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Numerics of Boundary-Domain Integral and Integro-
Differential Equations for BVP with Variable Coefficient in
3D

Richards Grzhibovskis · Sergey Mikhailov · Sergej Rjasanow

Abstract A numerical implementation of the direct

Boundary-Domain Integral and Integro-Differential

Equations, BDI(D)Es, for treatment of the Dirichlet

problem for a scalar elliptic PDE with variable coef-

ficient in a three-dimensional domain is discussed. The

mesh-based discretisation of the BDIEs with tetrahe-

dron domain elements in conjunction with collocation

method leads to a system of linear algebraic equations

(discretised BDIE). The involved fully populated matri-

ces are approximated by means of the H-Matrix/ACA

technique. Convergence of the method is investigated.

Keywords elliptic PDE · variable coefficients ·
Boundary-Domain Integral Equation · H-matrices

1 Introduction

A number of profound positive developments in the area

of boundary element technique have occurred in the last

decade. Despite of that, an efficient numerical treat-

ment of boundary value problems (BVPs) with variable

coefficients is often a challenge, because the fundamen-

tal solution for the corresponding operator is not avail-

able in this case. To remedy this difficulty we follow

Hilbert [7] and Levi [8] and replace the fundamental

solution with a parametrix (Levi function). This yields

a boundary-domain integral or integro-differential for-

mulation of the problem, cf. [9]. Equivalence of these

formulations to the original BVP, as well as invertibil-

ity of the associated operators can be proved similar to

[4,10,5].
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In this study, we consider a collocation discretisa-

tion of Boundary-Domain Integral and Integro-Diffe-

rential Equations, BDI(D)Es, equivalent to the Dirich-

let BVP for the partial differential equations of the sta-

tionary diffusion (e.g. heat transfer) with scalar variable

coefficient. Discretisation of the resulting layer poten-

tials, the volume Newton-type and remainders potential

operators produces fully populated matrices. Moreover,

in contrast to boundary integral formulations of BVPs

with constant coefficients, for the boundary-domain for-

mulations it is necessary to perform volume discretisa-

tion even when the right hand side is zero. To avoid pro-

hibitively expensive second order complexity and stor-

age requirements for the fully populated matrices, we

implemented the hierarchical matrix compression tech-

nique in conjunction with the adaptive cross approxi-

mation (ACA) procedure [3]. We comment on the im-

plementation details and report the results of numerical

experiments solving BDI(D)Es for the Dirichlet prob-

lem in three-dimensional domains.

Note that numerical solution of BDIEs for two-di-

mensional problems is available in [11]. Note also that

another way of reducing the matrix size is to introduce

localised parametrix, which makes all matrices sparse,

cf. [9], and numerical implementation of the latter app-

roach to some two-dimensional BVPs is available in [18,

19,17,14,15,12] and references therein.

2 Boundary Domain Integral and

Integro-Differential Equations

Let us consider the Dirichlet problem for the linear

second-order elliptic PDE in a bounded domain Ω ⊂ R3
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with a Lipschitz boundary Γ =∂Ω

Au (x) :=
3∑

i,j=1

∂

∂xi

[
a(x)

∂

∂xj
u(x)

]
= f(x), x ∈ Ω,

γu(x) = ū(x), x ∈ Γ,
(1)

where γ is the trace operator, u is the unknown func-

tion, while f , ū and a are prescribed functions and

a(x) ≥ amin > 0 , x ∈ Ω. We will look for a solution of

the boundary value problem in the space

H1, 0(Ω;A) := {u ∈ H1(Ω) : Au ∈ L2(Ω)} ,

where H1(Ω) is the usual Sobolev space of square in-

tegrable functions with square integrable first deriva-

tives.

A parametrix for PDE (1) with variable coefficient,

obtained from the fundamental solution for the same

equation but with ’frozen’ coefficient a(y) is

P (x, y) =
−1

4πa(y)|x− y|
, x, y ∈ R3 . (2)

It satisfies equation

(AP (·, y)) (x) = δ(x− y) +R(x, y),

where δ is the Dirac delta-distribution, while the re-

mainder, having only a weak singularity at x = y, is

R(x, y) =
1

4πa(y)|x− y|3
(x− y) · ∇a(x) , x, y ∈ R3 .

(3)

Let Tu(x) = a(x)n(x) ·∇u(x) , x ∈ Γ be the co-normal

derivative operator.

As shown in [9,4,10,5], for any function u the para-

metrix-based third Green identity holds in the form

u(y) +

∫
Ω

R(x, y)u(x)dx+

∫
Γ

P (x, y)Tu(x)dΓ (x)

−
∫
Γ

u(x)TxP (x, y) dΓ (x) =

∫
Ω

P (x, y) f (x) dx, y ∈ Ω.

Then the BVP (1) can be reduced to the following

direct united BDIDE at each y ∈ Ω

u(y) +

∫
Γ

P (x, y)Tu(x)dΓ (x)+

+

∫
Ω

R(x, y)u(x)dx = F(y), (4)

where

F(y) =

∫
Γ

ū(x)TxP (x, y) dΓ (x) +

∫
Ω

P (x, y)f(x)dx.

(5)

This equation is integro-differential because of the dif-

ferential operator T in the left hand side.

On the other hand, similar to [9,4], replacing in

equation (4) the co-normal derivative Tu by a new un-

known boundary function t and employing the equation

in the domain and its trace on the boundary, we arrive

at the direct segregated BDIE system with respect to

the unknown functions u in Ω and t on Γ ,

u(y) +

∫
Γ

P (x, y)t(x)dΓ (x) +

∫
Ω

R(x, y)u(x)dx =

= F(y), y ∈ Ω, (6)∫
Γ

P (x, y)t(x)dΓ (x) +

∫
Ω

R(x, y)u(x)dx =

= −c(y)ū(y) + F(y), y ∈ Γ. (7)

The same expression (5), where the direct value of the

first integral is understood in the Cauchy sense, is to be

taken for F in (7), c(y) = 1/2 at the smooth boundary

point y, while c(y) = α(y)/4π at the corner points,

where α(y) is the interior solid angle. BDIE system

(6),(7) is called segregated since the function t is con-

sidered to be independent of u.

Similar to [10,4] one can show that BDIDE (4) and

BDIE system (6),(7) are equivalent to BVP (1) and

uniquely solvable, while their left hand side operators

are continuous and continuously invertible in appropri-

ate Sobolev spaces. BDI(D)Es (4) and (6),(7) contain

not only the usual surface integrals over the boundary

Γ as in the case when the parametrix is a fundamental

solution, but also integrals over the entire domain Ω

with the unknown function u in the integrand.

3 Discretisation of the Segregated and United

Formulations

We assume, that the domain Ω is given as a union of

NΩ tetrahedral elements, which constitute a conformal

three-dimensional mesh with M nodes {xj}Mj=1 and NΓ
boundary triangles. In particular, we have

Ω =

NΩ⋃
i=1

T i, Γ =

NΓ⋃
k=1

τk.

We employ the continuous, piecewise linear ansatz

for the unknown function

uh (x) =

M∑
j=1

ujϕj (x) , x ∈ Ω ∪ Γ,

where ϕj is linear on any Ti,

ϕj(xk) = δjk and uj = uh(xj).

If we denote by MΩ the number of interior nodes of the

mesh, then the number of boundary nodes is

MΓ = M −MΩ .
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Assuming that the numbering of nodes starts from the

interior ones and taking into account the Dirichlet boun-

dary condition in (1), we can also write uh as a sum of

known and unknown parts

uh (x) =

MΩ∑
j=1

ujϕj (x) +

M∑
j=MΩ+1

ūjϕj (x) , (8)

where the values ūj = ū(xj), j = MΩ + 1, ...,M are

known.

The gradient of u is approximated by the piecewise

constant function ∇uh. Thus, the discretized co-normal

derivative is constant on each boundary triangle τk. Its

value reads

n (x) · ∇uh (x) =nk · ∇uh|τk =
∑

{j:xj∈Tτk}
(nk · ∇ϕj)uj =

=

M∑
j=1

T∆
kjuj , x ∈ τk, (9)

where nk is the outer normal unit vector to the triangle

τk and Tτk denotes the unique volume element, which

possesses the triangle τk as one of its faces,

T∆
kj =

{
nk · ∇ϕj if xj ∈ Tτk
0 if xj 6∈ Tτk

is the sparse matrix approximating the normal deriva-

tive operator on the boundary triangle τk.

Substituting (8) and (9) into the united BDIDE (4),

collocating at the interior nodes xi, i = 1, . . . ,MΩ and

shifting the known function values on the boundary Γ

in to the right hand side, we arrive at the discrete sys-

tem of MΩ equations for MΩ unknowns ui,

i = 1, . . . ,MΩ

ui +

MΩ∑
j=1

(
NΓ∑
k=1

Va
ikT

∆
kj + Rij

)
uj =

M∑
j=MΩ+1

(
Kij −

NΓ∑
k=1

Va
ikT

∆
kj −Rij

)
ūj + fi. (10)

The matrices Va ∈ RM×NΓ , R ∈ RM×M , K ∈ RM×MΓ

in (10) are the discrete versions of the corresponding in-

tegral operators, namely

Va
ik =

∫
τk

P (x, xi) a (x) dΓ (x) , (11)

Kij =

∫
Γ

TxP (x, xi)ϕj (x) dΓ (x) , (12)

Rij =

∫
Ω

R (x, xi)ϕj (x) dx , (13)

and the vector f ∈ RM can be computed ether as

fi =

NΩ∑
k=1

∫
Tk

P (x, xi) f (x) dx , (14)

when the function f is given analytically, or as

fi =

M∑
j=1

fj

∫
Ω

P (x, xi)ϕj (x) dx (15)

in the case, when the function f is given in the form

f (x) =
∑M
j=1 fjϕj (x).

In the case of the segregated formulation (6), the

NΓ co-normal derivatives aT∆u are not computed from

uh but are considered as NΓ auxiliary unknowns tk,

k = 1, . . . , NΓ . This corresponds to the piecewise con-

stant approximation of the Neumann data

t (x) =

NΓ∑
k=1

tkψk (x) , ψk (x) =

{
1, when x ∈ τk,
0, otherwise.

Therefore, additional collocation points

x̃k, k = 1, . . . , NΓ

are added in the centers of the boundary triangles τk.

Thus, the discrete version of the segregated formula-

tion (6) is given by the following system of MΩ + NΓ
linear algebraic equations for MΩ + NΓ unknowns uj ,

j = MΓ + 1, . . . ,M , and tk, k = 1, . . . , NΓ ,

ui+

MΩ∑
j=1

Rijuj +

NΓ∑
k=1

Viktk =

M∑
j=MΩ+1

(Kij −Rij) ūj + fi, i = 1, . . . ,MΩ ,

(16)

MΩ∑
j=1

R̃njuj +

NΓ∑
k=1

Ṽnktk = −1

2
ũn+

+

M∑
j=MΩ+1

(
K̃nj − R̃nj

)
ūj + f̃n, n = 1, . . . , NΓ .

(17)

where the matrix Vik is given by (11) with a dropped,

while elements of the matrix Ṽnk are given by the same

formula (11) (with a dropped) and R̃nj , K̃nj , f̃n by

(12)–(15) with xj replaced by x̃k, and ũn = ū(x̃n).

When the united formulation is employed, all collo-

cation nodes lie inside the domain. Therefore, expres-

sions under the surface integrals are smooth. Singula-

rities in the domain integrals are weak and can be han-

dled by means of the Duffy transform. In the case of

segregated formulation, values of the weakly singular
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integrals for entries of Ṽ and Cauchy integrals for en-

tries of K̃ can be obtained by means of a combination

of Gauss integration and analytical formulae found in

[13, Chapter C2], see Appendix for more details.

Because of the non-local nature of the parametrix

(2) and the remainder (3), the matrices V, Ṽ, K, K̃, R

and R̃ are fully populated. It is, however, easy to check,

that the integration kernels in (11)-(15) are asymptot-

ically smooth [13]. Therefore, after an appropriate re-

orderings of rows and columns (clustering) the matrices

can be efficiently approximated by block-wise low rank

matrices by means of the H-matrix/ACA technique [3,

13]. This approximation leads to reduction of computa-

tional complexity and storage requirements

from quadratic to almost linear in terms of M .

4 Compression of matrices by means of the

H-Matrix/ACA technique

In this section, we briefly describe the construction of

a block-wise low-rank approximant of a matrix

Φ ∈ RM×N , Φij =

∫
z
G (x, xi) ψ̃j (x) dz (x) ,

where N is NΓ , M or MΓ , and the kernel function

G is a product of the parametrix (2) or its derivatives

with a smooth function (coefficient a or its derivatives).

The integration domain z is either the domain Ω or

its boundary Γ . The functions ψ̃j are either piecewise

linear or piecewise constant basis functions (ϕj or ψj
respectively). We consider two subsets of R3,

M⋃
i=1

{xi} and Ω =

NΩ⋃
j=1

suppψ̃j .

Low-rank approximation. Suppose that we have found

two sets of indices I ⊆ {i}Mi=1 and J ⊆ {j}Nj=1 such that

the corresponding subsets

η =
⋃
i∈I
{xi} and ν =

⋃
j∈J

suppψ̃j

are well separated; that is,

max ( diam η, diam ν) ≤ θ dist (η, ν) , (18)

for some θ ∈ (0, 1). The diameter of a set is the maximal

distance between any pair of points in it. The distance

between two sets of points is defined as

dist (η, ν) = min
x∈η, y∈ν

|x− y|. (19)

The idea of the matrix compression is based on the

observation, that the corresponding sub-block

{Φij , i ∈ I, j ∈ J}

of the matrix Φ has a low-rank approximant provided

that the partial derivatives of the kernel function G

decay sufficiently fast [1,2]. More precisely, G must be

asymptotically smooth, i.e. one must be able to find

positive constants C1 and C2 and an integer α0 ≥ 0

such that for all multi-indices α with |α| ≥ α0 and any

R = |x− y| > 0 it must hold∣∣∂αyG (x, y)
∣∣ ≤ C1 |α|! C |α|2 R−|α| sup

|y−z|<R
|G (x, z) |. (20)

Moreover, the rank of the approximant depends only on

the separation θ and the desired accuracy of the approx-

imation, but not on the number of entries in clusters I

and J . It is easy to check, that the integration kernels

in (12)–(15) satisfy (20). Several methods of finding the

approximant are available. Although the truncated sin-

gular value decomposition produces the approximant

with the smallest rank, this procedure is too compu-

tationally expensive. An inexpensive alternative uses

the interpolation of G as in panel clustering [6], or the

algebraic approach as in the adaptive cross approxima-

tion (ACA) algorithm [1,3,2]. The idea of ACA method

consists in finding the approximant as a sum of certain

tensor products. The first term in this sum can be taken

to be the result of multiplying the first column with the

first row of Φ. The subsequent terms are the products

of the m-th column with the k-th row of the difference

between Φ and already accumulated approximant. The

essence of the procedure is in the adaptive choice of the

pivot indices m and k. We refer to [3] or [13] for details

and analysis of the method.

Clustering of the index sets. To partition the matrix Φ

into admissible blocks we employ a hierarchical cluster-

ing method similar to that formulated in [1] for a set

of boundary elements in R3. For a given set of indices

{i}M1 , we construct a cluster tree T1 as follows:

1. Let the set of all indices be the root cluster of the

tree.

2. Compute the mass center, and axes of inertia of the

corresponding geometric set.

3. Split the set into two parts by a plane that passes

through the center of mass and is orthogonal to the

longest axis of inertia.

4. Assign the indices of the obtained groups of geomet-

ric entities as cluster offsprings.

5. Recursively apply the subdivision procedure to the

offsprings so long as the cluster consists of more than

one index.

A cluster tree T2 is then constructed for the second

index set {j}Nj=1. Having computed T1 and T2, we can

recursively generate a list of disjoint admissible blocks

BA that, together with the additional sparse part BS ,
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cover the whole matrix Φ. This can be accomplished by

the following recursive procedure:

1. Set η = T1, ν = T2, BA = ∅, and BS = ∅.
2. If η or ν has only one element (no offsprings), add

η × ν to BS and end the procedure.

3. If (η, ν) satisfy (18), add η × ν to BA and end the

procedure.

4. Denote by η1 and η2 the offsprings of η, and by ν1
and ν2 the offsprings of ν. Proceed to Step 2 with

(η, ν) being (η1, ν1), (η1, ν2), (η2, ν1), or (η2, ν2).

On completion, the algorithm produces a list of admis-

sible blocks BA, satisfying (18), and a list BS of small

blocks. We compute all small blocks directly and ap-

proximate each admissible block using the ACA proce-

dure.

Complexity. The overall computational costs of finding

the block-wise low-rank approximation to the matrix

Φ ∈ RM×N is

O
(
Ñ log Ñ | log ε|4

)
, Ñ = max (M,N) ,

where ε is the desired accuracy. Once the approximant

has been generated, it occupies O
(
Ñ log Ñ | log ε|2

)
units of storage and the numerical cost of multiplying

it with a vector is of the same order (see [2]).

5 Numerical Results

In this Section we report the results of numerical ex-

periments in 3D and analyze (a) the accuracy of the

proposed numerical scheme, (b) efficiency of solving

the linear systems (10) and (16)-(17) by an iterative

method (GMRES), (c) effects of the ACA compression

of matrices V, K, and R. The function

uex(x) =
(
(x1 − x̂1)2 + (x2 − x̂2)2

)1/2
solves the BVP (1) provided that

a(x) =
(
(x1 − x̂1)2 + (x2 − x̂2)2

)−1/2
,

(x̂1, x̂2, x̂3) /∈ Ω for any x̂3; f = 0 and ū(x) = γuex(x)

on Γ . We choose the domain to be the cube

Ω = (−0.5, 0.5)
3

or the ball

Ω = {x ∈ R3 : |x| < 0.5}

and fix the parameters (x̂1, x̂2) = (3, 3). To investigate

the convergence of the method, a sequence of quasi-

uniform volume meshes is employed. In this sequence,

the spatial discretisation parameter (average element

diameter)

h = (Vol (Ω) /(NΩ))1/3

varies between 0.16 for the coarsest mesh and 0.016 for

the finest one. The convergence results are summarised

in Figure 1, where the relative L2 error

ε = ‖uh − uex‖L2(Ω)/‖uex‖L2(Ω)

is plotted for numerical experiments with the ball-sha-

ped (circular markers) and the cube-shaped (square

markers) domain. We observe the convergence of order

two for both domains and both united (filled markers)

and segregated (empty markers) formulations. The dis-

tribution of the absolute point-wise error

r (x) = |uh (x)− uex (x) |

inside the ball-shaped domain for the discretisation with

M = 8967 nodes is illustrated in Figure 2. The error

0.20.10.040.02

Fig. 1 Convergence of the united (full markers) and seg-
regated (empty markers) formulations of the BDI(D)Es for
the cases of ball-shaped (round markers) and cube-shaped
(square markers) domains.

Fig. 2 Distribution of the error inside the ball discretised
with M = 8967 nodes.

appears to have an almost uniform distribution inside
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Fig. 3 Performance of the H-matrix/ACA accelerated col-
location solver. Dependence of the number of GMRES itera-
tions on the problem size (top). The size and the compression
ratio of the matrix R for the ball-shaped geometry (bottom).

the volume with a maximum of about 0.25%. Approx-

imate solutions to systems (10) and (16)-(17) were ob-

tained by the Generalised Minimal Residual (GMRES)

iterative procedure. The number of unknowns is MΩ in

the case of the united formulation and MΩ +NΓ in the

case of the segregated formulation. The dependence of

number of GMRES iterations necessary to achieve the

residuum of 10−9 on the number of unknowns is shown

in Figure 3 (top). In the case of the segregated for-

mulation the Jacobi preconditioning was applied. We

see, that for both domains the number of iterations

is proportional to the logarithm of the number of the

unknowns. The proportionality coefficient, however, is

considerably higher in the case of the segregated for-

mulation (empty markers).

The effects of the H-matrix/ACA compression on

the matrix R for the ball-shaped domain are shown in

Figure 3 (bottom). We observe, that practical bene-

fits of the compression technique first appear when the

number of nodes is greater than 5000. For these values

of M the size of the compressed matrix grows almost

linearly.

6 Conclusions

The collocation discretisation of BDI(D)Es for the Di-

richlet problem of the stationary diffusion (e.g. heat

transfer) partial differential equation with variable co-

efficient yields a numerical method with second order

accuracy for the unknown function. The number of GM-

RES iterations for the approximate solution of the re-

sulting linear system grows logarithmically as the num-

ber of unknowns increases. The H-Matrix/ACA com-

pression technique makes it possible to efficiently ap-

proximate the fully populated matrices of the integral

operators.

The method can be further developed to include

the mesh-less discretisation of the domain and the use

of localised parametrix as well as application to more

general domains and equations, e.g. of elasticity and

elasto-plasticity.

7 Appendix: Matrix entries calculation

We present here in more details the algorithms used

for calculation of matrices (11)-(15) in the considered

examples. Coefficients for two- and three-dimensional

quadrature rules are taken from [16].

7.1 Matrix R

We consider the entries of the matrix R

Rjm =

∫
suppϕm

R (x, xj)ϕm (x) dx =

Nm∑
k=1

Rk
jm,

where

Rk
jm :=

∫
Tmk

R (x, xj)ϕm (x) dx =

=
1

4πa (xj)

∫
Tmk

(x− xj) · ∇a (x)

|x− xj |3
ϕm (x) dx.

(21)

Here tetrahedrons Tmk, k = 1, . . . , Nm constitute the

support of ϕm (i.e. comprise all tetrahedrons, which

have xm as a node).

Since xj is a node, we distinguish the following three

cases.

1. Let xj lie outside of Tmk. Then the integrand in (21)

in smooth and Rk
jm was approximated by the 5th

order Gauss quadrature formula with 17 points.

2. Let xj be among vertices of Tmk, but xj 6= xm.

We denote the vertices of the tetrahedron Tmk as

{xj , xm, xα, xβ}. Since the integrand in (21) has the



Numerics of BDI(D)Es in 3D 7

weak singularity of the order 1/r, we used the Duffy

transform, introducing the new integration variables

u, v, and w through

x (u, v, w) = xj + uv1 + uvv2 + uvwv3,

where v1 = xm − xj , v2 = xα − xm, v3 = xβ − xα.

In these new variables the integral becomes

Rk
jm =

3|Tmk|
2πa (xj)

∫ 1

0

∫ 1

0

v(1− v)

|v1 + vv2 + vwv3|3
×

×
∫ 1

0

u
∂a

∂u
dudv dw, (22)

where |Tmk| is the volume of the tetrahedron Tmk.

Partial integration over u yields∫ 1

0

u
∂a

∂u
du = a (x (1, v, w))−

∫ 1

0

a (x (u, v, w)) du,

which makes the computation of integrand in (22)

free from derivatives of the coefficient function a.

The resulting expression becomes

Rk
jm =

6|Tmk|
4πa (xj)

×[∫ 1

0

∫ 1

0

v(1− v)a (x (1, v, w))

|v1 + vv2 + vwv3|3
dv dw −

−
∫ 1

0

∫ 1

0

∫ 1

0

v(1− v)a (x (u, v, w))

|v1 + vv2 + vwv3|3
dudv dw

]
which is approximated by a product Gauss-Kronrod

quadrature formula, where the approximate integra-

tion of order 31 (21 points) is used for each one-
dimensional integral.

3. Let xj = xm. We denote the vertices of the tetrahe-

dron Tmk are {xj , xα, xβ , xγ}. Since the integrand in

(21) has for this case the weak singularity of the or-

der 1/r2, we used the Duffy transform, introducing

the new integration variables through

x (u, v, w) = xm + uv1 + uvv2 + uvwv3,

where v1 = xm − xα, v2 = xβ − xα, v3 = xγ − xβ .

In these new variables the integral becomes

Rk
jm =

3|Tmk|
2πa (xj)

∫ 1

0

∫ 1

0

v

|v1 + vv2 + vwv3|3
×

×
∫ 1

0

(1− u)
∂a

∂u
dudv dw. (23)

Partial integration over u yields∫ 1

0

(1− u)
∂a

∂u
du =

∫ 1

0

a (x (u, v, w)) du− a (xm) ,

which makes the computation of integrand in (23)

free from derivatives of the coefficient function a.

The resulting expression becomes

Rk
jm =

3|Tmk|
2πa (xj)

×[∫ 1

0

∫ 1

0

∫ 1

0

v(1− v)a (x (u, v, w))

|v1 + vv2 + vwv3|3
dudv dw −

− a (xm)

∫ 1

0

∫ 1

0

v

|v1 + vv2 + vwv3|3
dv dw

]
,

which is approximated by a product Gauss-Kronrod

quadrature formula, where the approximate integra-

tion of order 31 (21 points) is used for each one-

dimensional integral.

7.2 Matrix Va

We consider the entries of the matrix Va

Va
jk =

∫
τk

P (x, xj) a (x) dΓ (x) =

= − 1

4πa (xj)

∫
τk

a (x)

|x− xj |
dΓ (x) ,

where τk is a boundary triangle. We distinguish the

following two cases.

1. Let xj be outside of τk. We decompose the integral

into two parts,

Va
jk = − 1

4πa (xj)

[
a (xj)

∫
τk

1

|x− xj |
dΓ (x) +

+

∫
τk

a (x)− a (xj)

|x− xj |
dΓ (x)

]
. (24)

The first integral is computed by an exact analyt-

ical formula, see [13, Chapter C2.2], while the sec-

ond one is approximated by the 13th order Gauss

quadrature formula with 37 points.

2. Let xj be among the vertices of τk. We denote the

vertices of the triangle τk as {xj , xα, xβ} and use

the Duffy transform introducing the new integration

variables u and v through

x (u, v) = xj + uv1 + uvv2,

where v1 = xα−xj , v2 = xβ−xα. Then the integral

becomes

Va
jk = − 2|τk|

4πa (xj)

∫ 1

0

∫ 1

0

a (x (u, v))

|v1 + vv2|
dudv,

where |τk| is the area of the triangle. The integral is

approximated by a product Gauss-Kronrod quadra-

ture formula, where the approximate integration of

order 31 (21 points) is used for each one-dimensional

integral.
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7.3 Matrix K

We consider the entries of the matrix K

Kjm =

∫
Γ

TxP (x, xj)ϕm (x) dΓ (x) =

NΓm∑
k=1

Kk
jm,

where

Kk
jm := − 1

4πa (xj)
×

×
∫
τkm

(x− xj) · nτkm
|x− xj |3

a (x)ϕm (x) dΓ (x) .

Here the boundary triangles τkm, k = 1, . . . , NΓm have

the node xm as a vertex. We distinguish the following

two cases.

1. Let xj be outside of τkm. We decompose the integral

into two parts

Kk
jm =

1

4πa (xj)
×[

a (xj)

∫
τkm

(x− xj) · nτkm
|x− xj |3

ϕm (x) dΓ (x) +

+

∫
τkm

(x− xj) · nτkm
|x− xj |3

(a (x)−a (xj))ϕm (x) dΓ (x)

]
.

The first integral is computed by an exact analyt-

ical formula, see [13, Chapter C2.2], while the sec-

ond one is approximated by the 13th order Gauss

quadrature formula with 37 points.

2. Let xj be among vertices vertices of τkm. In this

case the vector (xj − x) is orthogonal to nτkm and,

thus, Kk
jm = 0.

Acknowledgements The partial support from the EPSRC
grant EP/H020497/1:“Mathematical Analysis of Localised-
Boundary-Domain Integral Equations for Variable-Coeffici-
ents Boundary Value Problems” is gratefully acknowledged.

References

1. Bebendorf M.: Approximation of boundary element ma-
trices. Numer. Math. 86(4), 565–589. (2000)

2. Bebendorf M., Grzhibovskis R.: Accelerating Galerkin
BEM for linear elasticity using adaptive cross approxima-
tion. Math. Meth. Appl. Sci. 29(14), 1721–1747 (2006).

3. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approx-
imation of collocation matrices. Computing 70, 1–24
(2003)

4. Chkadua, O., Mikhailov, S. E., Natroshvili, D.: Analysis
of direct boundary-domain integral equations for a mixed
BVP with variable coefficient, I: Equivalence and inver-
tibility. Journal of Integral Equations and Applications
21(4), 499–543 (2009)

5. Chkadua, O., Mikhailov, S. E., Natroshvili, D.: Anal-
ysis of segregated boundary-domain integral equations
for variable-coefficient problems with cracks. Numerical
Methods for Partial Differential Equations 27 121–140
(2011).

6. Hackbusch W., Nowak Z. P.: On the fast matrix multi-
plication in the boundary element method by panel clus-
tering. Numer. Math. 54(4), 463–491 (1989).
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