuousP laces

• T is a singleton set containing one continuousTransition

• f : ((P × T ) ∪ (T × P )) → R+
0 defines a set of three directed arcs, weighted by

non-negative real numbers, such that there is at least one arc of the form ‘p→ t’ and

at least one of the form ‘t→ p’

• v : T → H assigns to the transition a firing rate function, whereby theset of all firing

rate functions isH :=
⋃

t∈T

{

ht|ht : R
|•t| → R

}

, andv(t) = ht is for the transition

t ∈ T

• m0 : P → R+
0 gives the initial marking

Note that place names of a component can be simple (an alphanumeric string) or com-

posite (a series of simple place names each joined by the ‘|’ symbol). Moreover, the number

of places of a component is limited to three and the number of transitions is limited to one.

Two componentsC1 andC2, instantiated from binding pattern ‘P1 + P2
k1
−→ P3’ in

Equation 3.4.1 and unbinding pattern ‘P3
k2
−→ P1+P2’ in Equation 3.4.2, can be described

via the Def. 3.4.1 as follows.

C1 = 〈P1, T1, f1, v1, m1〉 where

P1 = {P1, P2, P3}

T1 = {T1}

f1 = {(P1→ T1), (P2→ T1), (T1→ P3)}

v1 = {T1 : k1× P1× P2}

m1 = {P1 : m1, P2 : m2, P3 : 0}

C2 = 〈P2, T2, f2, v2, m2〉 where

P2 = {P1, P2, P3}
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Tb = {T2}

f2 = {(P3→ T2), (T2→ P1), (T2→ P2)}

v2 = {T2 : k2× P3}

m2 = {P3 : 0, P1 : 0, P2 : 0}

Therefore, according to the Def. 3.4.1, the enzymatic reaction following MA1 kinetic

law in Equation 3.3.1, ‘A + E

k1−→

←−
k2

A|E
k3−→ B + E’, can be illustrated by composition of

three instantiated components ‘A + E
k1
−→ A|E; A|E

k2
−→ A + E; andA|E

k3
−→ B + E’.

The details of three composed instantiations are shown as following:

ERMA1 = {C1, C2, C3}

= {〈P1, T1, f1, v1, m1〉 , 〈P2, T2, f2, v2, m2〉 , 〈P3, T3, f3, v3, m3〉}

= {〈P ′, T ′, f ′, v′, m′〉}

where

P ′ = {A,E,A|E,B}

T ′ = {T1, T2, T3}

f ′ = {(A→ T1), (E → T1), (T1→ A|E),

(A|E → T2), (T2→ A), (T2→ E),

(A|E → T3), (T3→ E), (T2→ B)}

v′ = {T1 : k1× A× E, T2 : k2× A|E, T3 : k3× A|E}

m′ = {A : m1, E : m2, A|E : 0, B : 0}

3.4.3 Semantics of a component

Definition3.4.2 (Component, Semantics). A component is a system of nonlinear ordinary

differential equations (ODEs), illustrating the nonlinear relationship among three involved
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biochemical elements:

d[Pi]

dt
=

∑

t∈•Pi

f(t, Pi)× v(t)−
∑

t∈Pi
•

f(Pi, t)× v(t) (3.4.3)

wherePi (i=1,2,3) is one of three continuousP laces in a disjoint continuous places set;

t is a continuousTransition; pre-transitions•Pi of the placePi are all reactions producing

the place, thus the continuous transitiont is enabled in•Pi, if the markings of all places

in pre-places•t are available for firing the transition; the post-transitionsPi
• of the place

Pi are all reactions consuming the place, thus the continuous transitiont is enabled in

Pi
•, if the markings of all places in post-placest• are available for firing the transition;

f : ((Pi×t)∪(t×Pi))→ R+
0 defines a set of three directed arcs, weighted by non-negative

real numbers, such that there are three arcs associated withthe continuous transitiont by

incoming arcPi → t or outgoing arct → Pi; v : t → H assigns to the transition a firing

rate function, whereby the set of all firing rate functions isH :=
⋃

t∈T

{

ht|ht : R
|•t| → R

}

,

andv(t) = ht is for the transitiont; [Pi] : Pi → R+
0 gives the concentration of placePi,

which is continuously changed over time.

It should be noted that the translation from Petri nets to theODEs system is unique but

the reverse is not guaranteed [Brei 10].

3.4.4 Syntax of a model

Definition3.4.3 (Model, Syntax). A model of a biochemical system is a generalized form

of a component (but with no restrictions on the number of places and transitions) and it is

defined byM = 〈P, T, f, v,m0〉, which is based on the structure of Petri nets, where

• P is a disjoint set of at least three continuousP laces.
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• T is a set containing at least one continuousTransition.

• f : ((P × T ) ∪ (T × P )) → R+
0 defines a set of directed arcs, weighted by non-

negative real numbers.

• v : T → H assigns to the transitions a firing rate function, whereby the set of all

firing rate functions isH :=
⋃

t∈T

{

ht|ht : R
|•t| → R

}

, andv(t) = ht is for the

transitiont ∈ T .

• m0 : P → R+
0 gives the initial marking.

Places in a Petri net model represent species in the target biochemical system. Markings

on the places denote initial concentrations of the species.The transitions are firing rules

with assigned kinetic rates. In a sense, a single component can be taken as a model of a

specific biochemical system, because the model can only comprise of essential three places

and one transition with regard to the syntax definition.

3.4.5 Semantics of a model

Definition3.4.4 (Model, Semantics). A model is a system of ODEs, illustrating the nonlin-

ear relationship among at least three involved biochemicalelements:

d[P ]

dt
=

∑

t∈•P∧t∈T

f(t, P )× v(t)−
∑

t∈P •∧t∈T

f(P, t)× v(t) (3.4.4)

whereP is a disjoint continuous places set (|P | ≥ 3) for the continuousP laces in

the model;T is a continuous transitions set (|T | ≥ 1) for theTransitions in the model;

f : ((P×T )∪(T×P ))→ R+
0 defines a set of at least three directed arcs, weighted by non-

negative real numbers;v : T → H assigns to the transition a firing rate function, whereby
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the set of all firing rate functions isH :=
⋃

t∈T

{

ht|ht : R
|•t| → R

}

, andv(t) = ht is for

the transitiont; [P ] : P → R+
0 gives the concentrations of places which are continuously

changed over time.

The ODEs system derived from a model describes the continuous change of concen-

trations over time for the given species, and it is also a mathematical description of target

biochemical system. The same as a place in a component, each place in the model gets an

equation which belongs to the ODEs system. Note that the translation from a Petri net of a

model to a set of ODEs is unique, but the reverse is not guaranteed [Brei 10].

3.5 Libraries of Components and Models

In order to construct models of biochemical systems by composing components, a storage

place should be considered to keep synthetic components andmodels while modelling. A

database was designed by the MySQL database technique and two libraries were developed

to preserve the components and models.

Figure 3.6 shows an entity relationship (ER) diagram that describes the aforementioned

database. The entity set is represented by a rectangle, and an attribute of the entity is

described by an oval. The relationship between the entity sets is denoted by a diamond on

the ER diagram.

There are two entity sets in the ER diagram:ModelsandComponents. There are eight

attributes inModels: ID, GenerationID, PopulationID, RatesLabels, RatesConstants, Fit-

ness, StructureandSimulation. Componentshas six attributes:ID, Reaction, Element1,

Element2, Element3andElement4. The relationship betweenModelsandComponentsis
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Models

IDGenerationID

PopulationID

RatesLabels

RatesConstants

Fitness Structure

Simulation

Compose Components

ID

Element1

Reaction

Element2

Element3

Element4

M N

Figure 3.6: Entity relationship of models and components inthe database. ‘Models’ is
an entity in the database defined with following attributes:‘ID’ is an unique number for
a model under construction; Attributes ‘GenerationID’ and‘PopulationID’ indicate the
model as one of seeds in an evolutionary generation; Attribute ‘Structure’ contains infor-
mation of the topology of the model; Reactions rates of the model are indicated by ‘Rates-
Labels’ and ‘RatesConstants’; Attribute ‘Fitness’ is the evaluation result of the model and
‘Simulation’ is for the time series data of model behaviours. Entity ‘Components’ are
reactions of a model with following attributes: ‘ID’ standsfor an unique reaction; ‘Reac-
tion’ indicate the pattern of the reaction with details of substrates information; ‘Element1’,
‘Element2’, ‘Element3’ and ‘Element4’ are for the labels ofsubstrates and kinetic rate.

‘Compose’. The cardinality of relationship ‘Compose’ is ‘M:N’, which indicates each en-

tity in theModelscan be associated with many entities in theComponents, and each entity

in the Componentsis associated with many entities in theModels. Note that the ‘many’

could be one or more and sometimes zero.

3.5.1 Components Library

Components are created at initial stage, according to the pre-defined patterns and definition

in Section 3.4. A components libraryLC was developed as a table in the database, to

preserve the generated components as atomic building blocks for modelling biochemical

systems. The libraryLC maintains detailed information of these atomic components, such

as labels of involved species, constants of associated kinetic rates and structures of created

components.
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Table 3.2: Attributes of an entity component inLC

Index Type Attributes Example
Primary Key ID 1

Index Reaction P1 + P2
k1−→ P3

Index Element1 P1

Index Element2 P2

Index Element3 k1
Index Element4 P3

Table 3.2 illustrates details of one component ‘P1 + P2
k1−→ P3’ with its attributes in

the libraryLC . An entity component is reusable for piecewise modelling biochemical sys-

tems, and the attributes are mutable while composing modelsof the systems. AttributeID

indicates the identification of the component; attributeReactionpresents the structure of

the component; attributesElement1-4show the names of the species and the kinetic rate

constant of the reaction.

3.5.2 Models Library

Models can be constructed by the composition of reusable components from the libraryLC .

A models libraryLM was developed with the component libraryLC in the same database

for preservation of synthetic models. The libraryLM maintains information of the models,

including names of species, structures, kinetic rates constants and simulation results in time

series dataset.

Table 3.3 shows details of a model ‘P1+P2

k1−→

←−
k2

P3
k3−→ P2+P4, P4+P5

k4−→ P6’ with its

attributes in the libraryLM . An entity model in theLM is preserved for representing target

biochemical system and supporting a further evolutionary modelling. AttributeID indicates

the identification of the model; attributesGenerationIDandPopulationIDshow the stage of
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Table 3.3: Attributes of an entity model inLM

Index Type Attributes Example
Primary Key ID 1
Index GenerationID 100
Index PopulationID 25
Index RatesLabels {k1, k2, k3, k4}
Index RatesConstants{0.03, 1.23, 0.6, 0.0072}
Index Fitness 0.68

Index Structure {P1 + P2
k1−→ P3,

P3
k2−→ P1 + P2,

P3
k3−→ P2 + P4,

P4 + P5
k4−→ P6}

Index Simulation Time Series Dataset

the model under construction in an evolutionary modelling process; attributesRatesLabels

andRatesConstantsare the names and constants of the kinetic rates associated with the

biochemical reactions; attributesFitness, StructureandSimulationdenote the evaluation

result, structure and simulation result of the model.

3.6 Modification of Petri Nets

Study of stepwise modification of Petri nets focused on the refinement and abstraction of

Petri nets by a bottom-up or top-down approach [Zhou 92], which preserved properties

of Petri nets such as liveness and boundedness. The bottom-up approach was employed

to merge and/or link subnets to generate a final net, and the top-down approach stepwise

refined a first-level Petri net model to increase details of the net until reaching the desired

level. In general, modified parts of a Petri net were places, transitions, arcs or subnets of

the entire Petri net [Vale 79, Suzu 83, Zube 99, Paul 03, Gome 05].

Since Petri nets theory was utilized firstly to describe biological processes by Reddy et
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al. [Redd 93] in 1993, Petri net and its extensions were applied to model different types

of biological pathways, such as metabolic pathways, signaling pathways, gene regula-

tory networks and other integrated pathways[Marw 08, Marw 11, Wagl 11]. The models

of biological pathways represented in Petri nets were evolved by employing evolutionary

algorithms. Mauch [Mauc 03] presented how to employ Petri nets as genomic representa-

tions for evolving a population of individuals in genetic programming. An approach was

proposed by Moore and Hahn [Moor 03] to use grammatical evolution modelling gene in-

teractions in a Petri net model. Mayo [Mayo 05] applied a method based on random hill

climbing to automatically build the Petri net models for thenon-linear gene interactions.

Nummela and Julstrom [Numm 05] addressed the metabolic pathways prediction problem

by employing a genetic algorithm and a stochastic hill-climbing step to search a space of

Petri nets representing the pathways. Durzinsky et al [Durz08] described a method to auto-

matically reconstruct molecular and genetic networks fromdiscrete time series data. More

recently, Mayo and Beretta [Mayo 11] proposed a method basedon genetic algorithms and

data mining to automatically construct Petri net models representing the non-linear gene

interactions.

However, the above approaches evolve an existing network model by mutating the con-

nections among existing places and transitions without anycreation of new elements during

the evolutionary process, whereas our approach in this thesis is to incrementally piecewise

construct a network by modifying and composing reusable components. In synthetic bi-

ology, modelling of biochemical systems is feasible to achieve desired functionalities by

constructing reduced systems. But it is restricted for exploring different model structure,

because of modelling process being guided by functionalities. Our piecewise modelling
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approach is possible to try different composition of components in a heuristic and evolu-

tionary manner. Moreover, it enables the exploration of alternative models space in terms

of topologies and kinetic rates for discovering biochemical principles, which is essential for

implementation of synthetic biology and other applicationareas in BioModel Engineering.

Note that a model under construction in this thesis could be asingle component, and a

simple model can be synthesized with atomic components to form a complicate model by

utilizing a set of composition operators and rules. The details of the operators and rules are

illustrated in following sections.

3.7 Composition Operators and Rules

Modelling biochemical systems can be achieved by applying composition operators to

modify structures of Petri net models representing biochemical systems. A set of compo-

sition operators are adapted from the evolutionary optimization [Foge 94, Beye 02] to fine

tune the structures of the models. The composition operators and corresponding symbols

utilized in this thesis are:

• Addition, represented by a symbol⊕

• Subtraction, represented a symbol⊖

• Crossover, represented by a symbol⊗

Similar to the implementation of genetic operators in evolutionary computation, the

proposed composition operators mimic the mutation of natural systems in an evolution-

ary process to evolve biochemical models. Furthermore, theapplications of composition

operators are guided by a set of composition rules during themodelling process.
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In this thesis, piecewise composition rules are utilized for adding components to a

model, removing components from a model and crossing two parental models to repro-

duce children models. Therefore, three sets of compositionrules employed to guide the

composition operators can be summarized briefly as follows before illustrating details of

the rules:

1. Addition Rulesare employed to add a componentCa to a modelM ;

The componentCa is selected randomly from a libraryLC and merged with a com-

ponentCm randomly chosen fromM . The addition rules allow the componentCa

to be merged withCm into M by replacing parts of labels of the places inCa with

labels of places fromCm.

2. Subtraction Rulesare implemented to remove components from a modelM ;

The subtraction rules permit a componentCm in M to be removed by deleting tran-

sition and incident arcs of theCm, but keeping places ofCm in M for maintenance

later.

3. Crossover Rulesare utilized to cross over two models for generating new models;

The crossover rules let two models be cut and spliced by swapping parts of the models

via an approach of ‘Cut and Splice’.

Models and components involved in the composition process are defined in Petri nets

structure, therefore all the composition operators are performed on the places and transi-

tions. Before illustrating the details of composition rules, key points about the composition

are given as follows.
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• Any one of the three places of a componentCa (Cm) can be randomly chosen as the

composition site.

The composition sites in the componentsCa andCm are places which are used for

labels comparison. Parts of the labels of the places are replaced for the integration of

the components.

• Labels of places in componentCa can be modified, but labels of places in component

Cm are not changed during the composition process.

We ‘borrow’ the structure ofCa to develop the topology of the modelM by adding

arcs, transition and synthetic species. It makes sense thatonly the labels of places in

the added componentCa are modified with the information from theCm to ensure

the ‘synthesized’ species in a developed model are relevantto a primary ‘version’ of

the model.

In this chapter,Li (i = 1, 2, 3) is used to present labels of placesPi (i = 1, 2, 3) in

a componentCa from the components libraryLC for additions;Lm is used to denote the

label of a placePm in a componentCm randomly selected from a modelM . The details

of composition rules are illustrated with simple composition examples in the following

sections.

3.7.1 Addition operator

Definition3.7.1 (Addition Operator,⊕). An addition operator is a function of merging a

componentCa from a component libraryLC with a componentCm from an existing model

M to generate a new modelM ′:

M
Cm⊕Ca−−−−→M ′
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The added componentCa is selected randomly from the libraryLC . Another compo-

nentCm is chosen randomly from an existing modelM . Since the model and components

are presented in Petri net structures, the labels (names) ofplaces (species) of the compo-

nentsCa andCm can be compared and merged according to specific rules. A set of addition

rules in Section 3.7.2 is applied to guide the addition process.

The topology of modelM is monotonically increased to the topology of modelM ′,

because of no removal of places and transitions while applying the addition operator. A

generated model of a biochemical system should be maintained in a reasonable structure,

which requires subtractions utilized on the synthetic structure of the model. A subtraction

operator is presented in Section 3.7.3 to achieve the aims ofcontrolling generated models

structures.

3.7.2 Addition rules

Since the components are instantiated from the binding and unbinding patterns in Sec-

tion 3.4.1, addition rules are proposed to deal with composition among components in-

stantiated from different patterns. An overview of our proposed addition rules is given in

Table 3.4.

Table 3.4: An overview of addition rules

Rules Execution
R1

⊕ MergeSa andSm, if Sm = Sa

R2
⊕ ReplaceSa with Sm, if Sm 6= Sa andSm is not a complex

R3
⊕ DecomposeSm and create a new component by parts ofSm

R4
⊕ Create a new component bySm andSa

Notes:
1. Sm is a species from the model for comparison;
2. Sa is a species from the added component for comparison.
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Addition rules summarized in Table 3.4 are general descriptions of how to compare

species from an existing model and an added component, and what operations (merg-

ing, replacement, decomposition and creation) to be executed regarding different types of

species (complex or not). Details of addition rules are illustrated with examples as follows.

A componentCa is added to a modelM by merging the places and transition ofCa

with a componentCm from a modelM . TheCa is in a bindingP1 + P2
k1
−→ P3 or an

unbinding patternP3
k2
−→ P1+P2, whereL1, L2 andL3 are the labels of placesP1, P2 and

P3 respectively. TheCm is either in a binding pattern or in an unbinding pattern. When

a placePi (labeled asL1, L2 or L3) is randomly selected from theCa and compared with

a placePm (labeled asLm) randomly chosen from theCm, proposed addition rules are

employed for performing the components addition.

• R1
⊕: If Lm = Li (i = 1, 2, 3), the componentCa is added to the modelM by

adding the reaction equations ofCa to the set of reactions equations ofM di-

rectly;

Example In Figure 3.7, there is a componentCa in the binding pattern. PlaceP2 is

compared with placePm andLm = L2. TheLm = L2 means ‘a species represented

by a placeP2 in the componentCa exist in the modelM as well’. Then reaction

equations ofCa can be added to the set of reaction equations ofM directly without

any modification on theCa.

• R2
⊕: If Lm 6= Li (i = 1, 2), one of the labels ofLi in Ca are replaced byLm and

reaction equations of modifiedCa are added to the set of reaction equations of

M ;

Example In Figure 3.8, there is a componentCa in the unbinding pattern. The place
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Lm = L2 

Pm P2 

Ca 

Model M 

Pm 

Ca 

Model M 

Figure 3.7: ComponentCa is added to modelM without modification.

P1 in Ca is compared with placePm andLm 6= L1. TheLm 6= L1 means ‘two

compared species are different’. Therefore, the labels ofL1 existing in theCa are

replaced by theLm and reaction equations of the modifiedCa are added to the set of

reaction equations ofM .

• R3
⊕: If Lm 6= L3 and Pm is a complex, labelL3 in the Ca is replaced byLm,

label L1 is replaced byLm1 and L2 is replaced byLm2, where Lm1 ∩ Lm2 = 0

and Lm1 ∪ Lm2 = Lm, and reaction equations of modifiedCa are added to the

set of reaction equations ofM . Moreover, another componentC ′
a is created by

replacingP3 in the Ca with Pm, but other places in theCa are not modified. Then

reaction equations of componentC ′
a are added to the set of reaction equations

of M ;

Example In Figure 3.9, there is a componentCa in the binding pattern. The place

P3 is compared with placePm andLm 6= L3. TheLm 6= L3 means ‘two compared
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Lm 1 

Pm P1 

Ca 

Model M 

P1|P2 

P2 

Pm Ca 

Model M 

Pm|P2 

P2 

Figure 3.8: ComponentCa is modified by replacing labels and added to modelM .

species are different’. Because thePm is a complex, labelsL1 andL2 existing in the

Ca are replaced respectively by two parts ofLm: Lm1 andLm2. TheLm1 andLm2

are obtained by randomly splittingLm, whereLm1∩Lm2 = 0 andLm1∪Lm2 = Lm.

The reaction equations of the modifiedCa are added to the set of reaction equations

of M .

• R4
⊕: If Lm 6= L3 andPm is not a complex, the reaction equations ofCa are added

to the set of reaction equations ofM firstly, and a new componentC ′
a is created

by binding P3 with Pm to producePm|P3 according to the binding pattern; then

the reaction equations of syntheticC ′
a are added to the set of reaction equations

of M .

Example In Figure 3.10, there is a componentCa in the unbinding pattern. The place

P3 is compared with placePm andLm 6= L3. TheLm 6= L3 means ‘two compared

species are different’. Because thePm is not a complex (without a ‘|’ in the labelLm),
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Lm 3 and Pm is a complex 

Pm 

P3 
Ca 

Model M 

Pm 

Ca 

Model M 

Pm1 

Pm2 

Figure 3.9: Replacement of labels inCa by the species inM .

a new componentC ′
a will be created by using thePm andP3 in a binding pattern:

Pm + P3
k1
−→ Pm|P3. The reaction equations of the componentCa andC ′

a are added

to the set of reaction equations ofM .

3.7.3 Subtraction operator

Definition 3.7.2 (Subtraction Operator,⊖). A substraction operator is a function for re-

moving a componentCm from an existing modelM to generate a new modelM ′:

M
⊖Cm−−−→M ′

In graph theory, removal of nodes (places and transitions inPetri nets) could cause re-

cursive and uncontrolled operations to remove subgraphs. In this scenario, a fixed level(depth)

of nodes search in a graph can be introduced for the subtraction. With respect to graph de-

composition, we set the subtraction level to one, which means there is only one component
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Lm 3 and Pm is not a complex 

Pm 

P1 Ca 

Model M 

P3 P2 

Pm 

Ca 

Model M 

P3 

P1 

P2 

Pm|P3 
a 

Figure 3.10: Creation of a new componentC ′
a by P3 andPm.

to be removed from the topology of a model at each time.

After performing the subtraction operator during the modelling process, the topology

of the model is shrunk. The subtraction operator applied to modify the biochemical models

may satisfy the principle of Occam’s razor [Thor 15], which is feasible to help bioscientists

find a set of simple but interesting structures of biochemical systems for further investiga-

tion in wet-lab.

3.7.4 Subtraction rules

A componentCm is selected randomly from an existing modelM for the implementation

of subtraction by removing transition and incident arcs. Places incident to the removed arcs

are not deleted, because any removal of places could affect other transitions which are not

involved in current subtraction. Table 3.5 shows an overview of subtraction rules proposed

for removing parts of a biochemical model.
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Table 3.5: An overview of subtraction rules.

Rule Execution
R1

⊖ Do nothing, if there is only one component in a modelM
R2

⊖ Delete transition with its incident arcs in a componentCm

from a modelM , if there are up to two components in the modelM
R3

⊖ Delete transition with its incident arcs in a componentCm

from a modelM and maintain modified modelM , if there are
more than three components in the modelM

Notes:
1. M is a model to be modified;
2. Cm is a component to be subtracted from a modelM .

Subtraction of components from a model is very simple: to remove linkages among

places and transitions. As shown in Table 3.5, transition and incident arcs of a component

are the removed parts for performing subtraction operator.Details of subtraction rules are

illustrated as follows.

• R1
⊖: If a model M comprises only one component, subtraction operator is not

implemented;

Since atomic component is defined as an instantiation from one of two patterns, a

component is a basic and essential complete part within a model. It is obviously

that a model must comprise at least one component for exhibiting species behaviour

based on fundamental biochemical kinetic law, for instanceMA1 in our research.

• R2
⊖: If a model M comprises two components, one componentCm is selected

randomly from the model M to subtract from the topology of the model. The

subtraction is implemented by deleting transitionTm with its incident arcs in the

componentCm. Another component and its reaction equations are preserved in

the modelM .
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P5P3

P4P1

T2T1

P2

Transition T2 is 

deleted with arcs −>

P2P1 P4

P3 P5

T1

Figure 3.11: ComponentCm is removed directly from the modelM .

Example In Figure 3.11, transitionT2 is removed with incident three arcs. There

are two isolated placesP4 andP5 which are cleaned up later, and placeP2 is kept

because of its connection to the remain parts of the modelM .

• R3
⊖: If a model M comprises of more than two components, a componentCm

is selected randomly from the modelM to subtract from the topology of the

model. Then a step of maintenance is applied to check the synthesized places,

added components and connectivity of the structure of the model;

Example In Figure 3.12, transitionT1 is removed with incident three arcs. There

are three isolated subparts in the model after applying subtraction. In a process of

maintenance, placesP2 andP4 are selected randomly from two isolated subparts to

make a new componentT2 by associating a complex betweenP2 andP4. Places

P3 andP6 are selected randomly from other two isolated subparts to make a new

componentT3 by associating a complex betweenP3 andP6.

After removing the componentCm from the modelM , species ofCm can be either

incident toM or isolated fromM :
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P2 P4

P3

P6

P2 P4

P3

P6

T1

Transition T1 is deleted with arcs.

Two components are created.

Transitions T2 and T3 are added.

T2

T3

−−−>

Figure 3.12: Removal ofCm and linkages of isolated components.

• Incident places - places are incident to the modelM , with incoming or outgoing arcs

linking to the main parts of the topology ofM ;

• Isolated places - places are isolated from the modelM , without any connections

linking to the main parts of the topology ofM .

The incident places are still functional parts of other components in the modelM ,

and the isolated places are cleaned up automatically by a process of maintenance of the

synthetic model in terms of places, components and structure.

3.7.5 Crossover operator

Definition 3.7.3 (Crossover Operator,⊗). A crossover operator is a function of crossing

two modelsM1 andM2 to produce two new models, and the two new models compete to
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be one survival modelM ′ as an individual:

M1 ⊗M2 →M ′

In this thesis, the crossover operator is adapted from one ofcrossover variants in genetic

algorithms:Cut and Splice. The mechanism of cut and splice is illustrated in Figure 3.13

by recombining two parents with different length to producetwo children. Two separate

crossover points are randomly selected on the parents, before swapping parts of the parents

beyond the crossover points. There are two children produced from the swapping, and the

characters of the parents are inherited.

Parents:

Children:

Figure 3.13: Mechanism ofCut and Splice.

With respect to the principle ofCut and Splice, the crossed models typically inherit

many of the characteristics from the parental models. Therefore, it is possible to obtain a

set of components with good characteristics in synthetic models. Note that the good char-

acteristics of components in a model can be taken as the functions of producing interesting

behaviour of species or composing alternative topologies of target biochemical systems.
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3.7.6 Crossover rules

Models are crossed over for generating offspring models which inherit genes (components)

of parental models, ensuring evolutionary progress while modelling biochemical systems.

An overview of crossover rules are given in Table 3.6, describing how to cut parts of models

under construction and to swap components between two models.

Table 3.6: An overview of crossover rules.

Rule Execution
R1

⊗ Cut and swap parts of components in two modelsMi andMj (i 6= j)
Note:Mi andMj are two different parental models for performing crossoveroperator.

Cutting and swapping components from two parental models toproduce two offspring

models follows the traditional ‘Cut and Splice’ mechanism on individuals with binary rep-

resentation. Components are instances from pre-defined patterns in this thesis and the

presentation of components are not in binary format. Basic working mechanism of cut

and splice works on many evolutionary modelling issues, thus we employ these evolution-

ary operations to evolve our models under construction by introducing genetic crossover

mutation. Details of crossover rules are described as following:

• R1
⊗: Given modelMi and modelMj (i 6= j), two cut and splice pointspi and pj

are chosen randomly in the sets of components ofMi andMj respectively. Then

components ofMi (Mj) beyond thepi (pj) are cut away from Mi (Mj), swapped

with components ofMj (Mi) beyond thepj (pi) and spliced to the rest of compo-

nents ofMj (Mi). Finally, two new generated modelsM ′
i andM ′

j are generated,

and maintenance is applied toM ′
i and M ′

j to reduce duplicate components and

link isolated components.

Example In Table 3.7, given two modelsM1 andM2 with l1 and l2 components
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Table 3.7: Crossover between two models

Status Models Components (Reactions)
Before⊗ M1 {r1M1

, ..., rp1M1
, rp1+1

M1
, ..., rl1M1

}

M2 {r1M2
, ..., rp2M2

, rp2+1
M2

, ..., rl2M2
}

After ⊗ M ′
1 {r1M1

, ..., rp1M1
, rp2+1

M2
, ..., rl2M2

}

M ′
2 {r1M2

, ..., rp2M2
, rp1+1

M1
, ..., rl1M1

}

respectively, two pointsp1 andp2 are selected randomly for crossover, where1 ≤

p1 ≤ l1 and1 ≤ p2 ≤ l2:

– ModelM1 - a set of components{r1M1
, ..., rp1M1

, rp1+1
M1

..., rl1M1
}

– ModelM2 - a set of components{r1M2
, ..., rp2M2

, rp2+1
M2

, ..., rl2M2
}

After applying the crossover operation, there are two new children modelsM ′
1 and

M ′
2 generated with different sets of componentsl′1 and l′2 respectively, wherel′1 =

p1 + (l2 − p2) andl′2 = p2 + (l1 − p1):

– ModelM ′
1 - a set of components{r1M1

, ..., rp1M1
, rp2+1

M2
, ..., rl2M2

}

– ModelM ′
2 - a set of components{r1M2

, ..., rp2M2
, rp1+1

M1
, ..., rl1M1

}

Since two random cut and spliced points are chosen to be separative sites in two parental

models, isolated and duplicated components can exist in children models. The isolated

and duplicated components result in a non-connective topology or duplicated arcs among

compounds. In order to ensure models under construction areconnected and reduced, more

operations should be applied to maintain the generated models, Details of maintenance

operations are discussed in following section.
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3.8 Maintenance of Composed Models

Composition operators and rules are employed to modify the Petri net models and to syn-

thesize new species in the models by renaming labels of places. Since the labels can be

simple alphanumeric strings or a series of simple place names joined by the ‘|’ symbol,

the modified labels of species could create duplicate alphanumeric parts, and repeat com-

ponents could be generated in the model. It is necessary to maintain the synthetic models

after composition. Therefore, three aspects of constructed models should be checked and

maintained: names (labels) of species (places), components and topologies.

3.8.1 Maintaining the species

During the composition process, all the components with involved species should be unique.

In order to uniquely identify the species and parameters in amodel, a naming convention

was applied to refer species and parameters with the same names in different models with-

out having to change the names [Rand 08]. In our proposed models composition, partial

modification on the labels of places of synthetic compounds can result in duplicate alphanu-

meric parts joined by a symbol ‘|’. Therefore, the labels of places in a composed model will

be sorted in ascending order and clarified by removing duplicate parts between the symbol

‘ |’. After manipulating the names of compounds, the species ina model will be unique and

clarified for comparisons with other composed places in further composition.

An example of sorting and clarifying the label of a syntheticcompound is illustrated

as follows. Given two labels of placesL1 andL2, a labelL3 composed fromL1 andL2 is

synthesized by sorting and reducing the alphanumeric partsof L1 andL2:

• L1: {A1|B2|B3|C4} is the label of specieP1, where ‘A1, B2, B3 andC4’ are the
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names of other species in the model;

• L2: {A1|B3|C2|C3|C4|D1} is the label of specieP2, where ‘A1, B3, C2, C3, C4

andD1’ are the names of other species in a model;

• L3: {A1|B2|B3|C2|C3|C4|D1} is the label of specieP3 composed fromP1 andP2,

where duplicate ‘A1, B3 andC4’ are merged to indicate the new syntheticP3.

Therefore, while modelling biochemical systems by our proposed species maintenance,

it is possible to enable modelers identifying the uniqueness of the synthetic components of

the composed models.

3.8.2 Maintaining the components

After applying addition and crossover operators to composemodels of biochemical sys-

tems, the constructed models could comprise of repeat components. The duplicate com-

ponents are presented in Petri nets with duplicate arcs existing among the transitions and

places. The mapped ODEs system of the composed models with these duplicate com-

ponents contains duplicate mathematical equations, whichmathematically illustrates the

corresponding models incorrectly. Consequently, the models with duplicate components

should be reduced by removing duplicate reactions directly. Table 3.3 shows an example

of reducing a composed model with duplicate components.

3.8.3 Maintaining the structures

When an evaluation of a generated model is carried out by simulating a set of ODEs mapped

from a corresponding Petri net of the synthetic model, it is necessary to have a set of

mapped ODEs consisting with target biochemical system. As introduced in Section 3.7.4
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Table 3.8: Maintaining components of a synthetic model

A Synthetic Model Duplicate ComponentsThe Reduced Model

M = {P1 + P2
k1−→ P3, M = {P1 + P2

k1−→ P3,

P3
k2−→ P1 + P2, P3

k2−→ P1 + P2,

P3
k3−→ P2 + P4, P3

k3−→ P2 + P4,

P3
k3−→ P2 + P4, P3

k3−→ P2 + P4

P4 + P5
k4−→ P6, P4 + P5

k4−→ P6,

P4 + P5
k4−→ P6, P4 + P5

k4−→ P6

P6
k5−→ P4 + P5} P6

k5−→ P4 + P5}

and Section 3.7.6, isolated components and subparts could exist in a composed model, after

modifying the structure of the model. In this scenario, isolation of subparts in a generated

model should be reconnected for mapping a set of relevant ODEs. Relevant ODEs enables

a synthetic model to be simulated and the behavior of speciesto be fit correctly during the

process of models construction.

P1 P2

T1

T2

Figure 3.14: An original model for subtraction

In this thesis, we proposed an approach to maintain the connectivity of a Petri net model
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P2P1

T2

Figure 3.15: One structure of the model after subtraction

by adding a new synthetic component. The added component is created in a binding pat-

tern by using places from the isolated components, and the component is composed to the

topology of Petri net model to link isolated parts. For instance in Figure 3.12, two separate

parts of the model will be linked by a component which is created via binding placesP3

andP6 in a transitionT3 to make a new complexP3|P6. Related works of constructing

connective workflow nets can be referred to [Poly 11].

An example of maintaining the structure of a generated modelis given as follows. A

modelM is originally represented in Figure 3.14. If the transitionT1 is removed fromM,

two isolated placesP1 andP2 can exist as shown in Figure 3.15. If the transitionT2 is

removed fromM, two isolated components and one connected subpart of theM can exist

as shown in Figure 3.16.
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P1 P2

T1

Figure 3.16: Another structure of the model after subtraction

3.9 Examples of Composing Biochemical Systems

There are three demonstration examples of component-modelcomposition: MA1 (See

Equation 3.3.1), 3-cascade pathway without feedback, and 3-cascade pathway with feed-

back. The details of construction and de-construction of these examples are illustrated

by composing instantiated components. Note that the composition process is simplified

for demonstration, and the composing of biochemical systems is carried out by a hybrid

evolutionary modelling approach which is illustrated in Chapter 4.

3.9.1 Composition of an enzymatic reaction based on MA1

Given two elements, three components can be instantiated bya combinatorial method based

on the binding and unbinding patterns. An enzymatic reaction based on MA1 can be gener-

ated by composing the three instantiated components. The details of patterns, components

and composition of the enzymatic reaction are illustrated as following:
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• Templates for components instantiation:

– Binding pattern:P1 + P2
k1
−→ P3

– Unbinding pattern:P3
k2
−→ P1 + P2

• Input elements: A (acting as a substrate) andE (acting as an enzyme);

• Instantiated components:

– Component C1:A+ E
k1
−→ A|E

– Component C2:A|E
k2
−→ A+ E

– Component C3:A|E
k3
−→ AP + E

• Composition process:

– Step 1: Randomly select component C2 as an initial seed from the library:

A|E
k2
−→ A+ E

– Step 2: Add component C3 to C2 by comparingA|E from C2 withA|E from

C3. Components C2 and C3 are composed directly because of thesame com-

pared places (A|E):

A+ E
k2←− A|E

k3−→ AP + E

– Step 3: Add component C1 to ‘C3⊕ C2’ by comparingA from C1 withA|E

from C2. PlaceA|E is maintained in C2 but placeA in C1 is replaced byA|E,

where C1 is modified as ‘A|E + E
k1
−→ A|E’. This composition of adding C1

is rejected, because modified component C1 against the rule ’There must be no

Placeto producePlaceitself, such asP +Q
k1
−→ P ’.
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– Step 4: Add component C1 to ‘C3⊕ C2’ by comparingE from C1 withE

from C3. Components C1 and C3 are composed directly because of the same

compared places (E):

A+ E

k1−→

←−
k2

A|E
k3−→ AP + E

Then the enzymatic reaction based on MA1 kinetic law is generated by ‘C1⊕ C3⊕

C2’ after performing aforementioned operators.

3.9.2 Composition of a 3-cascade pathway without feedback

The composition of a 3-cascade pathway without feedback canbe obtained by applying

addition and subtraction operations to instantiated components. Specially, MA1 is used for

the generation of components instantiation in this demonstration.

• Templates for components instantiation:

– Binding pattern:P1 + P2
k1
−→ P3

– Unbinding pattern:P3
k2
−→ P1 + P2

• Input elements: R, RR andRRR (which are acting as substrate) andS1, P1, P2

andP3 (which acting as an enzyme)

• Instantiated components:There are three input elements acting as a substrate and

four elements acting as an enzyme. According to a combinatorial principle of choos-

ing input elements for instantiating components by MA1, 36 components are gener-

ated and details of these components are shown in Table 3.9.

• Composition process:
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Table 3.9: Instantiated components in a components library.

NO. Component Detail NO. Component Detail

C1 R + S1
k1
−→ R|S1 C19 R + P2

k1
−→ R|P2

C2 R|S1
k2
−→ R + S1 C20 R|P2

k2
−→ R + P2

C3 R|S1
k3
−→ RP + S1 C21 R|P2

k3
−→ RP + P2

C4 RR + S1
k1
−→ RR|S1 C22 RR + P2

k1
−→ RR|P2

C5 RR|S1
k2
−→ RR + S1 C23 RR|P2

k2
−→ RR + P2

C6 RR|S1
k3
−→ RRP + S1 C24 RR|P2

k3
−→ RRP + P2

C7 RRR + S1
k1
−→ RRR|S1 C25 RRR + P2

k1
−→ RRR|P2

C8 RRR|S1
k2
−→ RRR + S1 C26 RRR|P2

k2
−→ RRR + P2

C9 RRR|S1
k3
−→ RRRP + S1 C27 RRR|P2

k3
−→ RRRP + P2

C10 R + P1
k1
−→ R|P1 C28 R + P3

k1
−→ R|P3

C11 R|P1
k2
−→ R + P1 C29 R|P3

k2
−→ R + P3

C12 R|P1
k3
−→ RP + P1 C30 R|P3

k3
−→ RP + P3

C13 RR + P1
k1
−→ RR|P1 C31 RR + P3

k1
−→ RR|P3

C14 RR|P1
k2
−→ RR + P1 C32 RR|P3

k2
−→ RR + P3

C15 RR|P1
k3
−→ RRP + P1 C33 RR|P3

k3
−→ RRP + P3

C16 RRR + P1
k1
−→ RRR|P1 C34 RRR + P3

k1
−→ RRR|P3

C17 RRR|P1
k2
−→ RRR + P1 C35 RRR|P3

k2
−→ RRR + P3

C18 RRR|P1
k3
−→ RRRP + P1 C36 RRR|P3

k3
−→ RRRP + P3

– Step 1: Randomly select C3 as an initial seed:

R|S1
k3
−→ RP + S1

– Step 2: C3⊕ C2:

R + S1
k2←− R|S1

k3
−→ RP + S1

– Step 3: C3⊕ C2⊕ C19:

R + S1
k2←− R|S1

k3
−→ RP + S1



89

R + P2
k1
−→ R|P2

– Step 4: C3⊕ C2⊕ C19⊕ C1:

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P2
k1
−→ R|P2

– Step 5: C3⊕ C2⊕ C19⊕ C1⊖ C19. Transition of
k1
−→ in C19 component

‘R + P2
k1
−→ R|P2’ is removed with incident arcs directly. PlacesP2 and

R|P2 are cleaned up after checking the topology connectivity of remain parts:

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

– Step 6: C3⊕ C2⊕ C19⊕ C1⊖ C19⊕ C10. PlacesR in component C10 is

replaced byRP :

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

RP |P1
k1
←− RP + P1

– Step 7: C3⊕ C2⊕ C19⊕ C1⊖ C19⊕ C10⊕ C11. PlacesR in component

C11 is replaced byRP :

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

RP |P1

k1←−

−→
k2

RP + P1

– Step 8: C3⊕ C2 ⊕ C19⊕ C1 ⊖ C19⊕ C10⊕ C11⊕ C11. PlacesR in

component C11 is compared withRP |P1 in M , then ‘RP |P1
k2
−→ R + P1’ is

created and added. Component C11 ‘R|P1
k2
−→ R + P1’ is added:
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R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P1←−
k2

RP |P1

k1←−

−→
k2

RP + P1

R + P1
k2
←− R|P1

– Step 9: C3⊕ C2⊕ C19⊕ C1⊖ C19⊕ C10⊕ C11⊕ C11⊖ C11. Transition

of
k2
←− in component C11 ‘R + P1

k2
←− R|P1’ is removed with incident arcs

directly. PlaceR|P1 is cleaned up after checking the topology connectivity of

remain parts:

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P1←−
k2

RP |P1

k1←−

−→
k2

RP + P1

The 1st cascade layer is generated by Step 1-9, and the 2nd and3rd cascade

layers can be generated in a similar manner, for instance after N Steps and

N+M Steps respectively as follows.

– StepN: The 2nd cascade layer is generated:

RR + S1

k1−→

←−
k2

RR|S1
k3−→ RRP + S1

RR + P2←−
k2

RRP |P2

k1←−

−→
k2

RRP + P2

– StepN+M: The 3rd cascade layer is generated:

RRR + S1

k1−→

←−
k2

RRR|S1
k3−→ RRRP + S1



91

RRR + P3←−
k2

RRRP |P3

k1←−

−→
k2

RRRP + P3

The 3-cascade pathway without feedback is generated after two more steps of

composition as follows.

– StepN+M+1: ‘1st-cascade⊕ 2rd-cascade’ is composed by replacingS1 in

2nd-cascade withRP :

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P1←−
k2

RP |P1

k1←−

−→
k2

RP + P1

RR +RP

k1−→

←−
k2

RR|RP
k3−→ RRP +RP

RR + P2←−
k2

RRP |P2

k1←−

−→
k2

RRP + P2

– StepN+M+1+1 : ‘1st-cascade⊕ 2rd-cascade⊕ 3rd-cascade’ is composed by

replacingS1 in 3rd-cascade withRRP :

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P1←−
k2

RP |P1

k1←−

−→
k2

RP + P1

RR +RP

k1−→

←−
k2

RR|RP
k3−→ RRP +RP

RR + P2←−
k2

RRP |P2

k1←−

−→
k2

RRP + P2
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RRR +RRP

k1−→

←−
k2

RRR|RRP
k3−→ RRRP +RRP

RRR + P3←−
k2

RRRP |P3

k1←−

−→
k2

RRRP + P3

Then the 3-cascade pathway without feedback is generated after application of addition

and subtraction operations.

3.9.3 Composition of a 3-cascade pathway with feedback

More composition steps can be applied to a generated 3-cascade pathway without feedback

to compose a 3-cascade pathway with feedback, by adding components C1 and C2 from

the Table 3.9 in previous section.

• Composition process:

– Step 1: ‘a 3-cascade pathway without feedback⊕ C1’. R in C1 is replaced by

RRRP which is from the 3-cascade pathway without feedback:

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P1←−
k2

RP |P1

k1←−

−→
k2

RP + P1

RR +RP

k1−→

←−
k2

RR|RP
k3−→ RRP +RP

RR + P2←−
k2

RRP |P2

k1←−

−→
k2

RRP + P2

RRR +RRP

k1−→

←−
k2

RRR|RRP
k3−→ RRRP +RRP
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RRR + P3←−
k2

RRRP |P3

k1←−

−→
k2

RRRP + P3

RRRP + S1
k1
−→ RRRP |S1

– Step 2: ‘a 3-cascade pathway without feedback⊕ C1⊕ C2’. R in C2 is re-

placed byRRRP from the ‘3-cascade pathway without feedback⊕ C1’:

R + S1

k1−→

←−
k2

R|S1
k3−→ RP + S1

R + P1←−
k2

RP |P1

k1←−

−→
k2

RP + P1

RR +RP

k1−→

←−
k2

RR|RP
k3−→ RRP +RP

RR + P2←−
k2

RRP |P2

k1←−

−→
k2

RRP + P2

RRR +RRP

k1−→

←−
k2

RRR|RRP
k3−→ RRRP +RRP

RRR + P3←−
k2

RRRP |P3

k1←−

−→
k2

RRRP + P3

RRRP + S1

k1−→

←−
k2

RRRP |S1

Then a 3-cascade pathway with feedback is generated after Steps 1 and 2 by composing

component C1 and C2 to a 3-cascade pathway without feedback.
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3.10 Summary

In this chapter, we have presented binding and unbinding patterns as two templates for in-

stantiating components. An enzymatic reaction can be decomposed into three components

instantiated from the two patterns. Moreover, a set of MA1 enzymatic reactions is em-

ployed to present biochemical systems in this thesis, but reactions based on other two mass

action kinetics MA2 and MA3 can be also utilized to investigate more complex biochemi-

cal systems in further research. The atomic components and synthetic models are defined in

syntax and semantics for modelling biochemical systems. Two libraries are proposed and

implemented in a MySQL database to preserve the components and models respectively.

We have presented how to modify Petri net models of biochemical systems by using a

set of composition operators and rules. The composition operators are adapted from evo-

lutionary algorithms in computer science, which allows synthetic models to inherit char-

acteristics of parental models. The composition rules proposed in our research guide the

implementation of composition operators to modify the Petri net models, which makes sure

composed models are biological relevance and controllable. Moreover, plausible structures

of Petri net models can be generated by our proposed composition operators and rules.

These alternative models present target biochemical systems in a different view, and biolo-

gists in wet-lab would interest in these synthetic alternative models in further experimental

investigation.

In order to obtain models with non-conflicting species, unique components and con-

nective topologies after composing models, we have illustrated how to maintain these syn-

thetic Petri net models by manipulating the places, components and structures of models in

a maintenance procedure.

Some simple examples of modelling biochemical systems havebeen demonstrated by
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applying composition operators and rules to compose atomiccomponents. More details of

implementations of the composition operators, composition rules and model maintenance

are illustrated in a hybrid piecewise modelling framework in Chapter 4.



Chapter 4

Hybrid Modelling of Biochemical
Systems

4.1 Introduction

This chapter firstly introduces related works of modelling biochemical systems via differ-

ent types of hybrid approaches, points out the importance ofhybrid modelling biochemical

models in terms of structure and kinetic rates, and presentsapproaches of piecewise hy-

brid composing biochemical systems. The hybrid modelling approaches focus on different

aspects of biochemical systems: one approach is a one dimension hybrid model generator

based on SA algorithm for manipulating model topology and kinetic rates separatively; an-

other approach is a two dimensions hybrid piecewise modelling framework, which shows

an integration of ES and SA on a two-layer modelling environment for composing bio-

chemical models in terms of both topology and kinetic rates.

Section 4.2 introduces related works of modelling biochemical systems which has fo-

cused on utilizing different metaheuristics and computational models to construct biochem-

ical systems in computational biology. The employed metaheuristics include memetic al-

gorithms, simulated annealing and genetic algorithm. S-systems and P systems are used

96
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to describe the computational models. Gene regulatory networks and other transcriptional

networks have been investigated as test cases for topology construction and kinetic rates

optimization.

Section 4.3 introduces a general framework of modelling biochemical systems in com-

putational biology and illustrates our modelling strategyin this thesis. The basic concep-

tions of our hybrid modelling methodologies are illustrated before the one and two dimen-

sions modelling approaches are illustrated.

Section 4.4 presents our one dimension hybrid models generator developed by employ-

ing SA to construct structures and optimize kinetic rates separatively. In the one dimension

hybrid approach, topology mutation is performed iteratively by piecewise adding compo-

nents to a model seed under construction, and kinetic rates associated with reactions of a

model are mutated by the Gaussian distribution and globallyoptimized by SA. Moreover,

there are two ways to refine kinetic rates at each iteration while applying the SA to the mod-

elling process: only one kinetic rate associated with one biochemical reaction is mutated;

or all kinetic rates associated with all biochemical reactions are mutated. Our proposed one

dimension hybrid models generator can approach these two kinetic rates optimization.

Section 4.5 presents a two dimensions hybrid piecewise modelling framework, which

is proposed and implemented with the aims of automatically and intelligently modelling

biochemical systems from scratch in an integrated two-layer environment in terms of both

topology and kinetic rates. Evolution strategy (ES) is employed to compose models by

adding components to (or removing components from) the model candidates. SA is utilized

to perform optimization of kinetic rates of the reactions inmodels. Swapping between ES

and SA implementation is performed by exchanging models information between a ES

based outer layer and a SA based inner layer in a hybrid framework.
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A brief summary of this chapter is given in Section 4.6 which summarizes the work-

ing mechanisms of the one dimension and two dimensions hybrid piecewise modelling

approaches.

4.2 Related Works of Hybrid Modelling

Models can be constructed in systems biology to predict and explain exhibiting behaviour

of biochemical systems, or as templates for designing novelbiochemical systems in syn-

thetic biology. It is still an open question regarding how tobuild and verify models of the

biochemical systems, involving intelligent methods and tractable computational tools.

Traditionally the structures of models are inferred from various experimental observa-

tions, and the kinetic rates are estimated computationallyregarding kinetic laws [Brei 08,

Gilb 09]. Given static topologies of models representing the biochemical systems, it is

feasible to fit kinetic rates of the models to drive behaviourof models coinciding with

observations of given physical systems [Feng 04, Mari 04, Manc 11]. It is also feasible

to construct biochemical models by identification of alternative topologies of the target

biochemical systems, and then to optimize the topologies with which kinetic rates con-

stants are associated, generating models with similar behaviour to target biochemical sys-

tems [Fran 04, Vysh 08].

As topologies and kinetic rates associated with biochemical reactions are both very

crucial for biochemical systems exhibiting observed behaviour, it is necessary to model

the systems in terms of both topology and kinetic rates by a hybrid method. One of

the challenging aims of hybrid modelling research is to develop a robust method for au-

tomated models construction from descriptions of the observed or desired behaviour of
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target biochemical systems, by manipulating both topologyand kinetic rates in an in-

tegrated and iterative manner. Some previous research has been carried out in hybrid

modelling of biochemical systems with respect to the topology and kinetic rates issues,

for instance a memetic method and S-systems based inferenceof gene regulatory net-

works [Spie 04], an ODEs and SA based optimization of small transcriptional networks

and kinetic parameters [Rodr 07a, Rodr 07b], a nested GA and Psystems based modelling

framework [Cao 10, Rome 08].

Previous research of hybrid modelling mainly relies on constructing models topolo-

gies, starting from existing biochemical networks. In these related works, initial topologies

of models seeds are modified and evaluated by different metaheuristics, with optimizing

kinetic rates. Whereas our developed hybrid modelling approach in this thesis is to incre-

mentally piecewise construct a network from a single component, which starts modelling

from a simple structure to a complex one. Moreover, kinetic rates associated with the struc-

ture under construction can be optimized in different stages of developing topology in an

evolutionary and automatic manner.

A brief introduction of general modelling framework is given in Section 4.3, before our

one dimension hybrid models generator is presented in Section 4.4 and two dimensions

hybrid piecewise modelling approach is presented in Section 4.5. The simple models gen-

erator is designed regarding SA mechanism, and it is implemented to generate topology

and optimize kinetic rates separatively. The two dimensions hybrid modelling approach is

proposed by taking mechanisms of ES and SA into account whilepiecewise constructing

topology and globally optimizing kinetic rates.
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4.3 General Framework of Hybrid Modelling

4.3.1 General framework

Modelling of biochemical systems driven by target behaviour can be illustrated in Fig-

ure 4.1. Given a biochemical system with information of observed behaviour from experi-

mental examination in wet-lab, a synthetic model can be modelled by manipulating topol-

ogy and kinetic rates associated with biochemical reactions in the model seed. Behaviour

of species in the synthetic model can be described and used for a comparison between the

target modelled biochemical system and the synthetic model. Feedback from the compari-

son results can be provided to biologists in wet-lab for further experiments, and refinement

can be suggested and passed to modelers in dry-lab to modify properties of the synthetic

model, such as topology and kinetic rates, for improving quality of the synthetic model.

Similar work of designing biochemical systems by computer-aid methodologies has been

investigated. Cooling et al. focused on how to use standardization of biological parts to

develop libraries of standard virtual parts in the form of mathematical models that can be

combined to inform system design. An online Repository was presented to use a collec-

tion of standardized models that can readily be recombined to model different biological

systems using the inherent modularity [Cool 10].

We apply metaheuristics to evolve topology and optimize kinetic rates of models while

composing representations of target biochemical systems in PNs format. The behaviour

of biochemical systems and synthetic models utilized by ourmodelling approach are time

series data which is the change of species concentration over simulation time. Comparison

of behaviour between target and generated model is approached by measuring behaviour

difference, which provides positive or negative information about composed models under
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Figure 4.1: A general framework of modelling biochemical systems.

estimation. Then modelling approach can fine tune the modelsin terms of topology and

kinetic rates, for exhibiting improved synthetic behaviour.

4.3.2 Hybrid approach

In this thesis, we apply two metaheuristics, evolution strategy (ES) and simulated anneal-

ing (SA), in computer science to tackle issues of modelling biochemical systems in terms

of topology and kinetic rates. Since two aspects (topology and reaction rates) of a biochem-

ical system are investigated by employing two different algorithms in a hybrid manner, our

hybrid modelling is illustrated in Figure 4.2.

In general, ifModelConstructionMethod(Topology, Rates)is applied toM(T, R), indi-

cating that topology and rates of a biochemical model are constructed by different methods.

We can have different combinations of hybrid application ofmethods to the topology and

rates:M(TES, RSA) andM(TSA, RES). In this thesis, we investigateM(TES, RSA), which

is a hybrid implementation of ES and SA on topology and rates respectively. As shown
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Figure 4.2: Construction of systems operates over two aspects: topology and kinetic
rates. Each aspect can be taken as one dimension which needs to be manipulated by the
same/different method.

in Figure 4.2, while modelling biochemical systems, the construction operates over two

aspects of the systems: topology and kinetic rates. We can take each aspect as one dimen-

sion which needs to be manipulated by the same/different method. In this thesis, we have

two hybrid approaches which apply different methods to different dimensions while mod-

elling biochemical systems: a one-dimensional (1D) approach and a two-dimensional (2D)

approach.

In 1D approach, the algorithm is applied to tackle one problem at each time, for instance

SA can be used to fit kinetic rates on x-axis by a combination of‘SA+Kinetic Rates’, or

construct topology on y-axis by a combination of ‘SA+Topology’; and ES can be utilized to

develop topology by a combination of ‘ES+Topology’ on x-axis, or optimize kinetic rates
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by a combination of ‘ES+Kinetic Rates’ on y-axis.

In 2D approach, two algorithms are used to solve modelling issues in a combinatorial

manner. For example, in the clockwise direction, ES can be used to fit kinetic rates of a

model and the topology of the model is constructed by SA, withthese modelling stages

being repeated by using ES and SA in turn; or in the anticlockwise direction, ES is em-

ployed to develop topology of a model under construction andkinetic rates associated with

biochemical reactions are optimized by SA, then modelling operations swap between im-

plementations of ES on topology and SA on kinetic rates untilsatisfying the termination

criteria.

ES is a population-based metaheuristics and it is good at introducing alternative solu-

tions with a probability, we utilize ES to tackle the topology composition in our 2D hybrid

modelling approach. Moreover, SA is a single-solution based metaheuristics which obtains

optimal solutions by a global search, we employ SA to optimize the kinetic rates associated

with reactions in the models under composition. Thus, a combination of ‘ES+Topology’

and ‘SA+Kinetic Rates’ is fundamental hybrid mechanism in the research of modelling

biochemical systems by our 2D hybrid approach in this thesis.

4.4 A 1D Hybrid Modelling Approach

SA has been employed to set up a modelling environment in a 1D hybrid models genera-

tor for the construction of biochemical systems. The 1D hybrid models generator has two

functions: to piecewise build models of biochemical systems, and to iteratively optimize

kinetic rates in given biochemical models. The topologies of biochemical systems are con-

structed in the models generator by manipulating pre-defined components and adding the

components to model seeds. The kinetic rates of given biochemical models are optimized
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in the models generator globally and iteratively.

4.4.1 Topology generation

4.4.1.1 Development of topology

The topology of a model is constructed by assembling pre-defined components together to

form a complex structure representing target biochemical system. During the development

of topology, components are added to develop the topology incrementally, but kinetic rates

associated with reactions in these composed components arenot modified. Interactions

among species of a model can be represented by arcs in components which are instantiated

from the PNs templates defined in Chapter 3. The iterative addition of arcs from added

components to a model seed develops the topology of the seed,and the topology space is

explored by using the global search mechanism of SA.

An algorithmBNRSA(Biochemical Network Reconstruction based on Simulated An-

nealing) is proposed and implemented in the models generator to illustrate how piecewise

developing topologies of models by adding reusable components in a SA based 1D hybrid

modelling approach [Wu 10]. The pseudo-code in Algorithm 3 describes the details of the

algorithmBNRSA.

Given a library preserving reusable components and an initial setting (initial and min-

imum temperatures, cooling rate, iterations number and initial concentrations of species)

for running the 1D hybrid models generator, the piecewise topology construction starts as

follows.

A component is selected randomly from the components library as an initial biochem-

ical model seed. Another component is chosen randomly from the library to develop the
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Require: DT , S, T0, Tmin, CoolingRate, N andMinitial

Ensure: DeltaDistance, ModelTopology andSimuResult
1: while T > Tmin do
2: while N 6= 0 do
3: NewTopology← Add(Component, OldTopology);
4: ∆ C = Cost(NewTopology)-Cost(OldTopology);
5: if ∆C < 0 then
6: OldTopology← NewTopology;
7: else
8: if exp(−(∆C/T )) > Random(0, 1) then
9: OldTopology← NewTopology;

10: end if
11: end if
12: N ← (N − 1);
13: end while
14: ResetN
15: T ← (CoolingRate× T )
16: end while

Algorithm 3: Algorithm BNRSA(Biochemical network reconstruction based on sim-
ulated annealing).

model seed by addition of species and reactions. A new developed model topology is es-

timated on the cost which is the difference of species behaviour between developed and

target model. The calculation of behaviour difference is based on the Euclidean distance

equation. The behaviour difference betweenNewTopology andOldTopology is computed

and compared by a ‘Cost(Topology)’ function.

∆ C = Cost(NewTopology)-Cost(OldTopology)

The ‘Cost(Topology)’ function is implemented by simulating the given topology with

information of species concentrations and kinetic rates, which provides behaviour infor-

mation of the given topology in time series data format. According to the probabilistic

mechanism of SA, there are two methods to accept a new generated topology representing

the model under construction:
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1. If the cost ofNewTopology is less than theOldTopology, that is∆C < 0, then the

OldTopology is replaced by theNewTopology;

2. If theNewTopology is worse than theOldTopology, that is∆C ≥ 0, but there is a

probabilityexp(−(∆C/T )) satisfying a conditionexp(−(∆C/T )) > Random(0, 1),

whereRandom(0, 1) is a random double value between zero and one, then the

OldTopology is still replaced by theNewTopology.

The addition of components and evaluation of developed topologies are repeatedN

iterations at each system temperatureT . The temperatureT is lowered by a cooling mech-

anism ‘CoolingRate × T ’ for driving SA system to reach a minimum temperatureTmin.

When a frozen state of SA system is approached, the models generator working on the

development of model structure stops to return a final developed topology representing the

target biochemical system.

Note that the kinetic rates associated with reactions in thegenerated topology by the

models generator are not modified during the modelling process. Section 4.4.2 illustrates

an investigation of employing SA to optimize kinetic rates in given models with fixed

topologies, driving species behaviour to approach desiredones in the target biochemical

systems.

4.4.1.2 Experimental results

Signalling pathways play a pivotal role in many key cellularprocesses [Elli 02]. The ab-

normality of cell signalling can cause the uncontrollable division of cells, which may lead

to cancer. For instance, theRas/Raf-1/MEK/ERKsignalling pathway (also called theERK

pathway) is one of the most important and intensively studied signalling pathways, which

transfers the mitogenic signals from the cell membrane to the nucleus [Yeun 00]. In the
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ERK pathway, theRaf-1kinase inhibitor protein (RKIP) inhibits the activation ofRaf-1

by binding to it, disrupting the interaction betweenRaf-1andMEK, thus playing a part

in regulating the activity of theERK pathway [Yeun 99]. Figure 4.3 shows a graphical

representation of theERKsignaling pathway regulated byRKIP.

Raf−1Star RKIP

Raf−1Star_RKIP

ERK−PP

MEK−PP_ERK

Raf−1Star_RKIP_ERK−PP
RKIP−P_RP

MEK−PP ERK RKIP−P RP

r1 r2

r3 r4

r6 r7 r9 r10r5

r8

r11

Figure 4.3: A graphical representation of theERK signaling pathway regulated by
RKIP [Cho 03]

A number of computational models have been developed in order to understand the role

of RKIP in the pathway and to develop new therapies ultimately [Cho 03, Cald 04]. A well

studied model of theRKIP inhibitedERKpathway described by Cho et al. [Cho 03] is used

as an example to test our 1D hybrid simple models generator, with the aims of piecewise

constructing and global searching the model topology basedon SA algorithm.
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Gilbert et al. [Gilb 06] have shown that analysis based on a discrete Petri net model

of theERK signaling pathway regulated byRKIP can be used to derive the sets of initial

concentrations required by the corresponding continuous ODE model, and no other initial

concentrations produce meaningful steady states. We used the state 13 derived from the

analysis, mapping from the qualitative values of [0,1] to the original quantitative values

of [0,2.5] in the model of theRKIP inhibitedERK pathway given by Cho et al. [Cho 03].

Table 4.1 shows the details of the initial concentrations ofspecies.

Table 4.1: Initial concentrations of species.

Species µM
Raf1 2.5
RKIP 0
Raf1 | RKIP 0
Raf1 | RKIP | ERKPP 0
ERK 0
RKIPP 2.5
MEKPP 2.5
MEPP | ERK 0
ERKPP 2.5
RP 2.5
RKIPP | RP 0

For the implementation of SA algorithm, to find the minimum ofa given fitness function

depends on many parameters. The parameters have a significant impact on the effectiveness

of generated solutions for a given optimization problem [Kirk 83]. Because there is not a

general way to find the best setting for initial parameters ofSA, we apply an empirically

derived setting to our test. The setting of parameters we used for SA platform is listed in

Table 4.2, which can be investigated and optimized for specific modelling of biochemical

pathways in further research.
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Table 4.2: Setting of SA parameters for topology generation.

Parameter Meaning Value
TInitial Initial temperature 50
TMin Minimum temperature 0.01
α Temperature cooling rate 0.95
N Iterations at each temperature10

We employed theBioNessie[Liu 08] platform to simulate model of theRKIP inhib-

ited ERK pathway, and generated time course data as a set of target behaviour of species

in the model. The information of behaviour in time course data format is used to drive

the modelling process by comparing the behaviour distance of species between generated

and target model. The measurement of behaviour distance is obtained by employing the

Euclidean distance function.

The topology of targetRKIP inhibited ERK signalling pathway is developed from

scratch by iteratively adding components to an initial model seed. After iterative additions

in the model generator, we can obtain a constructed model which has a similar topology

to the target one. A ‘similar’ topology described in this thesis presents a topology which

has major common species and their interactions of the target topology. Some species and

interactions may be missed in the similar topology, as well as extra species not in target

topology being generated with interactions.

In Table 4.3 we give a comparison between one generated and target model in terms

of species. Compared to the original 11 species in the targetmodel of theRKIP inhibited

ERK signalling pathway, there are two species missed from our generated model: ‘Raf1 |

RKIP | ERKPP ’ and ‘RKIPP | RP ’. The symbol ‘|’ in the names of species indicates

that these species are complex associated from different species. In addition to the nine

matched species in both generated and target model, there are also another nine ‘new’
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Table 4.3: Comparison of generated and target species in topology.

Species Target Model Generated Model
Raf1 X X

RKIP X X

Raf1 | RKIP X X

Raf1 | RKIP | ERKPP X -
ERK X X

RKIPP X X

MEKPP X X

MEKPP | ERK X X

ERKPP X X

RP X X

RKIPP | RP X -
ERKPP | Raf1 - X

RKIPP | Raf1 - X

ERK | Raf1 - X

ERKPP |MEKPP - X

RKIPP |MEKPP - X

RKIPP | Raf1 - X

ERK | RP - X

RKIP | RP - X

ERKPP | RP - X

species generated in the developed model. But these new synthetic species are not in the

target model of theRKIP inhibitedERKsignalling pathway.

Therefore, our model generator can construct target model piece by piece, by adding

pre-defined components. The main parts of the topology of target model can be obtained.

Extra structure information of the target model is providedwith new synthetic species.

Biologists may be interested in the new synthetic species, because these new specie could

exist in concrete biochemical system but are not being observed or measured in wet-lab

experiments.
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4.4.2 Kinetic rates optimization

4.4.2.1 Optimization of kinetic rates

Regarding extremely complicate and interconnected relationship among species in bio-

chemical systems, it is very difficult to understand the system behaviour without clearly

comprehending the mechanism of enzymatic reactions and associated quantitative kinetic

rates, even when there is general knowledge about the topologies of the biochemical sys-

tems. Moreover, kinetic rates are not always possible or easy to measure in wet-lab exper-

iments, because of experimental constraints, cost and time. Therefore, it is important to

quantitatively study the kinetic ratesin silico by computational methodologies, especially

after obtaining the model topologies for the biochemical systems.

Given a model with fixed topology, kinetic rates associated with reactions can be op-

timized by employing SA algorithm in the models generator toglobally explore the rates

space for the model exhibiting desired behaviour. Experimental data of the biochemical

systems, for instance behaviour of species, can be used to drive the optimization of kinetic

rates by comparing behaviour difference between generatedand target model. The dif-

ference of behaviour contributes to an objective function for the estimation of optimized

kinetic rates.

We proposed Algorithm 4 to describe optimization of kineticrates in a given model

for obtaining desired behaviour of the biochemical system.Given a vector of kinetic rates

K(M) for a model with fixed topology, kinetic rates in theK(M) are modified in the mod-

els generator by employing SA. After initiating the parameters of SA system on initial and

minimum temperatures, cooling rate, and iterations number, Gaussian distributionN(µ, σ)

is utilized in a function ‘Modify(KN
t=T0

(M), N(µ, σ))’ to manipulate values inK(M) at

SA system temperatureT0 andN th iteration.
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Require: T0, Tmin, CoolingRate, M0, N , M andKN
t=T0

(M)
Ensure: K(M)

1: while T0 > Tmin do
2: while N 6= 0 do
3: KN

t=T0
(M)′←Modify(KN

t=T0
(M), N(µ, σ));

4: ∆ C = Cost(KN
t=T0

(M)′)-Cost(KN
t=T0

(M));
5: if ∆C < 0 then
6: KN

t=T0
(M)← KN

t=T0
(M)′;

7: else
8: if exp(−(∆C/T )) > Random(0, 1) then
9: KN

t=T0
(M)← KN

t=T0
(M)′;

10: end if
11: end if
12: N ← (N − 1);
13: end while
14: ResetN
15: T0 ← (CoolingRate× T0)
16: end while

Algorithm 4: Algorithm KROSA(Kinetic rates optimization based on simulated an-
nealing).

All modified kinetic rates in theK(M) at each iteration are evaluated by comparing

the behaviour distance between the given and target model. The behaviour distance is

calculated by using a cost function ‘Cost(K(M))’ based on Euclidean distance.

∆C=Cost(KN
t=T0

(M)′)-Cost(KN
t=T0

(M))

Modification of the vectorK(M) is accepted or rejected by following a classical SA

probabilistic mechanism of solutions acceptance. The process of optimizingK(M) stops

when the system temperaturet reaching a minimum temperatureTmin by cooling rate

CoolingRate, and returns a final modified vectorK(M) with optimized kinetic rates for

given model exhibiting desired behaviour.
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4.4.2.2 Experimental results

We use the model ofRKIP inhibitedERKsignalling pathway introduced in Section 4.4.1.2

as a study case for simulations of kinetic rates optimization. The topology of target model

is fixed without modification, while the associated kinetic rates are optimized by employing

SA in the models generator.

The values of kinetic rates of the target model for fitting areassigned with the rates

constants of state 13 in the model investigated by Gilbert etal. [Gilb 06], as shown in

Table 4.4, which are in accordance with the range given in theoriginal paper by Cho et

al. [Cho 03].

Table 4.4: Original kinetic rates.

Kinetic Rate Initial Value Kinetic Rate Initial Value
k1 0.53 k7 0.0075
k2 0.0072 k8 0.071
k3 0.625 k9 0.92
k4 0.00245 k10 0.00122
k5 0.0315 k11 0.87
k6 0.6

A set of ODEs mathematically representing the target model can be used for simulations

on optimized kinetic rates. Details of the ODEs are described in Table 4.5 as follows.

Figure 4.4 presents all the behaviour of species in the modelof ERKsignaling pathway

regulated byRKIP, which is generated by simulation on a set of given ODEs and a group

of original kinetic rates.

In the models generator, the values of kinetic rates are fine tuned by Gaussian distribu-

tion N(µ, σ) with meanµ and standard deviationσ. Furthermore, there are two ways to

optimize the kinetic rates in a given model at each iterationin SA system: to mutate one

rate only and to mutate all the rates.
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d[Raf1]
dt

= k2 ∗ [RKIP |Raf1] + k5 ∗ [ERKPP |RKIP |Raf1]
−k1 ∗ [Raf1] ∗ [RKIP ]

d[RKIP ]
dt

= k2 ∗ [RKIP |Raf1] + k11 ∗ [RKIPP |RP ]
−k1 ∗ [Raf1] ∗ [RKIP ]

d[RKIP |Raf1]
dt

= k1 ∗ [Raf1] ∗ [RKIP ] + k4 ∗ [ERKPP |RKIP |Raf1]
−k2 ∗ [RKIP |Raf1]− k3 ∗ [RKIP |Raf1] ∗ [ERK|RP ]

d[ERK|RP ]
dt

= k4 ∗ [ERKPP |RKIP |Raf1] + k8 ∗ [ERK|MEKPP ]
−k3 ∗ [RKIP |Raf1] ∗ [ERK|RP ]

d[ERKPP |RKIP |Raf1]
dt

= k3 ∗ [RKIP |Raf1] ∗ [ERK|RP ]
−k4 ∗ [ERKPP |RKIP |Raf1]− k5 ∗ [ERKPP |RKIP |Raf1]

d[RKIPP ]
dt

= k5 ∗ [ERKPP |RKIP |Raf1] + k10 ∗ [RKIPP |RP ]
−k9 ∗ [RKIPP ] ∗ [RP ]

d[ERK]
dt

= k5 ∗ [ERKPP |RKIP |Raf1] + k7 ∗ [ERK|MEKPP ]
−k6 ∗ [ERK] ∗ [MEKPP ]

d[RP ]
dt

= k10 ∗ [RKIPP |RP ] + k11] ∗ [RKIPP |RP ]
−k9 ∗ [RKIPP ] ∗ [RP ]

d[RKIPP |RP ]
dt

= k9 ∗ [RKIPP ] ∗ [RP ]− k10 ∗ [RKIPP |RP ]
−k11 ∗ [RKIPP |RP ]

d[ERK|MEKPP ]
dt

= k6 ∗ [ERK] ∗ [MEKPP ]− k7 ∗ [ERK|MEKPP ]
−k8 ∗ [ERK|MEKPP ]

d[MEKPP ]
dt

= k7 ∗ [ERK|MEKPP ] + k8 ∗ [ERK|MEKPP ]
−k6 ∗ [ERK] ∗ [MEKPP ]

Table 4.5: A set of ODEs for the simulations of optimized kinetic rates.

1. To mutate one kinetic rate associated with one biochemical reaction at each iteration.

In this scenario, we are interested in fitting one specific biochemical reaction at each

iteration, while other kinetic rates associated with rest of reactions are fixed with-

out modifications. The single-reaction based optimizationof kinetic rates can offer

an opportunity to fit a specific rate in the biochemical systemwhich is difficult to

measure or observe in wet-lab experiments.

Figure 4.5 shows results of fitting one kinetic ratek1 from the vectorK(M), which

simulations are based on the set of given ODEs. The value of initiatedk1 is firstly

assigned with a value from the range of (0, 1] randomly, and then it is modified by
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Figure 4.4: Behaviour of all species inERK signaling pathway regulated byRKIP.

Gaussian distributionN(µ, σ), whereµ = k1 andσ = 0.00001. The parameters

of implementing SA are set as following: initial and minimumtemperatures are 100

and 1 respectively, cooling rate is 0.95 and iterations number is 10.

The optimized value ofk1 in the given model ofERK signaling pathway regulated

by RKIP is 0.64, which is close to the original value 0.53 as shown in Table 4.4.

2. To mutate kinetic rates associated with all reactions at each iteration.

Due to complicated interactions among species usually existing in a given model,

all kinetic rates associated with biochemical reactions are important and relevant

to exhibiting species behaviour. It is also very difficult toestimate or fit constants

of kinetic rates of a given system within uncertain ranges. Thus our approach of

optimizing all the rates at the same time enables the comprehensive study of kinetic
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Figure 4.5: Behaviour of aRKIP model from optimization of one kinetic rate.

rates.

Table 4.6: Comparison between initial and fitted kinetic rates.

Kinetic Rate Original Value Fitted Value
k1 0.53 0.67
k2 0.0072 0.17
k3 0.625 0.22
k4 0.00245 0.85
k5 0.0315 0.77
k6 0.6 0.63
k7 0.0075 0.53
k8 0.071 0.28
k9 0.92 0.29
k10 0.00122 0.20
k11 0.87 0.31

Figure 4.6 shows the results of model behaviour after fittingall the rates in the vector

K(M) by a random walk in a range of (0, 1]. The rates values inK(M) are modified

by Gaussian distributionN(µ, σ), whereµ = Ki(M), i is the ith kinetic rate and

σ = 0.00001 for fine tuning all the given rates. The parameters of implementing SA
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Figure 4.6: Behaviour of aRKIP model from optimization of all kinetic rates.

are set as following: initial and minimum temperatures are 100 and 1 respectively,

cooling rate is 0.95 and iterations number is 10.

Compared to target species behaviour inERK signaling pathway regulated byRKIP

in Figure 4.4, it is clear that our models generator can fit thekinetic rates of a bio-

chemical system by employing Gaussian distribution and SA,driving the behaviour

of species in the model to exhibit similarly to the target ones. Table 4.6 shows a

comparison of fitted kinetic rates obtained from our models generator and original

kinetic rates given by Cho et al. [Cho 03].

4.4.3 Discussion

Models of biochemical systems can be obtained by employing SA metaheuristics to add

components together and the topology of a model under construction is developed from

simple to complex incrementally. Kinetic rates associatedwith reactions in these synthe-

sized models can be optimized globally by utilizing SA, especially for the estimation of
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kinetic rates which are difficult to be obtained in wet-lab.

There are two major issues existing in developed models, while applying SA to con-

struct topology and optimize kinetic rates, which details of modelling issues are illustrated

as follows.

1. Model topology is developed incrementally without control, due to lack of removal

operations on the structure while modelling.

Without implementation of removing components from a modelunder construction,

the topology of the model is expanded by linking subnetworksrepresented in PNs

incrementally. Regarding the probabilistic acceptance mechanism of SA, a model

assembled iteratively by the addition operator could be in ahighly interconnected

and complicated structure. These models with intricate topologies need to be reduced

to simple ones by controlling the number of components of themodels. The removal

operations can be carried out by removing places (species) and transitions (reactions)

of the components represented in PNs, for controlling the topologies in a reasonable

size in accordance with the target biochemical systems.

2. Synthetic species are created without supervision, due to the biological meaningless

of addition rules applied to manipulate components.

Regarding the mechanism of addition operator in composition rules applied to mod-

els generation, it is easy to increase linkages among species between the added com-

ponents and the model seed under construction. The linkagesare obtained by merg-

ing names of species from different components directly. Moreover, added compo-

nents are instantiated from two pre-defined templates by applying a combinatorial

mechanism to a set of input species. That means synthetic species in components
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before and after components addition are not tested or supervised by biologists or

following biochemical knowledge. Thus synthesized species in generated models

could not exist in target biochemical systems. Models with unexpected synthesized

species are difficult to be checked and validated in wet-lab.

More sophisticate operations should be introduced and investigated to manipulate mod-

els in terms of topology, such as components subtraction andmodels crossover. Instantia-

tions of components and composition rules need to be developed for synthesizing species

and merging components in a sophisticated manner to preventgeneration of meaningless

species. In this thesis, subtraction and crossover operators are proposed and implemented

to tackle aforementioned modelling issues while composingbiochemical models. Details

of these operators are illustrated in Section 4.5.

4.5 A 2D Hybrid Modelling Approach

In this thesis, we aim to solve a topology construction problem by iteratively piecewise

assembling components represented by quantitative PNs from a user pre-defined library,

combined with optimizing kinetic rates associated with biochemical reactions. We devel-

oped a 2D hybrid piecewise modelling approach which integrates ES and SA together,

for piecewise composing topologies of models and globally optimizing kinetic rates of the

models.

Regarding application of metaheuristics to modelling of biochemical systems, there are

some questions which need to be discussed before illustrating the details of our hybrid

modelling approach.

1. Why using ES and SA, but not other metaheuristics?
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The ‘No Free Lunch (NFL) theorems’ is the first reason we choose ES and SA from

a set of metaheuristics for the investigation of evolutionary modelling. The NFL

theorems are described as ‘An algorithm performs well on a certain class of problems,

then it necessarily pays for that with degraded performanceon the set of all remaining

problems’ by Wolpert and Macready [Wolp 97]. The NFL theorems show that any

pair of algorithms has identical average performance on thestatic and time dependent

optimization problems. In other words, if an algorithmA performs better than another

algorithmB over some class of optimization problems, then the algorithm B must

perform better than the algorithmA over a set of all other optimization problems.

Therefore, we can take the point of view that there is not a general and universal

optimization scheme suitable for any optimization problems.

In addition, metaheuristics have been employed to study themodelling of biochem-

ical systems in computational biology, for instance GA and GP. It is still necessary

to investigate different metaheuristics and their applications to model biochemical

systems in terms of topology and kinetic rates, for a complementary and overall re-

search of utilizing metaheuristics in computational biology. That is why we choose

ES and SA as our methodologies to set up a hybrid modelling environment and model

biochemical systems in a piecewise manner.

2. What is the major difference of applying ES, SA and GA to themodelling process?

In general, ES and GA are both population-based optimization methodologies. They

can start from a set of solution candidates and evolve these candidates to approach op-

timal solutions for the optimization problems. The major difference between GA and

ES is that GA stresses chromosomal operators, whereas ES emphasizes behavioural

changes at the level of the individual [Foge 94]. We are interested in the change of
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behaviour of manipulated individuals by a hybrid piecewisemodelling approach in

this thesis, therefore it is better to employ ES to address the evolutionary modelling

issues.

SA is a single-solution based global optimization metaheuristics. It is easy to shift

the search strategy from global optimum to local optimum viaa controllable pa-

rameter, imitating a temperature cooling scheme in the physical environment. The

evolved model candidates in the hybrid modelling frameworkare usually very com-

plicate, because of uncertain kinetic rates with/without knowledge of models topolo-

gies. It is essential to start the fitting of kinetic rates foreach model candidate from a

global level to a local level, especially while the topologies of these models are being

mutated on a population-based modelling platform. That is why we choose SA to

examine the kinetic rates of each model under construction in the hybrid piecewise

modelling framework.

3. Why hybridizing ES and SA, not applying ES and SA in a serialmanner for building

and optimizing models in terms of topology and kinetic rates, separatively?

Metaheuristics are often inspired from natural environment and very powerful in sort-

ing out optimization problems. Dozen of metaheuristics andtheir variants have been

developed and utilized to tackle the optimization problemsin the real world. It is

definitely useful to apply one metaheuristics to the optimization problems. But an-

other promising way to get much valuable optimization results is to develop hybrid

metaheuristics and investigate the implementation of these hybridized metaheuris-

tics, which concerns the combination of several search algorithms with strong spe-

cialization in intensification and/or diversification [Loza 10].
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Therefore, we hybridize ES and SA in a two-layer piecewise modelling framework

which iteratively composes the structures of models and optimizes the kinetic rates

in a combinatorial manner. The aims of hybridizing ES and SA are to tackle the

problems of manipulating models in terms of topology and kinetic rates via an intel-

ligent and automatic swapping mechanism, and to find a potential trade-off between

composing models structures and optimizing reactions rates heuristically.

Regarding characteristics of ES and SA metaheuristics, twodifferent but switchable

layers are designed and developed for applying ES to mutate model topology and SA to

optimize kinetic rates in a hybrid manner. Details of the proposed 2D hybrid piecewise

modelling approach are presented in following sections.

4.5.1 A general flowchart of the hybrid modelling

A hybrid evolutionary and heuristic piecewise modelling approach has been developed by

hybridizing two metaheuristics algorithms on two layers: topologies of the models repre-

senting a target biochemical system are evolved by employing ES at outer layer, and SA is

applied to optimize kinetic rates associated with the reactions in these evolved models at

inner layer. The operations of evolving topologies and optimizing rates are switchable on

the two layers, and information of models under construction is exchanged for simulation

of the models and evaluation of the modifications on topologyand kinetic rates.
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Figure 4.7: A flowchart of hybridizing ES and SA to model biochemical systems.

A general flowchart is shown in Figure 4.7 to illustrate the hybridizing between ES

and SA for models construction. As shown in the modelling flowchart, the modelling

process is based on a scheme of piecewise composing components iteratively. A set of

initial model seeds is given to compose components, and the composed models are mutated

and evaluated at ES outer layer. Before going to crossover these composed models at the
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end of the modelling process at ES outer layer, kinetic ratesof these composed models

are optimized globally at SA inner layer. The optimization of topologies stops after a

pre-defined number of generations at ES outer layer, and the optimization of kinetic rates

stops after the system reaches a minimum temperature at SA inner layer. A set of best

synthetic models is returned at the end of the hybrid piecewise modelling process, providing

information of alternative models with similar behaviour to the target system.

With respect to related works of hybrid modelling biochemical systems [Cao 10], our

work differs from them in terms of underlying representation of biochemical models: we

use Petri nets and they use P-systems. Moreover, we can perform incremental piecewise

addition of basic components resulting in new compounds during the modelling process,

as well as genetic operations due to our use of ES with mutation operators, while their

approach is confined to genetic operations.

4.5.2 Topology construction based on ES outer layer

Outer layer of the hybrid modelling approach is designed forimplementation of ES to com-

pose topologies of models under construction. A classical (µ+λ)-ES [Beye 02] is utilized to

piecewise assemble components from components library to the models iteratively, where

µ andλ are the numbers of parental and children individuals, respectively. The (µ+λ)-ES

starts from an initial population of model individuals which are single components selected

randomly from the components library.

Three composition operators (Addition, SubtractionandCrossover) are applied to mod-

ify topologies of the individuals. Because the compositionoperators are adapted from

evolutionary algorithms in computer science which are wellstudied for mimicking natural

selections, it is feasible to employ these operators to evolve biochemical models in terms of
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topology. In general, theAdditionoperator is used to integrate components to an existing

model. TheSubtractionoperator is utilized to subtract components of a model by removing

transitions with incident arcs of these components. TheCrossoveroperator is employed to

apply a ‘cut and splice’ method to swap parts of two models under construction to generate

new models. In Section 3, the composition operators and corresponding composition rules

are illustrated in detail.

Require: CompLib, ModLib andComposRules
Ensure: BioNBest

1: Initiate the population;
2: while Not reach maximum generation (ES layer)do
3: for Each individual in the populationdo
4: Modify the topology of individual by Addition⊕ or Subtraction⊖;
5: Check the topology of modified individual;
6: Evaluate the modified individual;
7: Optimize kinetic rates of modified model (SA layer);
8: end for
9: Cross over the individuals by Crossover⊗;

10: Select offsprings for next generation;
11: end while
12: ReturnBioNBest.

Algorithm 5: A ES based outer layer for model topology composition.

Algorithm 5 shows the pseudo-code for model topology composition at ES outer layer.

Before constructing the models of biochemical systems, twolibrariesCompLibandModLib

are set up for preserving instantiated components and composed models, respectively. The

atomic components in the libraryCompLibare instantiated from binding and unbinding

patterns as defined in Section 3.4. Preserved components arebased on information of input

substrates, and a combinatorial mechanism is applied to generate components among these

substrates. Moreover, the components are reusable inCompLib, and the libraryCompLib

is accessible during the modelling process for components selection and composition with
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model individuals. The libraryModLib preserves synthetic models which are alternative

models for illustrating target biochemical systems in terms of topologies and behaviours.

Composition rulesComposRulesare applied to compose components to the model seeds in

an initial population.

The ES outer layer in the hybrid modelling approach is in charge of modifying the

structures of models by composition operators and rules. After being modified on the

topologies, models are checked for connective and redundant components. Then the mod-

els are evaluated by using Euclidean distance function in anobjective function to measure

the behaviour distance of species between generated and target model.

Kinetic rates of these composed models are optimized at SA inner layer, whereas

topologies of these composed models at this layer are fixed without modification. The

details of implementation of SA at inner layer are describedin following Section 4.5.3.

Before stopping topologies construction at ES outer layer,there is a crossover opera-

tion applied to synthetic models. The aims of applying crossover operation are to mate

model individuals in the same population and to allow model offsprings inheriting genetic

chromosomes (good biochemical reactions and species) for the next generation. At the

end of the piecewise hybrid modelling approach, a group of best models in terms of simi-

lar behaviour to the target biochemical system is returned and preserved in models library

ModLib for further investigation.

4.5.3 Kinetic rates optimization based on SA inner layer

SA is a heuristic optimization algorithm for searching for aglobal optimal solution in a very

large solutions space, avoiding local optimum solutions. In our previous work [Wu 10], we

have applied SA to piecewise construct and explore the topologies of models representing
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biochemical systems. In this thesis, SA is integrated within an ES based outer layer as an

inner layer to optimize the kinetic rates of composed modelsobtained from ES outer layer.

The topologies of these synthetic models are fixed at SA innerlayer, while corresponding

kinetic rates are optimized.

Require: M , K(M), IterNum, α, T andTMin

Ensure: M andK ′(M)
while T > TMin do

while IterNum! = 0 do
MutateK(M) by Gaussian distributionN(µ, σ);
Evaluate the modelM ;
AcceptM based on the Metropolis algorithm;

end while
ResetIterNum;
LowerT by α;

end while
ReturnM with optimized kinetic rates inK ′(M).

Algorithm 6: SA based inner layer for model kinetic rates optimization.

Algorithm 6 shows the pseudo-code for optimizing kinetic rates at SA inner layer. The

kinetic rates associated with biochemical reactions in a given modelM are coded in a vector

K(M) = (kt
1, k

t
2, ..., k

t
l), wherel is the number of reactions,t is the current SA system tem-

peraturet = T , andkt
i is a constant rate of theith biochemical reactionri (i = 1, 2, ..., l).

The vectorK(M) is mutated by the Gaussian distributionN(µ, σ) with IterNum itera-

tions at each system temperature. The mutatedK(M) of the model is evaluated at each

iteration, by comparing the Euclidean distance of species behaviour between the modelM

and the target pathway.

The evaluated modelM with optimizedK(M) is accepted or rejected, according to a

classical Metropolis mechanism. AcceptedM is preserved as a new start seed for the next

run of K(M) optimization. The same modelM with different rates values inK(M) is
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optimized at different SA system temperatures by a cooling rateα. The whole optimization

process stops when system temperature reaches a minimum temperatureTMin.

Due to probabilistic behaviour of random procedure of SA [Anil 87], a mutated vector

K(M) which causes a bad estimated fitness of the modelM could be generated. Therefore,

it is possible to have a model returned from SA inner layer after optimizing associated

kinetic rates in a fixed topology that is worse than the one passed from ES outer layer to

SA inner layer in the hybrid modelling approach.

4.6 Summary

In this chapter, one dimension and two dimensions hybrid modelling approaches are devel-

oped and illustrated for piecewise modelling biochemical systems in terms of topology and

kinetic rates.

The one dimension hybrid modelling approach is implementedin a simple models gen-

erator, which is developed by using SA to iteratively expandthe model structure, and to

globally explore the kinetic rates values of biochemical reactions. The main advantages

of the models generator are to build models structures from scratch for describing target

biochemical systems and optimizing kinetic rates iteratively by single-reaction and all-

reactions based methods. Previous research of employing one metaheuristics to model bio-

chemical systems has focused on mutating structures to obtain models exhibiting desired

systems behaviour, and research of optimizing kinetic rates has been carried out by fitting

rates associated with a small group of biochemical reactions. The simple models genera-

tor developed in this thesis improve the topologies construction by a piecewise modelling

methodology and the kinetic rates optimization by an overall rates exploration.

The two dimensions hybrid modelling approach is performed in a two-layer piecewise
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modelling framework, which integrates ES and SA together for evolutionary composing

topologies and globally optimizing kinetic rates in a hybrid manner. Because ES is a

population-based heuristical evolutionary algorithm, itis feasible to evolve a set of model

candidates by using mutation operators on the topologies. While evolving the topologies

of models, the kinetic rates of each model can be optimized iteratively by SA which is a

single-solution based heuristic algorithm. The two dimensions hybrid piecewise modelling

approach benefits the process of modelling biochemical systems, regarding structures and

rates at the same time, which is very difficult to be tackled inwet-lab experiments.

The two dimensions hybrid piecewise modelling approach canbe developed with re-

spect to different modelling variants on topology and kinetic rates. In addition, a grid

technique based parallelize methodology can be introducedto improve the sequential sim-

ulation process, which can speed up the simulation performance by using multiple proces-

sors. Details about the modelling variants and the parallelimplementation are illustrated in

Chapter 5.



Chapter 5

Variants of Hybrid Modelling Approach

5.1 Introduction

This chapter describes variants of the two dimensions hybrid piecewise modelling ap-

proach, including implementation of a parallelization technique, methods of evaluating

composed models and synthesized topologies, and modellingvariants in terms of topology

and kinetic rates. The whole chapter is organized as follows.

Section 5.2 firstly introduces the motivation of parallelizing our proposed 2D hybrid

modelling approach. Then the GridGain is applied to parallelize the hybrid modelling

and simulation process. Two flowcharts are presented to illustrate assignments of different

jobs (mutation of models topologies and optimization of kinetic rates) to different working

nodes in the GridGain pool. An example of parallel modellingis investigated to illustrate

improved modelling performance by employing the GridGain.The improved performance

of hybrid modelling includes reduced simulation time, which is quantitatively measured

and discussed by a comparison between the sequential and parallel implementation. Further

issues of parallel modelling, for instance idle nodes in theGridGain pool while modelling,

are pointed out and discussed. With respect to characteristics of the parallel technique,

130
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some potential solutions for addressing aforementioned modelling issues are suggested.

Section 5.3 describes methods to evaluate synthetic modelsduring the models con-

struction. In order to estimate the quality of composed models, behaviour of species in

synthetic models are compared with the ones in target biochemical systems. Two methods

of computing the behaviour distance are given:Averagemethod andMaximummethod.

The average method calculates the mean of behaviour distance among compared species

in an objective function, and an average fitness value is returned to represent the quality

of analyzed model. The maximum method chooses a species withmaximum behaviour

difference from a set of compared species, which is only behaviour difference calculated

in the objective function, and a fitness value is returned to indicate the quality of the eval-

uated model. Moreover, regarding the piecewise modelling process, it is possible to obtain

species which are generated in synthetic models but not existing in target biochemic sys-

tem. In this scenario, a mechanism of giving reward and penalty to fitness values in the

objective function is included as a complement of behaviourdistance measurement based

on the Euclidean distance function. The included reward andpenalty measurement sup-

ports an overall estimation of the generated models during the modelling process.

Section 5.4 introduces exploration of the topologies spaceby the proposed hybrid mod-

elling methodology. Two mathematical methods are presented to quantitatively measure

common interactions between generated and target model. Exploration of topologies space

provides an opportunity for obtaining different structures of models for biochemical sys-

tems. The models with different interactions among biochemical entities can reveal work-

ing mechanisms in biochemical systems which are difficult toobserve or verify in wet-lab.
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According to specific modelling aims, variants of the proposed hybrid piecewise mod-

elling can be explored, for instance to obtain similar or alternative topologies, desired be-

haviour and optimized kinetic rates. There is a large variety of ways in which evolutionary

methods can be designed for performing genetic operators, comparing species behaviour

and evaluating generated models. Section 5.5 presents how to investigate the advantages

and disadvantages of some of the variants for the piecewise modelling, with an emphasis

on the effect of mutation operators and evaluation criteriaof the overall hybrid methods.

Section 5.6 gives a brief summary of the suggested variants of the 2D hybrid piecewise

modelling approach. Further discussion about the development of modelling variants is

given with simulation results in Chapter 6.

5.2 A GridGain based Parallelized 2D Hybrid Modelling

Approach

GridGain [Grid] is a leading JVM-based distributed computing middleware which works

on any managed infrastructure. Since first release of GridGain in 2007, GridGain enables

users to easily build highly scalable real-time computing and data intensive distributed ap-

plications that work on many different infrastructures, such as a small local cluster, private

grid, and large private, public and hybrid clouds. Two fundamental technologies are inte-

grated into one product, which supports the co-located parallelization of process and data

access:

• Computational Grid

• In-Memory Data Grid
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In this thesis, we are interested in applying the computational grid of GridGain to par-

allelize the hybrid modelling process. Therefore, the computational grid is employed to

parallelize the hybrid modelling and details of the computational grid is introduced as fol-

lows.

Figure 5.1: Implementation of computational grid in GridGain [Grid].

In general, computational grid technology provides methodologies for distribution of

processing logic. Figure 5.1 shows how to split an original one computational task into

multiple subtasks, executing these subtasks in parallel onany managed infrastructure and

aggregating (reducing) results back to one final result. Compared to the implementation

of computation without a grid technique, the final result canbe returned inT/3 process-

ing time (if there are three nodes in the GridGain pool, and the original total processing

time for only one node isT ). Therefore, GridGain is one of best parallel environment for

parallelizing the hybrid modelling process. The motivation and performance of applying

GridGain to develop our 2D hybrid modelling approach is illustrated firstly in following

sections.
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5.2.1 Motivation

While modelling target biochemical systems, the model candidates in a population pool

are independent, before crossing over and mating with otherones. Operations are applied

to improve the models in terms of topology and kinetic rates:topology of each individual

model is evolved by addition and subtraction operators on ESplatform, associated kinetic

rates of the model are optimized globally on SA platform, andestimation of mutation and

optimization of the model is carried out by mapping PNs of themodel to a set of ODEs for

simulation. With respect to characteristics of independent models, a parallelization tech-

nique can be applied to tackle heavy computation issues existing in sequential simulation

process. Details of reasons causing heavy computation in sequential simulation process are

described as following:

• Piecewise compose components to models under constructionby adding and sub-

tracting operators on ES platform

A model under construction is presented in PNs format. Addition and subtraction

of components requires the import and outport of the PNs model before and after

the topology modification, which takes time to update the corresponding vector of

models on the modelling platform.

• Globally search for the kinetic rates of each model under construction by fine tuning

rates values on SA platform

Models generated and passed from ES outer layer to SA inner layer are used to op-

timize the kinetic rates without modifying topologies. These kinetic rates associated

with biochemical reactions are fine tuned by employing Gaussian distribution, and

corresponding modification on rates values are evaluated bycomparing behaviour
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distance of current optimized model and target model. Both modification and evalu-

ation of kinetic rates are repeated in an iterative manner, which takes time to calculate

the real values.

• Iteratively map PNs models to a set of ODEs for evaluating topologies mutation and

rates optimization

All models under construction are described by PNs format aspre-defined in this

thesis. An ODE simulator is used to simulate synthetic models to obtain time course

data for describing species behaviour in these models. It takes time to map the PNs to

a corresponding set of ODEs for quantitatively computing mathematical descriptions

of models.

With regard to advantages of parallel technique, the GridGain can improve simulation

performance by speeding up the processes of mutating modelstopologies, searching for

kinetic rates values, and mapping ODEs to simulate mathematical models for generating

species behaviour data.

5.2.2 Parallelized modelling process

Our hybrid modelling process is improved by using the GridGain to parallelize topologies

mutation and kinetic rates optimization. Figure 5.2 shows apair of sequential and paral-

lelized hybrid modelling process.

Sequential hybrid modelling process applies mutation operators to modify topology of

each individual model by ES, and then associated kinetic rates are optimized by using SA.

After all individual models are manipulated on topologies and rates, a crossover operator

is applied to cut and splice two individuals for generating offsprings in next generation.
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Figure 5.2: Sequential and parallelized hybrid modelling processes.

Parallelized hybrid modelling process allows all individual models to be mutated on

topology at the same time on different nodes in a GridGain pool. Associated kinetic rates

of each individual model are optimized after the topology mutation, by calling nodes in the

GridGain pool. At the end of the parallelized modelling process, all the individual models

are copied to each node, and the crossover operation is applied to parallel and genetically

produce offsprings on the nodes.
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Figure 5.3: Implementation of GridGain to individual models.

Figure 5.3 describes the details of applying GridGain to tackle problems of sequentially

mutating and optimizing models under construction in termsof both topology and kinetic

rates. The GridGain based parallel modelling contributes to the improvement of construct-

ing biochemical systems by speeding up the process of addingor subtracting topologies
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and optimizing kinetic rates of models on different nodes ateach generation. The estima-

tion of composed models is obtained by firstly mapping PN models to sets of ODEs, and

then simulating ODEs based mathematical representation ofmodels in a parallel manner.

Before moving from the current evolutionary generation to the next generation, individual

models are mated by cut and splice on reactions (containing substructures and rates) to

obtain new offsprings. Finally, a set of best generated models is generated at the end of

GridGain based parallel hybrid piecewise modelling process.

5.2.3 Parallel performance

In order to evaluate performance of applying GridGain to speed up the modelling process,

we have employed theRKIP pathway as our test case and carried out five runs of parallel

modelling with different number of working nodes in GridGain environment.

Initial setting of running parallel simulation at each run is the same for instantiating

components, indicating compared species, running ES and SAalgorithms, and applying

addition, subtraction and crossover operators. Details ofsetting are listed as follows: a

set of fixed compared species ‘RKIP, Raf1andRKIP—Raf1’; parameters of SA ‘Initial

temperature=10, Cooling rate=0.8, Minimum temperature=1, Iteration numbers=10’; ini-

tial settings of ES and SA ‘Maximum Generations=500, Individuals=50, subtraction at

every two generations, crossover with the best model, optimization of rates at every 100

generations, objective function is based on Euclidean distance function’.

The only difference among these five runs is the initial population of model seeds,

because population is initiated by randomly selecting components as models seeds from

the components library.

Figure 5.4 shows that simulation time can be reduced by usingmore computing nodes
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Figure 5.4: Performance of GridGain implementation.

in the GridGain pool. Here, the nodes are cores of processor,which are used as computing

nodes in the GridGain pool. A big task can be divided into subtasks according to the

number of available working nodes, and then the subtasks on the nodes can be executed to

obtain partial results which are integrated into a final result returned for further operations.

5.2.4 Discussion

Parallelization can benefit the simulation process by manipulating the models under con-

struction from the same generation on different nodes in theGridGain pool. While applying

GridGain to parallelize the piecewise modelling process, further research can be investi-

gated to address two important issues which exist in currentparallel implementation:

1. How to handle ‘idle’ nodes, when loaded jobs are finished onthese nodes;



140

2. How much benefit we can obtain, when the GridGain techniqueis applied to par-

allelize a heavy task by splitting a big job to small jobs, executing the small jobs,

combining and returning the results.

A working node in the GridGain pool is in charge of dealing with modelling issues:

a subtask of mutating topology or optimizing kinetic rates.Due to different size of the

model, the processing period on each node is different. Therefore, subtasks on the nodes

can be finished in different simulation stages. When the subtasks assigned to the nodes are

finished and there is no other subtasks waiting for assignment to be proceed, these nodes

are idle in the pool. These idle nodes wait for other busy nodes finishing subtasks assigned

to them. When all the subtasks on nodes are finished at currentgeneration, nodes are reset

and assigned new subtasks for next run of simulation.

In some extremely scenario, if there is a large models population, only one node still

works for the subtask assigned to itself but other nodes are idle, the whole modelling pro-

cess at current generation is held and the modelling processhas to wait for the last busy

node finishing the subtask. This scenario makes a low performance of parallel simulation,

which degrades the benefit of parallelization.

One of the methods to tackle the above issue of idle nodes is tointroduce a cloud

technique to assign nodes, according to requirements of subtasks. Moreover, idle nodes

can be released for other subtasks. During the modelling process, there are more feasible

models generated from a small set of initial model seeds. Themechanism of releasing idle

nodes allows different number of nodes on the parallel platform can be used. Adaptive

number of available nodes accompanying dynamic (increasedor decreased) number of

plausible models can broadly explore the solutions space while modelling biochemical

systems.
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In general, estimation on the cost of executing one big task and the cost of dealing

with multiple subtasks can reveal how much improvement we can obtain by utilizing the

GridGain parallel technique. Thus if the cost of task assignment is higher than the benefits

obtained from parallelization, the implementation of GridGain is not suitable for improving

hybrid modelling process.

5.3 Evaluation of Composed Models

A synthetic model is evaluated by comparing its behaviour with target biochemical system.

A behaviour is presented by time series data which is measured concentration values of

species spaced at uniform time intervals. The species behaviour in a target system can be

obtained from a reference biochemical model or by observations of a biochemical system

from the wet-lab.

5.3.1 Behaviour comparison

Given a set of reference data for the behaviour of target systemMT , there areN generated

time seriesXT = (X1, X2, ..., XN) which represent the behaviour ofN species,N ≥ 1.

There areP data points in each time seriesXi = (x1
i , x

2
i , ..., x

P
i ), i = 1, ..., N . There areM

time seriesXG = (X̂1, X̂2, ..., X̂M) describing the behaviour ofM species in a constructed

modelMG, and there areP data points for each time serieŝXj = (x̂1
j , x̂

2
j , ..., x̂

P
j ), j =

1, ...,M . The intersection betweenMT andMG of species is defined byXC = XT ∩XG =

(X1, X2, ..., Xn), 1 ≤ n ≤ N . Therefore, behaviour difference between theMT andMG

is calculated by averaging the difference of behaviour of each species inXC by a paired

comparison of theP data points.
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dMT ,MG
(Xk) =

1

η

η
∑

k=1

√

√

√

√

P
∑

t=1

(xt
k − x̂t

k)
2. (5.3.1)

As shown in Equation 5.3.1, the difference of behaviour for one speciesXk, Xk ∈ XC ,

is measured by the Euclidean distance function, whereη is the total number of compared

species inXC .

Because species inXC are selected for behaviour comparison, the difference of each

compared pair of species behaviour could be in a different scale. There are two ways to

compute the overall behaviour distance between generated and target model as final esti-

mated value representing the quality of composed model:Averagemethod andMaximum

method. In general, the average method focuses on the average behaviour distance of all

compared species fromXC as the estimated value representing the model under evalua-

tion, but the maximum method chooses the maximum behaviour difference of one species

in XC to represent the quality of the evaluated model. Details of the two methods are given

as follows.

5.3.1.1 Average method

The average method allows generated models to be evaluated by measuring behaviour of

all involved species in the models without bias. Behaviour distance of each species in a

composed model is computed firstly, and then an average valueof these behaviour distance

is calculated for describing the distance between generated and target model.

As shown in Equation 5.3.1,η is the total number of compared species from a vector

XC . In average method, evaluation of behaviour distance is based onη = |XC |. Thus,

all the behaviour information of species are utilized during the model evaluation process,

which is useful and precise in the scenario of compared species being specified in advance.
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5.3.1.2 Maximum method

In maximum method, one species with maximum behaviour difference from the vectorXC

is used to evaluate the general distance between composed and target model. Behaviour

distance of all the species inXC is measured firstly, and then the maximum behaviour dis-

tance of one species inXC is utilized in Equation 5.3.1 for measuring the whole composed

model, thusη = 1.

The benefit of using maximum method to evaluate a composed model is to drive the

modelling process quickly by rejecting models with the worst performance in terms of fur-

thest behaviour distance. During the initial stages of piecewise modelling, it is easy to

generate some species whose behaviour distance is far away from the ones in target model,

because of incorrect interactions among species and kinetic rates associated with the bio-

chemical reactions. Therefore, a quick model evaluation could be obtained by avoiding the

acceptance of synthetic models which consist of species with furthest behaviour distance.

5.3.2 Reward and penalty

While evaluating the generated model, the species for behaviour comparison can be spec-

ified by the user. A vectorX ′
C can be used to preserve these specified species, where

|X ′
C | = n′ andn′ is the number of species inX ′

C . Due to indication of compared species

in advance, there could be some synthetic entities in a generated modelMG but not in the

target modelMT . Therefore, if a substrate is specified for comparison inMG, whereas

the species does not exist inMT , thenMG should be punished for a constraint of further

modelling. If a species for comparison exists both inMT andMG, a reward can be given

toMG for an encouragement of correct modelling.

A Reward and PenaltyfunctionΦ(Xk) in Equation 5.3.2 is proposed to improve the
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models evaluation, as the reward and penalty is a complementof the Euclidean distance

function for measuring the total behaviour distance.

Φ(Xk) =

{

−ε1, If Xk ∈ XG ∧Xk /∈ XT

ε2, If Xk ∈ XG ∧Xk ∈ XT

(5.3.2)

whereε1 andε2 are reward and penalty values, respectively. Both ofε1 andε2 are non

negative real values and defined by users at the initial stages. The returned result ofΦ(x)

can partly contribute to the final fitness value of a model under evaluation in the objective

functionF (x) in Equation 5.3.3 as described in following section.

5.3.3 Objective function

With regard to comparison of behaviour difference and a mechanism of reward and penalty,

composed models can be evaluated by utilizing Equation 5.3.3 which consists of the Equa-

tion 5.3.1 and Equation 5.3.2 for an overall estimation of the fitness during the construction

process.

f(MG) = dMT ,MG
(Xk) +

1

η

η
∑

k=1

Φ(Xk) (5.3.3)

whereη = n if the compared species are from the intersectionXC ; andη = n′ if the

compared substrates are from the specificX ′
C . In this thesis, modelling of biochemical

systems is a minimization problem, therefore the smaller the evaluated fitness value, the

better the generated model.
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5.4 Exploration of Topologies Space

Alternative topologies can be explored while modelling biochemical systems for under-

standing the relationships among the compounds. Obtained alternative topologies can be

provided to biologists who work in wet-lab to study the suggested models by experimental

methods. In our previous work [Wu 12], generation of alternative models has been in-

vestigated by employing ES algorithm to explore the models space. A set of alternative

topologies with similar behaviour to the target ones has been obtained from our 2D hybrid

piecewise modelling approach.

5.4.1 Construction and evaluation of composed topologies

While utilizing the 2D hybrid piecewise modelling approachto construct models for in-

teresting biochemical systems, returned synthetic topologies enable the models exhibiting

similar behaviour to the target ones in biochemical systems. Regarding interactions among

species in the models, generated topologies can be classified into three categories without

respect to values of kinetic rates associated with these interactions:

1. Composed topology is the same as the target one:TComposed = TTarget;

2. Composed topology covers most of the target one:TComposed ∩ TTarget 6= 0;

3. Composed topology is an alternative topology:TComposed 6= TTarget.

The models with the same or major parts of a target topologiesare usually used to ver-

ify the modelling of biochemical systemsin silico. But there must be primary biochemical

knowledge about the biochemical systems in the interactions of species, in order to com-

pare the generated and target model in terms of topology directly. Moreover, the number
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of species involved in the biochemical system should be a constant, namely no covered

species existing in the system. In this scenario, the aim of constructing models for tar-

get biochemical systems is to reconstruct structures of thesystems and verify the feasible

piecewise components composition. Estimation of these synthetic models on topologies is

obtained by computing the coverage of interactions among species between the synthetic

and target model.

The 2D hybrid piecewise modelling approach allows generation of models with dif-

ferent topologies to the target systems, while exhibiting similar species behaviour to the

target ones. In biological experiments, biologists may be interested in biochemical systems

with different topologies which produce close behaviour observed on a system level. It is

important to investigate and discover different working mechanisms, especial on the mul-

tiple regulatory interactions among genes, proteins and complex, for overall understanding

the biochemical systems. Therefore, generation of alternative topologies provides an op-

portunity to unveil the biochemical systems under investigation in an efficient and precise

manner.

The evaluation of these three types of generated model topologies can be performed

by quantitative estimation in terms of coverage of interactions among biochemical entities.

The details of the quantitative evaluation are illustratedin following sections.

5.4.2 Quantitative evaluation of topologies

In order to evaluate the synthetic model structures quantitatively, two measures are em-

ployed: CompressionandCoverage. Both measures vary from 0 (worst) to 1 (best). If

either compression or coverage is low for a particular model, it indicates the topology of
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generated model is very different from the target biochemical system, even if their be-

haviours are similar.

5.4.2.1 Compression

Compression(adapted from [Braz 98] and [Gilb 03]) measures the percentage of matched

common arcs between synthetic and target model, which details are given as follows:

Compression =
|Intersection|

Max(|Target|, |Generated|)
(5.4.1)

where|Intersection| represents the number of matched arcs between target and gener-

ated topology,|Target| is the number of arcs in the target topology,|Generated| denotes

the number of arcs in the generated topology, andMax(|Target|, |Generated|) is the big-

ger number of arcs between the target and generated model.

5.4.2.2 Coverage

Coveragecalculates the ratio of matched arcs in the target model and it is given by:

Coverage =
|Intersection|

|Target|
(5.4.2)

where|Intersection| represents the number of matched arcs between target and gen-

erated topology, and|Target| is the number of arcs in target topology.
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5.5 Variants of Hybrid Piecewise Modelling

In our previous research [Wu 12], a 2D hybrid piecewise modelling approach has been

proposed and investigated. The 2D hybrid piecewise modelling approach is a hybrid two-

layer design applied to model biochemic systems by iteratively assembling components

from a user pre-defined library and globally optimizing kinetic rates. The hybrid mod-

elling process is briefly described as follows: firstly, the topologies of models representing

biochemical systems are piecewise composed and evolved by utilizing ES algorithm at an

outer layer; then SA algorithm is employed at an inner layer to optimize kinetic rates asso-

ciated with reactions of these synthetic models. Implementations of ES and SA swap, after

a predefined number of iterations or generations. At the end of modelling process, a set of

best generated models is returned, offering alternative topologies with similar behaviour to

the target system.

Regarding different modelling processes in terms of mutating topology and optimizing

kinetic rates, variants of the 2D hybrid piecewise modelling can be explored for specific

modelling aims, for instance generation of similar or alternative topologies, desired be-

haviour and optimized kinetic rates. Due to a large variety of ways in which evolutionary

methods can be designed, for performing genetic operators,comparing species behaviour

and evaluating generated models during the construction process, we investigate the advan-

tages or disadvantages of some variants for the piecewise modelling, with an emphasis on

the effect of genetic operators and evaluation criteria of the overall hybrid methods. Five

sets of specific modelling variants are compared and generaldescriptions of these variants

are given as follows.

1. Methods related to the data driven, involved in evaluating the composed models:
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• Fixed: behaviour of a fixed set of species to be compared

• Dynamic: behaviour of a dynamic set of species to be compared

2. Methods of survival selection:

• SES: standard (1+1)-evolution strategy

• PES: probabilistic (1+1)-evolution strategy, probabilistically accept a worse

model

3. Methods of applying mutation operator (mutation consists in adding and/or subtract-

ing a component to/from the topology):

• Fixed: a fixed frequency of switching the addition/removal of a component

to/from the model

• Random: a random way of switching the addition/removal of a component

to/from the model

4. Methods of performing crossover:

• Best: each individual mates with the best individual in the population

• Random: each individual mates with a randomly selected individual from the

population

5. Methods of evaluating generated models in an objective function:

• ED: the objective function represents the Euclidean distance function

• ED+RP: the objective function is a combination of a reward and penalty mech-

anism and the Euclidean distance function
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Variants of these five sets are compared in performance of producing high quality mod-

els with similar behaviour, best fitness, compression and coverage. Before we demonstrate

the details of generated models, these compared variants are described in detail as follows.

5.5.1 Methods of driving models composition

Time series data presenting behaviour of species in a targetbiochemical system is used

to drive the modelling process via reducing the behaviour distance between generated and

target model. Given a target biochemical system and a generated model which consist

of N andM species respectively, there are two sets of time series datadescribing species

behaviour in the target and generated model:

XT = (X1, X2, ..., XN), whereN ≥ 1

XG = (X̂1, X̂2, ..., X̂M), whereM ≥ 1

There is a set of species in a vectorXC which contains species for comparison of be-

haviour between the generated and target model. It is easy tounderstand that compared

species inXC can be selected via a fixed or dynamic method: modelers can investigate

interesting species in target biochemical system by using afixed method to drive the mod-

elling process, whereas a dynamic method allows modelers todrive the modelling process

by an adaptive manner in terms of matched species between generated and target model.

5.5.1.1 Fixed method

In the fixed method, the species in a fixed setXF
C are specified by users at initial stage as

follows:

XF
C = (X1, X2, ..., Xn)
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whereXi (i = 1, 2, ..., n) is the species assigned for comparison;n (1 ≤ n ≤ N)

is a non-variable constant indicating the number of speciesin XF
C for the whole model

evaluation;N is the total number of species inXT of target biochemical system.

The species specified by user are referred to a target biochemical system. Therefore,

all the information (names, concentrations and behaviour in time series data format) of

these compared species is provided without uncertainty. Regarding the process of piece-

wise modelling, a composed modelXG which is constructed at initial stages or evolved by

mutation after many generations could only consist of lesser species than the target model.

Thus some of the specified species for comparison inXF
C could be missed in theXG. In this

scenario, the difference between generated and target model will be computed by using an

objective function based on Euclidean distance equation ora reward and penalty function

which are introduced in Section 5.3.

5.5.1.2 Dynamic method

In the dynamic method, the species for comparison in a dynamic setXD
C are generated and

preserved according to the existence of species in both generated and target models during

the modelling process. Thus the species will be the common species fromXT andXG,

which is given as:

XD
C = XT ∩XG = {X1, X2, ..., XN} ∩ {X̂1, X̂2, ..., X̂M}

The number of species inXD
C will be a dynamic variable in a range of [0, N]: if there is

no common species in both generated and target model,|XD
C | = 0; if all the species inXT

are also generated inXG, |XD
C | = |XT | = N ; otherwise,0 < |XD

C | < N .
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5.5.2 Methods of selecting survival models

Inspired by SA algorithm, a probabilistic evolution strategy (PES) is proposed, which dif-

fers from the standard evolution strategy (SES). Regardingthe probabilistic mechanism,

PES can accept worse models by a probability while searchingthe solutions space. This

may be helpful in avoiding local optima. Theoretically, a global optimum model could be

approached for a target system, if an optimization algorithm is run for an enough amount

of time.

5.5.2.1 SES method

SES is a traditional evolutionary process, selecting modelcandidates as offsprings for fur-

ther evolution in following generations. The criteria for survival models is based on im-

proved fitness. Thus if fitness value of one mutated model is better than the fitness value of

the model before mutation, the mutated model with improved fitness values can be survival.

The main process of SES can be referred to Algorithm 5, and thedetails of selecting

offsprings can be illustrated as following: firstly, a modelMt is mutated as a new model

Mt+1; then modelsMt andMt+1 are evaluated by an objective function to obtain fitness

valuesf(Mt) andf(Mt+1), respectively. Iff(Mt+1) ≥ f(Mt), modelMt+1 survives and

replaces modelMt as an offspring for further modelling; otherwise, the mutated model

Mt+1 is rejected andMt is mutated again for generating a new model mutation for estima-

tion.

5.5.2.2 PES method

PES mimics the natural annealing process, such as a physicalprocess of annealing in met-

allurgy, for enabling the search of optimum models in a largesolutions space. The basic
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idea of PES is to introduce an acceptance probability into the stages of choosing survival

models, which is integrated within the normal model selection stages of SES. Regarding

the probabilistic process of SA, it is reasonable to involvea probability of accepting worse

models during the modelling process. The search for optimummodels can benefit from

probabilistic acceptance of worse models, avoiding local optimal traps.

A brief description is given to illustrate the process of accepting and discarding worse

models based on a probability during the modelling process:

1. Initiate model seeds in population;

2. For a modelMt in the population, Mutated(Mt)→Mt′ ;

3. Evaluate(Mt)→ f(Mt) ;

4. Evaluate(Mt′)→ f(Mt′);

5. Calculate fitness difference∆ C = f(Mt′)-f(Mt);

6. If ∆C ≥ 0, ModelMt′ is an improved synthetic model andMt′ is accepted to replace

Mt as a new offspring;

7. If ∆C < 0 ande−
∆C
T > Random(0, 1), ModelMt′ is a worse synthetic model, but

Mt′ is still accepted to replaceMt as a new offspring;

8. Else ModelMt′ is rejected andMt is kept as an offspring;

9. Repeat steps 2 to 8 to mutate, evaluate and compare other models in the population

in the same way for generation of other new offsprings.
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The probabilistic acceptance of worse models involves the systems temperatureT of the

PES system and enables the modelling process jumping from local optima to a global op-

timum. While the system temperatureT decreasing, the probability from thee−
∆C
T should

be a decreasing values between 0 and 1, which constrains the acceptance of worse models.

5.5.3 Methods of implementing mutation operators

The mutation operators consist of addition/subtraction ofcomponents to/from models. The

addition operator is utilized by linking components with existing models, and subtraction

operator is used by removing the transitions and associatedarcs of the PNs of the compo-

nents in the models. The addition and subtraction operatorsapplied to mutate the models

during the modelling process can be implemented by a fixed method or a random method.

The fixed and random methods allow the piecewise modelling tostart the composition of

components from scratch but with different frequency of adding and subtracting compo-

nents. The topologies of models under construction can be developed by implementations

of addition and subtraction operators.

5.5.3.1 Fixed method

In the fixed method, the two mutation operators can be performed in turn, for instance

being applied to the models at every two generations. The fixed method allows users to

construct models with simple topologies: defining a high frequency of using the subtrac-

tion operator for removing components from the models underconstruction. Otherwise,

complicated models can be developed after performing too many components additions.

Moreover, a model under construction should contain at least one component, therefore a

single-component based model will be skipped while a fixed method is utilized.
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5.5.3.2 Random method

In the random method, addition and subtraction are applied to models at every generation

randomly. In this scenario, the topologies of models are composed with more compo-

nents (species and reactions among these species) or simplified by removing species and

linked reactions from the PNs of these models. Mutation of model candidates in the pop-

ulation is randomness, which allows the process of searching optimal topologies without

bias. The only issue of randomly applying addition or subtraction operators is that a single-

component based model could be mutated by the subtraction operator. Therefore, regarding

the constraint of at least one component in the model, the subtraction would not be carried

out continually but skipped from a model with only one component.

5.5.4 Methods of performing crossover operator

The crossover operator mates two individual models under construction by a cut and splice

method. New offsprings are generated from the combination of parental models in terms

of components (reactions and species). The parental modelsand offsprings compete and

only one of them can be survival as a model candidate in the population for evolution in

next generation. There are two ways to perform the crossoveroperator: best and random

methods.

5.5.4.1 Best method

In the best method, each model under construction from the population is recombined with

a model with best fitness from the same population. It is inspired by the elitism based

individuals selection in genetic algorithm. As implemented in genetic algorithm, elitism is

a selection method which copies (a set of) best chromosome(s) to new population firstly,
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and then the rest of chromosomes are selected in other classical ways, such as Roulette

Wheel selection, Rank selection and Steady-state selection. The elitism based mechanism

of selection can increase the evolutionary performance rapidly, by preventing the lost of

best found problem solutions.

The best method of implementing crossover operator mimics the elitism based selection

of model candidates. The best method enables the creation ofnew models population by

crossing over an elitist model with other models from the same population. The fitness

values of models under construction can converge quickly, because of introduction of best

chromosomes from elitist models into the evolved model candidates. Specially, if a model

under crossover is a best model in the population while implementing the best method to

choose model for crossover, the model will be preserved directly as a survival offsprings

for next run of evolution.

One potential problem of applying the best method is that thesearch easily trapping

into local optimal solutions. The models are evolved for mutation with bias of choosing

specific elitist models during the construction. If chosen elitist models are local optimal

solutions, genetic chromosomes (components with reactions and species) of these models

are inherited to offsprings. A promising way for addressinglocal optimal solutions traps

is to employ PES method which is introduced and discussed in previous sections. By

using PES, worse and local optimal models are accepted or rejected regarding a probability,

which sorts out aforementioned problems of trapping into local optima.

5.5.4.2 Random method

In the random method, each model in the population will be crossed over with another

model chosen randomly from the same population without considering the fitness. The
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crossing over between two models for generation of offsprings follows the mechanism of

random selection in nature. It is feasible to approach optimal models by evolving model

candidates in a reasonable number of generations, with respect to successful implementa-

tion of evolutionary algorithms to drive the modelling process in computational biology.

While applying the random method to choose a model for crossover, it is easy to choose

a model itself for the crossover, especially in a small size population. Therefore, if a current

evolved model is selected randomly for crossing over with itself, the random model selec-

tion will be executed again until a different model being reached in the same population.

This mechanism of crossover between different models prevents modelling process from

applying meaningless operations to evolve models, becauseit does not benefit the evolution

by swapping components from the model itself.

5.5.5 Methods of evaluating models

The difference between generated and target model is calculated by employing an objective

function. In the objective function, there are two methods of evaluating the composed mod-

els: a Euclidean distance (ED) based method, and a Euclideandistance with a reward and

penalty mechanism (ED+RP) based method. These two evaluation methods can deal with

estimations of models involving compared species which arenot both existent in generated

and target model. Evaluation in the objective function is based on a classical estimation of

behaviour difference which is computed between two sets of time series data representing

behaviour of generated and target model.
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5.5.5.1 ED method

As mentioned in Section 5.3, a basic evaluation method is to calculate the behaviour dis-

tance of species in generated and target model by employing traditional ED equation. The

ED is an ordinary distance between two points on the time series data for the species be-

haviour from generated and target model. Moreover, the distance between the two points

on the behaviour data is the absolute value of their numerical difference.

Therefore, several points on a pair of time series data sets for one species behaviour

between generated and target model can be specified for the measurement, for instance

every specific simulation time in minutes and correspondingspecies concentration. These

specific behaviour data points are used to quantitatively estimate the difference of generated

and target model in terms of one specified species behaviour.Other species behaviour could

be included and calculated in the objective function based on ED equation for the models

evaluation. In this scenario, the objective function can include the overall calculation of

behaviour difference among all the given species behaviourin different sets of time series

data.

The premise of applying ED equation to the models evaluationis that all the compared

species should both exist in generated and target model. With respect to the piecewise

modelling process, there is a chance that some synthetic models do not consist of specified

species for comparison during the models construction. Therefore, a sophisticated evalua-

tion method should be developed, for instance giving a penalty to invalid compared species.

The development of models evaluation with reward and penalty is described in following

section.
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5.5.5.2 ED+RP method

A formal model estimation method involving a mechanism of giving reward or penalty to

generated models is defined and illustrated in Section 5.3. The inclusion of the reward and

penalty in an objective function is intended to prioritize individual models whose compo-

nents are among the ones existing in the target model. For instance, if a species is generated

in a synthetic model and the species is also among the ones existing in the target model, fit-

ness will be improved by giving a reward value; otherwise, the fitness will be penalized by

giving a penalty. Regarding different behaviour scales of target biochemical systems under

construction, different values of the reward and penalty can be implemented. According to

our preliminary experiments, we choose 0.01 and 1000 as the reward and penalty values

respectively in our cases study.

5.6 Summary

In this chapter, we have presented variants of the 2D hybrid piecewise modelling approach

in details. The developments of modelling approaches include implementation of a grid

technique to parallelize the sequential modelling and simulation process, two mathematical

methods of evaluating constructed models on the topologies, and variants of the modelling

in terms of topologies mutation and kinetic rates optimization.

The basic aim of applying the GridGain to modelling process is to improve the perfor-

mance of simulation. Because it takes time to calculate the mapped ODEs of the composed

models and to estimate the mutations of kinetic rates in these models, the modelling pro-

cess can be very slow. The GridGain can support the assignment of different modelling

jobs, for instance mutating topologies, optimizing kinetic rates and mating models from
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the same population, to working nodes in the GridGain pool for a parallel jobs execution.

The jobs on the nodes are executed independently and resultsfrom the nodes are summa-

rized for further operations. Therefore, sequential modelling process can be improved by

the GridGain to obtain good modelling performance. A parallel case study with simulation

results is given to demonstrate the improved performance based on the GridGain.

Composed models can be evaluated by different methodologies, for instance regarding

specific species or all the species in a model. These different methods of evaluating syn-

thetic models support the investigation of specific speciesin target biochemical systems,

whereas it is difficult for biologists in wet-lab to perform the same species estimation.

Regarding complicated mechanisms in biology and high interactions among biochem-

ical entities, it is difficult to investigate topologies of biochemical systems in a biological

experiments manner. Therefore, it is necessary to explore the topologies space, for obtain-

ing knowledge of target biochemical systems in terms of signalling cascades and reactions

rates. In order to measure the quality of generated models topologies, two mathematical

measurements are used to calculate the ratio of common arcs between generated and target

model.

This chapter describes variants of the hybrid piecewise modelling in terms of modelling

topology and optimizing kinetic rates with different criteria. These variants are proposed

and illustrated in details of working mechanisms. The advantages and disadvantages of

these proposed variants are investigated by comparing and analyzing simulation results

obtained from implementations of these variants in Chapter6.



Chapter 6

Cases Study

6.1 Introduction

In this chapter, we have applied the 2D hybrid piecewise modelling approach to model two

signalling pathways. Synthetic models of two given signalling pathways can be composed

automatically from scratch, driven by target behaviour of the pathways.

We evaluate synthetic models by comparing similarity of behaviour of species in the

composed and target model, analyzing the convergence of fitness values of synthetic mod-

els, and calculating compression and coverage scores of synthetic models for quantitative

analysis. Moreover, we have shown that alternative models topologies of given signalling

pathways can be obtained by employing the 2D hybrid piecewise modelling approach. In

biology, alternative structures of biochemical systems are always important and valuable

for understanding the signalling transduction paths.

We developed the 2D hybrid piecewise modelling approach in Chapter 5 by considering

different variants, for instance different implementation of target data driven, individuals

selections, mutation operators and models estimation methods. Synthetic models are com-

posed by utilizing different implementations of modellingvariants and their combinations.

161



162

In this chapter, we statistically analyze synthetic modelscomposed by five paired modelling

variants. A summary of the performance of these compared different modelling variants in

terms of generating similar or alternative topology and similar behaviour is given. Conclu-

sions about effects of modelling variants focusing on specific modelling aspects describe

whether a modelling variant performs better, worse or the same as another one it is directly

compared with.

6.2 RKIP Pathway

Signalling pathways play a pivotal role in many key cellularprocesses [Elli 02]. The ab-

normality of cell signalling can cause uncontrollable division of cells, which may lead

to cancer. There is one of the most important and intensivelystudied signalling pathways:

ERKpathway (theRas/Raf-1/MEK/ERKsignalling pathway) which transfers the mitogenic

signals from the cell membrane to the nucleus [Yeun 00]. TheERKpathway is de-regulated

in various diseases, ranging from cancer to immunological,inflammatory and degenerative

syndromes and thus represents an important drug target.

A brief illustration of regulations among proteins and complex based on signalling

transduction in theERKpathway is given as follows.Rasis activated by an external stimu-

lus, via one of many growth factor receptors; it then binds toand activatesRaf-1to become

Raf-1*, or activatedRaf, which in turn activatesMAPK/ERK Kinase(MEK) which in turn

activatesExtracellular signal Regulated Kinase(ERK). Cell differentiation is controlled by

following cascade of protein interactions:Raf-1→ Raf-1*→MEK→ ERK.

The effect of regulation is dependent upon the activity ofERK. TheRaf-1kinase in-

hibitor protein (RKIP) inhibits the activation ofRaf-1by binding to it, disrupting the in-

teraction betweenRaf-1 and MEK, thus playing a part in regulating the activity of the
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ERK pathway [Yeun 99]. A number of computational models have been developed in or-

der to understand the role ofRKIP in the pathway and ultimately to develop new thera-

pies [Cho 03, Cald 04].

k1/ k2

k3/ k4

Raf-1* RKIP

Raf-1*/RKIP/ERK-PP

Raf-1*/RKIP

k5

ERK-PP

RKIP-PERK

k6/ k7

MEK-PP

k8

k9/ k10

k11

RP

RKIP-P/RP

MEK-PP/ERK
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m8
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m3

m11

Figure 6.1: A graphical representation of theERK signaling pathway regulated byRKIP,
reproduced from Cho [Cho 03]: a circle represents a state forthe concentration of a protein
and a bar indicates a kinetic parameter of reaction to be estimated. The directed arc (arrows)
connecting a circle and a bar represents a direction of a signal flow. The bi-directional thick
arrows represent an association and a dissociation rate at same time. The thin unidirectional
arrows represent a production rate of products.

A concrete example, the ‘RKIP pathway’ which is a subset of theERKsignalling path-

way, is employed as our first case study in this thesis. A graphical PNs representation

of the RKIP pathway is shown in Figure 6.1 which is suggested by Cho et al.[Cho 03].

We employed this graphicalRKIP pathway as a target biochemical system for testing our

hybrid piecewise modelling approach. In Figure 6.1, a stateof a protein concentration is

represented by a circle; a bar indicates a kinetic parameterof a biochemical reaction to

be estimated; A direction of a signal flow between protein andreaction is illustrated by
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a directed arc connecting the circle and bar; association and disassociation rates are rep-

resented by the bi-directional thick arrows, and the thin unidirectional arrows represent a

production rate of products.

Simulation results suggest that it is feasible to employ our2D hybrid piecewise mod-

elling approach with its variants to model biochemical systems from scratch and obtain

models with similar or alternative topologies exhibiting similar behaviour as the ones in

the target biochemical systems. Analysis of simulation results is illustrated in details as

follows.

6.2.1 Generation of similar behaviour

One of main aims of applying the hybrid methodology to model target biochemical sys-

tems is to construct synthetic models which exhibit similarbehaviour to the ones in target

biochemical systems. In our simulations on the test case ‘RKIP pathway’, a group of best

models is generated by piecewise composing components to a set of given model seeds

under construction, and evolving the composed models in terms of topology and kinetic

rates.

Similar behaviour of species among these synthetic models are obtained, regarding

species behaviour given in the targetRKIP pathway. There are 11 species in the target

RKIP pathway, but more or less proteins or complex could be generated in the composed

models, with respect to piecewise modelling process. We mainly compare the behaviour

of species existing in both generated and target model. The similarity of compared species

behaviour are shown in the following figures. Some behaviourof species of composed

models from a group of best returned models are very similar to the target ones. But some

behaviour of species from a small subgroup of returned models are not similar, due to
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different topologies and kinetic rates in these generated models.
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Figure 6.2: Comparison of speciesRaf1behaviour.
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Figure 6.3: Comparison of speciesRKIP behaviour.

Figure 6.2 and Figure 6.3 show comparison of behaviour of speciesRaf1andRKIP

between target RKIP pathway and 50 generated models. From the diagrams, it is clear
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that most of synthetic models exhibiting similar behaviourof speciesRaf1andRKIP to the

target ones inRKIP pathway.
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Figure 6.4: Comparison of speciesRKIP|Raf1behaviour.

Because biochemical reactions between speciesRaf1 and RKIP are very important

for signal transduction in the pathway, it is necessary to investigate interactions among

speciesRaf1, RKIP and the complexRKIP|Raf1formed by bindingRaf1andRKIP. The

interactions can be described in the following two biochemical reactions: binding reac-

tion ‘Raf1 + RKIP → RKIP |Raf1’ and unbinding reaction ‘Raf1 + RKIP ←

RKIP |Raf1’.

Moreover, behaviour of complexRKIP|Raf1provided from the targetRKIP pathway is

one of the species behaviour for driving during the modelling process. Composed models

can be investigated for generation of the two binding and unbinding reactions by comparing

the behaviour of speciesRKIP|Raf1.

Figure 6.4 shows that most of generated models exhibit similar behaviour of the com-

plex RKIP|Raf1as the target one. The generation of nonsimilarRKIP|Raf1behaviour in
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the figure suggests that two binding and unbinding reactionsmay be interrupted by other

biochemical reactions associated withRaf1andRKIP in corresponding composed models,

which could be investigated for the details in terms of topology.

In RKIP pathway, the same mechanism of binding and unbinding interactions exists

in two biochemical reactions between speciesERK andMEKPP: ‘ERK +MEKPP →

ERK|MEKPP ’ and ‘ERK +MEKPP ← ERK|MEKPP ’.

As shown in Figure 6.5, Figure 6.6 and Figure 6.7, behaviour of speciesERK, MEKPP

and complexERK|MEKPPin generated models from the hybrid piecewise modelling frame-

work are also similar to the target ones.
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Figure 6.5: Comparison of speciesERK behaviour.
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Figure 6.6: Comparison of speciesMEKPPbehaviour.
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Figure 6.7: Comparison of speciesERK|MEKPPbehaviour.
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Figure 6.8: Comparison of speciesRPbehaviour.
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Figure 6.9: Comparison of speciesRKIPPbehaviour.

Regarding speciesRP andRKIPP involved in two binding and unbinding reactions,

there should be similar species behaviour ofRPandRKIPPexhibited in generated models.

Figure 6.8 shows that speciesRPbehaviour among most of returned best models are similar



170

to the target one inRKIP pathway.

But the speciesRKIPPbehaviour in Figure 6.9 indicate that just about four composed

models exhibiting speciesRKIPPbehaviour, and other composed models can not generate

similar speciesRKIPP behaviour because concentrations of species in these models are

zero during the whole simulation time as shown in the Figure 6.9.

The reason of resulting missed similar species behaviour could be some extra inter-

actions existing in the composed models. These extra interactions are not the ones in

targetRKIP pathway, which may have influence on the association and/or disassociation

of speciesRKIPP during the simulationin silico. That is why generated models exhibit

different RKIPP behaviour, event though the binding and unbinding reactions has been

generated.
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Figure 6.10: Comparison of speciesRKIPP|RPbehaviour.
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Figure 6.11: Comparison of speciesERKPP|RKIP|Raf1behaviour.
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Figure 6.12: Comparison of speciesERKPPbehaviour.

Furthermore, the existing extra interactions in the composed models may have an effect

on the generation of some target complex, because the targetcomplex cannot be produced

if its forming materials (proteins and other complex) are inhibited or not produced by the
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extra interactions. For instance, the generation of complex RKIPP|RPrelies on biochemical

binding and unbinding reactionsRKIPP +RP → RKIPP |RP andRKIPP +RP ←

RKIPP |RP . If the speciesRKIPP is not obtained correctly in the composed models (for

instance,RKIPPbehaviour is missed in Figure 6.9), the generation of complex RKIPP|RP

is affected and behaviour ofRKIPP|RP is not exhibited in the composed models, as shown

in Figure 6.10.

The same problems of missed similar species behaviour happen to ERKPP|RKIP|Raf1

andERKPP, due to extra biochemical reactions or missed interactionsamong the species

and complex. As shown in Figure 6.11 and Figure 6.12, only onesynthetic model exhibits

speciesERKPP|RKIP|Raf1andERKPPbehaviour respectively. The behaviour of species

ERKPP|RKIP|Raf1andERKPPare still far away from the target ones.

After comparing species behaviour in the composed models with corresponding ones

in target biochemical system, it is feasible to generate models presenting similar species

behaviour in time series data format. But regarding lack of similar species behaviour in

the synthetic models, these obtained best models should be studied by comparison with the

target biochemical system in terms of topology, in order to validate or improve the quality

of synthetic models generated by the 2D hybrid piecewise modelling approach.

6.2.2 Convergence of composed model fitness

The piecewise construction of models can be driven to approach the target RKIP pathway

by improving the fitness. Composed models can be evaluated for returning estimated fit-

ness value for each model, and the returned fitness value should converge with increasing

number of running generations during the modelling process.
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Figure 6.13: Average and five best fitness values of syntheticRKIP models.

As shown in Figure 6.13, there is an average fitness value for 50 synthetic models, con-

verging to a minimum value with the increased number of generations in the simulation.

In our current implementation, the hybrid piecewise modelling process is set to call the

SA layer to optimize the kinetic rates of each model at every 250 generations within total

pre-defined 1000 running generations for the simulation. Due to the probabilistic mecha-

nism of accepting a worse solution by SA, there is a jump of average fitness convergence

for the models at each end of run of calling SA layer to optimize the kinetic rates. The

average fitness value converges again after move back to ES layer, following a traditional

evolutionary process, until reaching the end of simulation.

Moreover, in order to investigate the fitness convergence for each developed model, we

choose to analyze the fitness convergence among five synthetic models from 50 composed

models. In Figure 6.13, fitness values of the five best models converge as the average one

with increased number of generations, and jump at each run ofcalling SA layer. Thus a
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group of returned best models from the modelling framework is close to the target biochem-

ical pathway in terms of behaviour measurement based on Euclidean distance function.

6.2.3 Quantitative analysis of composed topologies

6.2.3.1 Compression

Figure 6.14 illustrates the compression scores from comparison between the 50 synthetic

models and target RKIP pathway in terms of topology. These composed 50 models are from

one run based on the same simulation setting of the hybrid piecewise modelling framework.

Here we attempt to compare the generated models with target biochemical pathway in terms

of matched arcs (interconnections among species or complex), for illustrating quantitative

analysis on the topologies of composed model.
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Figure 6.14: Compression analysis of the synthetic topologies.

As shown in Figure 6.14, compression scores of the syntheticmodels are very poor,

ranging over [0, 0.18]. There are even two composed models which including no matched
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arcs on the topologies, compared to the target structure ofRKIP pathway. According to

the definition and description of compression in Section 5.4.2, low compression score

means less matched topologies in synthetic models, which indicates generation of models

with various structures. In wet-lab, biologists might be interested in models with differ-

ent topologies but exhibiting similar behaviour. Thus, these composed models with low

compression scores can be provided to biologists for further experimental investigation.

6.2.3.2 Coverage

Quantitative analysis on generated model in terms of topology can be performed by com-

puting coverage scores of these models, as an complementarymeasurement to the analysis

based on compression.
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Figure 6.15: Coverage analysis of the synthetic topologies.

Figure 6.15 shows that most of coverage scores of synthetic models for targetRKIP

pathway is in the ranges of [0, 0.53], including two models with zero coverage score as the
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estimation of compression. Regarding the low compression and coverage scores for these

generated models, we can say models obtained from the hybridmodelling framework are

very different to the targetRKIP pathway in terms of topology. Therefore, these different

models are obtained and preserved as a good resource for biological research in wet-lab.

6.2.4 Generation of alternative topologies

In order to illustrate generation of different topologies in synthetic models, we compared

one of generated models from our simulation with targetRKIP pathway in terms of reac-

tions. By analyzing how many reactions in target pathway canbe generated in the com-

posed model, we can quantitatively measure difference of the alternative topology com-

pared with target one.

Table 6.1: Comparison of one synthetic model withRKIP pathway.

Reactions inRKIP pathway Reactions in One Generated Model

*Raf1 +RKIP
k1
−→ RKIP |Raf1 ERK|RP

r1
−→ ERKP +RP

*RKIP |Raf1
k2
−→ Raf1 +RKIP ERKPP |MEKPP

r2
−→ ERKPP +MEKPP

RKIP |Raf1 + ERKPP
k3
−→ ERKPP |RKIP |Raf1 ERK|RP + ERKPP |RKIPP

r3
−→ ERK|ERKPP |RKIPP |RP

ERKPP |RKIP |Raf1
k4
−→ RKIP |Raf1 + ERKPP ERK +RKIP |Raf1

r4
−→ ERK|RKIP |Raf1

ERKPP |RKIP |Raf1
k5
−→ Raf1 + ERK +RKIPP *RKIP +Raf1

r5
−→ RKIP |Raf1

*ERK +MEKPP
k6
−→ ERK|MEKPP *ERK +MEKPP

r6
−→ ERK|MEKPP

*ERK|MEKPP
k7
−→ ERK +MEKPP ERKPP |MEKPP +MEKPP |RKIPP

r7
−→ ERKPP |MEKPP |RKIPP

ERK|MEKPP
k8
−→MEKPP + ERKPP RKIP + ERK|RP

r8
−→ ERK|RKIP |RP

RKIPP +RP
k9
−→ RKIPP |RP *RKIP |Raf1

r9
−→ RKIP +Raf1

RKIPP |RP
k10
−−→ RKIP +RP ERK|MEKPP

r10
−−→ ERKP +MEKPP

RKIPP |RP
k11
−−→ RKIPP +RP RKIP |Raf1 + ERKP

r11
−−→ ERKP |RKIP |Raf1

*ERK|MEKPP
r12
−−→ ERK +MEKPP

As shown in Table 6.1, four reactions marked with star in target RKIP pathway are

generated in a synthetic model. The synthetic model consists of 12 reactions that four of

them being identical to the ones inRKIP pathway. Regarding a low coverage score of the

compared synthetic model, we can find that the hybrid modelling framework can obtain
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alternative topologies of composed models exhibiting similar behaviour to the target ones

in biochemical systems.

Alternative topologies in synthetic models illustrate target biochemical system in a dif-

ferent way, providing templates to biologists in wet-lab for further experimental examina-

tion at the properties of the biochemical systems.

6.3 Levchenko Pathway

In biochemical systems, in addition to preventing crosstalk among related signaling path-

ways, scaffold proteins might facilitate signal transduction by preforming multimolecu-

lar complexes that can be rapidly activated by incoming signal. In many cases, such as

mitogen-activated protein kinase (MAPK) cascades, scaffold proteins are necessary for full

activation of a signalling pathway [Levc 00].

Levchenko et al. investigated a quantitative computer model of MAPK cascade with a

generic scaffold protein to suggest a detailed biochemicalmodel of scaffold action. From

the analysis of the suggested model, Levchenko et al. show that specificity, efficiency and

amplitude of signal propagation can be regulated by using formation of scaffold-kinase

complexes.

In this thesis, the model studied by Levchenko et al. [Levc 00] is employed as our

second test case; details of the model can be obtained from BioModels database(Model

NO. BIOMD0000000011) [Li 10]. We call the utilized model theLevchenko2000 model.

Figure 6.16 shows the structure of the Levchenko2000 model.
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Figure 6.16: Three signalling cascades of Levchenko2000 model, reproduced from [Li 10].
This is a representation of the signalling cascades, not thePetri net.

6.3.1 Generation of similar behaviour

Similar species behaviour in composed models of Levchenko2000 are shown in figures.

Figure 6.17 to Figure 6.23 show the generated models with similar behaviour of species

Raf, RafP, RasGTP, Raf|RasGTP, Phase3, MEK andMEKP to the target ones for present-

ing MAPK cascades signalling pathway.
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Figure 6.17: Comparison of speciesRaf behaviour.
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Figure 6.18: Comparison of speciesRafPbehaviour.
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Figure 6.19: Comparison of speciesRasGTPbehaviour.
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Figure 6.20: Comparison of complexRaf|RasGTPbehaviour.
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Figure 6.21: Comparison ofPhase3behaviour.
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Figure 6.22: Comparison of speciesMEK behaviour.
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Figure 6.23: Comparison of speciesMEKP behaviour.

6.3.2 Convergence of composed model fitness

While modelling the Levchenko2000, the same parameters of running hybrid modelling

are utilized for applying ES layer to evolve model seeds at every generation and calling

SA layer at every 250 generations to optimize kinetic rates associated with reactions in

these model seeds. Figure 6.24 shows that an average fitness value for 50 synthetic models

converge to a minimum value with the increased number of generations in the simulation.
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Figure 6.24: Average and four best fitness values of synthetic Levchenko2000 models.

Regarding the probability of models selection during the SAbased optimization pro-

cess, worse models with bad performance in terms of behaviour distance can be accepted.

Therefore, there is jump in the fitness values of the models under construction in the figure.

We also analyze the fitness values of the four best models obtained from the set of returned

models. The fitness values of the four best models converge and jump with the increased

generation numbers, as the converged average fitness shown in the same figure. There-

fore, it is feasible to apply our proposed 2D hybrid piecewise modelling approach to obtain

models with converged fitness (indicating the models to be close to target biochemical sys-

tem) and similar behaviour (suggesting correct generationof biochemical interactions in

the synthetic models).
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6.3.3 Quantitative analysis of composed topologies

6.3.3.1 Compression

Constructed models of Levchenko2000 are analyzed on topologies by employing one of

the quantitative measurements,Compression. Figure 6.25 shows that 50 synthetic models

are compared with the target Levchenko2000 and corresponding compression scores are

computed.
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Figure 6.25: Compression analysis of the synthetic topologies.

As shown in Figure 6.25, compression scores of the syntheticmodels are very poor,

which are distributed in a range of [0, 0.07]. There is one composed model not including

matched arcs on the structure. The poor compression scores indicate that synthetic models

are very different to the target model. In order to investigate the characteristics of various

structures among these constructed models, we also utilized another quantitative measure-

ment, Coverage, to analyze the composed models. The details of analysis of coverage

scores are illustrated in next section.
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6.3.3.2 Coverage

Coverage scores of constructed models are calculated and shown in Figure 6.26.
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Figure 6.26: Coverage analysis of the synthetic topologies.

A set of very low coverage scores of synthetic models for target Levchenko2000 is

obtained, ranging over [0, 0.27]. The same as the illustrated compression scores of these

synthetic models, a constructed model having zero coveragescore suggests that no matched

arcs exist in the model. Therefore, regarding both low compression and coverage scores of

these obtained synthetic models, we can conclude that constructed models from the hybrid

piecewise modelling are very different to the given target biochemical pathway in terms of

topology, but most of the species or complex among these synthetic models exhibit similar

behaviour to the target ones in Levchenko2000.
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6.3.4 Generation of alternative Topologies

We compare one of composed model with target Levchenko2000 model to present genera-

tion of alternative topologies from our approach. There are30 reactions in Levchenko2000

and 31 reactions are generated in a synthetic model.

Table 6.2: Comparison of one synthetic model with Levchenko2000.

Reactions in Levchenko2000 model Reactions in One Generated Model

*Raf +RasGTP
k1
−→ Raf |RasGTP *MEKP |RafP

r1
−→ MEKPP +RafP

Raf |RasGTP
k2
−→ RasGTP +Raf *MEK|RafP

r2
−→MEK +RafP

Raf |RasGTP
k3
−→ RafP +RasGTP MEK +RasGTP

r3
−→ MEK|RasGTP

Phase1 +RafP
k4
−→ Phase1|RafP ERKPPP |Raf

r4
−→ ERKPPP +Raf

Phase1|RafP
k5
−→ Phase1 +RafP MEKPP |Raf

r5
−→ MEKPP +Raf

Phase1|RafP
k6
−→ Raf + Phase1 ERK|RasGTP

r6
−→ MEK|Phase1 +RasGTP

RafP +MEK
k7
−→MEK|RafP ERK|Raf + Phase3

r7
−→ ERK|Phase3|Raf

*MEK|RafP
k8
−→ RafP +MEK MEKP |RasGTP

r8
−→ MEKPP +RasGTP

MEK|RafP
k9
−→MEKP +RafP *ERK|MEKPP

r9
−→ ERK +MEKPP

RafP +MEKP
k10
−−→MEKP |RafP MEK|MEKPP |Phase1 + ERK|MEKP |Phase2

r10
−−→ ERK|MEK|MEKP |MEKPP |Phase1|Phase2

MEKP |RafP
k11
−−→ RafP +MEKP ERK|Phase3 + ERK|MEKPP

r11
−−→ ERK|MEKPP |Phase3

*MEKP |RafP
k12
−−→MEKPP +RafP Raf |RafP

r12
−−→ RafP +Raf

Phase2 +MEKPP
k13
−−→ MEKPP |Phase2 *Raf +RasGTP

r13
−−→ Raf |RasGTP

MEKPP |Phase2
k14
−−→ Phase2 +MEKPP Raf |RasGTP

r14
−−→ Raf |RafP +RasGTP

MEKPP |Phase2
k15
−−→ Phase2 +MEKP ERK + ERK|RasGTP

r15
−−→ ERK|RasGTP

*Phase2 +MEKP
k16
−−→MEKP |Phase2 ERK +MEKP |Phase2

r16
−−→ ERK|MEKP |Phase2

MEKP |Phase2
k17
−−→ Phase2 +MEKP MEK|RasGTP

r17
−−→ MEKP +RasGTP

MEKP |Phase2
k18
−−→MEK + Phase2 *MEKP + Phase2

r18
−−→ MEKP |Phase2

MEKPP + ERK
k19
−−→ ERK|MEKPP MEKP |RasGTP +MEK|RasGTP

r19
−−→MEK|MEKP |RasGTP

*ERK|MEKPP
k20
−−→ MEKPP + ERK ERK|Phase3|Raf +Raf

r20
−−→ ERK|Phase3|Raf

ERK|MEKPP
k21
−−→ ERKP +MEKPP ERK|Phase3|Raf +MEK|RasGTP

r21
−−→ ERK|MEK|Phase3|Raf |RasGTP

MEKPP + ERKP
k22
−−→ ERKP |MEKPP ERKPP |Phase1 + ERK|MEK|Phase3|Raf |RasGTP

r22
−−→ ERK|ERKPP |MEK|Phase1|Phase3|Raf |RasGTP

ERKP |MEKPP
k23
−−→MEKPP + ERKP MEK +MEKP |RasGTP

r23
−−→MEK|MEKP |RasGTP

ERKP |MEKPP
k24
−−→ ERKPP +MEKPP MEK|MEKPP

r24
−−→MEK +MEKPP

Phase3 + ERKPP
k25
−−→ ERKPP |Phase3 Raf + ERKPPP

r25
−−→ ERKPPP |Raf

ERKPP |Phase3
k26
−−→ Phase3 + ERKPP MEKP +MEKPP

r26
−−→MEKP |MEKPP

ERKPP |Phase3
k27
−−→ Phase3 + ERKP ERK + ERK|Phase3

r27
−−→ ERK|Phase3

Phase3 + ERKP
k28
−−→ ERKP |Phase3 MEK|RasGTP

r28
−−→ MEK +RasGTP

ERKP |Phase3
k29
−−→ Phase3 + ERKP MEK + ERK|MEKP |Phase2|Raf

r29
−−→ ERK|MEK|MEKP |Phase2|Raf

ERKP |Phase3
k30
−−→ ERK + Phase3 MEK|RafP + ERK|MEKPP

r30
−−→ ERK|MEK|MEKPP |RafP

MEKP |Phase2 +Raf
r31
−−→ MEKP |Phase2|Raf

As shown in Table 6.2, five reactions in the synthetic model are identical to the ones in

original Levchenko2000. The identical reactions are marked with star in the table, indicat-

ing that an alternative topology of Levchenko2000 can be obtained with similar behaviour

from our hybrid modelling approach.
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6.4 Simulations and statistical analysis on modelling vari-

ants

In order to quantitatively study various modelling variants, we utilized statistical method-

ology to analyze the performance of modelling variants by comparing fitness values, com-

pression and coverage scores which are acquired from a set ofsynthetic models represent-

ing targetRKIP pathway. Firstly, we describe simulation settings for generating synthetic

models to compare the modelling variants, then details of statistical analysis and summaries

of variants comparison are given.

6.4.1 Simulation settings

There are five pairs of modelling variants compared and investigated by employing the

2D hybrid piecewise modelling approach. For analyzing simulation results and summariz-

ing conclusions about performance of modelling variants from a large group of composed

models, each pair of compared modelling variants is utilized to compose models in 10 runs.

Details of simulation settings are given in Table 6.3 as follows.

As shown in Table 6.3, there are 10 runs for implementation ofeach modelling vari-

ant on the hybrid modelling platform,♯Runs=10. The hybrid modelling platform calls the

subtraction operator at every two generations, Sub@Ge=2; SA is called to optimize kinetic

rates in each model individual at every 25 generations, OptRate@Ge=25; rewardε1 and

penaltyε2 of models construction are 0.01 and 1000 respectively,ε1=0.01 andε2=1000.

ES and SA are employed to compose models of biochemical systems, therefore the stan-

dard settings of ES and SA are utilized. The number of generations in one run of ES is 100,
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Table 6.3: Simulation settings for running modelling variants.

Modelling Variants Hybrid Modelling ES SA GaussianN(µ, σ)
Data Driven: ♯Runs = 10 GeSi = 100 Tini = 10 µ= 0
Fixed vs Dynamic Sub@Ge= 2 PopSi = 50 CoRate = 0.8 σ= 0.00001
Survival Selection: OptRate@Ge = 25 Tmin = 1
SES vs PES ε1=0.01 Iter = 10
Mutation: ε2=1000
Fixed vs Random
Recombination:
Best vs Random
Fitness Function:
ED vs (ED+RP)

GeSi=100; the number of population (models seeds) in one generation is 50, PopSi=50. Ini-

tial SA system temperature is 10,Tini=10; cooling rate of SA system is 0.8, CoRate=0.8;

minimum temperature for stopping simulation is 1,Tmin=1; and iterations at each sim-

ulated annealing temperature are 10, Iter=10. The meanµ and standard deviationσ of

Gaussian distributionN(µ, σ) are 0 and 0.00001,µ=0 andσ=0.00001. Other properties

of the simulation setting during the modelling process are fixed without modification ex-

cept the two compared modelling variants, which allows a fair comparison between two

modelling variants in each pair in terms of performance on generation of synthetic models.

Since there are 50 models seeds initiated at each run for models development and 10 runs

simulation for examination of each modelling variant, there are2× 500 composed models

obtained for comparison and analysis of each pair of modelling variants.

6.4.2 Statistical analysis

Since we compare pairs of modelling variants with specific aims on modelling biochem-

ical systems, it is necessary to statistically investigatethe variances of modelling variants
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in each pair for the generations and evaluations of synthetic models. Two-sample based

statistical methods for analysis of two groups of simulation results, for instance compres-

sion scores, coverage scores and fitness values of composed models, need to be performed

for understanding if the variances of the variants are the same on some specific modelling

aims. Two statistical measures inR package [R De 09], ‘var.test(X, Y)’ and ‘t.test(X, Y)’,

are employed to perform the statistical analysis.

Fitness values, compression and coverage scores of synthetic models are used to calcu-

late p-value in ‘var.test(X, Y)’ and ‘t.test(X, Y)’ for further statistical analysis. Obtained p-

value in two statistical measures are compared with a traditional significant level ‘p=0.05’,

and the ratios of variances among generated models from different implementation of mod-

elling variants are also compared. Conclusions are summarized from results of statistical

analysis, which is shown with comparison of fitness, compression and coverage among

these synthetic models. Appendix A gives a short explanation of two samples tests inR

package for ‘var.test(X, Y)’ and ‘t.test(X, Y)’.

Table 6.4: Statistical analysis of average fitness sets

NO. X vs Y
var.test(X, Y) t.test(X, Y)

p-value rV ariances p-value X̄ Ȳ

1.1 DriF ixed vsDriDyn 0.0229 0.6309 < 2.2e-16 3.1602

1.2 SES vs PES 0.4574 1.1616 0.837 4.2289

1.3 MF ixed vsMRan 0.6821 0.9208 0.0262 4.2474 4.035

1.4 ⊗Ran vs⊗Best 1.07e-03 1.9448 0.5737 4.2019

1.5 ED vs (ED+RP) < 2.2e-16 6.15e-06 < 2.2e-16 348.78
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After obtaining sets of generated models from simulation runs based on different mod-

elling variants of 2D hybrid piecewise modelling approach,average of fitness of these

models among all runs can be calculated for statistical analysis. Table 6.4 shows statistical

analysis results on the synthetic models from simulations based on each pair of compared

modelling variants: p-value and ratio of variances from var.test() measure; and p-value and

means of fitness of models constructed by employing modelling variants.

The compression and coverage scores of these composed models can be measured for

further statistical analysis. Table 6.5 and Table 6.6 show that compression and coverage

scores of synthetic models from different simulation runs based on different modelling

variants are analyzed to obtain p-value, ratio of variances, and means of these scores in

var.test() and t.test() statistical measurements. By comparing the statistical analysis results

in each pair of modelling variants, advantage and disadvantage of the variants for modelling

biochemical systems can be illustrated quantitatively.

Table 6.5: Statistical analysis of average compression.

NO. X vs Y
var.test(X, Y) t.test(X, Y)

p-value rV ariances p-value X̄ Ȳ

1.1 DriF ixed vsDriDyn 0.0096 0.4713 < 2.2e-16 0.025

1.2 SES vs PES 0.0461 1.7802 6.78e-16 0.0361

1.3 MF ixed vsMRan 0.75 1.0958 0.0296 0.0526 0.0567

1.4 ⊗Ran vs⊗Best 1.60e-06 0.2387 < 2.2e-16 0.1033

1.5 ED vs (ED+RP) 1.25e-05 3.6546 0.0004 0.0469
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Table 6.6: Statistical analysis of average coverage.

NO. X vs Y
var.test(X, Y) t.test(X, Y)

p-value rV ariances p-value X̄ Ȳ

1.1 DriF ixed vsDriDyn 6.74e-12 8.4369 < 2.2e-16 0.0731

1.2 SES vs PES 0.4961 1.2161 0.0261 0.2065

1.3 MF ixed vsMRan 0.062 1.7147 6.63e-05 0.2322 0.2765

1.4 ⊗Ran vs⊗Best 0.3373 1.3178 0.1888 0.2174

1.5 ED vs (ED+RP) 9.39e-05 0.3163 1.05e-14 0.3967

Details of advantage and disadvantage of applying different modelling variants to con-

struct models are described in next section with the quantitative comparison of modelling

variants. Moreover, since the synthetic models in a generation are independent during the

construction process, the corresponding compression and coverage scores of the models

can be analyzed in a cumulative ascending order, as a complementary analysis of the sta-

tistical analysis results.

6.4.3 Comparison of modelling variants

6.4.3.1 Fixed vs Dynamic - Data driven

Here is a brief summary of comparing data driven modelling variants which are in fixed or

dynamic manner:

• For generating desired behaviour: dynamic variant is better than fixed one;

• For generating similar topologies: fixed variant is better than dynamic one;
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• For generating alternative topologies: dynamic variant isbetter than fixed one.

Figure 6.27 shows that the dynamic version converges more quickly in terms of fitness

function than the fixed one. In Table 6.4 (1.1) The two p-valueof var.test() and t.test() are

both smaller than the significance level 0.05 which means that the variances of fixed variant

is smaller than the dynamic one and the mean fitness of the fixedone is greater than that of

the dynamic one.

 0

 1

 2

 3

 4

 5

 6

 7

 10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 F
itn

es
s

Generations

Fixed
Dynamic

Figure 6.27: Data Driven: Fixed vs Dynamic, Comparison of average fitness of models.

Regarding the exploration of alternative topologies, the compression values of the mod-

els generated by dynamic variant is significantly differentfrom the one generated by the

fixed variant, see Table 6.5 (1.1) where both p-value are smaller than 0.05. The variance

of the dynamic variant is greater than the variance of fixed variant, indicating there is a

significant variance in the topologies generated.

In terms of similarity to the target topology, the coverage value of generated models

by the fixed variant is greater than that of the dynamic one, asshown in Figure 6.28a and
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Figure 6.28: Data Driven: Fixed vs Dynamic. (a)-(b) orderedand non-cumulative coverage
and compression; (c)-(d) ordered and cumulative coverage and compression. Horizontal
axes in the subfigures are cumulative number of generated models. Vertical axes in the
subfigures are cumulative/non-cumulative scores of coverage or compression.

Figure 6.28c. As evident from Table 6.6 (1.1), the p-values are smaller than 0.05 which

indicates a significant difference between the two variants. Moreover, the variances and

means of the fixed variant are greater than the correspondingvalues of the dynamic one,

indicating a higher coverage of structure by the fixed variant. The compression values

shown in Figure 6.28b and Figure 6.28d also support this conclusion.
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6.4.3.2 SES vs PES - Survival selection

A summary of comparison of implementing survival selectionbased on SES and PES vari-

ants is given as following:

• For generating desired behaviour: the experiments do not show a difference between

the implementation of SES and PES;

• For generating similar topologies: SES is better than PES;

• For generating alternative topologies: SES is better than PES.

Figure 6.29 shows that SES and PES have a similar performanceregarding the conver-

gence of fitness values. As evident from Tables 6.4 (1.2) and 6.6 (1.2), the p-values are

larger than the significant level 0.05 which means the variances and mean fitness values are

the same for the two variants.
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Figure 6.29: Survival Selection: SES vs PES, Comparison of average fitness of models
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For exploring alternative topologies, the compression values of the models generated

by SES are slightly different from the ones generated by PES (Table 6.5 (1.2), p-value

of var.test() is 0.04608 around the significant level 0.05).The ratio of variances between

SES and PES is larger than 1, which suggests that SES is betterthan PES for exploring

alternative topologies to the target biochemical system.
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Figure 6.30: Survival Selection: SES vs PES. (a)-(b) ordered and non-cumulative coverage
and compression; (c)-(d) ordered and cumulative coverage and compression. Horizontal
axes in the subfigures are cumulative number of generated models. Vertical axes in the
subfigures are cumulative/non-cumulative scores of coverage or compression.

Figure 6.30a and Figure 6.30c show that a larger range of coverage values can be gen-

erated by SES. Furthermore, in Table 6.6 (1.2), the p-value of t.test() is smaller than 0.05,

which means the coverage of models by SES is larger than the one provided by PES. The
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compression values shown in Figures 6.30b and 6.30d also support this finding.

6.4.3.3 Fixed vs Random - Mutation operator

There are conclusions from the comparison of implementing mutation operator based on

fixed and random modelling variants:

• For generating desired behaviour and similar topologies: random variant is better

than fixed one;

• alternative topologies: random variant is the same as fixed one.

Figure 6.31 shows the convergence of the fitness values of models generated by fixed

and random variants. In Table 6.4 (1.3) and Table 6.6 (1.3), the two p-value of t.test() are

both smaller than the significance level 0.05, indicating the mean fitness of fixed variant

is significantly different from the random one. It suggests that the mean fitness value of

random variant is smaller (more close to the desired behaviour) than the fixed one; and the

mean of coverage of random variant is larger (more coverage of the target structure) than

the fixed one.

For exploring alternative topologies, the random variant is the same as the fixed one,

supported by Figure 6.32a and Figure 6.32c for similar coverage scores, and Figure 6.32b

and Figure 6.32d for similar compression scores. In Table 6.5 (1.3), the variances of fixed

and random variants are not different (p-value of var.test() is great larger than 0.05), which

indicates that the fixed and random variants have the same ability of exploring alternative

structures.
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Figure 6.31: Mutation: Fixed vs Random, Comparison of average fitness of models.

6.4.3.4 Best vs Random - Crossover operator

Following conclusions are from the comparison of implementation of crossover operator

based on best and random modelling variants:

• For generating desired behaviour and similar topologies: arandom selection of mate

for recombination works the same as the selection of the bestindividual;

• For generating alternative topologies: selection of best individual for recombination

is better than the random selection.

Figure 6.33 shows the convergence of the fitness values. In Table 6.4 (1.4) and Ta-

ble 6.6 (1.4), the two p-values of t.test() are both larger than the significant level 0.05,

indicating that the mean fitness and coverage values of the random variant are the same as

the ones of the best variant. It suggests that the best and random mechanisms of select-

ing individual for crossover have the same performance in terms of approaching desired

behaviour and generating similar topology.
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Figure 6.32: Mutation: Fixed vs Random. (a)-(b) ordered andnon-cumulative coverage
and compression; (c)-(d) ordered and cumulative coverage and compression. Horizontal
axes in the subfigures are cumulative number of generated models. Vertical axes in the
subfigures are cumulative/non-cumulative scores of coverage or compression.

In Table 6.5 (1.4), the variances of random and best strategies are significantly differ-

ent (p-value of var.test() is smaller than 0.05), and the ratio of variances is smaller than

1, supporting the conclusion that the best variant is betterthan the random one exploring

various structures of the target biochemical pathway. Thisconclusion is also supported

by comparing the coverage values in Figure 6.34a and Figure 6.34c, and the compression

values in Figure 6.34b and Figure 6.34d.
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Figure 6.33: Recombination: Best vs Random, Comparison of average fitness of models.

6.4.3.5 ED vs ED+RP - Objective function

A summary of comparison of implementing ED and ED+RP based distance estimation in

objective function is given as follows:

• For generating similar topologies: ED+RP variant is betterthan ED one;

• For generating alternative topologies: ED variant is better than ED+RP one.

In Table 6.4 (1.5), the p-value is much smaller than 0.05, indicating a significant dif-

ference between ED and ED+RP variants. Figure 6.35 describes the average fitness values

from the objective functions involving a measurement of pure ED, or a mechanism of re-

ward and penalty in the distance estimation function.

As shown in Figure 6.36a and Figure 6.36c, the average coverage values are signif-

icantly different between ED and ED+RP, illustrated in Table 6.6 (1.5). Moreover, the

average coverage value is larger for the models estimated byED+RP which suggests that
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Figure 6.34: Recombination: Best vs Random. (a)-(b) ordered and non-cumulative cover-
age and compression; (c)-(d) ordered and cumulative coverage and compression. Horizon-
tal axes in the subfigures are cumulative number of generatedmodels. Vertical axes in the
subfigures are cumulative/non-cumulative scores of coverage or compression.

the ED+RP variant can be better than the ED variant in terms ofgenerating similar topolo-

gies. But the p-value of var.test() in Table 6.5 (1.5) is smaller than 0.05 and the ratio of

variances is larger than 1.
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Figure 6.35: Objective Function: ED vs ED+RP, Comparison ofaverage models fitness.
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6.4.4 A summary of findings

After performing simulations on modelling variants, results are generated for representing

advantage and disadvantage of these variants regarding specific functions of modelling bio-

chemical systems. In addition, statistical analysis of thecomposed models from different

implementation of modelling variants are carried out. A summary of findings about the per-

formance of these variants focusing on specific modelling aspects is obtained. Details of

the summary is shown in Table 6.7 which describes whether a modelling variant performs

better, worse or the same as another one it is directly compared with.

Table 6.7: A summary of performance between compared modelling variants.

Desired Similar Alternative
Modelling Variants Behaviours Topologies Topologies

Data Driven:
Fixed vs Dynamic Dynamic Fixed Dynamic
Survival Selection:

SES vs PES = SES SES
Mutation:

Fixed vs Random Random × =
Recombination:
Best vs Random = × Best
Fitness Function:
ED vs (ED+RP) × ED+RP ED

Notes:×means not comparable; ‘=’ means the same.

Note that some of the modelling variants are not directly comparable, because the sta-

tistical values are not in the same measurement scale. For instance, the modelling variants

ED and ED+RP are not comparable in terms of fitness values, since the mechanism of re-

ward and penalty generates a different fitness scale. Details of comparison and summaries

among pairs of modelling variants are given in Section 6.4.3. The conclusions about the

performance of modelling variants are based on the statistical analysis of average fitness,

compression and coverage scores of the composed models in Section 6.4.2.
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6.5 Summary

This chapter focuses on the implementation of our 2D hybrid piecewise modelling approach

on concrete signalling pathways, comparing performance ofdifferent modelling variants.

Alternative topologies of synthetic models obtainedin silico can be taken as general guides

for biologists to examine and understand biochemical systems by experimental techniques

in wet-lab. Moreover, these composed models with alternative structures can be used as

templates for researchers in synthetic biology to develop specific functions of biochemical

systems. Summaries about the performance of applying different modelling variants to

develop models are useful for further models construction with respect to specific aims of

modelling biochemical systems.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The research in this thesis presents a hybrid piecewise modelling framework based on evo-

lutionary algorithms and graph theory to model biochemicalsystems in terms of topology

and kinetic rates, driven by target species behaviour. We have applied the modelling frame-

work in which both topology and kinetic rates are manipulated. Furthermore, variants of

the proposed modelling framework are investigated for understanding which features are

important for modelling various aspects of biochemical systemsin silico.

Regarding dynamic continuous behaviour which is of interest and exists in signalling

pathways, we focus on modelling of signalling pathways by our proposed hybrid modelling

approach. Metabolic pathways and gene regulatory networksare not in the scope of this

research, since there is steady state in metabolic pathwaysand only stochastic behaviour

exists in gene regulatory networks. Investigation of modelling metabolic pathways can

be found in recent literatures, for example Lodhi and Gilbert [Lodh] studied parameters

estimation by use of bootstrapping for time series data characterized by noise. In gene

regulatory networks, the inputs are proteins (for instancetranscription factors produced

204
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from signal transduction or metabolic activity) which can influence the expression of genes.

In addition, enzymatic activity plays no direct role in the gene regulatory networks, but the

products of gene regulatory networks can have an influence inthe transcription of other

proteins, or can act as enzymes in signalling or metabolic pathways[Brei 08]. Therefore,

we only apply our hybrid piecewise modelling framework to study dynamic continuous

behaviour in the signalling pathways.

We have introduced background of modelling biochemical systems, with brief descrip-

tions of how to present and simulate biochemical systems in ‘dry-lab’ based on current dif-

ferent formal mathematical tools, especially examining the issues of modelling biochemical

systems in terms of topology and kinetic rates, see Chapter 2.

To achieve the aims of hybrid modelling biochemical systems, in Chapter 3 we have

defined basic components and synthetic models in formal syntax and semantics to repre-

sent given biochemical systems in our study. Mass-action 1 kinetic law has been employed

to define atomic components which can be reused during the process of piecewise models

composition. In order to preserve defined atomic componentsand composed models for

reuse while modelling biochemical systems, two libraries have been designed and imple-

mented to support the piecewise development of models. Then, we presented three genetic

composition operators and a set of composition rules for implementation. Because com-

ponents and models are described in Petri nets format, composition operators are proposed

to evolve Petri nets for manipulation of synthetic models under construction and genera-

tion of similar species behaviour to the target ones. In addition, we have discussed issues

of fine tuning Petri nets models by the composition operatorsand rules. Note that Petri

net is chosen for graphical representations of biochemicalpathways, because of follow-

ing reasons: firstly, computational ODEs can be directly mapped from the Petri nets for
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estimations of synthetic models; secondly, graph operations of addition, subtraction and

crossover can be easily applied to Petri nets for composition of models. Although there are

other possible graph representations for biochemical pathways, such as compound graph,

reaction graph and hypergraph, Petri nets are a natural and established notation for describ-

ing biochemical reaction networks both share the bipartiteproperty without any ambigu-

ity [Hein 11, Hein 12].

We applied two types of hybrid modelling approaches to construct models of biochem-

ical systems in Chapter 4: a models generator based on the 1D hybrid piecewise modelling

which focuses on construction of models by manipulating topology and optimizing kinetic

rates separately; a 2D hybrid piecewise modelling approachwhich composes biochemi-

cal models by employing two evolutionary and heuristic algorithms to set up a two-layer

hybrid modelling environment. The 2D hybrid piecewise modelling approach addresses

the challenges of constructing models of biochemical systems with respect to involving

topology and kinetic rates.

Our proposed hybrid modelling framework is developed by introduction of a grid tech-

nique to parallelize modelling process, and comparison of variants of the hybrid modelling

approach, see Chapter 5. The GridGain technique has been employed to parallelize the

topology construction and kinetic rates optimization respectively. By using GridGain based

hybrid piecewise modelling approach, models from the same generation in the evolutionary

modelling process can be composed and optimized independently. Simulation process can

be speeded up, because the parallel execution of models performs addition, subtraction,

crossover operators and rates optimization to models underconstruction. Regarding spe-

cific modelling aims, modelling variants have been exploredto investigate the advantages

or disadvantages of functions in these variants for piecewise modelling, with an emphasis
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on the effect of mutation operators and evaluation criteriaof the overall hybrid methods.

Moreover, measurements of composed models have been studied, by including pure Eu-

clidean distance function and a reward and penalty functionin an objective function to

estimate behaviour difference between generated and target model. We have presented

how to evaluate composed models in terms of topology by introducing quantitative and

qualitative methods.

We have applied the 2D hybrid piecewise modelling approach with its variants to con-

crete signalling pathways for constructing models exhibiting similar behaviour with alter-

native topologies, see Chapter 6. Simulation results show that it is feasible to compose

models from scratch and develop models topologies piece by piece, along with optimiza-

tion of kinetic rates associated with the biochemical reactions in these models. Examina-

tion of modelling variants with analyzed simulation results suggest a set of conclusions can

be obtained for indicating advantage and disadvantage of modelling variants on specific

modelling aspects.

In summary, this thesis presents a hybrid modelling framework based on quantitative

Petri nets to piecewise model and optimize biological systems in terms of topology and

kinetic rates. Performance of modelling variants in a hybrid two-layer framework is also

investigated. Simulation results are statistically analyzed, providing conclusions about im-

plementation of modelling variants in the hybrid modellingenvironment.

Our simulation results do not clearly show that one modelling variant clearly outper-

forms the others, but it provides an indication regarding which features are important to be

considered for various aspects of the modelling problem. These conclusions about the vari-

ants performance in a hybrid modelling environment can be employed to improve further
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modelling issues. Moreover, our study in this thesis addresses the evolution of quantita-

tive Petri nets and could thus be applied to stochastic and hybrid Petri nets as well as the

continuous Petri nets, which can benefit mathematical modelling.

7.2 Future Work

Theoretical and practical study has been investigated in this thesis for modelling of bio-

chemical systems. A list of potential research directions is proposed as follows.

1. To develop patterns for instantiation of atomic components by using MA2, MA3 and

MM kinetic laws for piecewise modelling;

Different kinetic laws guide biochemical reactions in biological systems. It could

confuse many experimentalists in wet-lab, if only applyingMA1 kinetics to model

biochemical systems. Moreover, an active enzymatic reaction is measured by the

MM kinetics, and it is difficult to obtain rates for the atomicreactions. Therefore, a

sophisticated modelling strategy including different patterns developed for different

kinetic laws could enhance the piecewise modelling.

2. To apply more biological constraints to define and implement composition rules;

Components are instantiated by following a set of given biological principles. Mod-

els are constructed by applying composition rules predefined by users according to

given biological constraints. Regarding complex working mechanisms among sub-

strates in biochemical systems, it is necessary to involve more precise and concrete

biological knowledge which can guide the instantiation of atomic components and

generation of biochemical interactions, for approaching more biological relevant syn-

thetic models.



209

3. To use concrete biological values, including kinetic rates constants and initial con-

centrations, while fitting parameters of biochemical systems;

Random choices of kinetic constants and initial concentrations are feasible while

modelling biochemical systems in silico, but these random operations are strange for

experimentalists in wet-lab. Therefore, it is better to apply concrete kinetic values

from literature or biochemical databases to the variables associated with biochemical

reactions while modelling.

4. To optimize kinetic rates by employing Multiobjective Optimization;

Modification of kinetic rates associated with reactions would result in composed

models exhibiting different behaviour. Fine tuning one of reaction rates in a model

may affect other reactions, therefore multiple objective optimization methodologies

can be employed to analyze the effects of rates modification.

5. To account matched structures and topology sizes of composed models in the objec-

tive function for the overall estimation of generated models;

While fitness of composed models converge to optimal values with increased gen-

erations, the topology sizes of composed models could grow without control, even

thought subtraction and crossover operations are applied to manipulate the models.

The objective function can account for a weighted estimation of matched interac-

tions between generated and target model, for approaching synthetic models with

‘optimal’ fitness and ‘minimal’ topologies.

6. To take improvement of synthetic models across generations into account for mod-

elling stop criteria;
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It is important to apply criterion to stop the modelling process automatically, for

avoiding anomalies of generating meaningless interactions among substrates in the

models. For instance, if there is no improvement after pre-defined number of gener-

ations, the modelling process can stop and return current optimal results.

7. To study hybrid implementation of SA and ES at different modelling stages, for

instance in a rough manner at initial generations and in a precise manner at final

generations;

Modelling in a rough manner means aspects of generated models are not strictly

treated, then criteria of estimating synthetic models are not rigorous. Whereas mod-

elling in a precise manner means criteria can be tough for satisfying modelling re-

quirements. Combination and implementation of rough and precise modelling stages

allow models to be developed without rejection even though serious problems ex-

isting, and later these models can be checked by strict criteria for more meaningful

synthetic models.

8. To independently construct submodels with driving information from different exper-

imental stages in wet-lab, and then to compose these submodels into an integrated

model representing target biochemical system.

A biochemical system is difficult to be observed and measuredon concentrations

in wet-lab, because of the natural complex of biochemical interactions. It is com-

mon to only consider specific experimental stages from whichinformation of the

biochemical system can be obtained. Parts of a model (submodules) within different

experimental time slots can be generated independently, then these submodules can

be composed together into an integrated model.
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In summary, we take the hybrid piecewise modelling framework to be only a first trial

towards automatically modelling of biochemical systems from scratch by employing meta-

heuristics and reusing definable atomic components, drivenby target species behaviour

information. Regarding availability of generating modelsfrom scratch with basic building

blocks and biochemical knowledge, we argue that it is a greatopportunity for computa-

tional biology research to construct alternative and comprehensible models which can be

useful for biologists discovering hidden biochemical knowledge and heuristically building

biochemical systems. We would like to share our opinions of potential research directions

and encourage other software engineers and biological modelers to contribute their efforts

to this developing interdisciplinary area.
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F. Allgöwer, and E. D. Gilles. “A benchmark for methods in reverse engineer-

ing and model discrimination: Problem formulation and solutions”. Genome

Research, Vol. 14, No. 9, pp. 1773–1785, Sep. 2004.

[Lang 89] C. G. Langton.Artificial Life: proceedings of an interdisciplinary workshop

on the synthesis and simulation of living systems. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1989.



222

[Levc 00] A. Levchenko, J. Bruck, and P. W. Sternberg. “Scaffold proteins may biphasi-

cally affect the levels of mitogen-activated protein kinase signaling and reduce

its threshold properties”.Proceedings of the National Academy of Sciences of

the United States of America, Vol. 97, No. 11, pp. 5818–5823, May 2000.

[Li 05] W. Li and H. Kurata. “A grid layout algorithm for automatic drawing of

biochemical networks”.Bioinformatics, Vol. 21, No. 9, pp. 2036–2042, May

2005.

[Li 10] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li,

E. He, A. Henry, M. I. Stefan, J. L. Snoep, M. Hucka, N. Le Novère, and

C. Laibe. “BioModels Database: An enhanced, curated and annotated re-

source for published quantitative kinetic models.”.BMC Systems Biology,

Vol. 4, p. 92, June 2010.

[Liu 08] X. Liu, J. Jiang, O. Ajayi, X. Gu, and D. Gilbert. “BioNessie(G)- A Grid

Enabled Biochemical Networks Simulation Environment”.Studies in Health

Technology and Informatics, Vol. 138, pp. 147–157, 2008.

[Liu 12] F. Liu, M. Heiner, and C. Rohr. “Manual for colored petri nets in Snoopy”.

Tech. Rep. 02-12, Brandenburg University of Technology Cottbus, Depart-

ment of Computer Science, March 2012.

[Lodh] H. Lodhi and D. Gilbert. “Bootstrapping parameter estimation in dynamic

systems”. In: T. Elomaa, J. Hollmn, and H. Mannila, Eds.,Discovery Science,

pp. 194–208, Springer Berlin / Heidelberg.

[Loza 10] M. Lozano and C. Garcı́a-Martı́nez. “Hybrid metaheuristics with evolutionary

algorithms specializing in intensification and diversification: Overview and

progress report”.Computers and operations research, Vol. 37, No. 3, pp. 481–

497, March 2010.



223

[Mach 11] D. Machado, R. Costa, M. Rocha, E. Ferreira, B. Tidor, and I. Rocha. “Mod-

eling formalisms in systems biology”.AMB Express, Vol. 1, No. 1, pp. 1–14,

Dec. 2011.

[Manc 11] V. Manca and L. Marchetti. “Log-Gain stoichiometric stepwise regression

for MP systems”.International Journal of Foundations of Computer Science,

pp. 97–106, 2011.

[Mari 04] G. Maria. “A review of algorithms and trends in kinetic model identification

for chemical and biochemical systems”.Chemical and Biochemical Engi-

neering Quarterly, Vol. 18, No. 3, pp. 195–222, 2004.

[Marw 08] W. Marwan, A. Wagler, and R. Weismantel. “A mathematical approach to

solve the network reconstruction problem”.Mathematical Methods of Oper-

ations Research, Vol. 67, pp. 117–132, 2008. 10.1007/s00186-007-0178-5.

[Marw 11] W. Marwan, A. Wagler, and R. Weismantel. “Petri nets as a framework for

the reconstruction and analysis of signal transduction pathways and regulatory

networks”. Vol. 10, No. 2, pp. 639–654, June 2011.

[Marw 12] W. Marwan, C. Rohr, and M. Heiner.Petri nets in Snoopy: a unifying frame-

work for the graphical display, computational modelling, and simulation of

bacterial regulatory networks, Chap. 21, pp. 409–437. Vol. 804 ofMethods

in Molecular Biology, Humana Press, 2012.

[Mats 06] H. Matsuno, C. Li, and S. Miyano. “Petri net based descriptions for system-

atic understanding of biological pathways”.IEICE - Transactions on Fun-

damentals of Electronics, Communications and Computer Sciences website,

Vol. E89-A, pp. 3166–3174, November 2006.



224

[Mauc 03] H. Mauch. “Evolving petri nets with a genetic algorithm”. In: Proceedings of

the 2003 international conference on Genetic and evolutionary computation:

PartII, pp. 1810–1811, Springer-Verlag, Berlin, Heidelberg, 2003.

[Mayo 05] M. Mayo. “Learning petri net models of non-linear gene interactions”.Biosys-

tems, Vol. 82, No. 1, pp. 74 – 82, 2005.

[Mayo 11] M. Mayo and L. Beretta. “Modelling epistasis in genetic disease using petri

nets, evolutionary computation and frequent itemset mining”. Expert Systems

with Applications, Vol. 38, No. 4, pp. 4006 – 4013, 2011.

[Mend 09a] P. Mendes, S. Hoops, S. Sahle, R. Gauges, J. Dada, and U. Kummer. “Com-

putational modeling of biochemical networks using COPASI”. Methods in

molecular biology (Clifton, N.J.), Vol. 500, pp. 17–59, 2009.

[Mend 09b] P. Mendes, H. Messiha, N. Malys, and S. Hoops. “Enzyme kinetics and com-

putational modeling for systems biology”.Methods in enzymology, Vol. 467,

pp. 583–599, 2009.

[Meng 12] Y. Meng and H. Guo. “Evolving network motifs based morphogenetic ap-

proach for self-organizing robotic swarms”. In:Proceedings of the fourteenth

international conference on Genetic and evolutionary computation confer-

ence, pp. 137–144, ACM, New York, NY, USA, 2012.

[Mole 03] C. G. Moles, P. Mendes, and J. R. Banga. “Parameter estimation in bio-

chemical pathways: A comparison of global optimization methods”.Genome

Research, Vol. 13, No. 11, pp. 2467–2474, Nov. 2003.

[Moor 03] J. H. Moore and L. W. Hahn. “Petri net modeling of high-order genetic sys-

tems using grammatical evolution”.BioSystems, Vol. 72, No. 1-2, pp. 177–

186, Nov. 2003.



225

[Mora 98] M. Morange.A history of molecular biology. Cambridge, MA: Harvard Uni-

versity Press, 1998.

[Mukh 09] S. Mukherji and A. van Oudenaarden. “Synthetic biology: understanding

biological design from synthetic circuits”.Nat Rev Genet, Vol. 10, No. 12,

pp. 859–871, Dec. 2009.

[Mura 89] T. Murata. “Petri nets: Properties, analysis and applications”.Proceedings of

the IEEE, Vol. 77, No. 4, pp. 541–580, April 1989.

[Nobl 60] D. Noble. “Cardiac action and pacemaker potentials based on the Hodgkin-

Huxley equations”.Nature, Vol. 188, 1960.

[Numm 05] J. Nummela and B. A. Julstrom. “Evolving petri netsto represent metabolic

pathways”. In:Proceedings of the 2005 conference on Genetic and evolution-

ary computation, pp. 2133–2139, ACM, New York, NY, USA, 2005.

[Paul 03] J. ao Paulo Barros and L. Gomes. “Modifying petri net models by means

of crosscutting operations”.Application of Concurrency to System Design,

International Conference on, Vol. 0, p. 177, 2003.
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Appendix A

Statistical Analysis of Two-sample Tests
in R

Common operation of comparing aspects of two samples in R is implementation of two-

sample tests. An example is given to illustrate how to obtaininformation of two given sam-

ples. Consider the following sets of data on the latent heat of the fusion of ice [R De 09].

Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97

80.05 80.03 80.02 80.00 80.02

Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

To test for the equality of the means of the two examples, we can use an unpaired t-test

by ‘Welch Two Sample t-test’ as follows.

> t.test(A, B)

data: A and B

t = 3.2499, df = 12.027, p-value = 0.00694

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval: 0.01385526 0.07018320

sample estimates:

mean of x = 80.02077

mean of y = 79.97875
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which does indicate a significant difference, assuming normality. By default the R

function does not assume equality of variances in the two samples. We can use the F

test to test for equality in the variances, provided that thetwo samples are from normal

populations. Details of the test are given as follows.

> var.test(A, B)

data: A and B

F = 0.5837, num df = 12, denom df = 7, p-value = 0.3938

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval: 0.1251097 2.1052687

sample estimates: ratio of variances = 0.5837405

The about analysis result shows no evidence of a significant difference.



Appendix B

A Hybrid Piecewise Modelling
Environment

In order to run piecewise modelling of biochemical systems in a Java based modelling

environment, see Figure B.1, we need to input elements as substrates and enzymes for

generation of components by a combination mechanism. For instance, ‘RKIPP, ERKPP,

RKIP andERK’ are input as substrates, and ‘Raf1, MEKPPandRP’ are input as enzymes.

After instantiating components by pre-defined two binding and unbinding patterns,

there is a library for preserving these instantiated components. As shown in Figure B.2,

instantiated component with details of reactants, products and kinetic rates are preserved

in the library.

While composing models in a piecewise manner, models can be composed and pre-

served in a models library. As shown in Figure B.3, final optimized synthetic models

are kept for investigating details of the composed models. The models library provides

information about the optimization results, for instance models obtained at which gener-

ation (RandomNum) and model candidates (IterationNum) in population pool, what are

the fitness values of these models (DeltaDistance) comparedwith the target biochemical

system, what are the topologies (GenerateODEs) and what arethe simulation results for

exhibiting species behaviour (SimulationResult).

Details of composed topology and corresponding simulationresult of a synthetic model
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Figure B.1: A hybrid piecewise modelling environment for biochemical systems.

can be found in the cells indexed with ‘GenerateODEs’ and ‘SimulationResult’ in the mod-

els library, respectively. Thus, we can get a set of ODEs which is mathematical description

of a synthetic model and mapped from its topology presented in a component style in ‘Gen-

erateODEs’ column, as shown in Figure B.4. Moreover, simulation of composed models

can examine generated species behaviour of these models, which behaviour are presented

in the time series data format, as shown in Figure B.5.
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Figure B.2: A library for preserving instantiated components for composition.

 

Figure B.3: A library for preserving composed models.
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Figure B.4: An example of generated ODEs illustrating a composed model.

    

Figure B.5: Results of simulating a composed model.
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