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Abstract 

This thesis consists of two distinct parts which deal with 

two-point boundary value problems and parabolic problems, respectively. 

In Section 1 we examine the numerical solution of a two-point boundary 

value problem by a collocation method based on the consistency 

relationship of regular splines. An existence and convergence result 

is established which generalises the 0(h2) convergence result of the 

cubic spline collocation scheme for the problem in question. Contrary 

to most previously documented finite element schemes this method 

employs splines that may be non-linear in structure. Consequently, by 

a judicious choice of regular spline, the dominant terms of the true 

solution may be imitated more accurately than by the conventional 

polynomial based splines. The scheme is implemented by an algorithm 

that examines the suitability of various classes of regular splines 

and determines the subsequent deployment of them. 

The second section investigates semi-discrete finite element 

schemes for approximating the linear parabolic equation. A standard 

finite element discretization is employed for the space variable 

whilst an A0-stable, linear multistep, multiderivative discretization 

scheme, (L. M. S. D. ) is used in time. We consider both the homogeneous 

and the nonhomogeneous linear parabolic equations and derive optimal 

convergence results for the above schemes. The convergence results 

achieved with a k-step L. M. S. D. scheme, incorporating the first m 

derivatives, generalise and extend the studies of several authors who 

concentrate on the particular cases of linear multistep formulae, m-l, 



and one-step schemes, k=1. Ao-stable L. M. S. D. 's are constructed and 

their implementation procedures examined. The suitability of selecting 

a L. M. S. D. method, with m, k>1, in a semi-discrete Galerkin scheme 

is discussed, and its superiority over semi-discrete Galerkin schemes, 

that incorporate linear multistep or one-step formulae, is confirmed 

in several aspects. 

Finally, a class of quasi-linear parabolic equations is solved 

by a semi-discrete Galerkin scheme that is third order accurate in 

time. This method is based on a particular third order L. M. S. D. scheme 

and requires the solution of linearly algebraic systems of equations at 

each time level. Thus, we improve on all the previously documented 

linearised schemes as they are only second order accurate in time. All 

the schemes described in Section 2 are unconditionally stable. 
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SECTION 1, REGULAR SPLINE SOLUTIONS TO A 

TWO-POINT BOUNDARY VALUE PROBLEM 

-2- 



TNTRfITTCTTl1N 

The past decade accounted for a vast literature of techniques and 

algorithms to solve numerically a variety of two-point boundary value 

problems. A rapid glance through any prominent journal of numerical 

analysis supports the opinion that the computer user is confronted with 

a wide, and even bewildering, choice of possibilities. Excluding the 

literature concerning 'shooting methods', and 'non-local approximants' 

(e. g. Chebyshev series) the user enters the extensive field of 'local 

approximations' encompassing all the documented finite difference and 

finite element schemes. For a thorough insight into methods for solving 

boundary value problems we recommend [4]. This book contains references 

which are far too extensive to include here. 

The subclass of finite element schemes has recently received the 

concerted attention of numerical analysts. In particular the user will 

be aware of the existence of projection methods (including collocation 

methods), and schemes derived from a variational formulation of the 

problem. This variational formulation uses the property that the analytic 

solution to the boundary value problem strictly minimises a certain 

functional. Details may be found in [5], whilst computational aspects 

and rates of convergence are also considered in [13] and [20] 
, amongst 

others. The nomenclature 'projection' defines the underlying principle 

of projection methods. We project the problem into a finite dimensional 

subspace of an appropriate Hilbert space by some technique, and derive 

the approximant to the remodelled problem. In particular we may view 

the Galerkin procedure as a specific example of a projection method. 

The Galerkin method is employed by Douglas and Dupont [7] and Wheeler 

[24] to investigate a class of linear two-point boundary value 

problems. A superconvergence result at the knots is established in [7]. 
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Projection methods of a collocation type for classes of nonlinear 

boundary value problems are studied in [9], [12], [14] and [16]. 

Collocation methods require the spline approximant to satisfy the 

differential gquation at certain internal points. 

The finite difference approach to nonlinear boundary value 

problems is illustrated in [10], [11] and [21]. Kreiss [11] develops 

a general but complete theory for the linear equation. In [10], Keller 

employs the centred Euler scheme to study a general nonlinear boundary 

value problem. He also notes that any scheme satisfying the theory of 

Kreiss may be extended to the nonlinear equation. Finally, we introduce 

the paper by Stepleman [21]. In particular for the two-point boundary 

value problem independent of the first derivative, and with disjoint 

boundary conditions, Stepleman notes that his method is the classical 

Numerov method. 

Of fundamental significance is the structure of the approximant, 

or for finite differences, the structure of the difference formula. 

Independent of the approach employed, the numerical solution is 

dependent on a polynomial structure. The spline function spaces used in 

projection and variational formulations are piece-wise polynomials 

satisfying certain continuity constraints. Analogously, the finite 

difference schemes mentioned above are polynomial based. For example, 

the fourth order Numerov formula is derived by spanning the interval 

[0,2h] by a quartic polynomial, and collocating the values of the 

function y(x) and its second derivative y"(x) at the knots x-0, h, 2h0 

Recently, some interest has surrounded the study of splines that are 

closer in structure to the function being approximated than the more 

conventional polynomial based splines. The classes of regular splines 

defined in Chapter 2 are but one example of an alternative structure. 

Such 'nonlinear' splines are developed in [17], [18] and [24]. 
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In Chapter 1 we introduce the nonlinear boundary value problem 

and relevant results concerning a linear problem. These results are 

utilised, in Chapter 4, to establish an existence and convergence result 

for the collocation scheme of Chapter 3. The intrinsic characteristics 

of the class of regular splines described in Chapter 2 are exhibited by 

the cubic spline. In fact, the latter is a member of this class. Thus 

it is to be expected that the collocation scheme based on regular splines 

is a generalisation of the cubic spline collocation scheme. For schemes 

utilising the cubic spline see [2], [3], [15-17]. Finally, in Chapter 5 

computational aspects of the regular spline collocation method are dis- 

cussed and numerical examples evaluated and compared. 
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1. A Two-Point Boundary Value Problem 

In this first section we consider the homogeneous boundary value 

problem 

Ny(x) - y"(x) - f(x, y(x)) -0,0<x<1 (1.1) 

Y(O) - y(1) =0 (1 2) 
where f(x, y) is twice continuously differentiable, with respect to x 

and y, in a region D of the (x, y) plane intercepted by two lines 

x-0 and x-1. (For simplicity we denote fy = 3f/8y). 

Problems characterised by Ny(x) -0 but defined over a general 

interval a _< x _< 
b and incorporating non-homogeneous boundary data are 

equivalent to (1.1) - (l02), Such problems may be reduced to our 

problem by the application of linear transformations in x and y. 

To ensure that the solution, y(x), of (1.1) - (1.2) is unique in 

a subregion of D we follow Keller [10], and Urabe [22], by introducing 

the concept of an 'isolated solution'. A solution, y(x), of (1.1) - 

(1.2) is said to be isolated if and only if the linearised problem 

L [Y]$(x) _ 4"(x) -fy(x. Y(x)) 4(x) .0<x<1 
(103) 

0(0) ° $(1) -0 (104) 

has only the trivial solution O(x) = 0. Following the two afore- 

mentioned papers we note that an isolated solution is 'locally unique'; 

that is, no other solution to (1.1) - (1.2) exists in a sufficiently 

small neighbourhood of the isolated solution. 

We summarise here some results concerning a linear two-point 

boundary value problem of the form 

L u(x) = u°(x) - A(x)u(x) - g(x) ,0<x<1 (1>5) 

u(0) - u(1) -0 (1.6) 
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where A(x) and g(x) are sufficiently smooth, say A(x), g(x) E C1[0,1]0 

It is well-known that the above problem has an unique solution if and 

only if Aa0 is not an eigenvalue of the continuous eigenvalue problem 

Lu - Au 
, u(O) a u(l) - 0, We now introduce a linear difference method 

for the problem (1.5) - (106). Define the set of equally spaced knots 

{x. } where x. - (j-1)h and h- 1/m. Let U. , an approximant to 

u(xj), satisfy 

u1 ý0 

u. (- 1J+1A. )+u. (. 2 
+? A. ) + u. (- 1+A. ) 

-1 6 j-1 73 ý+1 h2 6 +1 

s1 (gj-1 + 4gj + gj+1) j-2,3, ooo, m 

um+l 0 (ßo7) 

Note that for brevity of notation A(xt) = A3 and g(xi )= gj etc. 

We use Theorems (3.1) and (3.3) of H. - 0. Kreiss [11] to establish; 

Lemma 1a1 

Let A(x), g(x) E C1[0,1] be such that (1<5) - (1a6) has an 

unique solution. Then there exist positive constants ho and K0 such 

that for any h<h the linear difference equation (1.7) has an unique 
0 

solution which is bounded by 

max (u-I 
_< 

K max Ig-I (h 8) 
25j: 5m ° 1<_j: ým+1 

The linear system (107) can be written in matrix-vector notation 

as 

Jh [A(x)1 
M-G (1.91) 

where Jh [A(x)] is the triple-diagonal matrix with elements J(A) i1i : 
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J(A) 1.1 -1 

J (A) 
.--1+A j. j-1 h2 6 j-1 

J (A) 22 
J. J h2 

+3 Ai 

J (A) -1 1 
J "J+1 

h2 +6 j+1 

J(A)m+l, 
m+l a1 

and the vectors u and G respectively denote 

j 2,3, oo,, m 

j- 

(10911) 

j 

u (u1, u2. '00" m+l)T ,G- 
(g1. g2. ooo, gm+l)T 

where gj 6(8j-1 + 4gj +gj+l). j-2,3, ..., m ; gl gm+l =0 

Lemma (1.1) implies that Jh[A1 is nonsingular for any h <_ ho. 

Define the matrix norm 11.11 by 

B sup II BX 

xE 
II1+1 

llxII 
for any matrix B of dimensions (m+l) x (m+l), where for any vector 

xE Rm+l 

XII max Ix 
i 1<j <m+l 

Thus by (108) 

11 Jh [A]-lll :K 

and we have established a bound over the family of matrices 

Jhl, h: 5 ho. 

(1 10) 
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2a Regular Splines 

Regular splines, as employed in the following context, were 

introduced bylWerner [23]. Let 0- z1 < z2 . 00<zn+l = 1, and 

consider functions %R(x, c, d), defined for xc rzy, zk+ll , depending on 

two parameters c, d where c and d are in certain prescribed intervals, 

for example R or R+. The functions, tR, are subject to conditions 

defined below. 

The set of equally spaced knots {xI}m=i is specified such 

that each zf, k-1,2,...., n+l, coincides with a knot xp for some 

p E{i}m+i Hence each interval I where Ip Cx x +1ý , is 
P' P P' P 

contained in exactly one interval 1Z 
k. z&+l] o The notation ti (x, c, d) 

is used to denote the restriction of t2(x, c, d) to I3 . In this way the 

functions ti (x, c, d) are well defined when the mesh of knots is refined. 

For a given set of knots {xi}m+i and classes of functions 
n 

{ýý} 
ksl which are twice continuously differentiable with respect to 

x, and continuous with respect to c and d, we define a spline by 

n(xi, x2, o,,, xm+l; x) s {u(x)Iu(x) E C2 [0,1], uJI. p. +ti . 
(x, c., d. 

JJJ 

P" f 11 ;j 1ý2ýoooým} (2J) 

where 11 is the set of linear polynomials. 

In the context of this paper we need the following assumptions 

on the classes of functions ti (x, c, d) 

(Al) The classes ti (x, c, d) shall be regular. 

i. e. any two functions of the same class either coincide or 

the difference of their second derivatives have at most one 

zero in I.. 
i 
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This assumption ensures that the functions tj(x, cj, dj) j-1,2,..., m 

can be parameterised in terms of tý(xj) and tý(xj+l). To explain 

(Al) in greater detail it is necessary to quote a theorem by Werner 

[23] 
, name 

ly 

'If the family of splines is made up of regular functions then the 

interpolating spline is unique. ' 

Thus regularity is a sufficient condition for uniqueness of the spline 

which interpolates the data produced by the collocation method of 

Chapter 3, always assuming that the data is within the range of the 

spline. 

If the classes of functions ti (x, c, d) are parameterised as 

above we adopt the notation 

t. t. (x. x. M. M. x) 
JJ J' J+1' ]' J+1 

; 

2 
where tj(xj, xj+1, Mj, Mj+l ; xi) M. for i=j and j+l 

dx 
'T 

(A2) The functions t. 
3 

are smooth. 

i. e. the functions t. are four times continuously differen- 
t 

tiable with respect to x, and these derivatives are twice 

continuously differentiable with respect to M3 and M 
+1" 

(A3) The functions tý are 4-bounded. 

i. e. the fourth derivative, t, of ti with respect to x 

shall be a twice continuously differentiable function of 

1 
h' (Mj+l -) and either Mi or M 

J+1. 

The assumption (A3) is motivated by the fact that only two 

parameters are needed to control the behaviour of the second and 

higher derivatives of the spline. It would be unwise to use bounds 

on Mj and MJ+l as when h+0 the two parameters become increasingly 
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identified with each other. However Mi . and 
h (M 

+l - Mý) are well 

defined as h -+ 0. 

Examples of admissible classes of functions ti are now given, 

cf. [19, pp. 176]. 

Example 1 tý ci (dj-x+xi)k 

h 
eg, dj 

M. 1 
1- 

(M I 
kß-1 

lJ 

k#0,1,2 

M. d2-k 
and c. - J---1 

3 k(k-1) 
whenever M. 0 0 

The above classes of functions yield splines of various 

structures for different values of k. For any k -c 0 we have a 

rational spline. The standard cubic spline is derived by allocating 

to k the value three. The condition for (Al) - (A3) to hold is given 

by 

M. 
M-ER; 

r M. # M. 
ý+1 

unless k- 2n+1 where n is any positive integer. For the latter 

cases (Al) - (A3) hold unconditionally whenever Mi * MJ+1. 

Example 2 tý - ci edj 
(1+x-xi ) 

M. J M. 
where dý 1 log and 

ý 
die-j 

Once again, the necessary and sufficient condition for 

(Al) - (A3) to hold is 

1E I+ ' Mj Mj 
Mj+1 
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Example 3 ti - ci log(dj-x+xi ) 

where 
h dý 

_ 
ý^ 

} and cý - -Mýd2 

1(M. 
l 

j+1) 
For this class of function the conditions (Al) - (A3) are satisfied 

whenever 
M. 

0<M<1 
rj+1 

Example 4t- ci sin (u(x-xi) +di )p#0 

ego dý cot-1 
1 

cos (ph) 
[121- 

sin(uh) 
Mj JJJ 

and u2 c -Mý cosec dý whenever M. # 0. 

Functions of this class satisfy (Al) - (A3) unconditionally. 

Following Schaback [19] and Werner [23] we define the 

difference operators 
1 g(x2) g(x1) 

t (x1, x2)g(x) 
x2 - x1 

A2(xl, x2, x3)g(x) -x 
Ix 

[1(x2. 
x3)g(x) - Al (xl, x2)g(x) 

31 

where x1, x2, x3 are piecewise disjoint and g(x) EC [0,1]. 

If the function g(x) is differentiable we may allow xl and x2 

to coalesce and obtain 

2 g(x3) - g(xl) 
D (xl. xl. x3)g(x) -x 

-x l-x-g 
(xl) 

3131 

We adopt the following notation : 

A (xjpxjpxj+l)tj p(x. 'X. +1'., Mj+1) 

The following lemma and corollary are by Werner [23] 
o 
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Lemma 2.1 

Let u(x) e C4[xl, x21 , and u"(xi) Mi for i-1 and 2, 

then 

A2 (x1Ixi, x2)u(x) -3 tl + 
1iM1 

+ 8(xl, x2, u1-° (x)) 

2 
where R(xl, x2, uly (x)) _ 

24 
uv (c), xl <Z< x2. 

Corollary 2.2 

If u(x) is four times continuously differentiable with respect 

to x, and these derivatives are twice continuously differentiable with 

respect to the parameters M1 and M2, then the remainder term above is 

also twice continuously differentiable with respect to these 

parameters, 

Furthermore, if f(x, y) is a twice continuously differentiable 

function with respect to x and y, and M. 
JE 

f(xJ., yJ. ) for j=1 and 2, 

then the remainder term is twice continuously differentiable with 

respect to yj for j-1 and 2. 

0 

-12- 



3. A Regular Spline Collocation Method 

In this chapter we derive a collocation method that yields a 

regular spline as an approximate solution to the problem (l, l) - (102)0 

From (2.1) any regular spline, u(x), satisfying (Al) can be 

expressed by 

U(x) 1I- aý + box + ti (x) j= 

where the parameters are still undetermined. Following Werner [23] 

the linear parameters aj and bi may be determined in terms of u(xj ) 

and u(xj+l) giving 

u(x)1I. 
1- 

u(xj) - tj(xj) + (u(xj+l) - u(xj) + tj(xj) (3.1) 

-t. 
(xj+1» 

( X-X 
i 

)+ 

t. (x) js1,2, 
ooo, 

m 

h 

The function u(x) and its second derivative are continuous for 

xE [0,1]. Hence the conditions 

u, ýXj+1)II. s u'(X. +1)IIj+1 
j 1,2,. 0 , m-1 (302) 

are necessary and sufficient for u(x) E C2[0, l]. The expression (3.2) 

applied to (3.1) yields a relationship analogous to the consistency 

relationship of cubic splines [i, pp 284], namely 

P(X3. xj_1' Mj'Mj-1) + p( j' j+1' Mj' j+1) - 2Dz(x3 
-l, 

xi, xj+J)u(x) 

js2,3, ooo, m (303) 

A collocation method is derived by fitting the equation (3.1) 

to the problem (lol) - (1.2) at the set of knots'{xi}ý=i. Setting 

ui = u(xi ) this can be written as 

-13- 



Mi - f(xj, uj) j 1,2,..., m+1 (3.4) 

Equations (3.3) and (3.4), when combined, yield a non-linear 

system of equations, F(u) - 0, from which the knot values of the 

regular spline collocation solution are calculated. This system of 

m-I equations in m-1 unknowns is given by 

ul 0 

Nh (11] E p(xjsXj, l'f(Xj'uj)'f 
(Xj-1'uj-1)) 

+ p(x., x. +1, 
f(x., uj), f(%j+1, uj+l)) 

- -2ý (uj-1 - 2u. + uj+l) 60 

m+l i (305) 

Let us assume that the system of equations (3.5) has an unique 

solution u*. The vector u yields values at the knots, which, 

combined with (3.1) and (3.4), construct a regular spline approximant, 

y (x) , to y(x) . 
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4o An Existence Theorem 

This chapter is devoted to establishing the following theorem. 

Theorem 

Let the problem (1.1) - (1.2) be defined for a function f(x, y) 

that is twice continuously differentiable with respect to x and y in 

the region D of the (x, y) plane intercepted by two lines x-0 and x- 

Further assume that this problem has an isolated solution y(x)e C4[0,1] 

in a region U where, for some T>0. 

U= {(x, y)i ly(x)-yl <T, 0 <_ x<1}cD. 

Define the closed sphere Sp [y(x)], p _< T, by 

Sp[y(x)] _ {VE Rm+l 
IVT 

= (O, V2, . o.. m, 0). IVY - Y(xý)ý < P, 

j=2,3,..., m} 

Then we select the classes of functions {t }m 
= 

from the space of all 

functions, satisfying (Al) - (A3), that permit Mi f(xi, (v)i), i=j 

and j+l, as admissible values for M. and Mj+l respectively, for all 

ve Sp[y(c)]. Finally, let p and ho be sufficiently small so that, 

for some ö> 0 and h5h 
0 

1; 
i - y"(xi)I <ai1,2, oo,, m+1 

off 

and 
h (Mi+l - Mi) -Y (xi)J <di-1,2,..., m 

Then for p and h0 sufficiently small 

(i) the difference scheme F(u) -0 (ie. (3.5)) has an unique 

solution u* 4E Sp [y(x)] 
, for all h< ho. 

(ii) ly(x) - y*(x)I - 0(h2) (y*(x) is the regular spline collocation 

solution). 
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Proof. 

For any aE S' [y(x)] the regular spline u(x) that satisfies 

u(xi) ui u"(xi) - f(xi, ui) E Mi, i-j and j+l, is readily seen to 

be 4-bounded over I 
J.. 

Thus, by lemma 201 we may rewrite the system of 

equations F(u) -0 as 

ul 0 

Nh [u ]=ä f(x. )+4f(x., u. )+f(x. 
+ u"+1) 

2 (u. 
1-2u +u. +l) J' J'1 JJ]1]h'3J 

+R(xý, xj_i, ulw (x)) + R(xjxi+l, uly (x)) -0 j-2,3.... m 

um+l '0 (4.1) 

Since Jh [A ] 
of (1.9) is nonsingular for any A(x) e C1t0,1J, 

h< ho, let us select A(x) -fy (x, y(x)). Hence (4.1) is equivalent 

to 

uu- Jh [ fY ] F(u) -tu] (4.2) 

Let v and w be arbitrary vectors of S'[y(x)] , then 

±[v] -1 [w, = v-w- Jh [f 
YL 
]-1[F(v) - F(w)1 (4.3) 

J 

To apply the mean value theorem on (403) we must first establish that 

F: SP [y(x)] + Rm+l is a Cl map; ie. (4.1) is continuously 

differentiable with respect to u, u6 Sp [y(x)]. The function f(x, y) 

is continuously differentiable with respect to y by definition. 

Consequently, the task reduces to proving that R(xj, xi, ulv (x)), 

i-j-1 and j+l, are continuously differentiable with respect to uo The 

4-bound on u(x), uE Sp [y(x)] has already been established, and hence, 

from (A2) and corollary 2.2, R is continuously differentiable with 

respect to u. Concluding that F: Sp [y(x)]+ 27+l is a Cl map, and 

using the convexity of Sp [y(x)] 
, we deduce from the mean value theorem 

that, for any v, wE So[ y(x)] 

-18- 



1 

F (v) -F (w) _= F(sv + (1-s)w)ds Iv-w, 
au 

o- 

FLv, w] /äu Iv- w1 (4.4) 

Here 8F(u)au is the Jacobian of the system (4.1). The non-zero 

elements of this matrix are 

Pu 
1,1 

C aF(u) 

aF(u)Pu- 

-1 
0- 

1h+1f (x, u. 
-1) +au a R(x., x. 

_,. 
uiv (x)) 

) 

], ] 6y j-1, JJ J2 

1 
3F(u)/au 

JJ h2 +3 
fy(x., U. +a R(xJ, xJ-1, ul-v (x)) 

+ 
Du. R(x., x�� ul- (x)) (4.5) 

C 
aF(u) /au 

7i2+ 
fy(Xj+l'uj+1) +T RtXj'Xj+l'ulV(X) 

j, j+1 h 6+1 

8F(u)/öu) 1j-2,3,..., m 1 
m+1, m+1 

A simple manipulation of (403) and (404) yields 
1 

ILr 
-°] 

i I='] - Jh I fyJ 
[Jh [ fy] - 8F 1a-4 

/aul 
[! 

- w] 

whence, by (1.10) 

Ko 11 Jh [ fy] - 8F [v. W]/u (4.6) 

Note that; 

(1) for some a* ,0< s* <1 

1 
Ify(Xj, Y(Xi)) -J fy(xi, svi + (1-s) wi )ds 

o 

1fy(x3"Y(x3 )) - fY (x3 , s*vi + (1-s*)w1 )1 

KIY(xi )- s*vi - (1-s*)wi 1<Kp (4.7) 

where K is the Lipschitz constant for fy(x,. ). 
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(11) Let us(x) ,xi Ij, be the regular spline interpolating the 

values u8(xi) = ri(s) , us(xi) - f(xi, ri(s)) where, for i-j and j +l 

ri(s) - svi + (1-s) wi . By the convexity of Sp [y(x)] 
, us(x) is 

4-bounded over I,, whence by lemma 2.1 and corollary 2.2 

1 

I 
R(x., x. +I, u; v (x)) da - 0(h2) P'], J+1 (4.8) 

Jo P 

Remembering that Jh If 
Y] 

is expressed by (1.9) with A(x) fy(x, y(x)) 

we establish from (4.4) - (4.8) that 

11 Jh [ fy] - 3; [ v, w] /au 11 5Kp+ Klh2 (4.9) 

for some positive constant Kl, and h sufficiently small. 

From (4.6) and (4.9) we conclude that for p, h sufficiently small 

11 
: Sall a- KOKA + 0K1h2 <1 (4 . 10) 

The vector Y- (O, y(x2),..... y(xm), 0)T is the centre of the sphere 

Sp [y(x)] 
. Now, F (Y) may be estimated by (4.1) 

i. e. hIF (Y) (+= max I Nj III I 
2<j<m h 

K2h2 (4.11) 

whenever h is sufficiently small. The bound (4.11) utilises (101), 

the continuity of y(x), the 4-bound over u(x), xc Ij, for any vector 

ue SP [y(x)] and lemma 201. The expression (4,11) yields a bound 

on the local truncation error. Now, for any h sufficiently small, 

we have from (1.10), (402) and (4.11) that 

_< 
II Jh I fy] It 11 F (Y) It 

Ko K2 h2 < (1 - a) p (4,12) 

The expressions (4010) and (4012) verify that 0 [u] takes 

SP[ y(x)] into itself and is a contraction mapping whenever p, h 
0 
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are sufficiently small. Thus u-Ii[u] has an unique solution 

u* E Sp [y(x)] from which we immediately deduce that u* is the unique 

solution of F(u) - 0. 

To determine an error estimate let the jth component, ej, of 

the vector e satisfy 

* 
C. uj - Y(x. ) .j 

Now, as u* is the unique solution of (3.5) 

F (u*) -F (Y+e) - 

Consequently, the mean value theorem yields 

-F (Y) -F (Y+e) -F (Y) 

= aF [Y+c, Y1 /au e 

and we may rewrite the above equation as 

Jh [f]E_Ih [fy 1- 8F [ ]+ E, Y] /aul 
F (Y) (4.13) 

By identical arguments employed when deriving 

J(4.19), 

it is simple to 

show that 

'lh 
[ fy] - 3F ýY+e, Y] pull SK II 

.E 
11 + K1h2 (4.14) 

Since Jh {fy] has an uniformly bounded inverse, ie. (1.10), we use 

(4.11), (4.13) - (4.14) to deduce 

IIe 11 :K0K 11 e 11 2+K0KIh2 11 EII+ KoK2h2 

whenever h is sufficiently small. Making h0 smaller if necessary 

we achieve 

(1 - K0 KI h2) 11 Ell <_ KOK II Ell 
2+ 

K0K2h2 ,h5 ho 

The scalar equation bxSax2+c, with a>0 and 4ac < b2, implies that 

either x< x_ or x> x+ where x+ are the two real roots of the 

equation ax2 - bx +c- 0a 
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ie, x+ (b + b2 4ac) /2a 

Let ho be smaller if necessary so that, say 

4KK0K2h2 <T (1 - K0K1h2)2 
,h5 

ho 

Similarly, as 11 e 11 - 111 - u* 11 < p, let p be sufficiently small 

to allow 

P< (b + b2 - 4KK2K h2)/2K 
K' where bs1- KoKlh2 

0 
then it follows that 

221 
1-KoK1h2 4KK0K2h 2 

2) 2 
2K K (1-K0K1h 

Using the inequality, 1-x 5 (1-x)i 
,0SxS1, we have proved 

that 

11 Ell -11 !. - u* Il < 2K0K2h2 
/(l-K0K1h2) 

for any h5ho (4x15) 

The global error bound may now be established. Let c(x) 

y(x) - y*(x), and note that by the continuity of y(x) and the 4-bound 

on y*(x), xs Ij , the second derivative e"(x) is uniformly bounded 

over Ii . Consequently, 

ei (xj+l - x) + ej+l (x-xi )+ (x-xj) (xj+l-x) OW 

E(x) s 

h2 

0(h2) 

for all xe Ij, and some x, xi <x< xj+l The proof is now complete. 

Remark 

The choice of pa 0(h) is compatible with the assumptions of 

the theorem. This order of accuracy is normally the minimum required 

by the starting value of any iterative method proposed to solve (3.5). 
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5. Computational Aspects and Examples 

The selection of optimum classes of functions {tRIn is of 9,01 

fundamental importance. This process relies heavily on a preconceived 

notion of the analytic solution. Hopefully, this can be derived from 

the formulation of the problem. However, for a particular type of 

equation, we can be considerably influenced by the structure of the 

function f(x, y(x)) or by predetermining a characteristic of the 

analytic solution. A possibility is to assume a power series expansion 

for y(x) 

ie. y(x) - (x-a1)a (a2 + a3(x-a1) + ....... 
) (5.1) 

The exponent, a, is determined by substituting (5.1) into equation 

(l01) and equating the least exponents of (x-al) on either side of the 

equation. Consequently, a feasible solution may incorporate the 

function 

(x, c, d) - c(x-d)a 

Flexibility of application is an important feature of regular 

splines and different classes may be deployed over consecutive 

intervals I zR_1, zRJ , 
[z2zk+ll 

. Computationally, this is 

facilitated by expressing` (3.5) in a simplified form. For an 

arbitrary regular spline, u(x), defined over Ij, we have by lemma 

2.1 that 

2 M"+1 
(xj'xj'xj+lu(x) s _. 

ý. +M+ Aj, j+l 
(5.2) 

36 

With predetermined expressions for the A's, the terms (3.5) and (5.2) 

yield a computationally versatile system of equations, namely 
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ui 0 

u) - (u. 
1- 

2u. + u. +l) 
6f 

(x 
l, u 1) +? f (xj , u. )+ 

6f 
(x. 

+1, i+1 j- ]- 31Jh J- J 

+ AJ., 
j+1 +AJ., j-1 -0j-2,3,.. 0, m 

um+l =0 (5.3) 

The expressions A., 
j+l 

for the examples of chapter 2 are 
ý 

Example 1 

= k--Lý a2 - 2a+1 - 
k(k-1) a2-ka + 

k(g-1) 

"1 ý, j+1 (k-1 
(6)k 

k-1 l 

where a 
1 

1 
1-M ±1 k2 

J 

When k=3, the cubic spline, A3 
, 

j+1 =0 

Example 2 

12 +n 
ý n-2 

Cl A] 
, j+l 

n=4 
6 
6-n M. 

log l(M, 

Example 3 

2 (M. M_ 
AJ. J+1 Mý 1(2 loglM 

]-, 
+8+3, -6 

ll 

1 
where a= 

1 -_ 
Mj+1 

Example 4 

A. 
+1 =-M. (-1)n+l (uh)2n 

1'' 

ý'> > n1 (2n+2). 6.2no 

CIO Mi cos ph - +1 I (-1)n+l (ph) 
2n+1 11 

sin ph n=1 (2n+3)! 6. (2n+i)! 
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I 

In examples 2 and 4, a truncation of the infinite series for 

A is used in numerical work. 

A change in class of spline is frequently necessitated by 

the nature of the solution. The examples of chapter 2 illustrate 

that some classes of regular splines are not defined for all values 

of the second derivative. A common occurrence is that the sign of 

the second derivative must remain constant throughout the region of 

application. Such a spine, t(x), is invalid in a small neighbour- 

hood of any point, n, where t"(n) - 0. The spline t(x) is 

obviously a 'bad fit' to the analytic solution in the neighbourhood 

of the point xan. Consequently, we require a criterion to 

determine the deployment of the spline t(x). 

To illustrate how a regular spline collocation scheme may be 

applied we investigate a hypothetical problem. Assume that y(x) has 

a singularity at x= al, a1¢ [0,1] 
, but is regular elsewhere, ie. 

y(x) is given by (5.1) with appropriate constants {ai}i=2. The 

exponent, a, is determined as previously stated and hence the splines 

to be incorporated in the solution include the rational spline, 

C. 
t(x) = a. + b. (x-x. ) +JxeI. 

JJ (dj-x+xi )a J 

The effect of the singularity on y(x), xE 
[0,1] 

, whether signi- 

ficant or not, lies chiefly in the region of a boundary point. The 

scheme proposed is to apply the rational spline over [O, a'] , 
[b', l] 

and the cubic spline over [a', b'] , for suitable a', b'. In this way 

the spline solution can 'fit' the effect of the singularity and rid us 

of the necessity to use extremely small values of h if this effect is 

overwhelming (cf0Problem 1). The selection of a' and b' will be 

influenced by the function f(x, y(x)) and its values at x-0 and xs1. 
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A judicious choice for a', b' removes the obstacle associated with the 

sign of y"(x). The cubic spline is only one possibility for the 

interval [ a', b'] , and any class of splines that is defined uncon- 

ditionally may be used instead (ego Examples 1 and 4). 

Solution of the appropriate system of equations (503) will 

yield information to formulate and solve a refined system. Using 

this information it is possible to realize the character of y(x) by 

evaluating certain structural parameters, qj, derived by a direct 

comparison of the supposed structure of the analytic solution to the 

corresponding regular spline approximanto We qualify this process by 

referring to Examples 1-4 of chapter 2. Assume that for xE[ä, b Jc 

[0,1] 
, and constants e, f, g and p: 

cf. Example 1 

y(x) =e +fx + g(p-x) 
kk 

it 0,1,2 

then qj = di + xi for any j such that Ij E [ä, TI 
- 

Similarly, we have 

Example 2 

y(x) =e+ fx +g e1x qj =dj 

Example 3 

Y(x) =e+ fx +g log (P-x) q. di+x. 

Example 4 

Y(x) =e+ fx +g sin (ux+P) q. dJ-ux] 

Returning to our hypothetical example, let us assume that the 

parameters {qj }ý=1 of the rational spline are closely grouped but for 

every other class of splines the associated parameters, {qj}n=r+l vary 

substantially. We decide that, for xE[ O'Xr+1] , the rational spline 

is a good 'fit' whilst the cubic spline is probably best for xe [xr+l, l, 
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Numerical criteria implementing the above ideas, are as 

follows: Let {q. }m be the values of the parameter for an arbitrary 

class of regular splines 

(Cl) 

where q max {1, ý qj Let rj 
qi+1 q3 

qj 

Then, if 
Ch, the spline is 
applicable 

rp+l - rp = minlsj<m-l {I rj+l-rj I} 

> Ch, the spline is 
not applicable 

for some C0<C 
_< . 

Normalise the values {qj} psi by 

qj if gp<_1 

q, s 

-ý- if q>1 
qp p 

(C2) 

Apply the spline over the intervals rxr, xp+l] , and 
[xpxa] 

where the integers r and s satisfy 

4j - qp j< .2jr, r+1,.... P 

qp - qj j< .2j p+l, p+2 

The effect on the solution of the parameter C in (Cl) will be 

discussed later. 

We may now define a remodelled system of equations (5.3) based 

on the criteria (Cl) and (C2)0 The solution of the first system of 
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equations is an excellent initial value to the remodelled problem, 

and comparatively little extra effort is required to solve this 

additional iterative problem. 

Four problems are evaluated by the above criteria. For 

comparative purposes the problems are also evaluated by the cubic 

spline collocation method and by Numerov's method. As previously 

stated, the latter is a fourth-order finite difference scheme. For 

simplicity of notation we define by E the absolute error, and Er 

the relative error. The parameter C of (Cl) is taken to be C-1. 

Problem 1 y"(x) = 
2(y(x)+x2)3 

-2 
1.012 

Y(O) = 101, y(1) =0 

y (x) 
iooi 

_ x2 
(x+. 01) 

Table 1 The regular spline solution y*(x) uses the rational 

spline k= -1, and the cubic spline. 

x y*(x) E E 
r 

h 

. 05 16.8358 4.97 x 10 
3 2.95 x 10w4 1 

.2 4.7728 3.32 x 10-3 6.96 x 10-4 .1 

.5 1.7331 2.68 x 10 
3 1.55 x 10-3 .1 

. 025 28.8576 1.08 x 10 
3 3.76 x 10 

5 
. 05 

.2 4.7703 8.21 x 10-4 1.72 x 10+4 . 05 

.5 1.7309 5.41 x 10-4 3.13 x 10-4 . 05 

The values of the parameters 
A 

ql = -0.00999 q2 - -0.00947 

{qj}8=1, h- . 1, are 

A 
q3 = -0.00583 
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q4 = 0.00589 , q5 a 0.0330 , q6 = 0.0854 

q7 = 0.175 , q8 = 0.318 

The cubic spline and Numerov's solutions are too inaccurate to 

give a useful comparison with the above values of ho 
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Discussion 

The previous chapters generalise the well-established theory of 

the cubic spline collocation scheme, for the problem (1.1) - (1,2), to 

classes of regular spline collocation schemes. Consequently, we may 

now consider classes of schemes wherein, formally, only the cubic 

spline option existed. 

Numerically, the versatility of the proposed scheme is of major 

importance. The classes of splines utilised depend on the ingenuity 

of the user. These may include the examples of chapter 2 or a class 

derived from an intuitive idea of the dominant terms of the true 

solution. Corresponding to the classes employed, structural para- 

meters will be evaluated and these may yield desirable information, 

e. g. the location of a singularity. The numerical examples of 

chapter 5 illustrate the increased accuracy obtainable by a judicious 

application of regular splines compared with the cubic spline. Also, 

the results give a favourable comparison with Numerov's method, for 

the specified values of h. However, as hi0, a fourth order method 

will converge faster than the second order collocation scheme and the 

comparison must favour the former. Yet, cf. problem 1, meaningful 

results may be obtained by the collocation scheme when the fourth 

order, polynomial based method is inapplicable. 

At this point we introduce the paper by Daniel and Swartz [6] 

They derive a fourth-order, cubic spline scheme by collocating to a 

perturbed differential equation which is satisfied by the cubic spline 

interpolant of the true solution. The generalisation of their work to 

incorporate regular splines is a research possibility for the future. 
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We now consider the effect of varying the parameter C of (Cl), 

chapter 5. Obviously as C-0 the number of splines satisfying (Cl) 

will decrease and may equal zero. However, a small value of C will 

ensure applicability of a spline that imitates the dominant structure 

of the true solution in a subregion of [0,1] 
. In particular C=1/16 

ensures applicability of the rational splines in problem 1 and 2, 

whilst C=1/100 is sufficient for the rational spline in problem 1. 

Note that the evaluation of problem 2 by Numerov's method is perfectly 

acceptable, and hence, to detect problems to which regular splines are 

especially recommended, we suggest a value of C= 1/30. For comparison 

with the cubic spline collocation scheme the value C-} is acceptable. 

Let us conclude with the following comments. The regular spline 

collocation scheme is meaningful and interesting in itself, but note 

that the convergence is second order. Taking the parameter C-I we 

achieve better results than those obtained by solely considering the 

cubic spline. However, if a polynomial based spline closely inter- 

polates the true solution, without requiring excessively small values 

of h, it appears likely that a fourth order scheme is preferable. For 

problems not satisfying the above condition a suitable regular spline 

may ease the computations. Therefore, an interesting possibility is 

the production of computer packages for the problem (1,1) - (1.2) 

involving the regular spline collocation scheme and some fourth order 

method. The collocation method may be applied, with C= 1/30, to remove 

the necessity of using excessively small values of h. Initially we 

employ the collocation scheme to investigate the suitability of 

appropriate classes of regular splines, and then switch to the fourth 

order scheme if none are revealed. 
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Introduction 

The feasibility of applying finite element methods to parabolic 

equations was apparent to engineers over a decade ago. Since those 

pioneering days the finite element application has been thoroughly 

investigated by mathematicians and, as a result, established by 

vigorous analysis. The intensity of activity in this field is evident 

from the extensive literature available. 

The foundation of the finite element procedure is to express 

the problem by its variational formulation. The propriety of such an 

operation has been validated by several authors, e. g. [15]. The 

Galerkin procedure is to approximate this weak solution over a finite 

element space. 

We consider finite element spaces that completely cover the 

region of definition. Thus, for a parabolic equation defined over an 

one-dimensional region we may select, for example, spaces of cubic 

splines or Hermite cubic splines, etc.; see [28] for details. A two 

dimensional region may be covered by triangular or quadrilateral 

elements depending on the boundary shape. For quadrilateral elements 

tensor products of one-dimensional splines are applicable. However, 

given a general curved boundary, the possibilities extend to 

curvilinear elements, see [20-21] and [24]. Each finite element 

space is associated with a parameter h. For one-dimensional regions 

h will be the maximum length of an interval, whereas in two dimensions 

it is the largest side of any triangular or quadrilateral element. 

The chief stipulation that the finite element spaces must obey is a 
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result from approximation theory. We require the existence of an a 

priori bound of order hp+l, p>0, over the interpolatory error 

obtained by approximating a suitably continuous function by elements 

of that space. Superconvergence results at the knots for the Galerkin 

approximation have been established, e. g. [32] and [35]. 

The Galerkin procedure applied to a parabolic equation 

establishes, in the time variable, a stiff system of initial value 

problems in ordinary differential equations. The theoretical solution 

of this problem yields the so-called 'continuous time' Galerkin solution. 

In practise it is customary to discretize the initial value problem by 

some appropriate method. The stiffness of the system necessitates the 

use of discretization schemes that satisfy certain stability conditions. 

Dahlquist [5] introduced A-stability and investigated A-stable multistep 

methods, whereas Widlund [38] weakened the stability criterion to study 

the class of A(a) - stable multistep schemes. However, for our purposes 

the A0-stability criterion of Cryer [4] is sufficient. 

Various authors have considered the extension of A-stable 

multistep methods for initial value problems to those incorporating 

higher derivatives. Ehle [9], Makinson [19] and Norsett [26] investigate 

one-step methods incorporating higher derivatives whereas Enright [10] 

and Jeltsch [14] have considered multistep, multiderivative formulae. 

Alternatively Crouzeix [3] has studied A-stable Runge-Kutta methods for 

initial value problems. 

The application of a discretization process to the system of 

initial value problems yields a 'discrete time' Galerkin solution. In 

particular for the linear parabolic equation, discrete time solutions 
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have been evaluated, and error analysis established, for all the 

aforementioned processes. Zlämal [40-41,43] applies A. -stable, 

linear multistep methods to the system of differential equations, 

whereas Nassif[25], and Thomee [31] utilise A-stable one-step Pads 

approximations, and Crouzieux [3], Zlamal [39,42] amongst others 

apply A-stable Runge-Kutta schemes. The bulk of this section is 

devoted to analysing the discrete time Galerkin solution to linear 

parabolic equations by the application of A0 -stable linear multistep, 

multiderivative formulae to the Galerkin system of differential 

equations. 

Chapters 1-2 introduce the linear homogeneous parabolic 

equation and examine the continuous time Galerkin solution. In 

chapter 3 we define Ao-stable linear multistep, multiderivative 

formulae and formulate the discrete time Galerkin solution. The 

theorems of chapter 4 are established by the vigorous analysis of 

chapter 5. These theorems state optimal convergence results in the 

L2-norm under extremely general conditions. The nonhomogeneous linear 

parabolic equation is similarly analysed in chapter 6. Here we 

require more restrictive assumptions on the continuity of the analytic 

solution. However, note that we have relaxed the stipulation hitherto 

of the solution being q+l times continuously differentiable with respect 

to time by an analogous assumption on the nonhomogeneous term, f(x, t). 

In chapter 7, we construct various A0 -stable, linear multistep, multi- 

derivative schemes and investigate their implementation procedures. It 

is shown that optimal order schemes invariably necessitate the use of 

complex arithmetic but that by easing the requirement of optimal order 

the implementation procedure can be considerably simplified. Test 
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problems are evaluated and analysed in chapter 8. 

Finally, in chapter 9, we investigate the solution of a class of 

quasi-linear parabolic equations. The application of the Galerkin 

procedure to the quasi-linear equation has been studied by Thomee and 

Wahlhin [33]. More general non-linear equations have been tackled by 

several authors and we refer, in particular, to the papers by Douglas 

and Dupont [7], and Wheeler [36]. The above authors obtain discrete 

time Galerkin solutions by employing one-step time discretisation 

schemes. Two-step time discretization schemes are utilised by Dupont, 

Fairweather and Johnson [8], and examined more generally by Zlämal [44]. 

Many of the discrete-time Galerkin schemes referred to above place ease 

of solution at a premium and, without a reduction in the order of 

convergence, avoid the necessity of solving a non-linear system of 

equations at each time level. However, even for the comparatively 

simple quasi-linear equation, only second order convergence in the time 

increment is achieved. In comparison, a fourth order finite difference 

scheme for a general non-linear parabolic equation is described by 

Watanabe and Flood [34], but this requires the solution of a non-linear 

system of equations at each time level. 

Motivated by the previous chapters, we now utilise a third order 

linear multistep, multiderivative, method to achieve an unconditionally 

stable discrete time Galerkin solution to the quasi-linear equation. 

This solution will be established to be third order accurate in the 

time increment and is obtained by solving linearly algebraic systems of 

equations at each time level. 
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1. The Linear Homogeneous Parabolic Equation 

We shall consider the initial boundary value problem 

(l. la) 

N9 
au 

a axi 
f 

aij(x) ax,, - a(x)u = Lu , (x, t) E i2 x (0,1») 

i, j=1 3 

u(x, 0) - g(x) ,xe 
s2 (1. lb) 

u(x, t) -0, (x, t) Erx [o, co) (l. lc) 

where x- (x1,..., xN) is a point of a bounded domain fl, with 

boundary r, lying in the N-dimensional Euclidean space. 

Without loss of generality the boundary value is taken to be 

homogeneous Dirichlet. Non-homogeneous Dirichlet and Newmann 

boundary conditions apply with only minor adjustments. 

For simplicity we allow 

{a. (x)SNj=1 
r a(x) E Cý (Th 

srE 
Coo 

where ? is the closure of Q. We also assume that 

a(x) z0 (1.21) 

and the matrix a.. (x) is uniformly positive definite 

i. e. a.. (x) - a.. (x) 1 i, jSN, xE S2 

NN 

and aiji. >y Ci for some positive constant y (1.211) 

i, j=1 i=i 

Before we can formulate the weak form of the problem 

(1.1) it is necessary to introduce Sobolev spaces. The Sobolev 

space Hm(c) is defined to be the space of real functions which, 
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together with their first m generalised derivatives, are in L2(12) 

the space of square integrable functions over Q. The space Hm(a) 

is a Hilbert space, the inner product (", ")m being given by 

(u, v)m ° D3uD3v dx 

Ij Ism Q 
jIu 

where j= (j1,..., jN) ' 
Iii- il +... + jN and Diu =jj 

ax1.. 3XN 

The associated norm, 11"11m, is defined to be 

li v II 
m= 

(v, v) 
m 

The norm and inner product on L2(12) are denoted respectively 

by 11-11 and (", ") where 

2 
11 v11= 

I 
vdxJ , (u, v) = 

Juv 
dx 

Further we denote by Hl(2) the space of all real functions v, 
0 

where vE H1(0) and vl =0 in the generalised sense. To formulate 

r 
the weak problem associated with (1.1) we multiply the equation by an 

arbitrary function vE H1(Q) and integrate over 0. Using Green's 
0 

theorem we get 

N 
Dv 

dx +i 

Ja.. 
(x) ax. 'ax, dx + a(x)uvdx -0 (1.3) 

2 i, j=1 S2 31.2 

We adopt the notation 
N 

a(u, v) aid (x) 
au 

dx + a(x)uv dx 

1 j= 
ax. UX- 

1j1 

and consequently rewrite (1.3) as 
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Bu 
, v) + a(u, v) 0VvEH0 (SZ), t>0 

The weak solution of the problem (1.1) is the function 

(1.4) 

u(x, t) E H1(11) which satisfies (1.4) for all t>0 and the initial 
0 

identity (l. lb). 

We determine the asymptotic behaviour of u(x, t) by employing 

the 'energy method'. Denoting a(t)= II u (", 011 we have by applying 

(1.2) to the expression (1.4)with v= u(x, t) 

2 
u] + a(u, u) 0 a(O t a(t) + [a(t)j <_ 

au 

Cancelling throughout by a(t), multiplying by e 
lt, 

and integrating 

from 0 to T we achieve 

11 u(x, T)II !5e 
YT 11 g(x) 11 (1.5) 
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2. The Galerkin Procedure 

Let V° be a finite dimensional subspace of Hä(11). The Galerkin 

method is to find an approximation, U(x, t), to u(x, t) of the form 

d 

U(x, t) _ C1(t) Vi(x) (2.1) 

i=1 

where {Vi(x)}d 
1 

is a basis of V°. The continuous-time Galerkin 

solution to (1.1) is the function (2.1) where the coefficients 

{Ci(0}a=1 are determined by the discrete analogue to (1.4), namely 

lät V) + a(U, V) 0 for any VE V°, t>0 (2.2) 

Substituting {Vi(x}d. 
1 

in turn for V in (2.2), and assembling in 

matrix form, we see that 

M -LC C+ KC -0 

where M and K are constant, positive-definite matrices. The 

elements of M and K are 

Mid - (Vi, Vi ) and Kid = a(V., Vi ), 15i, J 5 d. 

An appropriate initial condition is derived from a 

discretized form of the identity (l. lb). Let g(x) E V0 be an 

approximation to g(x) and define U(x, ö) - g(x). This yields an 

initial condition for C(o), say 

C(o) a 

The equations (2.3) and (2.4) define the continuous time 

Galerkin solution. 

(2.3) 

(2.4) 
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Applying the energy method to (2.2) we have, by the previously 

described manipulations 

11 U(x, T)I15 e 11 g(x)i1 (2.5) 
The expressions (1.5) and (2.5) will be influential in our 

choice of time discretization schemes to approximate U(x, t). Any 

method that preserves the asymptotic behaviour of the true solution 

is 'well-posed'. This concept of 'strong stability' or well- 

posedness is investigated by Crouzeix C3] and Nassif [25]. 

Following them we define a 'k-step' approximation method to be strongly 

stable if Un, the approximant to U(x, nAt), satisfies 

k-1 

Un11 sC e-anAt G 
Hui 11 (2.6) 

j -o 

where a is some positive constant. In the sequel we use C and c 

as generic constants, that may differ in successive lines. 

We now impose a necessary property on the subspace V°, 

namely V0 Vh, where Vh has the property that for any 
I%j 
ve Hp+l(Q) n H1(c) there exists an element vE Vh such that 

whenever h is sufficiently small 

III-III +h11 v-vII1SCh8+' 11v118+1's-1,2,..., p (2.7) 

Any function 0E Vh can be expressed as "= xTV where x is 

a vector of constants and V- (Vl, V2...., Vd). We assume that the 

space Vh exhibits the following properties 

(P1) IIV1II '- ch 
2 I1V1II2 

(P11) Ch 2 II 
. 
II 2 for any ýE Vh 
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The above properties are satisfied by the finite element sub- 

spaces used in practise. 

Let W 
be an eigenvalue of the matrix SaM -1K. The matrix S is 

not symmetric but its eigenvalues are readily seen to be exactly those 

ti 
of the positive definite matrix M 

'KM £; 
ie. for some eigenvector x 

M 
QKM Ix Ax, A 

real and positive 

ti p ti -Jti T Further, let 4e Vh be defined as (M X) V, 

whence 
titi 

li 4' ii 
Utilising (P11) and (1.2) we establish that 

Aý Ch-2 
However, by the minimax theorem for eigenvalues 

A a0,0 
max max{ 

Ä} 
max 

11 01,2 
evP 0h 

(2.8) 

By (P1) and (1.2) we now prove that 
ý 

maX 
Z ych 

2. 
Similarly we can 

ti ti 
see that min - min{A} is bounded from above. 

It is important to see that the eigenvalues of S-M 
1K 

are 

positive and unbounded with respect to h. The largest eigenvalue of 

S, 
ýaX, is of magnitude 

maX 
- Ch-2 whereas the smallest eigenvalue 

is bounded from above. Consequently, the system of differential 

equations (2.3) is a stiff system, 

ie. A»0 as h -º 0 
max/A 

min 
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Ao - stable, linear multistep, multiderivative methods 

Most classical methods for solving initial value problems of 

first order ordinary differential equations require, for reasons of 

stability, a condition of the form IA 
max 

DtI<C; where Lt is the 

time increment and Ca constant usually between one and ten. For the 

stiff system (2.3) this condition requires h 
2At 

to be small which 

imposes a severe limitation on the step length At. As we will be 

required to solve systems of linear equations at each time interval 

this restriction is prohibitive. We are thus lead to consider only 

methods where the region of absolute stability is unbounded. Since 

the eigenvalues A of the matrix S are real the classes of A0-stable 

methods are sufficient. Zlämal [40-41,431 employed the class of 

Ao-stable, linear multistep methods to solve the system (2.3). 

Other authors, including Nassif [25], Makinson [19], have studied 

various one-step methods for the solution of stiff systems. Following 

Obrechkoff (see [16, ppl99]), Enright [10], Norsett [26] amongst others, 

we shall consider multistep formulae that incorporate the higher 

derivatives. We refer to such schemes as A0 -stable, linear multistep, 

multiderivative methods (L. M. S. D's). This follows the terminology of 

Genin [12] but we note that the title 'Obrechkoff methods' is also 

used, e. g. [16]. 

A L. M. S. D. method is of the type 

kkm 
CcCrr aj yn+j =LL ßrj At yn+j 

j=o j-o r=1 

where oý >0 and yr 
dr 

y 
n dtr 

It-nA 

t 

(3.1) 
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Analogous to linear multistep methods (cf. [13 , pp. 221]) the 

method (3.1) is said to be of order q if, for At sufficiently small 

km 

L[y(t), 3= aJ. y(t+iAt) ßrjtyr(t+j,, 
t) 

j. o ri1 
(3.2) 

Cq+i At+lyq+l(t) + O(Lq+2) 

for any sufficiently differentiable function y(t). Expanding 

L[y(t), At] by Taylor's theorem with integral form of the remainder 

we have (cf. [13, pp 247]) 

L[y(t), AtI = Qq+1 

5 GAt+l sup 
(Iyq+l(s), ) 

t5s5t+kAt 
k 

where G(s) is the kernel function and G G(s)ds. 
0 

k 

G(s)yq+l(t+sAt)ds 
0 

The concept of A0 -stability was introduced by Cryer [4]. 

A multistep method is A -stable if, applied to the equation 
0 

y Ay, y(O) 6 1, for any real A>0, it gives approximate values 

yn of y(n&t) such that yn -0 as n+ co. Considering (3.1), this 

is equivalent to the roots of p(ý, T) being of modulus less than 

one for T>0, where 

m 

P(F. T) ° P(C) +I Tr . rig) r=1 

(3.3) 

kk 

PM °I aand ar(C)- I ßrß(-1)r-10 r=1,2,..., m. (3.4) 

J-o ]-0 

In addition we require that the L. M. S. D. methods satisfy 

the conditions of zero-stability and consistency, ([16 pp. 30]). 
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Zero-stability dictates that the roots of p() with modulus 

equal to one are simple. The consistency condition is maintained 

by 
kkk 
J aj =0 and J ja. -i Blj 

jao jo jo 

We shall always assume that the characteristic polynomials p(Q 

and {or(b)}m 
1 have no common factor. Similarly, the polynomials 

in i, {uff ('[) }ý=o, where 

m 

uý (T) aý +I (-1) r-1 ß Tr 
rj 

r=1 

shall have no common factor. These assumptions are compatible 

with the L. M. S. D. scheme being irreducible to an equivalent scheme 

with a lower value for k or m. 

The following two results, although required in the later 

analysis, are of interest in themselves. 

Lemma 1 Let the L. M. S. D. scheme (3.1) be Ao-stable, then 

there exists a positive constant u, such that 

(T) >u, for all tZ0 

Proof: Since ak >0 by definition the expression uk(T) is not 

identically zero. Let us assume that uk(T) has a root at T 'c. 

The function 

kc 
u (T) 

f (ýT) = uk (T) sLu 
j -o 

is well defined except at the zeros of uk(T)" As TiT at least 

one of the coefficients of f(ý, T) must become unbounded since 
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T=T may not be a root of all {uJ. (T)}jk-l 
mo . 

Consequently, as 

T -º T, at least one of the roots of f(C, T), and hence of p(C, T), 

must become unbounded and have modulus greater than one. This 

contradicts the assumption of A0 -stability and we deduce that 

uk(T) must be bounded away from zero, T>0. Since } (0)=ak >0 

the proof is complete. 

Lemma 2. Let the L. M. S. D. scheme (3.1) be A0 -stable, then 

ßmk 0 

Proof: Trivially, if {ßm }k 1 
are all zero then ßmk x0 otherwise J j=0 

the scheme will incorporate only the first (m-1) derivatives. Let us 

assume that at least one ßms x 0, Oss5k-1, and further that ßmk a 0. 

Using the function f(E, T) of lemma 1 it is obvious that the coefficient 

of s must become unbounded as T -º 00. Once again (cf. lemma 1) this 

comprises a contradiction in the initial assumption of A0-stability 

and we deduce that ßmk x 0. 

Corollary. Every ö-stable L. M. S. D. scheme (3.1) must be implicit. 

Finally, we investigate the approximate solution of (2.2) by 

the L. M. S. D. method (3.1). Let us again denote Un to be an approxi- 

mant to U(x, n0 ) Assuming that {Uj}k-1 are given, the recurrence 
t j=o 

relationship for Un+k ,nZ0, 
is given by the system of difference 

equations 
kkm 

aj +j, V 
,-fLG 

ßrj 
tI 

(r) V0 (3.5) 

j=o j=o r=1 

I Un(r) VJ+aI iJýrýl) VJ0r (3.6) 
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The computational aspects of (3.5) and (3.6) will be 

investigated in chapter 6. The implementation procedures 

described there are equivalent to the solution of the linear 

system of equations 

m 
AiU+k = [c*kI + ý_1) rl 

rk 
At (M 1K) r] Un+k .Ü 

r-1 

for some predetermined vector 
Ü. 

The condition number of the 

matrix A where 

Cond(A) - 
max IA [all 

min {AEa]} 

and {A[a] } is the set of eigenvalues of A, is readily seen by 

lemma 1 and the analysis of chapter 2 to satisfy 

Cond(A) - 0(h-2m et 

Hence, by lemma 1, the matrix A is positive definite and, if we 

exclude the unrealistic case when Oh-2 - 0, the condition number 

of A does not grow too fast for small in. 
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4" Theorems 

The analysis of chapter 5 will prove the following theorems. 

Theorem 1 

Let the L. M. S. D. method (3.1) of order q be consistent, zero- 

stable and A0 -stable. Let the roots of the polynomial p(ý) with 

modulus equal to one be real, the modulus of the roots of the 

polynomial am(E) be less than one, and ol(-1) x0 if p(-l) - 0. 

Further, let g(x) e L2(11). Then for any to >0 there exists a 

positive constant C(to) such that for nit a to, and h, At sufficiently 

small 

k-1 

u(x, ne) -11 c(to) coq + hP+l) IIsII+II u(x i t)-u& Iý 
J-0 

and 

-ani A k-1 
uU ýCet11 11 Uj 11 

j -o 

Corollary 

If in addition we assume that U° is the projection of g(x) 

onto Vh by the L2-inner product and {Uj}ý=1 are the values derived 

from a weakly A0 -stable Pade scheme of order q-1, then 

ýý u(x, not) -u 11 s C(to) -t+ hP+1l 11 8 Il 
and 

-ant tl II Unýý 5Ce 
1ýý 

g ý) 
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Theorem 2 

Let us further restrict w-1 to be the only root of p(E) 

with modulus equal to one, then with the assumptions of theorem 1 

k-1 

11 u(x, not)-UnIl <_ C(to. ß)e-ßnatX1 (oq + hP+1) 11 9 II +E 11u(X. Jet)-U3 ii} 
=o 

for some arbitrary positive constant 0,0 <ß<I. 

Corollary 

If the initial values are defined to be exactly those 

described in the corollary to theorem 1, then 

ýý u(x, nA )-LP II < Cit0, ß) e-ßnOtA1 
fAq 

+ 0+1l 11 8 il 
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S" Proof of Theorems 

Let i}°D=1 and be respectively the eigenvalues (in 

increasing order) and the corresponding orthonormal eigenfunctions 

of the continuous eigenvalue problem 

a(ý, v) A(ý, v) VVE H1(0) (5.1) 

The eigenvalues are well-known to be positive and distinct. 

Further let {AiId }i 
1 

be the eigenvalues (in increasing 
s1 and {v. 

= 

order) and the corresponding orthonormal eigenfunctions of the 

discrete eigenvalue problem 

(Y, V) = A('V, V) VVE VP h 
(5.2) 

Strang and Fix [29, Theorem 6.1,6.21 have proved results 

for eigenvalues and eigenfunctions using subspaces, Sh, on a 

regular mesh. The only property of Sh utilised in the proof is 

the approximation property 

11u- Pull SS Ch 11 u Ilk 8-0, or 1 
where Pu is the Ritz approximation of u (ie. a(u - Pu, V) a O, VV¬ Sh) 

A well-known consequence of (2.7) is that 

11 u- Pull + hll u-Pull 15 
ChP+lllu 11p+1 

Hence, for kap+l, all conditions are satisfied and the theorems 

yield for h sufficiently small 

0sA. - X. s Ch2p ai+l , 
i-1,2,..., d (5.3) 

Chp+l A'(p+l) (5.4) 

We adopt the following notations 
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vi = (v, ii) ve H1(0) 

(5.5) 

Vi = (V, Yi) s Vi (V, ýi) sVe Vh 

We bound the error u(x, nIt) - if by using the relationship 

u(x, nAt) - Un - e1 + e2 

where el =u(x, nAt) - U(x, nLt) , e2=U(x, nAt) - Un and proving 

bounds on e1 and e2. 

The solution u(x, t) of (1.1) can be expressed as 

-A. t 
u(x, t) gi e1 ýi (5.6) 

i=1 

where {gi}i=1 are the Fourier coefficients of g(x). 

Similarly, the solution U(x, t) of the continuous Galerkin problem 

(2.2) can be expressed by 

d 
-A. t 

U(x, t) Ui e1. (5.7) 

1°1 

where {u. }i=1 are the coefficients of g(x) E Vh with respect 

to the basis {'i}i=1, 

a) dd 

Let IJn Ui 4'i. Using (5.7) we can write e2 =L ei Yi 

i=1 i-l 
d 

1)Z and hence Ile2 ei 
2 

where 
i=1 

-A i nA 
En a Uo e 

t- LIn (5.8) 
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d 

Also, let U. Ui 
r 

Ti be the discrete approximation 
s 

i-i 

to 
atr 

U(x, t)ItýA 
t. 

Substituting U(r) into (3.6) and (5.2) 

with V= Ti gives us the relationship 

U1 
r+A 

Ui 
r-1 

=0 r=1,..., m where 1Ji 
o=i 

Consequently, we can construct the recurrence relationship 

[J 
,r= 

(-1)r Ai IJ1 r=1,..., m (5.9) 

Combining (5.9) and (3.5) with V- Ti yields 

km 

(a, +C (_1) r-1 ßrj 
t 

Ai) 1Ji+j -0 (5.10) 

j-0 r-1 

m 
Define 6. (T) _ }lj (T) /111C. (T) where I. ºj(T) = aj +I (_1) r=1 ßr, Tr 

r-1 

and subsequently rewrite (5.10) as 

k 

dj (AtAi)L1 +3 
=0 (5.11) 

j =0 

The expressions (5.8) and (5.11) combine to give 

kk 
-A i 

(n+j)A1 
d. (A 

tiA. 
) n+j 1 d. (A 

tiA. 
)U i 

o. e 
t d1 (5.12) 

ý1 
j =o j=0 

We conclude this sub-section by bounding di. We see 

from (3.2) and (3.3) that 

k 
c -A. (n+; )e r -A. t "j 
L uý (AtA. )U. e 

1tLIU. e1 At J 

j=o 
LL t=nAt 

-nA A 
5 GAt+'A! +l lulle ti 
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By lemma 1a positive supremum of [jlk(T)] -1, T>0, must 

exist from which we conclude that 

do sC Aq+'AQ+1IUOle 
-nt/ I. 

1 (5.13) 1t11 

Alternatively, by lemmas 1 and 2,6 
J . 

(T)jio, 1,..., k, are bounded 

for any t>0, thus 

-n4 A. 
di < CIU? Ie ti 

b) This section uses a method employed by Henrici C13, pp242] 

and adapted by Zlamal E40-411. Define p(E, 
T) by 

P(ý, T) adk(T) +6 k-1(T)ß +. + 60(T)ýk 

Note that p(, T) 
{i(r)] 

p(, T) and hence the roots of 

p(, T) are the reciprocals of the roots of pQ, T). It is 

intuitively obvious that the roots of p(C, T) approach the roots 

of p(E) and am(p) as, respectively, T+0 and T+ 00. 

The essential roots of p(&) (i. e. those of modulus one) are 

by assumption real, and by zero-stability single. The consistency 

condition dictates that w61 is always an essential root. Let us 

assume the most general situation when these essential roots are 

w1=1, w2=-1. Any other root {w. }i=3 of p(Q has modulus less than 

one, say 1wil 5 1-8 ,0<8s1. We employ a theorem from complex 

analysis, eg. [1, Theorem ll, pp. 131], to show that for each 

sufficiently shall e>0, there exists aTE>0, such that the 

equation p(&, T) = 0, T< TE, has the same number of roots in the 

disclk- Col< c as the equation p(ý) 6 0. Furthermore, if Co is a 

(5.14) 

-58- 



root of p(E) of multiplicity p then the p roots of p(E, T) that 

approach it are distinct for T sufficiently small. Hence no 

complications arise from a root of multiplicity greater than one. 

We denote w1 2 to be correspondingly wl or w2. Selecting 

E<2 we have that, for T< T012, the equation p(&, T) has only one 

root in the disc JE-wl 
ý2 

ý<2. Let this root be ('r) . 
1,2 

Rearranging the above we deduce that for any 0<c< 0/2 there 

exists a Te such that is 
1,2 

(T)-w1,21 <e whenever T<TE:. This 

is a definition for Cw (T) to tend continuously to w1,2 as t 
1,2 

tends to zero. Thus 
w 

(T) can be expressed as an analytic 
1,2 

function of T. 

w. +ai'U+a2T2+... i= 1,2 
i 

Corresponding expressions hold for the other roots {ýw (T)}i-3 
1 

of p(ý, T). Remembering that 1wij< 1-0, i-3,4,..., k, we deduce 

that for T sufficiently small, say T< Ti, 'Cw (T)l <1 --t, i-3 k. 

Expanding p(¬w1,2 (T), T) about the point w1,2 we see that 

P(C (T), T) ° P(wl) + Taip'(wi) + TQ1(wl) + 0(T2) 0 i°1,2 
wi 

and by comparing coefficients 

i a1(wi) 
a -- i 1,2 (5.15) 

1 
P'(wi) 

We know that a1(1) - p'(1) by the consistency condition, 

a1(-1) x0 by assumption and p'(w1,2 )x0 by zero-stability. 
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Thus, 

w 
(t) wi + ai T+ 0(12) where ai is real and non-zero 

i 
and 

i 

W(T) + 
alT 

+ 0(12), i=1,2. 
Ii 

But as jý (T)I <1 for T>0 we must have ai/wi <0. Consequently, 
V. 

for T sufficiently small, say T< T2 

fall- 1, iall ýcw (1)I< 1- a'r ,i1,2, for some a, aý 
2min f1 

21 
i 

Thus, we have shown that for T<T, T= min(T1, T2) 

JfW (T)j <1 - aT ,a>0, is1,2,..., k 
i 

and hence, for T<T, all roots ý(T) 
of 

p(E, T) satisfy 

E(T) I> 1-aT 

Therefore, 
�1 

is holomorphic for Is 
1 aT ,T<T, and the 

P(E, T) 

function can be expressed by a Taylor series expansion 

i. e. 
1 

Y0(T) + Y1 (t)ý+ y2(T)ý2 + .... T<T 
P(E. T) 

where, by Cauchy's estimate, eg. [1. pp. 1221 

jyý(T)1 5C (1 -aT) R-0,1,... whenever T<T. 

Similarly, let the roots of am (ý) be {z 
1 .}1k 1" 

These roots 
= 

are by assumption less than one in modulus, say Izii5 i-A, 0<651. 

Applying the aforementioned theorem we prove that the equation 

p(ý, T) -0 has the same number of roots in the disc 1ý-zij <2 as 

the equation a()am0, whenever T>C. Repeating the above 
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argument we have that, for T>C, the roots i(T) of p(C, T) satisfy 

Iýi(T)l < 

This leaves a finite interval [T, C) where the roots ('[) of 

p(ý, T) are known to be of modulus less than one. These roots are 

continuous functions of T over a finite interval, hence 

,0< 
6< 1, whenever T5T5 ýi(T) <1-0 

and we conclude that there exists a constant a, 0<ö<1, such 

that 

<1-a whenever "r ? T. 

By the previous argument we easily establish 

IY&(T)I : C(1-ä)k whenever T? TR0,1,... 

Summarising, we have proved that, 

C(1 - ar) sC e-a2T 'r <T 

YR(T)I`- 
C (1 - a) 5Ce aý 

, 0<ä<1 TPT 

Making T smaller if necessary we achieve ä= at. Denoting by i* 

the smallest integer such that AtAI>T we have 

Cei< 
IY AtAi) ( `- 

i* 

. 
C e-WET iZ i* 

c) We now assume that w1= 1 is the only essential root of 

p(E). The value al of (5.15) is now equal to -1 by the 

consistency relationship. Thus for AtAi sufficiently small 

(5.16) 
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-e . 
w(L 

Ai) -1- AtAi + O(AtAi) etA+ 
i 

where g is an analytic function of btAi and g- O(A2A2) at At A. 0 

Expanding p(ýwi, etAi) about the point e-AtA1 and equating to zero 

we have by (3.4) that 
m 

P( 
w0 

Ai), AtA. ) = p(e-AtA1) +I (A Ar a (e-AtAl)+ 
8 P'(e-At 

Ai) 

r-1 

+ o(g2) + o(AtAi8) = o. 

By substituting y(t) e-Alt into (3.2) and letting ta0 we deduce 
m 

P(e-AtA1) +c (AtArar(e-AtAi) i Oq+lAt+l(-Ai)q+l +O (AtAi)q+2J. 

r==1 
l 

Consequently, by combining the above expressions 

8P'(e-OtA1) = -Cq+l(-AtAi)4+1 + O(AtAig) + 01(AtAi)4+2, + 0(g2) 

and thus, using p'(e-'ý tA1) = p'(1) + O(dtni) 

ga 
(pl q 

ýl) 
Oq+1(4tAi)q+l 

+ 01(AtAi)q+2I a C(A Ai)q+1 + OI (AtAl )q+21. 

With the above expression of g we have established the bound, 

ýw1(AtA. ) 5 e-AtA1[l + C(AtA1)q+l] <1 

whenever btAI is sufficiently small. Utilising a previous result, 

we realise that the other roots Qw }k 
2 of p(ý, AtA satisfy 

Jg 

w<1-2, given At A. sufficiently small. Therefore, we can 
3 

select a value T>0 such that, for 0< AtA. < T 

ýw (AtA. )ý s e-At 
Ai [ 1+ c(ztAi)q+lý <1 

J 

ji1,2,..., k. 
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Extending the argument as before we easily achieve 

IYR(AtAl)I :5C e-RAtAi(1 + c(A tAl)q+1lR 
AtA. < c' 

L 

Hence, for At Ai <T and ß, 0<<1 

e-kAtAi11 + C(AtA. )q+1IR 

5e- 
(l+ß) tAir e I(1-ß)AtAi[l 

+ c(A1 t 
A4+1 

9, 

lL 

and since 1+ cxq+l 5 eJ(1-ß)xwhenever x< '[ß 5T 

we have 

_( l+ß) 9 Al 
I Yk(AtAl)1s Ce At A. < 'ß 

For At Ai z Tß we recall from a previous result that 

IY91 (AtAl)I sC e-cR 0<q, <1 

Making Tß smaller if necessary we achieve a- J(l+ß)Tß. 

Denoting by i*(ß) the smallest integer such that AtAi> Tß 

we see that 

Ce 
J(1+ß)kAt/Ll i<i 

*m 
IYýtetnl> 

Ce+ 
il+a)Tßk ,i2 

i*iB) 

for some a 0<ß<I 

By comparing coefficients in the expansion of 

^11 0(T) 
+ýY1(T)+ .... 

P(C. T) 6k(T) + 0k-1(T)+... +ý 60(T) 

we establish 
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1k=0 

k(T)YZ(T) +6 k-l(T)YL-1(T)+.... + 5 (T)YP, 
-k(T) 

= (5.18) 

0k>0 

where YZ -0 for k<0. 

d) Henceforth, the following inequalities will be used 

extensively: 

x e-ax 5(ea)-1 < (2a)-1 

xp e-ax <[ 
2a 1p 

p 

for any x 2t 0, a>0 and pa positive integer. 

If we rewrite (5.12) with n- n- k-k, multiply this by 

YR(AtAi), sum for k-0,1,..., n-k and then apply (5.18) we prove 

Ei -- 
[dk-1(At. 

)Yn-k(AtAi) +.... + d (AtA. ) Yn-2k+l(AtAi)] ýi-i 

-[6 k-2(6tAi)Yn-k(AtAi) + .... +6o(AtAi)Yn-2k+2(AtAi)] £k-2 

(5.19) 

n-k 

--S 
0 

(AtA. )yn-k(AtAi)Ei +L dni-k-kYQ(AtAi 

ýýo 
(5.20) 

Using (5.13), (5.16), (5.20) and the inequalities (5.19) a 

bound on le , can be constructed as follows: for i<i 

k-1 

lent :5 Oe-C' 
(n-2k+1)btAi GI ei 

i j-1 

n-k 

+ OAq+1 I Aq+lIU? I e-(n-k-k)AtAi e-c" tAi (5.21) 

k=o 

Note that for nAt ? to and (2k-1)At <_ ito 

e-a(n-2k+1)AtAi <- e-}atoA. C(t )A. S (5.22) 
0i 
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where s will be determined later. For a-1Z0 

n-k 
D e-(n-k)A t 

Ai -(a-1)RAtA1 - (n-k)0 A" 
te 5(n-k+l) Ot eti 

Xso 

<_ 2 (n-k) At e-(n-k)AtAi 

e-l(n-k)AtAi ýC e-}toAi ýi T 

<_ C(to)Ai-(q+1) 

Fora-1 <0 

n-k 
S=I e-(a-1)kAtAi S e(1-(')(n-k+1)AtAi Hence, 

X=o e(1-a)AtAi -1 

- 
CA 

t e-a(n-k)AtAi -a(n-k)AtAi 
SA e 

(n-k) ýtA1 
<5Ce 

e(1-a)OtAi _1 
(1 - a)Ai 

Ce 1_at_Ai 
< C(to)Ai-(q+1) 

A. 
Thus, we have shown that 

n-k 
At e (n-k)AtAi I e-(a-1)QAtAi ý C(to)Ai-(q+1) (5.23) 

R-O 

Collecting together (5.21)-(5.23), we conclude that whenever 

i <1*v 

k-I 

C(to)Ais 1 feil + C(to)AtIU'I (5.24) 
j-1 

For iZ i*, using (5.14) 
, 

(5.16) and (5.20) 
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k-1 n-k 
1e11 C e-aT(n-2k+1) C IEj) + UIUol je Ai(n-k-k)At 

e-aTR 
(5.25) 

iLi. i 
j. i £ao 

But e-aT(n-2k+1) <C e-atn 5 Cn-q<_ C(to) At (5.26) 

as it At z to. Also, 

n-k n-k 
S e-Ai(n-k-t)ht e-aTR 5j e-T(n-k-R+a£) 

£wo 9, -o 
n-k A 

:9 e-T 
(n-k) 

LC e-T 
(a-1) k 

R=o 

For a-1z0 

(n-k+l) e-t(n-k) 2(n-k) e-T(n-k) <C e-JT(n-k) 

C e-iTn 5 Cn Qs C(t) At 
0 

Similarly, for a-1<0 

A 
_ -T(n-k) T(1-a)(n-k+l) 

-Ta(n-k+1) S5ee<Ce5C e-Tan C(to)Qý. 

eT(1-a) -1 T(1-a) 

Combining we have proved that 

n-k 

e-Ai(n-k-Q)At e-a&Q 
<_ C(to)Aq (5.27) 

t 

Y, -0 

and the expressions (5.25) - (5.27) yield, for i? i* 

k-1 

Teil :5 C(to)ot Ik l+IU01ý (5.28) 
j=1 

From the bounds (5.24) and (5.28) we achieve 
dd k-1 

Ieil2 5 C(to) 
{AI 

IUo, 2 
+I Ails i IEll2 

i"l i-1 i<i* j=1 

k-1 

+ A2q LL 
Jc. J2 

i? 1* 
juul 
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Using ýei) <_ lUi) + JUij we prove that 

d k-1 

e2112 Ie. I2 C(to) {A 

i-i 
l 

j-o 

Mihlin [22] has proved that Al 

k-1 

ýl u 112 + Ai 
2s 

ei 12 (5.29) 

i<i* j-1 
2 

A. Z ci ,ca positive 
N 

constant. Thus for any s>N 

d 00 
nis si xi8 <_ c. 

i-i i-1 

We use this result frequently in the following analysis. Let 

k-1 

e3 A28, Ei'2 We can write ei as 
i<i* j. i 

ei s U0 e- 111 

e J'tAl(U 
-Ü)+e JAtAi(Ü 

- 
ü) +(e 3AtAi_e 1AtX') u° + 

iiiI1 

(u? _ UJ) + (J - UJ) 
iiii 

from which 

k-1 k-1 
Ie3I CIIA. lui - 1JII2 +C Ai2slii - 

j12 

j=o i<i* j-o 1<1* 

k-1 

+C A" 2s (ej 6tAl-e jQtAl 21j 
uo l (5.30) 

11 

j-i i<i* 

The expression (5.30) can be investigated by using (5.3) and 

(5.4), whence, 

00 

eý _ Ai2s lui-Ui12 <a-2s I jui-U425 CIIui -Uj112 
1<L1* i=1 
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es = A2 8j- Ui 2 
Now, Uý - Üý U ('Y. 

i-pi. 
) dx 

zi 
i<i* 

2 
i. e. 1Ui - Uiý2 < CIIUJl12h2(P+1) Ap+l, but as AiZciN the series 
00 

(2s-p-1) 
is convergent if we select 2s-p +1+N. Thus 

isl 

e5 5 CII Ui II 2h2 iP+1) 

e6 _C le J'tAi 
- e-jttail2 n-2sluol2 Lii 

i<i* 

00 
A-2s ljA Ai-jQtlil2lu. I2 j2A2 h4p x-2(s-p+l)luil2 

i<i* i=1 

and selecting aa p+l +2 we have 

e6 S CA2 h4PII gI12 

Substituting the above bounds in (5.30) we establish a 

bound on (e31, namely 

I e31 `CIk1111 u]_ 
j112+h2' +l) 

kIl 
HU j112+ A2 h4P II g II2 1 (5.31) 

j=o j=o 

The desired result is obtained by substituting (5.31) into 

(5.29) and using the inequality 

ll+11811 llui ilýJJui -u'll+11U, 11: 5 11 u3 - ui 
k-i 

e2 C(to) {E IIUj-u' 11 + (hp+l + 6t) g il 
} (5.32) 

j =o 
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e) We now extend the analysis of section d to the situation 

when w=1 is the only essential root of p(C). Using (5.13), (5.17), 

(5.20) and the inequalities (5.19) a bound on Cn is constructed as 

follows; for i<i*(ß) 

k-1 
IE. I C e- 

(l+ß)(n-2k+1)Atli 

j=1 

n-k 

+C Aq+1 C nq+lluo -(n-k-R)OtA e-ß(1+ß)ROt1i (5.33) 

£=o 

Now for n At ? to and (2k-1) At 5 ito 

e-1(1+ß)(n-2k+1)AtAi <C e-ßnAtAle-l(1-ß)toAi 

s C(t ß)e-ßnAtXI A. s (5.34) 
o' 1 

where as before, s will be determined later. Also, define 

n-k 

At e-(n-k)OtAi C el(1-ß)R'ttti and hence 

R, 
L=o 

f%l S <_ D e-(n-k)atAi e1(1-ß)(n-k+1)AtAi 
t 

e'(1-ß)Atni -1 

C e-1(1+ß)(n-k)AtAi Sc 
C(ß) e-ßnAtA1 e-4(1-ß)(n-k)AtAi 

(1-ß)A1 

s 
ß(ß)e-ßnOt'l e-}(1-ß)toni C(to. ß)e-ßnAtA1 ni-(9+1) (5.35) 
A. 

From (5.33) - (5.35) we have whenever i<i*(ß) 
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k-1 
ýE: n ` C(t0ß) e-ßnAtAl. A-' I IeiI+ ýt IUo1 (5.36) 

j-1 

Similarly, for using (5.14), (5.18) and (5.20) we have 

k-1 
I (1+ß)T(n-2k+1) 
Eni I !5C e' I el 

j 
=1 

n-k 

+ CIU1 c e-Ai(n-k-R)At e- 
(l+ß)Tý 

iL 
k-o 

where, for simplicity, we denote T=Tß. But 

e-J(1+ß)T(n-2k+1) <C e-ßnT e-i(1-ß)Tn <- ß(ß)e-ßnT n-q 

(5.37) 

s C(t0 '8) e-ßnT Qq (5.38) 

n-k 

Also, let Sj e-Ai(n-k-R)Ot e-J(l+ß)Tk 
and thus 

k=o 

n-k JT(1-ß)(n-k+1) 
S 

e-T 
(n-k) 

eT 
(1- ß) 25 

e-T 
(n-k) e 

e R, =o 

_1(l+ß). c1 
s 

ýe C(t , ß) e-ßnT At (5.39) 

T(1-ß) 
t 

The expressions (5.37) - (5.39) yield that, for i? i*(ß) 

k-1 

16 nj `- 0(t fß) t 
ýq e-ßnAtal I Eýi+IUol (5.40) 

io11 
j =l 

where we take At sufficiently small to allow Atal< T. 

Following a course identical to section d we arrive 

at the result 
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k-1 

11 e2 ýý 5 C(to, ß)e-ßn4tXl { I) U' - u' + hP+l +'6t) 11 g II 
} (5.41) 

j =o 

f) The error el - u(x, nAt) - U(x, nAt) will now be bounded. 

From (5.6) and (5.7) we have 

OD d 

el _C gl e-nAtxi Ui e-nAt/li 
iG=1 iG=1 

d 

gl e-nAtAi +( e-nAt'i _e-nAtAi giýi 
i>d 

] 
lJ 

i=1 
dd 

+c e-nAtAi(gi-gi) lPi + e-nAtAi gi<ti, 
i - i) 

1L=1 1-1 

d 

+c e-nAt'i (8i - Ui) Yi 

i=1 

Z19ma1 [41] uses a technique from Thome [30] to show that 

A 
d+l ? ch-2 Hence, using (5.3) and (5.4) we have for some 

0,0 0<1. 

e7 _c e-nAtai gl p1 < e-ßnAtal c e-(1-ß)nAtAd+l gi ij 
i>d i>d 

(5.42) 

co 
00 

:5 e-ßnOtA1 e(1- 
ß)toXd+l 

gi C(to, ß) e-ßnLtal 
-+ip+l) giýi 
d i=1 

i=1 

i) e7li s C(to, ß)h p+l e -ßnAtAi I1g it i. e. 

d 

Let e8 (e-nAtAi _e-nAtAi) gi *i, By the mean-value theorem 

i=1 
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d 

e8 nLtIxi-Ail e-natAi gl ýi 

i=1 

d 

<_ Cn A h2P e-ßnAtai j Xp+' e-(1-ß)nOtai t1 giý 

i=1 

d 

C( )h2P e-ßnAtA1 
(1-ß)toxi 

1 
gi ýi 

`- C(t0 )h 2p 
e_ßnAtA1 öi *i 

i=1 

i. e. 11 e811 !5 C(to. ß)h2P e-ßnAtA1 11 8 ýý 

d 

Let e9 e-nAtAi(gi - gi) ýi. However gi - gi = g(x) (ýi4'i 
. dx 

-ý 
i=1 S 

and thus by nit Z to, the Cauchy-Schwartz inequality and (5.19) 

d 
11 e9 II `C IISII hp+l e-ßnAtal e-(1-ß)nAtai AI"(p+l) 

i=1 

Co 

_< 
C(to, ß) II 8 II hP+1 e-ßnAtA1 cAN 

1==1 

: Cito, ß) 11 8II hp+l e-ßnAtA1 

d 
-nOtAi Let e10 e gl (ii - '1'. ). Thus 

1=1 

d 

e10ýý S ChP+l e-ßnAt'1 118ýý e-(1-ß)nOt; 
ki Xi(P+1) 

1=1 
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00 

C(to, )hp+l e-ßnAtAl II g II GANs C(t0, )hP+l e-ßnA, tXl II g II 

i=1 
d 

Finally, ell = e-nAtAi (g -U°)Y'. If U° is the orthogonal 
iii 

ial 

projection of g(x) onto Vh with respect to the L2-inner product 

then e11 = 0, otherwise 

d 

eil =c e-nAtAi (9i - gi) + (gi - U? )I Ti and hence 

i=1 
l ))) 

Ie1111 5 C(to, 
ß) e-ßnAtAI 

{IIgIIh1 
+ 11 g- U°II 

} 
(cf. e9) 

Using (5.42) and the above bounds we conclude that 

C(to, ß) e -ßnOtlllI hp+l (I g II + II g- U°(I 
) 

(5.43) 

II eIII 
C(to, ß) e-ßnAtXlhp+lj1 g II, If U° is the L2-inner product 

projection of g(x) onto V. 

for some arbitrary ß, 0 <_ ß<1. 

g) Returning to (5.11) we have 

1 6i (AtAi)Ui, 
j 

- 0. 

j-o 

Rewrite the above with n-n-k-Q, multiply this by 

Yk(AtAi), sum for R-0,1,..., n-k and apply (5.18) to achieve the 

expression (5.20) with cý replaced by Uý, and d1 .=0. Let us assume 11 

that At is sufficiently small so that OtAl< T. Using the remodelled 

expression of (5.20) and (5.16) we obtain 

k-1 
IUnj <C e-anAtal I ju I 

11 

j =o 
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from which it follows that 

d 

uII= EI I2 
i=1 

k-1 

C e--omQtX1 G 
(Iuu Ii 

j-o 

which is the desired asymptotic result. 

h) Initial Approximants Uj to u(x, jA_), j=0,1,..., k-1. 

(5.44) 

This section is concerned with the estimate lie21I under the 

assumption that U° is the orthogonal projection of g(x) onto VP 

with respect to the L2-inner product and {Ujlk-1 are the approxi- 
J=l 

mate solutions of (2.2) at time t= jet obtained by a weakly 

A-stable Padg scheme of order q-1. 

Other viable methods for deriving these approximants include 

the weakly A0 -stable Runge-Kutta schemes. Such schemes have been 

thoroughly investigated by Crouzeix [3] and we refer the reader to 

his thesis for an account of these schemes. 

A difference method derived from a Pads approximation of 

order q-1 is a one-step method of the type 

where 

e-T, such that 

1 

-_Cc 
ti rr 

yn+l yn LL ßrsýtyn+s (5.45) 

s-o r=1 

1 
1+ ('1)rßroTr 

g(T) rti is an approximation to 

m1 
+I (-1)r-1ßr1 Tr 1- 

r=1 
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Je-T - R(T) 15C Tq as T- 0 (5.46) 

We note that any Pads scheme is a one-step, multiderivative 

method and satisfies (see (3.2)) the relation 

1 ýl 
ti ti 

Yn+l 3'n LL ars At Yn+s Cg At Y"(nAt) + 0(ßt+l) 

s-o r-l 

ti {IY(fl+S)I 
(5.47) 

oss 

A Pads scheme is said to be weakly A0-stable (see [31) 

if IR(T)j s 1, for any TZ0. The inequality (5.46) is stated 

to hold for small T. However, as le-T -R(T)l 52 VT 2 0, (5.46) 

is satisfied a fortiori for any Ta0. Applying the scheme (5.45) 

to the system of differential equations (2.2) we see immediately 

from an obvious adaptation of (5.10) that 
ti ti 
mm 

I1 +I Atßr1(-1)r-1 Ai 
Ju+1 

-+ 
tßro(-1)r A1lUi -0 

l 
r1 r=L1 

or U. R(AtA. )& 

The recurrence equation (5.48) yields 

Ui+l 
[R1] j+1 

Ui 

It is easily derived from (5.8) and (5.49) that 

Ej+i Ui e-Ai(i+i)At 
j+1 

_ 
rRýýtAi)1 

and by using the definition of weak A -stability, and (5.46) 
0 

(5.48) 

(5.49) 
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1 
ei+ll sI U° e"Ai(j+l)'t 

rR 
(ptni)l 

j+l 

(ý+1)1Uol e-AlAt - R(AtAi)I :5 CI Ui / 

j=0,1,..., k-2 

Consequently, returning to (5.29) we note 
k-1 

II A-2s, ej, 
2 

<C p2q A-2(s-q)IUol2 

j-1 i<i* i<i* 

C Atq I, U° 1,2 by selecting s= q+2 

The initial approximant U0 to g(x) is defined to be the 

projection of g(x) onto Vh by the L2-inner product, and is thus 

well known to satisfy, 

Ilu°II SI1 g1I 

(5.50) 

(5.51) 

Using the definition of weak A0 -stability, namely JR(T)15 1, 

for T? 0 we have by (5.49) 

dd 

u' l12 =I IUil2 E Uo, 2 = IIU°IIZ 5 11g, 12 ; =1,2,... k-I 
i=1 i-1 (5.52) 

The expression (5.29) can now be reformulated by (5.51) and 

(5.52) to read 

Il e2ii 5 C(to) AC ll g Il (5.53) 
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We are able to deduce immediately the corresponding result when 

w1 is the only essential root of p() 

i. e. ýý e211 5 C(to. ß) e-ßnAta1 
CS jý (5.54) 

The theorems can now be established. Theorem 1 is 

determined from the relation I{ u(x, nAt)- Ün 11 <_ il el 11 + 11 e2 11 and 

the bounds (5.32), (5.43) with ß=0, and (5.44). Its corollary 

follows immediately by using (5.53) instead of (5.32). Theorem 2 

and its corollary follow from the bounds (5.41), (5.43), and (5.54). 
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6o The Nonhomogeneous Linear Parabolic Equation 

In this chapter we discuss the numerical solution of the 

nonhomogeneous equation 

N 
au a- (ail](x) 7-. ) - a(x)u + f(x, t) xe S2, t>0 

1, j-1 1 

Lu +f (x, t) (6. la) 

u(x, o) - g(x) x62, (6. lb) 

u(x, t) -0xEr, t> 0 (6. lc) 

We assume that t lies in a finite interval [0, T] . For the 

infinite interval [0, co) a restriction on the growth of 8f(x, t)/at 

is required. For v(x, t) E Hp+l(t2), t >_ 0, and square integrable 

with respect to t, let us define the norm 

2 
II v II 

HP+1 x L2 =T I) v(x, t) II 2 
+ldto 

fo 

Further, using the well-known inequality 

N2 
l 

veH dx , 
11 v 11 < C2 1J 

levi 

2 ii 
1J 

we norm Hö (Si) by 

N 
21 )2 
gi )f2, 

_ 
dxo 

i-i 

Analogously to chapter 1, the weak solution is immediately 

seen to satisfy 
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au 
, v) + a(u, v) - (f(x, t), v) Vv9 H1 (92), t>0 (602) 

whilst the continuous time Galerkin solution U(x, t) is determined 

from 

ät, v+ a(U, V) a (f(x, t), v) VVCV 
p, 

t>o (6.3) 
h 

Both (602) and (6.3) are associated with appropriate initial 

conditions. 

Continuing as in Chapter 2, we easily achieve by the energy 

method that 

u(x, t) fý 5e ''t IJ 811 +Jto Y(t-s) fl f(x, s) JI ds 
0 

Assuming that f(x, t) is m-1 times continuously differentiable with 

respect to t we obtain from integration by parts 

M-1 

II u(X, t) II <e Y` IIg II + C-1) r-1 II fr-1 (X, t) II ' II fr-1 (x, o)II e Yt 
ral yr 

+ 
(-1)m-1 (t- Y(t-s) II fm-1(x, s) II ds (6.4) 
m-1 

Je 
Y0 

where fP(x, t) -= 
ap 

f(x, t) p60,1,... m-1. 

atP 
The continuous-time Galerkin solution satisfies an analogous bound 

(cf. (2.5)). Consequently, we define a time discretization scheme to 

be strongly stable if if satisfies: 

k-1 m-1 
U" ý5 C en"t U3 11 +c11 sup () fp(x, jAt) 11 (6.5) 

j=o P. O ap+l 
oSjSn 
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whenever At is sufficiently small, and m is an integer; m>1. 

Let us investigate the solution derived from an application of 

the L. M. S. D. method (3.1) to (6.3). The approximant i' is easily 

seen to satisfy 

k It m 

°i. Un+j VJ -f 
,I 

ßrß ,t 
rý 

V0 (6061) 

ýýo ýnr=1 

where 

(Un(r)l 
V) +aI (r-1)' V) s 1f 

r-l (x, nA t 
), v, (6.611) 

P 
VVEV, rnO, l,... 

h 

The results of this chapter are contained in the following 

theorem: 

Theorem 3 

Let the L. M. S. D. method (3.1) of order q be consistent, zero- 

stable and A -stable. Let the roots of the polynomial p(E) with 
0 

modulus equal to one be real, the modulus of the roots of the poly- 

nomial m(E) be less than one, and a1 (-1) 00 if p(-l) - 0. Further 

let u(x, t), u(x, t) E Hp+l (P), tE [0, T] , and f(x, t) be q+l times 

continuously differentiable with respect to t and each such derivative 

fa(x, t) e L2(S2) saO, l, oooo, q+l, Then, for any to > 0, there exists 

a positive constant C(to) such that for nAt >_ to, nAt <_ T and h, At 

sufficiently small 

k-1 

u(x, nnt) C(to) { et + hp+l + II u(x. jat) - UU 
j =o 
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and 

k-1 m-1 

II Un II sCe 
_A 

t1E II U& II +c1 iaAi+l sup II fp(x, JO 
jmo pso 

)p t) II osj Sn 

The constant C(t 
0) 

depends on the parameter w defined by 

At = 0(hw). as h40. We require that v be bounded away from zero. 

ie0 w>_w >0ý 
0 

Corollary 

If in addition we assume that U° is the projection of g(x) 

onto Vh by the L2 - inner product and {UjJjai are the values derived 

from a weakly A0- stable Pade scheme of order q-1, then 

II u(x, n pt) - u' II < C(to) S At + hp*1 

and 

` 

ü[-1 

Un II sC e- 
anotal, II g II + I1 p+l 

sup II fp(x, sot) IL 
pý 

(a, 11) o5s! ýk-1 

M-1 

+CG1 
p+2 

sup ll fP(x, sOt) il 

P=o 
(ax 

l) o<S5n 

The latter closely resembles (6.4) in that the initial time 

values of llfp(x, sAt)II, p=0,1,0.., -1 ; s=0,1,..., k-1 tend 

exponentially to zero as t increases. 

Proof 

This proof closely follows that of Theorem 1 but with 

complications arising from the extra term in the equation, ieo f(x, t). 

The solution u(x, t) of (6.1) can be expressed as 
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00 -A. t Co 
u(x, t) _ si e1i+i (Fi(t). Ii)1i (6.7) 

lsi i-1 

t -a. (t-s) 
where F. (t) f(x, s) e ds (6.8) 

Jo 

Similarly the continuous-time Galerkin solution U(x, t) may be 

expressed as 

d 
-A. t 

d 

Ui e1 (Fi(t), Ti) %Pi (609) 

i=1 i=1 

where 
It -A (t-s) 

Fi(t) f(x, s) e1 ds (6,10) 

0 

a/ 

Using the same arguement as before we can write 
d 

e2 = ei Ti where 
i=1 

-A. nA 
ei = U. e1t+ (F1(nAt), Y1) - Ui (6.11) 

d 
Again let Un iln T. be the discrete approximation to 

(r) i=1 i, r i 

8r 

atr 
U(x, t)Itýt . Substituting i? 

r) 
into (6.6) and letting V-W. 

gives us the relationship 

l7n 
r+ 

Ali 
ý1 

nrýi i) r 1,..., m 
i, i, 

ti 
where Fn ('l) - fp(x, nLt) T. dx 

Consequently, we can construct a recurrence relationship, namely 
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r-1 ti 
Uir = (-1)r Ai Ui +I (-Ar-1-p Fn(O1) (6.12) 

pso 

Substituting (6.12) into (6.61) with V= 'i we achieve by a simple 

manipulation the relation, (cf. (5.11)) 

kkm r-1 

o 
(A A) Uln+j 

[A]1 cc Qt ßrj (- . )r-1-p 
Fn(, 

ý. ) 

j=Gor=G1 po 

e 
i (6.13) 

Combining (6.11) and (6.13) we have (cf. (5.12)) 

kk 
-A. (n+j)A 

X 6ý(A A. ) c. n+j _16 (Atli) Uoie+ (F. ((n+i)A ), T 

J=o jWo 

- cn = do (6.14) 
ii 

Note that by differentiation under the integral sign 

r-1 p ar 
Fi(t) = (-Ai)r 

1(t) + (-Ai)r-1-p 
ap f(Xýt) (6.15) 

at Bt p=o 

and hence by (3.2) it is simple to deduce that 

n ro -Alt 
k(A tni)dI =L Lüi e+ (Fi(t), ýi) A 

t (6.16) It°n 
ýt 

To bound (6.16) it is necessary to evaluate 
aq+l 

+1 
Fi(t) in an 

at4 

appropriate manner. Using integration by parts we show that 

q p [fp(Xt) -nit l 
Fi(t) _I( 

"1 
- f(x, o) eJ 

p-0 2 
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+ 
(-1)q +i 

t 

fq+l 
-A. (t-s) 

q+i 
(x, s) e da 

A. 
io 

and substituting this into (6.15) with ra q+l we have 

q+l q 
-A. t 

atq+1 
Fi(t) (_1)P A? e1 fq_P(X, O) 

P. O 

+t fq+1 
-Ai(t-s) 

(x, a) e ds 

0 

Combining (3.3), (6.16), (6.17) and lemma 1 we have 

t 
kt Ai)di <G eq+l Al+1 JUol e 

-A i ne 

q -A. nt 
+Cieft 

1(fq-p 
ýXýo), ýi)I 

P=LO 

(6.17) 

q+l 
k (n+r)Atq+l 

-A. (nAt+rAt-s) 
+ At G(r) (X, s), e ds dr 

0o 

ie. di C nq+l nq+l 
lU ileit 

q -A. nL 
+ Ape 1t (fq-p (x, o), Y'i) 

I 

i 
p=o 

T 

+( (fq+l (x, s), 'Yi) 
I 

da 

0 

(6.18) 
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Alternatively 6. (T) is bounded for any T>0, thus 

-ne Ai -A. nA 
_ di <C JU71 et+C at+l peI. t (f9 P(X, 

o), ý, 
i) 

P-0 

0 
+I (f4+1(X. s). Ti )I ds (6.19) 

T 

Using (5.16), (5.20) with either (6.18) or (6.19) we prove 

by the method of chapter 5 that, for i< i* 

k-i 

C c(to) AEI Ei + C(to) nt Ui 
j=1 

qC 

+pL 
I 

(fp(x, 0), fi)+Tf (fq+l(x, 8), fi)I äs (6.29 

0 

whilst for i >_ i* 

1k-1 
T 

eil C(to) gq 
t. + Uo. + 

JE: jl Iý 
(fq+l ý'1) da 

j1 111 

0 

q 

+ AP 
'62s 

(fq p(; i, o) , Y'1)' (6.2011) 

pWo 

The only result not contained in chapter 5 that we used to establish 
n-k _op A, 9. 

(6.20) is a bound on At et1 for any i< i* 
s . =o 

ie, 
n-k 

-aA A. 9. ýt 
DVet1<<C 

t 
o 1_e-fiti 

aA1 
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since x/(1-e-x) is an increasing function for x>0 and A Al < T, i < i*. 

From assumption (P11) of chapter 2 we deduce immediately that 

Ad < Ch 
2. 

We have assumed that At = 0(hw), w >_ wo > 0. As w1 is 

compatible with large time increments this assumption is always 

satisfied in practise. Now, 

A 
. 

L\ <A Als < Ch-2p h 
2sw 

<C's? p/ 

and we obtain from (6.20) that 

d k-1 q 

e2 II 2=I Ei l2<C (ta) otq II ° II 2+IIEi 12+ II fp (x 0) II 2 
i=1 i>i* j=i p=o 

- 

+ Ilfq+l (Xt) II2+ C(t )A 
-2s 

k1IdI2 

(6.21) 
L2 x L2 0i i* 1 

=1 
1 

From (6.10) and (6.11) we see directly that 

Isij <_ luil + 1u31 + sup I(f(X. s), `ý1)i (6.22) 

i OS8Sj 

and 

ej =e 
, AtAi(U°. 

- 
Ü) + e-JAtAi ui) 

o+ (e 
jAtA1. 

e 
jAtxi 

ui 0 

+ (u1 - 3) + (Ü i- U1 ) F. (jA) . T) 

+ (Fi (j ýt) ' 'Vi - ýiý 

-2s k-i 2 
from which, cf. (5.30), if e3 Ai ý ICJ 

i<i* jai 

k-1 
-2s 2 k-i -2s 2 

Iegl CLA. j 4- u 
11 +ciiA. 

IÜý 
- ui 

i 
i1i 

j =o i<i* i Ci 
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k-1 
-2s -jL A. -ji X. 2 

+CLGAIet i- et) luol2 
i1 j=1 i<i* 

k-1 2 
+CLG Ails Fi(jAt) - Fi(jAt), Y'i) 

i =o i<i* 

k-1 2 
C+IG Ails 

I 
(F1(jAt) ' 

yi - ý'1)' (6.23) 

j=o i<i 

2 
Let e12 = Ai2s (jAt) - F. (j At) "Ti)I 

i<i* 

2 
Ai2s II Ti (jet) - Fi(JOt) II 

i<i* 

t -A. (t-s) -a. (t-s)) 
But Fi(t) - Fi(t) = f(x, s) Ie 1-e1 

11 
ds and by 

o 

the mean value theorem we have 

tt 

Fi (J At) - Fi(j A) sup 11 f (x, s) 

j 
II I Jet -s I ds 

o5s5jAt 0 

<C sup 11 f (x, s) 11 A2th 
2p A p+l 

oSsSjAt 

Selecting s= p+l +2 we have 

e12 <C At hop sup 
Il f(x, s) ll 2 

oSsSjt 

Denote 
ý1)I2 nits 

e13 (F1(jA 
t) , 

Ti - 

i<i* 

(6.24) 
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But I (Fi(jAt), `' - pi) < 11 Fi(jat) 11 11 Ti - *i 11 

C hp+l 
(p+l) 

sup f (X>s) 
11 1 oSsSjAt 

Selecting 2s = p-1+N we have 

e 13 < Ch 
2(p+1) 

sup ýf f(x, s) 
O: 5S: 5j1t 

(6.25) 

We construct a bound on le31, (6.23), by using (5.31), (6.24) 

and (6.25). Hence, via (6.21), (6.22) and the inequality 

II U' II < 11uj -u' II + II u' II 

U' ' u' 11 + 11 g 11 +C sup iI f(X, s) iI 
o. s5j, 6 

t 

we prove 
q 

II e II sII + sup II f(x, 8) II +1 II fp(x, 0) 2 II < C(to) et II 
o<s<(k-1)At p_o 

+ II fq+l(x. t) II LL+ 
C(t0)hp+l II g II + sup II f(x. 8) II 2x 2 o5s<_(k-1)At 

k-1 

+c(t0) 1 Il U' - ui ii 
j -o 

(6.26) 

b. In this section a bound on the L2-norm of el = u(x, nAt)-U(x, ntt) 

is derived by utilising a well-documented method based on the paper by 

Wheeler 136] 
. It appears to be essential to impose certain conditions 

on u(x, t) to ensure validity of the error bound for the nonhomogeneous 

problem. 
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Let us assume certain 'smoothness' conditions on u(x, t), namely, 

(A, ) u(x, t), at u(x. t) E HP+1 (SZ) x L2 [ o, T 

(A11) If kE L2(S2) and 0E H2(S2) satisfy 

a(O, V) = (K, V) VVE VP 

then there exists a positive constant c such that 

110 112 ýC Ilk II 
This result is standard given {a.. (x}N and r sufficiently smooth 

iý i, j-1 

(Miranda [23] ), and may even hold if iZ has certain corners (Wheeler 

[ 36 ]). Consequently, the initial assumptions {aij(x)} N 
ij_l EC (n) 

re coo make (All) superfluous. 

Following Wheeler [36] 
, Dupont, Fairweather and Johnson (8] 

amongst others, let us define We Vh ,Vt? 0, by 

a(u - W, V) -0VVE VF 
h 

(6.27) 

Obviously W exists, and is in fact the weighted H1 projection of 

u(x, t) into V. The subsequent result follows directly from the proof 

of lemma (4.1) [8] 
, and the assumptions (A). Denote n-W-u, 

then, whenever h is sufficiently small 

II a II r< ChP+I-r' TI {IIu II p+l + IC II p+l II II r+n (6.28) 

for any tE [0, T] . Let ý=W-UE Vh, then subtracting (6.3) from 

(6.2) we easily see that 

ice' 
, V) + a( C, V) - fat ýl. V) 

Selecting VaE, and applying (1.2) yields 

yVE Vh, t> 0 
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dt 11 112+r1IýIIH1<at 
0 

Now, using the inequality jabl <2 a2 +2 b2 and integrating over 

[O, t] we have 

II c". t)II 2+Y II ý 112 < II E(". o)II 2+1 Ilat 112 
o22 

t2 

+1 ýý(", S) II da 

0 
(6.29) 

Before we can proceed it is necessary to quote the following lemma; 

(see [2] for proof) 

Gronwall's lemma 

Let u(t), v(t) be non-negative for all t? 0 and further let C 

be a positive constant, if 

t 

u(t) <C+ uvdt 
0 

t 

then u(t) <C exp I vdt J lo 

Applying the above lemma to (6.29) and using (6.28) yields 

II C(' "t) IIcfII E(", 0) II + hP+l II at lIHp+1XL VtE [0, T] 
2 

A simple application of the triangle inequality and (6.28) produces 

the desired result, namely 

el 11 <C{ 11 u(x, 0) - U(x, o) 11 + hP+l } 

c. Returning to (6.13) we have 

k 

6j(AtAi) Ui+3 ci 

j =o 

(6.30) 
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Rewrite the above equality with n- n-k-k, multiply this by Y2, (QtA1), 

sum for £=0,1, 
..., n-k, and apply (5.18) to achieve (5.20) with 

ei - Ui and di ci Let us assume that At is sufficiently small to 

ensure Atal< T. Note that by (6.13) 

km r-1 

uk (A A) cl = At GL ßrj A r-1 (-Ai) r-1 c (-Ai) -p Fn (1I ) 

j -o r=1 p=o 

and by lemmas 1 and 2 we deduce that 

M-1 

ci <_ At 

p-o 

1 ti 
A Fn (Ti) 

1 
(6.31) 

Using (5.16), (6.31) and the variation of (5.20) we have 

k-1 n-1 m-1 
IUij <C e-anýtaI I (Uil + Cat LL1PI Fn-k-ß(T i)I e-akAtl 

j=o ß-o p-o 
X1 

As shown earlier, we note that for At sufficiently small 

n-k 
-akýýal tc 

G ýt 

9, -0 

e 
1-e-aAtX1 

ail 

and hence 

d 
-ani Ä k-1 m-1 

11 Un 11 °1I ui, 2]s Ce `1 
jI 

IIi11 I+ I lp+l sup II fp cx, sot) II 
i=1 -o pso 

x1 oSsSn 

--1 
< Ce-anhtA1 

k1 

11 Ui + C(a) 

mL1 

p+l sup II fp(x, sAt) II 

j -o p-o 
(aal) o-<s5n 

(6.32) 

where a>2 min {ýa11 - 
21} 
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d. Initial approximants 

Applying the derivative relations (6.12) to the weakly A 
0- 

stable Pade' scheme (5.45) yields a relation for the initial 

approximants Uj+1, j=0,1,..., k-2, namely 

ti 
1m r-1 

Ui+l = R(AtA. ) Ui +I Ar ß1 (-1) PAp F(Y' ) 
III (At 1t rs 1j +s 

S=o r=1 p=o 

R(AtAl)U1 +U (E A. ) ýi (6.331) 
1ti 

ti 
m 

where p1(T) =1+ (-1) r-1 
rl 

Tr 

r=1 

The recurrence relationship (6.331) gives us, (cf. (5.49)) 

Uj +l 
=Q R(A A. )]31 Uo + 

[RA1] 
(6.33 

i) uAi 11 
k=o 

and hence by (6.11) 

j+1 
U? 

( -(J+1)AtAi +11 ei Ui (e _[ R(ýAI 
IJJ 

(6.34) 

jl 

j-0,1,. .., k-2 + 
(. 

(ýi+1)At) - iý iA 
[R(AtAP(Dj 

J 
RýR, 

`Y1J 
1ti R=o 

The expression (6.34) will be bounded by (5.50) and by investigating 

the error, at time t6 (j+l), 6 
t, when the Pade scheme is applied to 

the function Fi (t). Substituting (6.15) into (5.47) we have that 
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Fi ((i+1)At) = R(A t A. ) TI (jat) + Ill A tAl) 
{ Oi + Ei} 

where Ei (cf. (3.3)) is the integral form of the remainder. 

Consequently, 

Fi ((j+1)ßt) ° u- ý- j [R(L% 
A )] 

£j 
Oi+ Ei-Q 

1 
(6.35) 

1tý £-o ,j 

Comparing (6.34) and (6.35) we require a bound on 
iRj 

si 
u1(A A. ) 

I [RA1] 
El Ti) 

R, ýj=0,1,..., 
k-2 

By lemma 1, the definition of weak A0- stability, and (6.16) - 

(6.18) we have 

q -fie n_ 
Si <0 eq A. etiI (fq P (x, 0) y, i) 

p=0 
t 

+ 

fT 
I 

(f q+l (x, s), Ti) ds 

0 

and combining this with (5.50) we achieve 

q lei+ll 
C At Aq lU°l +I AP (f9 P(x, p), yi) + I(fq+l(x, s), T )Ids 

I 
P=o 

J0 

(6.36) 

Note that 
ti 
m-1 

(1) lull <l u°I +C1 +1 sup 
J(fP 

(x. sLt). 'Y)I (cf. 6.3311)) 

pmo 
alp 0SSSj 

(11) 11 U°II < II g 11 
, 

if U° is the projection of g(x) into 

Vh by the L2 - inner product 
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Consequently, substituting (6.36) into (6.21) with appropriate values 

of s and using (6.22), (6.32) with the above two inequalities we 

establish the following results 

q 

II e2II C(to) of II g II +E II fp(X, O) II + sup II fpcx, 8ot) II 0! 5s-k-1 
P=O o<p<ý-1 

+ ýI fq+i(x, t) 11 (6.37) 
L2 x L2 

Ai 

-an0 a m-1 
II U'II <Cet1 

[ii 

8II +G( 
)P+1 ors 

sup 
l 

II fP(x, sit) (I 

p-o 1 

M-1 

+C11 p+l sup II fP (x, s 4) II (6.38) 
P=o 

(CLXI) o<_s5n 

The theorem and its corollary follow from (6.26), (6.30), 

(6.32), (6.37) and (6.38). 
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7. Examples and Implementation of L. M. S. D. Methods 

a) Examples 

The L. M. S. D. schemes with k>1, m>1, have significant 

advantages over the linear multistep schemes, m=1, and the one- 

step schemes, k=1, eg. the Pade approximants. The principle 

benefit is the availability of high order schemes for low values of 

m and k. Cryer [4] proves that an Ao-stable, linear multistep 

scheme, m=1, k>2 has order at most k. Similarly, it is well 

known that an A-stable Pade scheme has order q= 2m, but if stability 

at infinity is required then q= 2m-1. Note that A0- stability is a 

weaker condition than A- stability. For comparative purposes we now 

quote several previously documented schemes. 

To illustrate linear multistep schemes, m=1, we quote from 

Zlämal [43]. A class of second order schemes, k=2, is defined by 

(-1 + a)yn + (1 - 2a)yn+l + ayn+2 At{( -a+ ß)yn 

X7.1) + (i +a- 2ß)Yn+l + ßy 
n+2} 

The necessary and sufficient conditions that the method be 

consistent, zero-stable, and A0 -stable are 

a>2, B, 1a 

Defining 
2a+e 

it can be shown that the error constant C3 is given 

by C3 -- 
ý2- 

+ el. In the sequel we normalise the error constants, 
JJJ k 

Cq+l, by defining 1 ßlß - 1, where ßlß is the coefficient of yn+j, 
j io 

Zlamal notes that for any e>0 the best stability at infinity is 
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obtained by minimising, with respect to a, the roots of Q1(ß). 

ie. minimise (2e -2+ (a -1 )2 - 4e) /(a 
+ 2e) 

The class of third order schemes, k=3, is defined by 

33 

aj yn+j = At 
jyn+j where 

j=o jWo 

a3 =3+4 (a + ß) 

a2 -4 (a + 36) 

al 30 ) 

ao =-3+4 (a -B) 

ß3 -8 i1+a*ß+w) 

ß - 1 (3 +a-ß - 3w) 
2 

8 

ß = 1 (3 -a-0 +3w) 
l 8 

ß = 1 (1 -a+ß -w) o 8 
(7.211) 

wS (1 - Y)aß 

Here, for the stability and consistency conditions, either 

Y 0. ß2 0. 

or 

0<Y: 5 11 ß> 0ý 

and the error constant is 

f3 
3 

a> ßY+3 �ßc 

c4 24 
(a + 3w) 

We illustrate the class of consistent, zero -, and A0 - stable, 

one-step, multiderivative methods, k-1, m >_ 1, by quoting the Padg 

(1,2), Pads (1,3) and Pade (2,3) schemes. The third order Pade (1,2) 

is given by 

-21- 
D[ II 

yn+l Yn '6t {3 Yn+1 +3 yn} 6 Yn+l (7.21) 
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and the error constant C4 
72 

. The fourth order Pads (1,3) is 

defined by 
23 

-3 
At " 6t "' 

yn+1 yn At {4 yn+l +4 yn }4 yn+l + 24 yn+l (7.211) 

where the error constant C5 =-1. Finally we quote the fifth order 
480 

Pade (2,3) namely 

1 if 
Yn+l Yn -t{5 Yn+l +5 yn }+ At {- 

20 Yn+l + 20 Yn } 

A ýn 
( 

60 Yn+1 7'2111) + 

where the error constant C6 7200 

Other Pade approximations can be obtained by using the 

formulae for the rational approximations to e-x, (eg. [27,7.3 - 

7.4] ). We note that all Pade (aßß) approximants with ß>a are 

stable at -. (i. e. modulus of roots of am (&) are less than one). 

To illustrate the multistep, multiderivative methods we select 

k=m=2 and derive a family of fifth order, A0 - stable methods. 

Any fifth order method with k=m=2 may be expressed as 

y+8 y (a-1)y +(1-2a)y +ay =o (-L-ß) 
n n+l n+2 t 15 n 15 n+l 

+ ßyn +At 
(72 

+ 12 3)yn +( 180 +6 3ß yn+1 

1a ßJ of 
+ 360 + 12 3 yn+2 (7.3) 

We test for A0 -stability by employing the Routh-Hurwitz criterion, 

eg. [16 
, pp 80] . For simplicity we employ a previous notation, 

namely: 
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U2 (T) =a+ ßT +Iß-a-1l T2 
(3 12 3601 

ul(T) a (1 _ 2a) + 15 T+ 
(4ß 

6a +81l2 10 

M0(r) _ (a-1) + 
(15 

-ß)T+ 
f3 

-12 12, T2 

for any T>0. By (3.4) we require the roots of the polynomial 
2 

P( , r) _Y uj(T) 3 to be less than one in modulus for all T>0. 
j =o 

By the Rough-Hurwitz criterion this requirement is satisfied if, 

u2(T) > U1(T) - uo(T) 

ie. (4a - 2) - 15 + 123 --- 
45I 

T2 >0 (7.41) 

P2 (T) > u0(T) 

2 
ie. 1+1 2ß - 15 

lT+ T/15 >0 (7.411) 

P2 (T) + 11 l(Tý 

ie. T+ (2ß -a+1 ) T2 >0 (7.4111 
30 

for all T>0. Note that, by lemmas 1 and 2, we also require 

u2(T) >0'3 12 360 
)>0 

(7.4Iv) 

The inequalities (7.4) are satisfied if 

2,2ß-a>- 
1 

30 

2 
and 15 < 4(4a - 2)(=- 

15 
3 

45) 
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The region defined is best seen if we change the basis and let 

a= a-2 ,ß ß- 
30 

from which we deduce that the inequalities (7.4) are equivalent to 

2 
a>0 

32 
2ß - ät >0 and 

(11-5] 
< iä - ß) 

(+ý0) 

\, 6oi o 

The shaded area of Diagram 1 contains the admissible values for ä and 

ß. We note here that the error constant of the L. M. S. D. scheme (7.5) 

is given by 

06 =- 
11/21600 a1240 + 

090 

The selection of particular values from the admissible range of 

the parameters a and ß is now considered. Any scheme proposed to solve 

the stiff system of equations (6.3) should exhibit certain character- 

istics, of which, the principle is related to the nature of the 

analytic solution. The continuous time Galerkin solution, (6.9) - 
d 

(6.10), can be divided into the steady-state solution, 
I (Fi(t), Tf)Ti, 

i-i 
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.t and the transient solution 
dd 

U0 e 
-A1 

'V. 
, so named as 

i=1 11 

d -A. t 
Ui e1 'V . -º 0 as t -º 

1 °1 

Obviously, a desirable feature of any multistep method is that the 

component of the approximate solution corresponding to the transient 

solution should decay rapidly as t increases. Thus, for a stiff 

system, we favour schemes with an inherent ability to tackle 

effectively the components of the transient solution corresponding to 

large values of Ai. 

Let us apply the scheme (3.1) to the scalar test equation 

y -ay, y(0) a 1; A>0. By the definition of A0 - stability we 

know that the approximate solution Yn -0 as n--. Importance is 

often attached to a scheme's 'stability at infinity'; that is, the 

behaviour of the approximate solution to the above scalar equation as 

A9-. For A»0 the solution Yn approaches the solution of the 

difference equation 

k 
1 ßmj Yn+ .-0 as ý1 + oý 

j -o 

Without loss of generality we shall assume that the roots {z1}i-1 

of AID(E), see (3.4), are real and distinct, then 

k 
Yn 

aiz' as °° 

i'1 

where {ai}iai are constants determined by the initial values {Yi} k-l 

By assumption we know that (zil <1, i=1,2,... k; hence Yn '0 as 

n-- and the scheme is said to be stable at infinity. However, the 

rate of convergence of Yn to zero may be improved by fixing the roots 
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of am(e) to be equal, or close, to zero. Consequently, given a very 

stiff system of equations it is desirable to use a multistep scheme 

where the roots of om (ý) are equal, or close, to zero. 

Equally, we desire that the normalised error constant, Cq+l 

is small 
k 

ie. C 
q+l 

is defined by (3.2) with 
1ß 

lj =1 
j=o 

Consequently, we advance the following possibilities: 

a= 11/20 ß= 79/300 ' C6 = 1/8000 jE1l ti. 86 (7.5a) 

a= 3/5 7/24 C6 = 1/4320 
, 

R11 
%. 77 (7.5b) 

a= 2/3 ,ß= 1/3 C6 = 1/2400 1ý1I t. 57 (7.5c) 

a= 23/30 2/5 C6 1/1350 ýl =0 (7.5d) 

where C1 is the largest root in modulus of 0 2(ß). 

Higher order A0- stable L. M. S. D. methods may be obtained by 

allowing either, or both, of m and k to be greater than two. Without 

reference to the general class of such schemes we note the following 

particular examples: 

k=2, m=3 

9y-4y-1y-e 123 y' +? y' +1 y9} (7.6 ) 
10 n+2 5 n+l 1Ö nt 40 n+2 5 n+l 40 n1 

_32"13 
"' 

20 
At yn+2 + 60 

ýt yn+2 q6 C7 -112600 

15 81 39 
_ 

16 '_1' 
14 "n+2 7 -n+l 

+ 14 yn 3 At{70 Yn+2 + 35 'n+l 70 yn } 
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42"_ rr 13 rn -l 
35 ýt {yn+2 yn+l} + 105 ýt'n+2 'q-7 C8 /176400 

k- 3, m-2 

(7.611) 

33 

j 
=o ai yn+i ýt 

,. o 
ßj yn+j -cat Yn+3 

where a3 z 
11 60 + 

39c, 
4 

ß3 - 
1/20 

+ 
67c/12 

a2 920 - 
63c/4 ß2 = 

920 
+ 

9c/4 

(7.6111) 

a1 -9 20 + 
9C /4 ßl = 

9/20 
- 

27c ,4 

a0 11/60 + 
15c/4 ßo - 

1/20 
- 

13c /12 

This is a sixth order method with error constant C7 
80 

(c 

unless c= 1/35 which yields a seventh order scheme with error 

constant C8= 1/19600. A0 - stability is ensured by the condition 

c> 384 17,275 

From the relevant theory, eg. Cryer [4] 
, or by direct evaluations 

we have established the following table concerning maximum orders of 

A- stable L. M. S. D. schemes. 0 

The diagram expresses for 15m+k <_ 5 

ql ° maximum order of A0 - stable L. M. S. D. 

ql 
q scheme for specific values of m and k. 

q2 is as ql but with added stipulation of 

stability at -. 
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k 

1234 

1 2 2 3 4 1 2 3 

2 4 5 7 r 3 5 ý 

3 6 8 ir 
5 8ýr 

4 8 ý rrr 

r arr 
r rrr 

b. Implementation 

Any scheme proposed to solve the linear parabolic equation should 

be efficient in terms of computer storage and operations. For any 

finite element space Vh the matrices M and K are banded matrices, and 

thus an efficient method of solution should preserve and utilise this 

characteristic. In order to simplify the writing of the formulae let 

us consider the homogeneous problem (1.1). Defining 

d 

,n Ui V. and Un - (11, ..., Ud)T we have immediately from 

(3.5) and (3.6) 

kkm 

M Un+j -rMU 
n+j 

°0 
t rj (r) 

j=0 J -o r-l 

where 

MU n+J K Un+j =-r1,2,..., m 
(r) (r-1) 

By combining these two equations we achieve 

kkm 

aj Ar ßrj (-1)r (M 1K)r +J 0 (7.7) 

j -a j -o r-1 
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The equation (7.7) is obviously impractical as it entails full 

matrices M 
1K, 

(14-'K)2 
..., 

(M1K)m . However, by the use of complex 

arithmetic the sparseness of the matrices M and K is utilised. We 

illustrate this mode of implementation by reference to the family of 

equations (7.3). Equation (7.7) can be seen to be 

2 
Uj (A. M 

1K) in+j -0 

jao 

1a 
where u2 (Tr) _-ý +ßT+ T2 ,Y=3 360 12 

- 
19 5a 40 

(1-2a) 8+ 360 63 
ul (T) 

I1- 
15(2a-1) (2a-1) 

(7.8) 

ti a=1 72 + 12 
3 , 

T2 
ýo CO =Y1- 

(7-15ß) 
T+ 

C1-a 

15(1-a) 

ti 
The roots of p2(T) are readily seen to be complex whenever a and 

are admissible. Thus, let 

x. 12 (T) - (Z2 - T) (22 - T) 

and further let zil) , zit) and zöl) , z(2) be respectively the 

roots of Yµl, (T)/1-2a and yo(T)/(X 
- l' 

Consequently, a simple 

manipulation shows that (7.8) is equivalent to 

M Un, 
l 

i (M - z(1) A K) Un 

M Un'2 . (M - z(1) A K) Un+l 

(z M- OK) Un'3a 
(2a-11 (M-z(2) Jufl1 

2lyl 
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+ 
-f 

M- zit) AKJn, 
2 

Un+2 Im U3 

Im z2 

Although three intermediate steps are necessary at each time 

interval it is necessary to invert only two matrices. For the 

particular example (7.5d) only one intermediate step exists at each 

time interval, requiring the inversion of only one matrix. This fifth 

order scheme can be favourably, compared with the third order Pade 

(1,2). The latter may be implemented by 

6(aM+OtK) 
Un" s (M-3,6tK) Lin 

Un+l _ 
Im 

where a=2+ i�2 
Im ä 

Both schemes require one intermediate step at each time interval and 

one matrix inversion, although the scheme (7.5d) necessitates a larger 

storage capacity and greater arithmetic operations per time interval. 

However, the latter disadvantage is easily compensated by the higher 

order and smaller error constant permitting larger time increments 

for comparable accuracy. Similarly, the schemes (7.61) and (7.6111) 

have parallel modes of implementation to the Pade (1,3) and Pade (2,3) 

respectively. Consequently, arguing as before we can establish a 

preference for the schemes (7.6). 

The use of complex arithmetic, and the extra storage necessary 

may be prohibitive. However, A-stable L. M. S. D. methods of arbitrary 

order have been investigated by several authors with the intention of 
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simplifying the implementation. Of particular interest is the family 

of one-step Hermite formulae suggested by Makinson [19] and investi- 

gated fully by Norsett [261 
. Norsett derived a family of A(0) - 

stable, one-step methods of order m+l where the coefficient matrix, 

m(M 
1K), 

of Un+i is given by 

A 
Gm(M 1K) 

- (I + 
,YM 

1K)m, for a specified parameter y. 

Continuing with the construction of L. M. S. D. methods with k-m-2 

we now establish a family of fourth order, A0- stable methods where 

the coefficient matrix of ip+2 has the same characteristics as 

G2(M 1K). The family of fourth order schemes with the above property 

is given by 

{ßa Yn+2 + (1 2-a+ 4ßa, - 3ß 
2a)y ' 

n+2 n+l nt n+l ay + (1-2a)y + (a-l)y =4' 

11 
+ (a +2- 5ßa + 3ß2a)yn} + At{- 

ß4a 
Yn+2 + (2 - 4ßa + 2ß2a - 12)Yn+l 

+ ý2 + 12 - 2ßa +5 ß2a) Y" } 

Applying the Routh-Hurwitz criterion we deduce that (7.9) is 

stable if for any a>1 

2 
1-'ý62<0< min j1- �6a -5- 6ä 

4a2 - 2a 
} 

and a2(3ß2 +1- 4ß)2 < (4a - 2)(ß2a -2 ßa +a- 6) 

Alternatively, A- stability is ensured by a>2 and 
0 

1+�6a <ß<1+ ºý62 

(7.9) 

The normalised error constant of the scheme (7.9) is expressed by 
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C cl I 
ß_ 1_ ß2 

j_ 
1 

Sl6 24 8 1J 720 

As before we require that the choices of values for a and ß 

yield a balance between the stability at infinity and the magnitude 

of the error constant. However, the A0 -stability requirement on ß 

forces the modulus of the roots of a2(E) to be extremely close to one 

for small values of C5. The one important exception is when 

a (5 + 16 �-10)/90 
,0- 

(12 -2x! 10)/13 

ie. 
(5+16�10 t+f 40- 16�10ý + 

`16/10-851 
l 90 J n+2 45 yn+l 00 n 

_' 
r 7/1-0-10 

+ 
(40-4�101yn+1+ (5-_viol 

t( 45 yn+2 45 l 15 Yn 

22 f10 -5 to 
Lltt 45 Jyn+2 (7.10) 

and C5 - (4 - /10)/270 

The scheme (7.10) has roots equal to zero at infinity. Its 

implementation is readily seen to be expressed by 

6- /10 n, 1 112 - 88A O 2-410 M+AK 0+1 
(M + 13 

ýtKý U( 169 
,(3t 

_( 
74 

1634/10 

"r 531+8 f10 
M- AtKjUn 

(M + 
6-410 6 K) un+2 M U"' 

13 t 

and requires the inversion of only one matrix. Similarly, the scheme 

(7'6ill) can be manipulated to exhibit the same characteristic, i. e. 

the polynomial p2(T) having a double root. This property is obtained 

by the value 
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c 105 (4�2 - 3) /1127 

which yields a sixth order scheme. 

We conclude this chapter with the following remarks: 

(1) We conjecture that the maximum order of an A0-stable L. M. S. D. 

scheme which is stable at infinity is 

q m(k + 1) -1 

Thus it is advisable to select m>1 for the derivation of high 

order schemes. 

(2) A clear advantage in increasing m rather than k results from 

the error constant decreasing more rapidly for m increasing than with 

k increasing, particularly if considered in conjunction with the rate 

of convergence at infinity. For example the third order schemes 

(7'211) have small error constants for y=1 

eg. y=1, a=1,0-1, whence C4 = 
-1/96. 

42 

but these schemes are not stable at infinity. For the optimal rate 

of convergence at infinity, ie. when Q1(ß) = &3, the values are 

. =9aß=3, whence C4 -1 

In comparison the third order Padg (1,2), with its equivalent, optimal 

rate of convergence at infinity, commands 

ý4 72 

(3) With respect to the system of equations (6.3), maximum order, 

A0 - stable L. M. S. D. schemes, with m>1, invariably require complex 
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arithmetic for their implementation. Ease of implementation, as 

characterised by (7.9), may only be obtained by relaxing the stipula- 

tion of maximum order. However, once this relaxation is operative we 

can derive high order A0- stable L. M. S. D. 's. that are simple to 

implement. We conjecture that schemes of order q= mk can possess 

this property. 

Given m fixed, let us compare the implementation procedures of 

two L. M. S. D. 's whose step numbers differ by one. Schemes incorpora- 

ting m>1 require the first m-1 derivatives of (f(x, t), V 
i) 

at each 

time level. Thus for a k-step method these evaluations may be utilised 

k+1 times which does not necessitate any further evaluations as k 

increases, although it requires a minor increase in storage capacity. 

The number of intermediate stages at each time level employed 

by the complex arithmetic mode of implementation is readily seen to 

be equal to 

k 
ti l ti 
r. -1I where rj = sup {r ßrj *0, r=1,..., m} 

JJJ 
j =o 

for the homogeneous problem with, generally, an additional m-1 

intermediate stages for the non-homogeneous problem. Consequently, 

by increasing k by one but restricting the coefficients {ßr 
k+l}r°2 

to be zero entails no additional intermediate stage, although the 

number of arithmetic operations and the required storage capacity 

will be increased by 0(d). For example consider the schemes (7.21) 

(7.5d), and (7.6ill). All require one intermediate stage per time 

level but their orders are respectively 3,5 and 7. The higher order, 
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permitting larger time increments At, will easily compensate for the 

increase in arithmetic operations and storage. Finally, we note that 

within certain classes of schemes optimal stability at infinity is 

compatible with ease of implementation, i. e. (7.5). 

With regard to the above remarks we advance the merits of the 

classes of L. M. S. D. schemes with m-k-1, k, or k+1 for k>2. 

Such schemes may incorporate a balance between the above remarks. 
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8" Numerical Results 

Complementing Zlämal [43] , and others, the following two test 

problems are studied in detail 

au a2u 
ac 

ax2 
X (ý' 1, t>0 

u(O, t) - u(1, t) =0, t>0 (8.1) 

u(X, O) - g(x) 
,x E(O'1) 

where g(x) is given respectively by 

(1) g(x) =1,0<x<1 

2x , 0<x<2 

(2) B(x) 
1 12 (1-x) 

,2<x<1 

00 
The analytic solution of (8.1) is given by u(x, t) s 

gi e- 1 
sin �Aix where A. ¶2 i2 are the eigenvalues of y 

i=1 

-Ay, y(o) = y(l) = 0, and {gi}"O are the Fourier coefficients of the 
i=1 

initial value g(x). The continuous time Calerkin solution has a similar 

form; ie. let U(x, t) Y1(t) 1'i(x), where as before `Yi(x) are the 
i=1 

eigenfunctions of the eigenvalue problem a(`Y, V) = A('', V), VVCV. 

Consequently, it is easy to see that the equation (2.3) decomposes into 

the set of equations Y. A. Y. , Y. (0) = Uo.. 

If the exact solution of (8.1) is smooth at t-0 the Fourier 
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coefficients gi . converge rapidly to zero as i--. Consequently, we 

expect the coefficients U°, to converge rapidly to zero as i}d, when- 
1 

ever h is sufficiently small. Thus we anticipate that for g(x) very 

smooth a L. M. S. D. method with an error constant close to the minimal 

value should yield more accurate results than a scheme with a larger 

error constant but with improved stability at infinity. Conversely, 

for g(x) not smooth we anticipate a preference for a L. M. S. D. method 

with a near optimal rate of convergence at infinity. 

'3 
The following results were derived by selecting Vh = V, the 

space of cubic splines over [0,1], with a regular mesh of interval 

h=0.1. The time increment At = 0.01, and the initial value U(x, 0) 

ti 
is taken to be the L2 - projection of g(x) onto Vh. The Pade (1,2) 

or Pade (1,3) are used to determine the values {Un}n=1 

Problem 1 

The Fourier coefficients gi - 2[l - (-1)1]/Tri converge very 

slowly to zero and consequently we expect to employ L. M. S. D. schemes 

with high rates of convergence at infinity. Numerical results have 

been obtained by the four multistep schemes (7.5). The Pade (1,3) has 

been used to evaluate the extra initial values; not to preserve the 

fifth order of convergence in Dt but because it can be shown to be more 

appropriate for small values of t. As the gi's converge slowly to 

zero as i -' - we are concerned for small t with components of the 

solution for which TaAtAi is large. Applying the Pade (1,2) and the 

Pade (1.3) to the test equation Y AY, Y(O) - 1, where A»0, it is 

easy to see from (7.2) that: - 
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Fade (1,2) ys(1- T/3 )y 

n+l 1+ 2T/3 + T/6 

i. e. Y ^f-2 Y as T+ý. 
n+l tn 

Pade (1,3) Y=1- 
T/4 

IX 
n+l ll + 3T/4 +T /4 + T3/24 /n 

i. e. Y 
n+lt-- 2 Yn as T co 

T 

whilst the L. M. S. D. method (7.5d) yields 

(30 
+5T+ 15 T 

2) 
Yn+2 + 

[_. &+. &TJYn+l 
+f30+ 15 T) Yn 0 

i. e. 
IYn+21 

- Yn+1 as T 
T 

Since we wish to simulate the exponential decay Yn+l - e-TYn the 

Pade (1,3) is preferred. 

In the subsequent tables percentage errors are evaluated at 

the knots x= ih, h=0.1, i-1,2,.., 5, for various time levels. 

Table 1 compares the Padg (l, a) ,a-2 and 3, for 0.01 <_ t <_ 0.1. 

Table 1 Percentage errors. At = 0.01 

t X-. 1 
a=2 a-3 

x-. 2 
a-2 a-3 

x-. 3 
a=2 a=3 

x=. 4 
la-2 

a-3 
x=. 5 

a=2 aa3 
0.01 1.83 . 622 1.23 . 477 . 058 . 082 . 155 . 035 . 052 . 012 

0.02 . 573 . 092 . 252 . 007 . 200 . 043 . 042 . 001 . 045 . 026 

0.03 
. 189 . 023 . 084 . 004 . 017 . 004 . 046 . 004 . 051 . 000 

0.05 . 058 . 005 . 035 . 002 . 008 . 000 . 015 . 002 . 023 . 003 

0.1 
. 002 . 000 . 001 . 000 . 000 . 000 . 001 . 000 . 001 . 000 
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Allocating the initial values at t-0 and t- At to be 

respectively the l2 - projection of g(x) and the Pads (1.3) at t- At, 

the problem has been computed by the four schemes (7.5). As expected 

the results improve as the respective roots of v2(&) tend to zero. 

Table 2 gives the results at various time levels for the schemes (7.5b) 

and (7.5d). 

As t increases, say tz0.08, the exact solution and its first 

six derivatives become increasingly dominated by the lower values of i. 

Correspondingly, the maximum significant value of T-AtAi decreases. 

Thus with the discretization error becoming increasingly dominated by 

the lower values of i the system of equations tends to loose its 

stiffness and behaves as a non-stiff system. Let us use the L. M. S. D. 

schemes with a larger time increment, say At - 0.02 (0.03), for 

tk0.08 (0.09) with the initial six values from the Pade (1,3), At = 

0.01. It is to be expected that for At = 0.02 the lack of high 

stability at infinity of the schemes (7.5a) - (7.5c) will be partly 

compensated by their smaller error constants compared with the scheme 

(7.5d). Numerically, this analysis is validated. For At = 0.02, the 

schemes (7.5b) - (7.5d) yield extremely similar values whilst for 

At = 0.03 (7.5d) is seen to be superior. Table 3 compares the schemes 

(7.5b) and (7.5d) for At = 0.02. Table 4 illustrates the scheme (7.5d) 

with At = 0.03. 

Table 4. Percentage errors x l02 At = 0.03 

t x=0.1 x-0.2 x-0.3 x=0.4 x=0.5 

0.09 11.18 6.714 1.439 2.659 4.184 

0.12 4.826 2.924 0.669 1.039 1.668 

0.15 3.023 0.782 0.352 0.756 1.164 

0.27 0.352 0.187 0.021 0.117 0.166 

0.39 0.052 0.012 0.003 0.021 0.027 
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Excellent results may similarly be obtained by the scheme (7.10). 

Tables 5 and 6 give the percentage errors when the scheme (7.10) is 

applied with respectively At = 0.02, At = 0.03 after the initial six 

(twelve) values were derived by the Pads (1,3), At = 0.01, and the L2 

projection of g(x). 

Problem 2 

The exact solution is not smooth at t-0, but it is smoother 

than the previous example. The Fourier coefficients are given by 

gi 
ý 

sin 
2, iz1. The remarks concerning problem 1 are also 

7T I 

seen to be appropriate to this example. Assuming that the initial 

values are derived as in the preceding example the numerical results 

show that 

1). For t? 0.02 , 
At = 0.01, the results from the schemes (7.5b) 

- (7.5d) are barely distinguishable from each other. 

2). For t? 0.08 , Lýt = 0.02, the schemes, (7.5a) - (7.5d) are 

similar, with (7.5b) - (7.5d) almost identical. 

3). For tz0.09 , At = 0.03, the schemes (7.5b) - (7.5d) yield 

similar results, with (7.5c) and (7.5d) identical. 

These numerical observations are anticipated as the solution 

is smoother than that of problem 1. Tables 7 and 8 illustrate the 

schemes (7.5b) and (7.5d) when, respectively, At = 0.02 , At = 0.03, 

and the initial six values are derived by the Pade (1.3), At = 0.01, 

and the L2 - projection of g(x). 

The numerical evidence and analysis for the homogeneous 

equation warrant the following conclusions. Firstly, the accuracy 

associated with the high order methods does not appear in the first 
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few time steps. This coincides with the validity of the convergence 

results of theorems 1 and 2. 

We have seen that extremely good results may be obtained by 

applying the Pade"(1,2) or Pade (1,3) in the initial phrase and a high 

order L. M. S. D. scheme, with a larger time increment, in the further 

phase. The extent of the initial phase is determined by the smoothness 

of g(x), since g(x) controls the smoothness of u(x, t) for small t. 

For g(x), and hence U° smooth, the discretization error is rapidly 

dominated by the first few values of i which enable us to progress 

rapidly to larger time increments; conversely for g(x) non-smooth. 

The situation for the non-homogeneous equation is more complex. 

Corresponding to the homogeneous equation, the numerical results of 

a particular scheme will reflect the relationship between the smooth- 

ness of g(x) and the schemes stability at infinity. The discretiza- 

tion error at time t is now dependent on the quantities 

q+l 

A? -q-1 
I 

ap 
f (X, t) . 

Iyi 
Jj>i= 

1>2, ... ,d, 
l UP 

pM0 

and thus, generally, it is ill-advised to employ a larger time 

increment in the further phase. 
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9. The 'Quasi-Linear' Parabolic Equation 

Using the notation of the previous chapters we shall investigate 

the numerical solution of the initial, boundary value problem 

N 

P(x)ät -L (aij(x)aaxu f(x, t, u) + div b(x, t, u) xe S2, t>0 

i, j=1 11 

u(X, O) - g(x) XE0 (9.1) 

(X, t) -0xEr, C >_ o 

where b(x, t, u) - (b1(x, t, u),...., bN(x, t, u))T 

The weak solution is readily seen to satisfy 

. 
(2), t>0 (p(x)ät, v) + a(u, v) - (f(x, t, u), v) - (b(x, t, u) Vv) VveH1 

u(x, 0) - g(x) 

where the bilinear functional a(", ") is now given by 

N 

a(u, v) a (x) 
au 8v dx 

iý Tx axi 
i, ja S2 jl 

Defining the subspace Vh of H1 (n) as before, the continuous time 

Galerkin solution, U(x, t), satisfies 

(9.2) 

(p(x)ät, V) + a(U, V) a (f(x, t, U), V) - (b(x, t, U) . VV) VVEVV ,t>0 

u(x, o) = u°(x) 

for a suitable approximation, U°(x), to g(x). 

(9.3) 

-123- 



d 

Let U(x, t) C. (t)V. and substitute IV d= in turn for 
JJi i1 

j=1 

V in (9.3). Then by assembling in matrix form we derive the initial 

value problem (cf. (2.3)) 

M ät C+Kc-f (c) c(o) (9.4) 

where the matrices M, K and the vector f (C) are given by 

M. (P(x)V1 
, V1) , Kid = a(Vi , V. ) , 1<_i., j5d 

dd 

fi(C) = 
(f(xt, i C. (t) V. ) , v. 

) 
- 

(b(xt. 
i C3(t) V3). VVi) 

j=1 j=1 

i=1,.. 

The positive definiteness of M and K is ensured by the assumptions (B) 

defined overleaf. Approximating the solution of (9.4) by utilising a 

L. M. S. D. scheme with m>1 is ill-advised, since it necessitates the 

differentiation of the non-linear term f(C). However, by an indirect 

application of a 3rd order, A0 -stable L. M. S. D. scheme it is possible to 

obtain an approximate solution to (9.4) by solving algebraically linear 

systems of equations at each time step. This particular 3rd order 

L. M. S. D. scheme is given by 

22 

aý Yn+ý Ot GßjY L+j 
+ C2°r yn+2 

j°o j =o 

where 
1 �3 

= 
1+�338 

°t22+ 3 ß2 62' Z= -e 

al =- 
233 ßl i 

3-20 (9.5) 
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ads 
33 2 ßo 163+2 

The above scheme is consistent and zero-stable. Ao-stability is 

ensured by the conditions 

8>00 433 
+ T(46 - 

3) 
+ 6T2 >0 for all T>0. 

Both Ao-stability conditions hold a fortiori for 6>1 
2 

Consequently, the discrete time Galerkin solution, where Un is an 

approximant to U(x, nAt), is defined by 

22 
a. 
j (P(x)U' , V) +a ßi1 + c2A Qn+2. V) 

t J=a i=o 

= (f(x, P, [J°), V) - (b(x, tn, iJn). VV) VVEVh ,n2! 1 

where to (n+l+ 33) At 

n_ 1+, /3 
Un-1 _ 

1+2�3 Un 
7+3�3 lp+1 

63+6 

and Qn+2 E Vh is defined by 

(P(x)Q"+2, V) + a(Un+2, v) = 
(f(x, (n+2)ot, 

Ü +2), v) 

- (b(x, (n+2)At, +2 ). VV) VVEVP 

where 
'LP +2 30+1 - 3Un + Ur'-1 

(9.61) 

(9.611) 

For 6> 12 
the scheme is unconditionally stable and, c. f. Theorem 4, 

third order accurate in At. Computational aspects related to the system 

(9.6) will be investigated at a later stage. 
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We shall impose the following assumptions (B) 

(B1) u(X, t) at u(x, t) E Hp+l(0) ,tE 
[0, T] 

(B11) uE C4 (2 x [0, T]) ie. four times continuously differentiable 

with respect to t, (x, t) E (a x [0, T]). 

(B111) the function p(x) shall be bounded above and below by positive 

constants 

ie. P, xE S2 

(Blv) the matrix A, AiJ .= aiJ . 
(x), is uniformly positive definite. 

ie. aij(x) = aji(x) ,1 <_ i, j N, and there exists a constant 

C>0 such that 
0 

NNN 

Col Ci <_ a.. (x)ýl .< Co C2 VXESt 

i=1 i, j=1 i=1 

Further let the derivatives {äx a.. (x)} be bounded 
i 

(B The functions f and bi are uniformly Lipschitz continuous with 

respect to u 
N 

ie. lbi(x, t, u1) - bi(x, t, u2)I + If(x, t, ul) - f(x, t, u2)I 

i=l 

Llui -u21 (x, t) ES2x[0, T], -' <u1, u2 <°° 

To preserve continuity in a later proof we shall establish three 

results now. Let C(x, t)EH1 (Q) for each t>0, and further denote 
0 

n= ý(x, ndt) 
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Lemma 3 

Given 6> 
12 , then there exist positive constants c and C 

such that 

m22 

E P(Xý n+' ,, ajcn+' z II, m+2112 -c 
j11 C1112 + 11 C2II2 

n=1 j=o j=o 

Proof 
2 

Sn =I Cj ýn+j 

j. 0 

2 
C aje+j 

jwo 

= 163 -91 _ 6J1 
n+2 

- 2Cn+1 + En12 + 
(En+2 

_ ßn)2 + 48 

2_1 
(fin+2 

_ 
n+1 ý2 + 

n+l 
_ 

ný 21 
-6 

(1+ 33J 

1, 
n+2 n+1 

_ 
n+l nl 

80 �3 �3 1 n+2 2 �3 ( n+ll 2 �3 66 �3 1n2 
+(2+ 6 +6 +41(ý 

l 
-3 IF I +[-K-- 2- 6'4)fß 

(9.7) 

Thus there exist positive constants c and C such that 

mmm 

Sn >cc 
{n+2 

_ 2Cn+1 + ßn}2 +LC(, 
n+2 

_ 
n)2 + 

nG=1 

L=1 J 
na1 

J 

m+1 
rin+l 

- 
n12 
J - erl + 

�3 

3 
)(, m+2, m+l 2&1) 

J 
n=1 

+ 
l2 

+ ,31 + 63 +)(, m+2)2 + 
(. 
2 +- 63 + 4) 

[m+1J2cE12J2(1)21 
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Note that for e>1 
2 

D 
(2 

+863- 
63+4 

>0 

and thus using the inequality jabl 5 ea2 + b2/4E, C>0, we find that 

J 

[tm+2) 2++ &�3 _ 
63 

+ 
4) [m+1J 2_ 6 

ýl 
+ 

33 ) m+2 cm+l +4+ 
63 

+1 

Z2+=iI6+ 

4- 
12 

jI ni+2J2 

Combining the above two inequalities we have shown that 

m 

Sn Zc 
[km+2J m 

2+ 
L 

(+2 
_ l 

m 
2n+1 + n)2 + J L , 

n12 J 

n-i n = 1 n = 1 

m+l 
n+l 

- 
n111 )2 -C 

[C2] 2+ [Cl) 2 (9.8) 

n-1 

The desired result is obtained by multiplying (9.8) by p(x) >0 and 

integrating over Q. 

Generally, lemma 3 can not be weakened to include any 65 i2" 

For instance, if 05 12 
,n= (-1)n c(x) ,n>2, where E(x) >0 

for any xE and &1 = C2 =0 then Sn <0 which is contradictory to 

the lemma. 

Lemma 4 

Given 0>0, then there exist positive constants c, C and p 

such that 
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m22 
-LC a( Lcaj cn+j 

, `2 
n+2) + 11 II 1 aj 

n+j II2 zc II zm+2 112 

n=1 

lj=o J 
j=o 11 

-c ý1 112 + 11 X21 12 
1 1 

Proof 

2 

Tn =- at lIaJ n+j 
c2 n+2) 

J 
j =o 

a 6(V3 - . 
1), (, n+2 

- 2ýn+1 +n' n+2 
- 2En+1 + ýný 64l 

12) a 
(, n+2 

- 
n+l 9n+2 - 9n+lJ +e 

(Ti 

tBI- 
X31 

a(, n+I 
- in n+l 

- 
ný 

-8I 
Z+ 63 

Ia n+2 
-n 

n+il 
lJJl )) 

+6 
(2 

+ 
ý3) 

a 
(, n+2 

, 
n+2) 

_aI, 
n+l 

, 
n+l 

+e F1-Y'3 .1 2 2) a 
jýn 

, 
ýnJ 

Summing Tn for n=1,..., m we derive by (Blv) 

mm 
11Tnz 

Co 
l63-411II n+2 

_2 
n+1 + 

l1 
ns1 n-1 

mm 

+ Co 
1 f.. 

-n+1 -+ Co 
1 (1, 

I n+2 
_i 

n=1 n=1 

+ 
(1 

+ 
�3) 

a 
[, m+2 m+2) +1 

�' 
a Em+1 m+l 

2 4l2 121 1J 

-I2+ 
63) ta (gym+2 

º 
)_a[2,1J} 
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- 11 X2112 + Il ýllli (9.9) 

In the following we use the Cauchy-Schwartz inequality for positive 

definite forms, namely 

NN 

aijciyi < 
(I 

aijC'Ej 
iI 

aijyiyj] 
i, j=1 

li, 
j=1 

J li, 
j=1 

J 

and thus by the Cauchy-Schwartz inequality for integrals 

NNNi 

aijýly3dx _< 

(I 
aijC'. 

jdxi I aijyly3dxl 

52 i, j=1 S2 i, j=1 
))) l 

52 i, j=1 
J 

It now follows by using the inequality jabi <_ ea2 + b2/4e, c>0, 

(, m+2, 
)) 

S 
m+1) a 

[gm+1 
,. m+l l+ 1a (Zm+2 

9m+21 aJ 4e l 

Selecting e= 
(1_ �3)/(TI 

+�31 
l2 12J 6J we easily deduce that 

(2 
+ 

31 
a 

rim+2 
, 

m+21 + 
`2 

2aI 
Cm+1 , Cm+ll _ 

(2 
+ 

6) 
a 

rim+2, m+ll 

m+2 

3 
Z+4 

{+�2 Iak 

3 
, 

2: c il cm+2 II z 
1 

Applying the above inequality to (9.9) yields for constants c, C>0 

mm m+1 

Tný, c n+2_2n+l+ n111 + II n+l_ n111 +II m+2 112 
n=1 n=1 n=1 
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-CI ý) [, 
III 

1+ 
Ii c2 11 2) 

(9.10) 

Similarly, 

2 

C1. n+j]2 (n+2 
- 

n+1)2 +-+ 
n)2 

j-o 

+ 
(�3 

_ 
11 (fin+2 

_ 
n+1)2 

_ 
(n+i 

_ 
n)2 

1J 

and hence: 

m2 m+l 
V3) n+l 

J& 1( s (I I n-1 jMo 1 
n"1 

+1z (I fn+2 '21' fnIIl (9.11) 

n"1 

The proof is concluded by subtracting an appropriate multiple of 

(9.11) from (9.10). 

Lemma s 

Let u(x. t) be the solution of the weak problem (9.2) and suppose 

that the assumptions (B) are satisfied, then for At sufficiently small 

un = u(x, nAt), OsnsT/A , satisfies (cf. (9.6)) 
t 

(P(x)un+j"vl 
t x( Z8 un+j f c2Atgn*2 , vý (9.12) 

j"o ýt1 j-o 

" If(x. tn' u°). v1 - 
fb(x. 

i°. u) . Vv1* r(v) VviH 
tll 

t(ti), 
a1 

0 

and qn+2 u 
(n+2)At 

may be expserred by 

th1 



A (x) qn+2 s vl +8 
(u a+2 

V} 
(f 

(x, (n+2) , ät au 
+2) 

' vJ m 41 
lJlJ 

(9.13) 
1%4 1 

' b(x, (n+2)At ,u 
+2) VvJ+ r(v) VveH0(1) 

where il) ý) r(v) +) s cA Il VII 1 

(2) 11 r(v) 11 5 Cat 11 vji 1 

and the functions un uu are defined as 

ün _ 
1+Y'3 n-1 

- 
1+2v'3 n 7+3v/3 n+l 

6u3u+6u 

ü +2 = 3un+1 _ Sun + un-1 

Proof. 

The coefficients of the 3rd order L. M. S. D. are constructed so 

that, for any sufficiently differentiable function y(t), 

2 

yn+ý y (t°) + E1(y) 

j no 

where 
JEI(y)l 5C Y4 At 

3; 
YR sup 

dR 
y(t) 

o- t5T dt 

whenever At is sufficiently small. Similarly 

2 
ßjyn+j + Atc2Yn+2 ` y(tn) +E 2(y) 

j-o 

where JE2(y)I 5C Y3 
A3 

(9.14) 

(9.15) 
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Multiply the expression (9.14) by p(x)v , veH1(0) , and then 

integrate over 0. If we select 'y' = u(x, t) we achieve by (9.2) 

2 
4 {P(X)Ui 

v) + of u(n) v, 
f 
f(x, t, u), vJ 

j -o 

11 (x, to , u(tn)) . Vv I+ 
(E1(u) 

, p(x)vl (9.16) 

Using (9.15) with 'y' = u, and (9.16) we deduce that 

22 
i0A (v+ a ßý n+j +ca n+2 

.s 

(x)u'3 ,( 

t2Jrt 
oj -o 

ýf 
(X, to °) 

. v) -Ib (x , to , 
u) 

. Vv) +r (v ) 

where r(v) may be expressed as 

r(v} jE1(u) , p(x)vJ + a(E2(u), v) 

* 
if 

(x, to ' u(tn))- f(x' to ' un)'°1 

+ 
fh(x 

to u°) -b (x , tn u(tn)) . Dv 

Note that by assumptions (B) and the Cauchy-Schwartz inequality 

(1) II u(tn) - -Un II <_ Cot 

(2) 
If(x 

. to , u(tn)) -f (x 
. to , un) , v) 5L 11 u(tn) - u° II 11 VII 

(3) 
Ib(x 

to un) - b(x ', 
in 

, u(tn)) D vJ 
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N 
{b. 

(x 'o' un)- bi(x ' to u(tndx 

i) 

1 i-i 

_N2 
11 xi) 

) 
i(x , 

to 
, un) - b. (x to u(tn)) 

12) 

dx S 1b 

i-1 i-1 

N_N2 

sLJIG ju- n- 2)1 av (, 
dx 

li-1 
i-i 1 

s LN# 11 un - u(tn)II 11 vII1 (9.17) 

Hence, employing the above inequalities, (9.14) and (9.15) it is 

simple to establish the bound 

II=(v)I1s cotIIv1I1 
A simple manipulation of (9.2) establishes 

rp(X) 
un+2 vJ + a(un+2 v) - 

(f (X, tn+2, u 
+2)' 

°/ 

/ ti 1 
- (b(X'tn+2' ü +2 ). V V) + r(v) VvE H0(S2) 

where for simplicity of notation to+2 = 
(n+2)ßt, and 

)- f(X, tn+2' u 
+2 ), v1 

r(v) f(x, tn+2, U n+2 I'Ln 

-(b (x, to+2 un+2) -b (x, to+2' 
u +2) 

.0v) 

Noting that II un+2 -ü 
+2 II 5 we we deduce by the assumptions (B) 

that 

IIr(v)II 5 Ct IIVII1 
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Our intention is to employ a method corresponding to chapter 6, 

section b. Hence, we need to impose the elliptic regularity condition 

(All). As before we define WE Vh ,Vta0 by 

a(u - W, V) -0VVE Vh (9.18) 

Denote n-W-u, whence (cf. (6.28)) for h sufficiently small 

n 11 r< 
OhP+l-r I{1ut+i + 11 -rat u II P+1 

rs0,1 II nIIr+ 11 Tal- 

(9.19) 

Analogously define Qn; 
2 

e Vh by 

(q n+2 
_ Qn+2 

, 
V) s0VVE Vh (9.20) 

The assumption (B1) testifies that qn+2 - ýt U. E HP+1(Q) 
Et 

n+2 

and consequently by lemma (4.1) [8], 

II qn+2 _ Qn+2 II Chp+lll 5 
11 

p+l 
(9.21) 

The principle results of this chapter are contained in the following 

theorem and its corollary: 

Theorem 4 

Let u(x, t) be the solution of (9.1) and {tf}m+2 be defined by 

(9.6) with 9> 
12. Further, let us suppose the assumptions (All), 

(B1) - (B are satisfied. Then for 35m+25 Tý , and h, At 
At 

sufficiently small 

2 
+2 II <C hp+l + at +; LiI ý1lI + ýt I) ý1II 

1J 
1-1 

I4R 



where -W-U, and ýn =I 
t=t 

n 

Proof. 

For brevity of notation define W' W It-tn 

A straightforward manipulation of the expressions (9.12), (9.18) and 

(9.20) yields 

222 

, V) + a(I ßjW +j 
+ c2týn+2 Vl= A (, 

D(X)Tln+j, (p(x)W' Vj 

=o j =o j =o 

+ r(V) + (f (x. in 
, u°), V) - (b(x, to 

,u 
n). VV) 

vv6 VP h 
(9.22) 

Subtracting (9.61) from (9.22) achieves, with 
Q +2 _ Qn+2 - Qn+2, 

ct* 
1ý 

2i 
(p (x) n+ý 

. V) + a( ß] 
"ßn+j + c2ptQn+2, V) 'j 

(P(X)nn+ýrVl 

t1 
3M0 

tj 
-o J-0 

t 

+ r(V) + (f(x, in, un) - f(x, in, Ü°), V) (9.23) 

n -n n 'Ün - jb(x, t u) - b(x, t ,VVvvE VP 

Note that, using the assumptions (B) and (9.19) 

1) (f(x, tn, u°) - f(x, tn, 1? ') 
, V) 5L 11 un - 'f 

2) (b(x, tn, un) - b(x, tn, LTn). 9V) Ln- 17''J) 11 VIII (cf(9.17)) 

2 

3) By the consistency relationship I aj s 0, hence 

j-o 
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2 
Lc nn+j 

a2 
(nn+2 _ nný 

a1 
(nn+1 _ nn) ee +e` 

jwo ttt 

2 

i. e. (P(x) ö nn+j. V)s C sup II at n II II v Chp+I II V II 
j -0 

t oStsT 

The above inequalities and lemma 5 produce a bound on the right hand 

side of (9.23), namely 

22 
a. (1 i (P(x)gn+j 

. V) + al L� 
n+j + '2", tQ 

+2 , VJ 

tt j-0 j_o 

5C hP+l +, 63 + ýý un ' ii ii v iti 

2 
n+j 1-1-n+2 Select V-jIaiE+ c2AtQ . Then using (Blv) and the inequality 

=0 

Iabl 5 ea2 + b2/4e, for suitable values of c, we have shown that 

222 
j( X) 1 n+j ß. 9n+J +cAQ 

+2 +C1 ýý G ßJ 
, 
ýn+j + 

tJJ2tfo J-o j=o jso 

-1 2 
'Ln+2 2 Co 

n+j "+2 12 +C 
{h2P+1)+ 

66 + ý2ýt4 II1 52 11 E+ cA l1 t j =o 

iiun--Un II21 (9.24) 

Subtracting (9.612) from (9.13), and using (9.18), establishes 

n+2 n+2 In+2) (p 
(x) {q -Q} pl +a 

fn+2 
' Vl = 

If 
(x' to+2, u 

f (x to+2' 
+2) 

' V) - 
(b (x' to+2' u 

+2) 
-b (x, to+2' a+2). W 

ti 
+r(V) VVe VP 

1 A7 - 



Noting that Q +2 
- (Qn+2 - qn+2) + (q n+2 

_ Qn+2) we achieve 

X 
tin+2 n+2 

- 
n+2 l 1P( 

)Q 
, v, +8(, n+2 Vl 

(P(x){Q 
q}, v1 + 

+2) 
- 

lýp+2 
f( x' to+2' u)- f(x, to+2' )' V) - 

((x, 
to+2, u 

b(x, Cn+2 ' 
+2). 9V) + 

r(ff) 

2 

Combining (9.24), and (9.25) with V-I aj n+j 
and bounding 

j -o 

the terms as before, achieves 

222 
(ex-) 

aj n+j 
sß 

n+j J- 
c2 a 

(, n+2 
,jCaj 

ýn+j) + 
JlJ 

j-o j-o j: o 

(9.25) 

-1 22 
25u II 

I °`j ýn+' 
I+ 

C II "n 112 
2IIß 

e+, + `2t 
+2 II1 

1 
j0j -o 

+ (ý ü +2 
_ 

ýxi+2 II 2+ 
h2p+2 + p6 

t 

Multiply the above expression by At , sum the result for n-1,2,..., m, 

use lemmas 3 and 4, u-U-ý-n, and (9.19) to deduce 

-1 m2 

11 e+2112 + 6t II cm+2 II i+ et 
czIIE ßß n+j Q +c 2l t 

+2 (I x 
n=1 j -0 

m+l 2 
2) 

5C of E (I n1I 2 +h 2p+2 + o6 + (II CiII2 + At11 c111 (9.26) 
i=1 

t 
n-o 

The following lemma is now needed. (see [181 for proof). 

ff_ 



Gronwall's lemma :a discrete analogue 

Suppose that 0 and X are non-negative functions defined for 

t- nit, n-0,1,..., m, and that X is non-decreasing. If 

n-1 
n Xn + CAt Ir, n-1,2,..., m 

r-o 

where C is a positive constant, then 

0n < Xn e 
CnA 

t0n-1,2..., 
m 

A simple application of the above lemma to (9.26) yields 

2 

ý1 e+2112 5C h2p+2 + pt +I 11 Ci, 12 + pt, l Ci, 12 
J 

i-ill 

which immediately establishes the desired result. 

Corollary 

Assuming the criteria of Theorem 4, a bound on um+2 - 
In+2 in 

the L2 - norm is given by 

2 

um+2 - Um+211 SC hp+l + Ot + ethp + [ii ui - Ul (l + 

i-1 

°tt ui - ui IR 

Proof. 

This follows immediately from theorem 4, (9.19), and the 

triangle inequality on u-Usý-n. 
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The discrete scheme (9.6) is not self-starting and requires 

initial values for {U1}2 
i=o . As before, we may select U° to be the 

projection of g(x) onto Vh by the L2 - inner product. The derivation 

of suitable values for U1 and U2 is not as trivial. A possibility is to 

derive these values by utilising an one-step method with a smaller time 

increment. Such one-step methods include variations of the 0-, and 

Crank-Nicholson methods, eg. [7], [44]. Alternatively, we may apply 

Richardson's extrapolation technique to a one-step method. For example 

employing the backward difference method, ie. the 6-method with 6-1, 

and Richardson's extrapolation twice we may employ the techniques of [11] 

and[36] to deduce that under certain continuity conditions. 

2 

ui - Ul fl + et II ui - Ul Jý] sC hp+l + othp + of + 11 u0 - UO 11 
i-i 

Finally we discuss the implementation of the scheme (9.6). Using 

the notation of chapter 7, and the definitions of M and K in (9.4), it is 

simple to see that the expressions (9.61) and (9.611) are equivalent to 

22 

aýMUn+J + 6t I ß. KUn+J + A2 c2KQn+2 s Atfn 
J- 

J_° j wo (9.27) 

1 
mq n+2 + Ke+2 s fn, 

where the vectors fn and fn" are given by 

Ifni 
[f(x, 

tn, Un), Vi/ l tn, ) . VViJ 
and li ll J 

lfn, 

lJ 
i 

(f(x, 
to+2, n+2) v) _ 

(b(x' 
to+2' 

+2)"v 

i 
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Eliminating gn+2 from (9.27), and rearranging, we achieve 

[a2 
I+ pt02M iK 

- A2 c2 (M 1K) 2] ý+2 
=- 

loci 
I+ AtßlM 1K] Un+1 

- 
[CIO 

I+ atßoM IKU° 
+ AtM ifn 

- atc2M 
1KM 1f°'1 

The mode of implementation depends on the character of the roots zj 

and z2 of 

a2 ß2 2 
--x+x c2 c2 

For i2 
<6<1.2334587 fi the roots are complex whilst for 0Z8 

the roots are real, with a double root for 8 8. 

Thus for 12 
<6<8 the implementation is equivalent to 

Min = 
n, 1 

(z1M - ptK)1 '1 2 [lM+ABlKlu11 
+2 

IaoM 
+ ptßox- Un 

IDt fn 
c2 

+ At K F(6) 
- 

At 

Im Un' 
1 

Ln+2 
Im z1 

(9.28) 

In terms of the discretization error, the effect of varying 0 

is concentrated in the error E2. For a sufficiently differentiable 

function y(t) 

(�3 61 3 l"l 
+ p(A 

4 
E2 (y) l36 3J 

ýt yn+l tý 
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Hence, given 6 
ZI 

, (9.5) is a fourth order scheme and E 
12 2 

(Y) may be 

bounded in modulus by CA4Y4, whenever At is sufficiently small. Thus 

we are encouraged to expect optimal accuracy for 6- 12 as At -º 0. 

The other distinctive value of 6 is 0 8. This value facilitates 

the implementation procedure but has the disadvantage of producing a 

relatively large error constant, C3, for E2. 

ie. C3 
(36 

- 
3,0.363 

Note that the implementation, with 6-6, is equivalent to 

Mt ns fn, l 

(z*M -A K) Us" - F(8) (9.29) 

(z*M -A K) Un+2 = Un, 1 

where z=0.8734384. 

For 6Z8 the error constant C3 is prohibitively large. Thus 

restricting 12 <65 -6 we may approximate the solution of (9.1) by 

solving two algebraically linear systems of equations at each time 

step, c. f (9.28) - (9.29). 
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Discussion 

As explained previously this section examines the application 

of a semi-discrete, Galerkin - L. M. S. D. scheme to the linear parabolic 

equation. The justification of such an application has been discussed 

and its merits established. High order, easily computable schemes 

are formulated that supercede, or rival, all the previously documented 

semi-discrete Galerkin schemes. 

However, the suitability of applying a semi-discrete Galerkin - 

L. M. S. D. scheme to a general non-linear parabolic equation is doubtful. 

At each time level, a direct application generally requires the 

differentiation of non-linear systems of ordinary differential 

equations and the solution of a complicated non-linear system of 

algebraic equations. A linearisation process is needed to render the 

scheme more computationally attractive, but, error analysis suggests 

that this causes a reduction in the order of convergence. An important 

exception relates to the class of quasi-linear equations investigated 

in chapter 9. Here we have described a third order, unconditionally 

stable scheme that requires the solution of two systems of linear 

algebraic equations at each time level. Consequently, this improves 

on the order of accuracy of all the previously formulated linearised 

schemes. 
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