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Abstract

This thesis consists of two distinct parts which deal with
two-point boundary value problems and parabolic problems, respectively.
In Section 1 we examine the numerical solution of a two-point boundary
value problem by a collocation method based on the consistency
relationship of regular splines. An existence and convergence result
is established which generalises the 0(h2) convergence result of the
cubic spline collocation scheme for the problem in question. Contrary
to most previously documented finite element schemes this method
employs splines that may be non-linear in structure. Consequently, by
a judicious choice of regular spline, the dominant terms of the true
solution may be imitated more accurately than by the conventional

polynomial based splines. The scheme is implemented by an algorithm

that examines the suitability of various classes of regular splines

and determines the subsequent deployment of them.

The second section investigates semi-discrete finite element

schemes for approximating the linear parabolic equation. A standard

finite element discretization is employed for the space variable

whilst an A -stable, linear multistep, multiderivative discretization

scheme, (L.M.S.D.) is used in time. We consider both the homogeneous

and the nonhomogeneous linear parabolic equations and derive optimal
convergence results for the above schemes. The convergence results
achieved with a k-step L.M.S.D. scheme, incorporating the first m

derivatives, generalise and extend the studies of several authors who

concentrate on the particular cases of linear multistep formulae, m=l1,



-

and one-step schemes, k=1. Ao—stable L.M.S.D.'s are constructed and
their implementation procedures examined. The suitability of selecting
a L.M.S.D. method, with m, k > 1, in a semi-discrete Galerkin scheme

is discussed, and its superiority over semi-discrete Galerkin schemes,
that incorporate linear multistep or one-step formulae, is confirmed

in several aspects.

Finally, a class of quasi-linear parabolic equations is solved
by a semi-discrete Galerkin scheme that is third order accurate in
time. This method is based on a particular third order L.M.S.D. scheme
and requires the solution of linearly algebraic systems of equations at
each time level. Thus, we improve on all the previously documented
linearised schemes as they are only second order accurate in time. All

the schemes described in Section 2 are unconditionally stable.
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SECTION 1, REGULAR SPLINE SOLUTIONS TO A

TWO-POINT BOUNDARY VALUE PROBLEM



INTRODUCTION

The past decade accounted for a vast literature of techniques and
algorithms to solve numerically a variety of two-point boundary value
problems. A rapid glance through any prominent journal of numerical
analysis supports the opinion that the computer user is confronted with
a wide, and even bewildering, choice of possibilities. Excluding the
literature concerning 'shooting methods', and 'non-local approximants'
(e.g. Chebyshev series) the user enters the extensive field of 'local
approximations' encompassing all the documented finite difference and
finite element schemes. For a thorough insight into methods for solving
boundary value problems we recommend [4]. This book contains references

which are far too extensive to include here.

The subclass of finite element schemes has recently received the

concerted attention of numerical analysts. In particular the user will

be aware of the existence of projection methods (including collocation
methods), and schemes derived from a variational formulation of the
problem. This variational formulation uses the property that the analytic
solution to the boundary value problem strictly minimises a certain
functional. Details may be found in (5], whilst computational aspects

and rates of convergence are also considered in [13] and [20] , amongst
others. The nomenclature 'projection' defines the underlying principle

of projection methods. We project the problem into a finite dimensional
subspace of an appropriate Hilbert space by some technique, and derive

the approximant to the remodelled problem. In particular we may view
the Galerkin procedure as a specific example of a projection method.
The Galerkin method is employed by Douglas and Dupont [7] and Wheeler
[24] to investigate a class of linear two-point boundary value

problems. A superconvergence result at the knots is established in [7].



Projection methods of a collocation type for classes of nonlinear
boundary value problems are studied in [9], [12], [14] and [16].
Collocation methods require the spline approximant to satisfy the

differential ﬁquation at certain internal points.

The finite difference approach to nonlinear boundary value
problems is illustrated in [10], [11] and (21]. Kreiss [(11] develops
a general but complete theory for the linear equation. 1In [10], Keller
employs the centred Euler scheme to study a general nonlinear boundary
value problem. He also notes that any scheme satisfying the theory of
Kreiss may be extended to the nonlinear equation. Finally, we introduce
the paper by Stepleman [21]. In particular for the two-point boundary
value problem independent of the first derivative, and with disjoint
boundary conditions, Stepleman notes that his method is the classical

Numerov method.,

Of fundamental significance is the structure of the approximant,
or for finite differences, the structure of the difference formula.

Independent of the approach employed, the numerical solution is

dependent on a polynomial structure. The spline function spaces used in

projection and variational formulations are piece-wise polynomials

satisfying certain continuity constraints. Analogously, the finite

difference schemes mentioned above are polynomial based. For example,
the fourth order Numerov formula is derived by spanning the interval

[0, 2n] by a quartic polynomial, and collocating the values of the
function y(x) and its second derivative y"(x) at the knots x = 0, h, 2h.
Recently, some interest has surrounded the study of splines that are
closer in structure to the function being approximated than the more

conventional polynomial based splines. The classes of regular splines

defined in Chapter 2 are but one example of an alternative structure.

Such "nonlinear' splines are developed in [17], [18] and [24].



In Chapter 1 we introduce the nonlinear boundary value problem
and relevant results concerning a linear problem. These results are
utilised, in Chapter 4, to establish an existence and convergence result
for the collocation scheme of Chapter 3. The intrinsic characteristics
of the class of regular splines described in Chapter 2 are exhibited by
the cubic spline. In fact, the latter is a member of this class. Thus
it is to be expected that the collocation scheme based on regular splines
is a generalisation of the cubic spline collocation scheme. For schemes
utilising the cubic spline see [2), [3], [15-17]. Finally, in Chapter 5
computational aspects of the regular spline collocation method are dis-

cussed and numerical examples evaluated and compared.



1. A Two—Point Boundary Value Problem

In this first section we consider the homogeneous boundary value
problem
Ny(x) = y"(x) - £(x,y(x)) =0, 0 <x <1 (1.1)
y(©0) = y(1) =0 (1.2)
where f(x,y) is twice continuously differentiable, with respect to x

and y, in a region D of the (x,y) plane intercepted by two lines

X =0 and x = 1, (For simplicity we denote fy = 3f/ay).

Problems characterised by Ny(x) = O but defined over a general
interval a < x £ b and incorporating non-homogeneous boundary data are
equivalent to (1.1) - (1.2). Such problems may be reduced to our

problem by the application of linear transformations in x and y.

To ensure that the solution, y(x), of (1.1) - (1.2) is unique in
a subregion of D we follow Keller [10], and Urabe [22], by introducing
the concept of an 'isolated solution'. A solution, y(x), of (l.1) -
(1.2) is said to be isolated if and only if the linearised problem

L [y]é(x) = ¢"(x) -fy(x,y(x)) $(x) , 0 <x<1 (1.3)

$(0) =4(1) =0 (1.4)

has only the trivial solution ¢(x) = O. Following the two afore-

mentioned papers we note that an isolated solution is 'locally unique';
that is, no other solution to (l.1) - (1.2) exists in a sufficiently

small neighbourhood of the isolated solution.

We summarise here some results concerning a linear two-point

boundary value problem of the form
L u(x) = u'(x) - A(Xx)u(x) = g(x) , 0<x<1 (1.5)

u(0) = u(l) =0 (1.6)
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where A(x) and g(x) are sufficiently smooth, say A(x), g(x) € Cl[b,l]°
It is well-known that the above problem has an unique solution if and
only if A = 0 is not an eigenvalue of the continuous eigenvalue problem
Lu = Au , u(0) = u(l) = O, .We now introduce a linear difference method

for the problem (1,5) - (1.6). Define the set of equally spaced knots

m+l
tx; ¥3my

u(xj), satisfy

where xj = (j=1)h and h = 1/m., Let uj , an approximant to

u = 0
Y51 ;,% *3 Ayt Y (:22_ *3AD Fug, h_lz' + 5 M)
= %'(gj-l + 4gj + 3j+1) J =2, 3, coo, m
- 0 (1.7)

um+1

J
We use Theorems (3.1) and (3.3) of H. - 0. Kreiss [11] to establish;

Note that for brevity of notation A(xj) = A.j and g(xj) = g. etc,

Lemma 1.1
Let A(x), g(x) ¢ Cl[b,l] be such that (1.5) - (1.6) has an
unique solution. Then there exist positive constants ho and Ko such
that for any h < ho the linear difference equation (1.7) has an unique
solution which is bounded by
max |u.,| < K max |[g;]| (1.8)
2<j<m  J ° 1<jemel J
The linear system (1.7) can be written in matrix-vector notation

as

o [a@]u = & (1.9))

where Jh [A(x)] is the triple-diagonal matrix with elements J(A)i J.:



J(A)1 =1

1 1
J(A). . = - + — A, .
( )JsJ‘1 he 6 -1 j=2,3,000,m
2 2 .

. . = — o . - 2 eo0 o

J(A)J,J 02 + 3 AJ J »3, »m
(1.911)

J(A) e S i=2,3,.0.,m

Jsjtl h2 6 “j+l TRt
J(A)m+1, m+l 1

and the vectors u and G respectively denote

T - - - T
us= (ul, Ups coess um+1) , G= (gl, Bys ooos gm+1)

— 1 . . o wmp =
where 8j g(gj_l + Agj +gj+1), J'z, 3’ soo,yM 3 81 8m+1 (0]

Lemma (1.1) implies that Jh[A] is nonsingular for any h < h .

Define the matrix norm || . || by

I8l = sup |l Bx |l

m+] ————
xeR 1= i

for any matrix B of dimensions (m+l) x (m+l), where for any vector

x ¢ R
lx |l = max Ile
1<j<m+l
Thus by (1.8)
I, [AT7H <& (1.10)

and we have established a bound over the family of matrices

-1
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2, Regular Splines

Regular splines, as employed in the following context, were
introduced by|Werner [23]. Let O = Z) <2y coo<z 0= 1, and
consider functions il(x,c,d), defined for x ‘[22’22+1] » depending on
two parameters c,d where ¢ and d are in certain prescribed intervals,
for example R or 1340 The functions, El’ are subject to conditions

defined below.

The set of equally spaced knots‘{xi}?:i is specified such
that each 29, =1, 2,,00., n+l, coincides with a knot xp for some
P e{i}?:io Hence each interval Ip, where Ip = [xp, xp+1] , 18
contained in exactly one interval [zﬁ, z2+1] . The notation tj(x,c,d)
is used to denote the restriction of ?z(x,c,d) to Ij‘ In this way the
functions tj(x,c,d) are well defined when the mesh of knots is refined.
For a given set of knots {xi}?:i and classes of functions
{Ez} :_1 which are twice continuously differentiable with respect to
x, and continuous with respect to c and d, we define a spline by

2 -
n(x1:x2o°°°’ Xoe1’ x) = {u(x)|ux) ecC [0,1], uIIj: pj + tj(x,cj,dj),

p:€ll 3 j = 1,2,000,m} (2.1)

where Il is the set of linear polynomials.

In the context of this paper we need the following assumptions

on the classes of functions tj(x,c,d) :

»

(A1) The classes tj(x,c,d) shall be regular.

i.e. any two functions of the same class either coincide or
the difference of their second derivatives have at most one

zero in Ij°



This assumption ensures that the functions tj(x,cj,dj) J®1,2,000,m
can be parameterised in terms of tg(xj) and tg(xj+1). To explain
(A1) in greater detail it is necessary to quote a theorem by Werner
[23] R namel]y

'If the family of splines is made up of regular functions then the
interpolating spline is unique.'

Thus regularity is a sufficient condition for uniqueness of the spline
which interpolates the data produced by the collocation method of

Chapter 3, always assuming that the data is within the range of the

spline.

If the classes of functions tj(x,c,d) are parameterised as

above we adopt the notation

tj = tj(xj,x- M., Mj+1 5 X)

L j
d2
. = M. f i = j and j+1
where ;;7 tj(xj, xj+1,Mj’ Mj+1 ; xi) M, ori=]j j

(A2) The functions tj are smooth.

i.e. the functions t. are four times continuously differen—
tiable with respect to x, and these derivatives are twice

continuously differentiable with respect to Mj and Mj+1‘

(A3) The functions tj are 4-bounded.
R —.
i,e, the fourth derivative, u%x , of tj with respect to x
shall be a twice continuously differentiable function of

l.

T (M[J.+1 - Mj) and either Mj or M.+1.

J

The assumption (A3) is motivated by the fact that only two
parameters are needed to control the behaviour of the second and

higher derivatives of the spline. It would be unwise to use bounds

on M. and M.+1 as when h + 0 the two parameters become increasingly



identified with each other, However P% and-% (M5+1 - MG) are well

defined as h -+ 0,

Examples of admissible classes of functions tJ. are now given,

|
cf. [19, pp.176].

Example 1 tj - cj(dj-x-ij)k k # 0,1,2
/ -
M, a2k
ego d. = h and c. = —l_J1_  whenever Mj #0
J M, 1 ] k (k=-1)
1[_514_1] =)
h]

The above classes of functions yield splines of various
structures for different values of k. For any k < O we have a
rational spline. The standard cubic spline is derived by allocating
to k the value three. The condition for (Al) - (A3) to hold is given
by

M,
Y";‘};en‘ , Mo# Mo,
For the larter

unless k = 2n+l where n is any positive integer.

cases (Al) - (A3) hold unconditionally whenever Mj t Mj+1'

Example 2 tj - cjedj(1+x_xj)
M. M.

1 +1
where dj LK S log[-‘]——] and cj' —%—d—

h M. .
d.e
J i J

Once again, the necessary and sufficient condition for

(Al) - (A3) to hold is

M.

I € R+ 'Y M. *M.+1
M'+l J J

J

-10-



Example 3 tj = cj log(dj-x+xj)

vhere d; = and c, = -M_ d°
j 33

For this class of function the conditions (Al) - (A3) are satisfied

whenever
0 < -J-— <1
J+1
Example & tj = cjsin (u(x-xj) +dj) U+ O
-1 1 Min1

eg. d. = cot — -ﬂJ— = cos (uph)

] sin(uh) 3
and u2 c. = =M. cosec d whenever M. # O

j h] 3 J '

Functions of this class satisfy (Al) = (A3) unconditionally.
Following Schaback [19] and Werner [23] we define the

difference operators
8(x,) - 8(x))

1
A (xl,xz)g(x) = —
2 1

1
Az(xl.xz,x3)s(x) = 1 [ Al(xz.x3)g(x) -4 (xl.xz)g(X) J

X374
where X),X), Xy are piecewise disjoint and g(x) € C 0,1}

If the function g(x) is differentiable we may allow x) and Xy

to coalesce and obtain

g(x,) - g(x,)
2% e e X )B0) = o [ s - 8'(x1)]

37 3 1
We adopt the following notation :
) i o= 1,2,...,m

A (x » X, ,xJ+1) j = plx, ’x_]'.'l’ 3? j+1

The following lemma and corollary are by Werner [23] o



Lemma 2.1

Let u(x) € Ca[xl,xz] , and u"(xi) - Mi for i = 1 and 2,

then
Az(xllxl,xz)u(x) = %”1 + %Mi + R(xl,xz,u5! (x))
where B(xl,xz,uzi (x)) = = %z (@), x < £ < X,

Corollary 2.2

If u(x) is four times continuously differentiable with respect
to x, and these derivatives are twice continuously differentiable with
respect to the parameters Ml and Mé, then the remainder term above is
also twice continuously differentiable with respect to these

parameters,

Furthermore, if f(x,y) is a twice continuously differentiable
function with respect to x and y, and Mj S f(xj,yj) for j = 1 and 2,
then the remainder term is twice continuously differentiable with

respect to yj for j = 1 and 2.

-12-



3. A Regular Spline Collocation Method

In this chapter we derive a collocation method that yields a

regular spline as an approximate solution to the problem (1.1) - (1.2).

From (2.1) any regular spline, u(x), satisfying (Al) can be

expressed by

u@ |y = s bix 4 e () i=1,2,00, m
J
where the parameters are still undetermined. Following Werner [23]

the linear parameters aj and bj may be determined in terms of u(xj)

and u(xj+1) giving

“(")lxj = ulx) =)+ (uxg,,) - ulxg) +t(xg) (3.1)
7 j = 1,2
'tj(xj+1)){ - J+ tj(x) J 943000,

The function u(x) and its second derivative are continuous for

X € [0,1]o Hence the conditions

)II o= 1,2,000,m1  (3.2)

u'(x...)] = u'(x,
j+17'1, j+1

hRgS
2 .

are necessary and sufficient for u(x) € C [0,1]. The expression (3.2)

applied to (3.1) yields a relationship analogous to the consistency

relationship of cubic splines [1, pp 284], namely

2
) + p(xj,x.j M.,M5+1) = 2A (xj_l,xj,xj+1)u(x)

p(xj’xj"l’ Mj ’Mj-l +1°

j - 2’3’°°°’m (303)

A collocation method is derived by fitting the equation (3.1)

. m+]1 .
to the problem (1.1) - (1.2) at the set of knots {xj}j-l' Setting

uj = u(xj) this can be written as

-13-



Mj = f(xj,uj) j = 1’2,.oo,m+1 (3.4)

Equations (3.3) and (3.4), when combined, yield a non-linear
system of equations, F(u) = 0, from which the knot values of the
regular spline collocation solution are calculated. This system of

m~1 equations in m~1 unknowns is given by

Ni]x [g] p(xj ,xj_l,f(xj,uj),f(xj_l,uj_l))

+ p(xj ’xj"'l’f(xj :uj) ,f(xj+1’uj+1))

-h% (j_y =2u; +u;) = 0 § = 24e0e,m

(3.5)

u
m+1

Let us assume that the system of equations (3.5) has anunique
* * .
solution u . The vector u yields values at the knots, which,

combined with (3.1) and (3.4), construct a regular spline approximant,

%*
y (x), to y(x).

-14-



4, An Existence Theorem

This chapter is devoted to establishing the following theorem.

Theorem

Let the problem (1.1) - (1.2) be defined for a function f(x,y)
‘that is twice continuously differentiable with respect to x and y in

the region D of the (x,y) plane intercepted by two lines x = 0 and x = 1.

. 4
Further assume that this problem has an isolated solution y(x)e C [0,1]

in a region U where, for some T > O.
U = '{(x,y)l lyx)-y| <1, 0<x<1l} = D,
Define the closed sphere Sp[y(x)], p <1, by

= T _
sPly] = (Ve 1y T (0,Vys000,V,0), le. - y(xj)l <p,

i=2,3,...,m
Then we select the classes of functions {tj};.n_1 from the space of all
functions, satisfying (Al) - (A3), that permit ﬁi = £(x;, (V) i=j
and j+1, as admissible values for Mj and Mj+1 respectively, for all

v e Sp[y(xﬂ . Fipally, let p and h0 be sufficiently small so that,
for some 6 > 0 and h < h

lMi - y"(xi)l <6 i=1,2,000,m+l
1,0 = "e : -
md ]K (Mi+1 - Mi) - y (xi)l < 6 1 1,2’099,“1

Then for p and ho sufficiently small
(i) the difference scheme F(u) = 0 (ie. (3.5)) has an unique
solution u* € sP [y(x)] , for all h £ ho.

(ii) |y(x) - y*x)| = o(h?) (y*(x) is the regular spline collocation

solution).

-15-



Proof.

For any u ¢ sP [y(x)J the regular spline u(x) that satisfies
u(xi) =y, u"(xi) = f(xi, -Bi) = Mi’ i=j and j+1, is readily seen to
be 4-bounded over Ij' Thus, by lemma 2.1 we may rewrite the system of

equations _1-:(2) = 0 as

ul =
iry7zl Ll -
Nh [3] =z f(xj_l,uj_1)+4f(xj,uj)+f(xj+1,uj+1) h2 (l.lj_1 Zuj+uj+1)
v iv .
+R(xj’xj_1’u£-v- (x)) + R(xj:xj+llu—Y' (x)) - 0 _]‘2,3.0.,1!!
um+], = 0 (4-1)

Since Jh [A] of (1.9) is nonsingular for any A(x) e Cl[O,l],
h < ho’ let us select A(x) = fy(x,y(x)). Hence (4.1) is equivalent
to

~1
sru-3[£]  F@ = y[u] (4.2)

Let v and w be arbitrary vectors of Sp[y(x)] , then

Yly] -¥[u]= v-u -3 [£]7[Fr@ - 2w ] (4.3)

To apply the mean value theorem on (4.3) we must first establish that
F: Sp[y(x)] ->Rm+1 is a C:l map; ie. (4.1) is continuously
differentiable with respect to u, ue sP [y(x)]o The function f(x,y)

is continuously differentiable with respect to y by definition.
Consequently, the task reduces to proving that R(xJ., X e (x)),

i=j~1 and j+1, are continuously differentiable with respect to u. The
4=bound on u(x), u € sP [y(x)] has already been established, and hence,
from (A2) and corollary 2.2, R is continuously differentiable with
respect to u. Concluding that F : sP [y(X)]+mm+1 is a C' map, and

using the convexity of sP [y(x)] , we deduce from the mean value theorem

that, for any v, w e Sp[y(x)]

~-168-



1

F (v - FW =JV 2 F(sy + (1-s)w)ds [v - w]

- Bu

= 9F [w "]/au [v-2] (4.4)
Here 3F(w) J3u is the Jacobian of the system (4.1). The non-zero

elements of this matrix are
(BF(u) - ) ey
1

9F (u) ) 1 ' )
—2773 .., m- ) +
( /on 3,3-1 ? *% y(xJ-l, uJ-l) auj_l
2
2

R(xj, Xi_p» v (x))

2 3 v
(8_1:(_)/3_) P AR R0 T U s e B U
+ 2 Rk, %, v () (4.5)
auj 3* i1
3F (u) ) 1 2 o
( LA - 4+ f (%4158 01) * Fo R(x 2y X: g su=—(X)
=/ j,je1 BE g Y IR T duiy At
(ag(l'l.)/au) = ] j ol 2,3,.0.,“‘

m+l,m+l
A simple manipulation of (4.3) and (4.4) yields

v[y) - wfe] = (5] —I[Jh[fy] -2 [v] po] 2 2]

whence, by (1.10)
le[) - w[e] 0 sx Hay[5]- E[wul/p, I Nr-ul &

Note that;

1) for some s* , 0 < g* < 1
1
lfy(xan(xj)) - -f fy(xj, sv, + (1-s8) wj)ds | =

(o]

lfy(xj,y(xj)) - £, (xj,8%vs ¢ (1-s%)w,) | <

Kly(xj) - sV, - (l-s*)wjl <Kp .7

where K is the Lipschitz constant for fy(x,.)o

-17-



(11) Let us(x) s X & Ij’ be the regular spline interpolating the

1"
values us(xi) = ri(s) . us(xi) - f(xi, ri(s)) where, for i=j and j+l
ri(s) = 8V, + (1=-8) W oo By the convexity of Sp [y(x)] R us(x) is
4=bounded over Ij’ whence‘by lemma 2.1 and corollary 2,2

1

) v 2 PR
3;; R(xj, xj+1, u== (x)) ds = 0(h") p=l, j+l (4.8)
o

Remembering that J [fy] is expressed by (1.9) with A(x) = fy(x.y(x))

we establish from (4.4) - (4.8) that

- 2
(. [£] - F[wx] fou | skp+kh (4.9)
for some positive constant Kl’ and h sufficiently small.
From (4.6) and (4.9) we conclude that for p, h sufficiently small

I wfe)-e[=] 0 sall x=wll, o=kK +KKH <1 (4 .10)

The vector Y = (O,y(x?_),....,y(xm),o)'r is the centre of the sphere

sP [y®)] . Now, F (Y) may be estimated by (4.1)

i.e. HE Ol = max | N [y
2<j<m h (L]
< K2h2 (4.11)

whenever h is sufficiently small. The bound (4.11) utilises (1.1),

the continuity of y(x), the 4~bound over u(x), x ¢ Ij, for any vector

u e Sp [y(x)] and lemma 2,1. The expression (4.11) yields a bound

on the local truncation error. Now, for any h sufficiently small,

we have from (1.10), (4.2) and (4.11) that

Bx-w(el o]0 HE@ I

2
< Kol(zh <Q-a)p

(4.12)

The expressions (4.10) and (4.12) verify that Y Lg] takes

s [y(x)] into itself and is a contraction mapping whenever p,h°
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are sufficiently small. Thus u = [3] has an unique solution

u* ¢ sP [y(x)] from which we immediately deduce that u* is the unique

solution of f_(ﬂ) = 0,

. . .th
To determine an error estimate let the j component, ej, of

the vector ¢ satisfy

* .
ej - uj - y(xj) 'Y J = vl.z,ooa .m+1¢

Now, as u* ig the unique solution of (3.5)
F@) =FE@+9 =0
Consequently, the mean value theorem yields

F@M=FQX+e)-EQ

- af[!.+.€.-1]/au.€_

and we may rewrite the above equation as

Ih [fy] E= [Jh [ny - 8};‘[1 + g, 3]/33]5 -F @ (4.13)

By identical arguments employed when deriving (4.19), it is simple to

show that
I3y [5] = BE[Lve ]l sxlell +xp® 1o

Since Jh [fy] has an uniformly bounded inverse, ie. (1.10), we use

(4.11), (4.13) = (4.14) to deduce

2 2 2
lell skk |l ell®+xgn” |l gll +KKb

whenever h is sufficiently small. Making h smaller if necessary

we achieve

2 2 2
a- Kol(lh) Il el < K K |l ell“+kKh", hsh
. 2 . 2 . .
The scalar equation bx<ax +c, with a > O and 4ac < b", implies that

either x < x_ or x > x_ where x_ are the two real roots of the

equation ax2 -bx + c =0,
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ie. x_ = (b :./bz - 4ac)/za

Let ho be smaller if necessary so that, say

2 2 1 2.2
KK Kyh® <3 (1= KKKh)? , hsh
Similarly, as || el =)lY=~u*| <p, let p be sufficiently small

to allow

2 2, .2 2
< - = -
p <+ /b 4KK K,h )/'2KOK » wvhere b = 1 - K K/h

then it follows that

1
1k k.2 ar’ b’ |7
o1 1-]1- 2=
Il el < 5 2
2K K (1-K K h%)

Using the inequality, l-x < (l-x)i , 0 x<1, we have proved

that
= - 2
Il €|l | ¥ -ur| < 2K K,h //;1—K0K1h2) for any hsh_  (4.15)

1}

The global error bound may now be established. Let €(x)

y(x) = y*(x), and note that by the continuity of y(x) and the 4-bound

on y*(x), xe Ij , the second derivative €"(x) is uniformly bounded

over Ij' Consequently,

~

ej(xj+1 - x) + ej+1(x-xj) + (x-xj)(xj+1-x) e"(x)

e(x) =
h 2

- 0(hd)

for all xe Ij' and some x , x; < x < xj+1. The proof is now complete.

Remark

The choice of p = 0(h) is compatible with the assumptions of
the theorem., This order of accuracy is normally the minimum required

by the starting value of any iterative method proposed to solve (3.5).
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5. Computational Aspects and Examples

The selection of optimum classes of functions {22}2‘1 is of

fundamental importance. fhis process relies heavily on a preconceived
notion of the analytic solution. Hopefully, this can be derived from
the formulation of the problem, However, for a particular type of
equation, we can be considerably influenced by the structure of the
function f(x,y(x)) or by predetermining a characteristic of the
analytic solution. A possibility is to assume a power series expansion
for y(x)

ie. y(x) = (x—al)a (a, + ay(x-8)) + cocenes) (5.1)

The exponent, a, is determined by substituting (5.1) into equation
(1.1) and equating the least exponents of (x-al) on either side of the
equation. Consequently, a feasible solution may incorporate the
function

£y (x,c,d) = c(xd)* , a#0,1,2.

Flexibility of application is an important feature of regular

splines and different classes may be deployed over consecutive

intervals [zl-l’zl] , [zl,zl+1] . Computationally, this is

facilitated by expressing (3.5) in a simplified form. For an

arbitrary regular spline, u(x), defined over Ij’ we have by lemma

2.1 that

i
6

(5.2)

M.
AZ X X X = -a]_
. . . A. . °
(Xj0X5 0% 541000 P 3»j+l

With predetermined expressions for the A's, the terms (3.5) and (5.2)

yield a computationally versatile system of equations, namely
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1
—1-f(x u )+Zf(x u)+lf(x u )-l(u - 2u, +u..,)
6 i=1"%-17 7 3 iY77 % 341,73+ 127 V-l i v
+ Aj,j+1 + Aj,j-l =0 J=2,3,.00,m
=0 (5.3)

u
m+1

The expressions A. for the examples of chapter 2 are

jsi*l
Example 1
M. M. 2 k(k=-1)
o+l 2 _ _ k(-1 ] _ a“~ka + --——-]
4,541 T ¥GeD [ a - 2atl = =% ] K(k-1) ( 3
where a = 1
M.
! - [ A ] -2
M.
]
When k = 3, the cubic spline, A.’ j+1 =
Exﬂgle 2 )
n—
LY 2 M.
6-n +n J 1 J
.. M 1o [
isj+l n§4 [ 6.n! ] & H,
Examgle 3
2 M. M
a i l] LY
A, . = - M - 1 + a +
isitl j [ 2 OB [uj+1 ] 3 6
where a = L
M 4
]
Mj+1
Example 4
o0
2 1 1
A g =-M T DM ™ -
Js] J n=1 (2n+2)! 6.2n!
- ht 1 2n+l
X Mj cos uh Mj+1 z (_1)n+ (uh) 1 _ 1 ]

sin ph n=1 (2n+3)! 6.(2n+1):J
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.

In examples 2 and 4, a truncation of the infinite serieg for

A is used in numerical work.

A change in class of spline is frequently necessitated by
the nature of the solution. The examples of chapter 2 illustrate
that some classes of regular splines are not defined for all values
of the second derivative., A common occurrence is that the sign of
the second derivative must remain constant throughout the region of
application. Such a spine, t(x), is invalid in a small neighbour-
hood of any point, n, where t"(n) = 0. The spline t(x) is
obviously a 'bad fit' to the analytic solution in the neighbourhood
of the point x = n. Consequently, we require a criterion to

determine the deployment of the spline t(x).

To illustrate how a regular spline collocation scheme may be
applied we investigate a hypothetical problem. Assume that y(x) has
a singularity at x = a, a1¢ [0,1] , but is regular elsewhere, ie.

s Th
i=2* €

y(x) is given by (5.1) with appropriate constants {ai}
exponent, 0, is determined as previously stated and hence the splines

to be incorporated in the solution include the rational spline,

t(x) = a + bj (x-xj) s——Jd  xer.

The effect of the singularity on y(x), x ¢ [0,1] , whether signi-
ficant or not, lies chiefly in the reéion of a boundary point. The
scheme proposed is to apply the rational spline over [O,a'J R [b',l]
and the cubic spline over [a',b'] , for suitable a',b'. In this way
the spline solution can 'fit' the effect of the singularity and rid us
of the necessity to use extremely small values of h if this effect is

overwhelming (cf.Problem 1), The 'selection of a' and b' will be

influenced by the function f(x,y(x)) and its values at x = O and x = 1.




A judicious choice for a',b' removes the obstacle associated with the
sign of y"(x). The cubic spline is only one possibility for the
interval [a',b'] , and any class of splines that is defined uncon-

ditionally may be used instead (eg. Examples 1 and 4).

Solution of the appropriate system of equations (5.3) will
yield information to formulate and solve a refined system. Using
this information it is possible to realize the character of y(x) by
evaluating certain structural parameters, a4, derived by a direct
comparison of the supposed structure of the analytic solution to the
corresponding regular spline approximant. We qualify this process by

referring to Examples 1-4 of chapter 2. Assume that for x ¢ [E,F]S

[0,1] , and constants e,f,g and p:

cf. Example 1
v(x) = e +fx + g(p-0)F k+#0,1,2

then q.‘i = dj + xj for any j such that Ij € [Z, 1_).] .

Similarly, we have

Example 2
y(x) = e + fx + g eP* q.=d.
J ]
Example 3
y(x) ~e + fx + g log (p—x) q.=d. +x.
J 1 ]
Example 4
y(x) ~ e + fx + g Sin (ux+p) qudj-uxj

Returning to our hypothetical example, let us assume that the
parameters {qj }§=1 of the rational spline are closely grouped but for
m
every other class of splines the associated parameters, {qj }n-r+1 vary

substantially, We decide that, for x & [0,xr+1] , the rational spline

is a good '"fit' whilst the cubic spline is probably best for x ¢ [xr+1’1]
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Numerical criteria implementing the above ideas, are as
follows: Let {qj}?=1 be the values of the parameter for an arbitrary

class of regular splines

(c1)
941 79 -
Let rj = l 0 RS where qj = max {1, lqj l}
9
Then, if
< Ch, the spline is
applicable
lrp*_1 -, | = miny :ome1 {Irj+l—rjl}

> Ch, the spline is
not applicable

for some C 0<Cx<{.

m

o1 >

Normalise the values {qj}

if <1
q. 1 qp

q.
L ifq >1
qp P

(c2)
Apply the spline over the intervals [xr,xp+1] , and [xp’xs]

where the integers r and s satisfy

~ ~ .
l 9 - qpl < .2 j = r,r+l,..0,P

A A .
| a, = q f< «2 j = p+1,p*2,...,8"1

The effect on the solution of the parameter C in (Cl) will be

discussed later.
We may now define a remodelled system of equations (5.3) based

on the criteria (Cl) and (C2). The solution of the first system of
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equations is an excellent initial value to the remodelled problem,
and comparatively little extra effort is required to solve this

additional iterative problem.

Four problems are evaluated by the above criteria. For
comparative purposes the problems are also evaluated by the cubic
spline collocation method and by Numerov's method. As previously
stated, the latter is a fourth-order finite difference scheme. For
simplicity of notation we define by E the absolute error, and Er

the relative error. The parameter C of (Cl) is taken to be C = {,

2.3
Problem 1 y'(x) = 2( (x)+; ) -2
1.01

y(0) = 101, y(1) =0

(x+,01)
Table 1 The regular spline solution y*(x) uses the rational
spline k = -1, and the cubic spline.
X y*(x) E Er h
-3 -4 .
.05 16.8358 4.97 x 10 2.95 x 10 1
.2 4.7728 | 3.32 x 1073 | 6.96 x 107 | .1
.5 1.7331 | 2.68 x 102 | 1.55 x 1072 | .1
025 | 28.8576 | 1.08 x 1073 | 3.76 x 107> | .05
.2 4.7703 | 8.21 x 107 | 1.72 x 107* | .05
.5 1.7309 5.41 x 104 3.13 x 1074 .05

~ .8
The values of the parameters {qj}j=1’ h=,1, are

~ A A
q, = -0.00999 q, = -0.009%7 , 4 = -0.00583
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~ ~

q, = 0.00589 , g =0.0330 |, 36 = 0.0854

q, = 0.175 , 38 = 0,318

The cubic spline and Numerov's solutions are too inaccurate to

give a useful comparison with the above values of h.
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Discussion

The previous chapters generalise the well-established theory of
the cubic spline collocation scheme, for the problem (1.1) - (1.2), to
classes of regular spline collocation schemes. Consequently, we may
now consider classes of schemes wherein, formally, only the cubic

spline option existed.

Numerically, the versatility of the proposed scheme is of major
importance. The classes of splines utilised depend on the ingenuity
of the user. These may include the examples of chapter 2 or a class
derived from an intuitive idea of the dominant terms of the true
solution. Corresponding to the classes employed, structural para-
meters will be evaluated and these may yield desirable information,
e.g. the location of a singularity., The numerical examples of
chapter 5 illustrate the increased accuracy obtainable by a judicious
Also,

application of regular splines compared with the cubic spline.

the results give a favourable comparison with Numerov's method, for

the specified values of h, However, as h + 0, a fourth order method

will converge faster than the second order collocation scheme and the

comparison must favour the former. Yet, cf. problem 1, meaningful

results may be obtained by the collocation scheme when the fourth

order, polynomial based method is inapplicable.

At this point we introduce the paper by Daniel and Swartz [6] .
They derive a fourth-order, cubic spline scheme by collocating to a
perturbed differential equation which is satisfied by the cubic spline
interpolant of the true solution. The generalisation of their work to

incorporate regular splines is a research possibility for the future.
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We now consider the effect of varying the parameter C of (Cl),
chapter 5. Obviously as C + 0O the number of splines satisfying (Cl)
will decrease and may equal zero. However, a small value of C will
ensure applicability of a spline that imitates the dominant structure
of the true solution in a subregion of [0,1] . In particular C=1/16
ensures applicability of the rational splines in problem 1 and 2,
whilst C=1/100 is sufficient for the rational spline in problem 1.
Note that the evaluation of problem 2 by Numerov's method is perfectly
acceptable, and hence, to detect problems to which regular splines are

~

especially recommended, we suggest a value of C = 1/30. For comparison

with the cubic spline collocation scheme the value C = } is acceptable.

Let us conclude with the following comments. The regular spline
collocation scheme is meaningful and interesting in itself, but note
that the convergence is second order. Taking the parameter C = § we
achieve better results than those obtained by solely cohsidering the
cubic spline. However, if a polynomial based spline closely inter-
polates the true solution, without requiring excessively small values
of h, it appears likely that a fourth order scheme is preferable. For
problems not satisfying the above condition a suitable regular spline

may ease the computations. Therefore, an interesting possibility is

the production of computer packages for the problem (1.1) = (1.2)
involving the regular spline collocation scheme and some fourth order
method. The collocation method may be applied, with C = 1/30, to remove
the necessity of using excessively small values of h. Initially we

employ the collocation scheme to investigate the suitability of

appropriate classes of regular splines, and then switch to the fourth

order scheme if none are revealed.
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SECTION 2. FINITE ELEMENT MULTISTEP MULTIDERIVATIVE

SCHEMES FOR PARABOLIC EQUATIONS
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Introduction

The feasibility of applying finite element methods to parabolic
equations was apparent to engineers over a decade ago. Since those
pioneering days the finite element application has been thoroughly
investigated by mathematicians and, as a result, established by
vigorous analysis. The intensity of activity in this field is evident

from the extensive literature available.

The foundation of the finite element procedure is to express
the problem by its variational formulation. The propriety of such an
operation has been validated by several authors, e.g. [15]. The
Galerkin procedure is to approximate this weak solution over a finite

element space.

We consider finite element spaces that completely cover the
region of definition. Thus, for a parabolic equation defined over an
one-dimensional region we may select, for example, spaces of cubic
splines or Hermite cubic splines, etc.§ see [28] for details. A two

dimensional region may be covered by triangular or quadrilateral

elements depending on the boundary shape. For quadrilateral elements

tensor products of one-dimensional splines are applicable. However,

given a general curved boundary, the possibilities extend to

curvilinear elements, see [20-21] and [24]. Each finite element

space is associated with a parameter h. For one~dimensional regions

h will be the maximum length of an interval, whereas in two dimensions
it is the largest side of any triangular or quadrilateral element.

The chief stipulation that the finite element spaces must obey is a
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result from approximation theory. We require the existence of an a
priori bound of order hp+1, p > 0, over the interpolatory error
obtained by approximating a suitably continuous function by elements
of that space. Superconvergence results at the knots for the Galerkin

approximation have been established, e.g. [32] and [35].

The Galerkin procedure applied to a parabolic equation
establishes, in the time variable, a stiff system of initial value
problems in ordinary differential equations. The theoretical solution
of this problem yields the so-called 'continuous time' Galerkin solution.
In practise it is customary to discretize the initial value problem by
some appropriate method. The stiffness of the system necessitates the
use of discretization schemes that satisfy certain stability conditions.
Dahlquist [5] introduced A-stability and investigated A-stable multistep
methods, whereas Widlund [38] weakened the stability cri;erion to study

the class of A(a) - stable multistep schemes. However, for our purposes

the Ab-stability criterion of Cryer [4] is sufficient.

Various authors have considered the extension of A-stable
multistep methods for initial value problems to those incorporating
higher derivatives. Ehle [9], Makinson [19] and Norsett [26] investigate
one-step methods incorporating higher derivatives whereas Enright [10]
and Jeltsch [14] have considered multistep, multiderivative formulae.

Alternatively Crouzeix [3] has studied A-stable Runge-Kutta methods for

initial value problems.

The application of a discretization process to the system of
initial value problems yields a 'discrete time' Galerkin solution. 1In

particular for the linear parabolic equation, discrete time solutions

-39 -




.

have been evaluated, and error analysis established, for all the
aforementioned processes. Zlamal [40-41, 43] applies A -~stable,
linear multistep methods to the system of differential equations,
whereas Nassif[25], and Thomeé [31] utilise A-stable one-step Padé
approximations, and Crouzieux [3], Zlamal [39, 42] amongst others
apply A-stable Runge~Kutta schemes. The bulk of this section is
devoted to analysing the discrete time Galerkin solution to linear
parabolic equations by the application of Ao-stable linear multistep,
multiderivative formulae to the Galerkin system of differential

equations.

Chapters 1 - 2 introduce the linear homogeneous parabolic

equation and examine the continuous time Galerkin solution., In

chapter 3 we define A -stable linear mulﬁistep, multiderivative
formulae and formulate the discrete time Galerkin solution. The
theorems of chapter 4 are established by the vigorous analysis of
chapter 5. These theorems state optimal convergence results in the

L,-norm under extremely general conditions. The nonhomogeneous linear

parabolic equation is similarly analysed in chapter 6. Here we

require more restrictive assumptions on the continuity of the analytic
solution. However, note that we have relaxed the stipulation hitherto
of the solution being q+1 times continuously differentiable with respect
to time by an analogous assumption on.the nonhomogeneous term, f(x,t).
In chapter 7, we construct various Ab-stable, linear multistep, multi-
derivative schemes and investigate their implementation procedures. It
is shown that optimal order schemes invariably necessitate the use of
complex arithmetic but that by easing the requirement of optimal order

the implementation procedure can be considerably simplified. Test
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problems are evaluated and analysed in chapter 8.

Finally, in chapter 9, we investigate the solution of a class of
quasi-linear parabolic equations. The application of the Galerkin
procedure to the quasi-linear equation has been studied by Thomeé and
Wahlbin (33]. More general non-linear equations have been tackled by
several authors and we refer, in particular, to the papers by Douglas
and Dupont [7], and Wheeler [36]. The above authors obtain discrete
time Galerkin solutions by employing one-step time discretisation
schemes. Two-step time discretization schemes are utilised by Dupont,
Fairweather and Johnson [8], and examined more generally by Zlamal [44].
Many of the discrete-time Galerkin schemes referred to above place ease
of solution at a premium and, without a reduction in the order of
convergence, avoid the necessity of solving a non-linear system of
equations at each time level. However, even for the comparatively
simple quasi-linear equation, only second order convergence in the time

increment is achieved. In comparison, a fourth order finite difference

scheme for a general non-linear parabolic equation is described by

Watanabe and Flood [34], but this requires the solution of a non-linear

system of equations at each time level.

Motivated by the previous chapters, we now utilise a third order
linear multistep, multiderivative, method to achieve an unconditionally
stable discrete time Galerkin solution to the quasi-linear equation.
This solution will be established to be third order accurate in the

time increment and is obtained by solving linearly algebraic systems of

equations at each time level.
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1. The Linear Homogeneous Parabolic Equation

We shall consider the initial boundary value problem

N
]
3% = Z 3%7 [ aij(x) gE-J - a(x)u = Lu, (x,t) €  x (0,®)
i,j=1 % ]
u(x,0) = g(x) . X € §
u(x,t) =0 . (x,t) € T x [0,®)

where x = (xl,...,xN) is a point of a bounded domain {I, with
boundary I', lying in the N-dimensional Euclidean space.
Without loss of generality the boundary value is taken to be
homogeneous Dirichlet. Non-homogeneous Dirichlet and Newmann
boundary conditions apply with only minor adjustments.

For simplicity we allow
N © = o
. e E
{a; ;0¥ ,am e @ ,Tec
where @ is the closure of Q. We also assume that
a(x) 20

and the matrix a,.(x) is uniformly positive definite

1]
e 2,00 =a 1<i,jsN, x¢€Q
N N
and 2 aijgigj >y X Ei for some positive constant Yy
i,3=1 i=]

Before we can formulate the weak form of the problem
(1.1) it is necessary to introduce Sobolev spaces. The Sobolev

space H'() is defined to be the space of real functions which,
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together with their first m generalised derivatives, are in LZ(Q)
the space of square integrable functions over {i. The space Q)
is a Hilbert space, the inner product (-,-)m being given by
(u,v)m = 7 [ pJuplv dx
. Q
i |sm .
. . . j alily
where j = (Jl,...,JN) , |il= Jp ety and D'u = —————

J J
1 N
8x1..3xN

The associated norm, ||-||m, is defined to be

vl = w2

The norm and inner product on LZ(Q) are denoted respectively

by || -|| and (-,:) where

2 4
| vl = [ v dx ] , (u,v) = uv dx
Q Q

Further we denote by Hi(ﬂ) the space of all real functions v,

where v € HI(Q) and vl = 0 in the generalised sense. To formulate

r
the weak problem associated with (1.1) we multiply the equation by an

arbitrary function v ¢ Hi(ﬂ) and integrate over Q. Using Green's

theorem we get

N
f %% vdx + ) J aij(x) gﬁ %% dx + I a(x)uvdx = O (1.3)
Q i,j=1 /@ It g

We adopt the notation

N
a(u,v) = X aij(x) %ﬁ gi‘dx + J a(x)uv dx
. . j 1 Q
i,j=1

and consequently rewrite (1.3) as
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[%% s V] + a(u,v) =0 VveE H‘l)(Q), t>0 (1.4)

The weak solution of the problem (1.1) is the function
u(x,t) € Hi(ﬂ) which satisfies (1.4) for all t > O and the initial

identity (1.1b).

We determine the asymptotic behaviour of u(x,t) by employing
the 'energy method'. Denoting a(t)Ellu (+,t)|| we have by applying

(1.2) to the expression (1l.4)with v = u(x,t)

2
a(t)ad? a(t) + y[a(t)] < [-glt‘- . u} + a(u,u) =0

, . . -yt , .
Cancelling throughout by a(t), multiplying by e Y , and integrating

from O to T we achieve

lux,Dl s e™ | g | (1.5)
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2, The Galerkin Procedure

Let V° be a finite dimensional subspace of Hi(Q). The Galerkin

method is to find an approximation, U(x,t), to u(x,t) of the form
d
U(x,t) = ¥ C; (t) V, (%) (2.1)
i=1
where {Vi(X)}g=1 is a basis of V°. The continuous~time Galerkin
solution to (1.1) is the function (2.1) where the coefficients

{Ci(t)}gsl are determined by the discrete analogue to (1.4), namely

{gg . V] +a(l,v) =0 for any Ve V°, t >0 (2.2)

Substituting {Vi(x)}:.hi“1 in turn for V in (2.2), and assembling in

matrix form, we see that

a - : (2.3)
M5 C + KC Y

where M and K are constant, positive-definite matrices. The

elements of M and K are

..o= (V,,V, .. o= .V, 1<1i,j<d.
MlJ (vl,vJ) and le a(v,, J) s »J |

An appropriate initial condition is derived from a

- o
discretized form of the identity (1.1b). Let g(x) € V be an

approximation to g(x) and define U(x,0) = g(x). This yields an
initial condition for C(o), say

E(o) = a (2.4)

The equations (2.3) and (2.4) define the continuous time

Galerkin solution.,
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Applying the energy method to (2.2) we have, by the previously

described manipulations

Nl < e | 20l (2.5)

The expressions (1.5) and (2.5) will be influential in our
choice of time discretization schemes to approximate U(x,t). Any
method that preserves the asymptotic behaviour of the true solution
is 'well-posed'. This concept of 'strong stability' or well-
posedness is investigated by Crouzeix [3] and Nassif [25].

Following them we define a 'k-step' approximation method to be strongly

stable if Un, the approximant to U(x,nAt), satisfies
k-1 )
o™ s ¢ ™ § v (2.6)

j=o
where o is some positive constant. In the sequel we use C and c

as generic constants, that may differ in successive lines.

. o
We now impose a necessary property on the subspace V-,

namely V° = VE, vhere Vﬁ has the property that for any

n
Ve Hp+1(Q) n Hi(Q) there exists an element v € Vg such that
whenever h is sufficiently small

n
Iv-vll +nll V=vll;sa®™ V], »5=L2.cp @D

) T .
Any function ¢ € Vg can be expressed as ¢ = x V where x is

a vector of constants and V = (Vl, Vz....,Vd). We assume that the

space VE exhibits the following properties

2 -2 2 .
(P ”"1”1 > ch “||v, ]| i=1,2,...,d

1)

@) ae safel? for any ¢ < Vg
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The above properties are satisfied by the finite element sub-

spaces used in practise.

Let K be an eigenvalue of the matrix S = M-lK. The matrix S is
not symmetric but its eigenvalues are readily seen to be exactly those

of the positive definite matrix M-ém_$; ie. for some eigenvector X

E T 3 Ao an .
M KM *x = Ax , A real and positive
S e VP . " -4 T
Further, let ¢ ¢ Vy be defined as ¢ = (M “x) 'V,
whence
N
X = 2000)
n 2
o ll

Utilising (Pll) and (1.2) we establish that

Y -
ysl\sCh2

However, by the minimax theorem for eigenvalues

«;ax = max{X} =  max ESQLQ% (2.8)
pevP Il oll

-2 .
By (Pl) and (1.2) we now prove that X;ax 2 ych ©, Similarly we can

see that k;in = min{k} is bounded from above.

. -1
It is important to see that the eigenvalues of § = M 'K are

positive and unbounded with respect to h. The largest eigenvalue of

S.‘X » is of magnitude X ~ Ch™2 whereas the smallest eigenvalue
ma; max

is bounded from above. Consequently, the system of differential

equations (2.3) is a stiff system,

ie. A »0 as h+0
max,,
min



3. éb — stable, linear multistep, multiderivative methods

Most classical methods for solving initial value problems of
first order ordinary differential equations require, for reasons of
stability, a condition of the form | Amax Atl < C ; where At is the
time increment and C a constant usually between one and ten. For the
stiff system (2.3) this condition requires h‘—ZAt to be small which
imposes a severe limitation on the step length At' As we will be
required to solve systems of linear equations at each time interval

this restriction is prohibitive. We are thus lead to consider only

methods where the region of absolute stability is unbounded. Since
the eigenvalues A of the matrix S are real the classes of Ao-stable
methods are sufficient. Zlamal [40-41, 43] employed the class of
Ao-stable, linear multistep methods to solve the system (2.3).

Other authors, including Nassif [25], Makinson [19], have studied
various one-step methods for the solution of stiff sysﬁems. Following
Obrechkoff (see [16,ppl99]), Enright [10], Norsett [26] amongst others,

we shall consider multistep formulae that incorporate the higher

derivatives. We refer to such schemes as Ao—stable, linear multistep,

multiderivative methods (L.M.S.D's). This follows the terminology of
Genin [12] but we note that the title 'Obrechkoff methods' is also

used, e.g. [16].

A L.M.S.D. method is of the type

k k m
r. r
) O Vogs = D) Bs B¢ Ynuj (3.1)
j=o j=o r=1

r

r . d
where >0and y E——y
% noat t=nAt
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Analogous to linear mulcistep methods (cf.[13 , pp. 221]) the

method (3.1) is said to be of order q if, for At sufficiently small

k m
- . rr .
Lly(t),4,] = ) ajy(t+JAt) -7 BrjAty (t+j4,)
jno r=1

(3.2)

+2
! a3y ) + 0d™)

for any sufficiently differentiable function y(t). Expanding
L[Y(C),At] by Taylor's theorem with integral form of the remainder

we have (cf.[13, pp 247])
k

Ly(0),8.0 = A7 J 6(a)yT™ (e+an, ) ds
o

< GAq+1 sup {|yq+1(s)|] (3.3)
t<ss<t+kA
£k

where G(s) is the kernel function and G = J G(s)ds.
o

The concept of Ao—stability was introduced by Cryer [4].
A multistep method is A -stable if, applied to the equation
; = Ay, y(0) = 1, for any real A > 0, it gives approximate values
Yo of y(nAt) such that y, -+ 0 as n + =, Considering (3.1), this

is equivalent to the roots of p(,T) being of modulus less than

one for T > O, where

‘m
P(E,T) = p(E) + [ T 0.(8),
r=1
k . k 1 -
p(€) = § ung and o_(£)= ] Brj(-l)r g3 re1,2,...,m  (3.4)
j=o j=o

In addition we require that the L.M.S.D. methods satisfy

the conditions of zero-stability and consistency, ([16 pp.30]).
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Zero-stability dictates that the roots of p(£) with modulus

equal to one are simple. The consistency condition is maintained

by K K K
) a; =0 and ) jo, = ) By
j=o0 j=o j=o

We shall always assume that the characteristic polynomials p(£)
and {cr(é)}l:‘1 have no common factor. Similarly, the polynomials
in T, {uj(r)}§=o’ where

m

r-1
M) o+ DT BT

r
r=1

shall have no common factor. These assumptions are compatible

with the L.M.S.D. scheme being irreducible to an equivalent scheme

with a lower value for k or m.

The following two results, although required in-the later

analysis, are of interest in themselves.
Lesma 1 Let the L.M.S.D. scheme (3.1) be Ao-stable. then
there exists a positive constant M, such that
uk(r) >u, forallT20

Proof: Since @, > 0 by definition the expression uk(T) is not
identically zero. Let us assume that uk(T) has a root at T = T.

The function
k
(1) .
- p(€,1) s J
£(£,1) = 2—-ij = —17~7-E
Uk T on Mk T

is well defined except at the zeros of uk(T). As T+ T at least

one of the coefficients of f(£,T) must become unbounded since



T = T may not be a root of allv{uj(T)}§:i. Consequently, as
T+T » at least one of the roots of £(£,T), and hence of p(§,1),
must become unbounded and have modulus greater than one. This
contradicts the assumption of Ao-stability and we deduce that
uk(T) must be bounded away from zero, T > 0. Since uk(0)=ak >0

the proof is complete.

Lemma 2. Let the L.M.S.D. scheme (3.1) be Ao—stable, then

Bmk 20

Proof: Trivially, if {ij}?:i are all zero then Bmk # 0 otherwise

the scheme will incorporate only the first (m-1) derivatives. Let us
assume that at least one Bms # 0, Oss<k-1, and further that Bmk = 0.
Using the function f(£,T) of lemma 1 it is obvious that the coefficient
of £° must become unbounded as T + ®. Once again (cf.lemma 1) this

compriges a contradiction in the initial assumption of Ab-stability

and we deduce that Bmk = 0,

ry. - M.S.D. heme (3.1) must be implicit.
Corolla Every A -stable L.M.S.D. schem (3.1)

Finally, we investigate the approximate solution of (2.2) by

the L.M.S.D. method (3.1). Let us again denote U™ to be an approxi-

mant to U(x,nAt). Assuming that {UJ}g;; are given, the recurrence

relationship for vtk , n 20, is given by the system of difference

equations
k k m )
. ro.n+j )
( y ajun“J,v] - [ D) srj A u‘(‘r) , v] 0 (3.5)
j=o j=o r=1

R R L
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The computational aspects of (3.5) and (3.6) will be
investigated in chapter 6. The implementation procedures
described there are equivalent to the solution of the linear

system of equations

lae

m
+k _ r-1 r -1 f] Un*k
= - M K =
Wz o1 10T, o 00| 8
r=1
for some predetermined vectorlﬁ. The condition number of the

matrix A where

max {A- 4}
Cond(A) = -—.—'—[i]—- N
min {A[a]}

and {A[a]} is the set of eigenvalues of A, is readily seen by
lemma 1 and the analysis of chapter 2 to satisfy
-2m ,m
Cond(A) = O|h A ¢ .

Hence, by lemma 1, the matrix A is positive definite and, if we

.. -2 ‘s
exclude the unrealistic case when Ath + 0, the condition number

of A does not grow too fast for small m.
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4, Theorems

The analysis of chapter 5 will prove the following theorems.

Theorem 1

Let the L.M.S.D. method (3.1) of order q be consistent, zero-
stable and Ao-stable. Let the roots of the polynomial p(§) with
modulus equal to one be real, the modulus of the roots of the
polynomial 0 (E) be less than one, and 0,(-1) =0 if p(-1) = 0.
Further, let g(x) « Lz(ﬂ). Then for any £ > 0 there exists a

positive constant C(to) such that for nAt 2t , and h,At sufficiently

small
k-1
lute,ma) - s cee)) {@d + [l + T Jluxisp-w |
j=o
and
k-1
-anA X .
lv*flsce 1 § Qv
j=o
Corollagz

If in addition we assume that U° is the projection of g(x)

onto Vg by the Lz-inner product and'{UJ}g:i are the values derived

from a weakly Ao-stable Padé scheme of order q-1, then

llux,na) - 0% cce ) {Aﬁ + hp*l} el

and . ~and
fu'llsce Hell
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Theorem 2

Let us further restrict w = 1 to be the only root of p(£)

with modulus equal to one, then with the assumptions of theorem 1
k-1
a1 < e e e {ad o+ W Dlel+ T fueiiap-vdl}

Jj=o

for some arbitrary positive constant 8,0 < B < 1.

Corollasx
If the initial values are defined to be exactly those

described in the corollary to theorem 1, then

- 1
| uGx,ma )0l < cee,,B) PPN {AZ + nP? } lell
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5. Proof of Theorems

Let {Ai}?=1 and {wi}:;l be respectively the eigenvalues (in
increasing order) and the corresponding orthonormal eigenfunctions

of the continuous eigenvalue problem
a(¥,v) = A(Y,v) Ve H (@) (5.1)

The eigenvalues are well-known to be positive and distinct.
Further let'{Ai}g-l and {Wi}ggl be the eigenvalues (in increasing
order) and the corresponding orthonormal eigenfunctions of the

discrete eigenvalue problem
a(¥,v) = A(Y,V) VVe vﬁ (5.2)

Strang and Fix (29, Theorem 6.1, 6.2] have proved results
for eigenvalues and eigenfunctions using subspaces, Sh’ on a
regular mesh, The only property of 5, utilised in the proof is
the approximation property
llu - pull s ca*™®|full, s =0, or1l

where Pu is the Ritz approximation of u (ie. a(u - Pu,V)=0,We §,)
A well-known consequence of (2.7) is that

1
e = 2ull + bl wpulf, s coPHlull,, -

Hence, for k=p+l, all conditions are satisfied and the theorems
yield for h sufficiently small

05 A - A, s ch?P P*1 . i=1,2,...,d (5.3)
1 1 b §

Il ¥~ v, ll < cuP*? Ai(p+l) , i=1,2,...,d (5.4)

We adopt the following notations
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Vi T ) LV s (Y L v e @

(So 5)
= V = P
V) LT = ), Ve v
We bound the error u(x,nAt) - by using the relationship
u(x,nAt) - = e + e,
where e =u(x,nAt) - U(x’nAt) . e2=U(x,nAt) - " and proving
bounds on e and e,.
The solution u(x,t) of (1.1) can be expressed as
® -t
= 5.6
u(x,t) =) g; e .2} (5.6)
i=1

where {gi}:;l are the Fourier coefficients of g(x).

Similarly, the solution U(x,t) of the continuous Galerkin problem

(2.2) can be expressed by

d -A.t

U(x,t) = § Ug e ! Wi (5.7

i=1

where {Ug}g=1 are the coefficients of g(x) € Vg with respect

. d
to the basis {wi}i=1'

a) d d
' . n
Let U® = Z U? Wi. Using (5.7) we can write e, = Z € Wi
i=1 i=]
d
and hence ||e2||2 =) Ieglz , where
i=1
=A.np
el =ude b - (5.8)
i i
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d

- n . ..
Also, let U?r) = ) Ui,r Wi be the discrete approximarion
i=1
of
t » 3 3 . .
o g;f U(x’t)|t=nAt' Substituting U?r) into (3.6) and (5.2)

with V = Wi gives us the relationship

-1 0 , r=l,...,m where U?,o = U?

i W
i i
Consequently, we can construct the recurrence relationship

= (DT Az u? r=1,...,m (5.9)

i,r

Combining (5.9) and (3.5) with V = ?i yields

k m
_qyI-1 r ,r +j . 5.10
) oy + (-1 Bife D) U§ 0 (5.10)
j=o r=1
m
Define 6§.(t) = u.(t)/u, (1) where p.(t) =a, + ) (-l)r—lB Tt
] h] M i j rj
r=l
and subsequently rewrite (5.10) as
k
+) 5.11)
) cj(AtAi)u‘i‘ 0 (
j=o

The expressions (5.8) and (5.11) combine to give

k k .
. =A. (n+j)A
n+j _ 0 1 t =4t 5.12)
) 8,8, A e; I 8,8, AU e i (
j=o j:o

, n
We conclude this sub-section by bounding di' We see

from (3.2) and (3.3) that
k

0
2 HJ- (AtAi)Uie

J=o

U? e ! ,At]
t t=nl
t
-nA A
< AT 1Nt p°le t
t 1 1

-h; @B, L[ -A.t

i
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... -1
By lemma 1 a positive supremum of[hk(Tﬂ s T >0, must

exist from which we conclude that

-nA_A.
d? < ¢ AT AT 0t (5.13)
1 t 1 1

Altematively, by lemmas 1 and 2, Gj(T)j‘O,lgoo'.k’ are bounded

for any T > 0, thus

-nA_A.
d; < clugle £ (5.14)

b) This section uses a method employed by Henrici [13,pp242]

and adapted by Zlamal [40-41]. Define S(E,T) by
A(E T) =6, (1) +68 . (1)E + + 6 (T)&jk
PA%» K k-1 %

A -1
Note that p(&,1) = [uk(T)] Ek p(%3t) and hence the roots of
E(E,T) are the reciprocals of the roots of p(£,T). It is
intuitively obvious that the roots of p(£,T) approach the roots

of p(£) and 0, (6) as, respectively, T + 0 and T + .

The essential roots of p(£) (i.e. those of modulus one) are

by assumption real, and by zero-stability single. The consistency

condition dictates that w = 1 is always an essential root. Let us

assume the most general situation when these essential roots are

w.=l, w.=-1, Any other root {wi}li(_3 of p(E) has modulus less than

1 2
one, say Iwi' £1-6,0<8 £ 1. We employ a theorem from complex

analysis, eg. [1, Theorem 11,pp, 131], to show that for each

sufficiently shall € > O, there exists a . >0, such that the

has the same number of roots in the

equation p(£,T1) = 0, T < Tes

disclg-go|< € as the equation p(£) = 0. Furthermore, if Eo is a
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root of p(f) of multiplicity p then the p roots of p(£,T) that
approach it are distinct for T sufficiently small. Hence no

complications arise from a root of multiplicity greater than one.

We denote vy, to be correspondingly Wy or w,. Selecting
]
£ < g»we have that, for T < To/2° the equation p(£,T) has only one
root in the disc |&-w, .| < 9. Let this root be £ (1.
1,2 2 vy 9
»

Rearranging the above we deduce that for any O < € < 9/2 there

exist < < 1_. This
§ a T_ such that ]Ewl 2(‘r)-wl’zl € whenever T .

»
is a definition for 5w (T) to tend continuously to Wy 88 T
s

1,2
tends to zero. Thus Ew (1) can be expressed as an analytic
1,2
function of T,
ie. £ (1) =w, + ai T+ ai 12 + .. i=1,2
W, i 1 2

1

: k
Corresponding expressions hold for the other roots {Ew.(T)}i=3
i

of p(§,7). Remembering that ]wit<1-6, i=3,4,...,k, we deduce

1 - "e~, i-3ooo,ko

that for T sufficiently small, say T < TI,IEW'(T)| < 2
i

Expanding P(ﬁw (1),T) about the point w, , we see that
1,2 ’
, ) '
= 1. - .1.2
P(Ewi(T).T) p(wi) + Talp (wi) + Tol(wi) + 0(1°) 0 , i=1,

and by comparing coefficients

o, (w.)
= i=1,2 (5.15)

p'(w)

a =

We know that 01(1) = p'(1) by the consistency condition,

01(‘1) # 0 by assumption and p'(w1 2) # O by zero-stability,
’
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Thus,
Ew_(T) =w ot ai T + 0(12) where ai is real and non-zero
i
and aiT
1 2 .
16, (D] =]1+ 7=+ 09| i=1,2
i Yi

But as IEw.(T)l <1 for T > O we must have a;/wi<f0. Consequently,
i

for 1 sufficiently small, say T < T,

IEW-(T)|< 1-at , i = 1,2, for some & , a2 %min {lail- l,la;G .

i
Thus, we have shown that for T < © , T = min(Tl,Tz)

lg, (W] <1-0a1,0a>0, i= 1,2,..., k
1

and hence, for T < f, all roots €(r) of S(E,T) satisfy

o 1
> .
BOIR
Therefore, — 1 is holomorphic for |E|< 1:&T , T <T, and the
p(E,T)

function can be expressed by a Taylor series expansion

ie. - = Yo(r) Y, (1)E+ yz(r)gz + ..., T<T
p(€,T)
where, by Cauchy's estimate, eg. [1. pp, 122]
[YQ(T)[ <C (1 ~aT)2 £ =0,1,... whenever 1<T.

Similarly, let the roots of om(E) be {zi}:_l. These roots

are by assumption less than one in modulus, say |zi|5 1-6,0<86<1.
Applying the aforementioned theorem we prove that the equation
P(§,T) = O has the same number of roots in the disc l£-zi| < 5 as

the equation o (£) = 0, whenever T > C. Repeating the above
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argument we have that, for 1 > E, the roots Ei(T) of p(£,T) satisfy

lgi(r)| <1 --g , i=1,2,...,k.

This leaves a finite interval [?,E] where the roots Ei(T) of
P(£,7) are known to be of modulus less than one. These roots are
continuous functions of T over a finite interval, hence

IEi(T)I <1- 8 », O0X< 5 < 1, whenever T<1sC.

and we conclude that there exists a constant & , 0 < a < 1, such
that
lEi(T)I <l-a whenever T 2 T.
By the previous argument we easily establish
IYQ(T)I < C(l-a)z whenever T 21 £ =0,1,...
Summarising, we have proved that,
ca-an)t sc e"OET T<T
lvp (0| =
=L -aL - -
C(1-4d) <Ce ~, 0<o<l TR T

A

~ — . :
Making T smaller if necessary we achieve o = aT. Denoting by 1,

the smallest integer such that A A.> T we have

—alAtAi
Ce i<i,
IYQ(A A < (5.16)
£ g :
ce? iz2i,
c) We now assume that wy= 1 is the only essential root of

p(E). The value a, of (5.15) is now equal to -1 by the

consistency relationship. Thus for AtAi sufficiently small
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-4 A,
K = e By

TN

gwatAi) -] - AtAi + 0(A
where g is an analytic function of AtAi and g = O(AiAi) at AtAi =0

Expanding P(&w,AtAi) about the point e Aehi and equating to zero
1

we have by (3.4) that
m

= ‘AtA' T ’AtA' - .
PUELBAD AN = p(e TE) + T (A AT 0 (77 -y
r=1

2
+ 0(g") + 0(a A8) = o.
By substituting y(t) = e_Ait into (3.2) and letting t = O we deduce

m
—Oehj r =AcA; q+l q+l q+2
p(e ) + ) (8,4;) 70 (e77tM) = Coarle (¢ A) +0[(.A) .

r=1
Consequently, by combining the above expressions
t -AtAi = - - q“l"l q+2 2
g’ (e ) = Cy A AT +0(A A g) + O[(AA) +0(g")
. [} —AtAi ]
and thus, using p'(e ) = p'(1) + O(AtAi)
(-n1 q+l
g ==—>"—¢C _(AA.) qQ+2] _ q+l q+2
pl(l) q+l Tt i + 0{(AtAi) C(AtAi) + 0 (AtAi) .
With the above expression of g we have established the bound,
-AcAj q+l
Eulbehy) < e [1+c %] <1

whenever AtAi is sufficiently small. Utilising a previous result,

we realise that the other roots {Ew }?;2 of p(E,AA) satisfy
A]
IEW [ <1- g, given AtAi sufficiently small. Therefore, we can

~
select a value T > O such that, for 0 < AtAi< T

-A_A; q+l -
l€wj(AtAi)l se tif1+c@A)VT] <L 1,2,k
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Extending the argument as before we easily achieve

yvpeapl s c MMl v e, st

Hence, for AtAi < ; and B , 0<B<1
‘MtA' q+178%
e AtM1 + c(a n) ]
¢ BB AGBohgy 1))

and since 1 + qu+1 < ei(l-B)xwhenever x < TB T

we have
-i(1+8)£AtAi
Iyz(AtAi) |< Ce s AtAi < Tg

For AtAi 2 TB we recall from a previous result that

<ua <
IYQ(AtAi)l <SCe , 0<ac<l
Making Tq smaller if necessary we achieve o = !(1+B)TB-

Denoting by i,(B) the smallest integer such that AtAi > 1g
we see that
Ce-i(l*B)MtAi . i< i*(B)
by, (8 A.) ]
PR e g L i2 1,8

for some B ’ 0<B<1

By comparing coefficients in the expansion of

1 1 = v (D +EY,(D+ ....

PUE,T)  6,(D) + E6, ) (D)+...4E° § (D)

we establish
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. 1
6, (DY (D) + 8 _ (DY, (D+...+ 6 (DY, (D) =
0
. where Yo = 0 for £ < O.
d) Henceforth, the following inequalities will be used
extensively:

x e X s(em)_1 < (Z(x)-1

- ~P
P Tx e [ 2]

for any x 2 0, a > O and p a positive integer.

If we rewrite (5.12) with n = n~k - &, multiply this by

(5.19)

Yl(AtAi)’ sum for £ = 0,1,..., n-k and then apply (5.18) we prove

n
1

n-k

o n-k-%
— =8 B ADY L (B ADES + T dT (e

=0
Using (5.13), (5.16), (5.20) and the inequalities (5.19) a

n . .
bound on Ieil can be constructed as follows: for i < i,

k-1 ]

]

[e7] < ce 0 (n-2k+ )4 A, ) ’eil
n-k

—(n-k—- . —afAedg
+ CAE+1 ) Ag+1|U2| o~ (kD) Bchy mokledi

L=0

A

Note that for nAt zt and (2k—1)At it

o}

e‘a(n'2k+1)AtAi < e-iatohi

A

-8
C(to)Ai
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k-1

el = -[ék-l(AtAi)vn_k(AtAi) 4oeeat 8 (AN Yn_2k+1(AtAi)] €

)

k-2

(5.20)

(5.21)

(5.22)



where s will be determined later. For o - 120

n-k
A: e—(n-k)AtAi z e-(a—l)lAtAi <(n=k+1) At e—(n-k)AtAi

=0

2 (n-k)A, e~ () Ak

< & Hmk)aphg < C e-itoAi
i T,

< C(co)Ai’(q*l)

Fora-1<20

n-k
v . (1-a) (n=k+1)A_A.
S = 2 e (0=1)RAcA; < & t: Hence,
k=0 Ay
. caA e (n7K) AcAy ~a(n-k)AcAj
SAt e-(n-k)AtAl < t < Ce
e(l-a)AtAi -1 (1 - a)Ai
~jatohi -(q+l)
< Ce o < c(to)Ai
A,
i
Thus, we have shown that
n-k
A e‘—(n-k)AtAi z e"(a-l)lAtAi < C(t )A.-(q‘.'].)
t o" 1
L=0

Collecting together (5.21)-(5.23), we conclude that whenever

i<i,,

k~1

- 3 q i

lells ce )A7® T lel| + ccepaliv|
i=1

For i 2 i,, using (5.14) , (5.16) and (5.20)
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k-1 n~-k - .
e < ¢ e 0T(n-2k+1) ) leé] + CIU?I ) e-Ai(n-k-k)At o TR (5.25)
1 i! i

i=1 =0

But e OT("2k4) o -oTa o mq c(t,) Ag (5.26)

as n At p-3 to. Also,

n-k n-k

- - ke -t 2 (n-k-2+0f
3 7 e Ai(n k=2) Ay . ot 7 e T(n-k-2+al)

Hi

<
L=0 =0

R n-k N
< e-r(n-k) z e-r(a—l)z

=0

Fora-120

§ < (n-k+1) e‘;(n-k) < 2(n—k) e-r(n-k) <c e—gr(n-k)

A

sced™M o 9 c(t ) Az

Similarly, for a - 1 < 0
e-T(n-k)eT(l—a)(n~k+1) c e-Ta(n—k+1) —%om

< <Ce < c(t )Ad.
T(1- = ~ o't
eﬂ[(1 @) -1 T(1-0)

S <

Combining we have proved that
n-k
P q
- -k~ - < C(t )A (5.27)
7 e A, (n-k=2)A¢ -T2 < C(t )AL
=0

2

and the expressions (5.25) - (5.27) yield, for i z i,
k-l . -
» 4 ed|+(u® } (5.28)
€31 s ccepad {1 ledl+1og)
j=1

From the bounds (5.24) and (5.28) we achieve

d d k-1 -
n 2 2q 0,2 =28 h]
R Crd c(t,) { S N 1 I N VA W (52
ie] i=1 i<i, j=1
A k-1
j (2
B ECIL
20, o)
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Using Ieil < ]Ugl + ]Uil we prove that

d k-1 k-1
2 2 2 31,2 -2 i 2
Hegl® = 3 157 < cep {22 5 o)+ 1 a7 11} o)
i=1 j=o i<iy i=1

Mihlin [22] has proved that Aiz Ai 2 cil ,» C a positive

constant. Thus for any s > N

d oo
-8 -5
) ATs T s
i=1 i=1

We use this result frequently in the following analysis. Let

k-1
ey = )) ) A;zsleilz . We can write ei as
i<i, j=1
e? = U? e-JAtAi— U!
i i i
—i A As Y —iAA:  =iAAs
- e TIAhL (0 | g0y 4 TIBAL (GO - 0 (e TIBALmIAN o
1 1 1 1 1
i_i w ooyl
(ui Ui) + (Ui Ui)
from which
k-1 k~1
-28; j _ w32 =28 =i _ 132
leglsc T 1 A% -T°+c [ I 470 -v]
j=o i<i, j=o i<i,
k-1
=25 | =jAcAf_ -jAcAi|2( 02
+¢c § ¥ A7 e e |“ [ (5.30)
j=1 i<i,

The expression (5.30) can be investigated by using (5.3) and

(5.4), whence,

[ o]
- ~28, j _ =i 2 -2 i_wig j_ 2
oz B AT g - TPl - v
1<1, i=1
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e Now, ui -7 - J UJ(wi—wi) dx

9]

j = "25 —j_. j 2
55 L AT -v)|t
i<i,

AN

ie. U3 - U'?]2 < CIIUJljzhz(p+1) AP*L, but as A 2ci™ the series
i i i i
«©
-(2s8-p- . .
¥ Ai( sP1) 4o convergent if we select 2s=p + 1 + N. Thus

i=}

el < c|j v || 22D

eé = ) [e-jAtAi - e‘jAtAiIZ A;28|ug|2
i<i,
[++]

-2s. s 2,002 _.2,2 4p -2(s=-p+l) | 0,2
SR Y FTS0 N TN S Ll P P R u |

i<i* i=1

and selecting s = p+l + %-we have

j

€6

2 4 2
< ca n'Plgll”.

Substituting the above bounds in (5.30) we establish a

bound on |e3|, namely

k-1 s . k-1 . 2
legl =€ { T 1udod e 2D g ud e 2 n¥e)? | 6o
j=o j=o

The desired result is obtained by substituting (5.31) into
(5.29) and using the inequality
odf < fod = ) e ) <o - Wi+ Nsll
k~1

i.e. Il eyl < cce) { I llud-ad |+ Pt 4+ ad) ||g||} (5.32)

j=o
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e) We now extend the analysis of section d to the situation

when w = 1 is the only essential root of p(§). Using (5.13), (5.17),

(5.20) and the inequalities (5.19) a bound on 62 is constructed as

|
follows; for i<i*(6)

k-1
(€3] = ¢ QD @ ZDAN g e

i=1

.0 A2+1 ) Ag+1|uole—(n—k—£)AtAi LB R8Ny

i
Now for n At > t, and (2k-1) At < ito
e-£(1+6)(n-2k+1)AtAi < e e—BnAtAle—i(l-B)toAi

“Bnd Ay pvs

< C(to,B)e i

where as before, s will be determined later. Also, define

n-k
§ = At e—(n_k)AtAi z ei(l—s)lAtAi and hence
=0
- - Aol
S < A e“(n-k)AtAi ei(1 B) (n=k+1)Achy
£ QBN

< <
(1-B)A; i

C et (BeAi o opy BnbeAi ~H(17B) (nmk)Achy
X

-5

1

From (5.33) - (5.35) we have whenever i<i,(B)

-89-
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k-1
leil = ce 8y ePRAEM {pze () ad v (5. 36)
j=1

Similarly, for i2i, (B), using (5.14), (5.18) and (5.20) we have

k-1
Isgl <C e—£(1+B)T(n-2k+1) Z Iei (5.37)

i=1

n~k
sclo?] 7 eTMilmk-R)Ae ~H(4R)TR
1

=0

where, for simplicity, we denote TETB. But

e‘i(l+8)r(n-2k+1) <c e-BnT e—i(l—B)Tn < C(B)e-BnT B

< C(t_,8) e PnT Ag (5.38)
n-k
Also, let § = X e-Ai(n—k_z)At e_5(1+B)T2 and thus
=0
n-k $T(1-B) (n~k+1)
§ < o T(nk) ) ATA-B)R o~ T(n-k) e
* s A
L=0 €
-4 (1+R) -
< Le < cle,B) e T o (5.39)
T(1-8) °

The expressions (5.37) -~ (5.39) yield that, for i2i,(B)

k-1
€3] = cr,myad PR 1T jed e fug) (5.40)
j=1

where we take At sufficiently small to allow AtA1< T,

Following a course identical to section d we arrive

at the result
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k-1

lle,ll < cce,,myeProehs { F ol -ud ) [hpﬂ R Ag]”gu} (5.41)
j=o

£) The error e = u(x,nd,) - U(x,nA¢) will now be bounded.

From (5.6) and (5.7) we have

d
e, = z g e*nAtAi v - z Ug e—nAtAi wi
i=1 i=]
d
- “nAgA{ nAcA; _ -nAghj
igd |1 © il [ = Bi¥i
i=1
d d
-nA, A; — -nAp A —
+ z e t 1(8i’gi) wi + z e £ gi(wi - ‘yi)
i=1 i=1
d
+ -nAtAi ~ _ 0
L e (g; - U)) ¥, (5.42)
i=1

Zlamal [41] uses a technique from Thomée [30] to show that

Ad+1 2 ch 2. Hence, using (5.3) and (5.4) we have for some

B, 0 < B <1,

e7 = Z e-nAtAi gi v, < e—BnAtXI Z e‘(l‘B)ﬂAtAd+1 gi wi
i>d 1 i>d
. o0
< eBnlert ((-BE A Y g; ¥ < C(t_,B) e Bk A;f{p+1) .X g;¥;
i=1 1=1
. +1 -
ive. [leglls e, mnP*t e™B0lEAL g,

(e’“AtAi -e'nAtAi) g; ¥;- By the mean-value theorem

t~ QA

Let e =

i=1
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d
Ioma Iag-ag] e ™eh gy,

e8 < iV¥i
i=1
d
2p  -BnAi} +1 =(1-B)nlA¢Aj
< Cn A h°P TR § BT t g,
i=1
d

C(R)nZP o Bubrry ) *E H(A-BI A g

A

i=1

2p =fnlA A
C(t_,B)h"" e t'l ¥ e v,

i=1

A

ie. |legll s cer,mn?P ™PRAAL g

d
Let e ) e‘nAtAi(gi - Ei) Yi. However g, - Ei = j 8(x) (YY) dx
. Q

i=1

and thus by nAt 2 t,s the Cauchy-Schwartz inequality and (5.19)

d
leg Il < cllglf nP*h eBoded § (~(-Bnichi ) dpeD)
i=1
- -N
N Y T L S W
i=1
< C(CO;B)” g” hp"’l e'BnAtA]_
d
- -ndedj — -
Let e, Y e g; (wi Wi). Thus
i=1
d

—BnA. A ~(1-B)nl¢Ai ,4(p+l)
leyoll s cnP*t e™dehs g & GBIRAER o]

i=1
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[+
p+l _-BnA A -N +1  -Bnlg)
< Cle NPT PR g T ATN < c(e,manPTt e TPRAEAL g
i=1
Finall = mnAehi (g _y° °
Y, ey = z e (gi-Ui)Wi. If U is the orthogonal

i=]

projection of g(x) onto Vﬁ with respect to the L,-inmer product

then e = 0, otherwise

11
d
e.. = ¥

mnlAeh; [~ _ _ 0
11 € [(Si gi) + (gi Ui)] Wi and hence

i=1
logyll = cCeyg) B0 flg | wP s g - o)} (eteq)

Using (5.42) and the above bounds we conc%ude that

ey e-Bteh [P gl + flg - 071
o

le, s

C(t,8) & AP g |

projection of g(x) onto

for some arbitrary 8, 0 < B < 1.

g) Returning to (5.11) we have

k
n+j
¥ 8, (Aeh) U] I =o0.

j=o

Rewrite the above withn = n - k - £, multiply this by
Yo (8¢hy), sum for £ = 0,1,...,n-k and apply (5.18) to
expression (5.20) with ei replaced by Ui, and d, = 0.

that At is sufficiently small so that A¢gr1< T. Using

expression of (5.20) and (5.16) we obtain
k-1

n '(IIIAt)\l j

Uil <ce Loyl

j=o
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. 1f U° is the Lz—inner product

vP.

Let us assume

the remodelled



from which it follows that

d , k-1
1= T G| s ce ™A T v (5.44)
i=1 j=o

which is the desired asymptotic result.

h) Initial Approximants UJ to u(x,ja ), j=0,1,..., k-1.

This section is concerned with the estimate ”ezll under the

assumption that U° is the orthogonal projection of g(x) onto Vg

. i k-1 .
with respect to the L,-inner product and {UJ}§=1 are the approxi-
mate solutions of (2.2) at time t = jAt obtained by a weakly

Ao—stable Padé scheme of order q - 1.

Other viable methods for deriving these approximants include

the weakly Ao-stable Runge-Kutta schemes. Such schemes have been

thoroughly investigated by Crouzeix [3] and we refer the reader to

his thesis for an account of these schemes.

A difference method derived from a Padé approximation of

order q — 1 is a one-step method of the type

1
-y =7 3 E AfyE (5.45)
Yn+l Yn rs“t n+s
s=o0 r=1
where
o
n
1+] D" B T
R(T) = r;l is an approximation to
m
r-1% r
L+ ] ()7 BT
r=1

e T, such that
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Ie_T - R(T)| s C fast+0 (5.46)

We note that any Padé scheme is a one-step, multiderivative

method and satisfies (see (3.2)) the relation

1 o
e Y
- - r r _ q 4 q+l
Yn+1 Yn Z z Brs At In+s Cth y (nAt) * O(At )
s=0 r=1

< g Ag sup {Iyq(n+s)At)|} (5.47)

A Padé scheme is said to be weakly A -stable (see [3])
if |R(T)| < 1, for any T 2 0. The inequality (5.46) is stated
to hold for small T. However, as |e ' -R(1)| s 2 VT 2 0,(5.46)
is satisfied a fortiori for any T 2 0., Applying the scheme (5.45)
to the system of differential equations (2.2) we see immediately

from an obvious adaptation of (5.10) that

A n
m m
ry r-1 ,r |, j+1 S SPEETS i J I I
[1 + Z AtBrl( 1) Ai Ui - (1 + 2 AtBro( 1) Ai Ui o
r=1 r=1
j+l j .
or ui = R(AtAi)Ui , § =0,1,...,k"2. (5.48)
The recurrence equation (5.48) yields
. j+l
j+l o .49
U [R(AtAi):' U, (5.49)

It is easily derived from (5.8) and (5.49) that

1

j*1 o | =A.G+D)A in
€ =U; | e’ t - R(AtAi)

and by using the definition of weak Ao—stability, and (5.46)
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. . j+1
| €.}‘*ll < le~Ai(J+1)At - [ R (AtAiZ]J

1

o
U,
i

. -AiA
s G |ug]| | e - reacAp | < clul]ad Ad

j=0,1,...,k-2 (5.50)

Consequently, returning to (5.29) we note
k-1
-28; 32 2q -2(8-q) {,,0;2
) ) Ai Ieil =C At ) Ai IUiI

J=1 i<i, i<ig

<C A:q ”UOH2 by selecting s = q+g- (5.51)

The initial approximant U® to g(x) is defined to be the
projection of g(x) onto Vg by the Lz-inner product, and is thus

well known to satisfy,

ol < Ml &l

Using the definition of weak A -stability, namely [R(T)| <1,

for T 2 0 we have by (5.49)

d d
. 9 . 2 2 .
R N I A [ R [t R Y [ S AR
i=1 i=1 (5.52)

The expression (5.29) can now be reformulated by (5.51) and
(5.52) to read

llell s cce ) o Hlell (5.33)
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We are able to deduce immediately the corresponding result when

w = 1 is the only essential root of p(§)

ive.  Ilealls e .8y e PRREM A3 g | (5. 54)

The theorems can now be established. Theorem 1 is
determined from the relation || u(x,nA )- v < He1||+||e2I|and
the bounds (5.32), (5.43) with B = 0, and (5.44). Its corollary
follows immediately by using (5.53) instead of (5.32). Theorem 2

and its corollary follow from the bounds (5.41), (5.43), and (5.54).

- -



6. The Nonhomogeneous Linear Parabolic Equation

In this chapter we discuss the numerical solution of the

nonhomogeneous equation

N
du - ] du
% ) =, (a; () ’Ej) - a(x)u + £(x,t) , XeR, t>0
i,j=1

= Lu + f(x,t) (6.1a)
u(x,0) = g(x) x € §, (6.1b)
u(x,t) = 0 xel, 20 (6.1c)

We assume that t lies in a finite interval [0,T] . For the

infinite interval [0,*) a restriction on the growth of Bf(x,t)/at

is required. For v(x,t) € Hp+1(Q), t > 0, and square integrable

with respect to t, let us define the nomm

T 2
J v ) 2y e,

2
hv |l gp+1 L,
0

Further, using the well-known inequality

N 2
2 ;
v L C v dx , \reHI )

L Q ax; o

2 i=1 ‘0
1
we norm Ho () by
N
2 3 2
lvllye = I J[E‘gi] ax.

° i=1 JQ

Analogously to chapter 1, the weak solution is immediately

seen to satisfy
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[ %% s V ] + a(u,v) = (f(x,t),v) Vve Hi (D, t>0 (6.2)

whilst the continuous time Galerkin solution U(x,t) is determined

from
ouU P
['ﬁ s V ] + a(U,V) = (f(x,t),V) VVveVv ,t>0 (6.3)
h

Both (6.2) and (6.3) are associated with appropriate initial

conditions,

Continuing as in Chapter 2, we easily achieve by the energy

method that

t
Hutx,e) || < é-Yt Il ell + f é-Y(t-s) || £¢x,8) || ds
o

Assuming that f(x,t) is m~1 times continuously differentiable with

respect to t we obtain from integration by parts

m-1 '
_ _y 1 - - p
ool s Sl glls 3 LR (e 2onl- I mol e Y]
=1 Y
m=-1 t
+ D j = Y(e=8) 1y oyl as (6.4)
-1 e
Y o
P - 9P
where f*(x,t) = — f(x,t) p=0,1,.,om1.

ot

The continuous~time Galerkin solution satisfies an analogous bound

(cf.(2.5)). Consequently, we define a time discretization scheme to

be strongly stable if U” satisfies:

k-1 m-1

Iflse &% 1 o +c 3 2= =P | Pmis)ll .5
. prio ap+1 osjs<n
J=o t ]

-79 -



whenever At is sufficiently small, and m is an integer; m 2 1.

Let us investigate the solution derived from an application of
the L.M.S.D. method (3.1) to (6.3). The approximant " is easily

seen to satisfy

B k m

] - E Rt - 6.6
[ ) o 0™, v) ['Zo rzl By A U?r) , v } 0 (6.6,)
where

-1
[U?r), v] +a [u?r_l), v) - [f (x,08,) , v] (6.6,
P
VveV , r=1,2,00esm , n =0,1,.00
The results of this chapter are contained in the following

theorem:

Theorem 3

Let the L.M.S.D, method (3.1) of order q be consistent, zero-
stable and Ao-etablen Let the roots of the polynomial p(£) with
modulus equal to one be real, the modulus of the roots of the poly~
nomial om(g) be less than one, and o, (-1) # 0 if p(-1) = 0. Further
let u(x,t), g% u(x,t) € gP*l @, te (0,T] , and £(x,t) be q+1 times
continuously differentiable with respect to t and each such derivative
fs(x,t) 517(9) s = 0,1,0000, q+l. Then, for any t, > 0, there exists
a positive constant C(to) such that for nAt 2 to’ nAt <Tandh, At

sufficiently small
k-1

lluGena) - 0 || s ce) { a2+ Pt T [lutxis) - v}
j=o

- 80 -



and
k-1 m-1
=omA_ A .
"l <ce ® 1 7 Judf+c ] —— 1 sw N Poiap |

j=o p=o (@X;)" " osjsn

The constant C(to) depends on the parameter w defined by
w
A, =0(h7). as h + 0. We require that w be bounded away from zero.

ie. w2 w >0,
[o]

Corollasz
If in addition we assume that U° is the projection of g(x)
onto Vﬁ by the L2 - inner product and {UJ}?:i are the values derived

from a weakly A - stable Padé scheme of order g-1, then

Il uxsng) - 0* || < ee) { al o+ nP*! }

and
-1
- anA A
M|l <c t 1'{ + 1 SUP ) £Px,s0,) || }
” ” e ” 8” Z o) )p+1 0<s<k~1 t
p=o 1
m-1
re [ — sup || ££Cx,0,) |

p=o (aAl)P+1 o<s<n

The latter closely resembles (6.4) in that the initial time
values of || fp(x,sAt)”, p=0,1,..., -1 ; s=0,1,..., k~1 tend

exponentially to zero as t increases.

Proof
This proof closely follows that of Theorem 1 but with

complications arising from the extra term in the equation, ie. f(x,t).

The solution u(x,t) of (6.1) can be expressed as

—81-



0 -At ©
u(x,t) = igl g e Ut I 0, vu, (6.7)
i=1
t -A. (t-8)
where F, (t) = f(x,8) e ds (6.8)
o]

Similarly the continuous—time Galerkin solution U(x,t) may be

expressed as

d At d
U(x,t) = § Ug e v+ I (F (e, ¥y, (6.9)
i=1 i=1
where ¢
- -A. (t~8)
F.(t) = f(x,8) e ds (6.10)
(s}
ay

Using the same arguement as before we can write

_ n

e, = 121 €; Wi where

o o 'AinAt _ . 6.11)

€, = Ui e + (Fi(nAt)’ Wi) - Ui .

d . -
Again let U = J U7 _ Y. be the discrete approximation to
() jop ir i

2 v V=Y
i i i int 6.6) and lettin = Y,
" U(x’t)'t=nAt - Substituting U, into (6.6) g :

gives us the relationship

Vo
IR L = F Il oy r=1,...,m
i,r 1 i,r-1 n i
a,
P = P
where Fh (Wi) = f (x,nAt) Wi dx
¢

Consequently, we can construct a recurrence relationship, namely
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r-1 n,
= (-3 AT D _p \r-1-p _p
r DA UL+ I A F(¥) (6.12)
p=o

U

Substituting (6.12) into (6.61) with V = Wi we achieve by a simple

manipulation the relation, (cf. (5.11))

k k m r-1 N
n+j -1 r _ r-1-p _p
1 6ian) v s[ﬁk(AtAii] I Do By L&) Ry
170 j=o r=1 p=o
= C? (6.13)

Combining (6.11) and (6.13) we have (cf. (5.12))

. n+j S o -Ai(n+j)At = .
I sgan) e = 1 6.8 U e + (Fi(n+3)8.),¥,)
j=o j=o
- oz d7 (6.14)
1 1

Note that by differentiation under the integral sign

r-1
3 F.(v) = Ty r-1-p 3P 6.15
o Fj(t) = (FA)T F () + [ (-Ap) P £(x,t) (6.15)
p=o0

and hence by (3.2) it is simple to deduce that

~A.t
yal _ Q 1 o™
b (B, A AT = L[?i e P4 (F(0), V) L8, ] (6.16)
t=n A
t
qtl )
To bound (6.16) it is necessary to evaluate -a—-qﬂ Fi(t) in an
t

appropriate manner. Using integration by parts we show that

q (-l)p b —Ait
Fi(t) = z —A?l [fp(x,t) - £ (X,O) e ]
p=o i
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=-A. (t-8)
1 ds

t
-1y9+1
- <1111 I £ (x,0) e
Ai o

and substituting this into (6.15) with r = q+1 we have

q+l q -At
d = P 4P i _q-
qe1l B0 = [ (DP AT e T £8P (x,0)
p=o
t
~A, (t-8)
+ f*(x,8) e ' ds (6.17)

Combining (3.3), (6.16), (6.17) and lemma 1 we have

(a.A)d® < a®l A9t O o i
M8 )y <G AL i 1Y

1 -AinAt -
+ ) A? e l(fq P (x,0), ¥.)
p=o
k (n+1)A - -
t A, (nA_+rh_-8)
t
+ A:+1 G(r) (fq+1(x,s),Wi) e t t ds] dr
o )
+ [ +1 ~hynd,
ie. & <ty yof e
i t i i
4 -A.nAt _
+ ) Ag e ! l P (x,0), Yi)’
p=o0
T
+ l 9 (x,8), ¥,) | ds (6.18)
0
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Alternatively Gj(T) is bounded for any T > 0, thus

q
~nd A, -A;nA
n o 8y +1 it =
'di £cC IUil e + C Az z ;i) e 1 (fq P(x’o), q’i)

p=0

o

* " x,0), ¥ )| as (6.19)
T

Using (5.16), (5.20) with either (6.18) or (6.19) we prove
by the method of chapter 5 that, for i < i,

k-1

n -8 i q i

| &5 | sce) A% § | el |+ o) A , v
j=1

q T
+ l (£P(x,0), ¥v) o+ l (£ (x,s), v.) | ds (6.2Q)
p=o ’

s}

whilst for i 2> i*

k-1

n
leil < c(t) Ag )
j=1

ds

. ; T
,ei + u?] + , 9 (x,8), ¥)

o

(6.20

q
s 1 AR a2 { (£97P(x,0), ¥,) »

p=o

The only result not contained in chapter 5 that we used to establish

(6.20) is a bound on At I e for any i < i,
L4
=g
ie,
BTk A AL A
A 2 e tiv <
t = -cA A, ~ all
t1
=0 l-~-e
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since */(1-e ¥) is an increasing function for x > O and AtAi < T,i < i,
From assumption (Pll) of chapter 2 we deduce immediately that
_2 P

Ad < Ch ”, We have assumed that At = O(hw), w2 v >0, Asw=1is

compatible with large time increments this assumption is always

satisfied in practise. Now,

P P .28 -2p 2sw p
Ay 87 < AE At <cen P <c , 827/,

and we obtain from (6.20) that

d k-1 q
2 j (2 2
el © =% |e‘i‘|2 < c(t) Aiq heel 2+ 1 1 ledl® Il a0l
i=1 ixi, j=1 p=o
k-1
+1 2 ~2s i’
+ £ L0 | see) I oA L el (6.21)
L2 X L2 i<iy j=1
From (6.10) and (6.11) we see directly that
. . )
lell < [09] + [u]| + 5= sup |(E(x,8), v (6.22)
1 0585)
and
: -ja A, ~jA A, -jA A, -jA A,
J . ti, o o t'i,0 0 t1 _ ti o
ei =e (Ui - Ui) + e (Ui - ui) + (e e ) u,
I_ w32l = (s - :
oy - TD + (0] - up o+ (F(G) - FiGA) ¥
+ (F.(GA) » ¥ - v,)
=25 k-1 i 2
from which, cf. (5.30), if eq = z A, Z leil
i<i, * j=
k-1 -
-2s . .2 k-1 28 . .42
5 3 T oyl
lesl<c J 5 n Jul-Tilec ] § @ ”il
J=0o 1<1, j=o 141,
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-2s | -ja A, =i A2
+C ) z A. ’ ti_ t7i |U:l2
j=1 i<iy, *
k-1 )
D N N Ve ' CF G - F (8, ¥)) |
j=o i<i,
k-1 )
DD N Y W ’ (F,GA) 5 ¥ = ) (6.23)
j=o i<i,
-2s - 2
Let e, = J A l (F, (1) - F; (Go, ¥;)
i<i,

- — . 2
s IO F, Gy - F Gl

t ~-A, (t-8) —Ai(t's)
But ?}(t) - Fi(t) = f(x,s) le 1 -e ds and by
o

the mean value theorem we have

jbt
1T, Go) - F GO < suwp [l £G9) | J | ib, =s | ds | Ay = Al

oSsSJAt o

2 .2 +1
< € sup ||f(x,s)|| At h“P AE
oSsSjAt

Selecting s = p+l + %- we have

2
e, SC A4 n*P sup || £(x,8) || (6.24)
1 oSsSjAt
Denote 2 -9g
ey =1 L @G, Yo WA
i<i,
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But | (F;GADL Y - | s TR Gapl Iy - |l

RN TCat

< C sup ||f(x,s)“
i .
Xi oss<jA,
Selecting 28 = P-1+N we have
e, <PV o fxe ) 2 (6.25)
oSs.<.jAt

We construct a bound on |e3|, (6.23), by using (5.31), (6.24)

and (6.25). Hence, via (6.21), (6.22) and the ineqﬁality

Hol Il s liv? - |l + 1o |

o=+ flsll+com ol
oSssjAt
we prove .
ley I sce) al { el + s el + ] Il £x0]
oSsS(k-l)At p=o
+ fq+1(x,t)||L L + C(to)hp+1 lg |l + suwp | £(x,8)]
272 o<ss(k-1)A,
k-1
+ce) §oJvl -l (6.26)
j=o
b. In this section a bound on the L,-norm of e, = u(x,nAt)-U(x,nAt)

is derived by utilising a well-documented method based on the paper by
Wheeler [36]. It appears to be essential to impose certain conditions

on u(x,t) to ensure validity of the error bound for the nonhomogeneous

problem.
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Let us assume certain 'smoothness' conditions on u(x,t), namely,

) W0, = ux e B @ x1, [o,1]
@) If k € L(Q) and ¢ € H () satisfy

a(p,V) = (K,V) vovew

then there exists a positive constant c¢ such that

e ll, scllxll
This result is standard given {aij(x)}?’j=1 and T sufficiently smooth
(Miranda [23] ), and may even hold if Q has certain corners (Wheeler
[ 36 ]). Consequently, the initial assumptions {aij(x)}§j-1 e C@®,

o0
I'e C make (All) superfluous.

Following Wheeler [36] , Dupont, Fairweather and Johnson [8],

amongst others, let us define We VP , V t 20, by

a(u-W,V) =0 V Ve vﬁ (6.27)

. . . . 1 . .
Obviously W exists, and is in fact the weighted H® projection of

u(x,t) into Vﬁ. The subsequent result follows directly from the proof

of lemma (4.1) [8] , and the assumptions (A). Denoten =W - u,

then, whenever h is sufficiently small

-y 9
Il + llnll s P EC[ull yy + Igg llagd 2=0ut
(6.28)

Let £E = W~-Uce vP, then subtracting (6.3) from

for any t ¢ [0,T] . he

(6.2) we easily see that
e,V raE, Ve GEn, W VVeW, t>0

Selecting V = £, and applying (1.2) yields
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d 2 2 9
w ell” +v Ilslluls )
(o]

Now, using the inequality Iabl < %- 2 + % b2 and integréting over
[O,t] we have
t 2
2 2 3 2 1
el 2oy el?,  <leoll?+212al® 3| e, ol as
H xL L xL
o 2 2772 o

(6.29)

Before we can proceed it is necessary to quote the following lemma;
(see [2] for proof)

Gronwall's lemma

Let u(t), v(t) be non-negative for all t > O and further let C

be a positive constant, if

t
u(t) < C+ uvdt
o
t
then u(t) £ C exp [ vdt ]
o

Applying the above lemma to (6.29) and using (6.28) yields

1,9
e, 0l <c [ | £C,0 [ + vP* |22 ”HP“xLJ vee [0,T]

A simple application of the triangle inequality and (6.28) produces

the desired result, namely

el = ¢ €l uGx,0) = v, || + 6773 (6.30)

c. Returning to (6.13) we have
k
n+j - n
y 8. (8,0 U ¢y

j=o
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Rewrite the above equality with n = n-k-2, multiply this by Yl(AtAi)’

sum for £ = 0,1, ...,n-k, and apply (5.18) to achieve (5.20) with

t

el = v and d°
1 1

i <t Let us assume that At is sufficiently small to

ensure AtA1< T. Note that by (6.13)

k m r-1
n _ r-1 ,_, \r-1 AP TP
W @Bhdey =8 T T 8877 (AT L (AD TR
j=o0 r=1 p=o
and by lemmas 1 and 2 we deduce that
m-1 N
n 1 P
c; < A ] o , F,o(¥)| (6.31)
p=o0
Using (5.16), (6.31) and the variation of (5.20) we have
k-1 n-1 m-1
-anA_A . ",
t'1 j 1 p -akA A
[l <ce Doluflsen, T T = | R 0|, t1
j=o =0 p=o0 "1 :
As shown earlier, we note that for At sufficiently small
n-k
A Z alAtAI . At c C
t ) TN T 9y
2=0
and hence
d k-1 m-1
' LI Y ijfs C 1 P
g =1 1] s e IR R WY PINT
, . oss<n
i=l j=o p=o 1
k-1 m-1

-anA_A .
sce CLfofuiee@ ] = . sw Il )|
. p=o (aAl) o<s<n
J*=0 . =

(6.32)

) 1 2
vhere a > > min {Iall = 1,|a1|}
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d. Initial approximants

Applying the derivative relations (6.12) to the weakly Ao—
stable Padé gcheme (5.45) yields a relation for the initial

approximants UJ+1, j=0,1,..., k-2, namely

"
1 m N r-1 “(r-1p)
jtl i 1 r ~1)PpP plIT7P
GTROM) Grgmry LD A8 T DI R Ty
s=o r=l p=o
- i 1 ]
= RAADU + —= = ] (6.33))
ti’ i ul(AtAi) 1
o
m
- 1y LY r
where p (1) = 1+ Y (-1) BT
r=1
The recurrence relationship (6.331) gives us, (cf, (5.49))
. J L
it e 1 } =t 6.33
Ui [R(At"i)] Ut ROAD| 5 (6:33;))
1"t 9=
=0
and hence by (6.11)
. =(3+1)A A, - .
j*l _ o thi Jj+1
€] u; [e [R(AtAi)] ]
(6.34)

J [
5 . 1 j-2 ‘o _
+ (Fi((J+1)At) - m z [R(AtAi)J d>i , \Pi] 3j=0,1,...,k-2

t 1 2=0

The expression (6.34) will be bounded by (5.50) and by investigating

the error, at time t = (j+1)At , when the Padé scheme is applied to

the function fi(t). Substituting (6.15) into (5.47) we have that
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F. (G - T (s 1 i, gl
Fi ((J+1)At) = R(AtAi) Fi (JAt) + HITZ:K;T { ¢i + Ei}

where Ei (cf. (3.3)) is the integral form of the remainder.

Consequently,

J Lo . )
F, (( = 1 i=2, gi-t 6.35
F. (G+Da) = TGN z{ [R(AtAi )] { o+ Ey } (6.35)

=0

Comparing (6.34) and (6.35) we require a bound on

"

J 2
i __ 1 __ i=% i =0,1,..., k-2
i TG ) [ R(AtAi)] [Ei ’ Wi} 3 =010
e’

=0

By lemma 1, the definition of weak Ao - stability, and (6.16) -

(6.18) we have
j q ; p TIAM
s; <CA& I A e

P (x,0) , wi>|

p=o

T
+ [ } ' x,8), ¥ | s

0

and combining this with (5.50) we achieve

q T
. - 1
j+1 a {xq 1y° P (§9°P y.) + (£9% (x,8),¥.) |ds
e | S CAL [Ai lUi| + ) A (£7 T (x,0), i) | i '
p=o o
(6.36)
Note that
Iy
m-1
j 1
(1) il < Jull + ¢ ] —s,, s (P (x,s8), ¥ | (c£6.33,))
A 0<8<]
p=o0 1
(11) ||U°|| s llsll ,» if U° is the projection of g(x) into

Vﬁ by the L2 - inner product
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Congequently, substituting (6.36) into (6.21) with appropriate values
of s and using (6.22), (6.32) with the above two inequalities we

establish the following results

g
le dl < cce) ad {lgll + P(x,00]] + sup || £P(x,88 )]
2 o t “ “ Z ” ’ ” osssk—l t
p=o oSpSQi—l
+ | £ 0 ||
’ L xL (6.37)
2 2

A,
m-1

-anA_ A
Io* cce "lilalls §J —top s 1)
+1 t
e (P ossk-1
m-1
+C) ——1—-1— sup || £P (x,s%)“ (6.38)

p=o0 (GAI)p+ o<ss<n

The theorem and its corollary follow from (6.26), (6.30),

(6.32), (6.37) and (6.38).
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7. Examples and Implementation of L.M.S.D., Methods

a) Examples

The L.M.S.D. schemes with k > 1, m > 1, have significant
advantages over the linear multistep schemes, m = 1, and the one-
step schemes, k = 1, eg. the Padé approximants. The principle
benefit is the availability of high order schemes for low values of
m and k. Cryer [4] proves that an A -stable, linear multistep
scheme, m = 1, k > 2 has order at most k. Similarly, it is well
known that an A-stable Padé scheme has order q = 2m, but if stability
at infinity is required then q = 2m-1. Note that Ao - stability is a

weaker condition than A - stability. For comparative purposes we now

quote several previously documented schemes.

To illustrate linear multistep schemes, m = 1, we quote from

Zlamal [43]. A class of second order schemes, k = 2, is defined by

(-1 + OL)yn + (1 - 2a)yn+1 oy ., = At{(i -a+ B)yn

+U+a- ZB)yr'1+1 + By 40!} (7.1)

The necessary and sufficient conditions that the method be

consistent, zero-stable, and Ao—stable are
1 1
012-2-, S>-2_a

Defining B = % o + € it can be shown that the error constant C3 is given

12
'

by C3 = - {l- + e]. In the sequel we normalise the error constants,
k
= 1, where Blj is the coefficient of yn+j'

Cq+1, by defining jZo Blj

Z1dmal notes that for any € > O the best stability at infinity is
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obtained by minimising, with respect to a, the roots of 01(5).

. ‘. _1 fio - L\2 _
le., minimise (2¢ 7t (a f) 4€)/(a + 2¢€)

The class of third order schemes, k = 3, is defined by

3 3
Z aj yn+j = At z Bjyn+j where
j=o j=o
1
0y = —:13-+-l]i(a+3) 33 = §(1+a+8+w)
@, = -%(a+38) B, = %(3*0"3‘3"’)
1 - -
o4 = -Z-(a-36) B, = %(3 a - B+ 3w
= 1,1 - - - -
a, = 3+4(01 B) Bo _;_(1 a+B8-w

w o= (1-y)aB
Here, for the stability and consistency conditions, either

y =0 820 o=

or

0<yx<1, g > o, a>/87+%~/8_‘1_,

and the error constant is

1
c, = '-2—4'((1 + 3w)

4

We illustrate the class of consistent, zero -, and Ao - stable,

one-step, multiderivative methods, k = 1, m > 1, by quoting the Padé

(1,2), Padé (1,3) and Padé (2,3) schemes. The third order Padé (1,2)

is given by

A2
2 ' 1! t "
Yn+¢1 " ¥n T At { §-yn+1 * ERE 6 Yn+l (7.21)
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and the error constant C = —L-. The fourth order Padé (1,3) is

4 72
defined by
2 3
3 L 1 1) At (1] At " 7 2
Yarl T¥n = ATyt e T i Y Y (O 11
where the error constant C5 = - —}—-. Finally we quote the fifth order
480
Padé (2,3) namely
- _ 3 ' 2 ' 2 —_:i_ n .g..l. "
Yael T Yy = B CRARIRE-D A } o+ 8 { - 35941 * 36 v, !
3
A m
L 2
* %0 Yasl (7-2149)
here th tant C, = - =i
where the error constan ” 5500
Other Padé approximations can be obtained by using the
formulae for the rational approximations to e_x, (eg. (27, 7.3 -

7.4]). We note that all Padé (a,B) approximants with B > o are

stable at o, (i.e. modulus of roots of o (£) are less than one).

To illustrate the multistep, multiderivative methods we select

k =m =2 and derive a family of fifth order, A  — stable methods.

Any fifth order method with k = m = 2 may be expressed as
7 ] 8 1
(a - l)yn + (1 - 2a) Vel ¥ Wpeo = B, (Tg-‘ B) Yo * 15 Yn+l
§]y" (7.3

We test for Ab-stability by employing the Routh-Hurwitz criterion,

eg. [16 , PP 80] . For simplicity we employ a previous notation,

namely:
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2
“2<T>=°‘*6T+['§"ﬁ’3'66]T
M, (T) = (1 ~ 20) + Ji—r + (-—— - I 4 e
1 15 3 6 180
= (a- 7. B_oa _5 |2
uo(r) (a 1)+[-i-5— B]T+[3 7 " 55 ]T

for any T > 0. By (3.4) we require the roots of the polynomial

2 .
p(&,1) = .X uj(r)EJ to be less than one in modulus for all T > O.
j=o
By the Rough-Hurwitz criterion this requirement is satisfied if,

uz(T) > “1(T) - uo(T)

ie. (4a-2)-%+(.23£‘.~33-§-%]12> 0 (7.4

uz(T) > uo(T)
2

. -7 T
ie. 1 + [ 2B 15 J T + /15 > 0 (7-411)
By (1) + (1) + B (t) > 0
ie. T+ (28 -0 + —1—-)12 >0 (7.4
. 30 "T111
for all T > 0. Note that, by lemmas 1 and 2,we also require
E_o 1
Hy(m >0, ('3 12 ~ 360 ] > 0 (7.4,

The inequalities (7.4) are satisfied if

1 1

@>7, 2B-o2-=5
1 )2 20 28 8
a“d{ﬁ] <4lhe - DEF - F - gp)
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The region defined is best seen if we change the basis and let

from which we deduce that the inequalities (7.4) are equivalent to

— 2 — ot —
a > 0, ZF-EZOand[TlS—] <-33g-0t(¢1"8)

(3+0)

A

R"(?%’é%)
,R .
(%IO) (':'i’o) ’ a

The shaded area of Diagram 1 contains the admissible values for & and

B. We note here that the error constant of the L.M.S.D. scheme (7.5)

is given by
11 a B
Cs = = Ja1600 = l2a0* /o0

The selection of particular values from the admissible range of
the parameters a and B is now considered. Any scheme proposed to solve
the stiff system of equations (6.3) should exhibit certain character-
istics, of which, the principle is related to the nature of the
analytic solution. The continuous time Galerkin solution,.(6.9) -

d
(6.10), can be divided into the steady-state solution, z ( i(t),‘l‘i)‘l’i,

i=]
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d ~A.t
and the transient solution z Ug e * Wi , 80 named as
i=]

z e 'y, +0 as tow

Obviously, a desirable feature of any multistep method is that the
component of the approximate solution corresponding to the transient
solution should decay rapidly as t increases. Thus, for a stiff
system, we favour schemes with an inherent ability to tackle
effectively the components of the transient solution corresponding to

large values of Ai'

Let us apply the scheme (3.1) to the scalar test equation
; = -Ay, y(0) = 1; X > 0. By the definition of A - stability we
know that the approximate solution Yn + 0 as n >, Importance is
often attached to a scheme's 'stability at infinity'; that is, the
behaviour of the approximate solution to the above scalar equation as

A+, For A>>0 the solution Y, approaches the solution of the

difference equation

. k
Without loss of generality we shall assume that the roots {zi}i-l

of cm(g), see (3.4), are real and distinct, then

k
Y =7 a.z, as A + o«
n i%i
i=]
k . . e k-1
where {ai}i“1 are constants determined by the initial values {Yi}i-o'

By assumption we know that |zi| <1,i=1,2,...k; hence ¥ + 0 as
n > © and the scheme is said to be stable at infinity. However, the

rate of convergence of Yn to zero may be improved by fixing the roots
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of om(i) to be equal, or close, to zero. Consequently, given a very

stiff system of equations it is desirable to use a multistep scheme

where the roots of om(E) are equal, or close, to zero.

Equally, we desire that the normalised error constant, C

is small

le. Cq+1

k

is defined by (3.2) with J B T

j=o

Consequently, we advance the following possibilities:

a = 11/20 , B =
o = 3/5 , B =
a = 2/3 » B =
a = 23 /30 , B =

where 51 is the largest root in modulus of 02(5).

79/

24

¢ = Ygooo

300 *
Co = 4o
¢ = 400
¢ = 1350

gl
» gl
y g

. 86

N7

A 57

q+l °?

(7.5a)

(7.5b)

(7.5¢c)

(7.54d)

Higher order A - stable L.M.S.D. methods may be obtained by

allowing either, or both, of m and k to be greater than two.

Without

reference to the general class of such schemes we note the following

particular examples:

k=2, m=3
3 -4 -1
10 'n+2 ~ 5 Yn+1 "10 Yn
3 2" 1
305 & Yn+2 Y 60
15 -8 + L
1% 7042 " 71 ¥ 147

n+2

’ q = 6 b4

39 ! 16

= At{-ﬁ yn+2 + 35 yn-i-l
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4 2. " " " -
Ay - } e A3 a=7, C, = /176400

T35 % Yae2 T Yner? * 105 2tne2 ? 8
(7.6..)
11
k = 3’ m= 2
3 3
2 a - A 2 1 AZ [1]
joo i Tari T fe L PiYnes T e Ynes
1 67¢c
where ay - 11/, 3¢, B, = f20 + /12
- _ 63c . 9 9c¢
% = 9/ /4 B, = /20 + /4
(7.6...)
111
9c 9 27¢
o 9o * 14 B, = /20 /4
o 15¢ ! _ 13
o 11 j, + /4 B, /20 /12

This is a sixth order method with error constant C7 = é%-(c - 3%9

unless ¢ = 1/35 which yields a seventh order scheme with error

constant C8= 1/19600. A, - stability is ensured by the condition

¢ > 384/19,275

From the relevant theory, eg. Cryer [ 4], or by direct evaluations

we have established the following table concerning maximum orders of

AO - stable L.M.S.D. schemes.

The diagram expresses for 1 <m + k < 5 :

9 = maximum order of Ao - stable L.M.S.D.

4 scheme for specific values of m and k.

9, is as 9 but with added stipulation of

stability at o,
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1 2 3 4
1 |2 142 53 54

2 4 3 5 s 7 7 '
m I B

) ]

3 6 5 8 8 : \
e e mm -y = -

4 8 7 ) i |
[ T I [,

i ! ! )

| 1 | '

b. Implementation

Any scheme proposed to solve the linear parabolic equation should
be efficient in terms of computer storage and operations. For any
finite element space V: the matrices M and K are banded matrices, and
thus an efficient method of solution should preserve and utilise this

characteristic. In order to simplify the writing of the formulae let

us consider the homogeneous problem (1.1). Defining

d
" o= ) U? V. and E? = 7, ...,U:;)T we have immediately from

i=1

(3.5) and (3.6)

k k m
+j r n+j
. - . MU = 0
) % M v Il ot Br_] - (7) -
j=o j=o r=1
where
MU oL g g?*j r=1,2,...,m
(r) (r-1)
By combining these two equations we achieve
k k m :
Doy -] ] afe; enf eio" ™ - 0 7.7
j=o j=o r=1
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The equation (7.7) is obviously impractical as it entails full
matrices M_lK, (M-IK)Z,...,(M-lK)m . However, by the use of complex
arithmetic the sparseness of the matrices M and K is utilised. We
illustrate this mode of implementation by reference to the family of

equations (7.3). Equation (7.7) can be seen to be

2
I W oMo ™ - o
j=o
whererp\;('r) E+B + 2 _ B _ 1 _ a
2 ¥y Pyt YT o YT 37 3% T 1.2
2
19 . 50 _ 4B
e (1‘200‘[1- 8 [3736*? TJTJ
1 Y 15(2a-1) (20-1)
(7.8)
5 Q B]
N _ _ = e - | 2
(= 0‘_1[1_(715‘3)T . |72 12~ 3 r]
\ 15(1-a) 1-a

N
The roots of uz(r) are readily seen to be complex whenever o and B

are admissible. Thus, let

uz(r) = (z2 - T)(i2 - T

él) 252) be respectively the

and z s

and further let z

@) (2)
1 &

roots of YuL(T)/I—Za and Y“o(T)/& -1 Consequently, a simple

manipulation shows that (7.8) is equivalent to
Mol - -2 a0

M y?’z = (M- zfl) 4,K) EP+1

,3 2a-1 - (2) 91
(z) M - 8K) UM = [—-Y—] [M z, Atx]g“
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A2 L Im y?»3
Im ;é
Although three intermediate steps are necessary at each time
interval it is necessary to invert only two matrices. For the
Particular example (7.5d) only one intermediate step exists at each
time interval, requiring the inversion of only one matrix. This fifth

order scheme can be favourably, compared with the third order Padé

(1,2). The latter may be implemented by
1 ,1 1
glaM+a K) U = (M-38 K) D

EP+1 = EEL};;:I where o = 2 + iy2
Im a

Both schemes require one intermediate step at each time interval and
one matrix inversion, although the scheme (7.5d) necessitates a larger
storage capacity and greater arithmetic operations per time interval.
However, the latter disadvantage is easily compensated by the higher
order and smaller error constant permitting larger time increments
for comparable accuracy. Similarly, the schemes (7-61) and (7°6111)
have parallel modes of implementation to the Padé (1,3) and Padé (2,3)
respectively. Consequently, arguing as.before we can establish a

preference for the schemes (7.6).

The use of complex arithmetic, and the extra storage necessary
may be prohibitive. However, A-stable L.M.S.D. methods of arbitrary

order have been investigated by several authors with the intention of
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simplifying the implementation. Of particular interest is the family
of one-step Hermite formulae suggested by Makinson [19] and investi-
gated fully by Norsett [26] . Norsett derived a family of A(0) -
stable, one~step methods of order m+l where the coefficient matrix,
Cm(M-lK), of EF+1 is given by

A
(1 + 1; M 1K)m, for a specified parameter y .

mn

-1
Gm(M K)

Continuing with the construction of L.M.S.D. methods with k = m = 2

we now establish a family of fourth order, A0 - stable methods where
.. . +2 ..

the coefficient matrix of E? has the same characteristics as

-1 . R
G2(M K). The family of fourth order schemes with the above property

is given by

' 1 2
ay o+ (720)y ., + (a=Dy = A {Bay ., + (G-a+4ba- 380y,

2 1]
1_ 2! 2, B%a " 3a _ 2, - L
+ (a + 3 58a + 3B a)yn} + At{— 5 Y42 + (2 4Ba + 2R a 12)Yn+1

") (7.9)

L
n

5 .2
12-2Ba+z-Ba)y

+(%+

Applying the Routh-Hurwitz criterion we deduce that (7.9) is Ao—

stable if for any a > %

_ Y12 . 1 2_1 4.2 _ }
1 —6-<B<m1_n{]_—/-6-a ’ 3 6a 40 20

and a2(38% + 1 - 4B)2 < (4o - 2)(B%x - 2Ba + & = %)

1
Alternatively, AO - stability is ensured by o>y and
1 vi2
+ Y= < < +  —
1 /6a B 1 6

The normalised error constant of the scheme (7.9) is expressed by
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As before we require that the choices of values for a and 8
yield a balance between the stability at infinity and the magnitude
of the error comstant. However, the Ao-stability requirement on B
forces the modulus of the roots of 02(5) to be extremely close to ome

for small values of CS' The one important exception is when

a = (5+16/10/90 , B = (12-2/‘10)/13

. 5 + 16/10 40 - 16v10 1610 - 85 )
re. [ 90 } n+2 ' ['_‘—“45 1 V{7 90 J'n °

~

8 [ 7/10 - 10] o, ( 40 - 4/10Jyn+1 . [5 - flo)y' |

45 Yn+2 5 15 n
J
_2(2/0-51"
At[ a5 ]sz | (7.10)
and C; = (4 - Vlo)/270
Its

The scheme (7.10) has roots equal to zero at infinmity.

implementation is readily seen to be expressed by

n,1 112 - 88vio|{ 2-vio +1
o - (it )

( 74 - 34/10 ]( 531; V10, _ AcKJHn
169

(M+6—“$Atx) ™2 - myt!

and requires the inversion of only one matrix. Similarly, the scheme

(7.6111) can be manipulated to exhibit the same characteristic, i.e.

the polynomial uz(r) having a double root. This property is obtained

by the value
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c = 105 (4V2 - 3)/,,5,
which yields a sixth order scheme.
We conclude this chapter with the following remarks:

(1) We conjecture that the maximum order of an Ao-stable L.M.S.D.

scheme which is stable at infinity is

q = mk +1) -1

Thus it is advisable to select m > 1 for the derivation of high

order schemes.

(2) A clear advantage in increasing m rather than k results from
the error constant decreasing more rapidly for m increasing than with

k increasing, particularly if considered in conjunction with the rate

of convergence at infinity. For example the third order schemes

(7.211) have small error constants for y = 1

whence C, = -1/96.

eg. Y=1, a= %—, B = %‘» 4

but these schemes are not stable at infinity. For the optimal rate

of convergence at infinity, ie. when 01(5) = g7, the values are

Y = g . a=8= 3 , whence C4 = - %-

In comparison the third order Padé (1,2), with its equivalent, optimal

rate of convergence at infinity,commands

1
% = 72
(3) With respect to the system of equations (6.3), maximum order,

A - stable L.M.S.D. schemes, with m > 1, invariably require complex
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arithmetic for their implementation. Ease of implementation, as
characterised by (7.9), may only be obtained by relaxing the stipula-
tion of maximum order. However, once this relaxation is operative we
can derive high order Ao - gtable L.M.S5.D.'s. that are simple to
implement. We conjecture that schemes of order q = mk can possess

this property,

Given m fixed, let us compare the implementation procedures of
two L.M.S.D.'s whose step numbers differ by one. Schemes incorpora-
ting m > 1 require the first m - 1 derivatives of (f(x,t),Vi) at each
time level. Thus for a k-step method these evaluations may be utilised
k + 1 times which does not necessitate any further evaluations as k

increases, although it requires a minor increase in storage capacity.

The number of intermediate stages at each time level employed

by the complex arithmetic mode of implementation is readily seen to

be equal to
k
n, n .
z [ rj -1 ) , Where rj = sup {r | Brj #0, r=1,...,m}

j=o

for the homogeneous problem with, generally, an additional m - 1

Consequently,

}m

by increasing k by one but restricting the coefficients {Br, k41T p=2

intermediate stages for the non-homogeneous problem.

to be zero entails no additional intermediate stage, although the

number of arithmetic operations and the required storage capacity

will be increased by 0(d). For example consider the schemes (7.21)

(7.5d), and (7.6,,,)+ All require one intermediate stage per time

level but their orders are respectively 3, 5 and 7. The higher order,
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permitting larger time increments At’ will easily compensate for the
increase in arithmetic operations and storage. Finally, we note that
within certain classes of schemes optimal stability at infinity is

compatible with ease of implementation, i.e. (7.5).

With regard to the above remarks we advance the merits of the

classes of L.M.S.D. schemes withm = k - 1, k, or k + 1 for k 2 2,

Such schemes may incorporate a balance between the above remarks.
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8. Numerical Results

Complementing Z1l4mal [43] , and others, the following two test

problems are studied in detail

g% = éf%- . xe€(0,1) , t>0
9x
u(o,t) = u(l,t) =0 , t2>20 (8.1)
u(x,0) = g(x) , x €(0,1)
where g(x) is given respectively by
(1) g(x) = 1 0<x<1

2x 0 <x < %

(2) g(x) =
2(1-x), 51-5 x <1

The analytic solution of (8.1) is given by u(x,t) =

-A.t 1]
) B; 1 sin/lix where A, = 72i% are the eigenvalues of y =

-

i=]

-Ay, y(o) =y(l) =0, and {gi}°° are the Fourier coefficients of the
i=1

initial value g(x). The continuous time Galerkin solution has a similar

form; ie. let U(x,t) = Z Y

i(t) Wi(x), where as before Wi(x) are the
i=]

VP,

eigenfunctions of the eigenvalue problem a(¥,V) = A(¥,V), VV ¢ h

Consequently, it is easy to see that the equation (2.3) decomposes into

' o
1 - - R = U,.
the set of equations Yi Ai Yi , Yl(O) i

If the exact solution of (8.1) is smooth at t = O the Fourier
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coefficients g; converge rapidly to zero as i = o, Consequently,we
expect the coefficients Ug to converge rapidly to zero as i + d, when~-
ever h is sufficiently small. Thus we anticipate that for g(x) very
smooth a L.M.S.D. method with an error conmstant close to the minimal
value should yield more accurate results than a scheme with a larger
error constant but with improved stability at infinity. Conversely,
for g(x) not smooth we anticipate a preference for a L.M.S.D. method
with a near optimal rate of convergence at infinity.

>3

The following results were derived by selecting VE = Vh, the

space of cubic splines over [0,1], with a regular mesh of interval

h = 0.1. The time increment At = 0.01, and the initial value U(x,0)
The Padé (1,2)

or Padé (1,3) are used to determine the values {U }E;i .

n
is taken to be the L, = projection of g(x) onto Vi

Problem 1

. - i
The Fourier coefficients g; = 2[1 - (-1)71y, . converge very
slowly to zero and consequently we expect to employ L.M.S.D. schemes

with high rates of convergence at infinity. Numerical results have

been obtained by the four multistep schemes (7.5). The Padé (1,3) has
been used to evaluate the extra initial values; not to preserve the

fifth order of convergence in At but because it can be shown to be more

appropriate for small values of t. As the gi's converge slowly to

zero as 1 + o ye are concerned for small t with components of the
solution for which 1 = AtAi is large. Applying the Padé (1,2) and the

1 . .
Padé (1.3) to the test equation Y = AY, Y(0) = 1, where A>>0, it is

easy to see from (7.2) that:-

-112 -



Padé

(1,3)

whilst the L.M.S.D. method

(23 2
T

KRG

Since we wish to simulate the exponential decay Yn+

1 ~1/3
) { 1+ 27 i Tz ] Yn
/3 /6
l.e. nﬂa'--Y as T + «©,
- 7T
- [ - 2 - 3 J Yn
L4 3T, * Ty Y T2
T.e. Y =-—£L Y as T + ©
n+l 2 "n
T
(7.5d) yields
8 8 7 1
2+[ E+ETJYn+1+[ -3_5+T§T}Yn 0
i.e Y ~ 1 Y as T >
: n+2 ;I n+l
= e_TY the

Padé (1,3) is preferred.

In the subsequent tables percentage errors are evaluated at

the knots x = ih, h = 0.1, i = 1,2,..,5,

for various time levels.

Table 1 compares the Padé (l1,0) , a = 2 and 3, for 0.0l < t < 0.1,
Table 1 Percentage errors. At = 0.01
¢ x=,1 x=,2 x=.3 X=.4 x=.5
a=2  o=3 Ja=2 a=3 |o=2 o=3 ja=2 a=3 |o=2 q=3
0.01 | 1.83 |.622 |1.23 |.477 {.058 |.082 [.155 |.035 [.052 |.012
0.02 | .573 |.092 {.252 |.007 |.200 |.043 {.042 |.001 [.045 |.026
0.03|.189 {.023 {.084 (.004 [.017 |.004 |.046 }.004 |.051 },000
0.05}.058 |.005 |[.035 |.002 |.008 |.000 {.015 |.002 [.023 |.003
0.1 {.002 |.000 [.001 |.000 |.000 |.000 |{.001 }|.000 |.001 }.000
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Allocating the initial values at t = 0 and t = At to be
respectively the L2 - projection of g(x) and the Padé (1.3) at t = At’
the problem has been computed by the four schemes (7.5). As expected
the results improve as the respective roots of 02(5) tend to zero.
Table 2 gives the results at various time levels for the schemes (7.5b)

and (7.5d).

As t increases, say t = 0.08, the exact solution and its first
8ix derivatives become increasingly dominated by the lower values of i.
Correspondingly, the maximum significant value of 1T = AtAi decreases.
Thus with the discretization error becoming increasingly dominated by
the lower values of i the system of equations tends to loose its
stiffness and behaves as a non-stiff system. Let us use the L.M.S,D.
schemes with a larger time increment, say A = 0.02 (0.03), for
t 2 0.08 (0.09) with the initial six values from the Padé (1,3), At -
0.01. 1It is to be expected that for At = 0.02 the lack of high
stability at infinity of the schemes (7.5a) = (7.5c) will be partly
compensated by their smaller error constants compared with the scheme
(7.5d). Numerically, this analysis is validated. For At = 0,02, the
schemes (7.5b) - (7.5d) yield extremely similar values whilst for
Table 3 compares the schemes

At = 0.03 (7.5d) is seen to be superior.

(7.5b) and (7.5d) for A, = 0.02. Table 4 illustrates the scheme (7.5d)

with At = 0,03.

2
Table 4. Percentage errors x 10 , A, = 0.03

t x=0.1 |x=0.2 [x=0.3 {x=0.4 [x=0.5

0.09 |11.18 |6.714 |1.439 [2.659 [4.184

0.12 |4.826 {2.924 |0.669 |1.039 |1.668

0.15 {3.023 |0.782 |0.352 [0.756 |1.164

0.27 |0.352 |o.187 |0.021 |0.117 (0.166

0.39 {0.052 |0.012 |0.003 [0.021 }0.027
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Excellent results may similarly be obtained by the scheme (7.10).
Tables 5 and 6 give the percentage errors when the scheme (7.10) is
applied with respectively At = 0.02, At = 0.03 after the initial six
(twelve) values were derived by the Padé (1,3), A, = 0.01, and the L, -

projection of g(x).

Problem 2
The exact solution is not smooth at t = O, but it is smoother
than the previous example. The Fourier coefficients are given by

g; = ;é%f sin %; , 1 2 1. The remarks concerning problem 1 are also

seen to be appropriate to this example. Assuming that the initial

values are derived as in the preceding example the numerical results
show that
1). For t 2 0.02 , At = 0.01, the results from the schemes (7.5b)

- (7.5d) are barely distinguishable from each other.

2). For t 2z 0.08 , At = 0.02, the schemes, (7.5a) - (7.5d) are

similar, with (7.5b) ~ (7.5d) almost identical.

3. For t 2 0.09 , A =0.03, the schemes (7.5b) - (7.5d) yield

similar results, with (7.5¢c) and (7.5d) identical.

These numerical observations are anticipated as the solution
is smoother than that of problem 1. Tables 7 and 8 illustrate the
schemes (7.5b) and (7.5d) when, respectively, At =0.02, 4 =0.03,

and the initial six values are derived by the Padé (1.3), A, = 0.01,
and the L2 - projection of g(x).

The numerical evidence and analysis for the homogeneous

equation warrant the following conclusions. Firstly, the accuracy

associated with the high order methods does not appear in the first
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few time steps. This coincides with the validity of the convergence

results of theorems 1 and 2.

We haye seen that extremely good results may be obtained by
applying the Padé (1,2) or Padé (1,3) in the initial phrase and a high
order L.M.S.D. scheme, with a larger time increment, in the further
phase. The extent of the initial phase is determined by the smoothness
of g(x), since g(x) controls the smoothness of u(x,t) for small t.

For g(x), and hence U° smooth, the discretization error is rapidly
dominated by the first few values of i which enable us to progress

rapidly to larger time increments; conversely for g(x) non-smooth.

The situation for the non-homogeneous equation is more complex.
Corresponding to the homogeneous equation, the numerical results of
a particular scheme will reflect the relationship between the smooth-
The discretiza-

ness of g(x) and the schemes stability at infinity.

tion error at time t is now dependent on the quantities

q+l
—q- P .
Aqu [8— f(x,t), Y, ) » i=1,2,...,d,
1 atp 1
p=0

and thus, generally, it is ill-advised to employ a larger time

increment in the further phase.
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Table 2

Percentage errors

>nn 0.01
x=0.1 x=0.2 x=0.3 x=0.4 x=0.5

i (7.5¢) (7.5d)] (7.5¢) (7.5d)| (7.5¢) (7.5d)|(7.5¢) (7.5d)| (7.5¢) (7.5d)

0.02 13.506 | 0.585 }1.103 }0.059 | 0.501 | 0.010 {0.321 {0.031 |0.279 {0.021

0.03 |1.374 {0.189 }0.315 |0.129 |0.129 |0.096 |0.068 }0.013 |0.046 {0.018
0.04 10,912 | 0.059 }0.209 |0.112 {0.082 |0.058 {0.052 |0.014 }0.038 |0.005

0.10 |0.012 |0.002 }{0.005 |0.003 | 0.004 |0.001 {0.001 {0.001 {0.001 |0.002

0.20 {0.002 {0.001 |0.001 {0.001 J0.001 }0.001 {0.001 |0.001 |0.001 o»ooH
0.30 {0.001 10.001 {0.001 [0.001 }0.001 {0,001 {0.001 }0.001 {0.001 }0.001
0.40 0.001 | 0.001 [0.001 {0.001 |0.001 [0.001 {0.001 {0.001 |0.001 [0.001




Table 3

Percentage Errors x 10

3

x=0.1 x=0.2 x=0.3 x=0.4 x=0.5

‘ (7.5b) (7.5d) {(7.5b) Aw.mav (7.5b) (7.5d) |(7.5b) (7.5d) {(7.5b) (7.5d)
0.08 10.18 |11.1 {0.31 }6.33 |0.61 [0.97 (0.99 | 3.36 |1.14 | 4.98
0.1010.07 |1.24 |0.50 }|1.13 J0.58 |0.68 |0.66 |0.44 }0.66 }0.35
0.12 10.60 J0.98 |0.76 }0.99 }0.69 }0.67 }0.77 {0.50 {0.79 |O0.41
0.20 ) 0.59 |0.33 {0.75 |0.59 | 0.67 |0.57 |0.71 |0.63 }0.72 }0.63
0.3010.41 {0.39 |0.69 |0.62 |0.65 [0.56 |0.66 |0.58 |0.63 |0.57
0.4010.51 10,36 |0.70 | 0.60 | 0.63 |0.54 |0.66 |0.56 |0.66 ]0.55

Dnn 0.02



Table 5

Percentage Errors x HON >nuo.oN
x=0.1 x=0,2 x=0.3 x=0.4 x=0.5 |
) '6! 12’ '6' 12! '6' '12! '6' '12! '6' '12°
0.10 }3.696 |0.042 {2.283 |{0.009 |0.545 ]0.004 {0.815 |0.007 {1.327 |0.009
0.12 14.571 10.051 |2.755 |0.026 {0.598 }0.029 |1.108 |0.025 |1.748 |0.025
0.14 14.685 10.090 12.875 |0.048 |0.664 [0.031 |1.065 |0.010 [1.715 |0.004
0.20 }5.642 |0.039 |3.402 {0,031 |0.763 |0.056 |1.298 |0.069 |2.065 {0.076
0.30 {7.483 |0.177 |4.475 {0.134 |0.922 |0.114 |1.779 |0.092 }2.774 |0.085
0.40 110.33 ]0.102 |6.106 }0.106 |1.332 |0.146 }2.195 |0.171 |3.461 |0.182
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Table 6

Percentage Errors x 10

>nuo.ow

-120 -

x=0.1 x=0,2 x=0.3 x=0.4 x=0.5
‘ '6! 2’ '6' '12! 6! 2! 'e' '12! '6! '12'
0.09 |4.656 [0.005 }2.826 {0.001 |0.637 |0.001 {1.073 {0.003 |1.712 0.003
0.12 15.174 |0.005 |3.123 |0.003 |0.683 |0.003 {1.205 |0.003 |1.908 0.003
0.15 16.602 |0.055 |4.000 |0.037 |0.904 {0.019 |{1.501 |0.003 |2.396 0.003
0.27 |16.34 |0.133 |9.954 |0.096 |2.286 |0.055 [3.735 |0.021 5.991 |0.008
0.39 |40.47 |0.294 |24.75 |0.207 |5.717 {0.104 |9.344 {0.019 {15.02 |0.013




Table 7

Percentage Errors x 10

3

x=0,1

(7.5b) (7.5d)

x=0.2

(7.5b) (7.5d)

x=0.3

(7.5b) (7.54)

x=0.4

(7.5b) (7.5d)

x=0.5

(7.5b) (7.54)

0.08 |0.91 | 4.27 |1.00 [ 3.06 |0.80 [1.21 {0.72 |0.23 |0.68 |0.80
0.10 10.48 | 0.20 |0.69 | 0.51 | 0.60 |0.56 | 0.58 |0.68 |0.56 |0.71
0.12 j0.60 | 1.05 |0.80 |1.06 |0.73 |0.70 | 0.75 | 0.48 |0.74 {0.38
0.20 10.53 | 0.44 |0.75 |0.66 |0.68 |0.59 |0.71 |o0.60 |0.70 | 0.59
0.30 |0.46 1 0.39 |0.70 {0.62 |0.64 [0.56 | 0.66 |0.58 |0.64 |0.57
0.40 10.48 1 0.36 |0.70 [ 0.60 | 0.64 }|0.53 |0.66 |0.56 |0.65 |0.55

>nn 0.02
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Table 8

Percentage Errors x 10

3

Dnuo.Ou

x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
: (7.5b) (7.5d) (7.5b) (7.5d) {(7.5b) (7.5d) {(7.5b) (7.5d) {(7.5b) (7.5d)
0.09 {1.84 |36.6 |1.16 |23.3410.05 |6.19 |1.75 | 7.97 | 2.48 | 13.47
0.12 12.65 }14.8 }2.50 |8.96 |1.30 |1.84 |0.16 | 4.20 | 0.85 | 6.54
0.1511.77 }|10.1 |1.09 |6.70 [0.05 [2.02 |1.64 | 1.81 |2.32 | 3.32
0.27 12.30 |1.31 |1.47 |1.10 |1.39 |0.47 }0.36 |0.03 {1.16 |0.16
0.39 12.90 |0.06 |1.88 |0.24 |0.28 |0.11 |1.66 | 0.08 | 2.51 | 0.04
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9. The 'Quasi-Linear' Parabolic Equation

Using the notation of the previous chapters we shall investigate

the numerical solution of the initial, boundary value problem

N
P(x)%% - z g%- (aij(x)%ﬁ.) = f(x,t,u) + div b(x,t,u) x € 2, t > 0
ij=1 1
u(x,0) = g(x) X € § “.1)
u(x,t) = 0 xel ,t20

where b(x,t,u) = (bl(x,t,u),...., bN(x,t,u))T

The weak solution is readily seen to satisfy
(PGIBL,v) + a(u,v) = (£(x,t,u),v) = (b(x,t,u) V) WeH (@), t > O
(9.2)

u(x,0) = g(x)

where the bilinear functional a(-,+) is now given by

N
9
a(u,v) = z [ aij(x)gﬁfﬁi.dx

i,j=1 ‘@ 1t

Defining the subspace Vﬁ of Hi () as before,the continuous time

Galerkin solution, U(x,t), satisfies

(p(X)’g“tJ', V) + a(u,v) = (£(x,t,0),V) - (R(x,t,U) . W) WGV§ » t >0
U(x,0) = U°) (9.3)

for a suitable approximationm, Uo(x), to g(x).
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d
Let U(x,t) = ‘z Cj(t)Vj and substitute {Vi}g=l in turn for
j=1
Vin (9.3), Then by assembling in matrix form we derive the initial

value problem‘(cf. (2.3))

MrC + KC = £(©O , CO = a (9.4)

where the matrices M,K and the vector £ (C) are given by

Mi_] = (D(X)Vi ] VJ) ’ Kij = a(vl ’ V_]) ’ 1Si9j5d
d d
fi(_q) = (f(x,t, ) Cj(t) Vj) . vi) -~ (E(x,t, ) Cj(t) vj).vvi>
j=1 j=1
i=l,...,d

The positive definiteness of M and K is ensured by the assumptions (B)
defined overleaf. Approximating the solution of (9.4) by utilising a

L.M.S.D. scheme with m > 1 is ill-advised, since it necessitates the

differentiation of the non-linear term f(C). However, by an indirect

application of a 3rd order, Ao—stable L.M.S.D. scheme it is possible to

obtain an approximate solution to (9.4) by solving algebraically linear

systems of equations at each time step. This particular 3rd order

L.M.S.D. scheme is given by

2 2
] 2 n
) oLj yn+j = At ) Bj Yn+j * b Yne2

j=o j=o

where a. = l.+ (é B, = li!§.+ 2@ c_ = =B
2 2 3 ’ 2 6 2 2
2v3 2
e_2Y3 =< - 28 .
% ==73 » B =3 (9.5
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o)

=23
0"73

-1
2
The above scheme is consistent and zero-stable. A -stability is

ensured by the conditions

2

+ T4O - %) + 012 >0 for all T > O.

4v3
> 3o
6 >0 , 3

Both Ao—stability conditions hold a fortiori for 6 > %? .

Consequently, the discrete time Galerkin solution, where U" is an

approximant to U(x,nAt), is defined by

2

2
Q. . .
I g U™, v va (] 80" v cpn o™ v (9.6,

t
o J=o

J

= (£(x, T, T, V) - b, T).W) Wev? , n 21

V3

where o= (n+1+ TT)At ’

ﬁn

th

1+/3 \n~1 _ 1+2V3 P 1333 el
6 3 6

+ . .
and Qn 2 € Vﬁ 1s defined by

P2, v+ 2™, v = (2, @8, T, )
(9.5,

- (b(x, ()8, U**2).wv) vvev?
- t
vhere  UP*2 o 3g?*l o g0, g0l

For 6 > f%- the scheme is unconditionally stable and, c.f. Theorem 4,
third order accurate in At' Computational aspects related to the system

(9.6) will be investigated at a later stage.
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We shall impose the following assumptions (B)

(Bl) u(x,t) , gat-u(x,t) € Hpﬂ(Q) » t € [0,T]
(Bll) u € C4(§ x [0,T]) ie. four times continuously differentiable
with respect to t, (x,t) € (R x [0,T]).
(Blll) the function p(x) shall be bounded above and below by positive
constants
ie. 0<nsopx)<c , X € Q
(Blv) the matrix A, Aij = aij(x),is uniformly positive definite.

ie. aij(x) = aji(x) » 1 <i,j <N, and there exists a constant

Co > 0 such that

N N N

-1 2 2

¢, 1 & =1 a; s E scf g Vxeq
i=1 i,j=1 i=1

Further let the derivatives {g% aij(x)} be bounded

(Bv) The functions f and bi are uniformly Lipschitz continuous with

respect to u
N
ie. X ,bi(x,t,ul) - bi(x,t,uz)l + lf(X,t.ul) - f(x,t,uz)l

i=1

< L_]ul - uzl (x,t) € @ x [0,T], =~ =< Uy sY, < o

To preserve continuity in a later proof we shall establish three

results now. Let E(x,t)eﬁi (§)) for each t > O, and further denote

g" = E(x,nb, ).
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Lemma 3

Given 6 > —L-, then there exist positive constants c and C

12
such that
m 2 2
i i 2 1y 2 2,2

Do e e, ) gjng“uam*zu ~efietn? v e
n=1 j=o j=o0

Proof

2 2
Sn: Z Jgﬂ Z %gﬂ
j=o i=o

[_g__ -1—][(5“+2 e gn)Z) — b [“ _{33} [€n+2£n+1 _ ol ]

Thus there exist positive constants c and C such that

m m m )
2 Sn > c [;z {€n+2 _ 25n+1 + gn)Z + X [gn+2 _ gn) +
n=1 =] n=1
m+]1
) [&“” - 5“]2] - 6[1 » 22 J (5‘“*25“‘*1 - t:zal]
n=1
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1
N —
ote that for 0 > 13

o
1]
—

and thus using the inequality |ab| < eaz + bzlke’ € > 0, we find that

R | L R I o (R ) e

Combining the above two inequalities we have shown that

m m m
Z s? > ¢ [I£m+2]2 + Z [€n+2 - 2£n+1 + gn]z v ] {€n+2 - En]z
n=1 n=1 n=1

][] e

n=]

The desired result is obtained by multiplying (9.8) by p(x) > O and

integrating over Q.

. 1
Generally, lemma 3 can not be weakened to include any 6 < iz

1

For instance, if 8 < 17 ° E" 2 (-1)® e(x) , n > 2, where €(x) >0

for any x € Q , and 51 = Ez = 0 then S < 0 which is contradictory to

the lemma.

Lemma 4

Given 6 > O , then there exist positive constants c, C and U

such that
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m 2 2
R HZ € e eull ] ajé““jnz]zcn e |2
n=]1 3 . 1 1

j=0 j=o0

-cqllet 2+ ef®
1 1

Proof
2
n n+ n+2
T = - ]
a[Z a g, eyE }
j=o

Sumning T" for n = 1,...,m we derive by (3.

m m
1 -1 1
g I T=g [%‘%) N W T +e;“ni
n-l n-l
AT m
_1 2 _ 2
R et G o) e e
n=]1 n=1

gl ) gl

R el )l )

-129-



1,2
= et ey o+ ety (9.9)

In the following we use the Cauchy-Schwartz inequality for positive

definite forms, namely

N N N . I3
) aijglyJ < [ ) aijEJEJ]i[ )) ainlYJJ£
i,j=1 i,j=1 i,j=1

and thus by the Cauchy-Schwartz inequality for integrals

N . N . N N
j ) aijlede < [ J ) aijilgldx) ( [ ) aijyldex]
Q Q Q

i,j=1 i,j=1 i,j=1

. 2 2
It now follows by using the inequality |ab| < ea” +b J4e, € > 0,

a[€m+2’ Em+1] < a[€m+1’ gm+1] R f%'a [€m+2 ’ gm+2] -

. 1 _ V3 1, /3
Selecting € = {5 - Tf]// EE * 7?} we easily deduce that

[21 . %] a [€m+2 , €m+2] . [% _ T/g} a[£m+1 , gm<l-1] _ [';lf' + !62] a[Em+2’gm+1]

2
T

Applying the above inequality to (9.9) yields for constants ¢, C > O

m m m+l
1 2 +2),2
Do q DU -2« 12 TN - N - e

n=l n=1 n=l
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1, 2 2,2
- (et e nen?) 9.10)
Similarly,

2
[ zajgn*j]Z . [Cnoz - £nﬂ)z . Tlf IEMZ PYLAIR Cn)z

j=o
. {%? - %] [cnOZ - Cn*l)Z _ (CnOI _ Cn]Z
and hence:
m 2 m+l
DT o™il s [%%’-] Ionemt -t
n=l j=o ! nel
»
. T%Z “ ‘,’n¢2 - 2£00l . [‘ﬂ”f (9'11)
n=]

The proof is concluded by subtracting an appropriate multiple of

(9.11) from (9.10).

Lemma 5

Let u(x,t) be the solution of the weak problem (9.2) and suppose
that the assumptions (B) are satisfied, then for At sufficiently small

ooz u(x.nbt). OsnsT/A , satisfies (cf. (9.6))
t

2 a 2

3 o) o o ea o

jeo © j=o

- (m.?“. uh, v] - (g(x.i". . vV]o r(v) ku:(m. nzxl

ne2 _ 23

u may be expressed by
LL |t - (nOZ)At

and q

w10t =



,[p(x)qn+2 , vJ + a{un+2 R v] - {f(x,(n+2)At ’ 3n+2) ’ VJ
(9.13)

- [ b(x, (@e2)d, , D) v] +Xv)  werl @

where (1) |le@| s e || vl
@  |JE@ | scal v,
and the functions u" . 3n+2 are defined as

~n _ 1+/3 n-1 1+42/3 n . 7+3/3 n+l
6 Y Tty vt~ v

Proof.
The coefficients of the 3rd order L.M.S.D. are constructed so

that, for any sufficiently differentiable function y(t),

2

a. '
! Z—i—yn+j y (&) +E (9.14)
j=o
where )
| 3 4 y(®)
E.(y)|scyanl ; Y, £ s8up [—py
! 47 ? Y7 osest lag®

whenever At is sufficiently small. Similarly

2 TiTn4j

2

' —n
2 B.y + Atc2yn+2 = y(t) + Ez(y) (9.15)
J-

(o]

3

where ]Ez(y)l S CY, A
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Multiply the expression (9.14) by p(x)v , Vﬁﬂi(ﬂ) , and then

integrate over . If we select 'y' = u(x,t) we achieve by (9.2)

2
a. .
) z'l'[p(x)un+J . v} + a[u(En) . v) = [f(X,En , U, V]
jmo F
- [E (x, T, u(®™). VVJ + [El(u) > p(")"] (9.16)

u, and (9.16) we deduce that

Using (9.15) with 'y’

: %3 n+j 2 n+j 9 n+2
Z 3'3:- [p(X)u , v] + a{ ) Bju I s Ac°2§7;' u . v] =
J*=o j=o

‘[f(x, ®,w, v] - [g(x, ®, . VV} + r(v)
vhere r(v) may be expressed as

SUNE YO Py + a(E,_(u),v]

+ [f(x, ™, u@®)-£(x, T, B“),v]

R [yx L LW -b L, B, u(s“)).vv]

Note that by assumptions (B) and the Cauchy-Schwartz inequality

W flu@&® -3 < CAz

(2) [f(x , T, u(®™) - f(x, B, W, v] < L u@®® = || vl

(3) [R(x y B, WM = b(x, T, u(@E) . vV)
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N

-

N

im1
S ]
£ e

N N

) (bi(x , €, um- b, (x , ™, u('i“))}

4
[I b, (x , ., - b, (x , ©, u@M) } [Z

ov
Ix. dx
i

2 N

i=1

sL fn',[.z % - u<zn)|2]4 [ ) [gii]z)’ dx

i=]1 i=]

sund |3 - u@| vl

(9.17)

Hence, employing the above inequalities, (9.14) and (9.15) it is

simple to establish the bound

e s ealllvll;

A simple manipulation of (9.2) establishes

n+2

{p(x) g% un+2, vJ + a(u

(g0 72

’ n+2’

). v v) + ?(V)

, V) = (f(x, tn+2’ 3n+2)’ v)

1
VvVve Ho(ﬂ)

where for simplicity of notation tep © (n+2)4 , and

n+2

T(v) = (f(x,tn+2, u

-(.b_(xntn+2, un+2) - E(x:tn*zn

Noting that | ®*2 - 2 s CAz we
that

N 3

Iz || = ca;

) - f(x,tn+2, %n+2)’ v)

deduce by the assumptions (B)

,,V ”1

-134-



Our intention is to employ a method corresponding to chapter 6,
section b. Hence, we need to impose the elliptic regularity condition

(All). As before we define W ¢ Vg », Vt20hby

a(u-W, V) = 0 VVev (9.18)
Denote n = W - u , whence (cf. (6.28)) for h sufficiently small

+1- 3
Inll, + linll, < e {“ ulhay * uwﬂpd} o
9.19)
Analogously define Qn+2 € vﬁ by

a(@®2 -2 v =0 vVVeWw (9.20)

The assumption (Bl) testifies that qn+ T

and consequently by lemma (4.1) [8],

2 _ <2 13
™ - ) < Pl 52 (9.21)

u
t ”p+1

The principle results of this chapter are contained in the following

theorem and its corollary:

Theorem 4

+2 .
Let u(x,t) be the solution of (9.1) and {Un}:L3 be defined by

(9.6) with 6 > L Further, let us suppose the assumptions (All)’

12°
(B,) - (B) are satisfied, Then for 3sm+ 2 < 7T, , and h,A
1 v /A t

t
sufficiently small

2
D21 = e uP™ o a2 o 1 [IEb) e agll el y

i=1
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where £ =W - U, and " = gl
t"tn

Proof,

For brevity of notation define W® = W
t=t
n

A straightforward manipulation of the expressions (9.12), (9.18) and

(9.20) yields

2 2
a. . . a. .
I 2t W™, v+ a[ I8 v 002, VJ- I [p(x)n’”’.v]
j.o t j-o j‘o
+ (V) + (£(x, T8, WM, V) - (b, , ). W)
VVe vﬁ (9.22)
- 2
Subtracting (9.61) from (9.22) achieves, with ,(\2n+2.=. Qn+2 - Qn+ s
2 2 'a
. . . n+2 . .
I 22 0g™ L v va( ] 88" 4 cp @, v) =] K;L[P(xm“”»"]
jmo j=o j=o
+T(V) + (£(x,t", W) - £(x, &%, TH, V) (9.23)
- [Q_(x,'c““’ W) - b(x,E, ). vV ] VU eP
Note that, using the assumptions (B) and (9.19)
1) (0,7, @) - £, T , v s LI =T v
2 (2T, W - b, W) sLn T - T || V), (e£917)
2
3) By the consistency relationship Z Otj = 0, hence
J=o
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Qa. . a a
2
I #n™ =200 v 2 o™ -
juo E t t
2
. gi n+j 3 p+l
ive. (P § 22 0™, v)sc sup [ nll IIV] s euP* vy
j-o t ostsT

The above inequalities and lemma 5 produce a bound on the right hand

side of (9.23), namely

2 2
a. . .
I g g™ v ea[f g e v
. t . J
j=o j=o

cofwtete i - ilivi,

2 .
Select V= ) B.£n+J + c2At8n+2. Then using (BIV) and the inequality
j=o

|ab| s 682 + b2/4€, for suitable values of €, we have shown that

2 2 2
* +j n+2 -1 n+j
{‘%X) P oo™, T 88" + e ) +c |l I B+
j'o jao j-O
c, . : (p+1) 6
Qr+2 )2 +j 42 12 2(p+l
CzAtQ ”1 s 02 ) BJ-En I+ °2A:Q ||1 +C {h + At +
j=o
" - T’nnz} (9.24)

Subtracting (9-611) from (9.13), and using (9.18), establishes

[p(x) {qmz - Q'”z} , v] +a [g“*z . v} = {f(x, toe2® ot W

f(x, t

2 ‘n+2 +2
n+2? ﬁ“+ ), V] - (Eﬂx, tn+2’ u %) - b(x, a2 En ).VV)

v p
+r(V) VV e Vh
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n+2

G +2) + (q - Qn+2) we achieve

Noting that 3n+2 = (Q
[p(x)&"l+2 , v] +a [&“*2 , V] - [p( 0@ - Yy V] +

[f(x, Crags 0 = £(x, £, D), VJ = [yx, tpags 000 -

n+2’
+2 b
bx, t 4o » g ).vv] + (V) (9.25)
2
Combining (9.24), and (9.25) with V = ajg“*-‘ and bounding
j=o

the terms as before,achieves

2 2 2
[‘;L(xl Z aj €n+j ’ Z Bj gn+j] - (32 a [€n+2 ’ 2 aj gn*J] +
£ = j=o j=o

c -1 2
02 j+ ABHZZSu”ZaE“Jr«‘C{IIu-U“II
j=o

J=0

Multiply the above expression by At , sum the result for n=1,2,...,m,

use lemmas 3 and 4, u- U=£ - n , and (9.19) to deduce

-1 n 2

C
+242 2 n+ Nn+2
IE™2102 « a, 1™ o, == § U T 88" 4 e n E
n=1 j=o
m+1 2
2 2p+2 6 12 i2

scia, I HEN2+w2P2 e afs § (1612 o lE12) } (o26)

n=o i=1

The following lemma is now needed. (see [18] for proof).

1 9Q .



Gronwall's lemma : a discrete analogue

Suppose that ¢ and X are non-negative functions defined for

t = nAt, n =0,1,...,m, and that ¥ is non-decreasing. 1If
n~1
n r
" < X +coa [ oo , n=12,...,m

r=o

where C is a positive constant, then

¢n < xn e ° n=1,2,..,m

A simple application of the above lemma to (9.26) yields

2
L
212 s {u2P*2 o 080 ) [IEM? + o063

i=1

which immediately establishes the desired result.

Corollary

m+2 +2 .
Assuming the criteria of Theorem 4, a bound on u - U™ in

the L2 - norm is given by
2

3 i i
Ilum+2 PR R AihP + ) Dlu - Ut +
i=1

gt - villl]

Proof.

This follows immediately from theorem 4, (9.19), and the

triangle inequality on u - U= § - n.
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The discrete scheme (9.6) is not self-starting and requires
initial values for {Ui}i-o . As before, we may select U° to be the
projection of g(x) onto Vg by the L2 -~ inner product. The derivation
of suitable values for U1 and U2 is not as trivial. A possibility is to
derive these values by utilising an one-step method with a smaller time
increment. Such one-step methods include variations of the 6 - , and
Crank-Nicholson methods, eg. [7], [44]. Altemmatively, we may apply
Richardson's extrapolation technique to a one-step method. For example
employing the backward difference method, ie. the 6-method with 6 = 1,

and Richardson's extrapolation twice we may employ the techniques of [11]

and[36] to deduce that under certain continuity conditions.

2
) [u ob -t ad )] ot - uiul]s of BB ahP 4 a2+ | - 0

i=1

Finally we discuss the implementation of the scheme (9.6). Using

the notation of chapter 7, and the definitions of M and K in (9.4), it is

simple to see that the expressions (9-61) and (9-611) are equivalent to
2 2
+j n+j 2 n+2  _oa g0
1 ujm_f‘ +8, ] BKUT + 4 e kg £
j=o j=o (9.27)

Mg1:1«9’2 . Kun+2 - fn,l

where the vectors 5? and ;?’1 are given by

) - [t @, v) - b, .| .

[En,l] - [f(x, tn+2, %1+2>’vi] - [B(x, tn+2, %,"'ZJOWI-J

i
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.. . +2
Eliminating Qn from (9.27), and rearranging, we achieve

-1 2 -1,.2 +2 ~1_],n+l
[“2 I+4BMK-A4 c,(MK) ]g“ = - [“1 I+AB8M K]y_

Ly lgnsl

ln 2 - -
£ AtCZM KM

- -1 -
[ao I+88M KU +aM

The mode of implementation depends on the character of the roots z;

andzzof
o B
-?:3 --EX"'XZ
2 €2

For le- < 0 < 1.2334587 = B the roots are complex whilst for 6 2 8§

the roots are real, with a double root for 6 = 8.

Thus for = < 6 < 6 the implementation is equivalent to

12
M-&n - _f.n,l
(z)M - AtK)En’l -% [OLIM"‘AtBIK g +¢—1} [aoM * A Box:}gn
- 21; At'f-n + Ai Kg" = F(8)
"t - In o (9.28)
Im ?1

In terms of the discretization error, the effect of varying 6

is concentrated in the error E2. For a sufficiently differentiable

function y(t)

/3 e 3 e 4
B9 = [E - 3} Be Yaup ¥ OB
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Hence, given 0 = %g— , (9.5) is a fourth order scheme and Ez(y) may be

bounded in modulus by CA:YZ.’ whenever At is sufficiently small, Thus

we are encouraged to expect optimal accuracy for 6 = -173 as At + 0.

The other distinctive value of 6 is 6 = 8. This value facilitates

the implementation procedure but has the disadvantage of producing a

relatively large error constant, C3, for Ez.

1 = ’/3_ o -
ie. Ca_[-5-6— g]-— 0.363

Note that the implementation, with 6 = B, is equivalent to

M- a0 ™ - E® (9.29)

M- ap 72 - gt

*
where z = 0.8734384.

For 6 2 B the error constant C3 is prohibitively large. Thus
restricting —117 < 0 < © we may approximate the solution of (9.1) by

solving two algebraically linear systems of equations at each time

step, c.f (9.28) - (9.29).
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Discussion

As explained previously this section examines the application
of a semi-discrete, Galerkin - L.M.S5.D. scheme to the linear parabolic
equation. The justification of such an application has been discussed
and its merits established. High order, easily computable schemes

are formulated that supercede, or rival, all the previously documented

semi-discrete Galerkin schemes,

However, the suitability of applying a semi~discrete Galerkin -
L.M.S.D. scheme to a general non-linear parabolic equation is doubtful.
At each time level, a direct application generally requires the
differentiation of non-linear systems of ordinary differential

equations and the solution of a complicated non-linear system of

algebraic equations. A linearisation process is needed to render the

scheme more computationally attractive, but, error analysis suggests

that this causes a reduction in the order of convergence. An important

exception relates to the class of quasi-linear equations investigated

in chapter 9. Here we have described a third order, unconditionally

stable scheme that requires the solution of two systems of linear

algebraic equations at each time level. Consequently, this improves
on the order of accuracy of all the previously formulated linearised

schemes.
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