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Abstract 

Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofim­

age and signal processing application areas such as consumer electronics, instrumentation, 

medical data processing and avionics due to their reasonable energy consumption, high per­

formance, security, low design-turnaround time and reconfigurability. Low power FPGA 

devices are also emerging as competitive solutions for mobile and thermally constrained 

platforms. Most computationally intensive image and signal processing algorithms also 

consume a lot of power leading to a number of issues including reduced mobility, reliability 

concerns and increased design cost among others. Power dissipation has become one of 

the most important challenges, particularly for FPGAs. Addressing this problem requires 

optimisation and awareness at all levels in the design flow. The key achievements of the 

work presented in this thesis are summarised here. 

Behavioural level optimisation strategies have been used for implementing matrix product 

and inner product through the use of mathematical techniques such as Distributed Arith­

metic (DA) and its variations including offset binary coding, sparse factorisation and novel 

vector level transformations. Applications to test the impact of these algorithmic and 

arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian 

mixture models. Complete design space exploration has been performed on these cores, 

and where appropriate, they have been shown to clearly outperform comparable existing 

implementations. At the architectural level, strategies such as parallelism, pipelining and 

systolisation have been successfully applied for the design and optimisation of a number of 

cores including colour space conversion, finite Radon transform, finite ridgelet transform 

and circular convolution. A pioneering study into the influence of supply voltage scaling 

for FPGA based designs, used in conjunction with performance enhancing strategies such 

as parallelism and pipelining has been performed. Initial results are very promising and 

indicated significant potential for future research in this area. 

A key contribution of this work includes the development of a novel high level power macro­

modelling technique for design space exploration and characterisation of custom IP cores 

for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM 

is scalable, platform independent and compares favourably with existing approaches. A 

hybrid, top-down design flow paradigm integrating FLPAM with commercially available 

design tools for systematic optimisation of IP cores has also been developed. 
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Chapter 1 

Introduction 

Digital image and signal processing is one of the fastest growing areas of the electron­

ics industry. These technologies are having an increasing impact in a wide variety 

of application areas such, wireless communications, biometrics, biomedical imaging, 

multimedia indexing storage & retrieval, computer vision and remote sensing. 

State-of-the-art signal processing has changed the way we characterise and solve 

many applications, especially those involving increasingly sophisticated algorithms 

that require real-time processing of high volumes of data. Increasing demands for 

faster and more sophisticated processing show absolutely no sign of abating for signal 

processing applications. 

In the context of Digital Signal Processing (DSP), the wired and wireless communica­

tions markets are exploding with a multiplicity of hi-demand standards such as Wire­

less Fidelity (WiFi), Worldwide Interoperability for Microwave Access (WiMAX), 

Third Generation (3G), Fourth Generation (4G) and Wideband Code Division Mul­

tiple Access (WCDMA) system standards, application standards such as Orthogonal 

Frequency-Division Multiplexing (OFDM) and Multi Input Multi Output (MIMO), 

as well as technology standards such as Software Defined Radio (SDR). In other 

areas such as classification, a number of complex algorithms including non-linear 

functions, statistical techniques such as mixture modelling, intelligent approaches 

such as neural-networks are scaling up computational complexity towards newer 

records. 

Additionally, a continuous stream of changes is also erupting from the audio, video 

1 
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and broadcast markets as well as the defense electronics industry. Within the con­

text of image processing, emerging ultra-high complexity application areas include 

face recognition, 3D medical volume segmentation, new generation and higher di­

mensional transforms for image representation and consumer driven technologies 

such as High Definition TeleVision (HDTV). 

The following key examples richly illustrates the challenges signal processing system 

developers must be prepared to address. In a Discrete Multi-Tone (DMT) modu­

lation based Digital Subscriber Line (DSL) transceiver, it is necessary to compute 

transform of order as high as 4096 at sampling rate up to 44.16 MHz [1]. Similarly, 

in a video processor it is necessary to compute 0(10) of 8-point transform samples 

for encoding/decoding of a single image of (512 x 512) pixels. Moreover, the com­

putational demand has been increasing with time along with the widespread use of 

multimedia communication. 

Application designers face many new and difficult challenges as they attempt to de­

ploy technology that can execute high-performance computations, manipulate larger 

and larger data sets and better visualise increasingly complex data. These needs 

must be balanced with the constraints of rising costs, shrinking space, legacy sys­

tems, mobility and power constraints and a lack of sufficient human resources. To 

help address these needs, appropriate choices need to be made at every stage of the 

design process. 

Hardware acceleration has become inevitable for providing the necessary perfor­

mance that is demanded for image and signal processing applications. Hardware 

design paradigms are also undergoing a sea change in order to address the various 

issues involved. There is a perceptible shift towards top-down design flow and a 

preference for modular, integrated and flexible solutions. 

1.1 Hardware Acceleration 

A lot of research has been carried out into several areas of architectural support for 

complex applications using DSPs and special purpose hardware [2]. Conventional 

approaches for hardware acceleration are listed below. 
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1.1.1 Digital Signal Processors 

One method of increasing the performance of a General Purpose Processor (GPP) 

is to attach a specialised processing unit in the form of DSP. DSP processors have 

features designed to support high-performance, repetitive and numerically intensive 

tasks. Features that accelerate performance in DSP applications include: 

• Single-cycle multiply-accumulate capability. High-performance DSPs often 

have two multipliers that enable two multiply-accumulate operations per in­

struction cycle; 

• Most DSPs provide various configurations of on-chip memory and peripherals 

tailored for DSP applications. DSPs generally feature multiple-access memory 

architectures that enable DSPs to complete several accesses to memory in a 

single instruction cycle; 

• Specialised execution control. Usually, DSP processors provide a loop instruc­

tion that allows tight loops to be repeated without spending any instruction 

cycles for updating and testing the loop counter or for jumping back to the 

top of the loop; and 

• DSP processors are known for their irregular instruction sets, which generally 

allow several operations to be encoded in a single instruction. For example, a 

processor that uses 32-bit instructions may encode two additions, two multipli­

cations and four 16-bit data moves into a single instruction. In general, DSP 

processor instruction sets allow a data move to be performed in parallel with 

an arithmetic operation. GPPs, in contrast, usually specify a single operation 

per instruction. 

As a result, DSPs have been successfully used in a wide range of image processing 

applications [3,4]. They provide the computing power necessary to process large 

amounts of data in real-time [5]. 
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1.1.2 Special Purpose Application Specific Integrated Cir-

cuits Hardware 

The other method which gives better performance for particular applications is 

the use of Application Specific Integrated Circuits (ASICs). They are designed 

specifically to perform a given computation and consequently they efficiently perform 

the given computation according to the application's design objectives which may 

be to optimise for one or more of design flexibility, performance, power consumption 

and area. However, after fabrication the circuit can not be altered. This forces a re­

design and a re-fabrication of any part of the chip which requires modification. This 

is an expensive process, especially when one consider the difficulties in replacing 

ASICs in a large deployed system [2,6]. 

The main disadvantages of this approach can be summarised in the three following 

points: 

• Special purpose hardware has a long development time, from design through 

simulation and fabrication; 

• It can also be expensive if it is a one-off solution or if the volume required 

cannot justify its fabrication costs; and 

• Once this special purpose hardware is built, it is not possible to change the 

hardware to accommodate slightly different needs. With such a solution a new 

piece of hardware is usually required for each new algorithm. 

A new breed of ASIC products, called "Structured ASIC", can cut Non-Recurring 

Expenditure (NRE) expenses by more than 90% for derivative chips and speedup 

time-to-market. The underlying concept behind structured ASICs is actually fairly 

simple. Although there are a wide variety of alternative architectures, they are all 

based on a fundamental element called a "tile" by some or a "module" by oth­

ers. This tile contains a small amount of generic logic implemented either as gates 

and/or multiplexers and/or a Look-Up Table (LUT). Depending on the particular 

architecture, the tile may contain one or more registers and possibly a very small 

amount of local Random Access Memory (RAM). An array (sea) of these tiles is then 
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prefabricated across the face of the chip. Structured ASICs also typically contain 

additional prefabricated elements, which may include configurable general-purpose 

Input/Output (I/O), microprocessor cores, gigabit transceivers, embedded (block) 

RAM and so forth. When compared with standard cell-based ASICs, structured 

ASICs offer shorter turnaround time and require less NRE charges for future func­

tional changes. Structured ASIC technology is especially suitable for platform ASIC 

designs that have integrated most of the Intellectual Property (IP) blocks and leave 

some space for custom changes [7,8]. 

A more recent approach, which aims to benefit from the advantages of special pur­

pose hardware by avoiding many of its disadvantages, is to use dynamically repro­

grammable hardware in the form of Field Programmable Gate Arrays (FPG As). An 

overview of this technology is provided in the next section. 

1.2 Field Programmable Gate Arrays: A Review 

Since their introduction in 1985, FPGAs have steadily established themselves as an 

alternative for implementing digital logic in systems. First generation FPGAs were 

used to provide a denser solution for glue logic, but now they have expanded their 

applications to the point that it is not uncommon to find FPGAs as the central 

processing devices within systems. 

The early FPGA devices from Xilinx, Altera and others provided relatively little 

logic, but later generations provided enough logic for researchers to consider FP­

GAs for direct implementation of computational algorithms in reconfigurable logic 

devices. The densities of todays FPGAs have exceeded 150,000 4-input LUTs per 

device and some have developed into devices that can be used to build complete Sys­

tems On a Programmable Chip (SoPC), providing such specialised features as DSP 

blocks, multi-gigabit serial I/O, embedded microprocessors and embedded Static 

RAM (SRAM) blocks of various sizes. 
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1.2.1 FPGA Structure 

The basic architecture of FPGAs consists of three kinds of components: logic blocks, 

routing and I/O blocks. Generally, FPGAs consist of an array of programmable logic 

blocks that can be interconnected to each other as well as to the programmable I/ O 

blocks through some sort of programmable routing architecture. Figure 1.1 provides 

a very simplified diagram of a generic FPGA architecture. 

~~~L ~ L~_ ~ L ~ L U ~~L~L~ __ L~L 

Fully 
programmable. ~ 

Replace all 
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<50ms 

Programmable Interconnect 

--•••••••••••• ••• • ••••••• ........ - .. 
-~~~ ....... . •••••••• 
. -'--'''-....... . •••••••• ••••••••••• 

Digital Clock 
Management 

(OCM) 

Configurable 
Logic Blocks 

(CLB) 

Input/Output 
L"""'-Iocks (lOB) 

Figure 1.1: Generic FPGA structure showing internal blocks 

A Basic Logic Block 

As shown in Fig. 1.1, a typical FPGA has a logic block with one or more 4-input 

LUT, optional D Flip-Flops (DFF) and some form of fast carry logic. The LUTs 

allow any function to be implemented, providing generic logic. The DFF can be 

used for pipelining, registers, state holding functions for finite state machines, or any 

other situation where clocking is required. The fast carry logic is a special resource 

provided in the cell to speed up carry-based computations, such as addition, parity, 

wide logical AND operations and other functions. 
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Routing 

Most FPGA architectures organise their routing structures as a relatively smooth 

sea of routing resources, allowing fast and efficient communication along the rows 

and columns of logic blocks. The logic blocks are embedded in a general routing 

structure, with input and output signals attaching to the routing fabric through 

connection blocks as shown in Fig. 1.1 [9]. 

Connection Blocks 

The connection blocks provide programmable multiplexers, selecting which of the 

signals in the given routing channel will be connected to the logic block's terminals. 

These blocks also connect shorter local wires to longer distance routing resources. 

Signals flow from the logic block into the connection block and then along longer 

wires within the routing channels [9]. 

Switch Boxes 

At the switch boxes there are connections between the horizontal and vertical routing 

resources to allow signals to change their routing direction. Once the signal has 

traversed through routing resources and intervening switch boxes, it arrives at the 

destination logic block through one of its local connection blocks. In this manner, 

relatively arbitrary interconnections can be achieved between the logic blocks in the 

system. While the routing architecture of an FPGA is typically quite complex - the 

connection blocks and switch boxes surrounding a single logic block typically have 

thousands of programming points - they are designed to be able to support fairly 

arbitrary interconnection patterns [9]. 

Detailed descriptions of the FPGA devices that have been used in this research are 

presented in Appendix B. 

1.2.2 FPGA Design Entry and Synthesis 

A typical design flow for FPGA design is given in Figure 1.2. It consists of a num­

ber of tools: high-level design languages, Hardware Description Languages (HDLs), 
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Handel-C Description 
with VHDL, Coregen module 
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#define XS40 SRAM32K 
#define XS40-DIVIDE1 
#include <stdilb.h> 
void main (void) 
{ 
unsigned 20pMode; 
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Figure 1.2: FPGA design cycle 

Schematic Capture 

Wirelister Tool 
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schematic capture tools, net list converters and Place And Route (PAR) tools. 

Handel-C has been used for most implementations carried out in this research 

project. Full details about the various tools used to synthesise the designs presented 

in this research work are presented in Appendix A. 

1.3 Opportunities in Deploying FPGA Based So-

lutions 

1.3.1 The Importance ofFPGAs in Digital Logic Implemen-

tation 

Reconfigurable hardware in the form of FPGAs is an extremely powerful implemen­

tation approach for several reasons. First and foremost, it allows for truly parallel 
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computations to take place in a circuit. Many modern GPPs and operating systems 

can emulate parallelism by switching tasks very rapidly. Having operations occur in 

a parallel fashion results in a much faster overall processing time. This is the case 

even though the clock speed of the FPGA is lower than that of the GPPs. Proto­

typing is also a compelling reason to use FPGAs in the initial design phase. The 

description of a system can be written and actual hardware can be created to test in­

stead of simply relying on simulators or dead reckoning inside of design. This allows 

a design to be thoroughly tested and debugged before an ASIC is created, saving 

on production costs. FPGAs are everywhere. Companies use them on development 

boards to help refine new chip designs. Students use them in the classroom to run 

experiments. Companies and universities are using them in cutting-edge research 

on topics ranging from programming technology, cryptography to real-time systems. 

As a result of rapid advances in the semiconductor industry, FPGAs themselves are 

getting so inexpensive that some companies do not even fabricate an ASIC. They 

simply include the FPGA in their final product. The considerable interest in recon­

figurable hardware has been highlighted by an increasing amount of research carried 

out in the area, coupled with the development of several commercial systems based 

on FPGAs. There is no doubt that this level of interest will certainly continue to 

grow over the next number of years. With the emergence of such reconfigurable 

hardware it is not surprising that there has been wide ranging research into the use 

of FPGAs to increase the performance of a wide range of computationally intensive 

applications. 

With soft cores, dedicated logic, block multipliers and specialised versions available 

in modern FPGAs, they are being increasingly deployed in computationally intensive 

application areas involving image and signal processing. The regular nature of the 

complex computations performed repeatedly within such application areas are well 

suited to a hardware based implementation using FPGAs. 

1.3.2 In Field Design Upgradation and Future Proofing 

Future proofing in FPGA based designs is a function of two different issues: 

• Field FPGA reconfiguration, driven by bug fixes, changing standards, equip-
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ment upgrades and addition of services, continues to grow rapidly in impor­

tance . 

• The ability to port designs from older devices to new generation FPGAs in 

order to take advantage of advances in device capabilities is an important 

advantage of FPGAs. This process allows the designer to make progressive 

improvements to the capabilities of a design, in step with improvements in 

FPGAs. For example, with the Virtex-4 [10] family, Xilinx introduced a new 

concept called the multi-platform FPGA which enables tuning the ratio of key 

features on the FPGA to match the requirements of an application domain [11]. 

1.4 Design Challenges in Deploying FPGA Based 

Solutions 

1.4.1 The Need for Core Based Design 

It is well known that FPGAs are now being used to build signal processing func­

tions such as filters, matrix operations and transforms as either pre-processors or 

co-processors, or stand alone processing engines, thereby helping to bridge the per­

formance gap for high-complexity and high-performance designs. In short, FPGAs 

are being used as full system replacements for DSPs and ASICs. However, this step­

up in design complexity from their erstwhile function as simple glue logic devices 

brings along with it a number of design challenges. 

As FPGA densities increase, in order to get complex products to market quickly, 

it is essential to use IP cores which are essentially pre-designed library components 

and are at a much higher level of complexity than the general purpose components 

normally supplied as part of a design environment. 

The key design motivating factors for moving towards IP core based design ap-

proaches are: 

• Design reuse to minimise the low-level design effort required for realising a 

system; 
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• Using pre-verified and optimised core to reduce design effort and Improve 

overall design quality; and 

• Achieve fast time to market. 

1.4.2 The Importance of Power Aware Design 

Power budgets are becoming increasingly stringent and need higher attention in the 

early stages of the design cycle. Poor design choices early on in the design cycle 

can result in expensive corrections and modifications. This fact, coupled with the 

advent of battery operated devices and increased deployment of processing in energy 

and thermal constrained environments such as satellites has accelerated interest in 

power awareness as a key requirement of the design process. 

Motivations for Power Awareness 

J 

t I - , 

v It> .'f/ 
fI~ ~e..."r~ ~ ~Je-.:I 

Figlue 1.3: Gordon Moore's original graph from 1965. Courtesy intel 

The well known Moore's Law [12] has been the guiding beacon for the electronics 

industry. Gordon E. Moore penned down a graph (reproduced in Fig. 1.3) and 

postulated that number of transistors on a chip doubles about every two years. 

This is entirely true of FPGAs as well. FPGA vendors are embracing latest cutting 

edge fabrication technologies resulting in a quadrupling of FPGA capabilities every 

three years; and latest FPGAs have even surpassed the 1 billion transistor mark [11 . 
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The increase in chip capacities and growth in the implementation of power hungry 

algorithms on FPGAs has necessitated the adoption of power aware design practices 

for FPGAs. Motivations for lowering power are listed below: 

• Limitations of battery technology and the demands of extended mobility. It 

can be seen from Fig. 1.4 (reproduced from [13]) that battery energy is one of 

the most laggard trends in mobile computing; 
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Figure 1.4: Battery capacity growth in comparison to other related technology trends 

• Mobility: This is an important issue in a number of environments where un­

tethered device uptime is critical. Examples of such application areas include 

Personal Digital Assistant (PDA) devices (e.g. Compaq H210) , mobile enter­

tainment solutions and custom purpose processing engines. An example of the 

latter is the FPGA based Electronic Nose (EN) that has been developed in 

a joint project led by Hong Kong University of Science and Technology [14]. 

A picture of the prototype is presented in Fig. 1.5. Further details can be 

obtained from Chapter 4. 

• Thermal stability and noise immunity: 

Drift: Passive components, such as resistors, capacitors and inductors 

typically change in value with temperature - unpredictable operation; 
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Figure 1.5: Electronic Nose Prototype 

Leakage currents typically increase; 

Applications: Satellites and network chips are very susceptible to such 

effects, due to lower tolerance and high sensitivity to the effects of drift ; 

Expensive: Cooling technology required to handle excess heat generated; 

and 

Interference can be unacceptable in sensitive environments such as satel­

lites and IVlagnetic Resonance Imaging (MRI) scanners where FPGAs are 

used heavily for processing large volumes of data . 

• Environmental concerns: 

Energy star compliance; and 

Global warming. 

Power Dissipation: FPGA Specific Details 

Compared to ASICs and other custom chips , FPGAs contain long rout ing t racks 

with significant parasitic capacitance. During high-speed operat ions , the switching 

activi ty on these long rout ing t racks causes significant power dissipat ion. Power 

dissipation calculat ions for FPGAs are similar to other complementary metal-oxide 
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semiconductor application-specific integrated circuit (Complementary Metal Oxide 

Semiconductor (CMOS) ASIC) devices. The total power usage of an FPGA device 

(PTotal) can be broken down into total Static Power (StP) and total Dynamic Power 

(DP) : 

PTotal = StP + D P (1.1 ) 

Static Power Dissipation in FPGAs The StP of an FPGA is proportional to 

the static current Idd - the current that flows regardless of gate switching (transistor 

is 'on' or 'off' ). This is otherwise called the quiescent power. DC power dissipation 

can be estimated by the worst-case equivalent equation: StP = Vdd1dd . StP is in­

herently dependant on the architectural layout of the FPGA itself and is technology 

dependant. As such, it cannot be controlled by the FPGA based designer and will 

not be addressed in this work. 

Dynamic Power Dissipation in FPG As 

Dissipated in 
combinational blocks 

and associated 
interconnection 

Synchron ization 

Consumed by 
registers, clock lines 

and buffers 

Off Chip 

Dissipated at the 
I/O pads 

Figure 1.6: Dynamic power dissipation on FPGAs 

The DP consumption of FPGAs can be separated into data-path, synchronisation 

and off-chip power (Fig. 1.6. Datapath power corresponds to combinational blocks 

and associated interconnection power. Synchronisation power is the power con­

sumed by registers , clock lines and buffers. Datapath and synchronisation power 

are together termed as on-chip DP. Off-chip power is the fraction dissipated in t he 

circuit output pads. Knowledge of the relationship between these components for 

a given FPGA technology is fundamental in calculating the power consumption of 
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an FPGA-based system. For the case of Xilinx SRAM FPGAs, DP is classified into 

clock, signal, logic, input and output power. Power consumption of the data-path 

interconnection (programmability) is the highest of the three parts and increases 

linearly with the input clocking frequency. Various techniques (including pipelin­

ing and partitioning, clock gating, bus multiplexing, asynchronous design and clock 

frequency reduction) can be applied to an FPGA design to reduce this power con­

sumption. For reasons of clarity, it is worthwhile to mention that in this work 

henceforth, terms 'power' or 'dynamic power' are used to indicate dynamic on-chip 

power only. 

Power Modelling as a Critical Step in Achieving Power Awareness 

Hardware implementations of low power applications necessitate design space explo­

ration of an optimal solution. Design improvement is typically an iterative process 

that must take into account optimisation strategies at all feasible levels of abstrac­

tion. The most effective strategies must then be selected by taking into account 

feedback on the impact of the different choices on a level-by-level basis, instead of 

just at the very end of the flow. This enables us to shorten the overall design time 

in the development of chips with one or more constraints. However, it requires the 

development of power modelling tools that provide reliable estimates of the power 

and energy metrics, to enable the designer to make the right design choices while 

optimising the IP core. 

Models have always been important for electronic system design at all levels, whether 

at the component (Integrated Circuit (IC) design), board or system level. Lately, 

with deep sub-micron CMOS technology, the power levels of large FPGAs have 

become a strong function of application conditions such as supply voltage, pattern, 

clock frequency and output loading. Large FPGAs can easily exceed 5-10W power 

dissipation as a function of the foregoing variables. 

Currently, most approaches to hardware power estimation and modelling operate at 

the Register-Thansfer Level (RTL) or lower levels of design abstraction. Attempts 

at power estimation for functional descriptions have suffered from poor accuracy 
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because the design decisions performed during their synthesis lead to an unavoid­

able, large uncertainty in any power estimate that is based solely on the functional 

description. 

1.5 Research Objectives and Motivations 

The considerable interest in reconfigurable hardware has been highlighted by the 

increasing amount of research carried out in the area, coupled with the development 

of several commercial systems based on FPGAs . There is no doubt that this level 

of interest will certainly continue to grow over the next number of years. 

With the emergence of such reconfigurable hardware it is not surprising that there 

has been a considerable amount of research into the use of FPGAs to increase the 

performance of a wide range of computationally intensive applications. 

However, wider acceptance of FPGAs as a replacement to traditional hardware and 

software platforms for performance enhancement acceleration depends on the ability 

of FPGA based designers to learn from experiences in the ASIC design domain and 

to evolve solutions to the greatest FPGA design challenges for the next decade -

adopting higher level design paradigms and simultaneously addressing the challenges 

of power consumption. Keeping these challenges in perspective, the key objectives 

of this research project can be broadly summarised as follows: 

• To design and implement scalable, parameterisable, efficient and novel IP cores 

for a range of I-D and 2-D transforms and matrix operations; suitable for use in 

both general and special purpose signal, image and video processing problems, 

through the application of optimisation strategies at various abstraction levels 

• To develop a novel and accurate high level power modelling methodology suited 

for optimisation and power aware deployment of FPGA based IP cores. 

1.6 Overall Project Strategy 

In order to ease the development of efficient FPGA based solutions for these appli­

cations the Parallel and Reconfigurable Computing for Computer Vision (PRCCV) , 
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Research Group at BruneI University has developed a number of high performance 

cores that have been grouped together into a library called the FPGA MATrix Algo­

rithms (FMAT) IP core library [15]. Existing cores in the FMAT library (prior to the 

commencement of the work in this thesis) can be broadly classified into image and 

signal processing transforms and other matrix operations including decompositions. 

The library includes transform based cores such as the Fast Hadamard Transform 

(FHT) [16, 17], Discrete Hartley Transform (DHT) [18], Fast Fourier Transform 

(FFT) [19], Discrete Wavelet Transform (DWT) [20], Finite RIdgelet Transform 

(FRIT) [21], etc. Matrix operations based cores in this library include matrix mul­

tiplication and Colour Space Conversion (CSC) [22]. Decomposition related cores 

that have been implemented include Singular Value Decomposition (SVD), QR and 

LU. Historically, computational efficiency and compact area footprint were the key 

objectives in the design of the cores in this library. While high performance hardware 

systems are essential for performing large scale number-crunching, a contrary design 

goal of reducing power consumption is rapidly assuming importance. In this work, 

we seek to balance both these issues. This research work is primarily concerned with 

the following tasks: 

• Optimising selected image and signal processing cores from the FMAT library 

with particular emphasis on applying techniques for minimising power and 

energy consumption; 

• Design and implementation of additional novel and optimised cores to be added 

to this library; and 

• Development of a high level power modelling technique to accurately model 

the interplay of various design and performance metrics and their influence on 

power and energy dissipation. 

Design optimisation through common-sub expression reduction, design space explo­

ration for multiple transform lengths and power modelling has been performed on 

the FHT core. The Finite RAdon Transform (FRAT) and FRIT cores have been 

completely redeveloped by applying a number of architectural modifications. CSC 
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has been re-implemented for higher performance and has also been modelled. A 

novel and optimised architecture for Gaussian Mixture Model (G1'lM) based imple­

mentation for an EN application has been developed in collaboration with the Smart 

Sensory Integrated Systems (S2IS) Research Lab at the Hong Kong University of 

Science and Technology (HKUST) . Another important addition to the library is 

the development and implementation of novel systolised architectures for Finite Im­

pulse Response (FIR) filters and circular convolution in collaboration with Nanyang 

Technological University (NTU). 

The relative placement of different abstraction levels at which design optimisations 

are possible are indicated pictorially in Fig. 1.7. The area above the dotted hori­

zontalline indicates the abstraction levels at which the FPGA based designer can 

apply optimisation strategies. The area below the dotted line denotes abstraction 

levels which cannot be controlled at design time, due to the fact that the FPGA 

fabric itself cannot be modified. 

Opportunities 1:? 'lIifluence Power Consumed 

Design Implementation 
by FPGA designer 

, \ 

FPGA Fabric 
& topology 

Decreasing returns through levels of abstraction 

Figure 1. 7: Various abstract ion levels at which power reduction strategies can be 

applied 
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1.7 IP Core Selection Strategy 

At this juncture, it is important to highlight that the choice of the above mentioned 

cores for optimisation and development in this research work is influenced by the 

following factors: 

Application Driven IP core selection The PRCCV Research Group has worked 

primarily on developing multiresolution image processing frameworks for ap­

plications such as face recognition, medical image analysis, image and video 

compression and information retrieval. The choice of cores to be optimised, de­

veloped and modelled is influenced by the fact that they are used as important 

computational sub-blocks in these applications. For example, the FHT has a 

wide range of image and signal processing applications including compres­

sion, error correction, spectral analysis and pseudo noise sequence generation. 

The FRIT and its higher dimensional derivatives including curvelets and con­

tourlets are highly suitable for a number of image processing applications such 

as detection of line singularities and contiguous edges (useful for compression 

and feature detection), image denoising and image segmentation (useful in 

medical imaging). CSC allows us to represent image data in a more compact 

and efficient manner and is used as an important sub-block in image compres­

sion. GMMs are a special class of statistical functions which are widely used 

for classification applications in image and signal processing. Fast convolu­

tion is a fundamental operation in numerous signal processing applications, 

particularly in the fields of spectral analysis and communications. 

Group Strategy Driven IP core Development Some cores in the FMAT li­

brary are already highly optimised, whereas the implementations of others 

provided further opportunities for optimisation. New cores presented in this 

research work have been carefully chosen as a logical extension to available 

cores in the FMAT library in order to extend and improve the functionality, 

performance and range of applications that can be built using this library. 

Client and Collaboration Driven IP core Development The FMAT cores and 

related applications have been developed in response to demand from the re-
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search and industry community for efficient and high performance hardware 

implementations. New cores arising out of collaborative efforts have been 

carefully selected in line with joint R&D goals and synergistic requirements. 

Mathematical modelling techniques for characterisation of power dissipation of VLSI 

designs implemented on various platforms have been gaining a lot of attention over 

the last decade. The development of a novel high level modelling technique partic­

ularly suited for IP cores implemented on SRAM FPGAs called Functional Level 

Power Analysis and Modelling (FLPAM) is an important contribution of this work. 

A number of existing power modelling approaches have been analysed in order to set 

the context for highlighting the key advantages of the proposed FLPAM methodol­

ogy. 

1.8 Organisation of the Thesis 

The structure of this thesis is as follows. Chapter 2 takes a closer look at the most 

recent architectures and systems for the various IP cores that have been developed in 

this work including Dot Product, GMM, CSC, FHT/FWT, FRAT, FRIT and Circu­

lar Convolution. A brief overview of existing power modelling techniques for ASICs 

in general, and a detailed and thorough of various power modelling approaches for 

FPGAs are also provided in this chapter. Chapter 3 presents an analysis of the ap­

plication of algorithm level techniques for IP core optimisation. The cores that have 

been targeted for optimisation in this Chapter are novel transformation techniques 

for Distributed Arithmetic (DA) implementations of dot product, FHT and GMM. 

Architectural level techniques for IP core optimisations for high performance and 

power aware implementations of FRAT, FRIT, circular convolution and CSC are 

discussed in Chapter 4. Chapter 5 is concerned with a discussion on performance 

enhanced voltage scaling for FPGAs. In this Chapter, standard arithmetic circuits 

such as adders, multipliers and Discrete Cosine Transform (DCT) are implemented 

on FPGAs using a combination of performance enhancement measures and volt­

age scaling. In Chapter 6, a novel functional level power analysis and modelling 

methodology is presented. The complete mathematical formulation of FLPAM is 
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described, and a number of benchmark circuits developed in the previous chapters 

are modelled. Concluding remarks and opportunities for future work are presented 

in Chapter 7. 



Chapter 2 

Literature Review 

2.1 Introduction 

Image and signal processing algorithms are commonly used in the application areas 

such as telecommunications, speech and audio-visual processing. These areas require 

enormous computing power. A close examination of the algorithms used in these 

and related applications shows that these operations are also data intensive. Hence 

a number of performance metrics including area occupied, maximum frequency, 

throughput, power dissipation, etc. need to be considered while validating the work 

presented in this thesis against comparable existing work. In the area of power 

modelling, the nature of comparison needs to include quantitative and qualitative 

measures such as model accuracy, parametrisation, scalability and model abstraction 

level among others. In order to benchmark our Ip cores and modelling methodology 

with the best in class, a thorough and extensive literature survey has been conducted 

and updated throughout the period of research in this work. 

Consequently, this chapter is organised as follows. Existing architectures and imple­

mentations for a number of matrix algorithms, most of which have been mentioned 

above, are presented in Section 2.2. An overview of the existing power modelling 

methodologies for FPGAs is presented in Section 2.3. Related work on voltage scal­

ing is reviewed in Section 2.4. A synopsis of the shortcomings of existing work and 

concluding remarks are provided in Sections 2.5 and 2.6 respectively. 

22 
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2.2 FPGA Implementations of Selected Matrix 

Algorithms and Related Architectures 

In this section, existing architectures and implementations for a number of matrix 

operation based algorithms including FHT, FRAT, FRIT, CSC and GMM have been 

collated. 

2.2.1 Existing Architectures and FPGA Implementations of 

the Walsh / Hadamard Transform 

Number Theoretic Transforms (NTTs) are classes of transforms that provide natural 

solutions for problems like rounding errors and complex computations in sinusoidal 

transforms such as the FFT etc. This is because NTT can be computed without 

general multiplication and do not depend on special basis functions. The FHT is 

a generalised class of the Fourier transform performed on the two-element additive 

group of Zj2 [23]. FHT is sometimes known as the "poor man's FFT", a sobriquet 

it gained because of the fact that it similar to NTTs in computational require­

ments, but like the FFT, has a number of applications. The FHT is faster than 

sinusoidal-like transforms as it can be decomposed into a combination of additions 

and subtractions only [23,24]. It can also be formulated as a matrix-vector multipli­

cation similar to the Discrete Fourier Transform (DFT) and it has a fast algorithm 

which has Nlog2N additions and subtractions for N-point input samples [25]. A 

survey of literature shows that a number of existing architectures for FHT and its 

hardware implementation have been presented. The Walsh transform is similar to 

the Hadamard Transform (HT), with minor differences only in the order of transform 

coefficients. Hence they are grouped together and are also referred to in literature 

as the Walsh-Hadamard Transform (WHT). Consequently, existing architectures for 

all WHTs suitable for FPGA implementation have been listed out in this subsection. 
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Architectures for the Walsh-Hadamard Transform 

Systolic array based design paradigms include multiple data counters and support 

data parallelism. Systolic array based designs are highly suitable for implementation 

on FPGAs because of their regular structure and massive parallelism capabilities. 

A chip for a systolic array based implementation of the HT was designed by the 

University of South California and fabricated by MOSIS [25J. Its computation re­

quires (2N - 1) clock cycles while its latency is N cycles. However, the addition 

implemented in the array is at word level. Thus, the time required is proportional 

to (W + log2 N), where Wand N are the wordlength and transform length respec­

tively. 

A bit level systolic architecture is reported in [24J. This has a computation time of 

(2N - 1) (W + log2 N) clock cycles with a latency of N(W + l092N) cycles. 

Baugh Wooley Based Systolic Architecture for the Walsh-Hadamard Trans­

form 

In [16J, a systolic approach for high throughput implementation of the FHT is pre­

sented. The multiplication of the Hadamard matrix (H) and input vector (X) is 

expressed in two's complement representation and written in a form which involves 

only positive bit products and the matrix-vector product is then computed using 

two's complement multiplication based on the Baugh-Wooley (BW) algorithm. This 

is performed using a serial-parallel multiplier as shown in Fig. 2.1 in the case of 

n=4, where n is the wordlength. The superscript m in the term hm in Fig. 2.1 refers 

to the bit position of 2's complement notation of the Hadamard coefficient being 

operated upon by the B-W Multiplier (BWM). The logic unit is used to obtain the 

partial products and adding the extra one in the fifth and the eighth cycle through 

the OR and the AND gates respectively using the two control signals Sl and S2 for 

the BWM. The adder unit is used for the addition of the partial products and the 

carry propagation. The time and area complexity of the structure are n(N + I)T 

and 2N, respectively (where T is the clock cycle fixed by the total gate delay of the 

BWM). The systolic architecture presented in 2.1 is designed and targeted to the 

Xilinx XCV1000E FPGA of the Virtex-E family [26J. This architecture occupies 
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188 FPGA slices and operates at a maximum frequency of 31 MHz. 
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Figure 2.1: BWM based systolic architecture [16] 

Sparse Matrix Distributed Arithmetic based Architecture for FHT 

A second approach for implementing the FHT based on DA principles for inner 

product implementation has also been presented in [16]. To reduce the number of 

arithmetic operations and to speed up the process, the symmetry in the FHT matrix 

coefficients and a sparse matrix factorisation are exploited in this architecture. The 

architecture for transform length N = 8 is presented in in this work. Four sepa­

rate ROM-Accumulate blocks calculate the eight transforms as follows: a butterfly 

structure of bit-serial adders and subtractors is used to generate the elements of the 

input matrix as shown in Fig. 2.2. This architecture has an effective computational 

complexity of 2n where n is the wordlength. This DA based architecture is designed 

and implemented on the Xilinx XCVI000E FPGA of the Virtex-E family [26]. For 

N, n = 8, it is reported that a maximum frequency of approximately 50 MHz is 

achieved and the design occupies around 75 FPGA slices. 
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Figure 2.2: DA based architecture for the W-H transform [16] 

Butterfly Architecture for the Fast Walsh-Hadamard Transform 

An FHT based architecture for wideband Code Division Multiple Access (CDMA) 

applications is presented in [27] (Fig. 2.3). The architecture is based on a multi 

stage butterfly design that operates on single bit inputs. There are a number of 

stages in the FHT design depending on the length of the WHT sequence. Each 

stage has an upper and a lower input terminal. The output of each stage of the 

FHT is then given to the next stage. The number of bits in the counter depends 

on the number of stages which in turn depends on the length of Walsh-Hadamard 

(W-H) sequence to be used. If there are N W-H chips then the counter length must 

be log2N bits (where N denotes transform length). The length of the shift register 

in each of the stages s of the design is given by the following relation (N /4) /28
. This 

design has a computation time of N clock cycles and a latency of (1092N + 1). In 

addition, the architecture is a straightforward implementation of the decomposition 

of the Hadamard matrix, without any algorithm or architecture level optimisations. 
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It is worth mentioning that the architecture accepts single bit input values, thereby 

reducing the throughput by a factor of W, where W is the wordlength. The 16 

chip FHT structure is implemented on the Xilinx Virtex-E XCV1000E FPGA [26] 

and occupies 71 slices with a maximum operating frequency of about 36 MHz. It 

must be highlighted that the architecture is for single bit FHT only which must be 

considered while calculating effective throughput. 

Row Ids 

Figure 2.3: Butterfly architecture for 4 stage WHT for the case N =16 [27] 

Hadamard Based Image Encoder 

A low gate image encoder based on the WHT used as a replacement for the DCT 

is presented in [28]. The architecture is a straightforward implementation of the 

Hadamard matrix, with Read Only Memory (ROM) based control logic for the 

adder/subtractor block. The operation of the WHT block is divided into two con­

secutive passes (modes). In the first mode a row pixels of an image block are stored 

in eight registers in eight clock cycles. This stored data (pixels) is then operated 

upon, using the add/subtract units. The choice of add or subtract in each opera­

tion is instructed by the WHT coefficients stored in the ROMs. The resulted data, 

known as a row operation, is stored in the RAM. In the second mode the data 

stored in the RAM is sent to the registers and follow similar operations after which 

final transformed 8x8 block is produced. The time complexity of the design in [28] 

is O(JI2). Individual blocks in the design have been constructed and tested using 

Xilinx XC4010E FPGA. The construction of the entire design is mapped into Xilinx 

XC4053XL-740 FPGA and yields a maximum clock speed of about 6 MHz. 
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Unified Algorithm and Architecture for the Walsh and Related Trans­

forms 

A Unified algorithm to generate Walsh functions in four different orderings and its 

programmable hardware implementation is presented in [29]. This architecture is 

designed using transformation tree based butterfly structure networks to implement 

the transform for lengths N < 7 and Time Division Multiplexing (TDM) for greater 

values of N, where N is the natural logarithm of the size of the transform. The 

authors have mapped the combinational part of the function generator into LUT 

cascades, where each cell has at most 6 inputs and 6 outputs. The basic structure 

of the LUT cascade that is used is shown in Fig. 2.4. The target device used by 

the authors to prototype their design is the Altera FLEX10K EPF10K10LC84-3 

FPGA [30] which contains 576 Logic Elements (LEs) and 59 user 10 pins. Design 

optimisation is performed using by Synplify Pro and mapped using Quartus II. The 

implementation for N = 8 requires 102 LEs and the minimum delay achieved is 25.7 

ns. As in the case of [27], this architecture has also been used for single bit WHT 

implementation only. 

• • • 

cell 

• •• 

rails 

Figure 2.4: Basic L UT cascade [29] 

• • • 
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2.2.2 Architectures for Higher Dimensional Algorithms for 

Multiresolution Methods: The Finite Radon & Ridgelet 

Transforms 

The search for "true" multidimensional bases beyond wavelets that are directional 

in nature has led to the development of ridgelets and similar transforms. Recently, 

the curvelet and ridgelet transforms [31-33] have been generating a lot of interest 

due to their superior performance over wavelets. While wavelets have been very 

successful in applications such as denoising and compact approximations of images 

containing zero dimensional (point) singularities, they do not isolate the smoothness 

along edges that occurs in images because they lack flexible directionality. Wavelets 

are thus more appropriate for the reconstruction of sharp point-like singularities 

than lines or edges. These shortcomings of wavelets are well addressed by the 

ridgelet and curvelet transforms, as they extend the functionality of wavelets to 

higher dimensional singularities and are effective tools to perform sparse directional 

analysis. An orthonormal, digital and fully invertible form of Ridgelets, called the 

FRIT was first proposed in [31]. 

The FRIT has gained attention recently due to its directional nature, resulting in 

better performance in applications such as compression and denoising. The FRIT 

is generated by performing a FRAT on a non-dyadic sized block of the source image 

followed by a DWT operation. Existing FPGA based implementations of the FRAT 

and FRIT have been presented in the following subsections. 

Reference and Memoryless Implementation of the FRAT 

Two architectures for the FRAT and their FPGA implementation have been de­

scribed in [34]. The first architecture shown in Fig. 2.5 is called a reference FRAT 

architecture and is a direct hardware implementation of a suitable modified variant 

of the standard FRAT pseudocode [35] [Appendix C]. The architecture comprises 

an address logic initialiser, multiplexer, accumulators and two memory blocks for 

storing transform vectors. 

The second architecture in [34] (Fig. 2.6) is denoted as a Memoryless FRAT archi-
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Figure 2.5: Reference architecture for the FRAT [34] 

tecture which operates in a parallel manner with p times the throughput of the first 

architecture, where p is the blocksize. Address Logic Initialiser (ALI), wide multi­

plexer and adder blocks are used as sub-blocks in this architecture. The ALI drives 

the Address Generators (AG) that in turn generate signals to control teh address 

bus. It is worth mentioning that the multiplexer operates on all the p2 pixels simul­

taneously in this architecture and hence scalability may not be inherently feasible 

as a result of wiring complexities. 

Both architectures have been designed using Verilog HDL and synthesised by Xil­

inx ISE development tools using the Virtex-II device family [36]. The reference 

architecture occupies 159 slices and provides a maximum operating frequency of 100 

MHz with a power consumption figure of 114.98 mW at 50 MHz. The memoryless 

architecture requires 558 FPGA slices and provides a maximum operating frequency 

of about 82 MHz. Power is consumed at the rate of 253 m W at 50 MHz. Xilinx 

XPower [11] is used for power estimation assuming a 1.5 V supply with a capacitive 

load of 10 pF. 
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Figure 2.6: Memoryless architecture for the FRAT [34] 

Generic and Pseudo-code Based Implementation of the FRIT for Curvelet 

In [37] two architectures have been presented for the implementation of FRIT. The 

first architecture uses a generic block (Fig. 2.7) that uses a combination of LUTs, 

matrix of accumulators and multiplexers to perform the FRAT. This is followed 

by a tree structure based architecture for implementing the DWT (Fig. 2.8). The 

time complexity of this design is O(p4), where p is the block size. The maximum 

frequency for the forward transform using this architecture is reported to be 33MHz. 

The second FRIT architecture presented in [37] is based on the standard FRAT 

pseudocode provided in [35] and has a core time complexity of O(p4 . (p + 1)). This 

architecture is presented in Fig. 2.9. The "Radon Transform Module" in this archi­

tecture contains a "FRAT Calculator" which uses address generators, accumulators, 

RAMs and local control logic to perform the FRAT iteratively. Both the Haar and 

the atrous algorithm have been implemented for the wavelet sub-section of the FRIT. 

The block diagram of the wavelet module is reproduced in Fig. 2.10. Each ridgelet 

block in this architecture consisting 1 Radon and 1 Haar sub-block occupies a total 

area of 828 FPGA slices. 
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Figure 2.8: Generic tree-based architecture for the DWT [37] 

FPGA Prototyping of the FRIT Based on Standard FRAT and Atrous 

The architecture for the FRIT that is proposed in [21] uses FRAT and 1-D Discrete 

Biorthogonal Wavelet Transform (DBWT) as building blocks. The architecture of 

FRAT that is implemented in [21] is a straightforward implementation of the FRAT 

pseudo-code [35] [Appendix C]. The address logic initialiser along with controller 
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block constitute the address generator that generates addresses, i.e., Lk,l for memory 

blocks. The accumulator is a La-bit accumulator that accumulates the lth pixel value 

for the kth Radon projection. The controller block organises the flow of this process 

with input and output data flow. Architectural details of the FRAT and the DBWT 

sub-blocks in [21] are pictorially presented in Figs. 2.11 and 2.12 respectively. In 

order to verify the performance of these architectures, the designs have been ported 

to a Xilinx Virtex-II FPGA [36] chip using Handel-C [38]. The implementation 

results show that the core speed for the FRIT architecture in [21] is around 100MHz 

and it occupies 491 Slices for an input image size of 7 x 7 with a distributed RAM 

based implementation. 
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2.2.3 Architectures for Colour Space Conversion 

Colour spaces (also called colour models or colour systems) is a method by which 

we can specify, create and visualise colour. There are many existing colour spaces 

and most of them represent each colour as a point in a three-dimensional coordinate 

system. Each colour space is optimised for a well-defined application area [39]. The 

three most popular colour models are RGB (used in computer graphics); YIQ, YUV 

and YCrCb (used in video systems); and CMYK (used in colour printing). All of 

the colour spaces can be derived from the RGB information supplied by devices such 

as cameras and scanners. 

RGB colour space is a simple and robust colour definition used in computer systems 

and the Internet to help ensure that a colour is correctly mapped from one platform 

to another without significant loss of colour information. YCrCb is a scaled and 
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offset version of the YUV colour space where Y represents luminance (or brightness), 

U represents colour and V represents the saturation value. Conversion between these 

two colour representations systems is the cornerstone of integration between efficient 

compression and representation of images offered by the YCrCb required for efficient 

storage and transmission; and traditional RGB systems used in visual display units. 

Coded 
Data 

MPEG YCrCb Colour Space RGB -'" '" -~ , 
Decoding Video Data' Conversion Video Data'" 

I Display 1 
• 

Figure 2.13: The video decoding process 

Existing FPGA based systems for the implementation of CSC are documented in 

the following subsections. 

FPGA Based Color Space Converter: YCrCb to RGB 

In [40] three ways to implement YCrCb to RGB CSC which is essential in many video 

processing applications have been presented. All architectures have been synthesised 

and prototyped on the Xilinx XC2V500-5 FPGA series belonging to the Virtex-II 

family [36]. 

The first implementation, reproduced in Fig. 2.14 shows how to simply write be­

havioural Verilog to describe the conversion equations and then synthesise to a silicon 

target. This technique infers MULT ~NDs for the constant coefficient multiplier. 

The implementation summary for this architecture is as follows: 258 LUTs required, 

maximum frequency of 71 MHz. 

The second implementation uses embedded RAMs available in recent Xilinx FPGAs 

as LUTs or ROMs, to store all possible intermediate results for the terms in the three 

equations. Since three of the seven total terms are identical, only five ROMs are 

needed. The depth of the ROM (1 Kilobit) is driven by the colour component bit 

width of 10 bits or studio quality video. The architecture that is developed for this 

implementation is presented in Fig. 2.15. This architecture operates at a maximum 

frequency of 103 MHz and consumed 60 L UTs. 



2.2. FPGA Implementations of Selected Matrix Algorithms and Related 
Architectures 36 

Y'[7:0] 

Cr[7:0] 

Cb[7:0] 

CE 

ClK 

-16 1.164 

x\-------------, + 1------+1 

-128 1.596 

Limit r- R' 

-0.813 

I----+--.L--l_im_it---lr- G' 

1----- S' 

Figure 2.14: Simple arithmetic architecture for ese [40] 

Y' r------ 16-bit 1024 
deep RAM 

L--

rO -
1.164(Y'-64) 

> 

R' 

Cr 
L--

.-------- ~ 16-bit 1024 
deep RAM 

f---
L...- 1.596(Cr-512) 

Cb .----
----40 16-bit 1024 ...--

deep RAM + G' 

L...- I> 
L--. 

O.392(Cb-512) 

L--. 16-bit 1024 
deep RAM 

cS 
O.813(Cr-512) 

.....-

L 

S' 

16-bit 1024 
deep RAM 

ClK 
2.017(Cb-512) 

RST 

Figure 2.15: LUT based ese architecture [40] 

The third implementation makes use of the embedded multiplier in the Virtex­

II series of devices to perform ese. Again, only five multipliers are used. The 

architecture for this implementation is presented in Fig. 2.16. The design has a 



2.2. FPGA Implementations of Selected Matrix Algorithms and Related 
Architectures 37 

clock performance of 185 MHz after place and route, using simple constraints. 131 

LUTs are used up in the FPGA implementation of this architecture. A maximum 

operating frequency of 111 MHz is achieved. 

Y·16 
ADD/SUB 

Two's 
Complemenl 

1.164 

R,[20:9] 

Cr·128 
ADD/SUB 

Two's 
Complement 

1.596 

Cb-128 
ADD/SUB 

Two's 
Complement 

0.392 

6'011 
! B,[20:9] 

P4Jnt 

Figure 2.16: CSC architecture based on embedded multiplier [40] 

FPGA based Tri-media co-processor for esc 

In [41], a case study on a transformer from YCrCb colour space to RGB colour 

space for MPEG decoding, carried out on FPGA augmented TriMedia processor is 

presented. The architecture is based on a 4 stage pipelined implementation of the 

standard conversion formulae and is presented pictorially in Fig. 2.17. The design is 

mapped on an ACEX EP1K100 FPGA device [42]. This CSC core exhibits a latency 
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of 10 cycles and a recovery of 2 cycles respectively, with a maximum operational 

frequency of 200 MHz; and occupies 57% of the device area available. 

8 

unsigned 

812h (= 2.018) 
12 

10 

unsigned 

unngned 

12 

signed 

I 
I 

Odfh (= 223) i 
I 

I 

088h (= 136) i 
I 

I 

I _._._.-.-._._.-.-._.-' 

115h (= 2n) 

8 R' 

~_--' unsigned 

8 G' 

~_.-J unsigned 

8 B' 

~_--' unsigned 

Figure 2.17: Four stage YCrCb to RGB FPGA Trimedia co-processor [41] 

Commercially Available IP Cores suitable for FPGA implementation 

The work presented in [43] is concerned with the implementation of CSC on the 

Cyclone-II using two approaches based on DA principles and multipliers using LUTs 

achieving 216 MHz and 175 MHz respectively. In addition, the results achieved in 

terms of speed and area consumed for FPGA based CSC implementations using 

Xilinx Virtex-E XCV50E-8 FPGA series have been presented in [44-46]. It is worth 

noting that in all three cases, the implementations have been carried out using 13-

bits internal arithmetic. The on-chip areas occupied by these designs are 222, 222 

and 204 slices; with a maximum operational frequency of 112, 105 and 90 MHz 

respectively. All the above mentioned cores are available in commercial IP libraries 

and supplied as black-boxes. Internal architectural details are not available in public 

domain. 
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2.2.4 Application Specific Hardware Implementation of Gaus-

sian Mixture Modelling 

GMM can be classified as a semi-parametric density estimation method since it de­

fines a very general class of functional forms for the density model. In this mixture 

model, a probability density function is expressed as a linear combination of basis 

functions. The GMM algorithm is specific to a given classification problem and 

requires training before the system parameters can be hard-coded. Additionally, 

the size of training set, accuracy of internal representation, classification resolution 

and a number of additional design factors need to be taken into consideration while 

designing an GMM classifier. This makes it impossible to evoke meaningful compar­

isons with other GMM architectures in print. A key contribution in collaboration 

with HKUST is the optimisation and FPGA implementation of their existing GMM 

implementation using novel arithmetic techniques, algorithmic transformations and 

architectural optimisation techniques resulting in compact and efficient design. In 

the following sub-section, a pre-optimisation architecture for the GMM is presented 

as a study in comparison. 

Gaussian Mixture Model Based Classifier 

In the architecture for the GMM presented in [47], a number of design strategies are 

proposed in order to achieve the best possible tradeoffs between circuit complexity 

and real-time processing. First, a serial-parallel vector-matrix multiplier combined 

with an efficient pipelining technique is used. A novel exponential calculation cir­

cuit based on a Linear Piecewise Function (LPF) approximation is used to reduce 

hardware complexity. The precision requirement of the GMM parameters in the 

classifier in [47] has also been studied for various classification problems. The con­

trol unit is implemented using a finite-state machine. Information related to the 

GMM classifier such as the total number of Gaussian models and the number of 

Gaussian models for each class is stored in the two 20-bit registers within the con­

trol unit. The square calculation is performed using an array multiplier. The final 

classification decision is made using a Winner Take All (WTA) circuit. A block 
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diagram of all the functional blocks in this architecture is presented in Fig. 2.18. 

The latency and throughput of the system is reported to be 0.79 f-LS and 0.63 f-LS, 

respectively, for an operating frequency of 80 MHz and for ten Gaussian models. For 

design validation, a prototype was implemented in 0.25f-L CMOS technology and its 

operation was successfully tested for gas identification application. The key disad­

vantages of this implementation is the lack of architectural optimisation in the choice 

of multipliers used. Additionally, the architecture can be significantly improved by 

means of pipelining and effective use of parallelisation. These issues are addressed 

in Chapter 3, where a completely new high-speed and efficient architecture for the 

GMM is developed for the same application. 
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Figure 2.18: Functional units in the GMM classifier [47] 

2.2.5 FPGA Implementation of Finite Digital Convolution 

Calculation of finite digital convolution is frequently encountered in several DSP 

applications. Efficient VLSI implementation of the digital convolution for real-time 

DSP applications is, therefore, an important task. Our collaboration NTU has 

resulted in the design and efficient FPGA implementation of systolic architectures 

for finite digital convolution. 

The memory requirement of DA-based implementation for FIR filters, however, 
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increases exponentially with the filter order. Attempts are, therefore, made to use 

Offset Binary Coding (OBC) [48] to reduce the ROM size by a factor of 2. Memory­

partitioning and multiple memory-bank approach along with flexible multi-bit data­

access mechanisms are suggested for FIR filtering and inner-product computation 

in order to reduce the memory-size of DA-based implementation [49-53]. 

All these structures, however, are not suitable for implementation of the FIR filters 

in systolic hardware since the partial products available from the partitioned memory 

modules are summed together by a network of output adders. 

Comparable architectures available for review have been listed out in the following 

su bsections. 

Hardware-Efficient Distributed Arithmetic Architecture for High-Order 

Digital Filters 

In [54], a memory-efficient DA based architecture (Fig. 2.19) for high-order FIR 

filters is presented. It is reported that the authors have used recursive iteration 

of the memory reduction technique significantly increases the maximum number of 

filter order that can be implemented on an FPGA platform. The presented DA 

architecture exploits symmetry property of the LUT of the original DA. LUT-less 

DA OBC based implementation presented in [54] is optimised by applying LUT 

reduction technique to the smallest 2-word LUT-based DA-OBC. Further optimisa­

tion is achieved by architectural reorganisation to enable the use of a single global 

adder/shifter unit which would be no longer controlled by either the input signal or 

initialisation trigger. 

This architecture is prototyped on an Altera Stratix FPGA device [55]. However, 

it must be highlighted that, FPGA implementation details have been provided only 

for the case Be = 18, filtersize K = 16 and decomposition level k = 4 (where Be is 

defined in [54] as word length of the original LUT). The design occupies a total of 

551 LEs and 1376 memory elements. 
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Figure 2.19: LUT-Iess OBC DA architecture for 4-tap FIR filter [54] 

A Faster Distributed Arithmetic Architecture for FPGAs 

In [56], an architecture for speeding up DA-LUT applications is presented. The key 

feature of this design is that the carry chain delay is reduced or eliminated from the 

critical path. In this design, individual bits of a word are not processed as a unit. 

Instead, the current iteration can start as soon as the Least Significant Bit (LSB) 

of the previous iteration is available, without waiting for the whole word from the 

previous computation. Designs in which an n-bit carry chain, where n is the word 

length, is broken into smaller r-bit chains, 1 < r < n, are described in this work. 

Architectural details of the design proposed in [56] are presented graphically in Fig. 

2.20. 

The designs in [56] have been implemented on a Xilinx XC4028XL-3-BG256 FPGA 

device. The architecture requires 165 Configurable Logic Blocks (CLBs), and oper­

ates at a maximum frequency of approximately 62 MHz. 

Non-DA, Systolic FIR Architectures 

To utilise the advantages of systolic processing, several algorithms and architectures 

have been suggested for systolisation of FIR filters [57-60]. However, the multipliers 

in these structures require a large portion of the chip-area and consequently enforce 

limitation on the maximum possible number of Processing Elements (PEs) that can 
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be accommodated and the highest order of the filter that can be realised. 

2.3 Power Modelling 
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Power dissipation has become a key design issue in FPGA based architectures. Mo­

bility, battery limitations, thermal constraints, reliability issues, cost of cooling sub­

systems and achieving time to market within these design constraints has necessi­

tated the adoption of power aware design flows. In this section, a brief description 

of various existing FPGA power modelling techniques operating at different design 

abstraction levels have been documented. 

2.3.1 Versatile Place and Route Based FPGA Power Models 

In [61,62] a detailed and flexible power model which is integrated within a modi­

fied Versatile Place and Route (VPR) Computer Aided Design (CAD) framework 
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(presented in Fig. 2.21 is described. This power model estimates the dynamic, 

short-circuit and leakage power consumed by FPGAs. The power model is aimed 

at island-style FPGA architectures with H-tree clock networks. The model has two 

modules: an activity generation module and a power estimation module. The first 

module employs the transition density model to determine the switching activities 

inside the circuit. The second module estimates the power consumption at the tran­

sistor level. The model was calibrated using HSPICE with the technology parame­

ters from TSMC for a 1.8-V, 0.18-JL CMOS technology. Dynamic power estimation 

includes routing and logic block components. Total dynamic power dissipation is 

determined by the following expression: 

DynamicPower = L 0.5· Cy . Vsupply . Vswing . D(y) . jclk (2.1) 
allnodes 

where D(y) and Cy are the transition density and capacitance at node y respec­

tively. Short circuit power is assumed to be 10% of total dynamic power. HSPICE 

simulations for NMOS and PMOS transistors have been carried out to determine 

effective leakage power. 
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Figure 2.21: Modified VPR framework used for power modelling [61, 62] 

2.3.2 Probabilistic Power Prediction for the Xilinx 4000-

Series FPGA 

In [63], a Java based probabilistic power prediction tool for the Xilinx 4000-series 

FPGA is represented. The average power dissipation due to a signal s is modelled 
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by 0.5 . Cd(s) V 2as f, where d(s) is the Manhattan distance spanned by s across the 

array of CLBs, Cd(s) is the equivalent capacitance seen by s and V is the voltage level 

of the FPGA device, and f is the frequency. The tool is calibrated by partitioning a 

set of S signals into 2N + 1 subsets based on the length associated with each signal. 

A mathematical representation is provided in Eq. 2.2: 

In this work, a total of 70 power measurements have been performed using 5 different 

configuration files and 14 different data sets. It is reported that the the maximum 

error in predicted versus measured power is typically less than about 5%. Although 

the modelling methodology is high level, notable drawbacks are that is is nt platform 

independent and not scalable in nature. 

2.3.3 Cycle Accurate Energy Measurement and Character­

isation of FPGAs 

In [64,65], a high level tool for operation-based energy characterisation of FPGAs 

is presented. The proposed cycle-accurate energy measurement and consequent 

low-level characterisation with several examples, followed by the introduction of a 

macro energy state machine have also been presented in [64,65]. Data acquisition 

for calibration of the proposed tool is pictorially presented in Fig. 2.22. 

This is followed by high level state machine based calibration for the design. Design 

strategies including pipelining, loop unrolling are taken into consideration for appli­

cations such as FIR filters for concept validation. This modelling methodology has 

approximately 95% accuracy. However, the accuracy level achieved is high, as it is 

an RTL level approach. Additionally, it is neither scalable nor platform independent. 

2.3.4 High-Level Power Modelling of CPLDs and FPGAs 

A high-level power modelling technique to estimate the power consumption of re­

configurable devices such as Complex Programmable Logic Devices (CPLDs) and 

FPGAs is presented in [66]. The development of models is based on input and output 



2.3. Power Modelling 

Data 
acquisition 

External 
memory 

1.5V or 2.5V Low-impedance 
regulated power source 

l Switched Core Vdd 
capacitor 

I---

~ r '" ~ 
circuit 

User lIOs 
Control 

.J ... 
Target ..... ~ 

FPGA Clock FPGA 

t -I 
Host 0 interface ,. 

(USB 2.0) 
! ! 

IL \\ -
Personal computer 

II 
3 .3V 
OVdd 

46 

Figure 2.22: Real-time cycle accurate measurement system for SRAM FPGAs 
[64, 65] 

signal statistics to estimate the internal power consumption of FPGAs. Input signal 

modelling is based on the determination of optimal signal partitioning, probability 

estimation, transition density, signal space correlation followed by output signal 

transition density. Models for differently-configured circuits are based on the same 

power macromodel template. To achieve tradeoff between accuracy and efficiency, 

an adaptive regression method is used to tackle the problem of biased training 

sequences. The overall process flow is presented in Fig. 2.23. This high level 

modelling methodology has a high accuracy of 97% and is platform independent. 

However, key disadvantages are that the modelling methodology requires training 

and is not scalable. 

2.3.5 Macromodels for High Level Area and Power Estima­

tion on FPGAs 

A tool for estimation of area and power within the context of a high-level automated 

design space exploration pass which determines the effects of various compiler op­

timisations on the area and power of the synthesised hard ware is presented in [67]. 
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Figure 2.23: High level power macromodelling for reconfigurable hardware [66] 

The presented area estimation technique is based on high-level compile time estima­

tion of the areas of the Control-Data Flow Graph (CDFG) nodes. Each CDFG node 

represents an operator and is parameterised with the bit-widths of the inputs (such 

as N-bit adders and multipliers) and characterising the results obtained from post 

layout to take into account route-through. The proposed power macromodelling 

approach in [67] is based on average input signal probability ~n' the average input 

transition density Din and the average input spatial correlation Sin as the candidates 

of input metrics. Input bit width N is also taken into account. The equation-based 

macro-model used to estimate the average dissipation power can be described as: 
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(2.3) 

where f is a mapping procedure to be determined during the characterisation, using 

sample input vector streams as shown in Fig 2.24. This platform independent mod­

elling approach has varying levels of accuracy (depends on the core that is modelled) 

and is not scalable. 

Design Sequence 
Entry Generator 

.vhd .do Pin, Din, Sin 

r (simulation) 

Xilinx .vhd ModelSim MATLAB f .. 
Synthesis (posUayout)" Simulation Data Analysis 

.vcd 

, , (activity) Pout 

Xilinx .pcf ___ Xpower 
Place & Route .ncd Power Estimation 

Figure 2.24: Macro-model characterisation procedure [67] 

2.3.6 Methodology for High Level Estimation ofFPGA Power 

Consumption 

A circuit-level simulations to characterise a simple, coarse-grained FPGA architec­

tural model is presented in [68]. The dynamic power estimation technique presented 

in this work involves two processes. First, each resource is characterised to find 

its effective capacitance. Characterisation is subdivided into global wire modelling 

and input dependency. Next, power of a given design is estimated by finding the 

utilisation of each resource and determining its switching activity. Power estimation 

and accuracy evaluation is performed for a set of 14 designs against silicon measure­

ment. The measurements were taken on an internally developed test board hosting 

an XC3S1000 FPGA, a mid-sized device with 1,920 CLBs. The overall power es­

timation methodology in [68] is presented graphically in Fig. 2.25. Although this 

model is scalable, it has a low accuracy of around 82% only. 
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Figure 2.25: High level FPGA power estimation methodology [68] 

2.3.7 Post Synthesis Level Power Modelling of FPGAs 

In [69] a methodology and tool suite capable of modelling the power consumption 

of an FPGA design at the post synthesis, or Electronic Design Interchange Format 

(ED IF) , level. It is suggested that modelling at this level has the following advan­

tages: Firstly, early power feedback in the design flow. Secondly power results are 

displayed at a high level, closer to the logical design entry point. Finally, the elimi­

nation of bulky, low-level timing accurate simulation and stimulus files. These three 

aspects allow a designer to quickly and easily generate power estimates, relate the 

results back to their original logical level design entry and explore design trade-off 

scenanos. 
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Figure 2.26: High level FPGA power estimation methodology [69] 
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The power modelling approach in [69] consists of: 1) developing a tool infrastruc­

ture to support synthesis level simulation and circuit queries and 2) developing a 

synthesis-level power model. Using Just-Another Hardware Description Language 

(JHDL) [70] power infrastructure , several designs on a Virtex-II 6000 FPGA vary­

ing in functionality and utilisation have been profiled and relationship between wire 

capacitance and fanout , wire length , number of switch boxes etc, is explored. The 

tool-chain process used is pictorially reproduced in Fig. 2.26. This modelling ap­

proach has a high accuracy of 97%, but is not scalable and not platform independent. 

2.3.8 Power Estimation and Power Measurement of Xilinx 

Virtex FPG As: Trade-offs and Limitations 
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from measuring device 

Repeat measuring for same scenario n-times 

Select new bitstream configuration 
scenario and repeat 

Figure 2.27: Measurement cycle [71] 

In [71], power consumption trade-offs between the measured runtime consumption 

of a mapped application and the measured reconfiguration-time consumption of dif­

ferent dynamically (partially and completely) reconfigured applications is explored. 

The possibilities and limitations of todays available power estimation tools are dis­

cussed and compared to the exact measurements have also been studied in [71] . 

In this work , a Spyder Virtex Board equipped with a Xilinx XCV2000E BG560-6 



2.3. Power Modelling 51 

FPGA [26] is used as the experimental platform. The measurement system con­

sists of a PC with the control software, a Tektronix oscilloscope (Type TDS 220) 

connected to the PCs RS232 interface. The measurement cycle used is presented 

pictorially in Fig. 2.27. The modelling approach presented in this work is highly 

platform specific and is completely based on physical measurements. Theoretical 

extrapolation of model information for predicting power is not supported. Accuracy 

details have not been clearly described. 

2.3.9 Power Estimation for Cycle-Accurate Functional De­

scriptions of Hardware 

A methodology for Cycle-Accurate Functional Descriptions (CAFD) power estima­

tion that combines the accuracy achieved by power estimation at the structural RTL 

with the efficiency of cycle-accurate functional simulation by viewing a CAFD as 

an abstraction of a specific, known RTL implementation that is synthesised from 

it is presented in [72]. This modelling methodology is described briefly as follows. 

For a given CAFD, corresponding simulation testbench and a power model library 

(generated once for each fabrication technology, using well-known characterisation 

techniques) for RTL components preprocessed is first carried out in order to enable 

easier back-annotation of RTL information. Virtual component instantiation and 

idle cycle analysis is then performed resulting in an RTL-aware CAFD which is is 

co-simulated with the power model library to determine average power. An adap­

tive state-based sampling technique is used to optimise the allocation of sampling 

probabilities to different control states for improved representation of states with 

a higher time-variance of power. A diagrammatic representation of the modelling 

methodology in [72] is presented in Fig. 2.28. It is claimed that the accuracy of this 

architectural level modelling technique is high. Although it is scalable and param­

eterisable, the key disadvantage is the unsuitability of this modelling approach for 

IP core macromodelling. 
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Figure 2.28: Overview of the CAFD power estimation methodology [72] 

2.3.10 Dynamic Power Estimation Technique for FPGAs 

52 

Empirical early prediction models of net activity and interconnect capacitance in 

FPGA based designs suitable for use in power-aware layout synthesis and early power 

estimation/ planning have been discussed in [73]. Delay based switching activity 

analysis and prelayout activity prediction has also been performed. The prediction 

methodology proposed in [73] consists of the following steps: 

• Identifying suitable benchmark circuits to be implemented and modelled; 

• Arbitrary division of circuits into characterisation and test sets respectively; 

• P arameter extraction and analysis of characterisation circuits ; and 
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• Statistical analysis of prediction and target parameters using multivariable 

regression analysis followed by verification. 

The process flow is pictorially presented in Fig. 2.29. 
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Figure 2.29: CAD flow for activity analysis [73] 

The parameters used in the prediction model include fan out, half perimeter of nets, 

x-y span, area occupied, number of load pins on nets and average estimated routing 

congestion in net bounding box. The proposed prediction model is validated on the 

Xilinx Virtex-II PRO FPGA family. 

2.3.11 Power Modelling and Characteristics of Field Pro­

grammable Gate Arrays 

A mixed-level model called fpgaEVA-LP2 for both dynamic and leakage power that 

combines switch-level models for interconnects and macromodels for LUTs is pre­

sented in [74]. The key objective is to examine the power impact of FPGA circuits, 

architectures and CAD algorithms and to study the power characteristics of existing 

FPGA architectures. The area model in fpgaEVA-LP2 is based on the technology­

scalable area model implemented in VPR. The delay model in fpgaEVA-LP2 uses 

delay values obtained by SPICE simulations in the predictive 100 nm CMOS tech-
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nology and various circuit paths inside a logic block are simulated and path delays 

are precharacterised. The dynamic power model is built using switch-level models 

for interconnects (as a function of signal transition), macromodels for L UTs for ran­

domly generated input vectors and finally using transition density for glitch analysis. 

Static or leakage power as a result of various device level mechanisms is determined 

using SPICE simulations for LUT sizes ranging from three to seven and buffers of 

various sizes in global/local interconnects. The overall process flow is described pic­

torially in Fig. 2.30. This mixed level modelling approach has a medium accuracy 

level of 92% and is scalable. However, it is not platform independent. 

Random vector generation 

Cycle accurate power 
simulation with glitch analysis 

No 

Postlayout 
extracted delay 

Mixed-level 
power model 

Figure 2.30: Overall power calculation [74 ] 

2.3.12 Brief Review of selected ASIC Power Modelling Tech-

. nlques 

In this section, an overview of power estimation and modelling techniques for ASICs 

that are comparable to existing FPGA power modelling solutions is presented. 

Highl Algorithmic Level Power Estimation 

High level power models for ASIC based on principles of information-theoretics have 

been explored in [75-78] for quick power estimation. Estimation and modelling in 
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these works is performed by measurement of the absolute entropy or difference in the 

entropies of input and output signals. Models that encapsulate circuit complexity 

as a key parameter in precharacterised high-level design libraries or limited sets of 

boolean functions are presented in [79-81]. 

Power Estimation and Modelling at RTL for ASIC 

The dominant type of RTL power modelling is regression based approach and is 

also known as power macromodelling. The key process is pre-characterisation of 

individual components or blocks in a design from a library of IP cores under statis­

tically modulated input conditions. This is usually followed by curve fitting using 

some measure of error estimation and reduction to identify accurate models. Sim­

ulation, probabilistic power estimation and statistical sampling techniques for test 

vector compaction are some of the techniques that are employed for low level power 

estimation and modelling are discussed in [82-90]. Stochastic and adaptive models 

for input data compaction for power estimation in finite state machines are pre­

sented in [91,92]. A simple constant type power macro-model, known as the power 

factor approximation technique based on weighted estimation of module average 

power consumption as a function of input transitions is presented in [93]. Activity 

estimation based stochastic power modelling based on temporal data correlation is 

presented in [94]. In [95], a multidimensional, multivariate power macromodelling 

technique that trades additional computational complexity for higher accuracy is 

discussed. Parametric and cycle accurate sampling based power macromodelling 

approaches are discussed in [96] and [97] respectively. 

Gate Level ASIC Modelling 

At the bottom of the abstraction pyramid lies the gate and circuit level that allow 

to perform both static and dynamic modelling [75-77,98-101] based on statistical 

information about the inputs applied to the circuit, such as toggling information, 

input correlation etc. 
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2.4 Architectural Optimisations for Performance 

Power Tradeoffs 

Dynamic power consumption of designs implemented on FPGA can benefit from ex­

ploiting the massive parallelism capabilities of commercial FPGAs. In cases where 

the hardware resources available on the FPGA are not utilised completely, there is 

scope for trading off additional area for improved power and energy metrics with 

no penalty in terms of performance. At the architectural system level, this is pos­

sible by applying techniques such as parallelism or pipelining to the entire core 

or suitable subsections of the core implemented on FPGA. These techniques can 

be effectively coupled with proportionate reduction of clock frequency in order to 

maintain the same throughput. Additionally, quadratic improvement in power-delay 

can be achieved by reducing the supply voltage to take advantage of the reduced 

operational frequency. 

Existing work in the domain of voltage scaling is predominantly ASIC centric [102-

104]. The interesting concept of trading delay for Vdd and exploring parallelism and 

pipelining as strategies to maintain the required throughput at lower frequencies 

was first explored in [102]. In recent times, there is growing interest in applying 

voltage scaling for FPGA based designs as well. 

A brief review of architectural optimisations and existing voltage scaling strategies 

applicable to FPGAs is presented in this section. 

Power-Sensitive Design Techniques on FPG A Devices 

In [105], a general overview of power saving design techniques, practices and rules 

covering various aspects of the design cycle at the system, architectural, RTL and 

low levels for both static and dynamic power have been summarised. The topics 

covered include switching activity reduction through clock gating, pipelining and 

re-timing for glitch reduction, effects of pipelining on design structure and power 

consumption, delay balancing and logic depth reduction, counter and state machine 

encoding, arithmetic optimisation techniques and design partitioning. 
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Low Power Digital Design in FPGAs: A study of Pipeline Architectures 

implemented in a FPGA using a low supply voltage to reduce power 

consumption 

A circuit-architectural technique to reduce power consumption in FPGAs is pre­

sented in [106]. The authors analyse the influence of the supply voltage and the 

propagation delay using the Altera FLEX10K100-PGA-504 FPGA as a test plat­

form. The Voltage/Frequency ratio is measured using a ring oscillator in order to 

obtain the maximum propagation delay with the lowest possible supply voltage; 

and show that power consumption decreases faster than frequency. Architectural 

optimisation is performed by increasing the pipeline granularity to increase the per­

formance of the circuit and simultaneously reducing the power supply to save power 

consumption and maintaining the same level of performance. It is claimed that a 

reduction maximum global power consumption of of the FPGA by up to 75% is 

achieved. 

The Impact of Pipelining on Energy per Operation in Field-Programmable 

Gate Arrays 

An experimental investigation into the quantitative impact of pipelining on en­

ergy per operation for two representative FPGA devices: a 0.13JL CMOS high den­

sity/high speed FPGA (Altera Stratix EP1S40) and a 0.18JL CMOS low-cost FPGA 

(Xilinx XC2S200) both measurements and execution of vendor-supplied tools for 

power estimation is presented in [107]. The best possible gains that can be obtained 

by pipelining/retiming by considering circuits with registers after every logic ele­

ment have been analysed. The interaction between pipelining (a system-level design 

optimisation) and clustering (a lower-level design optimisation) and the correlation 

between the degree of pipelining and the effectiveness of the lower-level CAD algo­

rithms in reducing energy has also been studied in this work. Circuit analysis is 

performed using two test bench circuits: COordinate Rotation DIgital Computer 

(CORDIC) and 64-bit integer multiplier, since these two circuits have the largest 

number of variants. The authors show that the "maximally pipelined" variant of 

each benchmark circuit dissipates the least energy on both FPGA platforms. The 
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results obtained indicate that combining optimisation both at the system level as 

well as during low-level synthesis and physical design results in maximum power 

reduction. 

Low-Power CMOS Digital Design 

Seminal work on the impact of architecture-driven voltage scaling to achieve lower 

power-delay products (energy per computation) is presented in [102]. It is suggested 

that one way to maintain throughput while reducing the supply voltage is through 

utilisation of a parallel architecture (as shown in Fig. 2.31) . It is pointed out that 

careful optimisation must be performed to minimise this overhead (for example, 

partitioning techniques for minimal overhead). It is shown that pipelining can also be 

used for power reduction by a factor of approximately 2.5, providing approximately 

the same power reduction as the parallel case with the advantage of lower area 

overhead. The author indicates that additionally, pipelining also has the effect 

of reducing logic depth and hence power contributed due to hazards and critical 

races. A combination of both pipelining and parallelism has also been analysed for 

achieving maximum power reduction. 

A 

B 

Figure 2.31: Parallel implementation of a simple datapath [102] 
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Voltage Scaling for the Virtex-II FPGA 

The concept of voltage scaling and tolerance limits of commercially available FP­

GAs under varying operating conditions was explored in [108]. The authors explore 

design tradeoffs between throughput, power consumption and area using the Dy­

namic Voltage Scaling (DVS) technique on a few benchmark circuits. While the 

authors take cognisance of the fact that DVS can reduce both dynamic and leak­

age current, but at the expense of increasing circuit delay, measures for combining 

DVS with performance improvements through architectural strategies have not been 

analysed. Xilinx Virtex-II XC2V1000 FPGA [36] is chosen as the platform for which 

the testbench cores have been prototyped. 

FPGA Power Reduction 

In [109], the authors focus on power reduction in existing commercial FPGAs used in 

battery powered applications. It is clearly shown that voltage scaling can effectively 

provide a 35% and 25% reduction in active and standby power respectively of a 

Spartan FPGA. 

Dual-Vdd FPGAs 

Research has also been carried out in the design of dual/multiple/scaled Vdd FPGA 

fabrics [110,111]. However, most of these proposals have not been exploited on any 

commercially available platforms. 

2.5 Shortcomings and Disadvantages of Existing 

Work 

As can be seen from the preceding sections, there still remains plenty of scope for 

further research in exploiting reconfigurable computing for the various applications 

and algorithms that have been addressed. The major limitations of the existing 

work can be identified as follows: 
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Efficient IP core design 

• In general, most of the IP cores that have been referred to are application 

specific. Modifications have to be made on the proposed cores to adapt 

them for a specific application, which require considerable FPGA knowl­

edge for the application developers in order to re-implement the adapted 

cores; 

• The design principles used in existing work is not strongly aligned current 

industry trend towards modularisation, top-down design approach and IP 

core reuse that are essential for the design of large and complex systems 

on FPGAs; and 

• Implementation techniques are generally core specific and ad-hoc. Design 

optimisation has not been considered as a holistic challenge balancing the 

demands for power, performance, area etc. 

Power awareness and modelling 

• Power awareness has not been a major consideration in existing imple­

mentations ofFPGA based design. Power is the most important challenge 

for FPGA based designs in the coming decade; 

• While numerous power modelling tools are available for ASICs (VLSI, in 

general), only limited solutions are available for FPGAs; and 

• Existing power modelling tools for FPGAs may have attributes such as 

high accuracy, low jmixedjhigh level, platform independence, scalability, 

etc. in varying measures; but generally not all together. 

Optimisation through performance enhanced voltage scaling 

• Most of the existing work is theoretical and have not been exploited on 

any commercially available platforms; and 
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• Measures for combining supply voltage scaling with performance improve­

ments through architectural strategies have not been previously analysed. 

Based on the limitations of existing work and the main objectives presented III 

Chapter 1, the work presented in this thesis can be summarised as follows: 

• All the cores that have been developed in this work are parameterisable, scal­

able and present the end user with a number of configuration options; 

• To design and implement scalable, parameterisable, efficient and novel IP cores 

for a range of 1-D and 2-D transforms and matrix operation; suitable for use in 

both general and special purpose signal, image and video processing problems 

and applications; 

• To apply optimisation strategies at various abstraction levels and to analyse 

the effectiveness of these techniques for performance enhancement and power 

reduction; 

• To investigate the best performance trade-offs such as area/speed for the 

FPGA implementations of these cores; 

• To perform an exploratory study into the suitability of supply voltage scaling 

as a technique for controlling power dissipation in future generation FPGAs; 

and 

• To develop a novel and accurate high level power modelling methodology suited 

for optimisation and power aware deployment of FPGA based IP cores. 

2.6 Conclusions 

This chapter summarises the state-of-art implementations and systems for a selected 

range of transform based and general architectures for image and signal processing 

applications on different reconfigurable platforms using various design methodologies 

and implementation approaches. Existing power modelling techniques at various 
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levels for FPGA based designs have also been reviewed. A brief introduction about 

trends in voltage scaling for FPGAs has been presented. 

In addition, limitations of the existing work were stated. It is the aim of the re­

search work presented in this thesis to address the limitations presented in the previ­

ous section through efficient implementations, power aware design, novel modelling 

methodology and a definitive study on the best approach towards future research 

voltage scaling for reducing power. 



Chapter 3 

IP Core Optilllisations at 

Algorithlllic and Behavioural Level 

3.1 Introduction 

Algorithmic and behavioural transformations are high level optimisations that can 

be performed to yield power and energy efficient designs. These transformations can 

help in reducing the area occupied, latency and clock count required and switching 

characteristics at the lowest level. 

Algorithmic or behavioural transformations are changes to the computational struc­

ture in a manner such that the input/output behaviour is preserved. Alternative 

arithmetic operations (such as different numbering systems, distributed arithmetic, 

etc), fast algorithms, redundancy reduction, optimisation of computational sub­

blocks, modifications to their interconnecting structures resulting in variations in 

dataflow, etc are some of the techniques exploited to yield behavioural transfor­

mations. This can be done through sub expression elimination, manifest expression 

elimination and distributivity [112]. The final goal of transformations is to reduce 

the number of operations involved in a certain computational process. 

The relative placement of this abstraction level is indicated in the power triangle 

shown in Fig. 1.7. 

System level choices have a number of cascading effects in overall design considera­

tions at lower levels and thus on performance and power metrics that are ultimately 

63 
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achieved. The use of transformations makes it possible to explore a number of 

alternative architectures and to choose those which result in the lowest power. 

The development and subsequent performance of new and more sophisticated algo­

rithms rely heavily on the architectures of integrated circuits [57]. In this chapter, 

a number of IP cores have been optimised using transformations such as fast al­

gorithms, sparse matrix factorisation, distributed arithmetic principles and offset 

binary coding to yield high performance area efficient architectures. These archi­

tectures have been designed using a power aware design flow and complete design 

space exploration with power modelling has also been performed. Power modelling 

details are presented in Chapter 6. 

The rest of this chapter is organised as follows. An area and power efficient architec­

ture for Inner Product (InP) computation is presented in Section 3.2. A novel sparse 

OBC based DA architecture for matrix transforms is discussed in Section 3.3. An 

efficient architecture and FPGA implementation of FHT is presented in Section 3.4. 

In Section 3.5, the design and development of a GMM based classifier is discussed. 

Concluding remarks are presented in Section 3.6. 

3.2 An Area Efficient Low Power Inner Product 

Computation For Discrete Orthogonal Trans-

forms 

DOTs, which are used frequently in many applications including image and speech 

processing have evolved quite rapidly over the last three decades. Typically, these 

applications require enormous computing power. However, a close examination of 

the algorithms used in such real world algorithms (e.g. the DCT, the DFT and 

SVD), reveal that many of the fundamental actions involve InP computation as the 

fundamental block [17,113,114]. 

For System on Chip (SoC) and ASIC implementations of DOTs, DA has been re­

garded as a very efficient way of calculating the InP. DA is used to design bit level 

architectures for vector-vector multiplications that covers many of the important 
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DSP filtering and frequency transforming functions [115]. Algorithmic and arith­

metic details of DA principles are discussed in detail in Appendix C. The suitability 

of DA for FPGA based implementations is analysed. Techniques for reducing the 

hardware requirements of DA such as OBC and ROM decomposition [57] are also 

discussed in Appendix C. 

In this section, a novel modified DA algorithm and its architecture is presented. It 

has also been shown that significant reduction in power consumption can be achieved 

under certain conditions achieved in comparison with conventional approach for 

implementing DA. 

The novel architecture based on the proposed algorithm is prototyped on the Celox­

ica RC1000 PCI development board [116] [Appendix B]. 

3.2.1 Mathematical Basis 

Consider an inner product of two vectors A and B of length N. 

(3.1) 

where Bk is represented in 2's complement binary notation and is defined as Bk : 

bkO ; bk1 ... ; bk(w-l) such that Bk has a wordlength Wand bkO is the sign bit. 

W-l 

Bk = -bkO + L bkn2-n (3.2) 
n=l 

Substituting Eq. 3.2 in Eq. 3.1, we get 

N W-l 

Y = LAd -bkO + L bkn2-n] (3.3) 
k=l n=l 

N W-l N 

Y = LAk L bkn2-n + LAk(-bkO ) (3.4) 
k=l n=l k=l 

The above expression leads to the development of the standard DA algorithm. In 

the proposed algorithm, changing the order of the vectors in Eq. 3.1, yields the 

following expression: 
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N N 

Y = LAkBk = LBkAk (3.5) 
k=l k=l 

The implication of Eq. 3.5 in architectural terms is that instead of the contents of 

the ROM being pre-calculated, priori knowledge of the locations of the ROM to be 

accessed is now available. Assuming Bk to be the constant coefficient vector, the N 

locations accessed in the ROM are known in advance. The matrix of addresses used 

to access the ROM is shown below: 

(3.6) 

b1(W-l) bN(W-l) 

If N > > W, a much smaller RAM or even array of registers consisting of an N to 

T decoder such that T = lOg2 W can be used. Let the T addresses of the RAM be 

represented by (Ro; R 1 ... ; R T - 1). In general, the ith RAM address Ri is the decoded 

value of the following expression: 

N-l 

L bk[_i+(W_l)]2(N-k); va < i < W - 1 (3.7) 
k=O 

It can be seen in Eq. 3.7 that k starts from "0" instead of "I" as seen in Eq. 3.1. 

This is accommodate the fact that the first address location in a regular RAM is 

denoted by the address value "OR". 

The contents of the RAM are calculated at runtime as shown in Eq. 3.8: 

N 

[Ri] = L Akbk[-i+(W-l)] (3.8) 
k=l 

Since all the 2T RAM encoded addresses are known beforehand, the number of 1 's in 

the term bk[-i+(W -1)] are already known for the 2T addresses. Renee, the calculation 

of Ri can be done in parallel and optimised by applying scheduling. 
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3.2.2 Architectural Details 

The architecture of the proposed algorithm is described in Fig. 3.1. The ROM 

that is usually present in the standard DA architecture is replaced by an array of 

registers or a RAM. Using a RAM may require the insertion of delays in the cascaded 

adder structure as only one RAM address can be accessed at a time. The contents 

of the array jRAM are then sequentially sent to a scaling accumulator through a 

data bus to generate the final result. The internal structure of the adder blocks 

used is data dependant and is allocated at compile-time. Each adder block in the 

cascaded structure is scheduled by due the availability of priori knowledge about the 

coefficients. 

I I 

Adder Block 

Array of 

Registers 

Figure 3.1: Architectural block diagram 

3.2.3 Key Performance Measures 

The two key performance measures that need to be considered for the architecture of 

the proposed algorithm are area and latency, both of which will have an effect on the 
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power consumption [57]. Design space exploration and analysis is important because 

larger area and longer latency both contribute to an increase in power consumption. 

Additional Area Occupied 

As the comparison is made with the standard DA approach, it is adequate to high­

light the extra logic circuit area occupied, which is proportional to the total number 

of extra additions that need to be performed for populating the RAM. 

N W-l 

Adds = (2:: 2:: bkn ) (3.9) 
k=l n=O 

The additions are carried out in parallel branches of an adder tree, which can be 

scheduled since priori knowledge about the coefficients of the constant vector is 

available. 

Additional Latency 

Since the values needed for populating the RAM are calculated at runtime, there is a 

penalty in the latency of the proposed algorithm when compared with the standard 

DA. Since the maximum number of addition operations in each branch of the adder 

tree is W - 1 and the maximum height of the tree is given by log W + 1, the total 

additional latency compared to standard DA, without application of scheduling is 

given by: 

W-l 

Latency = log[Max[2:: bkn]]; 

n=O 

k = 0,1,2, ... , N -1 (3.10) 

The total number of scaled accumulation operations needed is identical to the con­

ventional DA. 

3.2.4 Application of Scheduling 

In the unscheduled case illustrated in Fig. 3.2, the design is sub optimal in terms 

of both area and latency, due to the presence of redundancy. Further optimisation 

by minimising the latency and reducing total number of adders can be performed 
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by means of using Force Directed Scheduling (FDS) [117], within the constraint of 

the total number of time-steps available for scheduling the entire adder tree. Thus, 

a force is associated with each feasible combination corresponding to its power cost. 

Time 
Step 1 

Time 
Step 2 

Time 
Step 3 

Time 
Step 4 

Figure 3.2: Unscheduled dataflow 

The Self Force (SF) can be calculated as follows: 

Lj 

SF(j) = L DG(i)x(i) 
i=Sj 

(3.11) 

where L j represents the maximum latency. For each possible assignment of a node 

dj belonging to any branch is assigned to a time-step T Sj, to be executed within 

the node's time period (0 < tj < TSj). DG(i) is the distribution value at time-slot 

i, x( i) is the change in probability associated with that time-slot. The optimisation 

tradeoff between area and time-slots is achieved by setting the value of the total 

time period for the entire tree. The FDS condition given by: 

W-l 

L Ljdj < log[Max[L bkn]] (3.12) 
Vj n=O 

The above expression provides us with a latency optimised design by splitting a 

single branch of the tree into parallel branches. This increases the number of registers 

required for intermediate steps in the computation but gives the benefit of reduced 
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Time 
Step 1 

Time 
Step 2 

Time 
Step 3 

Figure 3.3: Latency optimised scheduling 

latency (Fig. 3.3). On the other hand, the condition given by Eq. 3.13 yields an area 

optimised design by increasing the number of available time-slots and permitting 

reordering of the nodes in a branch (Fig. 3.4). For energy optimised design it is 

important to take into consideration the actual value of the coefficients to determine 

the most optimal design choice. 

W-l 

L Ljdj > log[M aX[L bkn ]] 

Time 
Step 1 

Time 
Step 2 

Time 
Step 3 

Time 
Step 4 

\/j n=O 

Figure 3.4: Area optimised scheduling 

(3.13) 

The overall scheduling strategy is decided on an ad-hoc basis because the actual 

values of the schedule obtained depends upon the actual values of the constant coef-
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ficients involved in the DA process. A code snippet displaying the latency optimised 

schedule generated for a particular DA instance is presented in Algorithm 1. 

Algorithm 1 Pseudocode snippet for latency optimised schedule for novel DA im­
plementation, vector length = 12 

1: par{ tempO = 0; tempI = 0@(vv1+vv2); 
2: temp2 = 0@(vv1+vv3+vv4); 
3: temp3 = 0@(vv1+vv5+vv4); 
4: temp4 = 0@(vv1+vv3+vv4+vv6+vv7+vv12+vv11+vv10); 
5: temp5 = 0@(vv1+vvS+vv3+vv9+vvS+vv4+vv2+vv7); 
6: temp6 = 0@(vv1+vvS+vv5+vv6+vv9+vv11+vv10+vv2+vv7); 
7: temp7 = 0@(vv1+vvS+vv5+vv6+vv3+vv11+vv10+vv10+vv7); 
8: tempS = 0; 
9: temp9 = 0@(vv1+vv2+vv3+vv4+vv5+vv6+vv7+vvS+vv9); 

10: temp10 = 0@(vv1+vvS+vv3+vv9+vvS+vv4+vv2+vv7); 
11: temp11 = 0@(vv1+vv5+vv3+vv6+vvS+vv4+vv2+vv7); 
12: temp12 = 0@(vv1+vv2+vv3+vv4+vv5+vv6+vv7+vvS+vv9); } 
13: for i = 0 : 12 do 
14: par { t1 = t[0]@(t1[10:1]); t = 0@t[12:1]; } 
15: par { t= (O@(tempO)) + t; i++; tempO=temp1; temp1=temp2; } 
16: par { temp2=temp2; temp3=temp4; temp4=temp5; temp5=temp6; 

temp6=temp7; } 
17: par { temp7=tempS; tempS=temp9; temp9=temp10; temp10=temp11; } 
18: temp11=temp12; 
19: end for 

3.2.5 FPGA Implementation 

In order to compare the power/performance trade-offs of the proposed novel DA ap­

proach with conventional DA (based on the algorithm presented in [115]) , both de­

signs has been prototyped on the Celoxica RC1000 PCI development board [116] [Ap­

pendix B]. 

Performance Metrics 

For the test case, vector lengths of S, 10 and 12, each containing coefficients repre­

sented by S bits have been used. It can be seen from the results in Table 3.1 that 

the total number of 4-input LUT's required to implement the design in the case of 

vector length 12 is reduced by 77%. However, The maximum operating frequency 

decreases by 2% only. These results can be interpreted based on the observation 



3.2. An Area Efficient Low Power Inner Product Computation For 
Discrete Orthogonal 'Iransforms 72 

that the increase in complexity of control circuitry in the case of W = 12 is marginal 

for the modified DA approach compared to the increase in the ROM size for con­

ventional DA. This difference is not very significant for cases with smaller vector 

lengths, as can be seen from the results. The comparison of performance metrics 

for all vector lengths for modified and conventional DA has been presented in Table 

3.1. In this design, since the width of the coefficients in the vector used was 8 bits, 

in place of a RAM an array of registers has been used to store the outputs of the 

adder cascade. 

Table 3.1: Implementation results 

Length (N) Area (LUTs) Max. Freq. (MHz) 
8 132 90.7 

Conventional DA 10 344 86.5 
12 833 82.8 
8 139 86.4 

Modified DA 10 160 82.2 
12 188 80.1 

Power Analysis 

Table 3.2: Power dissipation data 

Length (N) Logic Power (m W) Signal Power (mW) 
8 3.03 2.85 

Conventional DA 10 6.23 5.22 
12 8.56 10.63 
8 3.35 3.89 

Modified DA 10 3.44 3.98 
12 3.45 5.88 

Power measurements were performed using Xilinx XPower [11]. The total dynamic 

power is computed as the sum of the logic and signal power. I/O power remains 

that same for both implementations, and is thus not considered for analysis. Power 

data is presented in Table 3.2. It can be seen from Fig. 3.5 that overall dynamic 

power consumption is reduced by 51%. 



3.3. Novel Sparse OBC based Distributed Arithmetic Architecture for 
Matrix Transforms 73 

Dynamic Power Dissipation: Conventional vs. Modified DA 
20r----,-----,----~----~----~--_. 

19 ". - Conventional DA .. 

- - - Modified DA 
17 ....... --., .. ----.-- .. ,-- ..... . 

15 ....... 

~ 
E 
-;; 13 . 

I 

~ o 11 . 
D.. 

9 

7 . 

8 9 10 11 
Length -> (N) 

12 

Figure 3.5: Comparison of dynamic power consumption 

3.3 Novel Sparse OBC based Distributed Arith-

metic Architecture for Matrix Transforms 

Matrix multiplication forms the basic building block of a number of signal pro­

cessing algorithms, including transformation kernels that are used in a number of 

image and signal processing applications. Key among these are DOTs that belong to 

the domain of linear transformations, which are mathematically well-founded [118]. 

Since DOTs are linear transformations on matrices, they are essentially composed 

of matrix-matrix or matrix-vector multiplications, which are computationally ex­

pensive. To process a N-length vector denoted by ¢ according to a transformation 

function given by 9 = A· ¢ (where A is a square matrix) requires O(N2) operations. 

For large values of N, this is clearly a problem. There is a real need for dedicated 

processors for high speed computation of the transform to meet the requirements 

of real time signal processing. The choice of suitable arithmetic techniques for per­

forming InP is also an important factor. 

In this section, a mathematical framework for implementation of OBC based DA, 

in conjunction with matrix factorisation and sparse matrix techniques is discussed. 

Tradeoffs between various performance metrics and power are evaluated and a com­

parison is made with the standard DA approach in order to quantify the gains 
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achieved through the transformation processes. 

3.3.1 Mathematical Background 

Standard DA 

Direct applications of the standard DA algorithm is mathematically presented as 

follows. Consider an InP of two vectors represented as a sum of products, and 

represented mathematically as seen in Eqs. 3.1 - 3.4. 
N 

The term L Akbkn in Eq. 3.4 can have only 2k possible values, it is possible to 
k=l 

pre-compute and store these values in a ROM. By addressing this ROM through W 

cycles using the input data and performing simple shift-accumulate operations, the 

InP can be calculated. In order to accommodate both the terms in Eq. 3.4, a 2 . 2k 

word ROM is required to store the pre-computed data. By using an adder/subtractor 

block; this can be reduced to a size of 2k. By using DA, we can clearly see that a 

typical InP has been reduced in complexity from O(N) multipliers to just O(N -1) 

additions and shift operations. This represents an order of magnitude reduction in 

computational circuit complexity, which is traded off for memory of size 2k, making 

DA ideal for resource constrained systems. However, the keen observer would notice 

that the reduction in computational complexity by offioading logic to memory does 

not necessarily result in a reduction of area complexity. This makes reduction of 

ROM size, without significant increase in control overhead a key requirement for 

efficient hardware implementation of DA. 

OBC based DA 

The ROM size of standard DA can be further reduced to 2k
- 1 by applying OBC 

technique. It is worth mentioning that OBC-DA does not necessitate recoding inputs 

or outputs, since it is only used to interpret and not convert the input data to be in 

OBC form [57]. An element of the input vector can be alternatively expressed as: 

(3.14) 
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Substituting Eq. 3.3 in 3.14 we get: 

(3.15) 

n -=I 0 and CkO = -(bkn - bkn ). Eq. 3.15 is now expressed as: 

[

W-l ] 
Bk = ~ ~ ckn2~ - 2-(W-l) (3.16) 

Substituting Eq. 3.16 in Eq. 3.2 we get: 

W-l 

Y = L Q(bn)2-n + 2-(W-l)Q(0) (3.17) 
n=O 

where 
N N 

Q (bn ) = L ~Ckn and Q (0) = L~' The lower half of the ROM table obtained 
k=l k=l 

from the pre-computation of the OBC DA combinations is a mirror image of the 

upper half, with sign reversed. By using the most significant address line (first 

element in the input vector) as an inverting signal, it is possible to reduce the ROM 

size by a factor of two, when compared to regular DA. Theoretically, it is possible to 

recursively apply OBC to reduce the ROM size, at the expense of additional logic. 

For the maximum case of recursion, the logic depth becomes extremely large and 

the purpose of trading computational complexity for memory is defeated. 

DOT Manipulation for Complexity Reduction 

For most unitary transforms (and for N an integral power of 2) with the exception 

of Karhunen Loeve Transform (KLT) (because of data dependency), fast algorithms 

exist. They are essentially based on the fact that the transformation kernel can 

be partitioned into some intermediate steps which can be subsequently reused in 

further iterations. The factorisation and partitioning techniques for each individual 

DOT is specific to the kernel structure and must be applied on a case to case basis. 

For example, in the case of the DFT, Cooley-Tukey factorisation is used as follows: 

(3.18) 
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where and AI, A 2 .... Am- 1 are 2-sparse matrices and Am is N/(2(m-I)) sparse. For a 

I-D DFT the area complexity of the OBC-DA is now reduced to: 

(3.19) 

For a 2 dimensional case (matrix-vector), such as the N-point WHT or N-point 

HWT, sparse matrix factorisation can be effectively exploited for reducing the ROM 

size to: 

( 
N (z;£S--I)) o 4( m - 1) + 2m - 1 

(3.20) 

as compared to O(2N) for the conventional DA approach. In the case of 8-point DCT, 

Chen's algorithm [119] is used to exploit symmetry of the coefficients effectively 

reducing an 8 x 8 matrix operation into two 4 x 4 operations. This is effectively 

the same as ROM decomposition which is also an effective technique for minimising 

ROM size in DA. Further reduction in ROM size when compared to conventional 

DA can be achieved by applying OBC technique. Quantitatively, for an N-point 

DCT, applying Chen's decomposition in conjunction with OBC reduces the area 

complexity of the algorithm to O(N(2~-I)). 

It is clear that sparse matrix decomposition techniques when used in conjunction 

with OBC can yield highly efficient and compact structures with minimal overhead 

and are highly suitable for resource constrained systems [120]. A full discussion of 

all existing decomposition techniques is beyond the scope of this work. 

3.3.2 Proposed Architecture and OBC-DA Operation 

The architecture of the whole system is presented in Fig. 3.6. It can be seen that 

the output of each DA stage is sequentially passed on to the following stages. It is 

worthwhile to mention that complete sparse factorisation, or reducing all but the last 

matrix to 2-sparse matrices is not necessary and the exact level of factorisation and 

number of factors need to be evaluated on a case to case basis for each DOT by the 

designer and the best tradeoff between latency (pipeline length), complexity and DA 

size needs to be carefully evaluated. In the case of Fig. 3.6, a generic architecture 
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Figure 3.6: Block diagram of the overall OBC-DA-sparse matrix based DOT imple­
mentation 

for (m - 1) 2-sparse factors and one additional N/(2(m-l)) sparse matrix has been 

presented. 

Mapping the OBC-DA algorithm stated mathematically m Eq. 3.17 yields the 

architecture shown in Fig. 3.7. 

The operation of the OBC-DA core for an example case W = 8 and N = 4 is de­

scribed as follows. During the pt clock cycle, the signal Ts2 in Fig. 3.7 is asserted 

and the value Q(O) is preloaded into the accumulator. For the first 7 clock cycles , 

the address locations of the OBC-DA ROM are selected using a bitwise XOR com-
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Parallel in serial out registers 

Figure 3.7: Architecture for the OBC-DA block for the case N = 4 and W = 8 

bination of the first element of the variable vector in the InP, Bl with all the other 

elements B2 ... B4 starting with the LSB of each element. The mode of operation 

of the accumulator is controlled by the Add/Sub line. On the 8th clock cycle, the 

signal Tsl is also asserted and the final result is obtained at the end of the cycle. 

At the end of this process, the input vector of the InP is reloaded and the entire 

operation is repeated. This circuit can be easily generalised for all feasible values of 

Wand N. 

3.3.3 Implementation Details and Results Obtained 

The IP cores developed for comparing various metrics of regular DA and OBC­

DA have been implemented on the Xilinx Virtex-II-Pro XC2VPIOO SRAM FPGA 

[36], [Appendix B] which is capable of handling large and complex designs. The 

choice of this high performance platform for prototyping the algorithms presented 

is influenced by the fact that InP is a highly computationally intensive operation . 

Performance Metrics 

Performance metrics obtained for the implementation of standard DA and OBC-DA 

are presented graphically in Fig. 3.8 . 

The graph yields some interesting insights into the t radeoffs and general t rend for 
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Figure 3.8: Frequency-Area trends for both architectures for different values of N 
and W = 8. Frequency is in MHz and area is represented in FPGA slices. 

both cases. With respect to area, it can be clearly seen that for the case N = 4, 

the area of OBC-DA implementation is infact marginally higher than standard DA. 

This can be attributed to the fact that the increase in circuit complexity slightly 

outweighs the influence of reduction of ROM size. However, for larger values of N, 

a divergent trend is clearly observed and we can see that OBC-DA implementation 

consumes less area when compared to the standard DA implementation. This gap 

becomes wider as N increases. In terms of frequency, for all cases of N > 6, it 

can be seen that OBC-DA outperforms standard DA. This indicates that the area 

reduction achieved in OBC-DA is not at the expense of performance. The overall 

trend of area increase and frequency reduction is similar for both architectures. This 

can be explained by the fact that maximum frequency is a function of logic depth 

of the critical path, which increases at the same rate for both architectures, unlike 

in the case of area. 

3.3.4 Power Analysis 

Power metrics for both architectures at constant frequency of 50MHz are presented 

in Table 3.3. 

Total dynamic power consumption of both DA implementations is presented in 

Fig.3.9. It can be seen that as N increases, power dissipation of both cores in-
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Table 3.3: On-chip dynamic power at constant frequency 
Standard DA OBC-DA 

N Clock Logic Signal Clock Logic Signal 
4 4.68 9.46 11.9 3.93 9.5 12.68 
6 12.29 13.37 33.85 13.61 12.86 30.28 
8 13.42 16.56 39.67 13.99 15.75 36.93 

10 14.55 23.46 61.61 13.47 22.24 49.23 
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Figure 3.9: Total dynamic power dissipation for different values of Nand W = 8. 

creases. However , OBC-DA is more energy efficient than standard DA for any given 

value of N. I/O power for both architectures are identical at 3.44 m W for input and 

57.58 mW, 60.78 mW, 60.78 mW, 63.98 mW for output at N = 4,6, 8, 10 respec-

tively. This is completely in accordance with expectations as no change has been 

made to the I/O sections of the two DA implementations. It can be seen from Fig. 

3.9 that for N = 10, a 12% reduction in total dynamic power has been achieved. 

3.4 Efficient FPGA Implementation of FHT for 

Signal Processing 

It is well known from the literature [121] that the FHT belongs to the class of rect­

angular real valued DOTs and can be efficiently used for the calculation of the DFT 

for implementing adaptive filters and spectrum filter realisations. The usual fre­

quency domain FIR and IIR filtering problem can easily be converted into a Walsh 
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frequency domain-filtering problem. The advantages of the 2-D FHT, which is based 

on 1-D FHT also known as "S" or Sequential transform in lossless image compres­

sion, are well known [122]. The FHT is also an important tool in the fields of speech 

processing and error correction [122,123]. The simple structure and orthogonality 

of the FHT has found significant use in the generation of pseudo noise sequences for 

spread spectrum methods of communication such as CDMA. Recent applications 

include quantum information processing and quantum cryptography, where FHT is 

used as a gate [124,125]. Some other applications of Hadamard and other related 

transforms (Walsh, Paley) are described in [121]. 

In order to address the issues related to the efficient and power aware implementation 

of FHT on reconfigurable hardware, a number of solutions have been presented in 

this work which can be summarised as follows: 

• The FHT algorithm has been modified using sparse matrix factorisation method­

ology which results in quadratic reduction in ROM size and greatly simplifies 

the DA implementation; 

• Parallelism and pipelining have been explored at the architectural level to 

improve performance. Additionally, the parameterisable VHDL cores from 

Xilinx Coregen have been judiciously used to yield highly optimised designs; 

and 

• Functional Level Power Analysis and Modelling (FLPAM) methodology (de­

scribed in Chapter 6) has been used for early design space exploration and a 

priori estimation of power and energy metrics based on various system param­

eters included in the model. 

3.4.1 Mathematical Background 

Typically, a Hadamard matrix is defined iteratively as: 

(3.21 ) 
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where H N is a Hadamard matrix of size N x Nand 

(3.22) 

Let 0 denote the Kronecker product between two matrices: 

(3.23) 

Recursively expanding this expression, we get: 

(3.24) 

The above expression yields K sparse matrices on complete decomposition. If the 

transform length N is a power of two the decomposition described in Eq. 3.24 yields 

an algorithm which can be used to generate high speed and efficient architectures 

for the FHT. 

Let the input data and the transformed data be represented by the two vectors X 

and Y of size N. Then Y can be written as follows: 

such that: 

N-l 

Yi = L HN,ikXk 

k=O 

where Xk'S are written in the fractional format as shown in equation 3.27: 

W-l 

X k = -Xk,W-l + L Xk,W_l_m2- m 

m=l 

(3.25) 

(3.26) 

(3.27) 

where Xk,m is mth bit of Xk (which are zero or one) and Xk,W-l is the sign bit, where 

W is the word-length. 

Substituting 3.27 in 3.26: 
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Define: 

and 

N-l ( W-l ) 
Yi = L HN,ik -xk,W-l + L X k,W_l_m2 -

m 

k=O m=l 

N-l W-l (N-l ) 
= - L HN,ikXk,W-l + L L HN,ikXk,W-l-m 2-

m 

k=O m=l k=O 

N-l 

HW-l = - L HN,ikXk,W-l (m = 0) 
k=O 

N-l 

H W - 1- m = L HN,ikXk,W-l-m (m =I- 0) 
k=O 

The output result is given by: 

W-l 

Yi = - L H W _ 1_ m 2-m 

m=O 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Since the term Hm depends on the Xk,m values and has only 2N possible values, 

it is possible to pre-compute and store these values in a ROM. An input set of N 

bits (Xl,m, X2,m,' ., ,XN,m) is used as an address to retrieve the corresponding Hm 

values. A direct implementation of Eq. 3.25 would require (in the case of N = 8 

and W = 8) 56 additions and subtractions. However, with the use of the FHT the 

number of the addition and subtraction operations is reduced to 24. 

To reduce the number of arithmetic operations and to speed up the process, the sym­

metry in the FHT matrix coefficients and a sparse matrix factorisation are exploited 

as shown in Eq. 3.34, 3.35 and 3.36. 

The matrix multiplication described in Eq. 3.36 is now performed using DA. Eq. 

3.36 is essentially a matrix vector computation, where each element of the output 

vector Y is formed by multiplying each of the 8 elements of the input vector by one 

of 8 predefined coefficient values. By applying Eq. 3.24 for the case N = 8, we get: 
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On recursive expansion of Eq. 3.32: 

Let Hi = (II 0 H2 0 h) X (I2 0 H2o 12) and Hg = (h 0 H2o II)' 

The transformed matrix can now be represented as: 

(3.34) 

where Hiv and HJv are uniformly sparse with 4 and 2 non-zero coefficients respec­

tively. 

Yo 1 0 1 0 1 0 1 0 

Y1 0 1 0 1 0 1 0 1 

Y2 1 0 -1 0 1 0 -1 0 

Y3 0 1 0 -1 0 1 0 -1 
X 

Y4 1 0 1 0 -1 0 -1 0 

Y5 0 1 0 1 0 -1 0 -1 

Y6 1 0 -1 0 -1 0 1 0 

Y7 0 1 0 -1 0 -1 0 1 
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Yo 1 0 1 0 1 0 1 0 To 

Y1 0 1 0 1 0 1 0 1 Tl 

Y2 1 0 -1 0 1 0 -1 0 T2 

Y3 0 1 0 -1 0 1 0 -1 T3 
(3.36) 

Y4 1 0 1 0 -1 0 -1 0 T4 

Y5 0 1 0 1 0 -1 0 -1 T5 

Y6 1 0 -1 0 -1 0 1 0 T6 

Y7 0 1 0 -1 0 -1 0 1 T7 

3.4.2 Proposed Architecture for FHT - Design and Evalua-

tion 

In this section, the novel architecture designed for the implementation of FHT is 

described followed by a tabular comparison of the various parameters of the proposed 

architecture with other existing architectures in place. 



3.4. Efficient FPGA Implementation of FHT for Signal Processing 86 

Architecture D escription 

The architecture for the 1-D FHT is shown in Fig. 3.10. The W = 8 bit inputs to 

the circuit are fed in byte-serial fashion from the input port . The ADD / SUB block 

in the input module operates on every odd clock pulse and their output is appended 

to the input buffer two words at a time (one addition value and one subtraction 

val ue) on every even clock pulse in a systolic manner , until the full vector to be 

transformed has been read. 

Clock 
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Figure 3.10: Novel DA based architecture for FHT 

OIP 

During the first 9 cycles , eight bit-serial outputs for each even vector are produced 

in parallel and during the second 9 cycles eight bit-serial outputs for each odd vector 

are produced in parallel. For the first 8 clock cycles the ADD / SUB module operates 

in addition mode. During the 9th clock pulse in each iteration , the invert fl ag is set to 

high and the ADD/ SUB block in the DA module performs subtraction. The Odd + 
/ Even - selector multiplexes the odd/ even indexed values in the input buffer to the 
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DA module. From Eq. 3.36, it can be seen that each odd row vector is redundant 

as it is the shifted version of each preceding row vector. By splitting the column 

vector T into two sets of odd and even vectors , the same sets of 4 row vectors can 

be used in place of the 8x8 matrix H'Jy . The odd and even vectors obtained have a 

vector-length of 4 words each thereby reducing the size of the ROM for each vector 

to 16 words instead of 256. In general, by applying this novel transformation to the 

Hadamard matrix following its decomposition , the ROM size for each vector used 

in the DA based implementation is reduced from 2N to 2N/2. The novel architecture 

thus obtained has an area complexity that is reduced by orders of magnitude in 

terms of ROM area required. At the end of each iteration, the DA module generates 

output vectors of length N /2, for the even and odd vectors in alternation. These 

vectors are buffered at the output section and written to the output pads in a 

word serial manner. The contents of the ROMs in the DA module are shown in 

Fig. 3.11 where AO = Hi,i(6+i mod 2)' Al = Hi,i(4+i mod 2)' A2 = Hi,i(2+i mod 2) and 

A3 = H i,i(O+i mod 2) 

16x1 DA ROM Table 
"\ 

Parallel in serial out registers 
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Figure 3.11: DA module structure and ROM contents for N = 8, W = 8 
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Comparison with Existing Architectures 

Design parameters such as Time Complexity (TC), Area Complexity (AC) and I/O 

type of the proposed design with existing architectures are presented in Table 5.1. 

Table 3.4: Comparison of design metrics with existing architectures 

Proposed 
[24] 
[25] 
[27] 
[16] 
[16] 

[126] 
[127] 

TC AC I/O 
O(2(W + 1)) O(2N 2) Serial 

(2N - l)(W + lOg2N) O(n2) Serial 
O(lOg2N + W) O(N2) Serial 

NA O(Nlog2N) 2 Words 
O(2(W + 1)) O(2N/2) Parallel 
O((N + l)W) O(2N) Serial 

O(2N) O(N2) Serial 
NA O(N2.2N) NA 

It is worth noting that the time complexity of DA based FHT architectures in the 

proposed design and [16], is dependant only on the number of bits used to represent 

each word in the vector and not on vector length. Thus, the latency of the design 

and the number of clock cycles remains constant for a given input wordlength for 

all vector sizes. On the other hand, in all the other architectures referenced in 

Table 5.1, the computation time increases with the vector length. It is also worth 

mentioning that the type of I/O used also has an impact on the I/O power of the 

design. Serial architectures in general consume lesser I/O power when compared to 

parallel architectures. However, this cannot be readily assumed for energy measures 

as well, since the energy consumed is not a function of frequency, but rather depends 

on the throughput efficiency of the design. 

3.4.3 FPGA Implementation 

In order to verify the performance of the proposed architecture for FHT, the design 

has been prototyped on the Celoxica RC1000 PCI development board [116] [Ap­

pendix B]. 
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Host-FPGA System 

The host application developed accepts two forms of input: input from file and 

interactive input from the user. Once the input vector has been captured, it is sent 

to the SRAM Bank 0 by means of DMA transfer. On completion of data transfer, 

the host sends a signal to the FPGA and releases control over the specified memory 

bank. The FPGA assumes control over this memory bank and reads the input 

vector. After transforming the data to the Hadamard domain, the output vector 

is stored in SRAM Bank 1 and the control is relinquished to the host application, 

which reads the transformed vector and processes the output as required. 

Implementation Results 

Implementation results in terms of various performance metrics like area occupied, 

speed, number of I/O pins etc. for the proposed architecture with N = 4,8 and 16 

and on different FPGA platforms are presented in Table 3.5. It is can be seen that 

the frequency variations for different vector lengths are similar across all platforms. 

This is because the same core has been reimplemented without any changes and 

the frequency gains obtained are clearly due to the improved fabrication technology 

of advanced FPGAs. On the other hand, some variations are observed in the area 

occupied. This is because each Configurable Logic Block (CLB) in the Virtex-4 

FPGA series contains four slices and results in related logic being packed within the 

same CLB, thereby reducing routing complexity and the need to use slices for route 

through. Both the Virtex-E and Virtex-II Pro platforms have two slices per CLB 

and hence almost identical area metrics are obtained for these two platforms. 

For a given platform, the maximum frequency of a design depends on a number of 

factors, including: 

• Logic depth of the design: which depends on the complexity of the algorithm to 

be implemented, architectural choices - particularly specific resources used on 

the FPGA (embedded multipliers, BRAMs etc) and the device characteristics 

of the platform used (speed grade, circuit technology); 

• For a fixed platform and a given parameterisable IP core, the factors that 
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Table 3.5: Implementation results for different FPGA platforms 
Area Freq Area/Freq I/O 

N (Slices) (MHz) (Slices/MHz) Pins 
4 82 127 0.65 19 

Virtex-E 8 162 115 1.41 20 
16 335 67 5.00 21 

4 83 204 0.41 19 
Virtex-II Pro 8 163 183 0.89 20 

16 377 100 3.79 21 
4 82 227 0.36 19 

Virtex-4 8 163 212 0.77 20 
16 358 121 2.97 21 

influence the maximum frequency obtained are the parameters of the core; 

which in the case of the FHT are the vector length. For larger vector lengths, 

naturally the IP core occupies more area after synthesis on account of larger 

DA ROMS and data buses; and 

• The clock tree also spreads over a larger area and this results in reduction of 

the maximum frequency, on account of clock skew propagation delays. 

The frequency chart for the FHT core implemented on all three FPGA platforms is 

shown in Fig. 3.12. Analysis of the data shows that maximum Frequency F displays 

a polynomial relationship with vector length N of the form: 

(3.37) 

Comparison of the results for N = 16 with existing work is presented in Table 3.6. 

Table 3.6: Comparison of implementation results for the Virtex-E platform 

Prop. 8 * 
Prop. 16 + 

[16] * 
[16] * 
[29] +' 
[27] +' 

Area Freq I/O Area/Freq Throughput 
(Slices) (MHz) Pins (Slices/MHz) (Mb/sec) 

162 115 20 1.41 818 
335 67 21 5.00 953 
124 90 116 1.38 640 
188 31 134 6.06 220 
122 32 NA 3.81 512 
71 36 NA 1.97 576 

* corresponds to N = 8; + corresponds to N = 16 and' corresponds to W = 1. It is 
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Figure 3.12: Maximum frequency obtained for all platforms : N = 4, 8, 16 

worth mentioning that the architectures corresponding to +' are designed for single 

bit inputs only. Effective bit-level throughput is therefore 1/8th times that of the 

other architectures presented in Table 3.6. The throughput column clearly shows 

that the proposed architectures outperform other existing architectures in place. 

Fignre 3.13: Chip diagram showing manual placement , rou t ing and pin ass ignment ; 
Virtex-E XCV2000E FPGA 
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Power and Energy Analysis 

Power measurements were performed using Xilinx XPower [11]. The components 

that contribute to dynamic on-chip power are clock, signal and logic power. Dynamic 

power dissipation of the FHT IP core for different design parameters is presented 

graphically in Fig. 3.14. 

Dynamic On-Chip Power 
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Figure 3.14: Dynamic power dissipation for the FHT core 

Energy metrics calculated from the XPower power data are presented in Tables 3.7 

and 3.8 respectively. 

Table 3.7: EOP metrics obtained for N = 4,8,16 

EOP (nJ) 
N=4 N=8 N= 16 

Clock 4.89 12.088 28.981 
Signal 8.082 19.635 57.581 
Logic 17.792 34.480 62.686 
Input 0.084 1.376 2.444 

Output 6.724 9.974 15.253 

The EOP and EA 1 values in Tables 3.7 and 3.8 are at f = 125,85,60 MHz for 

N = 4,8,16 respectively. The EA values for the output at other frequencies can be 

deduced by direct proportionality and are in conformance with the observed results. 

1 Refer to Appendix D for an explanation about EOP and EA 
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Table 3.8: EA values obtained for N = 4,8,16 

EA (pJ /slice) 
N=4 N=8 N= 16 

Clock 58.915 74.157 76.874 
Signal 97.373 120.459 152.736 
Logic 214.365 211.531 166.276 
Input 10.120 8.445 6.483 

Output 81.018 61.191 40.460 

Chip Level Details 

Careful manual place and route of critical nets and manual pin assignment for the 

designs has been performed using Xilinx Pinout Area Constraints Editor (PACE) 

and Floorplanner [11]. This process yields compact and optimised design with short 

nets and serves two important purposes. Firstly, short nets have lesser propagation 

delay and upto 25% gains in maximum frequency have been achieved. Second, short 

nets have lesser parasitic capacitance and DC load and therefore dissobcate lesser 

power than long nets. Manual pin assignment also enables us to locate the I/O pads 

close to the design area, further aiding the above two criteria. The chip diagram for 

N = 16 is shown in Fig. 3.13. 

3.5 Efficient FPGA Implementation of GMM-Based 

Classifier Using DA 

GMM based classifier has gained increasing attention in pattern recognition commu­

nity. Improved classification performances have been demonstrated in many pattern 

recognition applications such speaker recognition, handwriting recognition and gas 

identification, etc [128-135]. Performance figures of more than 95% have already 

been reported for applications such as EN [136] and gas identification [129]. The 

GMM can approximate any continuous density with an arbitrary accuracy provided 

the model has a sufficiently large number of components and provided the parame­

ters of the model are chosen correctly. Another interesting property of GMM is that 

the training procedure is done independently for each class in turn by constructing 
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a gaussian mixture of a given class. Adding a new class to a given classification 

problem does not require retraining the whole system and does not affect the topol­

ogy of the classifier making it attractive for pattern recognition applications. While 

GMM provides very good performances and interesting properties as a classifier, it 

presents some problems that may limit its practical use in real-time applications. 

It is worth mentioning that GMM can require large amounts of local memory to store 

various algorithmic coefficients. Hardware acceleration of the GMM is essential 

in real-time systems because it involves complex computations including matrix 

multiplications and exponential calculations. It is the aim of this work to develop a 

novel architecture for the GMM based classifiers using DA principles. 

3.5.1 Algorithmic Review of GMM 

The task of a pattern recognition algorithm is to set a decision rule, which optimally 

partitions the data space into c regions, one for each class Ck . The boundaries be­

tween regions are the separating surface or decision boundaries. A pattern classifier 

generates a class label for an unknown feature vector ~ E Rd from a discrete set of 

previously learned classes. The most general classification approach is to use the 

posterior probability of class membership P(Ck\~)' To minimise the probability of 

miss-classification one should consider the maximum a posterior rule and assign ~ 

to class Cf,; [137], such that: 

[Cf,; = arg max [p(Ck\x)] = arg max [p(x\Ck)P(Ck)] 
{I, ... ,e} {I, ... ,e} 

(3.38) 

where p(x\Ck) is the class-conditional density and p(Ck) is the prior probability. 

One way to build a classifier is to estimate the class-conditional densities by us­

ing representation models for how each pattern class populates the feature space. 

In this approach, classifier systems are built by considering each of class in turn 

and estimating the corresponding class-conditional densities p(x\Ck) from the data. 

An alternative method is to combine the advantages of both parametric and non­

parametric methods, by allowing a very general class of functional forms in which the 

number of adaptive parameters can be increased to build more flexible models. This 
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leads us to a powerful technique for density estimation, called mixture models [138]. 

In a GMM, a classifier can be constructed by evaluating the posterior probability 

of an unknown input pattern x belonging to a given class Ck expressed as gJ(Cklx). 

This is achieved by using the probability density function gJ(xICk), which is in the 

case of GMM expressed as a linear combination of basis functions gJ(xlj). A model 

with M components is described as a mixture distribution [138]: 

M 

gJ(Cklx) = gJ(Ck)gJ(xICk) = gJ(Ck) L gJ(j)gJ(xlj) (3.39) 
j=1 

where gJ( Ck) and gJ(j) are the frequency of a given training sample in the data-set 

and the mixing coefficients of the component density functions gJ(~lj), respectively. 

Each mixture component is defined by a Gaussian parametric distribution in d 

dimensional space 

(3.40) 

The parameters to be estimated are the mixing coefficients gJ(j), the covariance 

matrix 'Lj and the mean vector J-Lj. 

A detailed evaluation of the performance of GMM as a classifier using a number of 

discrimination experiments on various data sets has been presented in [47]. A de­

tailed comparison of the classification performance of the GMM based approach with 

a wide range of classification algorithms including Multi-Layer Percept ron (MLP), 

K-Nearest Neighbour (KNN), Radial Basis Functions (RBF) and Probabilistic Prin­

cipal Component Analysis (PPCA) has also been presented in [47]. 

3.5.2 Architecture Description 

Mapping the GMM algorithm to hardware is a non-trivial task due to the high com­

plexity of the algorithms and storage requirement of parameters. The simplification 

of GMM algorithm for efficient hardware implementation is discussed in this section. 

In order to reduce the memory size, new set of parameters (constant K j and a 

triangular matrix Gj ) are defined and used instead of gJ(Ck) , gJ(j), 1 'Lj 1
1

/
2 and 
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L:j1 (where L:j1 is a full matrix). The new coefficients K j and Gj are given by: 

(3.41) 

-1 

GrGj = ~L (3.42) 
j 

Gj is a triangular matrix introduced in order to reduce the complexity as compared 

to dealing with a full matrix as indicated by Eq. 3.40 calculation. If we assume 

that: 

Eq. 3.39 can be rewritten as: 

M 

p(Cklx) = L K j exp{ -z} 
j=l 

(3.43) 

(3.44) 

Thus the calculation of p( Cklx) can be divided into three steps: evaluation of pa­

rameter z, the exponential calculation and multiplication with constant K j . It can 

be noted that the evaluation of parameter z is the most demanding operation. Using 

Eq. 3.43, we can reduce the complexity of GMM. 

In order to obtain a clear understanding of computational requirements, GMM data 

flow block diagram has been presented in Fig. 3.15. First, s = x - /-Lj is evaluated 

after d subtractions (d is the dimension of x vector). Next, Yj = (x - /-Lj)TGj is 

calculated using a vector-matrix multiplier. G j is a triangular matrix. Hence the 

calculation of Yj requires d(di1) multiplications and (d~l)d additions. Zj = YjyJ 

requires d multiplications and (d - 1) additions in the square unit and accumulator. 

The above calculations are repeated M times to obtain p(Cklx). In addition, GMM 

also requires a number of memory units in order to store the coefficients, namely /-L, 

G and K. 

The subtract or sub-block has been implemented using efficient cores from Xilinx 

Core-generator. The Vector Matrix (VM) multiplication sub-block shown in Fig. 
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Figure 3.15: Data flow block diagram of GMM classifier. Memory units are used to 
store various G MM coefficients such as K, G and J-L 

3.15 has been implemented using DA. The coefficient matrix G is a square matrix 

with side d. The matrix represented by G is a lower triangular matrix and hence the 

vector length of each column decreases from d to 1. This means that the d number 

of ROMs used for the implementation of DA have reducing size from 2d to 2. The 

VM multiplication is mathematically defined as follows: 

v M[i] = ~ [t, GikSkn] Tn + t, Gik( -SkU) (3.45) 

where 0 < i < d and V M[i] is the output vector after performing the VM multipli-

cation. 

The general architectural framework for the VM block using DA has been described 

in Fig. 3.16 

The squaring and accumulator sub-blocks have been efficiently implemented using 

cores from Xilinx Core-generator. The exponential unit is implemented using a 
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Figure 3.16: DA sub-block for the VM-multiplier 

suitable Linear PieceWise function (LPW) [47]. In the gas-sensor application that 

has been targeted, the specific architectural details are as follows. The resolution 

of the input data from the gas sensor is 10 bits and the input vector length d is 5. 

The resolution of the /-L vector and G matrix coefficients are 10 bits as well. The 

wordlengths of intermediate results in subsequent sub-blocks have been retained at 

full precision to eliminate truncation error which may adversely affect the accuracy 

of classification. The architecture is fully pipelined at the sub-block level. Each sub­

block requires 5 clock cycles (same as the value of d) for processing the data. It is 

worth mentioning that since the resolution of the DA ROMs' addresses are 10 bits, a 

single DA sub-block will take 10 clock cycles for complete execution. To synchronise 

the VM unit with the rest of the sub-blocks in order to keep the pipeline operating 
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at full speed, two DA units are operated in parallel within the VM-multiplier sub 

block. It is also worth mentioning that the GMM-kernel that has been implemented 

on the FPGA can be implemented in different configurations - serial mode with 2 

dimensional DA ROMs, fully parallel configuration, partial reconfiguration mode 

with changing coefficients and semi-parallel configuration. A comparative study of 

different configuration modes will be performed in future work. 

3.5.3 FPGA Implementation 

In order to verify the performance of the proposed architecture for the GMM based 

classifier, the design has been prototyped on the Celoxica RC1000 PCI development 

board [116] [Appendix B]. 

Implementation Results 

Implementation results in terms of various performance metrics for the proposed 

DA based architecture for the GMM are presented in Table 3.9. 

Table 3.9: Implementation results 

Performance Metrics 
Gate Count 27366 
Total LUTs 1845 
Total Slices 1456 
Max Freq 27.010 

Bonded lOBs 42 

Chip Level Details 

Careful manual place and route of critical nets and manual pin assignment for the 

designs has been performed using Xilinx PACE and Xilinx Floorplanner [11]. This 

process yields compact and optimised design with short nets and serves two impor­

tant purposes. Firstly, short nets have lesser propagation delay and upto 25% gains 

in maximum frequency have been achieved. Second, short nets have lesser parasitic 



3.6. Conclusions 100 

Figure 3.17: Chip diagram showing manual placement , routing and pin assignment; 
Virtex-E XCV2000E FPGA 

capacitance and DC load and therefore dissociate lesser power than long nets. Man­

ual pin assignment also enables us to locate the I/O pads close to the design area, 

further aiding the above two criteria. The chip diagram is shown in Fig. 4.23 

3.6 Conclusions 

The kernels of most image processing algorithms including DOTs are built upon 

inner product computations, which are power intensive due to the large number of 

multiply operations inherent. 

In Section 3.2, a power efficient modification of the DA algorithm has been proposed 

and significant reduction in power consumption has been verified. The proposed DA 

algorithm will be suitable especially for vector products with large vector sizes and 

can be readily implemented for DCT, DHT, DST and many other image processing 

algorithms. 

Implementations of IP, particularly for DOTs, based on sparse factorisation tech­

niques combined with OBC-DA has been presented in Section 3.3. It has been 

mathematically shown that area complexity can be greatly reduced by using these 

techniques in conjunction with each other. Despite increased complexity of con­

trol circuitry, it has been shown that OBC-DA outperforms standard DA in all key 

performance metrics including area, frequency and power dissipation . It can be 
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concluded that OBC-DA is preferable for developing the IP core, particularly in 

resource (memory) constrained systems. 

In Section 3.4, an efficient and optimised architecture for FHT has been presented. 

This architecture has been developed using a power aware design flow methodol­

ogy. The proposed novel architecture is based on DA principles and sparse matrix 

factorisation technique, and is suitable for FPGA implementation. The evaluation 

of the implementation results has shown that this architecture outperforms existing 

implementations in all key performance metrics. 

In Section 3.5 a pattern recognition system based on GMM classifier has been pre­

sented. A highly efficient FPGA implementation of GMM classifier that has been 

proposed offers a very good balance between hardware complexity and operating 

speed using DA technique to perform vector matrix multiplication. A prototype has 

been designed using highly optimised manual placement and routing. Successful 

FPGA implementation and resultant performance metrics have also been reported. 

To summarise, algorithmic transformations as a technique of design optimisation 

has been discussed for a number of IP cores in this chapter. In the next chap­

ter, the application of architectural techniques such as parallelism, pipelining and 

systolisation for design optimisation will be discussed. 



Chapter 4 

Architectural Level Optimisation: 

Parallelism, Pipelining and 

Systolisation 

4.1 Introduction 

Parallelism can be used to assign different tasks to different concurrent objects in 

the design, or to speed up certain iterative operations by performing the same oper­

ation on different data-sets concurrently [139,140]. Parallelism can be exploited in 

the implementation of matrix operations and transforms such as the FRAT where 

redundant sub expressions can be effectively parallelised. Although additional hard­

ware resources are utilised, savings can be made in other areas such as minimising 

buffers and memory elements, reducing frequency to maintain throughput etc. FP­

GAs display massive parallelism capabilities because of their inherent structure and 

availability of on-chip resources. 

Pipelining is a well known technique used in ASICs for reducing logic depth and im­

proving throughput at the cost of additional latency. Pipelining is most effective for 

complex repetitive tasks where each task can be broken down into independent sub­

tasks (or stages) which can be executed in a sequential manner. The key advantage 

of pipelining is the reduction of circuit glitching [141]. This is particularly significant 

in the case of FPGAs, because of limited availability of programmable interconnects. 

102 
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This can cause designs with large logic depths to use long routing elements which 

can exacerbate glitching because of unequal delays in signal paths [142]. 

Systolisation special-purpose computing paradigm that supports the parallel imple­

mentation of iterative algorithms in a variety of areas, e.g., numerical analysis, signal 

or image processing and graph theory [25,143]. A systolic array is a regular network 

of similar PEs connected to immediate neighbours only. Essentially, systolisation 

combines the benefits of parallelism and pipelining to yield regular efficient archi­

tectures that are well suited for the fabric for FPGAs. The profits of logic depth 

reduction from a power perspective is reinforced on FPGAs by some peculiarities 

of these devices: a) neither synchronisation nor off-chip power fraction are high in 

comparison with the datapath component; b) the die size and clock trees are fixed 

for a given chip model; and c) the interconnection delay is dominant. 

The relative placement of this abstraction level is indicated in the power triangle 

shown in Fig. 1. 7. 

In this chapter, a number of FPGA based IP cores including FRAT, FRIT, FIR 

filters & circular convolution and CSC have been developed by applying principles 

of parallelism, pipelining and systolisation as appropriate. These architectures have 

been designed using a power aware design flow and complete design space explo­

ration with power modelling has also been performed. Power modelling details are 

presented in Chapter 6. 

The rest of this chapter is organised as follows. High-speed, power efficient architec­

tures for the FRAT and FRIT are presented in Sections 4.2 and 4.3 respectively. A 

high performance systolic architecture for FIR filtering is presented in Section 4.4. 

Efficient FPGA implementation DA based architecture for Colour Space Conversion 

is discussed in Section 4.5. Concluding remarks are presented in Section 4.6 

4.2 Acceleration of Finite Radon Transform on 

Reconfigurable Hardware 

Multiresolution techniques, particularly wavelets have been successfully exploited for 

devising algorithms for many of these applications. However, the inherent limita-
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tions of wavelets in dealing with anisotropic features in images due to their geometric 

structure, particularly in higher dimensions have been addressed using newly devel­

oped transforms based on wavelets such as ridgelets, curvelets and contourlets which 

are defined by a class of directional, multidimensional basis functions [33,144]. For 

example, while wavelets are good at denoising images by isolating point singular­

ities, ridgelets have proven to be much more effective in isolating the smoothness 

along edges. The FRIT has been used for alternate image representation paradigms, 

denoising and compression [31, 145]. The ability of ridgelets in handling edge singu­

larities stems from the fact that it is built upon the FRAT [35]. 

The algorithm for the implementation of FRAT that was proposed in [35] has a 

serial and iterative structure and hence has a high latency. A suitable translation 

of this pseudocode (reproduced in Appendix C) is implemented in [21,34,37,146] 

for the hardware implementation of the FRAT. In previous works, it has become 

convention to label an architecture based on the straightforward implementation 

FRAT pseudocode [35] [Appendix C] as the reference architecture. Direct implemen­

tation of this pseudocode by means of using equivalent architectures would lead to 

either wasted cycles or very deep logic. Suitable modifications to the architecture 

have been made by parallelising and pipelining certain steps, effectively reducing 

the depth of logic and also the number of clock cycles required in the reference ar­

chitecture. It is the aim of this work to develop power efficient architectures for the 

FRAT, ideally suited for FPGA implementation. A reference serial architecture for 

the FRAT has been implemented by directly mapping the FRAT algorithm to hard­

ware, in order to make a fair comparison with existing work and to set a benchmark 

to evaluate the performance gains that can be made of the second architecture by 

exploiting parallelism and pipelining. At the architecture level, a number of opti­

misations have also been introduced. These include exploiting specific resources on 

the FPGA such a block RAM, dual ported memories and register rich structure; 

reducing the depth of logic by judiciously introducing parallelism and pipelining in 

the address control logic for both FRAT architectures; and using highly optimised 

IP cores where possible to yield compact and power efficient design. 
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4.2.1 The Finite Radon Transform: A Brief Review 

The Radon Transform (RT) is an integral transform used to represent an image 

as a collection of projections along various directions. Sparse representation of im­

age data, especially in images that contain a number of line discontinuities can 

be effectively achieved using RT. It has enjoyed a position of fundamental impor­

tance to many applied problems in mathematics, physical and functional analysis. 

Applications of RT include seismology, radio astronomy, electron micrography and 

most famously in tomography [147]. While easy to implement in digital form by 

discretising the input image, the absence of a corresponding inverse was a key issue. 

The FRAT was first introduced in [148] as the finite analogue of integration in 

the continuous Radon transform, with origins in the field of combinatorics. The 

mathematical representation of an injective form of the FRAT to ensure invertibility 

when applied on finite Euclidian planes has been presented in [35]. It is worth 

mentioning that the FRAT is not a discretised version of the RT, but a discrete 

finite version. 

Consider a cyclic group Zp denoted by Zp = (0,1, ... ,p - 1) such that p is a prime 

number. Let the finite grid Zp2 be defined as the Cartesian product of Zp x Zp. This 

finite grid has (p + 1) non trivial subgroups, given by: 

Lk,l = {(i,j) : j = (ki + l)(modp),i E Zp}, k < p (4.1) 

and 

(4.2) 

where each subgroup Lk,l , is the set of points that define a line on the lattice Zp. 

The Radon projection of the function f on the finite grid Z; is then given by: 

rdl] = FRATf(k,I) = ~ ( L j[i,j]) 
P (i,j)ELk,1 

(4.3) 

The FRAT is the basic building block for a number of transforms, including the 

FRIT (known as ridgelets in short), curvelets, etc. A brief discussion of the theory, 

mathematics and applications of the FRAT and other discretised generalisations 
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of wavelets in higher dimensions has been presented in Appendix C. It has been 

also been shown in this appendix that the Filtered Back Projection (FBP) provides 

a perfect inversion for the FRAT. Also, the algorithm for the FBP and FRAT 

are synonymous. Hence the same architecture can be used to implement both the 

forward and inverse transforms. 

4.2.2 Proposed Architectures for FRAT - Design and Eval-

uation 

In this section, the architectures designed for the implementation of FRAT are 

described, followed by a tabular comparison of the various parameters with other 

existing architectures in place. 

Reference FRAT Architecture 

The reference architecture for the FRAT and is obtained by suitably applying the 

pseudocode for hardware implementation. In order to exploit the hardware resources 

available, the operations of the various counters used to track the addresses of the 

output vectors are parallelised and pipelined (by changing rollover conditions and 

count limits suitably). The number of counters required remains the same - only 

the triggering conditions, order and reset logic are modified suitably. It must be 

highlighted that while the algorithm is still serial and cycles through p . (p + 1) 

iterations, the number of steps in the algorithm have been reduced, thereby improv­

ing latency. The architecture has serial I/Os and a serial core. The total latency 

of the core is O(p2(p + 1)). The input section consists of a 1D RAM of width 8 

bits and a depth of p2. Although each input image block is a square tile of side p, 

buffering it in a 1D RAM reduces the computational complexity of the control logic 

associated with data access. This is because, a 2D RAM is implemented on FPGA 

as a number of 1D RAMS and uses additional multiplexing logic to dereference the 

address locations. From the FRAT pseudocode, it is clear that the FRAT operation 

requires reading and writing from the same memory location within a single clock 

pulse. This is compactly and effectively implemented using a dual ported RAM 
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at the output section instead of an array based buffer. The output buffer is a ID 

dual port RAM of width lOg2(P ·255) and depth p. Only a single FRAT vector is 

buffered and the final values are written to the output port in serial fashion at the 

end of each iteration. At the end of (p + 1) iterations, the entire image block is 

transformed to the FRAT domain. The block diagrammatic description of the first 

FRAT architecture is shown in Fig. 4.1. 

..... 
Q) 

o 
~ 
c o o 

8 bit Image Data 

Dual Port ROM 
Buffer 

p x log2 (px255) bits 

Address 
Vector 

Output Port 

Figure 4.1: Reference architecture for the FRAT 

Parallel Cyclic FRAT Architecture 

The second FRAT architecture is a serial I/O architecture with a parallel core 

that computes all (p + 1) FRAT vectors simultaneously. The standard pseudocode 

is not used as a basis for developing the design. Instead, a novel systolic based 

dereferencing technique is used to compute the FRAT coefficients. The input and 

core section of the design are completely pipelined. The output section cannot be 

pipelined because the FRAT is an over-complete transform that yields p(p+ 1) output 

points for p2 input points. For maintaining design simplicity and due to power 

considerations, a non-pipelined serial data flow in the output section is adopted. 

There is no input buffer and each input signal is processed in a single clock pulse. 
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Totally, there are (p + 1) independent dual port RAM buffers at the output section, 

one for each FRAT vector. 

The architecture uses an array of registers that store the address dereferencing values 

for each FRAT vector. By re-mapping the FRAT pseudocode in the order of input 

signals, it is observed that these register values exhibit a regular shifting sequence 

that can be easily implemented in a systolic-like fashion. An systolic array is used 

to store the address dereferencing values rather than multiplexer or counter chains 

that have been used in previous designs. Multiplexors and arrays utilise deep logic 

and also lie in the critical path of the design. This naturally reduces the maximum 

frequency obtained. The Radon transform uses modulo operations (logic intensive 

if used directly) and previous designs have utilised multiplexors and counter chains. 

Counter chains cannot be readily pipelined in the case of the Radon transform as 

it has a redundant form. To reduce logic depth, counter chains can be cascaded. 

This, however results in wastage of clock edges, where the rest of the logic is idle. 

The only other alternative is to parallelise the counter cascades, which comes at 

the expense of latency. The systolic array uses very shallow logic in comparison to 

counter cascades or multiplexors and hence results in greatly improved frequency 

metrics. The novelty of this architecture lies in the fact that a different approach 

has been taken to implement the FRAT efficiently, instead of just parallelising the 

standard FRAT pseudocode presented in [35]. Additionally, instead of using arrays 

to store the output coefficients, the design choice of using dual ported RAMs helps 

in reduction of area. Finally, RAMs are simpler to implement in hardware when 

compared to arrays; and take specific advantages of the hardware resources available 

on the FPGA. This fact also contributes to improved frequency performance when 

compared to previous designs. 

The first register in each column is used as the address dereferencer for each output 

RAM buffer. At the end of p2 clock cycles, the output buffer contains the image block 

in the transform domain. They are then ejected in a serial fashion from the output 

port. The block diagram description of the second FRAT architecture with parallel 

core is shown in Fig. 4.2. The systolic array used for RAM address generation for 

the case p = 7 is shown in Fig. 4.3. Downshift by one position is performed every 
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clock cycle and upshift by a predetermined , hard-coded position is performed every 

p clock cycles. 
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Figure 4.2: FRAT architecture with parallel core 

Comparison with Existing Architectures 

OIP 
Dual 
Port 

px(p+ 1) 
RAM 

Design parameters such as TC, AC and I/ O type of the proposed designs and other 

existing architectures are presented in Table 4.1. 

It can be seen from Table 4.1 that the proposed reference architecture has a com­

petitive area complexity figure while the proposed parallel architecture has the least 
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Figure 4.3: Initial array register contents for the case p = 7 
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Downshift is carried out every clock cycle and is indicated by solid arrow. Upshift is carried out 
every p clock cycles and is indicated by dashed arrow 

Table 4.1: Comparison with existing architectures 

Proposed Reference 
Proposed Cyclic 

[37] Generic 
[37] Serial 

[34] Reference 
[34] Memoryless 

[21] Reference 

TC AC I/O 
O(p2(p + 1)) O(p(p + 1)) Serial 

O(p2) O(2p2) Parallel 
O(p2) NA Parallel 

O(p2(p + 1)) O(2p2) Serial 
O(p2(p + 1)) O(2p2) Serial 
O(p(p + 1)) NA Parallel 
O(p2(p + 1)) O(2p2 + p) Serial 

time complexity compared to other parallel cores. It is also worth mentioning that 

the type of I/O used also has an impact on the I/O power of the design. Serial 

architectures in general consume lesser I/O power when compared to parallel ar­

chitectures. However, this cannot be readily assumed for energy measures as well, 

since the energy consumed is not a function of frequency, but rather depends on the 

throughput efficiency of the design. 
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4.2.3 FPGA Implementation 

In order to verify the performance of the proposed architectures for FRAT, the de­

sign has been prototyped on the Celoxica RC1000 [116] [Appendix B]. In order to 

provide fair comparison with existing work and to demonstrate the fact that the 

proposed FLPAM methodology (described in Chapter 6) scales well with different 

FPGA platforms, the IP cores developed are resynthesised and implemented with­

out any architectural modifications for the Xilinx XC2V8000 (Virtex-II) [36] and 

XC4VLX200 (Virtex-4) [10] platforms. 

Image Data 

The FRAT domain visualisation of commonly used images is shown in Fig. 4.4. 

It can be observed that the averaging effect of the FRAT and the block artifacts 

of the image in the transform domain become clearly visible as p increases. It is 

worth mentioning that the FBP is a mathematically perfect inversion for the FRAT 

and Peak Signal to Noise Ratio (PSNR) depends only on the accuracy required. 

The truncation or rounding step that follows the FRAT determines the PSNR fig­

ures. FRAT is usually used as a sub-block in other transforms such as FRIT and 

curvelets and is followed by a wavelet stage in these transforms. The rounding or 

truncation process can easily be incorporated along with the wavelet block with no 

extra computational effort by suitably modifying the wavelet coefficients. Also, the 

level of precision required is a choice best left to the end user. Hence the IP cores 

that have been developed operate at full precision. However, to illustrate the effect 

of bit-width limitations on PSNR, reconstruction has been carried out on standard 

images stored at 8 Bits Per Pixel (BPP) in the FRAT domain. The PSNR values 

of the reconstructed images have been presented in Table 4.2. 

Table 4.2: PSNR of images reconstructed from 8 BPP Radon domain standard 

Images 

Lena 
Peppers 
Baboon 

p=7 
47.82 
47.89 
47.86 

p=17 p=31 
43.56 40.49 
43.62 40.92 
43.83 41.09 
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Figure 4.4: Spatial domain and transformed images ( a) Spatial Domain Lena (b) 
FRAT domain , p = 7 (c) Reconstructed Image (d) Spatial Domain Peppers (e) 
FRAT domain, p = 17 (f) Reconstructed Image (g) Spatial Domain Baboon (h) 
FRAT domain , p = 31 (i) Reconstructed Image 

Performance Metrics 

Implementation results in terms of various performance metrics like area occupied , 

maximum frequency, effective latency and throughput rate for both FRAT architec­

tures have been presented in Table 4.3. 

Comparison of area metrics of the FPGA implementation of the proposed archi tec-
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Table 4.3: Performance metrics for the Virtex-E platform 

Reference Architecture Parallel Architecture 
p 7 17 31 7 17 31 

Slices 95 241 498 215 1008 1793 
Freq. (MHz) 62.58 42.21 26.91 79.97 40.32 35.06 

Cycles 497 5797 32705 105 595 1953 
Throughput 6.17 2.10 0.79 37.32 19.56 17.25 
(M Pix/sec) 

Table 4.4: FPGA implementation - comparison of area (number of slices) with 
existing architectures 

Block size (p) 
Type Platform Design 7 17 31 

Proposed 95 241 498 
Virtex-E [37] NA 828 NA 

[146] 345 969 NA 
Reference Proposed 97 229 427 

Virtex-II [34] 159 NA NA 
[21] Arch 1 198 636 1118 
[21] Arch 2 131 300 500 

Virtex-E Proposed 215 1008 1793 
[146] 1212 3398 NA 

Parallel Virtex-II Proposed 245 824 1462 
[34] 558 NA NA 

N A: Data has not been provided 

tures for the FRAT with existing architectures is presented in Table 4.4. It can be 

clearly seen that the proposed reference architecture as well as the parallel archi­

tecture occupy much lesser area than other comparable architectures. Comparison 

of performance metrics of the proposed FRAT architectures with existing work is 

presented in Table 4.5. 

It is worth mentioning that although the proposed architectures have been imple­

mented on the Virtex-E family of FPGA's, synthesis has also been carried out for 

the Virtex-II FPGA series to enable fair comparison with existing work. It can be 

seen from Table 4.5 that the parallel architecture implemented on Virtex-E outper­

forms other comparable architectures implemented on Virtex-II, signifying outstand­

ing improvement in throughput for the same platform. The reference architecture 
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Table 4.5: Comparison of performance with existing architectures for the case p = 7 

Type Platform Design F T T/A 
Virtex-E Proposed 62.58 6.17 64.95 

Reference [146] 69.00 6.90 19.71 
Virtex-II Proposed 92.46 9.21 94.95 

[34] 100.13 9.87 62.08 
[21] Arch 1 112.87 11.13 56.21 
[21] Arch 2 67.3 6.64 50.96 

Virtex-E Proposed 79.97 37.32 173.58 
Parallel [146] 59.76 27.89 23.01 

Virtex-II Proposed 96.46 45.01 183.71 
[34] 81.92 38.23 68.51 

where F is the maximum frequency in MHz, T is the effective throughput in Mega Pixels/second 
and A is the area occupied in slices in the term T / A 

proposed has slightly lower maximum frequency than other existing comparable ar­

chitectures. However, it must be pointed out that the corresponding area occupied 

by the proposed architecture is nearly half that of comparable architectures. The 

throughput/area column in Table 4.5 yields significant insight into the efficiency of 

the architectures that have compared. It can be seen that the proposed parallel 

architecture clearly outperforms all other architectures. The most efficient architec­

tures are those that provide the best performance metrics for the least core footprint. 

This is an important consideration, as it has a direct relationship with the power 

efficiency of the core. 

Energy Analysis and Observations 

Table 4.6: EPP (nJ) for the proposed parallel FRAT core on the Virtex-E FPGA 
platform 

Reference Architecture Parallel Architecture 

p 7 17 31 7 17 31 

Clock 1.57 5.68 66 .49 1.94 3.34 

Signal 6.84 36.32 146.82 2.13 10.02 19.26 

Logic 12.32 61.67 150.89 6.36 30.54 54.44 

Input 0.26 0.41 0.61 0.14 0.13 0.13 

Output 6.14 6.72 6.49 5.76 6.54 6.46 
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The equation for EP P 1 is obtained by rationalising energy per operation with 

respect to the number of pixels processed. Based on the power dissipation data 

available from XPower, the corresponding energy metrics obtained are presented in 

Table 4.6. 

Since power dissipation directly proportional to frequency f for all components 

i.e. clock, signal, logic, input and output. Consequently, the corresponding EP P 

measures are independent of frequency and are constant for a given block size p. 

Based on the data in Table 4.6 the EPF2 data is graphically presented in Fig. 4.5 
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Figure 4.5: Comparison of EPF for the "reference" and proposed parallel FRAT 
architectures 

Although the area occupied by the proposed parallel FRAT architecture is higher 

when compared to the reference architecture, the reduction of effective frequency 

by a factor of p for maintaining the same throughput yields significant reduction in 

energy dissipation. This can be clearly observed in Fig. 4.5. For typical value of 

p = 7, saving of upto 50% is achieved, and this increases to 80% for p = 17. 

1 Refer to Appendix D for details 
2Refer to Appendix D for details 
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Chip Level Details 

Careful manual place and route of critical nets and manual pin assignment for t he 

designs has been performed using Xilinx PACE and Xilinx Floorplanner [11]. This 

process yields compact and optimised design with short nets, and serves two im­

portant purposes. Firstly, short nets have lesser propagation delay and upto 25% 

gains in maximum frequency have been achieved. Second, short nets have lesser 

parasitic capacitance and DC load and therefore dissipate lesser power than long 

nets. Manual pin assignment also enables us to locate the I/O pads close to the 

design area, further aiding the above two criteria. Sample post place and route chip 

diagrams are shown in Fig. 4.6. 

a b 

Figure 4.6: Chip diagrams for p = 31 (a) Parallel archi tectlue (b) Reference archi­
tecture; (Virtex-E XCV2000E FPGA) 
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4.3 Efficient VLSI Architecture for the Finite Ridgelet 

Transform 

Software implementation of the FRIT is usually based upon the standard pseudocode 

for the FRAT followed by a suitable DWT block. The computational complexity 

of the FRAT and DWT blocks in the FRIT make hardware acceleration essential 

for fast computing and achieving real time processing. A straightforward transla­

tion of this pseudocode for hardware implementation is sub-optimal, as it does not 

exploit the parallelism capabilities of dedicated processors. Non dyadic transform 

lengths and modulo operations in the FRAT sub-block necessitate algorithmic trans­

formations to yield efficient hardware implementation. An elegant solution to this 

problem in the form of systolic address dereferencing and suitable re-ordering of the 

FRAT counters in the control circuitry is presented in this paper. The DWT block 

is based on the Haar Wavelet, which provides the best energy compaction (minimum 

entropy) when compared to other higher order wavelets. It is the aim of this work 

to present a novel and platform independent VLSI architecture for FRIT. Efficient 

FPGA and ASIC synthesis of the proposed architecture is also performed. 

4.3.1 Mathematical Background of the Finite Ridgelet Trans-

form 

An introduction into the FRAT has been provided in the previous section. Addition­

ally, a comprehensive mathematical review about the FRAT has also been provided 

in Appendix C. The final expression for the FRAT is reprinted here as a refresher: 

The Radon projection of the function f on the finite grid Z; is then given by: 

rd/] = FRATf(k, I) = ~ ( L J[i,j]) 
P (i,j)ELk,1 

(4.4) 

Haar DWT 

Popular discrete wavelets include Haar, Daubechies, Daubechies Biorthogonal, Coifiet, 

Symmlet etc. The Haar wavelet is one of the simplest wavelet transforms. Although 
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its simplicity makes it unsuitable for a number of applications, particularly due to 

the fact that it is not continuous and hence not differentiable, it is highly suitable 

for constructing the FRIT due to the following reasons. Firstly, the Haar wavelet 

is very simple in structure and is less expensive to compute compared to other 

wavelets. Secondly, due to the averaging characteristics of the FRIT, it has been 

observed that the Haar wavelets display superior performance in energy compaction 

when compared to other wavelets. Entropy measures for common test images are 

presented in Table 4.7 to substantiate this claim. 

The mother scaling function for the Haar is given by: 

'l/J(x) = 

1 0 <x < 1/2 

-1 

o 
1/2 < x < 1 

otherwise 

(4.5) 

Fast computation of the Haar transform can be performed by means of lifting using 

the Haar matrix. The smallest matrix of size 2x2 is given by: 

(4.6) 

Building the FRIT from FRAT and DWT 

The continuous ridgelet transform [33] of a bivariate function f(x) is given by: 

RT = r 'l/Ja,b,e(X )f(x )dx JR2 
(4.7) 

However, the use of digital images necessitates the development of suitable variations 

of the ridgelets to deal with images in the digital domain. An orthonormal, invertible 

and discrete form of the ridgelet, called finite ridgelet transform was first proposed 

in [31]. THE FRIT is obtained by performing the DWT on each FRAT projection 

sequence with fixed value of k. This process is pictorially represented in Fig. 4.7. 
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Spatial Domain FRAT Domain FRIT Domain 
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Figure 4.7: Finite Ridgelet transform obtained by performing DWT on the FRAT 
vectors 

Mathematically, this is given by: 

The finite and discredited variant of curvelets can be obtained by repeated appli­

cation of the FRIT. The directional attributes of these higher dimensional general­

isations of wavelets make them ideal for a number of applications such as alternate 

image representation, compression, denoising, etc. 

4.3.2 Proposed Architectures for FRIT - Design and Eval-

uation 

In the following subsection, the design flow used to generate the optimised architec­

ture for FRIT is presented. Next, the architectures designed for the implementation 

of FRIT are described, followed by a tabular comparison of the various parame­

ters with other existing architectures in place. The FRIT core consists of two basic 

sub-blocks: the novel FRAT block described in Subsection 4.2 .2 and the Haar block. 

The first register in each column is used as the address dereferencer for each output 

RAM buffer. At the end of p2 clock cycles , the output buffer contains the image 

block in the transform domain. They are then ejected in a serial fashion from the 

output port . The block diagram description of the FRIT architecture with parallel 

core is shown in Fig. 4.8. 
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Figure 4.8: FRIT architecture with the FRAT and Haar DWT sub-blocks 

Haar DWT Sub-Block 

Although Haar is the simplest wavelet , entropy measures indicate that it yields 

much better performance than other complex wavelets for implementing the FRIT. 
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It can be observed from Table 4.7 that the FRIT domain images based on the Haar 

DWT yield the lowest entropy measures, indicating higher compressibility. This 

fact, coupled with the computationally inexpensive nature of the Haar DWT makes 

it an ideal choice for the FRIT IP core that has been designed. The DWT sub­

block is fully pipelined and is efficiently implemented using accumulate shift and 

accumulate subtract sub-unit circuits that perform the combined task of computing 

the sum and differences, as well as scaling the image in the wavelet domain. The 

output is alternated in serial manner between these two sub-units by means of a 

switch. 

Table 4.7: Entropy measures for Source, FRAT, Wavelet and FRIT domain images 
using different wavelet filters 

Baboon Lena Barbara Peppers 
Source 4.76 3.75 4.17 3.88 
FRAT 3.88 2.44 3.00 2.67 
Haar 3.73 2.86 3.25 3.07 
FRIT 3.21 2.22 2.60 2.41 

CDF(2,2) 3.79 2.99 3.42 3.27 
FRIT 3.47 2.50 2.86 2.73 

CDF(6.6) 4.03 3.58 3.83 3.75 
FRIT 3.91 3.35 3.57 3.49 
Sym4 3.88 3.34 3.58 3.46 
FRIT 3.53 2.92 3.13 3.01 

Comparison with Existing Architectures 

Design parameters such as TC, AC and I/O type of the proposed designs and other 

existing architectures are presented in Table 4.8. 

Table 4.8: Comparison of design parameters of the Radon block with existing ar­
chitectures 

Proposed Architecture 
[34] Reference 

[34] Memoryless 
[37] Generic 

[37] Serial 
[21] Serial 

TC 
O(p2) 

O(p2(p + 1)) 
O(p(p + 1)) 

O(p2) 
O(p2(p + 1)) 
O(p2(p + 1)) 

AC 
O(2p2) 
O(2p2) 

NA 
NA 

O(2p2) 
O(2p2 + p) 
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It can be seen from Table 4.8 that the proposed reference architecture has a com­

petitive area complexity figure while the proposed parallel architecture has the least 

time complexity compared to other parallel cores. It is also worth mentioning that 

the type of I/O used also has an impact on the I/O power of the design. Serial 

architectures in general consume lesser I/O power when compared to parallel ar­

chitectures. However, this cannot be readily assumed for energy measures as well, 

since the energy consumed is not a function of frequency, but rather depends on the 

throughput efficiency of the design. 

4.3.3 Implementation Results and Metrics 

Various details of the implementation of the FRIT IP core developed including 

performance metrics of the core on both the FPGA and ASIC platforms, evaluation 

of performance in comparison with existing work, chip diagrams and sample images 
I 

are presented in this section. 

In order to verify the performance of the proposed architectures for FRAT, the design 

has been prototyped on the Celoxica RC1000 [116] [Appendix B]. In order to pro­

vide a fair comparison with existing work the IP cores developed are re-synthesised 

and implemented without any architectural modifications for the Xilinx XC2V8000 

(Virtex-II) platform. Synthesis is also carried out on the Spartan 3L [Appendix B] 

platform to perform a critical comparison of power dissipation on a low-power FPGA 

platform with an ASIC implementation. The mapping the proposed architecture to 

an ASIC platform has been performed in conjunction with our collaborators at the 

HKUST. 

Performance Metrics 

FPGA and ASIC implementation results in terms of various performance metrics 

like area occupied, maximum frequency, effective latency and throughput rate for 

the FRIT IP core have been presented in Table 4.9. 
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Table 4.9: Performance metrics for the FRIT IP Core on the FPGA and ASIC 
platforms. Maximum frequency is in MHz and throughput is denoted in Million 
pel/sec 

p---+ 7 17 31 
Slices 312 1176 2064 

Virtex-E Max Freq. 70 .6 40 .6 35.1 
Throughput 32.9 19.7 17.3 
Slices 336 1235 2152 

Virtex-II Max Freq. 90.4 60 .4 48.5 
Throughput 42.2 29.3 23.9 
Slices 312 1124 2051 

Spartan 3L Max Freq. 76.3 43.4 37.1 
Throughput 35.6 21.1 18.2 
Area (mm2) 0.27 1.67 5.02 

250 nm ASIC Max Freq. 100.0 60.0 50.0 
Throughput 46.7 29.1 24.6 

Dynamic Energy Consumption 

In order to compare energy metrics of different platforms, the EOP 3 values have 

been graphically presented in Fig. 4.9. It is worth mentioning that although different 

process technologies used for different platforms preclude straightforward one on one 

comparison of the numbers , the general trends yield interesting insights. 
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Figure 4.9: Comparison of EOP across different platforms 

3Refer to Appendix D for details 
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The graph clearly indicates that the Spartan 3L platform outperforms the the ASIC 

implementation by a few percentage points for the case p = 17 and by almost a factor 

of 3 for the case p = 31. In all cases, the Virtex-E shows the least competitive power 

measures. A number of reasons can provide an insight into these results. Firstly, the 

Virtex-E is based on a 180nm process technology, which results in higher dissipation 

of static and dynamic power compared to other platforms. On the other hand, 

the Spartan 3L series is based on 90nm technology. Reduced V cc levels, shrinking 

process size and a clear focus on making the FPGA fabric more power efficient has 

resulted in the excellent power and energy figures for this platform. The variation 

in energy metrics between the ASIC and Spartan 3L platforms for different values 

of block size p can be attributed to the fact that total power dissipation in FPGA 

depends on a number of factors in addition to total area and hence does not scale 

up with area as fast as seen in the case of ASIC. It must be highlighted that for 

the same process technology, ASIC would undoubtedly present the most power and 

energy efficient implementation. However, it is also worth mentioning that FPG A 

vendors are usually early adopters of new process technologies and typically stay 

one to two generations ahead of their ASIC counterparts. It must be highlighted 

that the graph indicates dynamic energy dissipation only (does not include quiescent 

energy dissipation in FPGAs, which is a constant). 

FPG A Chip Level Details 

For the FPGA implementation, careful manual place and route of critical nets and 

manual pin assignment for the designs has been performed using Xilinx PACE and 

Xilinx Floorplanner [11]. Post place and route chip diagram is shown in Fig. 4.10. 

ASIC Chip Details 

For ASIC implementation, the gate level circuit has been synthesised using SDA. 

Time constraints were set when performing the synthesis in order to decrease the 

worst case delay. The final circuit was designed using 0.25/-Lm CMOS process with 

5 metals. The automatic placement and routing were performed using Encounter. 

A sample chip layout using automatic placement and routing in 0. 25 /-Lm process is 



4.3. Efficient VLSI Architecture for the Finite Ridgelet Transfor m 125 

Figure 4.10: Chip diagram for t he case p 

XCV2000E FPGA 

shown in Fig. 4.11 . 

31 implemented on the Virtex- E 

Figure 4.11 : Chip layout for ASIC implementation for the case p = 31 

Comparison with Existing Architectures 

Comparison of performance metrics of the proposed architectures with those of 

existing architectures has been presented in Table 4.10. 

It can be clearly seen that the proposed architectures outperform exist ing imple-
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Table 4.10: Comparison of performance metrics with existing architectures in place 

Platform p Design A F T 
Virtex-E 7 Proposed 312 70.59 32.94 

17 Proposed 1176 40.60 19.72 
17 [37] Parallel NA 33.00 16.03 
17 [37] Reference 828 18.00 0.90 

Virtex-II 7 Proposed 336 90.37 42.17 
7 [21] Reference 476 101.00 9.96 
17 Proposed 1235 60.40 29.34 
17 [21] Reference 911 32 1.60 

mentations in terms of the maximum throughput achieved. This is because the 

proposed architecture has a parallel Radon core and thus has the least possible time 

complexity in its class, as can be seen from Table 4.8. 

Image Data 

The FRIT domain visualisation of commonly used images is shown in Fig. 4.12. Due 

to the FBP being a mathematically perfect inverse of the FRAT, PSNR depends 

only on the accuracy required. The truncation or rounding step that follows the 

DWT sub-block determines the PSNR figures. The level of precision required is 

a choice best left to the end user. Hence the IP cores that have been developed 

operate at full precision. 

4.4 FPGA Realisation of FIR Filters by Efficient 

and Flexible Systolisation using Distributed 

Arithmetic 

FIR digital filters are extensively used due to their key role in various DSP applica­

tions [149,150]. Since the complexity of implementation grows with the filter order 

and the precision of computation, real-time realisation of these filters with desired 

level of accuracy is a challenging task. Systolic designs represent an attractive archi­

tectural paradigm for efficient hardware implementation of computation-intensive 
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a b 

c 

e 

Figure 4.12: Spatial domain and transformed images (a) Spatial domain Lena (b) 
FRIT domain , p = 7 (c) Spatial domain Peppers (d) Reconstructed image (e) Spatial 

domain Baboon (f) FRIT domain , p = 31 

DSP applications , being supported by the features like simplicity, regularity and 

modularity of structure. Additionally, they also possess significant potential to 

yield high-throughput rate by exploiting high-level of concurrency using pipelining 
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or parallel processing or both [151]. In this work-package, the work of [152] has been 

extended further to obtain an optimal area-delay-power-efficient implementation of 

FIR filter in FPGA platform. 

4.4.1 Formulation of the Proposed Algorithm 

A brief outline of conventional DA approach for inner product, followed thereafter 

by the proposed proposed decomposition scheme for DA-based systolisation of FIR 

filters has been presented in this subsection. 

Conventional DA Approach for Inner-Product Computation 

By applying DA principles [Appendix C], the inner-product of two N-point vectors 

A and B can be expanded as follows: 

N-1 N-1 L-1 

0= - 2.: Ak·bkO + 2.: A k ·[2.:bkl.2-l] (4.9) 
k=O k=O l=1 

where A is constant vector, while B may change from time to time and L is the 

word-length. 

To convert the conventional sum-of-products form of inner-product of into a dis­

tributed form, the order of summations over the indices k and l in the second term 

of Eq. 4.9 can be interchanged to have: 

N-1 L-1 N-1 

0= - 2.: Ak·bkO + 2.: 2-
l
. [2.: Ak.bkl ] (4.10) 

k=O l=1 k=O 

Without loss of generality, for simplicity of discussion, we may assume the signal 

samples to be unsigned words of size L, although the proposed algorithm can be 

used for 2's complement coding and offset binary coding also. The inner-product 

given by Eq. 4.10 then can be expressed in a simpler form: 

L-1 

0= 2.: 2- l
.0l (4.11) 

l=O 

where 
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N-1 

C1 = '2: Ak.bk1 

k=O 
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( 4.12) 

Since vector A is assumed to be constant and each element of the N-point bit­

sequence {bk1 for 0 < k < N - I} can either be zero or one, any of the partial 

sum C1 for l = 0, 1, .. , L - 1, can have 2N possible values. All the 2N possible 

values of C1 can, therefore, be pre-computed and stored in a ROM, such that while 

computing the inner-product the partial sums C1 can be read out from the ROM 

using the bit-sequence {bk1 for 0 < k < N - I} as address-bits. The inner-product 

can, therefore, be calculated according to Eq. 4.11, by L cycles of shift-accumulation 

followed by ROM-read operations corresponding L number of bit-sequences {bk1 } for 

O<l<L-1. 

Proposed Decomposition Scheme for DA-based Implementation of FIR 

Filter 

The output of an FIR filter of order N can be computed as an inner-product of the 

impulse response vector {h(k), for k = O,l, ... ,N -I} and an input vector {sn(k), 

for k = 0, 1, ... , N - I}, given by: 

N-1 

y(n) = ~ h(k).sn(k) (4.13) 
k=O 

where sn(k) = x(n - k) and x(n) is the current input sample. {h(k)} is a fixed se­

quence, while the input sequence {sn(k)} changes in every sampling instant. {sn(k)} 

is derived from serially-shifted input samples using a window of size N, such that 

it receives a fresh input sample and leaves its oldest sample. Comparing Eq. 4.13 

with the original DA expression, the filter output can be computed according to Eq. 

4.11 as follows: 

L-1 

cy(n) = ~ 2-1.C1 (4.14) 
l=O 

where: 
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N-1 

Cl = L h(k).(sn(k))l 
k=O 

(Sn(k))l for l =0, 1, ... , L - 1, being the lth bit of sn(k). 
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(4.15) 

Eq. 4.14 can be directly used for straight-forward DA-based implementation of FIR 

filter using a ROM containing of 2N possible values of C1• For large values of N, 

however, the ROM size becomes too large so also the ROM access time also becomes 

large. The straight-forward DA implementation is, therefore, not suitable for large 

filter orders. 

When N is a composite number given by N = PM, (P and M may be any two 

positive integers) one can map the index k into (m + pM) for m = 0,1, ... , M - 1 

and p = 0,1, ... , P - 1 so as to express Eq. 4.14 in following form: 

L-1 P-1 

C1y(n) = L 21 ·(L(Sn)l,p), 
1=0 p=o 

where 
M-1 

(Sn)l,p = L h(m + pM). (sn(m + pM))1 
i=O 

for l = 0, 1, ... , L - 1 and p = 0, 1, ... , P - 1. 

For any given sequence of impulse response {h(k)}, the 2M possible values of (Sn)l,p 

corresponding to the 2M permutations of M-point bit-sequence {(Sn(m+pM))I' for 

m = 0,1, ... , M - I} for l = 0,1, ... , L - 1 may be stored in an LUT of 2M words. 

These values of (Sn)l,p can be read out when the bit-sequence is fed to the ROM as 

address. Eq. 4.16 may, thus, be written in term of memory-read operations as: 

L-1 P-1 

y(n) = L 21 (L F (bn )I,P) , ( 4.16) 

1=0 p=o 



4.4. FPG A Realisation of FIR Filters by Efficient and Flexible 
Systolisation using Distributed Arithmetic 131 

for 0 < 1 < L - 1 and 0 < P < P - 1. 

The bit-vector (bn)l,p is used as address word for the look-up-table and F is the 

memory-read operation. 

4.4.2 The Proposed Structures 

The proposed DA-based 1- and 2-D systolic arrays for FIR filters presented in this 

subsection have been derived from from Dependance Graphs (DG). 

. .. ... ... . .. ... ... 

(a) 
OUTPUT 

Yin 

l Xin-cp 
Yout 

Yout ~ Xin + 2.Yin 

(c) 

Yin 

xin4xout Xout ~ Xin + Memory _ Read (Yin) 

(b) 

Figure 4.13: The DG for DA-based implementation of FIR filter. (a) The DG. (b) 
Function of node A. (c) Function of node B. 

Proposed 1-D Systolic Array for FIR Filters 

The DG for computation of FIR filter output according to Eq. 4.16 is shown in Fig. 

4.13. It consists of L rows, where each row consists of P number of node-A and one 

boundary node-B. The functions of node-A and node-B are depicted in Figs. l(b) 

and l(c), respectively. A bit-vector (bn)l,p consisting of a sequence of j\I bits [derived 
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from the lth bit of the elements of the input sequence as given in Eq. 4.16] is fed to 

the node-A on (I + l)th row and (p+ l)th column. The node uses the sequence of M 

input bits of the input bit-vector as address for an LUT and reads the content stored 

at the location specified by the address. The value read from the LUT is then added 

with the input available from its left and the sum is passed to the node on its right. 

Node-B performs a shift-add operation such that it makes a left-shift of the bits of 

the input available from the top, then adds the input available from the left to the 

left-shifted value and passes the result down to its adjacent node. The DG can be 

projected vertically along the projection direction [0 l]T with default schedule [4] to 

derive a linear array consisting of P number of PEs and an output-cell as shown in 

Fig. 4.14. 

The input sequence {x(n)} is fed to a serial-in parallel-out input-register, where 

content of the register is serially-right-shifted by one position and transferred in 

parallel to the bit-serial word-parallel converter in every L cycles. The bits of vector 

(bn)l,p, are derived from the bit-serial word-parallel converter and fed to the (p+ l)th 

PE [for p = 0,1, .. , P - 1] in Most Significant Bits (MSBs) to LSBs order in each 

cycle period such that (L - 1 )th bits of input values are fed to the PE at first and 

the zeroth bits are fed at the end. Besides, input to each PE is staggered by one 

cycle-period with respect to the preceding PE to meet the causality requirement. 

The function of the PEs is described in Fig. 4.14(b). Each PE consists of a ROM of 

2M words. During a cycle-period (time-step) each PE reads the content on its ROM 

at the location specified by the input bit-vector. The value read from the ROM 

is then added to the input available to the PE from its left. During every-cycle 

period, the sum is then transferred as output to its right. Function of the output­

cell is shown in Fig. 4.14(c). Each output-cell contains a shift-register and an adder. 

During a cycle period it shifts the content of its register left by one position and 

then adds the available input to the recently shifted content in its register. After 

L cycles it delivers a desired filter output. The structure will yield its first filter 

output (L + P) cycles after the first input is fed to the first PE, while the successive 

output becomes available in every L cycles. For high throughput applications one 

may, however, have a structure with N number of 1-D arrays which would yield N 
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Initialize: S ~ 0; Count ~ 0; 
End Initialization. 

For O~Count~L: 

S ~2S +Xin; 
Count ~ Count + 1. 

Xout ~ Xin + ROM _Read(Yin). 

If Count=L then Xout~S; 
S ~ 0; Count ~ 0; Endif. 

(b) (c) 

Figure 4.14: The proposed 1-D array for DA-based implementation of FIR filter. 
(a) The linear systolic array. (b) Function of PE. (c) Function of output cell. ~ 
stands for a unit delay. 

convolved output in every L cycles duration. 

Proposed 2-D Systolic Structure for FIR Filters 

For high-throughput implementation of FIR filters, each node of the DG of Fig. 

4.13 can be assigned to a PE exclusively to obtain a 2-D systolic array of L rows 

and (P + 1) columns as shown in Fig. 4.15. Each row of the structure consists of 

P number of PEs and a Shift-Add cell (SA). The computation of all the subsequent 

values of filter output may also be given by similar DGs, and the computation of 

corresponding nodes of all such DGs may be folded to the same structure. The input 
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Figure 4.15: The proposed 2-D array for FIR filter. (a) The 2-D systolic array. (b) 
Function of PE. ( c) Function of SA cell. ~ stands for unit delay. 

samples are fed to a bit-parallel word-serial converter which receives a new input 

sample in every cycle period and generates L number of bits of the input sample 

and feeds one bit each to L number of bit-level Serial-In Parallel-Out Shift Register 
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(SIPOSR) associated with each row of PEs, as shown in Fig. 4.15(a). Each SIPOSR 

contains a bit-stream of the corresponding bits of all the input words, such that the 

SIPOSR on upper-rows contain the more significant bits compared to that of the 

lower rows. Each of the SIPOSRs of the structure shifts its content to right by one 

bit-location and receives a new bit in every cycle, open arrival of a fresh sample to 

the bit-serial word-parallel converter. The bit-vector (bn)l,p consisting of M number 

of bits from the (l + 1)th SIPOSR is loaded to the (p + 1)th PE of the (l + 1)ih 

row (for 0 < l < L - 1 and 0 < P < P - 1). Each PE [shown in Fig. 4.15(b)] 

uses the bit vector (bn)l,p as address for its LUT to read a partial result. The PE 

then adds the input available from the left with its recently read partial result and 

passes that out to its right. Each row of the structure is terminated with an SA 

cell. The function of SA is depicted in Fig. 4.14(c). Each SA during a cycle period 

makes a left-shift of its input available from the top and adds that input to its input 

available from the left. The sum is then passed downward to its adjacent SA. To 

meet the data-dependence requirement, the SA cell on every (l)th row is staggered 

by one cycle period with respect to the SA cell on the (l + 1)th row. 

In the single-array structure of Fig. 4.14, the processing of different bit-steams are 

time-multiplexed to the same PE, while in the 2-D structure of Fig. 4.15 each bit­

stream is processed by a separate row of PEs. We can also derive a structure with 

q number of such linear arrays (for L = qu, where q and u are positive integers) 

by projecting the nodes of u number of rows of the DG to a single array structure 

instead of projecting the nodes of all the rows to a single linear array. One may, 

therefore, opt to derive a structure with multiple linear arrays and similarly may 

also opt for a suitable value of P (P = number of PEs on one row of the array) for 

flexible implementation to meet the hardware and time specification of constraint­

driven systems. 

4.4.3 Results and Discussions 

The results of FPGA implementation, in terms of area and maximum usable fre­

quency metrics with respect to the filter order N and address-length 1\/ are presented 

in Table 4.11. 
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Table 4.11: Key FPGA performance metrics of the proposed DA-Based FIR Filter 
(for Word-Length L = 8) 

order address area frequency 

(N) size (M) (slices) (MHz) 

2 144 68.111 

8 4 133 70.413 

8 149 58.377 

2 287 57.320 

16 4 260 55.066 

8 286 51.819 

2 555 55.320 

32 4 524 53.392 

8 553 51.006 

2 1057 51.722 

64 4 1061 50.584 

8 1094 50.360 

A number of interesting observations can be made from the data presented in Table 

4.11. It can be seen that for a given filter order N, the case for M = 4 yields the 

more area-efficient architecture when compared to the case for M = 2 and 8. This 

can be explained by the fact that the increase in control logic and number of delay 

elements outweighs the gains made by reduction of LUT size for M = 2, while for 

M = 8, the memory requirement of LUTs is too high. Also, it is worth mentioning 

that four input LUTs are the basic building block of the Virtex-E CLB structure 

and this accounts for the most efficient mapping of the DA-LUT to the available 

hardware resources for the case of M = 4. 

For a given platform, the maximum usable frequency of a design depends on a 

number of factors: 

• The logic depth of the design, which depends on the complexity of the algo­

rithm to be implemented; 

• The architectural choices, that demand specific FPGA resources (embedded 

multipliers, BRAMs etc); 
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• The device characteristics of the platform (e.g., speed grade and circuit tech­

nology); 

• For a fixed platform and a given parameterisable IP core, the factors that 

influence the maximum usable frequency are the parameters of the core; which 

in this case are filter order N and the decomposition factor P; and 

• Larger the area of spread of the clock-tree lower is the maximum usable fre­

quency because of the clock skew resulted by the propagation delay across the 

computing circuits. 

The above points clearly account for the fact that the overall trend for maximum 

usable frequency shows a decreasing trend as the address-length increases. This 

is because of the fact that the depth of systolic logic is generally shallow and the 

critical-path is proportional to the ROM size. When the address-length increases, 

not only does the size of the ROM increases exponentially but also the number of 

address lines increase linearly. The size of the multiplexer logic for de-referencing 

the ROM locations depends on the above mentioned factors and contributes to the 

critical path. It must be highlighted that for the case M = 16 and above, it was not 

possible to synthesise or place and route the design due to exponential increase in 

ROM size to 65536 words. 

Comparison with Existing Architectures 

Details of the performance of the proposed architecture in terms of the basic design 

metrics are tabulated alongside with those of comparable existing architectures in 

Table 4.12. It must be highlighted that the architecture proposed in [153] has been 

implemented on an Altera Stratix FPGA device. Significant architectural differences 

in the FPGA fabric between Xilinx and Altera devices precludes the possibility of 

an objective and direct comparison between the design metrics of our architecture 

with those reported in [153]. Additionally, FPGA implementation details have been 

provided only for the case Be = 18 (where Be has been defined in [153] as word-length 

of the original L UT). To make a fair comparison; it is necessary to homogenise the 

FPGA platform and parameters of the DA-based FIR filer. Hence, we have faithfully' 
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Table 4.12: Comparison of performance of the proposed architecture with existing 
work. 

filter 
proposed Yoo et al [153] 

order area fre:&uency area fre~ency 
(slices) ( Hz) (slices) ( Hz) 

8 133 74.025 146 70.552 
16 260 67.222 283 62.775 
32 524 63.131 547 61.166 
64 1061 64.049 1076 57.192 

The address-length M is taken to be four for the proposed architecture. 

re-implemented the architecture presented in [153] on the same platform that has 

been used in this work for word-length L = 8. 

It can be seen from Table 4.12 that the proposed architecture clearly outperforms 

existing implementations in both key metrics of area occupied and maximum usable 

frequency for all the values of N. The superior performance of the proposed systolic 

design is due to the fact that the number of adders increases linearly with filter order 

N for the most optimum implementation as opposed to the case in [153] where the 

architecture presented uses a tree of adders to calculate the final values before shift­

accumulation operation. Additionally, it is worth mentioning that 16 word ROMs 

are more efficiently mapped to the 4-input LUT structure (common to both Xilinx 

and Altera FPGAs) than the additional control logic in the architecture presented 

in [153]. Apart from that, the complexity of control logic is also minimal in the pro­

posed systolic architectures. Moreover, in our design, only a single shift-accumulate 

operation is needed, irrespective of filter order N as a result of systolisation. All 

these factors yield the most efficient implementation in all key performance metrics 

in our proposed architecture. 

Chip Level Details 

Careful manual place and route of critical nets and manual pin assignment for the 

designs has been performed using Xilinx PACE and Floorplanner [11]. The chip 

diagram for one of the implementations is shown in Fig. 4.16. 
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Figure 4.16: FPGA chip diagram for FIR filter realisation for N = 64, !vi = 8 and 
L = 8 (Xilin.,"{ XCV2000E FPGA) 

Power Consumption 

XPower estimates of power dissipation are presented in Table 4.13. It can be seen 

that I/O power remains constant for all architectures. This is explained by the 

fact that the architectures are fully parameterisable and pipelined and consequently 

process one I/O value per operational cycle (or L clock cycles). Hence, for a fixed 

word-length L for a given clock frequency, the input power remains constant. Output 

power increases linearly with the number of output pins, which is also a function 

of filter order N. However, for a fixed value of N, output power also remains 

constant across all values of address-length M. The total dynamic on-chip power is 

graphically presented for all cases in Fig. 4.17. 

Energy Analysis 

In case of high-throughput DSP circuits, energy is a more appropriate measure to 

quantify the efficiency of an operation. A suitable estimate of energy consumption 

will enable to decide on the design choice that can meet the throughput requirement 

while minimising power consumption as well. We have analysed two parameters of 

energy estimates: EOP and ET 4 of the proposed architecture for FIR filter. 

4Re fer to Appeodix D fo r detR,ils 
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Table 4.13: Power dissipation of the proposed FPGA implementation of FIR fil ter 
for different filter orders and address-lengths. 

power dissipation (m W) 
N M 

clock input logic output signal 

2 16.85 1.41 44.52 58.06 29.95 

8 4 13.90 1.41 42.16 58.06 33.63 

8 16.33 1.41 56.78 58.06 43.89 

2 25.65 1.41 83.75 61.12 64.37 

16 4 28.23 1.41 75.13 61.12 65 .42 

8 21.78 1.41 101.08 61.12 83.43 

2 42.60 1.41 169.86 64.18 108.66 

32 4 43.93 1.41 144.90 64.18 108.03 

8 39.33 1.41 195.71 64.18 137.39 

2 86.38 1.41 345.87 67.23 195.55 

64 4 71.32 1.41 296.81 67.23 179.11 

8 68.14 1.41 389.70 67.23 243.56 
Power estImatIOn has been earned out for 50 MHz frequency. 
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Figure 4.17: Plot of variation of dynamic on-chip power with fil ter order. 
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It can be seen from Fig. 4.18 that EOP steadily increases as N increases and 

is proportional to the increase in circuit size and complexity. The ET data is 

graphically presented in Fig. 4.19. It can be seen that the most energy efficient 

architecture is obtained for the case M = 4, in line with the power metrics obtained. 
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4.5 Efficient FPGA Implementation of Colour Space 

Conversion 

Processing an image in the RCB colour space, with a set of RCB values for each pixel 

is not the most efficient method. To speed up some processing steps many broadcast, 

video and imaging standards use luminance and colour difference video signals, 

such as YCrCb, making a mechanism for converting between formats necessary. 

Decomposing an RCB colour image into one luminance image and two chrominance 

images (YCrCb )is the method that has been used in most commercial applications 

such as face detection [154,155] , as well as the JPEC and MPEC imaging standards 

[156-158]. 

The calculation of RCB colour components from YCrCb components consumes up 

to 40% of the processing power in a highly optimised decoder [156]. Accelerating 

this operation would be useful for the acceleration of the whole process. Therefore, 

techniques which efficiently implement this conversion are desired. 

It is the aim of this work-package to develop power efficient architecture based on 

DA, ideally suited for the implementation of an RCB to YCrCb CSC on FPCAs. 

The constant conversion matrices have been exploited to develop the mathematical 

model in order to reduce the ROM size, the area consumed by the design and to 

speed up the computation procedure by minimising the number of addition and 

subtraction operations required. 

4.5.1 Mathematical Background 

Consider an N x M image (N: image height, M: image width). 

k 

M Nf=l R 
c:J-' 

B"? 
G/ 
/' 

j 

C 

RGB Image 
l-

t-

y 

Cb /' 
~/ 

j 

verCb 
Image 

I--
I--

onverslon 
----+-

-. verCb 
Image 

I 

Figure 4.20: RCB to YCrCb conversion 

Let us represent each image pixel by bijk, (0 < i < N -1,0 < j < ],,1 - 1,0 < k < 2) 
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where: 

b··2 - B·· ~J - ~J 

the red component of the pixel in row i 

and column j 

the green component of the pixel in row i 

and column j 

the blue component of the pixel in row i 

and column j 

The image can be converted using the following mathematical formula: 

( 4.17) 
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where the operation 0 can be defined as follows: 

® 

( 4.18) 
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CijO Aoo AOl A02 A03 

bijO 

Each vector Cijl is the result of the product AlO A11 A12 A 13 

bijl 
X 

A 20 A2l A22 A 23 

bij2 
Cij2 

1 

where Cijk represent the output image colour space components and 

A= 

Aoo AOl A02 A03 

AlO A11 Al2 A13 represents one of the constant matrices relating the 

A 20 A21 a22 A 23 

the esc coefficients. 

The Cijk elements (the output image colour space components) can be computed 

using the following equation: 

3 

Cijk = 2..= Akm X bijm (4.19) 
m=O 

(0 < i < N -1,0 < j < M -1,0 < k < 2) 

where {Akm}'s are L-bit constants and {bijm}'s are written in the unsigned binary 

representation as shown in equation 4.20: 

W-l 

bijm = 2..= bijm,l X 2l 

l=O 

(0 < i < N - 1,0 < j < M - 1,0 < m < 2) 

(4.20) 

where b" l is the [th bit of biJ'm, which is zero or one, W is the word-length used 
lJm, 

which represents the resolution for each colour component of a pixel. 

Substituting 4.20 in 4.19, 

3 W-l 

Cijk = 2..= A km X (2..= bijm,l X 2l) = 
m=O l=O 

W-l 3 

2..= (2..= Akm X (bijm,l X 2l) 

l=O m=O 

(4,21 ) 
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Define: 

3 

Zl = L A km X bijm,l 

m=O 

Therefore, Cijk can be computed as: 

W-l 

Cijk = L Zl X 21 

1=0 

( 4.22) 

( 4.23) 

The idea is that since the term Zl depends on the bijm,l values and has only 24 

possible values, it is possible to precompute and store them in ROMs. An input set 

of 4 bits (bijO,l, bijl,l, bij2 ,1, bij3 ,1) is used as an address to retrieve the corresponding 

Zl values. The ROM's content is different and depends on the constant matrix 

A coefficients. These intermediate results are accumulated in W clock cycles to 

produce Cijk coefficients. 

Since all the components are in the range of 0 to 255, 8 bits (W = 8) are enough to 

represent them. 

Equation 4.23 becomes: 

7 

Cijk = L Zl X 2l 

l=O 

( 4.24) 

Three ROMs (one for each matrix A row) with the size of 2N = 24 = 16 are needed 

in order to store the precompute 24 possible partial products values. 

Since the element bij3 is equal to 1: 

bij3 ,! = { ~ 
Equation 4.24 can be rewritten as: 

7 

for l = 0 

for l -=I- 0 

Cij k = L zt x 2l + Ak3 

l=O 

Where: 

( 4.25) 

( 4.26) 
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2 

zt = L Akm X bijm,l ( 4.27) 
m=O 

m=O m=l m=2 

Cijk = (AkO x bijO,O + Ak1 X bij1,0 + Ak2 x bij2,0) x 2°+ I = 0 

(AkO X bijO,1 + Ak1 X bij1,1 + Ak2 x bi j2,1) X 21+ I = 1 

(AkO X bijO,2 + Ak1 X bijl,2 + Ak2 x bij2,2) X 22+ I = 2 

(AkO X bijO,7 + Ak1 X bijl,7 + Ak2 x bij2,7) X 27 + I = 7 

Ak3 

( 4.28) 

It is worth mentioning that the size of the ROMs has been reduced to 23. Table 

4.14 gives the content of each ROM. 

Table 4.14: Content of the ROM i (0 < i < 2) 
bijO,1 bijl,l bij2 ,1 The Content of the ROM i 
o 0 0 0 
o 0 1 Ai2 

o 1 0 Ail 

o 1 1 Ail + Ai2 

1 0 0 AiD 

1 0 1 AiD + Ai2 

1 1 0 AiD + Ail 

1 1 1 AiD + Ail + Ai2 

4.5.2 Proposed Architecture for esc 
Equation 4.26 can be mapped into the proposed architecture as shown in Fig. 4.21. 

The architecture consists of 8 identical PEs (PEns) (0 < n < 7). Each PEn 

comprises three parallel signed integer adders, three n right shifters and one Memory 

Block (MB), which has the structure shown in Fig. 4.22. 

It is worth noting that the architecture has a latency of Wand a throughput rate 

equal to 1. The entire image conversion can be carried out in (Latency + (N x 

M) Throughput) = 8 + (N x M) clock cycles, while using the standard algorithm 

( [159]), the conversion can be carried out in (3 x 4 x N x M) clock cycles, where 

(3 x 4) is the constant matrix A size. 
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Figure 4.22: MB structure 

4.5.3 FPGA Implementation 

In order to verify the performance of the proposed CSC, the design has been proto­

typed on the Celoxica RC1000 board [116] [Appendix B]. 

The pre-computed partial products are stored in the ROMs using 13 bits fixed 

point representation (8 bits for integer part and 5 bits for fractional part). 13-bit 

arithmetic is used inside the architecture. The inputs and outputs of the architecture 

are presented using 8 bits and the outputs are rounded. Rounding usually looks 

at the decimal value and if it is greater than or equal to 0.5, then the result is 

increased by one. This implies a condition of verifying followed by another arithmetic 

operation. A more efficient way to round a number is to add 0.5 to the result 

and truncate the decimal value. This technique has been applied in our proposed 

architecture. The initial value for each PE's ACC (for the serial architecture) and 

for the first PEs adder (for the parallel architecture) is set in advance to (Ai3 + 0.5), 

where (0 < i < 2). The MACs and parallel signed adders have been implemented 

using Xilinxs CoreGen utility, which contains many efficient designs that can often 

save time for a programmer [160]. The shifters and ROMs initialisation have been 

implemented using VHDL. All design components have been connected together 

using Handel-C [161]. 
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Performance Metrics and Results 

The proposed CSC core has been prototyped on the RC1000 FPGA board, equipped 

with XCV2000E. The design 186 of the total available slices and runs with a max­

imum frequency of 277 MHz. In order to make a fairer and consistent compari­

son with some existing FPGA based CSCs using the same technology [44-46] the 

XCV50E-8 FPGA device has also been targeted. A comparison with other FPGA 

platforms utilising the new available features has been also performed [40,162]. Ta­

ble 4.15 illustrates the performances obtained for the proposed architecture in terms 

of area consumed and speed which can be achieved. 

Table 4.15: Performance comparison with existing CSC cores 

CSC Core Platform Resources Speed (MHz) 
Proposed XCV50E 186 Slices 263 

Xilinx [40] XC2V500 131 LUTs + 5 [18x18] Mult 185 
Architecture 1 [162] Cyclone-II 292 LEs 216 
Architecture 2 [162] Cyclone-II 78 LEs 175 

CAST Inc [45] XCV50E 222 Slices 112 
ALMA Tech [46] XCV50E 222 Slices 105 

Amphion Ltd. [44] XCV50E 204 Slices 90 

The proposed architecture shows significant improvements in comparison with the 

existing implementations [40,44-46, 162], which perform the RGB to YCrCb con­

version, in terms of the area consumed and the maximum running clock frequency. 

Power and Energy Details 

Since this is a relatively simple core with a minimal number of design parameters, 

power analysis and energy calculations are not required. Power modelling details 

for this core may be referred to in Chapter 6. 

Chip Level Details 

Careful manual place and route of critical nets and manual pin assignment for the 

designs has been performed using Xilinx PACE and Xilinx Floorplanner [11] on the 
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Figure 4.23: Design layout for the proposed archi tecture (XCV2000E FPGA) 

XCV2000E and XCV50E chips. The optimised chip layout for the Xilinx XCV2000E 

FPGA platform is shown in 4.23. 

4.6 Conclusions 

In Sections 4.2 and 4.3, high-speed, power aware architectures for the FRAT and 

FRIT respectively have been presented. These architectures exploit various archi­

tectural strategies including parallelism, pipelining and sub-block systolisation to 

yield performance metrics that clearly outperform existing implementations. 

A high performance systolic architecture for FIR filtering has been presented in 

Section 4.4. This architecture also outperforms comparable work. Design space 

exploration has also been carried out to determine tradeoffs in performance, factori­

sation level, power, and energy. 

Efficient FPGA implementation of DA based architecture for esc is discussed in 

Section 4.5. The proposed architecture clearly outperforms existing ones, including 
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commercially available IP cores. All the above mentioned cores have been developed 

using principles of power aware design. 

To summarise, architectural level optimisation techniques have been discussed in 

this chapter. In the next chapter, performance enhanced voltage scaling as a power 

reduction technique for FPGA based designs is discussed. 



Chapter 5 

Performance Enhanced Voltage 

Scaling in FPGAs 

Voltage scaling represents a sub-RTL level power and energy reduction technique for 

FPGA based designs. The relative placement of this abstraction level is indicated 

in the power triangle shown in Fig. 1.7. 

While the fabric of FPGA chips and hence static power is technology dependant, 

dynamic power consumption of designs implemented on FPGA can benefit from 

exploiting the massive parallelism capabilities of commercial FPGAs. In cases where 

the hardware resources available on the FPGA are not utilised completely, there is 

scope for trading off additional area for improved power and energy metrics with no 

penalty in terms of performance. At the architectural system level, this is possible by 

parallelising the entire core or suitable subsections of the core implemented on FPGA 

and proportionately reducing the clock frequency in order to maintain the same 

throughput. Additionally, quadratic improvement in power-delay can be achieved by 

reducing the supply voltage to take advantage of the reduced operational frequency. 

It is the aim of this chapter to conduct the first systematic empirical study of the 

tradeoffs between degree of parallelism, threshold voltage and power consumption 

under constant throughput conditions commercially available FPGAs. Results in­

dicate that there is excellent scope for reduction in dynamic voltage by suitably 

applying the tradeoffs in FPGA based designs in order to achieve energy efficient 

implementations. It must be highlighted that in previous chapters, algorithmic and 

153 
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architectural optimisation techniques have been presented and applied to a number 

of cores that have been developed in-house. In contrast, the cores that are used 

to test the concepts presented in this paper are standard commercially available 

ones. Parallelism has been performed at the core level, and not within the cores 

themselves. The key focus is on the voltage scaling aspect rather than on core 

optimisation. 

The rest of this chapter is organised as follows. A brief discussion on the motiva­

tion for power and energy reduction, theory of power dissipation in SRAM FPGAs 

and techniques for optimisation is presented in Section 5.1. Analysis of the overall 

methodology and results obtained are presented in Section 5.2. Concluding remarks 

are presented in Section 5.3. 

5.1 Power and Energy Dissipation: An FPGA 

perspective 

As opposed to Programmable Array Logics (PALs) and Programmable Logic Devices 

(PLDs), which have fixed power consumption, power dissipation of FPGAs depends 

on such factors as utilisation, operating frequency, operating voltage, capacitance 

and load conditions. So power is one of the two most serious concerns (along with 

design complexity) in FPGA design. The following subsections describe the various 

aspects of power and energy aware design on SRAM FPGAs. In this section, a brief 

analysis of power dissipation in digital circuits followed by FPGA specific details 

have been presented. 

5.1.1 Power Dissipation Sources in Digital Circuits 

There are various sources of power dissipation in digital circuits. They include 

capacitive switching, leakage and short circuit power [163]. Capacitive power occurs 

due to toggling of digital circuits which requires charge-discharge action. Due to the 

non-ideal subthreshold behaviour of transistors, there will be leakage currents Izeak 

flowing from the positive power supply to ground even in the static case resulting 
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in the leakage power ?teak· Short circuit power occurs due to the currents flowing 

from the positive power supply to ground when nand p channel transistors are 

conducting simultaneously for a short moment during node transitions. 

5.1.2 Power Dissipation: FPGA Specific Details 

Compared to ASICs and other custom chips, FPGAs contain long routing tracks 

with significant parasitic capacitance. During high-speed operations, the switching 

activity on these long routing tracks causes significant power dissipation. Power 

dissipation calculations for FPGAs are similar to other complementary metal-oxide 

semiconductor application-specific integrated circuit (CMOS ASIC) devices. The 

total power usage of an FPGA device (PTotal) can be broken down into total StP 

and total DP: 

PTotal = StP + D P (5.1) 

Static and Dynamic Power Dissipation in FPGAs 

The StP of an FPGA is proportional to the static current Idd - the current that 

flows regardless of gate switching (transistor is 'on' or 'off'). This is otherwise called 

the quiescent power. DC power dissipation can be estimated by the worst-case 

equivalent equation: StP = VddIdd. StP is inherently dependant on the architectural 

layout of the FPGA itself and is technology dependant. As such, it cannot be 

controlled by the FPGA based designer and will not be addressed in this work. 

We can recollect from Chapter 1 that the DP consumption of FPGAs can be sepa­

rated into data-path, synchronisation and off-chip power. In the following Sections, 

a mathematical quantification of the interplay of DP with Voltage Scaling and per­

formance enhancement is presented. 

Quantifying the Effect of Parallelism on Power Dissipation 

We define the instantaneous dynamic power dissipation of an FPGA based design 

as: 
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(5.2) 

where Vdd is the supply voltage, C is the effective capacitance per unit area, f is 

the frequency of operation, 8t is the instantaneous activity rate and A is the area 

occupied in slices. The average power dissipation Pav is then given by: 

J Pt· dt 
T Pav =---

T 
(5.3) 

where T is the number of clocks required to complete one computational cycle. 

Parallelism by a factor of k multiplies the resources occupied by the same amount. 

However, reducing the effective frequency can now be reduced by the same factor 

to maintain constant throughput. Theoretically, the FPGA should, under these 

circumstances consume the same amount of power. 

Substituting Eq. 6.2 in Eq. 6.1 and quantitatively applying the effect of "k" level 

parallelism, we get: 

J Vld . C . (f jk) . (A· k) . dt 
T Pav = ~----------

T 
(5.4) 

which reduces to the same expression stated in Eq. 6.2. 

The Effect of Voltage Scaling 

Voltage scaling is an effective method of greatly reducing power consumption of the 

FPGA, at the expense of performance. The key benefit of supply voltage scaling is 

that it reduces both static and dynamic power. From Eq. 6.1 it is clear that reduc­

ing the supply voltage has a quadratic effect on power dissipation. However, there is 

a cost associated with this technique: an associated delay in the speed of the circuit, 

or effectively, a reduction in the frequency at which the circuit can operate reliably. 

However, when voltage scaling is combined with architectural modifications incor­

porating techniques such as parallelism and pipelining, the increased performance 

efficiency can be traded off for the reduction in effective operational frequency. 
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Circuit delay displays a first order relationship with supply voltage as shown in Fig. 

5.1. 

FPGA 
Fails 

Vcutoff 

Vdd 

Normal 
FPGA 

Operation 

Observed Experimentally to be 1.1 V for 
the Virtex-II FPGA on the RC200 platform 

Figure 5.l: Delay vs supply voltage tradeoff trends and FPGA operational conditions 

5.2 FPGA Implementation: Empirical Study 

To study the effect of the various tradeoffs, a suitable test strategy to enable system­

atic tabulation of the results has been applied. The bitstream files for the testbench 

cores are then synthesised and the power dissipation details under varying parame­

ters are tabulated. 

5.2.1 Description of Methodology 

• Identify suitable benchmarks for testing the proposed voltage scaling and par­

allelism strategies; 

• Modify a suitable commercially available FPGA board to supply Vdd from an 

external bench power supply unit, to enable boundary condition testing and 

scaling of supply voltage; 
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• For each benchmark core to be tested, synthesise bitstreams for varying levels 

of parallelism; 

• For each core at every level of parallelism, measure/simulate the power dissipa­

tion under the appropriate frequency required to maintain the same through­

put using various supply voltage values. Supply voltages are stepped down 

from a peak recommended voltage by O.IV until FPGA fails to generate the 

correct result; 

• Simulate the power dissipation under XPower. This is done to eliminate board 

specific I/O overhead that is introduced to interface the core with external data 

stream; and 

• Tabulate the results obtained and graphically plot the power dissipation met­

rics to visually analyze the tradeoff sample space. 

It has been determined experimentally through bench measurements on a customised 

Celoxica RC200 [161] development board that the point of failure occurs at 1.1V 

for the Virtex-II FPGA for all three benchmark cores that have been analysed. 

This board has been primarily used for assessing the actual cut-off voltage and to 

understand scaling limits on a commercial platform. In order to ensure that power 

consumption due to board specific I/O's are not taken into account, the actual power 

estimation data that is graphically presented in the following Sections is obtained 

from XPower simulations. The lowest operational voltage for power estimation has 

been restricted to 1. 2V. 

5.2.2 Description of the Benchmark Cores 

Typical mathematical operations that are invariably present in every digital signal 

processing algorithm are the ubiquitous adder and multiplier circuits. 8 bit non 

registered adder form the Xilinx Coregen Library (XCL) [11] has been chosen as the 

first benchmark circuit. 8 bit multiplier with 16 bit outputs have been chosen as 

the second benchmark circuit. Both the above mentioned cores are parallelised at 

factors of 2, 4, 8, 16, 32 and 64 respectively. Additionally, it is worth mentioning 
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that the multiplier is an order of magnitude more complex than the adder circuit. 

The Discrete Cosine Transform (DCT) core from the XCL has been chosen as the 

final benchmark circuit. This core represents an order of complexity markup over 

the multiplier (in terms of area occupied) and due to limitations of on-chip resources 

in terms of number of slices, the maximum level of parallelism possible for this core 

is 16. The above cores have been chosen on a representative basis only and enable 

us to make generalised analysis of the tradeoff outcomes. 

5.2.3 FPGA Implementation Details 

The Celoxica RC200 board [161] containing the Xilinx Virtex II XC2VI000 FPGA 

is suitable for evaluation and development of high performance applications. The 

development board contains two banks of SRAM providing a total of 4MBytes and 

a SmartMedia socket used to configure the FPGA. All the bit files for the FPGA re­

configuration are stored in the SmartMedia card. The FPGA is reconfigured through 

CPLD by downloading bit files from the SmartMedia card. The FPGA has a total 

of 5120 slices. The maximum recommended voltage at which the FPGA can be 

operated is 1.6V. 

The benchmark cores are imported into a Handel-C based design flow that acts as a 

top-level wrapper. Post place and route power estimation is performed using Xilinx 

XPower [11]. The area metrics obtained for the benchmark cores are presented in 

Table 5.1. The total available area on the Virtex II XC2VI000 FPGA limits the 

maximum level of parallelism implemented for the DCT core to a factor of 16, at 

which 83% of the available slices are occupied. 

Table 5.1: Area (slice) metrics under various levels of parallelism 
Parallelism Adder Multiplier DCT 

1 8 20 281 
2 12 36 558 

4 
8 
16 
32 
64 

22 
37 
70 
137 
270 

70 
133 
262 
521 
1038 

1114 
2229 
4454 
NA 
NA 
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The chip diagrams for the multiplier and DCT cores at maximum levels of parallelism 

that have been implemented are presented in Fig. 5.2. 

(a) Multiplier, k = 64 (b) DCT, k = 16 

Figure 5.2: Chip diagrams of (a) ]\/lultiplier (b) DCT cores (Virtex II XC2VlOOO 
FPGA) 

5.2.4 Power /Parallelism/Voltage Tradeoffs 

The power estimates under various conditions for the adder, multiplier and DCT 

cores have been presented graphically in Fig. 5.3, 5.4 and 5.5 respectively. 
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Figure 5.3: Power/Para llelism/ Voltage t rarleoff for the adder core 
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Figure 5.4: Power/Parallelism/Voltage tradeoff for the mult iplier core 
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Figure 5.5: Power/Parallelism/Voltage tradeoff for the DCT core 

It can be seen from the smaller cores that the I/O overhead results in higher power 

consumption for lower levels of parallelism. Since the extent of overhead is inde­

pendent of the levels of parallelism, the effect is less pronounced as k approaches 7. 

On the other hand , the I/O overhead in the case of the DCT core is insignificant in 

comparison to t he footprint of the core itself, result ing in a power curve largely in 
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line with theoretical expectations. In all cases, it can be clearly seen that the lowest 

power is achieved for the case of maximum parallelism and minimum voltage, thus 

validating our concept. 

5.3 Conclusions 

A systematic and empirical study of the tradeoff's between degree of parallelism, 

threshold voltage and power consumption under constant throughput conditions 

has been explored in this chapter. Proof of concept using suitable benchmarks 

of different orders of magnitude complexity: adder, multiplier and DCT has been 

presented. The preliminary results that have been obtained are very promising and 

this seems to be an increasing important area of research that FPGA manufacturers 

themselves are studying seriously [109]. Significant scope for future work in this 

area exists. 

Power reduction through performance enhanced voltage scaling has been discussed 

in this chapter. In the next chapter, high level power modelling of FPGA based 

designs is presented. 



Chapter 6 

Functional Level Power Analysis 

and Modelling 

6.1 Introduction 

Hardware implementations of power aware applications necessitate the design space 

exploration to realise an optimal solution. Design improvement is typically an itera­

tive process that must take into account optimisation strategies at all feasible levels 

of abstraction. The most effective strategies must then be selected by analysing the 

impact of the different choices on a level-by-level basis, instead of just at the very 

end of the flow. This enables us to shorten the design flow. However, it requires the 

development of power modelling tools that provide reliable estimates of the power 

and energy metrics, to enable the designer to make the right design choices while 

optimising the core. 

To overcome the limitations of existing work described in Chapter 2, a novel power 

modelling technique called FLPAM has been proposed. Each individual component 

of DP, i.e. Clock Power (CP), Signal Power (SP), Logic Power (LP), InPut Power 

(IpP) and Output Power (OP) is measured separately, and modelled individually. 

The power models are obtained by performing non linear regression analysis on 

system variables followed by multivariate parameter optimisation strategies. 

The rest of this chapter is organised as follows. Brief introductions into the princi­

ples and mathematical basis behind FLPAM are presented in Sections 6.2 and 6.3 
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respectively. FLPAM results for various cores are discussed in Section 6.4. An ob­

jective comparison of various aspects of FLPAM with existing modelling techniques 

is presented in Section 6.5 Concluding remarks are provided in Section 6.6. 

6.2 FLPAM: A Brief Introduction to Underlying 

Concepts 

The underlying concept is to build a mathematical model that incorporates all the 

system variables, enabling the user to perform high level estimation of the power 

and energy metrics of the core for a given set of parameters early on in the design 

cycle itself. The steps involved in building the power model are as follows: 

1. Create a power chart by measuring power for each individual component of 

DP, i.e. signal, logic, clock, I/O; 

2. Identify all variables in the system, including user customisable ones, and 

internal system parameters, ego frequency, vector length, area and voltage; 

3. Deduce the order and number of terms in each equation from the logic re­

sources used and the various parameters involved in the design. In the case 

of FPGAs, each individual component of power is modelled separately, and 

all the models are added together to yield a global power model. The order 

of the equation and the constant coefficients associated with each variable are 

unknown parameters. This step is essentially about choosing a model; 

4. Derive the coefficients for each individual power component by performing 

non-linear regression analysis on the data in power chart for fitting the system 

variables; 

5. Optimise the design by iterative analysis of the influence of design modifica­

tions on power and energy metrics until convergence has been achieved; and 

6. Determine optimum operational parameters of the final model through con­

strained multivariate techniques. 
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The most significant difference between existing modelling methods and FLPAl\I 

is that our proposed solution is a high level modelling technique, and is used for 

modelling cores rather than the general fabric of the FPGA or the ASIC. This has a 

number of advantages. The FLPAM methodology scales very well with changes in 

platforms, and even prototyping technologies. Advances in the device technology of 

the prototyping platform naturally result in lower power and energy consumption 

metrics. Although this results in different constant coefficients for each platform, 

it is important to highlight that the model itself remains unchanged. The other 

key differentiator lies in the fact that the FLP AM tool is used by the core devel­

oper to optimise and model the core whereas it provides the system designer with 

the information that enables him to select the optimum set of core parameters to 

achieve the performance budgets; and even to analyse if the budgets are realistic in 

the first place. Low level power estimation techniques, on the other hand assume 

that core development and core deployment are integrated, and that the designer 

performs both the tasks. The FLPAM methodology has been successfully incorpo­

rated into a proposed design flow presented in Fig. A.3 for obtaining power and 

energy efficient implementations of FPGA based designs. A number of low power 

cores for various applications including different DOTs, CSC, FRAT, FRIT, etc have 

been successfully modelled and optimised using a combination of FLPAM and the 

proposed design flow. 

6.3 Mathematical Basis behind FLPAM 

In our proposed methodology, the mathematical model is derived as follows. We 

define the instantaneous DP dissipation of an FPGA based implementation as: 

Pt = Vcc . k . f . 6t . A (6.1) 

where Vcc is the supply voltage, k is the constant of proportionality, f is the frequency 

of operation, 6
t 

is the instantaneous activity rate and A is the area occupied in slices. 

The average power dissipated in one computational cycle P cycle is then given by: 
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Figure 6.1: Proposed design flow for FLPAM based power and energy optimised 
design of FPGA cores 

(6.2) 

where T is the number of clocks required to complete one computational cycle. DP 

of SRAM based FPGAs comprises I/O, clock, logic and SP. Expanding Eq. 6.2, we 

get: 

J 2: ptd · dt 
T d 

Pcycle = T (6.3) 

where the sample space of d is given by d = {input,output,clock,signal,logic}. 

For a complex design with B sub-blocks, activity rates and area occupied must be 

computed individually for each block in order to derive accurate models. Taking 

into account each block separately, and substituting 
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Eq. 6.1 in Eq. 6.3, we get: 

(6.4) 

Each component of DP is modelled individually. By separating the models and 

rearranging the orders of integration and summation, we get: 

(6.5) 

For an FPGA based architecture consisting of B sub-blocks, let us consider that the 

signal transition probability at the output of each block at instant t to be defined 

by a function of present and previous inputs as follows: 

(6.6) 

where ib is the set of inputs applied to block b that depends on the position and 

interconnection of block b in the Data Flow Graph (DFG) of the architecture in 

relation to other nodes. Since we are discussing synchronous FPGA design, m 

general, for node b, the term ib is defined as: 

(6.7) 

where the input node representing the block under consideration is connected to the 

output of k nodes at a higher level of hierarchy in the DFG. An example illustrating 

this point pictorially is presented in Fig. 6.2. Substituting Eq. 6.6 in Eq. 6.5, we 

get: 

(6.8) 

Since we are interested in constructing a high level model, average power dissipation 

independent of signal statistics needs to be estimated. To simulate a random input 

distribution, out of phase maximum length Linear Feedback Shift Registers (LFSRs) 

are used to stimulate the input ports of the architecture being modelled. The average 
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power dissipated over a full cycle of LFSR operation is determined. If the model 

we construct consists of z parameters, where each parameter is represented by the 

symbol 8, the model can be described in general as a function of 8. Our model can 

be defined to be equivalent to the power equation as follows: 

(6.9) 

where ~b is the average activity rate for each block and n is the length of the max­

imal LFSR sequence. Estimates of each individual component of DP are obtained 

using Xilinx Xpower [11], and the only unknown terms in Eq. 6.5 are the model coef­

ficients and scaling coefficients kdb . These coefficients are determined by means of an 

adaptive choice of the model Hessian. The algorithm is essentially a combination of 

Gauss-Newton and Levenberg-Marquardt methods. The fundamental mathematical 

concept that is used for determining the coefficients is non-linear regression, and is 

implemented using NLREG [164]. This process yields an intermediate model which 

is used as a basis for iterative design optimisation. 

Although the parameters of the function Wd(81, 82, 83 ... , 8 z ) can be continuous or 
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discrete, let us assume for a moment that \lJ is continuous and fully differentiable in 

all z directions. Given \lJ ls) : RZ ---+ R is a smooth function we can now apply New­

ton's method of multivariate optimisation. An extrema or saddle point is obtained 

when: 

(6.10) 

A point is said to converge to optimisation when the Eigenvalues of the Hessian of the 

function are positive definitive. The Hessian matrix contains the second derivatives 

in higher dimensions and is denoted as: 

H= (6.11) 

Let us denote: 

(6.12) 

(6.13) 

Approximating Wd(S) around Sk by a quadratic function, we get: 

(6.14) 

where m is the step to minimise the quadratic. By taking: 

(6.15) 

where J-Lk is large enough to make H positive definite, which is a requirement for 

locating a local minima. mk is determined by the following expression: 

(6.16) 
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The transformation presented in Eq. 6.16 guarantees that mk decreases, i.e. Wd(Sk+ 

tSk) < Wd(Sk) if t is chosen to be small enough. 

(6.17) 

We need to find 11k such that 11k = 0 for Hk to be positive definite, and Hk + 11k! if 

not. This can be done by calculating the eigenvalues (A) of Hk and setting 11k = 0 

if Amin > 0 and 11k = - Amin + 8 otherwise. Alternatively, 11k can be determined by 

Cholesky decomposition. Convergence to optimum solutions of the model can be 

obtained by the following conditions: 

(6.18) 

(6.19) 

where 0 < a < 1 and for some (3 E (a, 1). 

It is important to highlight that the accuracy of the power models derived are 

relative to the accuracy of the power measurements / estimates obtained, and do 

not indicate the absolute accuracy by themselves. In the case of models built on 

XPower estimation data, we must take into account the accuracy of the XPower 

estimate as well, while calculating the absolute accuracy of the models. For models 

based on chip power measurements, the accuracy of the models is limited to the 

resolution of the power supply and measuring tools used. 

6.4 FLPAM Applied to Various Cores 

A number of cores that have been developed in-house have been successfully opti­

mised and modelled using FLPAM and the proposed integrated design flow. The 

power macromodels obtained, and statistical properties of the corresponding mod­

els for each of the cores that have been modelled are described in the following 

su bsections. 



6.4. FLPAM Applied to Various Cores 171 

6.4.1 Case Study I: Modelling the CSC Core 

The CSC core for FPGAs is one of the simpler, but most efficient cores in the FMAT 

library. Full details about the design and implementation of this core can be ob­

tained from [22]. The original architecture already exploits a number of optimisation 

strategies including the use of DA, architectural techniques such a pipelining and 

parallelism. The only further opportunity for optimisation that has been exploited 

is the use manual place and route of critical nets and manual pin assignment for 

the designs has been performed using Xilinx PACE and Xilinx Floorplanner [11]. 

This process yields compact and optimised design with short nets, and serves two 

important purposes. Firstly, short nets have lesser propagation delay, and upto 25% 

gains in maximum frequency have been achieved. Second, short nets have lesser 

parasitic capacitance and DC load, and therefore dissipate lesser power than long 

nets. Manual pin assignment also enables us to locate the I/O pads close to the 

design area, further aiding the above two criteria. Details of implementation results 

are available in [165]. 

CSC Power Models 

Power modelling is performed for implementations on the XCV50E and the XCV2000E 

FPGA chips. Differences in implementation results obtained are due to different 

chip topologies (area, pin distribution, etc.). However, since the design remains 

unaltered, the same model can be used to define the power consumption for both 

implementations. The corresponding models are derived by performing non-linear 

regression analysis on the power data obtained. On iterating the regression until 

convergence is achieved, the values of the scaling coefficients in the models can be 

determined. By back substitution of these values back into the model, a global equa­

tion that defines the power consumption of the system for any given combination of 

system parameters has been derived. The power measurements data on which the 

models are based are graphically represented in the following paragraph subsections. 
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Model Parameters, Coefficients and Accuracy 

CP in FPGAs depends on the distribution of the clock nets (which depends on 

the chip area over which the design is spread out). Other factors influencing CP 

are chip frequency j, and voltage v. SP is proportional to the number and length 

of nets over which signal switching occurs. It also depends on the voltage levels 

between which the switching occurs, as well as the frequency of switching. LP 

consumption is a function of the number of slices occupied, chip frequency and 

voltage. The IpP depends on the number of input pins in the design, the vector 

length, wordlength, chip voltage, and input frequency. OP depends on the number 

of output pins in the design, the output vector length, wordlength, output voltage 

Vcco and frequency j. Since the architecture is completely pipelined and accepts 

once pixel per clock cycle, the wordlength Wand vector length V do not influence 

I/O power. They are constants for the given design, and are automatically absorbed 

into the corresponding scaling coefficients. Based on an empirical analysis of the 

power measures obtained, it is observed that a simple power model is adequate 

to accurately represent each component. In general, the power model for each 

component, i.e. clock, signal, logic, input and output is defined as: 

Power = c x v2 
X j (6.20) 

where c is the corresponding scaling coefficient for the power model of the component 

under consideration. 

The final estimates of the scaling coefficients obtained are presented in Table 6.1. 

Table 6.1: Final estimates of the scaling coefficients 

Clock 
Input 
Logic 

Output 
Signal 

Constant Coefficient ( c) 
XCV50E XCV2000E 

0.0717223024 
0.100675004 
1.70921757 

0.857998163 
0.41140388 

0.0819207953 
0.100675004 
1.47180471 

0.857998163 
0.458445086 
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Observations and Analysis 

From the power model graphs, it can be seen that the power is directly proportional 

to frequency f for clock, signal, logic and input. It is worth mentioning that the 

input and OP measures for both FPGA chips is identical. This is because they 

depend only on frequency and the characteristics of the IBUFS and the OBUFS of 

the Virtex-E FPGA series. On the other hand, the actual placement and routing 

of the design is influenced by the topology of the FPGA, accounting for the small 

differences in clock, signal and LP for the two FPGA chips under consideration. 
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Figure 6.3: CSC Power diagram 

6.4.2 Case Study II: Modelling the FHT 

250 

The FHT core in the FMAT core library presents a highly optimised and efficient 

one that takes advantages of a number of algorithmic and architectural techniques to 

obtain competitive implementation results. The design and implementation details 

of this core were first reported in [16]. Performance metrics were further improved 

through low level optimisation techniques including manual place and route of crit­

ical nets and manual pin assignment, details of which have been presented in [166] 

and Chapter 3. FLPAM model details for this core are presented in the following 

subsections. 
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Modelling Results 

The corresponding models are derived by performing non-linear regression analy­

sis on the power data obtained. On iterating the regression unt il convergence is 

achieved, the values of the scaling coefficients in the models can be determined. 

By back substitution of these values back into the model , a global equation that 

defines the power consumption of the system for any given combination of system 

parameters has been derived. The power measurements data on which the models 

are based are graphically represented in the following subsections: 

Area Model 

Area occupied by the design is one of the important system variables in the power 

model. Signal propagation takes place only along those nets that fall under the area 

of the placed and routed design. Hence, CP, LP and SP all depend on the area 

occupied. Area occupied by the FHT core in terms of number of slices depends on 

two components in the architecture: control logic area and the ROM area. The area 

occupied by ROM increases exponentially with vector length. It is also proportional 

to logarithm of vector length. The area occupied by the control logic is proportional 

to the vector length. 
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Figure 6.4 : Area occupied for different t ransform lengths: N = 4, .16 
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Based on data presented graphically in Fig. 6.4, the area model is described as 

follows: 

TA = a1' . (ROMArea) + a2' . (ControlLogicArea) (6.21 ) 

T A = a 1 . 2N /2 . (lOg2 N + 1) + a2 . N + a3 (6.22) 

where T A is the Total Area occupied, a1', a2' are constant coefficients, and a1, a2, a3 

are the scaling coefficients in the area model. 

CP Model 

CP in FPGAs depends on the distribution of the clock nets (which depends on the 

chip area over which the design is spread out). Other factors influencing CP are 

chip frequency j, and voltage v. 
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Based on CP data presented graphically in Fig. 6.5, the corresponding model is 

defined as follows: 

C P = c1 . v2 . T A c2 . j + c3 . j + c4 (6.23) 
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where, el, c2, c3 and c4 are scaling coefficients in the CP model. 

SP Model 

SP is proportional to the number and length of nets over which signal switching 

occurs. It also depends on the voltage levels between which the switching occurs, 

as well as the frequency of switching. On observation and interpretation of the 

power data presented in Fig. 6.6, the best model describing the SP for FHT core is 

described in Eq. 6.24. 81,82,83 and 84 are scaling coefficients in the SP model. 

LP Model 
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Figure 6.6: SP for N = 4,8,16 at different frequencies 

SP = 81 . v2 . T As2 
. f + 83 . f + 84 (6.24) 

LP is a function of the number of slices occupied, chip frequency and voltage. Taking 

into consideration these parameters, and the LP measurement data shown in Fig. 

6.7 SP model for both architectures is defined in Eq. 6.25 where ll, l2, l3 and l4 are 

scaling coefficients in the LP model. 

LP = 11 . v2 . T A12 . f + l3 . f + l4 (6.25) 
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IpP Model 
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IpP depends on the number of input pins in the design, the vector length, wordlength, 

chip voltage, and input frequency. The estimated values of IpP are graphically pre­

sented in Fig. 6.8, and the corresponding model is described in 6.26. iI, i2 and i3 

are scaling coefficients in the IpP model. It is worth mentioning that although the 

input wordlength W also affects IpP, it is a constant, and is automatically absorbed 

into the scaling coefficients. 
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JpP = i1 . v2 
. f . N i2 + i3 (6.26) 

OP Model 

OP depends on the number of output pins in the design, the input vector length 

, wordlength, output voltage V ceo, and frequency f. The estimated values of OP 

are graphically presented in Fig. 6.9, and the corresponding model is described in 

6.27 where U is the wordlength of the output vector, 01,02,03 and 04 are scaling 

coefficients in the OP model. It is worth mentioning that the output wordlength U 

is a function of input vector length N, and this is reflected in the model. 
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Figure 6.9: OP for N = 4,8, 16 at different frequencies 

OP = (v2 . N) . f2 . (01 . N + 02· U + 03) + 04 (6.27) 

The coefficient values of the area and power models are obtained by performing non 

linear regression until convergence, and are presented in Table 6.2. 

Observations and Analysis 

From the power model graphs, it can be seen that the power is directly proportional 

to frequency f for clock, signal, logic and input. OP is proportional to f2. 
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Table 6.2: 

Area 
CP 
SP 
LP 
IpP 
OP 

Coefficient values for the area and power models (Virtex-E Platform) 
Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4 
1.53E+01 9.05E-02 1.65E+01 NA 
2.89E-01 1.35E-01 -1.52E+OO -1.46E-03 
3.77E-03 7.73E-01 -7.99E-02 -3.63E-01 NA: Not Applicable 

1.03E+02 1. 18E-03 -3.35E+02 1. 13E-01 
2.26E-02 9.81E-01 -3.76E-01 NA 
-1.86E-08 -5.79E-06 1. 54E-04 7.11E-03 

6.4.3 Case Study III: Modelling the FRAT 

Modelling of a reference and novel parallel FRAT core whose architectural and im­

plementation details have been published in [146] and explained in detail in Chapter 

4 is presented in this section. The corresponding parameters that influence the choice 

of the model have been explained in the following subsections. 

Area Model 

The area occupied by the design in terms of number of slices depends on two compo­

nents in the architecture: control logic area and the ROM area. The area occupied by 

ROM increases exponentially with vector length. It is also proportional to logarithm 

of vector length. This term is represented by the variables associated with coeffi­

cient a1 in Eq. 6.28 and 6.29 respectively. The area occupied by the control logic 

and arithmetic blocks (shifters, adders etc.) is proportional to the vector length, 

and is represented by the variables associated with coefficient a2. Coefficient a3 

is introduced to represent unrepresented additional areas of the architectures; and 

to balance the models effectively. The term p(p + 1) in Eq. 6.28 represents the 

input and output buffers. On the other hand, there is only an output buffer in the 

proposed parallel cyclic architecture. This, along with the systolic array are repre­

sented by the terms p2 and p in Eq. 6.29. Based on these observations, the area 

models for the reference and parallel architectures are described in Eq. 6.28 and 

6.29 respectively: 

TARe! = (a1 . p(p + 1) + a2) . (ceil (10g2 (255 * p))) + a3 (6.28) 
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T A par = cd . p2 + 0:2· p' ceil(log2(255 * p)) + 0:3 (6.29) 

where TARe! and T A Par are the Total Area occupied by the reference and paral­

lel architectures respectively, 0:1,0:2 and 0:3 are the scaling coefficients in the area 

model. It has been observed that there are minor variations in the number of oc­

cupied slices. This is because of differences in the number of slices per CLB in 

different platforms. Correspondingly, the logic capacity of each CLB and intercon­

nect structure between CLBs also differ. Placement and routing takes into account 

these variations in the FPGA fabric and results in differences in the area metrics 

for the same architecture on different platforms. Area occupied by the design is one 

of the important system variables in the power model. Signal propagation takes 

place only along those nets that fall under the area of the placed and routed design. 

Hence, CP, LP and system power all depend on the area occupied. 

CP Model 

CP in FPGAs depends on the distribution of the clock nets (which depends on the 

chip area over which the design is spread out). Other factors influencing clock power 

are chip frequency j, and voltage v. Based on these parameters, the same CP model 

holds true for both architectures. From the power data pictorially represented in 

Fig. 6.10, an appropriate model has been selected and is described in Eq. 6.30. 

c1, c2 and c3 are scaling coefficients in the CP model. 

c p = c1 . v2 
. TARe! / Par' j + c2 . j + c3 (6.30) 

SP Model 

SP is proportional to the number and length of nets over which signal switching 

occurs. It also depends on the voltage levels between which the switching occurs, as 

well as the frequency of switching. Taking into consideration these parameters and 

the SP measurement data shown in Fig 6.11, the SP model for both architectures is 
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defined in Eq. 6.31 where 81,82,83 and 84 are scaling coefficients. 

LP Model 

SP = 81 . v2 
. T A~/p . f + 83· f + 84 
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(6.31 ) 

LP dissipation is a function of the number of slices occupied. chip frequency and 

voltage. On observation and interpretation of the power data presented in 6.12, the 
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best models describing the LP for the reference and parallel FRAT architectures are 

as described in Eq. 6.32 and 6.33 respectively. ll, l2, l3 and l4 are scaling coefficients 

in the LP models. 
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(6.33) 

80 

The IpP model depends on the number of input pins in the design, the block size, 

chip voltage, and input frequency. The corresponding model that satisfies the curve 

fitting requirements of both architectures for the data presented in Fig. 6.13 is 

defined in Eq. 6.34 where iI, i2 and i3 are scaling coefficients. It is interesting 

to note that the input buffers Virtex-4 platform dissipate no power, and hence the 

coefficients in the corresponding models for this platform are zero. 

(6.34) 
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80 

The OP model depends on the number of output pins in the design, the output block 

size, output voltage Vcco , and frequency f. Based on measurement data presented 

in Fig 6.14 the corresponding model is described in Eq. 6.35 where p is the block 

size, of the output vector, 01,02 and 03 are scaling coefficients in the output power 

model. It can be observed from the graph that the OP is nearly identical for parallel 

architectures p = 17 and p = 31. This is because they both have the same number 

of output pins and hence dissipate same amounts of power at the output pads for 

the same value of frequency. 

OP = 01 . (v2 . N) . f2. ceil(log2(255· p)) . p. (p + It2 + 03 (6.35) 

The coefficient values of the area and power models are obtained by performing non 

linear regression until convergence, and are presented in Tables 6.3 and 6.4. 

FRAT FLP AM Model Accuracy Across Different FPG A Platforms 

It is interesting to note that the models are platform independent, and differences 

in the chip fabric are accounted for by the model coefficients. The proportion of 

variance of the models (R2) is presented in Table 6.5. 
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Table 6.3: Coefficient values for area and power models for the proposed FRAT 
reference architecture 

Coeff. Virtex-E Virtex-II Virtex-IV 
0:1 1.97E-01 2.22E-02 2.02E-02 
0:2 6.86E-01 2.87E+01 4.16E+01 
0:3 3.25E+Ol -2.32E+02 -3.74E+02 
c1 2.95E-04 1.85E-04 5.79E-05 
c2 6.34E-02 6.45E-02 8.28E-03 
c3 -3.97E-02 1.93E+OO 8.17E-03 
sl 4.45E-04 5.44E-05 3.90E-05 
s2 1.28E+OO 1.59E+OO 1.58E+OO 
s3 1.80E-01 2.53E-Ol 6.73E-02 
s4 -5.27E-03 1.13E+Ol 3.39E-Ol 
11 2.78E-03 1.85E-03 4.02E-04 
12 4.04E-01 4.99E-Ol 3.25E-02 
13 2.06E+OO 1.68E+Ol 7.82E-Ol 
i1 -2.71E-07 -2.30E-07 O.OOE+OO 
i2 2.05E+OO 2.04E+OO O.OOE+OO 
i3 2.47E+OO 8.97E-01 O.OOE+OO 
01 3.02E-02 -4.99E-07 -2.73E-07 

02 -1.08E+OO 1.60E+OO 1.59E+OO 

03 -1.03E-Ol 2.08E+Ol 2.32E+Ol 

Observations and Analysis 

From the power models that have been derived, it can be clearly seen that the 

models are robust and can consistently provide good estimates of power dissipa­

tion within the design space for all platforms. This clearly shows the scalability 
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Table 6.4: Coefficient values for area and power models for the proposed FRAT 
parallel architecture 

Coeff. Virtex-E 
al 8.80E-02 
a2 5.31E-01 
a3 2.57E+03 
cl 3.18E-05 
c2 7.75E-02 
c3 3.09E+00 
sl 1.56E-04 
s2 1.12E+00 
s3 2.35E-01 
s4 1.33E+01 
11 1.61E+01 
12 8.13E-03 
13 -5.46E+01 
14 6.83E+01 
i1 -8.80E-07 
i2 1.66E+00 
i3 9.73E-01 
01 -4.58E-06 
02 1.06E+00 
03 2.45E+01 

Virtex-II Virtex-IV 
-2.54E-01 
4.44E+00 
-8.48E+01 
2.76E-04 
-1.60E-02 
1. 73E-01 
1.20E-03 
1.10E+00 
1.61E-01 
-2.15E-02 
1. 23E-03 
1.11E+00 
1.85E-01 
8.26E-01 
-9.40E-08 
2.37E+00 
1.96E+00 
-1.66E-09 
3.49E+00 
1.42E+02 

-7.48E-01 
7.77E+00 
-3.39E+02 
3.54E-05 
1. 17E-02 
1. 79E-02 
1. 92E-04 
1.18E+00 
9.62E-02 
6.40E-04 
1. 13E-04 

1. llE+OO 
3.61E-02 
9.11E-02 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
2.35E-02 

-1.08E+00 
-6.41E-02 

Table 6.5: FLPAM model accuracy for the optimised FRAT core implemented on 
different platforms 

Clock 
Logic 
liP 

°IP 
Signal 

Virtex-II 
Arch 1 Arch 2 
99.65% 96.82% 
100.00% 93.00% 
99.98% 98.72% 
99.42% 99.96% 
100.00% 99.93% 

Virtex-E 
Arch 1 Arch 2 
99.57% 97.65% 
97.67% 88.92% 
97.32% 99.14% 
99.61 % 99.22% 
99.55% 100.00% 

Virtex-4 
Arch 1 Arch 2 
99.29% 98.96% 
100.00% 94.96% 
98.92% 99.03% 
99.78% 99.26% 
100.00% 99.68% 

of FLPAM. The differences in the FPGA fabric are low level/circuit level char­

acteristics, and should have no effect on the models since FLPAM is a high level 

modelling methodology. The architectural differences, and consequent variations in 

power consumption across different platforms are accounted by the coefficients in 

the models as shown in Tables 6.3 and 6.4. 
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6.4.4 Case Study IV: Modelling the FRIT 

It has been seen from the previous section that the novel parallel, pipelined semi­

systolic architecture for the FRAT core clearly outperforms the reference architec­

ture in all key performance metrics, and particularly so in total energy per operation. 

Hence, this core has been used as the fundamental building block for the FRIT. As 

an exploratory step to judge the suitability of FLPAM across a different implemen­

tation platform, the ASIC implementation is modelled as well. Full details of the 

FRIT architecture and implementation can be obtained from Chapter 4. 

Power Analysis 

It is well known that the power consumption of any architecture implemented on 

FPGA is influenced by a number of factors such as clock frequency, design density 

(number of interconnects), activity rates, logic block and interconnect structure of 

the specific FPGA, power supply voltage levels and output loading. In the case of 

ASIC, power dissipation depends on a number of system variables that can also be 

modelled. The main difference between the two models is related to the fact in the 

case of FPGAs, the clock is routed to all LUTs irrespective of their activity. The 

details of both models have been presented in the following subsections. 

Area Model 

The area occupied by the design in terms of number of slices depends on two compo­

nents in the architecture: control logic area and the ROM area. The area occupied 

by ROM increases exponentially with vector length. It is also proportional to log­

arithm of vector length. This term is represented by the variables associated with 

coefficient (1'1 in Eq. 6.36. The area occupied by the control logic and arithmetic 

blocks (shifters, adders etc.) is proportional to the vector length, and is represented 

by the variables associated with coefficient (1'2. Coefficient (1'3 is introduced to ac­

commodate unrepresented additional areas of the architectures; and to balance the 

models effectively. The systolic array address dereferencing unit in the FRAT block 

is represented by the terms p2 and p in Eq. 6.36. Based on these observations, the 

area model for the proposed FRIT architecture is described in Eq. 6.36: 
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T A = a1 . p(p + 1) . i(log2(255 * p))l + a2 . i(10g2(255 * p))l + a3 (6.36) 

where T A is the total area occupied by the proposed architecture, aI, a2 and a3 

are the scaling coefficients in the area model. It has been observed that there are 

minor variations in the number of occupied slices for different FPGA platforms. 

This is because of differences in the number of slices per CLB in different platforms. 

Correspondingly, the logic capacity of each CLB and interconnect structure between 

CLBs also differ. Placement and routing takes into account these variations in the 

FPGA fabric and results in differences in the area metrics for the same architecture 

on different platforms. Area occupied by the design is one of the important system 

variables in the power model. Signal propagation takes place only along those nets 

that fall under the area of the placed and routed design. 

It is interesting to note that the very same area model holds true for both the FPGA 

platforms and the ASIC platform as well. The model equations are identical, and 

achieve 100% accuracy for all three platforms. The differences in the fabric of these 

different platforms are accounted for by the coefficients in the model, which naturally 

vary across different platforms. Additionally, another key difference is that the term 

T A in the above model corresponds to the area in terms of slices for the FPGA 

platforms, and J-Lm2 of silicon area for the ASIC platform. Clearly, the modelling 

methodology is high level as it is not influences by low level details such as routing 

and circuit fabric. The coefficient details for these models are presented in Table 

6.6. 

Power Modeling for FPGA Platforms 

The corresponding models for the FPGA platforms are derived by performing non­

linear regression analysis on the power data obtained. On iterating the regression 

until convergence is achieved, the values of the scaling coefficients in the models can 

be determined. By back substitution of these values back into the model, a global 

equation that defines the power consumption of the system for any given combination 

of system parameters has been derived. The power measurements data on which 

the models are based are graphically represented in the following subsections. 
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CP Model 

CP in FPGAs depends on the distribution of the clock nets (which depends on the 

chip area over which the design is spread out). Other factors influencing clock power 

are chip frequency j, and voltage v. Based on these parameters, the same CP model 

holds true for both FPGA platforms. From the power data pictorially represented 

in Fig. 6.15, an appropriate model has been selected and is described in Eq. 6.37. 

c1, c2 and c3 are scaling coefficients in the CP model. 
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(6.37) 

70 

SP is proportional to the number and length of nets over which signal switching 

occurs. It also depends on the voltage levels between which the switching occurs, 

as well as the frequency of switching. Taking into consideration these parameters, 

and the SP data presented in Fig 6.16, the SP model for the proposed FRIT core is 

defined in Eq. 6.38 where 81,82,83 and 84 are scaling coefficients. 

SP = 81 . v2 . TAs2 
. j + 83· j + 84 (6.38) 
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LP consumption is a function of the number of slices occupied, chip frequency and 

voltage, By observing and interpreting the power data presented in Fig. 6.17, the 

best model describing the LP for the proposed FRIT architecture is described in 

Eq. 6.39. ll, l2, l3 and l4 are scaling coefficients in the LP model. 
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IpP Model 

The IpP depends on the number of input pins in the design, the block size, chip 

voltage, and input frequency. The corresponding model that satisfies the curve 

fitting requirements of the FRIT architecture for the data presented in Fig. 6.18 

is defined in Eq. 6.40 where iI, i2 and i3 are scaling coefficients. It is interesting 

to note that the input buffers of the Spartan 3L platform dissipate no power, and 

hence the coefficients in the corresponding models for this platform are zero. 
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(6.40) 

The OP depends on the number of output pins in the design, the output block size, 

output voltage V
cco

, and frequency f. Based on OP data presented in Fig. 6.19 

the corresponding model is described in Eq. 6.41 where p is the block size, of the 

output vector, 01, 02 and 03 are scaling coefficients in the output power model. It 

can be observed from the graph that the OP is nearly identical for all three block 

sizes p = 17 and p = 31. This is because they both have the same number of output 

pins, and nearly identical activity rates and hence dissipate almost same amounts 
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of power at the output pads for the same value of frequency. 
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(6.41) 

The coefficient values of the area and power models are obtained by performing non 

linear regression until convergence, and are presented in Table 6.6. 

Power Modelling for the ASIC Platform 

The ASIC platform is not usually characterised by individual components of power 

as in the case of FPGAs. Hence, a single power model describing the total on-chip 

power consumption has been constructed based on the power estimates for the FRIT 

chip developed. 

Power estimation in ASIC is performed using System Design Automation (SDA). 

The power analysis is performed as per the following steps. First the Verilog models 

are analysed to check if they can be synthesised. Then the design is elaborated 

and built with generic and technology independent components like gates, flip flops, 

multiplexers, etc. This is followed by uniquify, where multiple copies of the sub­

design are instantiated whenever it is referred in the upper level of the hierarchy, and 

each copy is optimised in a unique way according to the conditions and constraints. 

The last step of synthesis is compilation, where the network generic components are 
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Table 6.6: Coefficient values for area and power models for the proposed FRIT 
architecture on different FPGA platforms 

Virtex-E Spartan-3L 
a1 9.957E-02 1.039E-01 
a2 2.711E+02 2.378E+02 
a3 -2.745E+03 -2.380E+03 
r2 1.000E+00 1.000E+00 
c1 2.402E-04 4.372E-05 
c2 4.867E-02 1. 977E-02 
c3 1.865E-Ol 1.600E-01 
r2 9.993E-01 9.413E-01 
sl 2.393E-04 2.007E-03 
s2 1.143E+00 7.610E-01 
s3 1.143E+00 -1.242E-01 
s4 8.498E-01 -2.311E-03 
r2 9.997E-01 1.000E+00 
11 1.607E-03 9.030E-05 
12 5.082E-02 1.095E+00 
13 3.810E-01 8.603E-01 
r2 9.975E-01 9.921E-01 
i1 9. 138E-03 O.OOOE+OO 
i2 3.217E-02 O.OOOE+OO 
i3 4.037E-03 O.OOOE+OO 
r2 9.998E-01 NA 
01 1.508E-02 6.479E-05 
02 -1.078E+00 5.423E-02 
03 -1.978E-01 -6. 745E-02 
r2 9.997E-01 9.949E-01 

translated into a netlist of the target library. Finally, the power dissipation of the 

device can be determined from the power report. 

A plot of the total internal power dissipation of the ASIC chip has been presented 

in figure 6.20. Based on this power data the overall power dissipation model for 

the ASIC based FRIT implementation is described in Eq. 6.42. The corresponding 

model coefficients are presented in Table 6.7. 

TP = t1 . v2 . TA· f + t2· v2 
. TAt3 

. f + t4· f + t5 (6.42) 
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Table 6.7: Coefficient values for area and power models for the ASIC implementation 
of the proposed FRIT architecture 

Coefficient r2 

a1 0.00 
a2 0.07 1.00 
a3 -0.69 
t1 0.53 
t2 
t3 

2.05 
0.44 

t4 -1.22 
t5 14.70 

6.5 FLPAM Evaluation 

0.99 

Unlike most high power modelling techniques available for FPGAs, the FLPAM 

methodology scales very well with changes in platforms, and even prototyping tech­

nologies. Advances in the device technology of the prototyping platform naturally 

result in lower power and energy consumption metrics. Although this results in 

different constant coefficients for each platform, it is important to highlight that 

the model itself remains unchanged. A comparison of FLPAM with existing FPGA 

power modelling methodologies is presented in Table 6.8. 
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Table 6.8: Comparison modelling characteristics of different approaches with 
FLPAM 

Avg r2 Level Scaleable Platform 
Indepen-

dant 
Proposed .97 High Yes Yes 

[66] .97 High No Yes 
[61 ] Low Architectural Yes No 
[63] .95 High No No 
[65] .95 RTL No No 
[68] .82 High Yes No 
[67] Various High No Yes 
[69] .97 RTL Yes Yes 
[72] High Architectural Yes Yes 
[74] .92 Mixed Yes No 

6.6 Conclusion 

In this chapter, a novel high level IP core macromodelling methodology called func­

tional level power analysis and modelling that overcomes the lacunae in existing 

modelling methodologies for FPGA based designs has been presented. A power 

aware optimisation oriented design flow incorporating FLPAM has also been pro­

posed. The mathematical techniques that form the basis of FLPAM have been 

validated by a range of custom IP cores. 

In the next chapter, concluding remarks about the work presented in this thesis will 

be provided. 



Chapter 7 

Conclusions and Future Work 

7.1 Introduction 

Image processing and signal processing techniques requires enormous computing 

power. Applications such as transformations, image and signal analysis and clas­

sification, communication algorithms, etc are increasingly being used. All these 

applications are data and compute intensive, and the demand for such applications 

is only going to rise further in future with the advent of pervasive and ubiquitous 

computing. There is a real need of dedicated processors for high speed computation 

to meet the requirements of real time processing. 

FPGAs can perform mathematical operations on an entire vector or matrix at the 

same time and the current generation of DSP-capable FPGAs yields ultra-high per­

formance and highly flexible signal-processing systems [167]. This makes FPGAs an 

attractive platform for implementing many of these applications. 

However, it is worth mentioning that the nature of the applications and algorithms 

that have been targeted in this work very often impose serious limitations on the 

amount of hardware involved and the rate of power consumption due to factors 

including mobility constraints, cost performance trade-offs, form factor, etc. Thus, 

there has been a continued effort to meet the conflicting challenges of ever-growing 

computational demand with minimal utilisation of hardware resources and power 

[168]. 

An important goal of the work reported in this thesis is to exploit techniques at 

195 
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the algorithmic, architectural and sub-RTL levels to deliver highly optimised and 

efficient image and signal processing IP cores for FPGA based designs. Another key 

objective it to address the issues of dynamic power dissipation in FPGAs through 

the development and application of a novel high level power modelling technique 

encapsulated within a suitable design flow to optimise and model the aforementioned 

IP cores. 

In the rest of this chapter results obtained throughout this research are summarised 

and evaluated. Some possible routes to be investigated for a future extension of this 

work are also provided. 

7.2 Evaluation of Results and Contributions 

The preceding chapters described different design methodologies used for the effi­

cient design and implementation of various transform methods and signal processing 

algorithms on FPGA. A brief analysis of voltage scaling and a novel proposal for 

high level power modelling for FPGAs have also been discussed. This section is 

concerned with the evaluation of the work presented in these chapters. 

7.2.1 Measurement of Success 

The criteria undertaken in this project for the measurement of the proposed archi­

tectures performances was the comparison of the new architectures with existing 

implementations. The comparison was based on the computation time, area re­

quired, throughput rate and power dissipation; all of which depends on the the 

various design optimisation strategies pursued and design parameters such as word­

length of the input data and transform size. In the case of the implementation of 

these architectures, the comparison was based on the number of CLBs used, the 

maximum running frequency of the design and the power and energy metrics. The 

proposed architectures were implemented and tested on the XCV2000E Virtex-E 

FPGA devices and in the meantime they were synthesised on other FPGA devices 

in order to make a fair and consistent comparison with existing cores using the same 

platform. 
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FLP AM has been developed in response to the lack of availability of a similar tool 

for FPGA based designs, which precludes the possibility of a direct comparison with 

existing methodologies. However, an objective comparison based on model accuracy 

and a number of other parameters such as modelling level, scalability and platform 

independence has been performed to evaluate the ability of FLPAM to perform 

stated objectives. 

7.2.2 Important Novelty Claims 

The key novel contributions of this work resulting in an advancement of the state 

of art in the field are listed below: 

• The IP cores that have been developed in this work have a number of original 

features. The InP core that has been developed involves a novel mathematical 

transformation resulting in compact core footprint. The FRAT and FRIT ar­

chitectures presented are based on a unique semi-systolic approach for address 

dereferencing. The GMM core is an application specific efficient architecture 

that involves a number of novel features including a special DA based trian­

gular multiplication unit and LPF exponential unit. The circular convolution 

core presented is based on the first reported systolic implementation of DA; 

• This work represents the first systematic study about the combined influence 

of voltage scaling and performance enhancement techniques on commercially 

available FPGA platforms; and 

• FLPAM is a key contribution of this work. Novelty lies in various aspects 

including portability, accuracy and the modelling philosophy of creating a 

separation between the core designer and core user. 

7.2.3 Results Achieved 

In Chapter 2, a set of goals were specified which would determine the success of the 

work presented in this thesis, namely: 
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• To design and implement scalable, parameterisable, efficient and novel IP cores 

for a range of 1-D and 2-D transform and matrix operation based IP cores 

suitable for use in both general purpose signal processing and specific image 

and video processing problems and applications; 

• To apply optimisation strategies at various abstraction levels and to analyse 

the effectiveness of these techniques for performance enhancement and power 

reduction; 

• To investigate the best performance trade-offs such as area/speed for the 

FPGA implementations of these cores; 

• To perform an exploratory study into the suitability of supply voltage scaling 

as a technique for controlling power dissipation in future generation FPGAs; 

and 

• To develop a novel and accurate high level power modelling methodology suited 

for optimisation and power aware deployment of FPGA based IP cores. 

Taking into account the initial objectives, the following points can be made about 

the achievements of the project: 

• In Chapter 3, algorithmic level transformations for a number of FPGA based 

IP cores resulting in high performance and power efficient architectures has 

been studied for applications such as inner product using distributed arith­

metic [169], sparse-OBC based DA for matrix transforms [170], fast Hadamard 

transform [166,171] and Gaussian mixture modelling [14]. All these architec­

tures outperform existing implementations in various key performance metrics. 

• In Chapter 4, architectural techniques such as parallelism, pipelining and sys­

tolisation have been exploited to yield efficient and power aware architec­

tures. The IP cores that have been developed include finite Radon trans­

form [146,172], finite ridgelet transform [173-175], systolised FIR filters [176] 

and colour space conversion [177]. All these architectures outperform existing 

implementations in various key performance metrics. 
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• In Chapter 5, it has been shown that supply voltage scaling is a promising 

technique for further reduction of power in FPGA based systems. The key 

objective of this chapter was to verify the suitability of voltage scaling as a 

key area of focus in future work and this has been achieved . 

• In Chapter 6, a novel high level power analysis and modelling methodology 

[178,179] that is completely aligned with the objectives stated in Chapter 2 

has been developed and successfully verified on the various FPGA IP Cores 

presented in preceding chapters. 

It can therefore be claimed that the project has made significant progress in meeting 

the key stated objectives. 

7.2.4 Limitations 

The objectives stated in Chapter 2 have been met and fully achieved. In the mean­

time, a few of restrictions and limitations have been raised during the development 

of this research project: 

• Architectures developed for general purpose use can be easily modified for 

efficient implementation on other platforms (e.g. using the on-chip memory 

allows us to manipulate just 32-bit arithmetic); 

• Real hardware implementation of the proposed matrix transforms has been 

carried out on the RC1000 development board equipped with Virtex-2000E 

FPGA. It is worth mentioning that proposed designs are platform independent 

and can be adopted/implemented easily on the most recent FPGAs. We are 

fully aware by using the resources available on the recent platforms better 

performance can be achieved. But, due to time and funding limitations, we 

were unable to carry out real implementations on these platforms; and 

• Scope for improving the efficiency of deploying FLPAM in iterative designs by 

using it to develop super-models incorporating a number of IP cores. This is 

a logical extension which is certain to yield interesting insights; but at present 

has not been carried out due to time limitations. 
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7.3 Future Work 

The work undertaken in this Ph.D. project has concentrated on the development of 

a number of efficient high performance IP cores for DSP and DIP applications. A 

novel high level power modelling methodology has also been applied in conj unction 

to a power aware design flow in order to optimise these cores. A set of objectives 

for the future include: 

• Expanding the scope of IP core development and optimisation: 

A number of cores from the FMAT library that have not been addressed in 

this work can be optimised further. Additions to the core library in order to 

address newer applications is also an important objective for the future; 

• Extending F LP AM to the system level 

FLPAM is very successful in high level modelling of FPGA based IP cores. 

With the increasing tendency for IP core driven design, we believe this method­

ology holds a lot of promise for assisting in power aware design. However, a 

logical extension to FLP AM will be the development of techniques to model a 

complete system comprising a number of IP cores, using individual core data. 

This can be achieved by means of stochastic modelling. Stochastic modelling 

is based on the concept that results that are deduced from the best estimates 

of all parameters are not equal to the best estimates of the results taking into 

account all underlying variables. This can be done by formulating the problem 

of system-level power management as a stochastic optimisation problem based 

on the theories of continuous-time Markov decision processes and stochas­

tic networks. Extensions to more complex systems, including non-Markovian 

models are also possible; 

• Extending the MeG system 

The Matrix Core Generator (MCG) system is a high level push-button design 

flow tool that has been developed by the PRCCV research group in order to 

easily access and deploy the FMAT cores [180]. 

FLPAM can be integrated into the MCG system to visualise the power and 
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energy characteristics of a particular core during the design phase. This will 

enable the designer to easily analyse the various tradeoffs involved; 

• Performance enhanced voltage scaling 

In this work, only an exploratory study has been carried out to analyse the 

influence of voltage scaling on power dissipation in FPGAs. The preliminary 

results that have been obtained are very promising and this seems to be an 

increasing important area of research that FPGA manufacturers themselves 

are studying seriously [109]. The scope of this work package can be increased 

by analysing various other cores. Additionally, this analysis can be mathemat­

ically modelled and integrated into the existing FLPAM approach and 

• FLPAM validation on custom FPGA platforms 

The accuracy of FLPAM can be analysed on real FPGA development boards 

suitably modified for power measurements; in order to validate the mathemati­

cal concepts at a physical level. However, in this case, only a generalised power 

model can be derived, as it is not possible to measure individual components 

of power such clock, signal, logic, etc. separately. 
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Appendix A 

Design Entry Tool Suite and 

Software Packages 

A.I Handel-C 

Prof. Ian Page, Oxford University Computing Laboratory: "It really got its name 

because I think Handel was a rather good composer ... " 

Research into the field of hardware compilation for FPGAs started in 1991, when 

Ian Page and Wayne Luk (Hardware Compilation Group at at the Programming Re­

search Group (PRG) within the Oxford University Computing Laboratory (OUCL)), 

developed a compiler that transformed a subset of Occam into a netlist suitable for 

loading onto an FPGA [181]. Nearly ten years later we have seen the development of 

Handel-C, the first commercially available high-level language available for targeting 

FPGAs. 

Established in 1996,Celoxica Ltd, was previously known as Embedded Solutions Ltd 

(ESL), is responsible of the marketing of Handel-C [161]. 

Handel-C aimed at compiling high level algorithms directly into gate level hardware. 

In order to support the use of the language the vendor also supplies a graphical 

design environment called DK (Design Kit) (Fig. A.l) that incorporates simulator, 

debugger, compiler and implementation generation, in EDIF, VHDL or Verilog [182]. 

Handel-C is essentially an extended subset of the standard ANSI-C Language. Be-

11 
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Figure A.l: The OK design synthesis tool for entering Handel-C code 
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cause standard C is a sequential language, Handel-C has additional constructs to 

support the parallelization of code and to allow fine control over what hardware IS 

generated. Figure A.2 shows the most important additional features. 

ANSI-C Handel-C 

Side effects 
i.e . x'; I-t--t- • j-t--t- ; 

nhanced bit manipulation 
Arrays 

Logical operators 
I.e. &&, II , ! 

Pre-processor macro I 
I.e. #define 

Arithmetic operators 
I.e. +, -, *, t, % Pointers 

Bitwise logical 

Parallelism - par { } 

Macro expressions 

Variable sID ..... I_r 

Interface 

RAil & ROM 

Signals 
Channels 

Figure A.2: Handel-C/ ANSI-C comparison 

DK produces a Netlist file, which is used during the place and route stage to generate 

the image or bitstream file as shown in Figure A.3. 
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HW/SW 
partitioning 

Simulation 

Real-time 
pro to typing 

L..-__ -r-__ .....J 

L..-__ -r-__ .....J 

FPGA Board 

Prototyping Platform 

Extemal Cores 
(Schematic core, 

VHDL core, CoreGen 
core ... ) 

FPGA 
place&route 

FPGA 
configuration 

Figure A.3: Handel-C design flow 

IV 

Unlike other C to FPGA tools which rely on going via several intermediate stages, 

Handel-C allows hardware to be directly targeted from software, allowing a more 

efficient implementation to be created. The language is designed around a sim­

ple timing model that makes it very accessible to system architects and software 

engineers. The advantages of Handel-C over the other HDLs is: 

• The rapid prototyping: several works [183-185] have shown that Handel-C 
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shortens design time by a factor of 3-4 times with approximately the same 

operating speed compared to traditional HDLs. 

• The simulator: the Handel-C simulator can display contents and the status 

of all variables (registers) in a program or design for every clock-cycle. The 

timing semantics of the simulator is straight forward, in that assignments 

require exactly one clock-cycle and expressions or control logic consume no 

cycles to evaluate. The simulator can visualise the actual timing behaviour as 

number of cycles over simulation steps. For convenience, programmers can also 

visualise the source code executed at each clock-cycle as well as the program 

state at any time. 

This appendix is not intended to be a full description of the tool and language, but it 

does describe the most important features, especially those that influence the design 

decisions described in this thesis. For full details of the language and development 

environment the reader is referred to the user guides and reference material from 

the manufactures. 

A.I.I Parallel Hardware Generation 

One of the advantages of using hardware is the ability to exploit parallelism directly. 

Handel-C has additional constructs to support the parallelisation of code using the 

par{ } statement. When instructed to execute two instructions in parallel, those two 

instructions will be executed at exactly the same instant in time by two separate 

pieces of hardware. When a parallel block is encountered, execution flow splits at 

the start of the parallel block and each branch of the block executes simultaneously. 

Execution flow then re-joins at the end of the block when all branches have com­

pleted. Any branches that complete computation are forced to wait for the slowest 

branch before continuing as shown in Figure A.4 [38]. 

A.I.2 Variables 

Handel-C has one basic variable type which is integer, it can be signed or unsigned 

with any width (Fig. A.5). Variables are mapped to hardware registers [38]. 
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(a) Parallel branch execution flow 

Parallel 
Block 

Sequential Block 

1/3 Clock Cycles 
{ 

} 

a=1; 
b=2; 
c=3; 

Parallel Block 

1/1 Clock Cycles 
{ 

} 

par 
{ 

} 

a=1; 
b=2; 
c=3; 

(b) PAR construct example 

Figure A.4: The PAR construct 

{ 

a=45; 
a = \1 \ 0 \ 1 \ 1 \ 0 \ 1 I = Ox2d 

1 A 

unsigned 6 a; 

} 
MSB5 LSB 0 

Figure A.5: Variables declaration example 

A.l.3 Bit Level Operators 

Vl 

Extra operators have been added in Handel-C to allow more "hardware" like bit 

manipulation. 

A.l.4 Channel Communications 

Channels provide a link between parallel branches. One parallel branch outputs 

data onto the channel and the other branch reads data from the channel. Channels 

also provide synchronisation between parallel branches because the data transfer 

can only complete when both parties are ready for it. If the transmitter is not ready 

for the communication then the receiver must wait for it to become ready and vieT' 
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Vll 

« Shift Left Signed int 4 a ; 

» Shift Right 
Signed b,c,d ; 
a = Ob1100' , 

<- Take Least Significant bits b = a«1 . /I b = Ob1000 , 
b = a»1 . /I b = Ob1110 

\\ Drop Least Significant bits 
, 

c = a [2:1]; /I c = Ob10 

@ 
c = a<-2; /I c = ObOO 

Concatenate bits c = a \\ 2 . /I c = Ob11 , 

[ ] Bit Selection 
d = a @ a; /I d = Ob11 0011 00 

Figure A.6: Bit level operators in Handel-C 

versa. In Figure A. 7, the channel is shown transferring data from the left branch to 

the right branch. If the left branch reaches point a before the right branch reaches 

point b, the left branch waits at point a until the right branch reaches point a [38]. 

Statement 

Channel 
a b 

Figure A.7: Channel communication 

A.l.5 Memory 

RAMs and ROMs can be implemented directly using the keywords ram and rom 

respectively. Handel-C allows access to a number of different types of RAM: 

• Distributed RAM, which is implemented in look-up tables in the logic blocks 

of the FPGA 
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• Block RAM, which is available on certain chips, can be identified by specifying 

the block parameter in conjunction with the ram keyword 

• Off-chip RAM [38] 

Normal variables are implemented as flip-flops. The Handel-C code for RAM dec­

laration is shown in Figure A.8. 

ram unsigned 8 DR[256]; 

/I Distributed RAM Declaration 

ram unsigned 8 BR[256] with {block=1}; 

/I Block RAM Declaration 

Figure A.8: RAM/ROM declaration in Handel-C 
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A.l.6 External Communication 

Communication between the hardware and the outside world is performed using 

interfaces. These may be specified as input or output, and, as with assignment, a 

write-to or a read-from an interface will take one clock cycle. The language allows 

the designer to target particular hardware, assign input and output pins, specify the 

timing of signals, and generally control the low level hardware interfacing details. 

Macros are available to help target particular devices [38]. 

There are three types of interfaces: 

• Buses: used for connecting to external pins 

• Ports: used for creating connection points for external logic e.g. Creating the 

ports for VHDL entity 

• User Defined: used for including external logic blocks inside a Handel-C design 

A.2 Xilinx-ISE 

ISE controls all aspects of the design flow for Xilinx FPGAs. Through the Project 

Navigator interface, you can access all of the design entry and design implementation 

tools. ISE is a toolsuite that combines a number of distinct design implementation 

sub-tools under a common platform called "Project Navigator" Fig. A.9. The 

different design entry steps in ISE are described in the following subsections. 

A.2.1 Specifying Design Options 

The Process Properties dialog box shown in Fig. A.I0 provides access to the Trans­

late, Map, Place and Route, Simulation, and Timing Report properties. A series of 

categories, each containing properties for a different aspect of design implementation 

can be seen. 

A.2.2 Design Translation 

During translation, the NGDBuild program performs the following functions: 
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• Converts input design net lists and writes results to a single merged NGD 

netlist. The merged netlist describes the logic in the design as well as any 

location and timing constraints; 

• Performs timing specification and logical design rule checks; and 

• Adds the User Constraints File (UCF) to the merged netlist. 
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A.2.3 Timing Constraints 

The User Constraints File (UCF) provides a mechanism for constraining a logical 

design without returning to the design entry tools. The Constraints Editor and 

PACE are graphical tools that enable entry of timing and pin location constraints. 

The global tab of the timing constraints editor is presented in Fig. A.l1 . This 

window automatically displays all the clock nets in the design, and enables the 

definition of associated period, pad to setup, and clock to pad values . Many of the 

internal names will vary depending on the design flow and synthesis tool used. 

~ AI! EdIt \'i~"" '~Ifnda)j ~ 

o ,'" ~ )( ~ :i:Jt:t~lP. 

N. .~ 

N. A 

I Po; \, PaL I LI _---' 

Figure A.l1 : Setting constraints in the timing editor 

A.2.4 Setting Pin and Location Constraints 

PACE (Fig. A.12) is used to add and edit the pin locations and area group con­

straints defined in the NGD file . PACE generates a valid UCF file . The Translate 

step uses this UCF file, along with the design source netlists, to produce a newer 

NGD file. The NGD file incorporates the changes made in the design and the UCF 

file from the previous section. PACE also places Global Logic at the Slice level 

with Block Ram, Digital Clock Managers (DCMs) , Gigabit Transceivers (GTs) , and 

BUFGs. 
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Figure A.12: PACE 

A.2.5 Mapping, Place & Route 
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Now that all implementation strategies have been defined (properties and con­

straints), the next design step of mapping is performed. 

After the mapped design is evaluated, the design can be placed and routed . One 

of two place-and-route algorithms is performed during the Place & Route (PAR) 

process: 

• Timing Driven PAR PAR is run with the timing constraints specified in the 

input netlist and/or in the constraints file ; and 

• Non-Timing Driven PAR PAR is run, ignoring all timing constraints. 

A.2.6 Verification of Place & Route 

The FPGA Editor reads and writes Native Circuit Description (NCD) files, Nativc 

Macro Circuit (NMC) files and Physical Constraint s Files (PCF). It performs the 

following tasks: 

• Place and route critical components before running t he automatic place-and­

route tools; 
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• Finish placement and routing if the rout ing program does not completely route 

your design; 
.. . . 06', ... ' ' ..... ... ~ ... _ __ • 

~ ---- .~ . 

• Add probes to the design to ex~~i;e" the Slgnal states of the targeted device; 

• View and change the nets connected to the capture units of an Integrated 

Logic Analyser (ILA) core in the design; 

• Run the BitGen program and download the result ing bitstream file to the 

targeted device; and 

• View and change the nets connected to the capture units of an Integrated 

Logic Analyser (ILA) core in your design. 

A snapshot of the FPGA editor showing a section of the placed and routed design 

is shown in Fig. A.13. 

I I 
I I 
I ." I 
I I 
.1 

, I 
:' ." 

F " A 13" FPGA Editor showin <T a section of the clock tree in a design Igure . . b 
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A.2.7 Estimating and analysing Power using ISE XPower 

XPower (Fig. A.14) enables interactive analysis of total de . - d Vice power an power per-

net for routed, partially routed or unrouted designs. XPower uses device knowledge 

and design data to estimate device power and by-net power utilisation. Information 

is presented in both text and HTML report formats. Circuit signal space information 

is supplied to XPower using either VCD files or by setting act ivity rates for the 

various nets using explorer/table views. 
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Figure A.14: XPower 

NLREG 

J 

The goal of regression analysis is to determine the values of parameters for a func­

tion that cause the function to best fit a set of data observations that you provide. 

NLREG [164] is a very powerful regression analysis program which can be used to 

perform multivariate , linear , polynomial , exponential, logistic , and general nonlinear 

regression. For complex analyses , NLREG enabled specification of function mod­

els using conditional statements (IF , ELSE), looping (FOR, DO , WHILE), work 

variables and arrays. 

The basis for the minimisation technique used by NLREG is to compute the sum 

of the squared residuals for one set of parameter values and then slight ly alter 
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each parameter value and recompute the sum of squared residuals to see how the 

parameter value change affects the sum of the squared residuals. By dividing the 

difference between the original and new sum of squared residual values by the amount 

the parameter was altered, NLREG is able to determine the approximate part ial 

derivative with respect to the parameter. This partial derivative is used by NLREG 

to decide how to alter the value of the parameter for the next iteration. 

If the function being modelled is well behaved and the starting value for the param­

eter is not too far from the optimum value , the procedure will eventually converge 

to the best estimate for the parameter. This procedure is carried out simultaneously 

for all parameters and is , in fact, a minimisation problem in n-dimensional space, 

where 'n' is the number of parameters. A sample computation window of NLREG 

showing a section of the power data to be modelled , and regression results is shown 

in Fig. A.I5. 

\ ./ elk Pwr ParalleLNLR - NLREG - Nonlinear Regres.ion AnalYsiS ., 
File Edit Show RLfl Vie... EvakJate Save·pIot Colors Help 
-Dr~lgr!il" ~~;,rlilil 1> , .... - --.......... - -------......... __ ...... --

itle "My Equation"; 
Variables CP.v.TA.f; 
Parameters c1.c2.c3.c4; 
Function CP = cP(v2)"[TA)*(f) tc3"(f) + [4; 
data; 
11.63 1.00 215.00 75.00 
10.08 1.00 215.00 65.00 
0.53 1.00 215.00 55.00 
6.901 .00 215.00 45.00 
5.43 1.80 215.00 35.00 
3.80 1.00 215.00 25.00 
11.32 1.00 1000.00 40.00 
9.91 1.80 1000.00 35.00 
0.49 1.80 1008.00 30.00 
7.081.801008.00 25.00 

Conuergence tolerance factor = 1.000000E-010 
Stopped due to: Both para~eter and relatiue function conuergence . 
Hu~ber of iterations perfor~d = 8 
Final sum of squared deuiations = 1.5681281E+002 

I Final sum of deuiations = -1.3118280E-007 
Standard error of estimate = 3.23329 
Auerage deuiation = 1.69207 . 
Maxi~u~ deuiation for any obseruat1on = 10.7369 
Proportion of uariance explained (RA2) ~ 0.~935 (~9.35%) 
Adjusted coefficient of multiple deter~1nat10n (Ra 2) = 0.1993 (19.93%) 
Durbin-Watson test for autocorrelation = 1.612 
Analysis completed 13-Mar-2007 00:32. Runtime = 0. 09 seconds. 

J 
____ Descriptiue Statistics for Uariables ----

Variable _~~~~~~~_~~~~~ _~~~~~~~_~~~~= __ ~=~~_~:~~=__ _:~~~~:~ 
------------- I [NUM I ,~ 

..:.~~. ::"'~'?'_a~~~:~ ____ ... ~ ___ . __ ~ ____ ._~ _ __ ..... _. _____ . _______ . __ ~ __ 

Figure A.I5: NLREG 



Appendix B 

Hardware Platforms for Synthesis 

& Implementation 

B.l RelOOO Prototyping Platform 

The RClOOO hardware platform, used in this thesis, is a standard PCI bus plug-in 

card for PCs equipped with a Xilinx XCV2000E-6 Virtex-E FPGA chip. It has 

8 MBytes of SRAM directly connected to the FPGA in four 32-bit wide memory 

banks for data processing operations, a programmable clock and 50 auxiliary l/Os. 

All four memory banks are accessible by the FPGA and any device on the PCI bus. 

The FPGA has two of its pins connected to the clocks. One pin is connected to 

either a programmable clock or an external clock. The programmable clocks are 

programmed by the host PC, and have frequency range of 400 KHz to 100 MHz [116]. 

A schematic block diagram of the RClOOO board is shown in Figure B.1. 

XVI 



B.1. RelOOO Prototyping Platform 
XVll 
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Host Primary PCI 

~ 
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PMC #1 
PCI-PCI ~ Bridge 

~ PMC#2 

Control 

PLX PC19080 
Bridge ~-----+I 

Isolation 

Figure B.l: RCIOOO functional block diagram 

The RCIOOO board is supported with a macro library (the PPIOOO library, ) that 

simplifies the process of initialising and talking to the hardware. This library com­

prises driver functions with the following functionality : 

• Initialisation and selection of a board 

• Handling of FPGA configuration files 

• Data transfer between PC and the RCIOOO board 

• Function to help with error checking and debugging these library functions can 

be included in a C or C++ program that runs on the host PC and performs 

data transfer via the PCI bus [38] 

Direct Memory Access (DMA) , data buffering and clock speed control make the 

RCIOOO suitable for high-speed applications. 

B.l.l Host-FPGA Communication 

Using the statically linked C library supplied and corresponding Handel-C macro 

functions , a programmer has three methods of communicating a host program with 

an FPGA across an RCIOOO development board . These are: 
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• Single bit signalling using two pins on the FPGA; 

• Single byte data transfers using the control/status ports on the RelOOO; and 

• Bulk data transfers using the DMA controller and four banks of SRAM. 

The first method can be used to signal a state to the FPGA or to the host. 

The second method can be used to send short control messages to the FPGA or 

short status messages from the FPGA. 

The third method is recommended for large data transfers. Each bank of SRAM 

can be granted to either the host or FPGA at anyone time. When a memory 

bank is granted to the host, the D MA controller can transfer data between the host 

memory and the SRAM memory bank. When a memory bank is granted to the 

FPGA, it can access the memory to read source data transferred by the host or 

fill in processed data to be read by the host. Functions that implement the second 

method block until the corresponding read/write has taken place at the other end 

and can therefore be used to synchronise the swapping of owner~hip of a memory 

bank. Under this model, the sequence shown in Figure B.2 could be used to transfer 

a 32-bit word of data from the host to the FPGA: 

Request ownership of memory bank Release ownership of memory bank 

Copy word into memory bank Wait for control word from host 

Release ownership of memory bank 

Send control word to FPGA 

Request ownership of memory bank 

Read data from memory bank 

Figure B.2: Host-FPGA communication 
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B.2 FPGA Devices Used in This Research 

A variety of FPGA devices have been used in the course of this research. The choice 

of the device used to prototype and synthesise results for specific work packages 

depends on a number of research and analysis factors: 

Prototyping Platform The RClOOO and RC203 prototyping platforms that have 

been used to verify and implement the cores that have been proposed and 

modelled contain the Virtex-E and Virtex-II FPGA chips respectively; 

Comparison with Existing Work Validation of performance measures for vari­

ous IP cores that have been developed with respect to existing work requires 

a fair comparison approach. Hence, where necessary and possible, the devel­

oped designs have been resynthesised on platforms identical to those used in 

comparative work. 

Power Modelling Validation FLPAM models are platform independent - confir­

mation of this key characteristic of FLPAM necessitated the use of multiple 

FPGA devices; 

Power vs Process Technology To show relative power efficiencies of older FPGA 

platforms such as Virtex-E with latest and low power variants such as the 

Spartan-3L and Virtex-IV FPGAs. 

A brief description of the hardware structures and resources available on these FP­

GAs is presented in the following subsections. 

B.2.1 Virtex-E FPGA 

Virtex-E FPGA produced by Xilinx, Inc. is used for most of our implementations. 

The Virtex-E FPGA architecture has two major configurable elements: Configurable 

Logic Blocks (CLBs) and Input/Output Blocks (lOBs). CLBs provide the functional 

elements for constructing logic. lOBs provide the interface between the package pins 

and the CLBs. The Virtex-E FPGA also has dedicated block memories called Block 

SelectRAM memories (BRAMs). The Virtex-E belongs to the Virtex family of 
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FPGAs which features regular arra f CLB . ys 0 s arranged m columns surrounded on 

all sides by lOBs (Figure B.3) [26] . 

I I I I I I 
VersaRing 

fII fII fII fII 
fII ~ fII ~ fII fII ~ fII ~ 0 In In In In In 
Q ~ ...J ~ ...J ...J ~ ...J ~ OJ 

U c:::: u u c:::: u c:::: fII 
In In In In 

VersaRing 

I I I I I I 
Figure B.3: Virtex-E architecture overview 

T he VersaRing I/O interface provides additional routing resources around the pe­

riphery of the device. T his routing improves I/O routability and facilitates pin 

locking. T he interconnection within them is very versatile as the wire segments are 

of varying lengths and the programmable switches are fast and placed in locations 

that allow them to efficiently connect these wire segments. Interconnection of CLBs 

is t hrough a General Routing Matrix (GRM) as shown in Figure B.4 The GRM 

contains routing switches that connect the vertical and horizontal routing channels. 

Each CLB nests into a VersaBlock that connects the CLBs to the GRM. Virtex 

FPGAs are SRAM-based. A design is implemented by loading configuration data 

into their internal memory cells . The values stored in static memory cells control the 

configurable logic elements and the interconnect resources. These values load into 

the memory cells on power-up and can reload if necessary to change the function of 

the device [26]. 

Configurable Logic Block (CLB ) 

The basic building block of the Virtex -E CLB is t he Logic Cell (LC). A Virt x -E 

CLB contains four LCs. An LC contains a four- input function generator , carry 

logic, and a storage element . The entire Vertex CLB is made of two CLB lice, 
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Figure B.4: Virtex-E local routing 

XXI 

each containing two LCs. Figure B.5 illustrates the various components of the 

Virtex-E CLB. The output from the function generator in each LC drives both the 

CLB output and the D Flip-Flop (FF). Four input Look-Up-Tables (LUTs) with 16 

locations in each LUT implement function generators. A function is implemented 

in a LC by loading data into the LUT. The input into the LC is an address into the 

LUT. The value stored at that address is the output of the LC. Two LUT within a 

slice can be combined to create a 16 x 2 - bit or 32 x 1 - bit synchronous RAM, or 

a 16 x 1 dual-port synchronous RAM. LUT can also work as 16-bit shift register, 

which can be used to store data in high speed applications such as digital image 

processing [26]. 



B.2. FPGA Devices Used in This Research xxii 

COUT COUT 

VB YB 
...-- r-

G4>-!-- "7'Y G4 >- I- Y 

G3 >- I- Llr- G3 >- LLr-Carry & SP ~ 

G2 >-
LUT LUT Carry & SP 

r- Control D a ~ ya G2 >-I- ya 

G1 >- CE Control D a 
r- G1 >-l- CE 

l...-

I PORC 
L.....-. -] 

P>RC 
BY , ~ BY '---

"7' XB XB 
~ r--

F4 >-r- ~.. X F4 >-l- X 

F3 >-!-- Carry & Ll r--;- F3 >- f-
Carry & LL ""S'P 

F2 >-- LUT LUT 
!-- D a ~ xa F2 >-- I- xa 

Control CE 
D a 

Control CE 
F1 >-- r- F1 >-- f-

L.....-. 

I I>RC 
l...-

I PORC 

BX 
L.....-. BX I...-

Slice 1 Slice 0 

, , 
CIN CIN 

Figure B.5: 2-Slice Virtex-E CLB 

Block SelectRAM (BRAM) 

Virtex-E FPGAs incorporate large Block Select RAM (BRAM) memories. These 

complement the Distributed SelectRAM memories that provide shallow RAM struc­

tures implemented in CLBs. 

There is one such memory column between every twelve CLB columns. The BRAM 

also includes dedicated routing to provide an efficient interface with both CLBs 

and other BRAM. Each BRAM is a fully synchronous dual-ported and can store 

4096 bits. Each port has independent control signals so that the two ports can be 

configured independently. The width of each addressable location can vary from 1 

to 16 bits. For example, if each location is 16-bits wide, then there will be 2564 such 

locations within one BRAM memory [26]. 

B.2.2 Virtex-II FPGA 

Virtex-II is was the successor of the Virtex-E FPGA series. it uses 0.15J.Lm process 

with eight layers of metal at 1.5V power supply. In addition to advancements 
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in its process technology, Virtex-II is the first Xilinx FPGA with fully buffered 

interconnect which may be consl'd d t' ' " . . , ere as a urnmg pomt m Its routmg archItecture. 

Figure B.6 shows the 2v40 FPGA, which is the smallest member of Virtex-II family. 
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Figure B.6: Virtex-II platform FPGA 

As shown in Figure B.6 , Virtex-II includes four major elements organised in a regular 

array [36]. 

• CLBs provide functional elements for combinatorial and synchronous logic, 

including basic storage elements. Each Virtex-II CLB contains four slices , 

where each slice consists of two 4-input LUTs , two FFs , and a variety of 

dedicated circuitry to accommodate more efficient implementation of some 

specific logic. 

• BRAM memory modules provide large 18Kbit storage elements of dual-port 

RAM . 

• Multiplier blocks are 18 x 18 bits dedicated multipliers . 

• DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital 

solutions for clock distribution delay compensation and clock multiplication 

and division. 
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B.2.3 Virtex-II Pro FPGA 

The Virtex-II Pro fami ly is based on the Virtex-II technology and contains platform 

FPGAs for designs that are based on IP cores and customised modules . The family 

incorporates mult i-gigabit transceivers and PowerPC CPU blocks (see Figure B.7) . 

It empowers complete solutions for telecommunication , wireless , networking , video 

and DSP applications [186]. 
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Figure B.7: Virtex-II Pro FPGA platform 

Within the Virtex-II Pro Processor Block,which is the main additional feature , there 

are fo ur components: 

• Embedded IBM PowerPC 40S-DS RISC CPU core; 

• On-Chip Memory (OCM) controllers and interfaces; 

• Clock/control interface logic; and 

• CPU-FPGA Interfaces 
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B.2.4 Spartan-3L FPGA 

Spartan-3L FPGAs B.S consume less static current than corresponding members 

of the standard Spartan-3 family. Spartan-3L devices provide the identical func­

tion, features, timing, and pinout of the original Spartan-3 family. Features include 

programmable l /Os, CLBs, RAM blocks, DCMs, and Multiplier blocks. Another 

power-saving benefit of the Spartan-3L family beyond static current reduction is 

the Hibernate mode, which lowers device power consumption. Additional feature 

include MicroBlaze processor , P CI, and other cores 
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Figure B.S: Spartan-3L Pro FPGA platform 

B.2.5 Virtex-4 FPGA 
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The Virtex-4 [10] is a recent high performance FPGA manufactured using 1.2v, 

90nm triple-oxide technology. Additional features in comparison to older generation 

FPGAs include SO independent clocks and 20 DCMs, Multi-Gigabit Serial I/ O, 

Auxiliary Processor Unit (APU) controller providing a low-latency link from the 

embedded PowerPC core to custom hardware accelerator functions, and upto 500 

MHz clocking performance. The Virtex-4 FPGA series consists of different package 

configurations with varying combinations of feature sets . Key device capabilities of 

the full featured platform are shown in Fig. B.9. 
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Figure B.9: Virtex-4 complete feature set with the chip in background 
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Appendix C 

Algorithllls and Arithmetic 

e.l The Finite Radon Transform and its Exten­

sion to other Higher Dimensional Generali­

sations of Wavelets 

Recently, the curvelet and ridgelet transforms [31-33] have been generating a lot 

of interest due to their superior performance over wavelets. While wavelets have 

been very successful in applications such as denoising and compact approximations 

of images containing zero dimensional (point) singularities, they do not isolate the 

smoothness along edges that occurs in images because they lack flexible direction­

ality. Wavelets are thus more appropriate for the reconstruction of sharp point-like 

singularities than lines or edges. These shortcomings of wavelets are well addressed by 

the ridgelet and curvelet transforms, as they extend the functionality of wavelets to 

higher dimensional singularities, and are effective tools to perform sparse directional 

analysis. The basic building block of these transforms is the FRAT [35]. 

C.l.l The Continuous Radon Transform 

The 2D Radon transform of an image in spatial domain is defined as the line integral 

of each projection of the image taken at regular rotational intervals given by x· cose. 

For an image represented by rectangular coordinates, the Radon Transform is a set 

XXVll 
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of projections of the image taken by integrating along the set of lines defined by 

xcos(} + ysin(} = d for 0 < () < 7r, where () is the angle of the line with respect to the 

positive y axis and d corresponds to the distance from the origin. Mathematically, 

it is expressed as: 

00 00 

R(B,t)[J] = J J f(x,y)8(xcos(}+ysin(}-t)dxdy (C.l.I) 
-00 -00 

The projection slice theory gives us a mathematically elegant and computationally 

efficient inversion called the Filtered Back Projection. This approach is more effi­

cient, as the Radon domain image is first filtered, and then back projected. The 

filtered back projection can be mathematically obtained as follows: 

00 

1 J d f(x,y) = 27r dyH[R(B,y - tx)]d(} (C.l.2) 
-00 

C.l.2 The Finite Radon Transform and its Inverse- A Primer 

The FRAT was first introduced in [148] as the finite analogue of integration in the 

continuous radon transform, with origins in the field of combinatorics. The mathe­

matical representation of an injective form of the FRAT to ensure invertibility when 

applied on finite Euclidian planes has been presented in [35J. A pseudocode for 

the implementation of FRAT has also been provided in [35], and is reproduced in 

Codeblock 2. In all previous implementations of the FRAT, it has become conven­

tion to label an architecture based on the straightforward implementation FRAT 

pseudocode as the "reference architecture". 

It is worth mentioning that the FRAT is not a discretised version of the RT, but a 

discrete finite version. Consider a cyclic group Zp denoted by Zp = (0,1, ... ,p - 1) 

such that p is a prime number. Let the finite grid Zp 2 be defined as the Cartesian 

product of Zp x Zp. This finite grid has (p + 1) non trivial subgroups, given by: 

Lk,l = {(i, j) : j = (ki + l)(modp), i E Zp}, k < p (C.l.3) 
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Algorithm 2 Pseudocode for the FRAT 
1: for k - 0 : (p - 1) do 
2: n = k; 
3: for j = 0 : (p - 1) do 
4: n = n - k; 
5: if n < 0 then 
6: 
7: 

8: 
9: 

n = n+p; 
end if 
I = n -1; 
for i = 0 : (p - 1) do 

l = l + 1; 
if l > p then 

l = l- p; 
end if 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

FRAT(k, l) = FRAT(k, l) + f(i, j); 
end for 

end for 
17: end for 
18: for j = 0 : (p - 1) do 
19: for i = 0 : (p - 1) do 
20: FRAT(p,j) = FRAT(p,j) + f(i,j); 
21: end for 
22: end for 

and 

Lp,l = {(l, j) : j E Zp} 

XXIX 

(C.l.4) 

where each subgroup Lk,l , is the set of points that define a line on the lattice Zp. 

The radon projection of the function f on the finite grid Z; is then given by: 

r.[l] = FRAT, (k, I) = ~ ( 2:: J[i, j]) 
p (i,j)ELk,! 

(C.l.5) 

From Eq. C.l.3,C.l.4 and C.l.5, it can be seen that the function f is treated as a 

periodic function, and hence the digital representation of the line displays a wrap 

around effect, as illustrated in Fig. C.l. 

Fig. C.1 represents all the set of lines corresponding to the FRAT function for 

blocksize p = 7 and k = 4. There are p + 1 vectors in the FRAT domain, each 

corresponding to one "direction". The line corresponding to k = 4, l = 4 corresponds 

to the 4th digital line in the 4th rotational direction. The concept of "periodicity" 
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Figure C.l: FRAT basis function (projection kernel) for blocksize p = 7 and k = 4. 
The digital line superimposed over the kernel corresponds to l = 4 

is highlighted for the specific case where l = 4, and is superimposed over the kernel 

in Fig. C.l. We can see that there are three (Euclidian) parallel lines that actually 

constitute a single digital line, connected by the dots. This is known as the wrap­

around effect. 

Analogous to the continuous case, as in Euclidian geometry, any two lines intersect 

at only one point in the finite grid Z;. Hence, the inverse transform, the FBP is 

given by: 

F BPr(i , j) = ~ ( L rk[ll) 
(k,l)EPi ,j 

,(i,j) EZ~ (C.l.6) 

where 

Pi,j = {(k, l) : l = (j - ki)(modp), k E Zp} U {(p , i)} (C .l.7) 

Substituting Eq. C.l.5 in C.l.6, we get: 

FBPr(i,j) = ~ (L L f[il,],l) 
p (k,l)EPi ,j(k ,l )EPi,j 

(C .l. 8) 

= f[i,jl (C. l. g) 
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C.l.3 Ridgelets and Curvelets 

The continuous ridgelet transform [33] of a bivariate function f(x) is given by: 

RT = r 'ljJa ,b,e(x)f(x)dx JR 2 
(C.l.lO) 

However, the use of digital images necessitates the development of suitable variations 

of the ridgelets to deal with images in the digital domain. An orthonormal , invert ible 

and discrete form of the ridgelet, called finite ridgelet transform was first proposed 

in [31]. THE FRIT is obtained by performing the DWT on each FRAT projection 

sequence with fixed value of k. This process is pictorially represented in Fig. C.2. 

Spatial Domain FRAT Domain FRIT Domain 

k k 
r--

FRAT 
..f\.- I m V 

'---

"--
1-D DWT 

Figure C.2: Finite Ridgelet transform obtained by performing DWT on the FRAT 
vectors 

The finite and discretised variant of curvelets can be obtained by repeated applica­

tion of the FRIT. The directional attributes of these higher dimensional generalisa­

tions of wavelets make them ideal for a number of applications such alternate image 

representation , compression, denoising , etc. 

C.2 Colour Spaces and Conversion Formulae 

A colour in the RGB colour space is converted to the YCrCb colour space using the 

following equation: 
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y R 
0.257 0.504 0.098 16 

Cr 
G 

(C.2.1l) 0.439 -0.368 -0.071 128 x 
B 

Cb -0.148 -0.291 0.439 128 
1 

While the inverse conversion can be carried out using the following equation: 

conversion of this image between RGB and YCrCb spaces is presented in Fig. C.3 
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Figure C.3: RGB to YCrCb conversion 
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C.3 Distributed Arithmetic 

DA was first presented in [187] and later reported in [188, 189]. "Distributed arith­

metic is used to design bit-level architectures for vector-vector multiplications. In 

distributed arithmetic, each word in the vectors is represented as a binary num­

ber, the multiplications are reordered and mixed such that the arithmetic becomes 

'distributed' through the structure. Distributed arithmetic is commonly used for im­

plementation of convolution operations and Discrete Orthogonal Transforms" [57]. 

C.3.1 Suitability of DA for FPGAs 

ROM-based DA uses a ROM table to store the pre-computed data, which makes it 

regular and efficient in the use of silicon area, in a VLSI implementation [57]. The 

advantage of a DA based ROM approach is its efficiency of implementation. The 

basic operations required are a sequence of ROMs, addition, subtraction and shift 

operations of the input data sequence. All of these functions are efficiently mapped 

to FPGA structures [11]. 

C.3.2 Mathematical Formulation of DA 

Consider an inner product of two vectors A and B of length N. 

N 

y= LAkBk (C.3.13) 
k=l 

where Bk is represented in 2's complement binary notation and is defined as Bk : 

bkO ; bk1 ... ; bk(w-l) such that Bk has a wordlength Wand bkO is the sign bit. 

W-l 

Bk = -bkO + L bkn2-n (C.3.14) 
n=l 

Substituting Eq. C.3.14 in Eq. C.3.13, we get: 

N W-l 

Y = L Ak(-bkO + L bkn2-
n

] (C.3.15) 

k=l n=l 

By rearranging the above expression, we get: 
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Consider Eq. C.3.16. We can see that the term [t, Akbkn] has only 2N possible 

N 

values. The term L Ak ( -bkO ) also has 2N possible values. This means that all 
k=l 

possible values can now be stored in a ROM of size 2N+l. 

However, it is possible to reduce the size of the ROM by half by applying a simple 

modification. Consider the term: 

[i~ Akbkn] = A,b'n + A21>,n + ... + ANbNn (C.3.17) 

By applying the above expression, the second term in Eq. C.3.16 can be replaced 

as follows: 

t, Ak( -bkO ) = - [t, Ak(bkO)] (C.3.18) 

Eq. C.3.16 can now be rewritten as: 

y = I~ [t, Akbkn] 2-
n 

- t, Ak(bkO ) (C.3.19) 

This modification can be easily adapted in hardware by replacing the adder in the 

shift-add structure with an adder/subtractor. 

C.4 ROM Size Reduction in DA 

However, when the size of the inner products increases the ROM area increases 

exponentially and becomes impractically large, even when using ROM partitions 

[115,190,191]. A number of techniques are available to further reduce the size of 

the memory for DA implementation. An effective technique is Offset Binary Coding 

(OBC) which involves a change in the internal data representation from binary to 

signed-digit. However, the reduced area is traded off for additional complexity in 

the control circuitry. Another method for memory reduction is ROM decomposition. 
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The disadvantages are increase in effective latency and control circuit complexity. A 

complete description of these techniques is beyond the scope of this Appendix and 

can be referred from [57,1151· 



Appendix D 

Various Compound Energy Cost 

Functions 

Power is an important metric in the design of FPGA based systems, and most 

studies of designs implemented on FPGAs focus on average power dissipation of 

the overall circuit. However, in the case of high-throughput DSP circuits, energy 

is a more appropriate measure to quantify the efficiency of an operation. .This 

is because energy metrics combine power data with performance figures, and yield 

better insights into the efficiency of a design. Energy metrics also enable comparisons 

across different design parameters. Understanding energy consumption will enable 

the design choices that meet a specific throughput constraint while minimising power 

consumption. 

In this work, various energy metrics have been defined and applied as appropriate 

for analysing different cores. 

D.l Energy per Operation 

Energy per OPeration (EOP) is a product of power and number of clock edges per 

operation over the frequency. The term "Operation" in EOP can take different 

meanings depending on the context. For example, in the case of a simple inner 

product calculation, an operation means the complete calculation if the product of 

one set of vectors. In an image processing / transformation algorithm, operation 

XXXVI 
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indicates the completion of the processing of a single computational block (or image 

tile). EOP is useful for comparing energy efficiency of two or more circuits that 

employ different architectural approaches to perform the same operation. Also, it 

is useful for comparing circuits that require different numbers of clock cycles to 

complete one operation. Effectively, EO P is defined as: 

~ J P(t)dt (D.1.I) 
T 

where P (t) is the instantaneous power dissipated and T is the number of clock 

cycles needed to complete one operation. Assuming constant power consumption, 

EO P can be estimated by the following expression: 

EOP = Pav xl 
f 

(D.1.2) 

where Pav is the average power consumed, l is the latency of the one "operation" of 

the core under consideration and f is the frequency. 

D.2 Energy Area 

Energy Area (EA) is a compound cost metric, and is useful to determine the tradeoffs 

between energy efficiency and area occupied by a core. It is determined from EOP 

as follows: 

D.3 

EA= EOP 
s 

Energy Throughput 

(D.2.3) 

Energy Throughput (ET) combines energy dissipation and the actual volume of 

data processed per cycle into a combined metric. In other words, it is the amount 

of energy dissipated per bit of data processed, and enables us to make a fair com­

parison between different architectures that perform the same operation at different 

mathematical scales. ET is given by the expression in Eq. D.3.4. 



D .4. Energy Per Pixel and Energy Per Frame ... 
XXXV111 

ET = EOP/(L· N) (D.3.4) 

D.4 Energy Per Pixel and Energy Per Frame 

The following energy metrics are specific to image processing based cores. The 

fundamental component of a digital image is the pixel. The whole of an image is 

also known as a frame. Evaluating Energy Per Pixel (EP P) and Energy Per Frame 

(E P F) is of interest in some image processing applications where different block 

sizes can be chosen to perform the same transformation process on a digital image. 

The equation for EP P is obtained by rationalising energy per operation with respect 

to the number of pixels processed. 

EPP= EOP 
b2 

(D.4.5) 

where b is the blocksize (and the complete processing of a single block constitutes 

and "operation", in this case) 

For an image of size M x N, the Energy Per Frame (EPF) is calculated as follows: 

EOP·M·N 
EPF = b2 

(D.4.6) 
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