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“They bark, Sancho: a sign that we are moving.”

Don Quixote (apocryphal)
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Spectral and wave function statistics of the quantum directed graph, QdG, are

studied. The crucial feature of this model is that the direction of a bond (arc)

corresponds to the direction of the waves propagating along it. We pay special

attention to the full Neumann digraph, FNdG, which consists of pairs of antipar-

allel arcs between every node, and differs from the full Neumann graph, FNG, in

that the two arcs have two incommensurate lengths.

The spectral statistics of the FNG (with incommensurate bond lengths) is believed

to be universal, i.e. to agree with that of the random matrix theory, RMT, in the

limit of large graph size. However, the standard perturbative treatment of the

field theoretical representation of the 2-point correlation function [1, 2] for a FNG,

does not account for this behaviour.

The nearest-neighbor spacing distribution of the closely related FNdG is studied

numerically. An original, efficient algorithm for the generation of the spectrum

of large graphs allows for the observation that the distribution approaches indeed

universality at increasing graph size (although the convergence cannot be ascer-

tained), in particular “level repulsion” is confirmed.

The numerical technique employs a new secular equation which generalizes the

analogous object known for undirected graphs [3, 4], and is based on an adapta-

tion to digraphs of the idea of wave function continuity.

In view of the contradiction between the field theory [2] and the strong indications

of universality, a non-perturbative approach to analysing the universal limit is pre-

sented. The substitution of the FNG by the FNdG results in a field theory with

fewer degrees of freedom. Despite this simplification, the attempt is inconclusive.

Possible applications of this approach are suggested.

Regarding the wave function statistics, a field theoretical representation for the

spectral average of the wave intensity on an fixed arc is derived and studied in

the universal limit. The procedure originates from the study of wave function

statistics on disordered metallic grains [5] and is used in conjunction with the field

theory approach pioneered in [2].
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At the end of a long road, plagued with potholes, road works, fake speed cameras,

real speed cameras, and much more, this project has finally come to a conclusion.

I intended to write a few pages with the details, but now I think I would rather

be content with the British road metaphor and move on.

First and foremost, I would like to express my gratitude to my parents, Inmaculada

A.S. and Fabien M., as I acknowledge the fact that a heavy load had fallen upon

them, the burden of my doubts and the occasional moments when lack of purpose

or loss of direction were lurking. They were trapped behind a glass from where

they could sense my despair, and felt powerless. “Oh dear, I just wish I knew

what to do, I just wish I knew anything. . . ” I remember my mother saying. She

did know, and she was right. I am so grateful to her for having a faith in me that

is much stronger than my own.

I have enjoyed plenty of advice and support from Alex M., whose wisdom and

friendship have been crucial during the last stages of my PhD, when I had to

take important decisions in the face of contradictory considerations and uncertain

outcomes. At that time, “material” obstacles reached a peak, and it all contributed

to creating a somewhat surrealistic picture. But life had him and my old friend

Bernard K. ready to help. While I will do my best to completely forget those days,

I will not forget you guys.

I have learnt a lot on the road.

For a start, I have learnt a lot of Maths and Physics. And I have learnt to learn

better. I am less dependent on my own “instinctive” ways of understanding, less re-

luctant to approach the unknown from previously unusual directions, less prone to

mistrust what I have not yet understood, more aware of my many weaknesses. . . I

owe a great part of that to my supervisor, Igor S., to whom I am grateful.

That was only the start, but the rest would take too long to recount and it would

perhaps be perceived as out of purpose, so I will skip it then.

Many people have contributed to the completion of this manuscript and to the

successful end of my studies, one way or another. Like any person that ever wrote

a thesis, out of fear of forgetting somebody I will not try to mention every one of

you, but I sincerely thank you all. And I will point out now that the responsibility
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for the likely mistakes is fully mine, a statement that I would like to emphasize

here beyond the mere protocol.

It is undeniable that the decision to undertake this work, and then conclude it

no matter what, has been so overreaching that it has affected everything, and

viceversa. As a result I feel as if every person with whom I have ever been in

contact has had some influence, good, bad or mixed. But what matters now, I

think, is that the immense majority of you share some of the satisfaction that I am

enjoying at this very moment. To you I feel grateful, so much that, had that slot

not been taken by my recent nieces, to all of you I would be tempted to dedicate

my thesis. With the exception of the first page, which I would dedicate to the

rest, while I remind myself of their irrelevance.
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Chapter 1

Introduction

1.1 Historical background

1.1.1 Quantum physical systems and chaos

The quantum eigenstates, ψ1, ψ2, . . ., and eigenenergies, E1, E2, . . ., of a physical

system described by a Hamiltonian H, are solutions of the Schrödinger equation

Hψi = Eiψi, (1.1)

where the Hamiltonian, or Schrödinger operator, may be constructed, in the case

of a system of N spatial degrees of freedom, x1, . . . , xN , as

H =
N∑
i=1

−~2

2mi

∂2

∂x2
i

+ V (x1, . . . , xN), (1.2)

and acts on wave functions ψ(x1, . . . , xN).

The dynamics of a classical Hamiltonian system is described by the Hamilton-

Jacobi (HJ) equation [6], which is obtained from Eq. (1.1) in the ~ → 0 limit,

where ~ is the Planck constant. In this case, the system is said to be chaotic if the

phase-space trajectories (given by the solutions to the HJ equation) follow certain

properties [7], of which the one usually mentioned is the high sensitivity to initial

1



Chapter 1. Introduction 2

conditions [8], or “butterfly effect”, manifest by two initially very close trajectories

diverging exponentially with time1.

The subject of Quantum Chaos is the quantum mechanical behavior exhibited by

physical systems which are classically chaotic. Specifically, the question asked is:

“what features of a quantum mechanical system would indicate the chaotic nature

of its classical counterpart?”. A HJ equation is always non-separable (equiva-

lently, non-integrable) when its solutions exhibit chaotic (as opposed to regular)

dynamics, and importantly, non-integrability is transferred from the HJ equation

to the Schrödinger equation corresponding to the same physical system, thus non-

separability can be seen as the “deepest characterization of chaos” [9]. However,

in classical systems, chaos is a property of phase-space trajectories, i.e. it charac-

terizes the solutions of the HJ equation (as mentioned in the paragraph above).

It ensues indeed from non-integrability, but the integrability criterium does not

tell us anything about quantum states (ψ1, ψ2 . . .) or energies2. To rephrase, then,

the question above, “what features of the quantum states of a system reflect its

chaotic/regular classical dynamics?”.

Percival [12] first suggested that the energy spectrum of quantum systems shows

two distinct behaviours associated, respectively, with regions of the classical phase

space with regular and with chaotic dynamics. In this connection, it was (empir-

ically) established (see [13, 14] and [9] and references therein) that neighboring

energy levels of classically integrable systems (with more than one degrees of free-

dom) tend to cluster, while neighboring levels of non-integrable systems whose

phase-space is dominated by chaos tend to “repel” each other. Moreover the

strength of the repulsion was seen to fall into universality classes, each depending

only on certain symmetries and otherwise completely system-independent.

It is well known that eigenvalues from matrices with random components tend

to exhibit repulsion, and that this phenomenon is highly independent from the

specific random distribution. Under mild conditions on the explicit probability

distribution of matrix components, the degree of eigenvalue repulsion of Hermitian

1The others are that any region of the phase-space, evolving under a chaotic Hamiltonian,
will overlap any other region (“topological mixing”) and that any point of the phase space is
approached arbitrarily closely by a closed phase space trajectory (“density of periodic orbits”).

2An analog to the butterfly effect is not expected in quantum systems [10], although the
closely related phenomenon of the divergence of two identical states under slightly different
Hamiltonians does occur [11].
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random matrices can be easily found [9] to be

P (S) ∝ Sβ, S ∼ 0, (1.3)

where P (S) is the probability of finding consecutive eigenvalues at a distance S,

and β = 2. Further adding the restriction that the random matrix be symmet-

ric, one would find3 β = 1. Bohigas, Gianonni and Schmit [15], based on their

study of classically chaotic systems with few degrees of freedom (Sinai’s billiard)

put in contact, on one hand, the “random matrix physics”, i.e. the average quan-

tum physics of systems that can be modelled by ensembles of Hamiltonians with

appropriate symmetries, and before thought to be applicable only to “complex”

physical situations (i.e. those involving many degrees of freedom) and on the other

hand, chaotic classical physics. They conjectured explicitly that “spectra of time

reversal invariant systems show the same fluctuation properties as predicted by

the Gaussian orthogonal ensemble (GOE)” of Random Matrix Theory (RMT -see

chapter 2).

Since the eighties, understanding why classically chaotic systems possess such

quantum-mechanical universal features has become a focus of major research,

mostly within the field of semiclassical analysis which characterizes quantum sys-

tems (in this context, their spectral correlations) in the limit of small Planck’s con-

stant. Taking this approach, Gutzwiller [16, 17] could express the distribution of

quantum energy levels as a sum over classical periodic orbits (trace formula), and

from there any measure of fluctuations in quantum levels can be expressed in terms

of constructive interference between sufficiently close periodic orbits. Gutzwiller

periodic-orbit theory, POT, is essentially a semiclassical approximation to clas-

sically chaotic quantum systems, and completes the picture of the old quantum

mechanics only applicable to integrable systems4.

3The parameter β is related to the “co-dimension of a level crossing”, that is, the number
of independent parameters that one needs to adjust in order to collapse into each other the
two eigenvalues of a 2×2 matrix. This number is easily shown to be one fewer than the total
number of independent parameters of the matrix itself: 4 independent parameters in a Hermitian
matrix give rise to a co-dimension equal to 3, while 3 parameters in symmetric matrices give
rise to a co-dimension 2. Incidentally, 2× 2 quaternion Hermitian matrices have 6 independent
parameters and a co-dimension 5. A straightforward calculation produces the result shown in
Eq. (1.3), with the exponent β being equal to co-dimension minus 1 ([9]).

4In fact, the domain of applicability of the old quantum mechanics was identified already by
Einstein [18] to consist of physical systems with orbits which, passing a possibly infinite number
of times over a small region, they do so only with a finite number of different momenta. He
pointed out as well that the number of constants of motion needs to, at least, equal the number of
degrees of freedom. Although not known at the time, these two properties of classical dynamics
are themselves directly related to a system not displaying chaos.
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The first step in understanding quantum spectral correlations from the investiga-

tion of classical periodic orbits correlations was taken by Berry [19] who calculated

the contribution from one-loop orbits, i.e. orbits with no crossing points (“diago-

nal approximation”). The contribution of one-loop orbits is dominant in the limit

of periodic orbits which are short compared to the typical system size, or in other

words in the limit of small time compared to the Heisenberg time; for this reason,

the short time contribution accounts only for the universal (i.e. RMT like), large

scale structure of the spectral correlations (i.e. correlations between eigen-levels

further apart than the typical level spacing). Sieber and Richter [20, 21] calcu-

lated the contribution from two-loop orbits (orbits with one single crossing point),

finding the next-to-leading order in the short time expansion of the universal cor-

relations. The complete calculation has been achieved recently by Müller et al.

[22].

In parallel with the POT, another approach was taken, based on Quantum field

theory (QFT) techniques, for the study of average spectral properties of ensem-

bles of chaotic systems such as small5 metallic grains, where one averages over

distributions of impurities and lattice defects (“disorder” in the literature). By

giving up on obtaining results for single-sample systems (“clean” systems in the

literature), the method, developed by Efetov [23]6, reproduces the RMT results7

beyond the Heisenberg time, hence resolving the important small scale spectral

structure, indispensable in order to account for the highly universal level repul-

sion mentioned in a previous paragraph. Incidentally, it was based on an analogy

with disordered systems [28] that Sieber and Richter (see above) suggested that

two-loop orbits account for the next-to-leading order in the short time expansion,

and the authors of [22] took their insight from that direction as well.

1.1.2 Quantum graphs

A Quantum graph (QG) consists of a Schrödinger operator (often just a Laplacian)

acting on a metric graph. Such a model was first used in Physics by Pauling [29]

in the context of quantum organic chemistry, representing non-localised electrons

5“Small” here means that the typical system dimension is much shorter than the inelastic
mean free path of conducting electrons, hence preserving coherence of their wave function.

6Based on initial work by Schafer and Wegner [24, 25] and Verbaarschot et al. [26].
7Although these were conjectured for such systems much earlier by Gor’kov and Eliashberg

[27].
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moving inside a network-shaped domain that mimics the molecule. Ruedenberg

and Scherr [30] used QGs in the same context, and were the first to consider

the construction of wave equations with appropriate boundary conditions on the

metric graph. They considered the QG as the limit, when the cross-section of the

wires tends to zero (i.e. becoming metric links of the graph), of a network of thin

wires (or wave-guides) attaching to each other in positions which would become,

in the limit, the vertices of the graph8. They were introduced to the Quantum

chaos community by Kottos and Smilansky [3].

In the last 15 years, quantum graph models and the universality (or lack of it)

of their spectral statistics have been studied extensively. Those models are often

not intended to represent any specific physical system, rather, they are used to

shed light on the general phenomena of quantum chaos. In this context, QGs

are convenient because they are “simple enough” to allow some level of analytical

treatment (and great level of numerical exploration) while rich enough to show a

plethora of interesting quantum-chaotic features. Kottos and Smilansky [3, 4] in-

troduced the tools, in the frame of the POT, for their analytical study and derived

a trace formula9 similar to the Gutzwiller trace formula for chaotic Hamiltonian

systems, but with the added benefit of being exact as opposed to asymptotic in

the Planck constant. The authors found as well the first numerical evidence of

good agreement between the spectral statistics of individual graphs and that pre-

dicted by the RMT. Tanner [36] found a condition for ensembles of QGs to follow

Wigner-Dyson statistics in the diagonal approximation (i.e. large scale spectral

correlations), and conjectured universality at all spectral scales under the same

condition. Berkolaiko et al [37, 38] performed the periodic orbit counting beyond

the diagonal approximation and could reproduce shorter scale contributions under

a slight generalization of that conjecture.

Gnutzmann and Altland [1, 2] pioneered the implementation of the already men-

tioned QFT technique on QGs. Unlike in the previously mentioned case of disor-

dered systems, the authors managed to work on a single QG and mapped their

8In the context of QGs, a network of thin (finite) wires is currently called a fat quantum
graph, for a recent work on the interplay of Quantum graphs and fat Quantum graph see [31].
Alternatively, one can imagine the links as the center of an attractive potential for the electron
whose wave function one models, those graphs are called leaky graphs because the electron is not
locked on the links (it can in fact tunnel from a link to another), but becomes so in the limit of
infinitely attractive potential [32]. QGs have been applied to a variety of physical systems (see
the bibliography in [33]) and have been simulated experimentally [34].

9A trace formula for quantum graphs had already been derived, by Rot [35], in a different
manner and with less general boundary conditions.
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problem to a super-symmetric nonlinear σ-model of Efetov’s type [23], by using a

variant of the technique developed by Zirnbauer10 [40]. The authors found a more

restrictive condition for universality than the previous studies [36–38], but could

reproduce the universal statistics at all scales. The same field theoretical method

was later used in order to investigate the wave function statistics on the QG by

Gnutzmann et al. [41, 42].

1.2 Motivation and outline

Quantum graphs, as we consider them here, are characterized by three aspects.

First, the topology, i.e. the merely graph-theoretical aspect. Second, the lengths

which are associated with the links. And third, the boundary conditions at the

nodes, related to the Schrödinger operator. Since the work by Kottos and Smilan-

sky, a type of QG that is often studied by the Quantum Chaos community is the

one characterized in its topology by having every node connected to every other,

i.e. being a full graph, and by having Neumann-type boundary conditions. The

so called full Neumann graph (FNG) then, possesses two features which oppose

each other in terms of their dynamical behaviour: chaotic (universal) dynamics

tends to dominate in the presence of high connectivity, while it is inhibited by the

Neumann boundary conditions, which strongly favor back-scattering at the nodes.

It is believed that the FNG has universal spectral statistics, as it satisfies Tanner

criterium [36] and the POT approach leads to universal results as well [37]. The

QFT criterium [2], however, is not satisfied. These two facts lead us to further

investigate the Gnutzmann and Altland field theory for the specific case of the

FNG, with the aim of devising a theory which, being model-specific, would allow

us to recover the expected universal result. An additional complication in the field

theory of the FNG is the presence of certain degrees of freedom whose non-universal

contribution, contrary to other cases of QGs, cannot be easily neglected in the large

size limit. The strength of that contribution is directly related to the strength of

backscattering, and is thus inescapable because the Neumann boundary conditions

are the ones we wish to study. The existence of those degrees of freedom, however,

has a totally different origin: they arise from the fact that, when travelling across

10Interestingly, in more general circumstances Zirnbauer’s technique does resort to ensemble
averaging: it is needed after the mapping to the field theory, in order to be able to justify the
reduction to its mean-field part, reproducing the universal result (see [39]).
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a link, waves accumulate the same phase irrespective of the direction. Therefore,

with the aim of simplifying the problem, we consider a model in which such phases

are uncorrelated. This is accomplished by substituting, in the usual metric graph,

every bi-directional bond and its corresponding length, by a pair of anti-parallel,

mono-directional bonds with two different lengths, hence transforming it into a

metric directed graph.

Two methods of constructing a QG can be found in the Quantum Chaos literature

(see [33] for a review). The first one consists in assigning a unitary matrix to every

node, with a matrix component assigned to every pair of links branching from that

node. This is the scattering approach: a wave function on those links is viewed

as a superposition of waves travelling in opposite directions, and being scattered

to other links in correspondence with the above mentioned unitary matrix. As

pointed out by Tanner [43], this approach does not rely on the links being bi-

directional: one can a priori assign directions to the waves traveling on a link.

This is the concept that we denote by quantum digraph, QdG: the direction of

the link (or arc) signals precisely the direction of the waves that are on it. We

construct the QdG, following this approach, in chapter 3, where we review as well

some elementary results. The second approach consists in solving the Schrödinger

equation on the graph, usually11 imposing the condition that the wave function

is continuous on the graph. This second method has the advantage that the

stationary waves on the graph are described by only V parameters, V being the

number of vertices, usually much smaller than the number of bonds, B. This

scheme is much better suited for the numerical generation of the spectrum, but its

generalization for QdGs was not known. A suitable scheme is newly implemented

in chapter 6. In chapter 7 we use the result of the previous chapter in order

to numerically generate the spectrum of large full Neuman digraphs, FNdG, and

study their spacing distribution, LSD. In this chapter, we present an efficient

algorithm for spectrum generation, and confirm the indications of universality

for complete Neumann graph, by means of a systematic study of how the LSD

approaches universality at increasing graph size.

In chapter 4, we present the (incomplete) non-perturbative study of the universal

2-point correlation function from Gnutzmann and Altland [2] field theory applied

to the FNdG.

11But not always, see [44] for “generalized” boundary conditions.
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In chapter 5 we derive a functional for wave intensity statistics, applicable to

general digraphs, and study the universal limit.



Chapter 2

Preliminaries I: spectral

sequences and Random Matrix

Theory

2.1 Introduction

In this introductory chapter, we develop the tools and the language that we will

need in order to characterize the spectral fluctuations of the quantum digraph.

In the literature about the subject of random matrix theory, one usually finds

the description of the random matrix ensembles at an early stage, followed by the

derivation of their spectral statistical properties. Here, we prefer to consider the

sequence of eigenvalues of a given operator (in our case, a single quantum graph)

first, due to two reasons. On the one hand, from an “experimental” perspective,

this is really the object that is observed and studied: sequences of resonances of

complex nuclei, sequences of eigen-energies of small metallic particles, sequences

numerically generated eigenvalues of a specific operator (in our case, they will

be wave numbers of stationary waves in the graph), etc. On the other hand,

the theoretical treatment that we give to our system, the QdG, will be based on

averages over the spectrum of single samples. How the statistical properties of

these sequences compare to that from the spectra of random matrices, is what one

investigates a posteriori. Hence our focus on the description of spectral sequences,

9
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which occupies the section 2.2. Only afterwards, in 2.3, we touch upon the few

properties of random matrix ensembles that we need for the rest of this text.

2.2 Characterization of spectral sequences

2.2.1 Basic definitions

Let us consider a sequence of N real numbers,

−∞ < λ1 < λ2 < . . . < λN <∞.

We will denote these numbers by “levels”, and the sequence by “spectrum” (as

they could represent, for example, the eigenvalues of a N ×N hermitian matrix).

Let us characterize such sequence, by the following combinations of delta functions:

r1(x) ≡
N∑
i=1

δ(x− λi), (2.1)

r2(x1, x2) ≡
N∑
i1=1

∑
i2 6=i1

δ(x1 − λi1)δ(x2 − λi2), (2.2)

. . . ≡ . . . , (2.3)

rn(x1, x2, . . . , xn) ≡
∑

{i1,...,in; ij 6=ik}

δ(x1 − λi1)δ(x2 − λi2) . . . δ(xn − λin), (2.4)

. . . ≡ . . . , (2.5)

rN(x1, x2, . . . , xN) ≡
∑

{i1,...,iN ; ij 6=ik}

δ(x1 − λi1)δ(x2 − λi2) . . . δ(xN − λiN ), (2.6)

where
∑
{i1,...,in; ij 6=ik} represents a sum over all, N !

(N−n)!
, combinations of n indices

which take values from 1 to N , without repetitions. We can call rn the n-point

density function. It is obvious that rn integrates to the number of possible combi-

nations of indices, i.e.∫
Rn
rn(x1, . . . , xn)dx1 . . . dxn =

N !

(N − n)!
. (2.7)

It is clear as well that the densities are symmetric under permutation of their

variables, and that one can obtain rn from rn+1 by integrating any one of the n+1
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variables in the latter, i.e.

rn(x1, . . . , xn) =
1

N − n

∫
R

rn+1(x1, x2 . . . , xn, xn+1)dxn+1. (2.8)

The n-density can be calculated from combinations of products of n− 1, . . . , 2, 1

densities, for example

r2(x1, x2) = r1(x1)r1(x2)− δ(x1 − x2)r1(x1), (2.9)

r3(x1, x2, x3) = r1(x1)r2(x2, x3) + r1(x2)r2(x1, x3) + r1(x3)r2(x1, x2) (2.10)

− 2r1(x1)r1(x2)r1(x3) + δ(x1 − x2)δ(x1 − x3)r1(x1), (2.11)

but one needs to add terms such as δ(x1 − x2) (for example in Eq. (2.9)) due to

the fact that the densities r2, r3 etc do not include summands such as
∑

i δ(x1 −
λi)δ(x2 − λi),

∑
i δ(x1 − λi)δ(x2 − λi)δ(x3 − λi), etc.

The integration of the one-point density, r1, over a domain1 D ∈ R produces the

number, ND, of levels within this domain. More generally, the integral∫
Dn
rn(x1, . . . , xn) =

ND!

(ND − n)!
, (2.12)

counts the number of groupings with exactly n levels that can be formed with the

ND levels lying in D, with different orderings of the same values being counted as

different groupings.

The following bi-variate distributions are also important:

l(n;x1, x2) ≡
N−(n+1)∑

i=1

(δ(x1 − λi)δ(x2 − λi+n+1) + δ(x2 − λi)δ(x1 − λi+n+1)) .

(2.13)

r2(x1, x2) can be recovered from these distributions through

r2(x1, x2) =
N−2∑
n=0

l(n;x1, x2). (2.14)

1This domain should be chosen in such a way that all the levels are properly accounted for.
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2.2.2 Spectral average and mean level spacing

Let us average the distribution l(0;x1, x2), Eq. (2.13), over the spectrum. By this

we mean the integral

l̄(y) ≡
∫
R

l(0;x, x+ y)dx, y ≥ 0, (2.15)

i.e.

l̄(y) =
N−1∑
i=1

δ(y − (λi+1 − λi)). (2.16)

The function l̄(y) produces a “spike” every time that y coincide with the distance

of any two consecutive levels, hence (when properly normalized) it could be inter-

preted so that
∫ x+s

x
l̄(y)dy represents the probability of finding the spacing between

any two consecutive levels to lie between x and x + s. However, since universal

features affecting the spectral statistics of quantum operators are local, namely

they are valid within regions of consecutive levels of the spectrum with a specific

average spacing, the distribution Eq. (2.15) is not convenient because it averages

“blindly” over the entire spectrum. It could lead us, for example, to describe a

region where the levels are more “packed” as one with less level repulsion. There-

fore any distance between two specific levels needs to be weighted with respect to

the mean level spacing in their region of the spectrum. We will define the mean

level spacing over a region of length X centered around a point x, as

∆X(x) ≡ X∫ x+X
2

x−X
2

r1(x′)dx′
(2.17)

≡ X

NX(x)
, (2.18)

where NX(x) is the number of levels in the above mentioned region. The interval,

X, needs to be large enough for NX(x)� 1, so that ∆X(x) is smooth2 on x, but

small enough so as to allow ∆X(x) to reflect global variations. When such ideal

interval can be found (we refer to [9] for more details), one can use it to define the

mean level spacing, ∆(x), and its inverse, the average density of state. It is now

possible to transform the entire level sequence, or to “unfold the spectrum”, as3

λi →
λi

∆(λi)
, (2.19)

2This means that it varies very little over intervals typically encompassing a few levels.
3There are other possible transformations of this type (see [9]).
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so that one has now a spectrum with mean level spacing ∆ = 1. We will assume

from this point that such transformation has been performed in our sequences.

The spectral averaged two-point correlation function is defined as4,

r̄2(s) ≡ 1

N

∫
R

r2(x, x+ s)dx, s ≥ 0 (2.20)

=
1

N

∑
i<j

δ(s− (λj − λi)) (2.21)

=
1

N

∑
i,j

δ(s− (λj − λi))− δ(s) (2.22)

=
1

N

∫
R

r1(x)r1(x+ s)dx− δ(s), (2.23)

where Eq. (2.23) is analogous to Eq. (2.9). Defining as well the spacing distribu-

tions

l̄(0; s) ≡ 1

N

∫
R

l(0;x, x+ s)dx, y ≥ 0 (2.24)

l̄(1; s) ≡ 1

N

∫
R

l(1;x, x+ s)dx, y ≥ 0 (2.25)

l̄(2; s) ≡ 1

N

∫
R

l(2;x, x+ s)dx, y ≥ 0 (2.26)

. . . ≡ . . . (2.27)

which are called, respectively, nearest-neighbor spacing distribution (or level spac-

ing distribution, LSD), next-nearest neighbor spacing distribution, etc, and noticing

that

l̄(n; s) =
1

N

N−(1+n)∑
i=1

δ(s− (λi+1+n − λi)), (2.28)

we recover a version of Eq. (2.14):

r̄2(s) =
N−2∑
n=0

l(n; s). (2.29)

4This definition would be of little use is the spectrum had qualitatively different regions,
corresponding, for example, to zones which are “regular” and zones which are “chaotic” as
explained in the previous chapter. However this is not going to be our case when studying the
QdG spectrum.
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2.2.3 Spectral levels as random variables

If the levels are drawn from a joint probability distribution, P (λ1, . . . , λN), with

the property

P (π(λ1, . . . , λN)) = P (λ1, . . . , λN), (2.30)

being π(λ1, . . . , λN) any permutation of the N variables, we define

R1(x) ≡
∫
RN

r1(x)P (λ1, . . . , λN)dλ1 . . . λN (2.31)

=
N∑
i=1

∫
δ(x− λi)P (λ1, . . . , λN)dλ1 . . . λN (2.32)

= N

∫
RN−1

P (x, λ2, . . . , λN)dλ2 . . . dλN , (2.33)

where in the third line, we employ Eq. (2.30). For any n ≤ N , the n-point

correlation function reads similarly

Rn(x1, . . . , xn) ≡
∫
RN

rn(x1, . . . , xn)P (λ1, . . . , λN)dλ1 . . . λN (2.34)

=
N !

(N − n)!

∫
RN−n

dλn+1 . . . dλNP (x1, . . . , xn, λn+1, . . . , λN).

(2.35)

The second line, Eq. (2.35), is the original definition by Dyson [45].

2.3 Random Matrix Theory

In order to reproduce the strong correlations in resonance spectra of complex nu-

clei, Wigner [46] introduced the idea of modeling them by the spectral correlations

or random, 2× 2 symmetric matrices with independent entries. The level spacing

distribution obtained in this way, called Wigner surmise, reads

lW(s) =
πs

2
e−

πs2

4 , (2.36)

and reproduces quite accurately the level repulsion observed between the above

mentioned resonances5. Following Wigner’s idea, a general Random Matrix Theory

was developed, the cornerstone of which is the Wigner-Dyson classification of

5Eq. (2.36) compares naturally to Eq. (1.3) with β = 1.
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Gaussian matrix ensembles6. Those are characterized by a probability density

distribution such as

P (β;H)dH ∝ e−
β
2

trH2

dH, (2.37)

where H is a N ×N symmetric matrix7 (β = 1 in this case), complex Hermitian

matrix (β = 2), or real quaternion matrix (β = 4). The above ensembles are called,

respectively, Orthogonal, Unitary and Symplectic, due to the transformations of H

under which P (H)dH is invariant. Invariance of the probability distribution on its

own implies that P (H) depends only on the traces trH, trH2, . . . , trHN−1, trHN ,

while the requirement that entries of H be statistically independent restricts P (H)

even more so as to become Gaussian [48], as in Eq. (2.37). Physical systems with

time reversal invariance are modeled by the orthogonal ensemble, while systems

without such invariance are modelled by the unitary ensemble, or if they have half

integer spin and broken rotational symmetry, by the symplectic ensemble.

The rotations (unitary, for example, in the β = 2 case) diagonalizing H can be

integrated out easily in Eq. (2.37) [48, 49], leaving the probability distribution for

the eigenvalues

P (β;λ1, . . . , λN) ∝
∏
i<j

| λi − λj |β e−
β
2

∑N
i λi . (2.38)

We will focus on the Gaussian Unitary Ensemble, GUE, because it is relevant for

the thesis. Substituting P (2;λ1, . . . , λN) in Eq. (2.34) [48, 49], one can calculate

any correlation function. In the N →∞ limit,

R2(s) = 1− sin2(πs)

(πs)2
. (2.39)

The spectral form factor is defined as the Fourier transform of R2(s) − 1 + δ(s).

For the GUE ensemble, it reads

K(τ) ≡
∫
R

(
δ(s)− sin2(πs)

(πs)2

)
eι2πsτds (2.40)

=

{
τ : τ < 1

1 : τ ≥ 1
. (2.41)

6as well as the circular ensembles introduced by Dyson [45, 47].
7Making N = 2 Eq. (2.36) can be derived from Eq. (2.37).
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The small frequency expansions of the spacing distributions for the GUE ensemble

(we do not worry here about the large frequency asymptotics) valid up to s ∼ 2.3

[50], reads:

LGUE(0; s) =
π2s2

3
− 2π4s4

45
+
π6s6

315
− π6s7

4050
− 2π8s8

14175
+

11π8s9

496125
+ . . . (2.42)

LGUE(1; s) =
π6s7

4050
− 11π8s9

496125
+ . . . (2.43)

LGUE(2; s) = O(s)14 (2.44)

LGUE(3; s) = O(s)23 (2.45)

LGUE(4; s) = O(s)34 (2.46)

LGUE(5; s) = O(s)47. (2.47)

Expanding R2(s) from Eq. (2.39),

R2(s) =
π2s2

3
− 2π4s4

45
+
π6s6

315
− 2π8s8

14175

+
2π10s10

467775
− 4π12s12

42567525
+

π14s14

638512875
− 2π16s16

97692469875
+O

(
s17
)
, (2.48)

one can check that Eq. (2.29) is reproduced up to some order (odd powers of s

cancel each other). We will need mainly R2(s) and L(0; s), which, from the above

equations, are equivalent up to sixth order in the frequency.



Chapter 3

Preliminaries II: quantum

digraphs

3.1 Introduction

In this chapter, our aim is to present some known results on Quantum digraphs

(QdGs). In particular, we will be interested in the quantization scheme by Tan-

ner [36, 43] and Pakonski et al. [51], who showed that the method1 of Kottos

and Smilansky [3] can be generalized and be applicable also for directed graphs

(digraphs). Tanner explained [43] that such generalization is twofold. On the

one hand, arbitrary unitary transition matrices are associated to the vertices, as

opposed to such matrices being the result of solving the Schrödinger equation on

the graph. On the other hand, the transition matrices in Tanner’s model act on

directed bonds (arcs in our language), this having the precise meaning that waves

traveling on a given arc are a priori restricted to the direction of that arc. In order

to understand how this restriction generalizes the QG, one simply needs to notice

that a bi-directional bond between two vertices can be reproduced, in a QdG, with

a pair of parallel arcs (i.e. arcs connecting the same two vertices) with opposite

directions. We carry out this scheme in section 3.4. Before doing this, we state

the basic graph-theoretical ideas that we need, section 3.2, and review some basic

features of the classical dynamics on digraphs, section 3.3. Some POT results for

QdGs are then described in section 3.5.

1In the introduction (page 7), we referred to these two schemes as the first and the second
method, respectively, of constructing a QG.

17
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3.2 The directed graph: basic definitions

A directed graph, or digraph, G is a set of V vertices, labeled 1, 2, . . . , i− 1, i, i+

1, . . . , V − 1, V , and a set, A(G), of arcs, which are defined as ordered pairs of

vertices. The connectivity matrix, C(G)V×V , is defined as

C(G)ij ≡

1 if ij ∈ A(G),

0 otherwise.
(3.1)

We say that an arc ij “exists” iff Cij = 1, or, equivalently iff ij ∈ A.

For a generic vertex, i, one defines the in-degree, diin, and the out-degree, diout, as

the number of arcs incoming to, and outgoing from i, respectively. Formally

diin ≡
V∑
j=1

Cji, (3.2)

diout ≡
V∑
j=1

Cij. (3.3)

If the adjacency matrix is symmetric, that is, if C(G)ij = C(G)ji, we will say

by definition that the digraph G is, itself, symmetric. Obviously, in the case of

symmetric digraphs the arc ji exists iff ij exists, and we will say that ij and ji are

anti-parallel2. In this regard, we can define a (undirected) graph as a symmetric

digraph, and simply think of every pair of anti-parallel arcs as a bi-directional

bond3.

We define a complete directed graph, or full digraph, as one for which every vertex

i reaches every other vertex j through arcs ij and is reached itself by every vertex

k through arcs ki. By construction, a complete directed graph is made of anti-

parallel connections and is therefore symmetric.

The digraph that will constitute our model possesses no “loops”, i.e. Cii = 0 for

all i. It is also connected, i.e. for every subset H ⊂ G, there exists at least one

arc in A connecting a vertex in H to another that is not in H, and another arc

2It is clear from the definition Eq. (3.1) that we have excluded “parallel” connections in the
usual, undirected graph-related sense.

3In the framework of metric graphs, where arcs are given lengths, an extra restriction is
needed: a metric graph is a symmetric, metric digraph with the particularity that the lengths
of anti-parallel arcs coincide. This will be an essential distinction in the context of quantum
digraphs.
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connecting vertex not in H to vertex4 in H. The latter is equivalent to stating

that there exists some power, Cn, of the adjacency matrix such that Cn
ij 6= 0 for

every pair of nodes i and j, an it implies that there are no “isolated” nodes, i.e.

no column, or row, in C is made entirely of zeros5.

3.3 Classical propagation in a digraph

3.3.1 Vertex propagator and digraph propagator

Let us introduce the concept of vertex propagator. To every vertex v belonging

to the digraph G, we will associate a dvout × dvin matrix P v. Components of this

matrix are indexed using 1, 2, ..., cin, ..., d
v
in and 1, 2, ..., cout, ..., d

v
out, where every

cin (cout) represents a vertex v(cin) with a connection towards v (a vertex v(cout)

with a connection outgoing from v). Considering arcs as random variables, and

using stochastic language we may say that the component P v
coutcin

represents the

probability of arc vv(cout) given arc v(cin)v. In our language, this will be the

transition probability from the former arc to the latter, formally:

P v
coutcin

≡ P (v(cin)v → vv(cout)). (3.4)

P v naturally needs the properties

P v
coutcin

= 0, (3.5)

dvout∑
cout=1

P v
coutcin

= 1 ∀cin. (3.6)

“Stochasticity”, i.e. Eq. (3.6), ensures “probability conservation”: given any dvin-

dimensional vector x,
dvout∑
cout=1

(P vx)cout =

dvin∑
cin=1

xcin . (3.7)

4This type of “both ways” connectivity is sometimes called strong connectivity in digraphs.
5To state this differently, for every vertex v, there is some vertex i for which iv exists, and

also some vertex j for which vj exists. While this precision may not be important in the case of
undirected graphs, it is crucial concerning digraphs because one needs both “out-connections”
from every vertex in order to be able speak of probability conservation, as we do already in the
next section (see Eq. (3.6)), and “in-connections” to speak of bi-stochasticity (see page 21), which
is an essential feature of QdGs.
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One can “artificially” extend every vertex propagator P v to a cardA × cardA

propagator, F v, acting on the entire space of arcs, simply introducing vanishing

components for every two arcs that are not connected through v. Let v, i, j, k, l be

vertices in G, then we define:

F v
ij,kl ≡ δliδviF

v
vj,kv, if ij, kl both exist, and (3.8)

F v
vj,kv ≡ P v

cout(j)cin(k). (3.9)

From the above definition, one should keep in mind that F v acts on existing arcs,

but we are indexing its components according to the vertices related to those

arcs. This type of notation is the one we use mainly in this work, another typical

notation that we employ as well consists in labeling the arcs themselves.

It is now possible to define the graph propagator simply as the sum of all V vertex

propagators,

F ≡
V∑
v=1

F v. (3.10)

Component by component,

Fij,kl = δi,lFij,ki, and (3.11)

Fij,ki = F i
ij,ki (3.12)

= P i
cout(j),cin(k). (3.13)

It is clear from the definitions that F i has the property Eq. (3.6), i.e.
∑

j F
i
ij,ki = 1,

and F inherits it as well: F is a stochastic matrix that directs a Markov process

on the entire space of arcs.

3.3.2 The classical phase space

We will think of an arc ij as a coordinate, giving both the “position” (between

vertices i and j) and the “momentum” (moving from i to j), within the phase-space

constituted by the set A(G), with a volume cardA. A classical, cardA-dimensional

state vector, ρ, with components ρij ≥ 0, will be subjected to a discrete-time

dynamics determined by the propagator F , in such a way that the state at time
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t, ρt, evolves to ρt+n through n successive applications of F :

ρt+n ≡ F nρt. (3.14)

The vector ρ may represent a discrete probability distribution, e.g. ρij being the

likelihood of finding a particle at ij, or it may represent a distribution of “fluid”

on the digraph, so that the component ρtij is the mass of fluid lying on the arc ij

at time t.

Due to the stochasticity of F , the total mass is conserved :

∑
ij

ρt+nij =
∑
ij

ρtij, (3.15)

where the sum is understood to run over existing arcs, although, as usual, we name

the arcs as ordered pairs of nodes.

In the same manner as “global” stochasticity follows from the “local” stochasticity

at every node, the total mass (or probability) conservation, Eq. (3.15), follows from

the conservation at every node,

∑
i

ρtij =
∑
i

ρt+1
ji . (3.16)

The “Kirchoff law”, Eq. (3.16), can be read as the sum of incoming probabilities

toward j at time t equals the sum of outgoing probabilities in the next time-step.

3.3.3 Bi-stochasticity, digraph symmetry and time-reversal

The matrices P v defined in Eq. (3.4) are often6 bistochastic, i.e. a property similar

to Eq. (3.6) holds for the in-components as well:

dvin∑
cin=1

P v
coutcin

= 1 ∀cout. (3.18)

6They are always bi-stochastic in the context of quantum graphs, where a unitary matrix Uv

directs a quantum scattering process through the node v, and P v, interpreted as the classical
analogue of Uv, is defined as

P vc,c′ = |Uvc,c′ |2. (3.17)

The propagators that one obtains in this way are called unitary-stochastic, or uni-stochastic,
a property which implies bi-stochasticity: one recovers both Eq. (3.6) and Eq. (3.18) from
Eq. (3.17).
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This has two obvious implications, one is7

dvin = dvout, (3.19)

the other is that the transpose matrices (P v)T , (F v)T are stochastic, and so is

F T in the (usual) case that all P v’s are. As a result, one can consider F T as the

backward evolution8 associated with F .

Mowever, in the case of an undirected graph, or equivalently a symmetric di-

rected graph in our language, one can define a time-reversal operation simply by

“reflecting” every arc, ρij → ρji ≡ (Rρ)ij, with

Rij,ki ≡ δk,j. (3.20)

For a symmetric digraph and a bi-stochastic propagator associated to it, it is

possible to ask whether time-evolution followed by time-reversal is equivalent to

time-reversing first and then evolving “backwards”, i.e. whether

RF nρ =
(
F T
)n
Rρ. (3.21)

When Eq. (3.21) is satisfied for every number, n, of time-steps, and for every

vector ρ, the (classical) evolution on the symmetric digraph is then said to be time

reversal invariant. Naturally, this is equivalent to

F = RF TR. (3.22)

If one was to consider metric digraphs (i.e. graphs with a length lij associated to

every arc ij), and if the arc lengths were to play any role9, time reversal symmetry

would also require that the lengths of antiparallel arcs coincide. In the context of

quantum digraphs (see section 3.4), the arc length is important and quantum time

reversal is broken when lij 6= lji, even if classical time reversal is not (i.e. even if

Eq. (3.22) holds).

7Simply summing Eq. (3.18) over cout, summing Eq. (3.6) over cin and then equating both
results.

8Although “involution” cannot be defined for F , which directs an irreversible process.
9They usually do not, in the context classical evolution on graphs, because only discrete,

bond-to-bond hopping (such as it is represented in Eq. (3.14)) is considered, but see [52] for an
exception.
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3.3.4 Long time dynamics: ergodicity and mixing

The long time evolution of a probability distribution, ρtij ≥ 0, as we will show

below, is determined by the eigenvalue of F with the highest absolute value. Let

us denote by f0, f1, . . . , fcardA and by %0, %1, . . . , %cardA, respectively, the eigenvalues

and eigenvectors of F . The eigenvalues are inversely ordered in modulus: |f0| ≥
|f1| ≥ . . . ≥ fcardA.

To the propagator F , we can apply directly the Perron-Frobenius Theorem for

non-negative, irreducible matrices10 [53]. This states that f0 is unique, real and

positive, and that:

max
a

cardA∑
b=1

Fba ≤ f0 ≤ max
a

cardA∑
b=1

Fab. (3.23)

It is obvious, from the bi -stochasticity of F (i.e. Eq. (3.6) and Eq. (3.18)) and the

previous theorem, Eq. (3.23), that f0 = 1. Therefore the “zero mode”, %0 is the

“invariant measure” of the matrix F [54], and it is as well the uniform mode, i.e.

%0 ≡ const., (3.24)

due again to bi-stochasticity Eq. (3.18), as can be seen checking that Eq. (3.24)

solves the eigen-equation F%0 = %0.

From the stochasticity of F , one can also infer that, for any non-zero eigenmode,

i.e. for %a 6= %0,
cardA∑
b=1

%ab = 0, (3.25)

simply summing over vector-components in the eigen-equation, F%a = fa%
a.

From Eq. (3.25) and Eq. (3.24), we see that any state-vector ρ can be written

uniquely as the sum of a uniform mode plus a combination of “fluctuating” modes:

ρ ≡ %0 +
∑CardA−1

a=1 %a. Using this mode decomposition, the time evolution of a

10We note that the irreducibility of F is implied by the fact that our propagator is associated
to a (strongly) connected digraph, hence, for some n ∈ N, Fnab 6= 0 for all arcs a, b.
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initial distribution ρ0 can be expressed as

ρn = F nρ0 (3.26)

= F n

(
%0 +

CardA−1∑
a=1

%a

)
(3.27)

= %0 +
CardA−1∑
a=1

fna %
a. (3.28)

The second summand in Eq. (3.28) decides the long time evolution of the proba-

bility vector. If the eigenvalues of F (except f0 = 1) are inside the unit circle, then

fna → 0 as n→∞ for all a, hence ρn → %0. This situation, in which any initial ρ0

decays to %0 is called mixing dynamics. If f1 is the next-to-leading eigenvalue, i.e.

1 > |f1| ≥ |fa| (a 6= 0), the speed of the decay towards equi-distribution is given

by

|ρn − %0| ∝
n→∞

|f1|n (3.29)

= en ln |f1| (3.30)

= e−n(1−|f1|+(1−|f1|)2+...)), (3.31)

hence

nmix =
1

1− |f1|
, (3.32)

sets the mixing timescale.

A function defined on the phase space constituted by the digraph, is a cardA-

dimensional vector, µ, with a value, µa, associated with every arc a. Its phase

average at time n, over a probability vector ρn, is defined as the scalar product

µ · ρn. Its time average, along the discrete-time evolution of a probability vector

ρ, is defined as,

lim
n→∞

1

n

n−1∑
m=0

µ · ρm = µ · lim
n→∞

1

n

n−1∑
m=0

ρm. (3.33)

The dynamic induced by the propagator is said to be ergodic when the time

average coincides with the phase average over the uniform distribution, µ · %0.

From Eq. (3.33), this clearly is independent of µ, and relies only on

lim
n→∞

1

n

n−1∑
m=0

ρm = %0. (3.34)
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This property follows from mixing, but it is more general: ergodicity can occur

with eigenvalues of F , besides f0 = 1, lying on the unit circle. As can be seen from

the following reasoning, the rate of ergodic decay is determined by the eigenvalue

that is closest to 1. If f1 = eιφ1 is such eigenvalue, from a set of l eigenvalues on

the unit circle, we have

1

n

n∑
m=1

ρm − %0 =
1

n

n∑
m=1

(
%0 + eιmφ1%1 + . . .+ eιmφl%l

)
− %0 (3.35)

=
1

n

n∑
m=1

(
eιmφ1%1 + . . .+ eιmφl%l

)
(3.36)

∝
n→∞

1

n

n∑
m=1

eιmφ1%1, (3.37)

where 1
n

∑n
m=1 f

m
1 will start adding up to zero when11 nφ > 2π. Therefore the

timescale of the ergodic decay is

nerg ∝
1

φ
/

1

|1− f1|
. (3.38)

3.3.5 The case of a symmetric digraph.

3.3.5.1 Continuity equation

We will write a “continuity equation”, derived from Eq. (3.16), but involving “node

variables” and “currents along bonds”. For this purpose, we restrict ourselves to

symmetric digraphs. For these, trivially

dvin = dvout ≡ dv for all v. (3.39)

We call dv the degree, or the coordination number of the vertex v (even though v

is connected to 2× dv arcs).

We define the node density at vertex i as the sum of outgoing densities from

11Incidentally, another consequence of the Perron-Frobenius theorem is that the eigenvalues
of F in the unit circle are necessarily roots of 1 [53]. Being of the form eι

2π
m , the contribution

of such an eigenvalue actually cancels exactly after m steps, although this is not an essential
requirement for ergodicity.
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i, that is

ρi ≡
∑
j

ρij, (3.40)

and, taking into account the symmetry of the graph, the current from i to j as

~ij ≡ ρij − ρji. (3.41)

Naturally, ~ji = −~ij.
Now we can define a “divergence” for every node i, denoted ~∇i ·~, such that

~∇i ·~ ≡
∑
j

~ij, (3.42)

and from this (and Eq. (3.16), Eq. (3.40)) follows the continuity equation

~∇i ·~ t = −δtρi, (3.43)

where we have introduced the notation δtρ ≡ ρt+1 − ρt.12

3.3.5.2 Diffusion

The definitions just presented do not rely on any properties of F except for the

stochasticity. The concept of the node density, Eq. (3.40), however, is especially

convenient for purely diffusive graphs, that is, for graphs in which every vertex

scatters any incoming current equally through all its bonds. In this situation, the

discrete-time propagation through a vertex i is given by

ρt+1
ij =

1

di

di∑
k=1

ρtki for all j, (3.44)

For such graphs, the V node densities, ρti, as defined in Eq. (3.40), contain the same

information as the cardA original components, ρtij, of the state vector, because if

an initial distribution is given a t = 0, from time-step t = 1 onward the outgoing

densities around vertex i all coincide and, as can easily be checked

ρtij =
1

di
ρti ∀j. (3.45)

12that is, we use ∇ for variation in “space” and δ for variation in time.
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Further restricting the generality of our digraph by imposing regularity, i.e. the

requirement that the coordination number is constant, the definition Eq. (3.41)

allows us to write ~ij = 1
d
(ρi − ρj), for a graph with coordination number d.

Defining a gradient on node variables13, as

~∇ijρ ≡ ρj − ρi, (3.46)

we can derive a discrete “Ficks law”,

~ij = −D~∇ijρ, (3.47)

with a “diffusion constant”

D ≡ 1

d
. (3.48)

In a manner similar to the definition, Eq. (3.42), of a discrete divergence of the

currents “around” a node i, one naturally defines the discrete Laplacian in i as

the divergence of the gradients around such node:

∇2
i ρ ≡ ~∇i · ~∇ρ (3.49)

=
d∑
j=1

~∇ijρ (3.50)

=
d∑
j=1

(ρj − ρi). (3.51)

From the Ficks law, Eq. (3.47), and the continuity equation, Eq. (3.43), we find

the diffusion equation (simply by summing Eq. (3.47) over j):

δtρi = D∇2
i ρ
t. (3.52)

13We note that the divergence is a vertex function, defined over a single index, ∇i, while the
gradient is a bond function (two indices). Also, we are using the obvious notation ∇ijk...f for
(∇f)ijk....
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3.3.5.3 Diffusion and reflection

Let us now consider a digraph with a fixed coordination number, d, and the time

evolution be driven by a Neumann classical propagator14, defined as

Fij,ki ≡
(

1− 4

d

)
δj,k +

(
4

d2

)
. (3.53)

Under this propagator the discrete time evolution is given by

ρt+1
ij =

(
1− 4

d

)
ρtji +

4

d2

∑
k

ρtki (3.54)

=

(
1− 4

d

)
ρtji +

4

d2
ρt+1
i , (3.55)

where we use Eq. (3.16) in the second line, resulting in something very different

from Eq. (3.44) or Eq. (3.45). In the present case we will have neither a Ficks law

(we cannot infer the currents from the node variables only, at least if we consider

only a single time-step. . . ) nor a Diffusion equation. We can however employ the

notation just introduced and derive an equation on the node variables.

The first step is to derive an equation analogous to Eq. (3.47), that is, currents

as function of node densities. For that we calculate ~ t+1
ij (subtracting ρt+1

ji from

Eq. (3.55)) and obtain

~ t+1
ij =

(
4

d
− 1

)
~ tij −

4

d2
~∇ijρ

t+1, (3.56)

as a “non-diffusive Fick’s law”, in the sense that we have related currents to den-

sity gradients. Incidentally, Eq. (3.56) becomes exactly the Fick’s law, Eq. (3.47),

for d = 4; however, as d tends to ∞ the “diffusion current”, − 4
d2
~∇ijρ

t, gets sup-

pressed and the current bounces back and forth (as one would expect from the

dominance of “back scattering” in the definition Eq. (3.53)), ~ t+1
ij = −~ tij +O(1

d
).

The second step is to calculate the divergence around the node i. Summing

Eq. (3.56) over j, we obtain

~∇i ·~ t+1 =

(
4

d
− 1

)
~∇i ·~ t −

4

d2
∇2
i ρ
t+1. (3.57)

14The reason for using this name will become clear in the next section.
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After applying the continuity equation Eq. (3.43), the result is

δt+1ρi =

(
4

d
− 1

)
δtρi +

4

d2
∇2
i ρ
t+1, (3.58)

which is our node-variable-only equation. Eq. (3.43) becomes Eq. (3.52) in the

case that d = 4, but otherwise it contains the extra time derivative on the r.h.s.

We need to modify the derivatives in Eq. (3.43) so that they have the same time

dependence as the Laplacian. For this purpose, we introduce now the “second

time-derivative”15,

δ2
t+1ρ ≡ δt+1ρ− δtρ (3.59)

= ρt+2 + ρt − 2ρt+1. (3.60)

Using this definition on Eq. (3.58) we obtain the final equality, :(
2− 4

d

)
δtρi −

(
1− 4

d

)
δ2
t ρi =

4

d2
∇2
i ρ
t, (3.61)

analogous to the diffusion equation Eq. (3.52) in the sense that it is a linear

equation in node variables that relates time variations to space variations, but it

contains an extra second derivative w.r.t. the time variable.

3.4 The digraph quantization

A necessary condition for a digraph to be quantizable in the way shown below

([55, 56]) is that every vertex be connected to the same number of incoming and

outgoing arcs, i.e.

dvin = dvout ≡ d for all v. (3.62)

We are interested in quantum symmetric digraphs (for which Eq. (3.62) is obviously

satisfied), therefore we will employ the notation that is familiar from the undirected

QGs, and use the word bond to refer to a pair of antiparallel arcs, and use the

symbol B to refer to the total number of bonds, i.e.

B ≡ cardA

2
. (3.63)

15This is a time Laplacian applied at t+ 1.
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Following Severini and Tanner, [55], to our symmetric digraph we associate a

quantum digraph by

1. assigning to every arc ij a positive definite length, lij, along which waves

propagate freely but constrained in direction to the ordering of the pair ij,

and

2. assigning to every vertex v a unitary, dv × dv “vertex scattering matrix” σv,

that will control the transitions from every incoming arc iv to every outgoing

one vj.

In concordance with the above, a (complex) probability amplitude aiv at the

starting end of iv will “propagate” through the arc and become aive
ιkliv at the

v end. The set of all such amplitudes incoming towards the vertex v, indexed

with cin = 1, . . . , dv, will propagate then to the outgoing arcs, vj, indexed with

cout = 1, . . . , dv, according to

acout =
dv∑

cin=1

σvcoutcin
eιklcinacin . (3.64)

The component σvcoutcin
, where the indices cout, cin are associated with vertices, say j

and i respectively, connected to v, represents the transition probability amplitude

for a wave coming through the arc iv to be scattered in v to the arc vj.

A unitary (di)graph scattering matrix will be constructed assembling the σv’s, in

the same fashion as we constructed the (di)graph propagator, F , starting from

vertex propagators, P v. For a total of V vertices in the graph:

P 1, . . . , P v, . . . , P V −→ F 1, . . . , F v, . . . , F V −→ F ≡
∑
v

F v

σ1, . . . , σv, . . . , σV −→,Σ1, . . . ,Σv, . . . ,ΣV −→ Σ ≡
∑
v

Σv.

It is worth mentioning, however, that if a classical propagator, F , is already asso-

ciated to the digraph, and the scheme above has to be consistent with the classical

dynamics, it is necessary that F be uni-stochastic and that is related to Σ by

Fij,ki = |Σij,ki|2 . (3.65)
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For example, the purely diffusive digraph treated in subsection 3.3.5.2 can be

quantized with scattering matrices

σvcoutcin
≡ e2πι

coutcin
dv

√
dv

(DFT), (3.66)

which are called discrete Fourier transform matrices. The strongly reflective di-

graph in subsection 3.3.5.3 is quantized with matrices

σvcoutcin
≡ 2

dv
− δcoutcin (Neumann), (3.67)

which we call Neumann matrices for reasons that become clear in the next chapter.

Regrouping all the existing arcs into a single vector with dimension 2B, for every

vertex scattering matrix σv we define

Σv
ij,kl ≡ δv,iδv,lΣ

v
vj,kv for every existing arcs, ij, kl and (3.68)

Σv
vj,kv ≡ σvcout(j)cin(v). (3.69)

Thus Σv acts on every existing arc, its components simply vanishing when two

arcs are not connected through v. The different vertex scattering matrices like Σv,

all act on the same space, therefore we can add them to form the 2B × 2B graph

scattering matrix Σ, as

Σ ≡
V∑
v=1

Σv, (3.70)

or, for existing arcs ij, kl,

Σij,kl ≡ δilσ
i
cout(j)cin(k). (3.71)

We can as well re-group the arc lengths, into a cardA × cardA (or 2B × 2B)

diagonal matrix L,

Lij,ij ≡ lij. (3.72)

The phases accumulated by the wave, with wave number k, traveling along the

arcs are contained in the matrix

T ≡ eιkL. (3.73)
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The vector of all probability amplitudes, ~a t at time t, propagates according to

~a t+1 = U(k)~a t, (3.74)

where

U ≡ ΣT, (3.75)

is the analogue to the “quantum map”, [33], in undirected QGs. In fact, in the

context of quantum symmetric digraphs, a usual quantum graph is the particular

case defined by the equality

lij = lji for all existing ij, (3.76)

which involve the corresponding symmetry in the matrices L and T .

The eigenstates of the QdG are defined as the 2B × 2B vectors ~a which are

stationary under Eq. (3.74), i.e.

~a = U(k)~a. (3.77)

Solutions of Eq. (3.77) exist for k values which satisfy the secular equation

det(1− U(k)) = 0. (3.78)

The equation Eq. (3.78) is central in the analytical treatment of the spectral

statistics on QGs (or QdGs), as it is used for the generation of the spectral density

(see below). We will use it for the field theoretical treatment of spectral averages

in chapters 4 and 5.

3.5 Periodic Orbit Theory of quantum digraphs

3.5.1 Incommensurability of arc-lengths and k-average

Since Kottos and Smilansky [3] pioneered the POT of quantum graphs, it has

been customary to to work with bond-lengths which are rationally independent,

or equivalently incommensurate. From our point of view, the main advantage16

of substituting a symmetric QdG for a QG, is precisely that we can push the

16We make use of it in chapters 4 and 5.
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rational independence further by giving different lengths to antiparallel arcs. If

~l is the 2B-dimensional vector of arc-lengths, and ~n ∈ Z2B, we will assume the

condition

~n ·~l = 0 ⇐⇒ ~n = ~0 ∈ Z2B. (3.79)

When one encounters k-dependent functions, f(k), they can often be written as a

function of the 2B phases,

f(k) ≡ F (kl1, . . . , kl2B) ≡ F
(

k~l
)
. (3.80)

Such is the case, for example, of the l.h.s. of Eq. (3.78), the spectral determinant.

Because F (~x) (~x having now independent components) is periodic in each of its

variables, with period 2π, we can write

F
(

k~l
)

= F
(

k~lmod2π
)
, (3.81)

where k~lmod2π ≡ k · (l1mod2π, . . . , l2Bmod2π). We have then a linear “flow” k~l,

parameterized by k, in the torus T 2B ≡ [0, 2π]2B. Thanks to the incommensura-

bility condition, Eq. (3.79), the flow is ergodic:

lim
K→∞

1

K

∫ K

0

f(k)dk =
1

(2π)2B

∫
T 2B

d~φF
(
~φ
)
. (3.82)

In order to show this, first we transform integrand on the l.h.s. of Eq. (3.82) as

f(k) =

∫
T 2B

d~φF
(
~φ
)
δ2π

(
~φ− k~l

)
(3.83)

=
1

(2π)2B

∫
T 2B

d~φF
(
~φ
) ∑
~p∈Z2B

eι~p·(
~φ−k~l) (3.84)

=
1

(2π)2B

∑
~p∈Z2B

(
e−ιk~p·

~l

∫
T 2B

d~φF
(
~φ
)
eι~p·

~φ

)
. (3.85)

The first two steps, Eq. (3.83), Eq. (3.84), obviously, are formal, while the third

step can be done under mild conditions on f which make the series in the r.h.s

of Eq. (3.85) convergent. The k-integration can be now easily carried out on the

r.h.s. of Eq. (3.85). The key fact is that, due to the rational independence of the
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lengths, Eq. (3.79),

lim
K→∞

1

K

∫ K

0

dke−ιk~p·
~l =

1 if ~p = ~0

0 otherwise,
(3.86)

from which we conclude that Eq. (3.82) is satisfied.

3.5.2 The density of states and the trace formula

The set of wave numbers, k1, k2, . . ., fulfilling Eq. (3.78) is the spectrum of the

QdG characterized by U(k). The density of states, DOS, is defined as

d(k) ≡
∞∑
s=1

δ(k− ks), (3.87)

where the sum is over the spectrum. Noticing that

det
(
ιU1/2 − ιU−1/2

)
= det

(
−ιU−1/2

)
det (1− U) (3.88)

= det(−U)−1/2 det (1− U) , (3.89)

is a real function of the wave number k, and vanishes iff k is in the spectrum,

one uses the logarithmic derivative of the r.h.s. of Eq. (3.89) to generate the delta

functions:

d(k) =
−1

π
lim
ε→0

Im
d

dk

(
log det (−U(k))−1/2 + log det (1− U(k + ιε)

)
(3.90)

=
1

2π
trL+

1

π
lim
ε→0

Re tr
U(k + ιε)

1− U(k + ιε)
L (3.91)

≡ 1

∆
+ δd(k). (3.92)

The result is as usual divided into Weil part, or mean DOS, and fluctuating part,

and is identical to the undirected QG ([33]). The mean level spacing (mls) is

∆ =
2π

trL
=

π

Bl̄
, (3.93)

with l̄ being the average length.

The fluctuating part of the DOS, as written in Eq. (3.91), was found by Kottos

and Smilansky [3]. This trace formula can be expressed as a sum over orbits, i.e.
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closed paths made of connected arcs. Expanding the fraction in Eq. (3.91),

δd(k) =
1

π
Re

∞∑
n=1

LU(k + ιε)n (3.94)

=
1

π
Re
∑
p

Lp

∞∑
r=1

(
Ape

ι(k+ιε)Lp
)r
, (3.95)

where the outermost sum in Eq. (3.95) is over primitive orbits, i.e., orbits which

cannot be written as repetitions of a shorter orbit, and the innermost one is a sum

over repetitions. Lp is the sum of the arc-lengths involved in the primitive orbit p

(it arises from the fact that the orbit can be started from any of its arcs, and every

such starts comes with a length given by L in Eq. (3.94)). Ap is the amplitude of

p, given by the product of the graph scattering matrix components associated to

every arc-to-arc transmission along the orbit. The details are identical as for QGs

(see [4] or [33]).

Let us mention a little detail: while Bl̄ is the total length of an undirected QG

with B bonds, it is only half the total length of a QdG with the same number, B,

of pairs of (antiparallel) connections. This is consistent, because one can view a

symmetric QdG as a QG in which one would have split every bond into two arcs,

one for every direction, each with a length similar to the original bond. Therefore

one could convert our QdG model into a QG (making lij = lji for all connections)

and the present expressions would all be maintained, with the same meaning for

the symbols. In particular, the mean level spacing remains unchanged.

3.5.3 The spectral form factor and diagonal approximation

Let us consider the spectral sequence k1, k2, . . . as having average spacing ∆ = 1

(after a re-scaling, as shown in 2.2.2). The spectral form factor associated with

this sequence is given, for moderate bond-lengths fluctuations, by [33]17

K(τ =
n

2B
) = Kn (3.96)

=
1

2B
〈trU(k)ntrU(k)†n〉k, (3.97)

17This quantity is the spectral form factor associated to the density of eigenphases of U(k).
The spectral statistics and the eigenphase statistics coincide [33].
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where 〈. . .〉k = limK→∞
1
K

∫ K
0

(. . .)dk. The form factor can be expressed as a double

sum over periodic orbits. For small τ , self-crossing orbits are negligible (this is the

diagonal approximation) and the one-loop orbits contribution is obviously given

by

Kdiag
n =

n

2B
trF n (3.98)

= τtrF τ2B, (3.99)

where F is the Perron-Frobenius, or classical propagator, associated to the graph,

Fij,ki = |Σij,ki|2. (3.100)

From Eq. (3.99) and Eq. (2.41), it is clear that short time universality, expected

in the large size limit, relies on

lim
B→∞

trF τ2B = 1, (3.101)

which, as noticed by Tanner [36], it is not equivalent to mixing (see 3.3.4) because,

importantly, the limit B → ∞ acts on F itself, not just on the exponent. If the

spectral gap, i.e. the denominator in the r.h.s. of Eq. (3.32) remains constant

as the dimensionality of F increases, then clearly the reasonings in 3.3.4 can be

applied and Eq. (3.101) holds. However, if this is not the case, the effect the

eigenvalues inside the unit circle needs to be taken into account. Let us introduce

the notation

trF ≡ 1 + tr∗F, (3.102)

where

tr∗F =
2B−1∑
a=1

fa, (3.103)

can be read as “trace without the contribution of the eigenvalue 1” (we have

already established the convention |f2B−1| ≤ . . . ≤ |f3| ≤ |f2| ≤ |f1| < 1). The

effect of the eigenvalues inside the unit circle on the l.h.s. of Eq. (3.101) is given

by

|tr∗F τ2B| ≤ tr∗|F τ2B| ≤ 2B|f1|τ2B. (3.104)
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If |f1| approaches 1 (in the B → ∞ limit) as |f1| ∼
(
1− 1

Bα

)
, we can only be

certain that tr∗F → 0, and hence that Eq. (3.101) holds, if

2B

(
1− 1

Bα

)2Bτ

= 2B

(
1− 1

Bα

)2BατB1−α

(3.105)

∼ 2Be−2τB1−α
(3.106)

→ 0, (3.107)

for which it is necessary that 0 ≤ α < 1. In order words, a sufficient condition

for Eq. (3.101) is that the spectral gap decrease, in the thermodynamic limit, not

faster than

1− |f1| ∼
1

Bα
, 0 ≤ α < 1. (3.108)

Tanner conjectured that the inequality in Eq. (3.108) is a sufficient universality

criterion, i.e. that it guarantees large-size RMT behaviour beyond the diagonal

approximation.



Chapter 4

Field theory of the full Neumman

digraph

4.1 Introduction

As we mentioned in the introductory chapter 1, Gnutzmann and Altland ([1, 2])

managed to map exactly the spectral average over the two point function of an

individual quantum graph onto a super-symmetric nonlinear σ-model of Efetov

type ([23]). It is well known that the uniform mode of this type of field theory

produces the universal results predicted by RMT, and the problem of finding

conditions for universality translates into finding conditions for the stability of the

fluctuations around such mode. They found that such stability requires that1

lim
B→∞

1

B2
tr∗
(

1

1− F

)2

= 0. (4.1)

This equation is more restrictive than Eq. (3.101), as an analysis of the effect of

the spectrum of F on l.h.s. of Eq. (4.1) leads to a more severe condition than

Tanner’s, Eq. (3.108), on the spectral gap. Specifically [2], α < 1 is enough for

Eq. (4.1) only if the number of eigenvalues of F approaching 1 like 1 − c
Bα

is

independent of B, as can be easily checked on Eq. (4.1) by power counting. In

the worst case, the number of such modes is “extensive” (linear in the system size

B), therefore the general condition for the validity of Eq. (4.1) is α < 1
2

(again, by

simple power counting).

1We remind the reader that tr∗ means “trace without the eigenvalue 1”.

38
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The Full Neumann graph, FNG, defined as a full graph with Neumann vertex

scattering matrices (as in Eq. (3.67)) at the nodes, does not fulfil Gnutzmann

and Altland criterium Eq. (4.1) (in fact, a careful look at the expansion of the

action of the field theory in the nearly massless modes shows that the Gaussian

approximation that leads to Eq. (4.1) is invalid). This result goes against the

common belief that the spectral statistics of the FNG is universal (in the B →∞
limit) [37].

It was our aim to reconcile these two perspectives. For that reason we have

investigated the full Neumann digraph, FNdG, (which is “full” according to the

definitions in section 3.2, page 18). Breaking the symmetry between the lengths of

every two antiparallel arcs simplify considerably the field theory, while retaining

the main feature which is that Eq. (4.1) is not satisfied. The full Neumann classical

propagator depends only on the topology and the Neumann scattering matrices.

In section 4.2, we restate the scheme developed by Gnutzmann and Altland, i.e. we

derive the field-theoretical representation of the 2-point function in a non graph-

specific manner. After introducing some notation for the field theory in section

4.3, and deriving some simple algebraic results results regarding the Neumann

graph scattering matrix and classical propagator (for example the eigen-mode

decomposition of F ) in section 4.4, in section 4.5 we concentrate specifically on

the FNdG, describing the problem of the massive modes and then showing our

attempt to solve it.

4.2 General field theory of the 2-point correla-

tion function

4.2.1 Derivation of the sigma model

Our object of interest is the two point correlation function of the fluctuating

density of states, i.e.

R(s) ≡ lim
K→∞

∆2

K

∫ K

0

δd(k +
s

2
∆)δd(k − s

2
∆)dk. (4.2)
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Following Gnutzmann and Altland [2] we re-write the fluctuating DOS (second

summand in the r.h.s. of Eq. (3.91)) as

δd(k) =
−1

2π
lim
j→0

Im
d

dj

det (1− U(k+ + j))

det (1− U(k+ − j))
, (4.3)

and express the two point function as

R(s) =
∆2

8π2
lim
j∓→0

∂2

∂j+∂j−
Re lim

K→∞

1

K

∫ K

0

ζ(s, j+, j−)dk, (4.4)

with the generating function

ζ(s, j+, j−) =
det(1− U(k+ + pf+))

det(1− U(k+ + pb+))

det(1− U(k+ + pf−))∗

det(1− U(k+ + pb−))∗
. (4.5)

The sources, pb± ≡ (±s/2 − j±)∆, pf± ≡ (±s/2 + j±)∆, through the j-terms,

prevent the determinants in the denominator canceling with those in the numerator

of the r.h.s Eq. (4.5), i.e. they break super-symmetry in the field theory jargon that

we will use below. The s-terms prevent the determinants from canceling “in the

horizontal direction”, i.e. through coupling a phase with its complex conjugate,

i.e. they break advance-retarded symmetry. The equation Eq. (A.21) is the tool

we need in order to write the generating function Eq. (4.5) as a following Gaussian

super -integral:

ζ(s, j+, j−) =

∫
d(ψ̃+, ψ+)e−ψ̃+(1−U+)ψ+

∫
d(ψ̃−, ψ−)e−ψ̃−(1−U†−)ψ− , (4.6)

where we have defined super -vectors,

ψ± ≡

(
~s±

~χ±

)
bf

ψ†± ≡
(
~s †± , ~χ

†
±

)
bf
, (4.7)

and super -matrices,

U± ≡

(
U(k+ + pb±) 0

0 U(k+ + pf±)

)
bf

, (4.8)

where the letters bf indicate that these objects are expressed in boson-fermion

structure, see A. The integral over the bosonic (complex numbers) variables pro-

duces the inverse determinant of the boson-boson matrix blocks, while the integral

over fermionic (Grassmann numbers) variables produces the determinant of the
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fermion-fermion matrix block.

The spectral average will be performed over the integrand of Eq. (4.6). Assum-

ing the incommensurability of arc-lengths, we use Eq. (3.82) and substitute this

average by an integral over independent phases on every arc:

lim
K→∞

∫ K

0

dk

K
eψ̃+U+ψ++ψ̃−U

†
−ψ− ≡

2B∏
i=1

∫ 2π

0

dφi
2π

eLi(φi), (4.9)

where, in the l.h.s, we have selected the phase-dependent exponent from Eq. (4.6),

and in the r.h.s. we define

Li(φi) ≡

(
(ψ†+Σ+)b,i, (ψ

†
+Σ+)f,i, s

∗
−,i, χ

∗
−,i

)

eιφi 0 0 0

0 eιφi 0 0

0 0 e−ιφi 0

0 0 0 e−ιφi




s+,i

χ+,i

(Σ−ψ−)b,i

(Σ−ψ−)f,i

 ,

(4.10)

where Σ± ≡ ΣeiLp± . For every one of the integral factors in Eq. (4.9), follow-

ing Gnutzmann and Altland [2], one can use the color-flavor transformation [40],

which substitutes the highly fluctuating phases by smoother variables (to be de-

fined below) at the cost of coupling +/− fields components (decoupled in Eq. (4.6)

and Eq. (4.10)). Specifically,∫ 2π

0

dφi
2π

eLi(φi) =

∫
D(Zi, Z̃i)e

Li(Zi,Z̃i), (4.11)

where

Li(Zi, Z̃i) ≡

(
(ψ†+Σ+)b,i, (ψ

†
+Σ+)f,i, s

∗
−,i, χ

∗
−,i

)


0 0 Zi,bb Zi,bf

0 0 Zi,fb Zi,ff

Z̃i,bb Z̃i,bf 0 0

Z̃i,fb Z̃i,ff 0 0




s+,i

χ+,i

(Σ−ψ−)b,i

(Σ−ψ−)f,i

 .

(4.12)

Each of the 2B pairs of 2× 2 matrices, Zi, Z̃i, are restricted so that Z̃i,bb = Z∗i,bb

and Z̃i,ff = −Z∗i,ff , while the Grassmann components are independent. On the
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other hand, ∫
D(Zi, Z̃i) ≡

∫
d(Zi, Z̃i)sdet(1− ZiZ̃i) = 1, (4.13)

and

|Zbb|2 < 1. (4.14)

Comparing the matrices in the r.h.s. of Eq. (4.10) and the r.h.s. of Eq. (4.12),

one can see the effect of the transformation Eq. (4.11) in coupling super-vector

components which where previously not connected. Particularly, now complex

Gaussian variables, such as s+,i, are coupled to anti-commuting variables, such as

(ψ†+Σ+)f,i, through Z, Z̃ matrix components such as Z̃i,bf . Thus we need now the

full generality of Eq. (A.21) in order to integrate the super-vector, ψ, ψ†, and write

∫
d(ψ̃+, ψ+, ψ̃−, ψ−, ) exp

(
−(ψ̃+, ψ̃−)

(
1 −Σ+ZΣ†−

−Z̃ 1

)(
ψ+

ψ−

))
=

1

sdet(1− Σ+ZΣ†−Z̃)
, (4.15)

where Z, Z̃ are now 2 · 2B super-matrices which are diagonal in the space of arcs

(“topological space”). To sum up, we have so far performed the following (exact)

transformation:

lim
K→∞

1

K

∫ K

0

ζ(s, j+, j−)dk =

∫
D(Z, Z̃)

sdet(1− Σ+ZΣ†−Z̃)
, (4.16)

where the restrictions on the Z, Z̃ matrices mentioned above parameterize, as

shown by Zirnbauer [40], the Efetov’s σ-model manifold of unitary symmetry.

4.2.2 Saddle-point approximation and universality

We employ str lnA = ln sdetA in order to write the the r.h.s. of Eq. (4.16) as∫
D(Z, Z̃)

sdet(1− Σ+ZΣ†−Z̃)
=

∫
d(Z, Z̃)e−S(Z,Z̃;s,j+,j−), (4.17)

where we have absorbed the factor sdet(1− ZZ̃) in the action

S = −str ln(1− ZZ̃) + str ln(1− Σ+ZΣ†−Z̃). (4.18)
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With the aim to find a saddle point, one usually linearizes the action, S, with

respect to the sources. First, we expand Σ± :

Σ± = Σ + iΣLp± −
1

2
ΣL2p2

± + . . . (4.19)

' Σ + iΣl̄
(
±s

2
− σbf

3 j±

)
∆ (4.20)

= Σ + iΣ
π

B

(
±s

2
− σbf

3 j±

)
(4.21)

where we have made the substitution La ≡ l̄ for all arcs a, as done by Gnutzmann

and Altland, because we are not interested in the effect of arc-lengths fluctuations.

We have also retained only those terms which are linear in the frequency, s, because

every power of s ∼ 1 comes with a power of 1/B → 0, or linear in the super-

symmetry breaking source j±, because terms proportional to j2
+ or to j2

− will be

eliminated by the limit j± → 0 in Eq. (4.4) (only exponents proportional to j+,

j− or j+j− can survive at the end). The action, S, is now written as the sum a

“kinetic” part and a “source action”,

S = Sk + Sp, (4.22)

with the “kinetic” part being

Sk = str ln(1− ΣZΣ†Z̃)− str ln(1− ZZ̃), (4.23)

and the source term being

Sp = istr

(
p+

ΣZΣ†Z̃

1− ΣZΣ†Z̃
− p−

Z̃ΣZΣ†

1− Z̃ΣZΣ†

)
. (4.24)

In the source action, we have neglected j± terms which would be proportional to

j+j−
B2

strΣσbf
3 Zσ

bf
3 Σ†Z̃

1

1− ΣZΣ†Z̃
, (4.25)

and
j+j−
B2

strΣσbf
3 ZΣ†Z̃

1

1− ΣZΣ†Z̃
ΣZΣ†σbf

3 Z̃
1

1− ΣZΣ†Z̃
. (4.26)

The reason is that the super-trace is only order B and cannot compensate the

1/B2 factor2.

2In the case of the uniform Z, Z̃ fields which make up the main contribution to the integral,
one can see upon deriving with respect to j±, that one deals with B integrals (single trace) for
the terms that we neglect, versus B2 integrals (product of traces) for the terms that we do not
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The kinetic action grows with B due to the super-trace, while the source term is

of order 1 due to p± ∝ 1
B

, thus one finds the saddle point of the action looking for

the extremum of the kinetic part only. Varying the kinetic action with respect to

Z, Z̃ and equating it to zero, one easily finds the saddle point solution, Y, Ỹ , as

the uniform Z, Z̃ distribution, i.e.

Yi = Y, Ỹi = Ỹ for all arcs i. (4.27)

For the validity of the saddle point approximation, it is necessary that the Gaussian

contribution of the non-uniform modes to R, Eq. (4.4), vanishes in the limit B →
∞, that is3

lim
B→∞

lim
j±→0

∂2

∂j+∂j−

∫
d(Z, Z̃)estr∗(ZZ̃−ΣZΣ†Z̃+p+ΣZΣ†Z̃−p−Z̃ΣZΣ†) = 0, (4.28)

where the super-trace str∗ is understood not to include the 0-mode (uniform field).

As shown by Gnutzmann and Altland, the above limit amounts to the condition

(we do the calculation in appendix B)

lim
B→∞

1

B2
tr∗
(

1

1− F

)2

= 0. (4.29)

In section 4.5 we show how this condition is not met by the full Neumann digraph,

and show an attempt to derive universality through a different treatment of the

field theory.

neglect, while we need to compensate for a 1/B2 factor in both cases. We touch upon this issue
in more detail in the next chapter (subsection 5.2.3).

3 The complete Gaussian contribution to R can be written as

lim
j±→0

(∫
d(Y, Ỹ )estrp+Y Ỹ−strp−Ỹ Y

∂2

∂j+∂j−

∫
d(Z, Z̃)estr∗(ZZ̃−ΣZΣ†Z̃+p+ΣZΣ†Z̃−p−Z̃ΣZΣ†)+∫

d(Z, Z̃)estr∗(ZZ̃−ΣZΣ†Z̃+p+ΣZΣ†Z̃−p−Z̃ΣZΣ†) ∂2

∂j+∂j−

∫
d(Y, Ỹ )estrp+Y Ỹ−strp−Ỹ Y

)
.

The integrals themselves produce 1 under the j± → 0, as can be seen, for example from the r.h.s.
Eq. (B.9) in page 123, while integrals that are derived w.r.t only one source produce 0 under
the limit (as can be inferred as well from the equations in appendix B) and are not considered.
The second summand above produce the universal result, therefore the first one is then the one
to investigate.
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4.3 The Q/Q notation.

It is convenient to introduce

Q ≡ V ΛV −1 ; Q ≡ VΛV−1 (4.30)

with

V =

(
1 Z

Z̃ 1

)
; V =

(
1 ΣZ

Σ†Z̃ 1

)
; Λ ≡

(
1 0

0 −1

)
(4.31)

Defining also

D =

(
1− Σ 0

0 1− Σ†

)
(4.32)

the following equalities can easily be checked :

VV −1 =1 +
1

2
DΛ(Q− Λ), (4.33)

V V−1 =1 +
1

2
D†Λ(Q− Λ). (4.34)

One can use these identities together with

Sk = str lnVV −1 = −str lnV V−1, (4.35)

in order to re-write the kinetic term as

Sk = str ln

(
1 +

1

2
DΛ(Q− Λ)

)
(4.36)

= −str ln

(
1 +

1

2
D†Λ(Q− Λ)

)
. (4.37)

A source term can usually be written, for example, as

Sp = str pΛ(Q− Λ), (4.38)

where p is some super-symmetry breaking matrix that depends on the specific

problem.

This notation does not rely at all on the structure of the matrices Z, Z̃, and can

be employed in other settings where Zirnbauer’s method is used in dealing with

phase averages, for example in [39], but to our knowledge it has not been used so

far.
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4.4 Preliminary remarks

4.4.1 Neumann scattering matrix

The full Neumann graph, as well as the full Neumann symmetric digraph, has a

very particular graph scattering matrix Σ (by which we mean Eq. (3.71)). It is

trivially obtained from the vertex scattering matrices Eq. (3.67). It is convenient

to distinguish two parts according to whether or not they have size-dependent

components:

Σ ≡ T−R. (4.39)

The “reflection probability amplitude”, R, is size independent, this is the rea-

son why we consider it separately from “transmission amplitude”, T, which is

“isotropic”4 in the sense that it does not distinguish between different links and

decreases with the graph-size as 1/V . According to our vertex notation,

Rij,kl =δilδjk(1− δij)Rij,ji (4.40)

Tij,kl =δil(1− δij)(1− δik)Tij,ki, (4.41)

where the non-vanishing components read

Rij,ji =1 (4.42)

Tij,ki =
2

V − 1
. (4.43)

From the definitions Eq. (4.40) one easily shows that

T = RTTR (4.44)(
1

2
TR

)2

=
1

2
TR. (4.45)

For further use, it is convenient to define the following projector:

N ≡ 1

2
TR, (4.46)

4In reality T does have reflexive component, with the same size dependent contribution as
any other component.
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whose non-vanishing components are

Nik,ij =
1

V − 1
. (4.47)

Due to N2 = N , for any matrix A

(NA)nN = (NAN)n. (4.48)

From Eq. (4.44) and Eq. (4.46), we have N = NT thus N can be written as a the

sum of orthogonal projectors,

N =
V∑
i=1

~vi ⊗ ~vTi , (4.49)

where

(~vi)kj ≡ δik(1− δij)(~vi)ij. (4.50)

For any arc-diagonal matrix A

(NAN)ij,ik =
∑
l 6=i

Nij,ilAilNil,ik (4.51)

=

∑
l 6=iAil

V − 1

1

V − 1
(4.52)

≡ AiNij,ik, (4.53)

i.e. N performs averages over outgoing arcs from a given bond, according to which

we have defined (always referring to arc-diagonal matrices)∑
l 6=iAil

V − 1
≡ Ai. (4.54)

From Eq. (4.48) and the above definition, for arc-diagonal matrices

((NA)nN)ij,ik = AniNij,ik, (4.55)
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holds, and inside a trace

str(NA)n = str(NAN)n (4.56)

= str
V∑
i=1

∑
j 6=i

AniNij,ij (4.57)

= str
V∑
i=1

Ani
∑
j 6=i

Nij,ij (4.58)

= str
V∑
i=1

Ani . (4.59)

In Eq. (4.57) we have “unfolded” the str from Eq. (4.56), which involves a usual

trace over the space of arcs and a super-trace over any other structure (generally

Bose-Fermi and Advanced-Retarded), so that str in Eq. (4.57) and followings refers

to only non topological structures. The property Eq. (4.59) is the one that we need

in the remaining of the chapter. In practice, it is used in power series of functions

of matrix-variables, such as

strf(NA) = str
∞∑
n=0

f (n)(0)

n!
(NA)n (4.60)

=
∞∑
n=0

f (n)(0)

n!
str(NA)n (4.61)

=
∞∑
n=0

f (n)(0)

n!
str

V∑
i=1

Ani (4.62)

= str
V∑
i=1

∞∑
n=0

f (n)(0)

n!
Ani (4.63)

= str
V∑
i=1

f(Ai) (4.64)

4.4.2 Mode decomposition of relevant operators

The V (V − 1)-dimensional space of arcs can be in principle decomposed in two

types of subspaces:



Chapter 4. Field theory of the full Neumman digraph 49

• the subspace of “traceless” modes, that we denote by φ, and has dimensions

(V − 1)(V − 2)− 1. What we call “tracelessness” reads, for every node i :

∑
j

φij = 0 and (4.65)

∑
j

φji = 0. (4.66)

This space is further subdivided into a space of “symmetric” modes, φ+,

with (V−1)(V−2)
2

− 1 components, and a (V − 1)(V − 2)-dimensional space of

“antisymmetric” modes, φ−. They have the properties

φ±ji = ±φ±ij. (4.67)

• the subspace of “tracefull” modes, ψ, with dimension 2(V − 1) + 1. These

have the form

ψij = ai + bj, (4.68)

and we consider three subspaces, ψ0, ψ
+, ψ−, which are, respectively, the

uniform mode, and the two (V − 1)-dimensional spaces with the properties

ψ+
ij = ai, (4.69)

ψ−ij = bj, (4.70)

and the restrictions
V∑
i

ai =
V∑
i

bi = 0. (4.71)

In order to obtain the spectrum of the operators Σ and F , we analyze their ac-

tion onto these four eigenspaces. The traceless spaces are eigenmodes of these

operators, while the tracefull spaces are not, but the remaining eigenspaces can

be written in terms of those. Specifically, we will find two (V − 1)-dimensional

eigenspaces with the form

ψ̃±ij = ai + f±(aj), (4.72)

f+, f− being some linear functions.
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4.4.2.1 Eigenvalues of the quantum scattering matrix, Σ

The graph scattering matrix acts on the traceless modes according to

(Σφ±)ij = −Rij,jiφ
±
ji +

∑
k 6=i

Tij,kiφ
±
ki (4.73)

= ∓φ±ij, (4.74)

where we have used the definition of the Neumann graph scattering matrix, Eq. (4.39),

for Eq. (4.73). From the tracelessness property, Eq. (4.65), follows that Tφ± = 0

and hence Eq. (4.74). Therefore we have the eigenvalues λ±φ = ∓1, with degener-

acy (V − 1)(V − 2)/2− 1 and (V − 1)(V − 2)/2, respectively.

In order to find the non-uniform, tracefull modes, ψij = ai + bj with properties

Eq. (4.71), as well as their corresponding eigenvalues, we solve the eigenequation

(Σψ)ij = λψψij, (4.75)

by working out the effect of Σ on such modes:

(Σψ)ij = −Rij,jiψji +
∑
k 6=i

Tij,kiψki (4.76)

= −aj − bi +
2

V − 1

∑
k 6=i

(ak + bi) (4.77)

= −aj + bi +
2

V − 1

∑
k 6=i

ak (4.78)

= −aj + bi −
2

V − 1
ai. (4.79)

For Eq. (4.79) we have applied the condition Eq. (4.71). Hence, from Eq. (4.75)

and Eq. (4.79),

aj − bi +

(
2

V − 1
− λψ

)
ai − λψbj = 0. (4.80)

Summing Eq. (4.80) over i and applying again Eq. (4.71), we obtain

bj =
1

λψ
aj for all j. (4.81)

Summing Eq. (4.80), this time in j, we have

λ2
ψ −

2

V − 1
λψ + 1 = 0. (4.82)
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As a result, the eigenvalue reads

λ±ψ =
1

V − 1
± ι

√
1− 1

(V − 1)2
(4.83)

'± ι+
1

V − 1
∓ ι 1

2(V − 1)2
+ . . . (4.84)

and Eq. (4.72) takes the form

b± =

(
1

V − 1
∓ ι

√
1− 1

(V − 1)2

)
a (4.85)

=∓ ιa+

(
1

V − 1
± ι 1

2(V − 1)2
+ . . .

)
a. (4.86)

4.4.2.2 The eigenvalues of the classical propagator, F

The components of the Perron-Frobenius operator are defined as Fij,ki = |Σij,ki|2,

hence from Eq. (4.39)

F =

(
1− 4

V − 1

)
R− 2

V − 1
T (4.87)

For the traceless modes, Tφ±=0, hence

(
Fφ±

)
ij

= ±
(

1− 4

V − 1

)
φ±ij, (4.88)

i.e.

λ±φ = ±
(

1− 4

V − 1

)
. (4.89)

The Full-Neumann classical propagator acts on ψ’s as

(Fψ)ij =

(
1− 4

V − 1

)
Rij,jiψji +

2

V − 1

∑
k 6=i

Tij,kiψki (4.90)

=

(
1− 4

V − 1

)
(aj + bi) +

4

(V − 1)2

∑
k 6=i

(ak + bi) (4.91)

=

(
1− 4

V − 1

)
aj + bi +

4

(V − 1)2

∑
k 6=i

ak (4.92)

=

(
1− 4

V − 1

)
aj + bi −

4

(V − 1)2
ai, (4.93)
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where we have followed the exact same steps as in the preceding subsection. Using

Eq. (4.93) in the eigen-equation

(Fψ)ij = λψψij, (4.94)

we obtain (
1− 4

V − 1

)
aj + bi −

(
λψ +

4

(V − 1)2

)
ai − λψbj = 0. (4.95)

Summing Eq. (4.95) on i we have

b =
1− 4

V−1

λψ
a, (4.96)

and summing in j

λ2
ψ +

(
2

V − 1

)2

λψ +
4

V − 1
− 1 = 0. (4.97)

The solutions are

λ±ψ =
−2

(V − 1)2
±

√
1− 4

V − 1
+

4

(V − 1)4
' ±1∓ 2

V − 1
+ . . . (4.98)

and

b '
(
±1∓ 2

V − 1
+ . . .

)
a (4.99)

4.5 Nonlinear σ-model action for the FNdG

4.5.1 Analysis of the Gaussian approximation

We know, from [2] (as well as subsection 4.2.2 and appendix B), that the validity

of the saddle point approximation to the field theory of the two point function

requires

lim
B→∞

1

B2
tr∗
(

F

1− F

)2

= 0. (4.100)

However, we also know (see 4.4.2.2) that for the FNdG a ((V − 1)(V − 2)/2− 1)-

degenerate eigenspace of traceless, symmetric modes, φ+, of F exists, with eigen-

values λ+
φ = (1 − 4/(V − 1)). The contribution arising from φ+-modes clearly



Chapter 4. Field theory of the full Neumman digraph 53

makes the limit in the l.h.s. of Eq. (4.100) remain constant, since at infinite size,

the trace is

tr∗
(

F

1− F

)2

∼ V 2

2

(
V

4

)2

=
V 4

32
. (4.101)

This result contradicts the evidence pointing towards universality of the full Neu-

mann graph. One could argue that the Eq. (4.100) being a constant is not the worst

possible case (the limit could diverge5), but the reality is worse. The numerical

results on the level spacing distribution (see chapter 5), despite not being conclu-

sive about the general convergence of the FNdG towards universality, do seem to

show that level repulsion exists beyond doubt, while a finite deviation from R2(s)

at s = 0 would say otherwise (in the s→ 0 limit, the spacing distribution and the

two point function are equivalent, as can be inferred from Eq. (2.29)).

Moreover, restricting the kinetic action to symmetric modes, and expanding it

beyond 2nd order, the 1/V masses of traceless modes seem to completely invalidate

the Gaussian approximation. The kinetic action, restricted to symmetric modes,

can be easily re-written in terms of the N matrix, as,

Sk = −str ln(1− ZZ̃) + str ln(1− (T−R)Z(RTR−R)Z̃) (4.102)

= −str log(1− ZZ̃) + str log(1− (1− 2N)Z(1− 2N)Z̃), (4.103)

where we have used RZ = ZR. The Gaussian approximation reads6,

S
(2)
k = 4str(NZ −NZN)Z̃ (4.104)

=
4

V − 1
str ~̃Z(1−N)~Z (4.105)

5Such is the case of the Neumann star graph, for which one can easily show that the l.h.s. of
Eq. (4.100) diverges as B.

6This can be compared with a “well behaved” universal graph, the DFT full graph, for which

S
(2)
k = str ~̃Z(1−N)~Z. The extensive subspace of traceless modes, i.e. modes such that N ~Z = 0,

has finite masses in the DFT case, while being almost massless in the Neumann case, Eq. (4.104).



Chapter 4. Field theory of the full Neumman digraph 54

The mass∼ 1
V

of the traceless modes makes Z contribute up to orders
√
V . Further

expanding Eq. (4.103), the nth term reads7, up to constants a, b, c, . . .,

S
(n)
k = str

(
a(N(ZZ̃)n +N(Z̃Z)n) (4.106)

+ b1(NZNZ̃(ZZ̃)n−1 +NZ̃NZ(Z̃Z)n−1) (4.107)

+ b2(NZZ̃N(ZZ̃)n−1 +NZ̃ZN(Z̃Z)n−1 + . . . (4.108)

+ c1,1(NZNZ̃N(ZZ̃)n−1 +NZ̃NZN(Z̃Z)n−1) (4.109)

+ c1,2(NZNZ̃ZNZ̃(ZZ̃)n−2 +NZ̃NZZ̃NZ(Z̃Z)n−2) + . . . (4.110)

+ . . . (4.111)

+
4n

n
(NZNZ̃)n

)
. (4.112)

The str runs over V (V − 1) components, each of which is of order ∼ 1
V−1
×

( order of ZZ̃). The order of ZZ̃ is ∼ V as determined by the masses (gaussian

approximation). Therefore

S
(n)
k ∼ V n−1, (4.113)

which grows with n, completely invalidating the expansion.

This discussion suggests studying the action, restricted to symmetric modes, in or-

der to find alternative ways to recover universality without relying on the Gaussian

expansion around the uniform sector of the σ-model manifold.

4.5.2 FNdG σ-model action restricted to symmetric modes

4.5.2.1 Kinetic term

We recall from Eq. (4.103) that the kinetic action restricted to symmetric modes

reads

Sk = −str ln(1− ZZ̃) + str ln(1− (1− 2N)Z(1− 2N)Z̃), (4.114)

7However, due to the tracelessness condition, NZN = NZ̃N = 0 and many of the summands
would vanish (Eq. (4.107), Eq. (4.109)...).
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and consider 1− 2N to be an effective scattering matrix for the action. Applying

the Q formalism, (page 45), we start with

Sk = str log

(
1 (1− 2N)Z

(1− 2N)Z̃ 1

)(
1 Z

Z̃ 1

)−1

, (4.115)

where the argument of the logarithm plays the role of the matrix product in the

l.h.s. of Eq. (4.33), and we introduce a matrix D analogous to the one in Eq. (4.32)

D =

(
1− (1− 2N) 0

0 1− (1− 2N)

)
= 2N

(
1 0

0 1

)
. (4.116)

The action, with the format Eq. (4.36), reads

Sk =str ln (1 +NΛ(Q− Λ))

=− str
∞∑
n=1

1

n
(−NΛ(Q− Λ))n. (4.117)

Due to the fact that Q is an arc-diagonal matrix, we can use the result Eq. (4.64)

directly and write the action

Sk = str
V∑
i=1

ln

(∑
j 6=i

Qij

)
(4.118)

4.5.2.2 Source term

The full action of the model now reads

str ln (1 +NΛ(Q− Λ) + (1− 2N)ΦΛ(Q− Λ)) ≡ Sk + SΦ, (4.119)

with the linearized source action

SΦ =strΦ(1− 2N)Λ(Q− Λ)
1

1 +NΛ(Q− Λ)
(4.120)

=strΦ(1− 2N)D
1

1 +ND
(4.121)

=S1 − 2S2. (4.122)

We define D = Λ(Q − Λ) = ΛQ − 1, which is obviously arc-diagonal, as well as

the matrix Φ, which contains the frequency dependence and the super-symmetry
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breaking j±:

Φ =
−ιπs
4B

+
ιπ

2B

(
j+ 0

0 j−

)
AR

σbf
3 . (4.123)

Applying the same formalism as before to S1

S1 =strΦD
1

1 +ND
(4.124)

=strΦ
V∑
i=1

∑
j 6=i

Dij − str
V∑
i=1

1

V − 1

∑
j 6=i

(DΦD)ij
1

1 + 1
V−1

∑
j 6=iDij

, (4.125)

we see that this part of the action contain the “standard” source term, i.e. the

one proportional to strΦΛQ. On the other hand, we have for S2

S2 =strΦND
1

1 +ND
(4.126)

=strΦ
V∑
i=1

1
V−1

∑
j 6=iDij

1 + 1
V−1

∑
j 6=iDij

, (4.127)

hence the entire source action reads

S1 − 2S2 =strΦ
V∑
i=1

∑
j 6=i

Dij (4.128)

−str
V∑
i=1

1

V − 1

∑
j 6=i

((DΦD)ij + 2ΦDij)
1

1 + 1
V−1

∑
j 6=iDij

. (4.129)

Let us recover now the Q-notation. On the one hand

1

1 + 1
V−1

∑
j 6=iDij

=
V − 1

Λ
∑

j 6=iQij

, (4.130)

while on the other

∑
j 6=i

((DΦD)ij + 2ΦDij) =
∑
j 6=i

(ΛQijΦΛQij − Φ + 2ΦΛQij − (ΛQijΦ + ΦΛQij)) .

(4.131)

Therefore, as an alternative notation to the r.h.s. of Eq. (4.120), we can write

SΦ = strΦ(ΛQ− 1) + str
V∑
i=1

∑
j 6=i

(ΛΦ−QijΛΦQij)
1∑

j 6=iQij

. (4.132)
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In terms of power counting only, one sees that, due to the denominator, the non-

standard term would be subdominant by 1/V compared to the standard one. One

also sees that it disappears, as it should, if Q is uniform.

4.5.2.3 Conclusion

The action Sk + SΦ is still very problematic. Even assuming that we can neglect

the non-standard term in the r.h.s. of Eq. (4.132), Q is still non uniform, therefore

the standard term is not supposed to produce the universal result. Moreover, the

kinetic action is still present and dominant, by a factor of V (as we have V traces

in the r.h.s. of Eq. (4.118)). Interestingly, it is easy to see that for the case of

a (Neumann) star graph, the kinetic action would be order 1, the same as the

source. In fact, the main part of SΦ does not change, while the kinetic part would

become str ln
∑B

i=1Qi ∼ 1.

Among the several attempts made in order to progress from here, the more promis-

ing was a change of variables from the original Q-manifold to a new pseudo her-

mitian one, defined by

Ai ≡
∑
j 6=i

Qij for all i. (4.133)

The change is made through the introduction of a Dirac delta, in order to side-

step a complicated and unknown Jacobian. From Fourier transforming the V delta

functions, V new Fourier variables, µi, arise.

While the Q variable could be integrated out, the remaining ones were challenging.

Part of the difficulty comes from the fact that the integration of Q gives rise to

interactions between the previously independent Fourier variables. This is due to

the fact that every Qij relates to two nodes, so we have terms like

str (µi + µj)Qij. (4.134)

This leads us to suggest that this formalism could be adaptable to the Neumann

star graph, as there is only a single node in that case. The functional would look

similar to ∫
dµ

∫
dA

∫
dQ eιstr µ(A−

∑
iQi)e−str lnA−strΦΛA, (4.135)
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and the A integral could be attempted by developing a super-symmetric version

of the Itzykson-Zuber integral [57] similar to the one presented in [58] (see as well

[59, 60]).



Chapter 5

A functional for wave function

statistics

5.1 Introduction

The method pioneered in [1, 2] can be used (see section 5.2) to produce a σ-model

functional for the spectral average of the wave intensity probability distribution.

The wave intensities are determined by the eigenvector components that satisfy

the stationarity condition Eq. (3.77)

~as = U(ks)~as, (5.1)

where we are using in Eq. (5.1) s = 1, 2, . . . (with ks+1 > ks) for eigenstate

indexing, and ~as is related to waves traveling on the QdG by

ψ(xij; ks) = aij;se
ιkxij ,

∑
ij

|aij;s|2lij ≡ 1. (5.2)

The normalization condition sets the scale of the square amplitudes as

|aij;s|2 ∼
1

2Bl̄
. (5.3)

We will denote by x a fixed arc of the digraph, and will study the distribution

f(t) = lim
N→∞

1

N

N∑
s=1

δ(t− 2Bl̄|ax;s|2), (5.4)

59
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which represents the probability of finding a value of t for the wave intensity |ax|2,

when sampling over the entire spectrum.

The universal result (that is, the result concerning the eigenvector components

of the ensembles of RMT) is that wave amplitudes are distributed like Gaussian

random variables [9], or in order words, that the random wave hypothesis [61],

RWH, holds on average over the graph eigenstates.

The average wave intensity on the arc x, i.e. the first moment of f(t), is naturally 1

(this is a local version of the Weyl law Eq. (3.93), and can be as well recovered from

similar POT arguments). The second moment is the local inverse participation

ratio, IPR, here averaged over the spectrum. This latter quantity, which is a

standard measure of eigenstate statistics, has been already studied in the context

of quantum graphs, see for example [41, 42, 62, 63]. In particular Gnutzmann et

al. [41] manage to give universality criteria1 for the IPR through an analytical

treatment of its spectral average for a single sample, based on the super-symmetry

technique in [2].

We plan to carry out a similar treatment for Eq. (5.4), which will be an adaptation

of the work by Falko and Efetov in the context of small disordered conductors[5].

The uniform mode of our theory will reproduce the Gaussian universal result

mentioned above, but the reduction to the uniform mode in the thermodynamic

limit requires now

lim
B→∞

1

B
tr∗

1

1− F
= 0, (5.5)

which is obviously (much) stronger than Eq. (4.1): an extensive number of eigen-

values of F approaching 1 as 1− c
Bα

invalidates the Eq. (5.5) for any α > 0.

It is worth mentioning that the l.h.s. of Eq. (4.1) is reminiscent of the Gaussian

correction to the uniform mode of the sigma-model field theory representation of

the 2-point function for small metallic grains ([64]), if one identifies B with the

“dimensionless conductance” and the “discrete Laplacian”, 1−F , with the contin-

uous Laplacian (“kinetic term”) of the σ-model action that describes disordered

systems in the diffusive regime ([23]). Similarly, the fact that the quadratic decay

1They actually investigate spectral averages of quantities of the form
(
~a †s M~as

)2
where M is

a diagonal matrix representing an observable on the bonds. Naturally, the local IPR to which we
refer to here is a special case, corresponding to M not vanishing only for the component Mxx.



Chapter 5. A functional for wave function statistics 61

of spectral fluctuations changes to linear, Eq. (5.5), when studying the wave func-

tions fluctuations decay, is also standard in Efetov’s formalism2 (see [65] for the

corrections to the Gaussian wave amplitude statistics, indeed linear in the inverse

dimensionless conductance).

Much more attainable than Eq. (5.5), the condition

lim
B→∞

1

B2
tr∗

1

1− F
M2 = 0, (5.6)

was obtained by Gnutzmann et al. [41] as a criterium for quantum ergodicity, i.e.

the property that

lim
N→∞

1

N

N∑
s=1

(
~a †s LM~as

)2
=

tr(LM)2

(2Bl̄)2
, (5.7)

where M is a diagonal matrix representing an observable on the space of bonds.

From [41] one can also infer that the spectrum-averaged, second moment of the

distribution of wave amplitudes mentioned above agrees with RWH if tr∗ 1
1−F < B

in the limit B →∞, in agreement with3 Eq. (5.5).

In the next two sections we present, respectively, a careful derivation of the func-

tional representation for the spectral average of Eq. (5.4), and a derivation of the

universal limit.

5.2 The functional

5.2.1 Setting up f(t) for the spectral average

Following Fal’ko and Efetov, we define

fk(t) ≡
∑
s

δ(t− 2Bl̄|as,x|2)δ(k− ks), (5.8)

from which Eq. (5.4) is recovered upon spectral average,

f(t) = lim
K→∞

∆

K

∫ K

0

fk(t)dk. (5.9)

2We are referring here, and in the entire text, to systems with unitary symmetry (broken
time reversal invariance).

3In the case of a FNG, substituting M by a constant matrix, one can also infer that the
correction Eq. (5.6) is order 1/V ((1/B2)BV ), greater than the actual Eq. (5.7) which is ∼ 1/B.
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In order to proceed, the first step consists in transforming fk(t) into a single

product of two k-dependent factors, both of them representable in terms of “ad-

vanced/retarded Green functions” , 1
1−U(k)

/ 1
1−U(k)†

, so that a spectral average can

be performed in a manner similar to the calculation of the 2-point function by

the super-symmetry technique. Noticing that the wave amplitude, |as,x|2, can be

obtained from the x, x component of the Green function operator as4

lim
γ→0

γ

(
1

1− e−γU(k)†

)
x,x

=

|as,x|2, if k = ks for some eigenstate s

0, otherwise,
(5.10)

we perform the following steps

fk(t) =
∑
s

δ

(
t− 2Bl̄ lim

γ→0
γ

(
1

1− e−γU(k)†

)
x,x

)
δ(k− ks) (5.11)

= δ

(
t− 2Bl̄ lim

γ→0
γ

(
1

1− e−γU(k)†

)
x,x

)∑
s

δ(k− ks) (5.12)

= lim
γ→0

δ

(
t− 2Bl̄γ

(
1

1− e−γU(k)†

)
x,x

)
d(k). (5.13)

In Eq. (5.11), we simply apply Eq. (5.10) (the factor δ(k − ks) will enforce the

correct amplitude in the argument of the first delta). The crucial step Eq. (5.12)

is possible because the t-dependent delta function loses its explicit dependence

on specific eigenstates, due to the trick Eq. (5.10). The expression Eq. (5.13) is

simply formal (with a finite γ, the argument of the leftmost delta function is a

complex number, and limγ→0

∫
dtfk(t) = 0 !) and it has to be understood as a

shorthand notation for the expansion of the (Fourier transform of the) leftmost

delta in Eq. (5.12), in powers of the γ term. In any case, we have achieved our

aim of having a product of k-dependent functions (compare with the integrand in

the r.h.s. of Eq. (4.2)). Since the argument of the delta function in Eq. (5.13) is

expressed in terms of an advanced (complex conjugate) Green function, we need

to locate the retarded part of the DOS in the r.h.s of Eq. (5.13). From Eq. (3.91),

we can write

d(k) =
1

2π
lim
ε→0

(
trL 1

1− U(k+)
+ trL U(k+)†

1− U(k+)†

)
, (5.14)

4Simply diagonalizing U , noticing that the γ-factor makes the limit vanish if there is no
eigenvalue of U equating unity, and that in the case that there is an eigenvalue 1, the eigenvalue
matrix becomes a projector onto the corresponding eigenvector.
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where we have absorbed the mean DOS into the advanced part of the fluctuating

DOS. The first summand in the r.h.s. of Eq. (5.14) will be the only one to con-

tribute to the spectral average. This becomes clear after substituting the second

summand in Eq. (5.13), giving the term

δ

(
t− 2Bl̄γ

(
1

1− e−γU(k)†

)
x,x

)
trL U(k+)†

1− U(k+)†
,

which does not survive the k-integration. Without loss of generality, we will cal-

culate the spectral average of

fk(t) ≡ 1

2π
lim
γ,ε→0

δ

(
t− 2Bγl̄tr

(
1

1− e−γU(k)†

)
x,x

)
trL 1

1− U(k+)
. (5.15)

5.2.2 The spectral average.

The spectral integration is carried out after expressing Eq. (5.15) through Gaussian

super-symmetric averages5.

The DOS (retarded) part of Eq. (5.15) is readily written as

trL 1

1− U(k+)
=

∫
d(ψ, ψ†)

(
ψ†Lπbψ

)
e−ψ

†(1−U(k+))ψ, (5.16)

where we introduce the usual 4B-dimensional super-vectors ψ, ψ†, extend the

meaning of the Green function operator as

1− U(k)→

(
1− U(k) 0

0 1− U(k)

)
bf

, (5.17)

and now define πb as the 4B × 4B projector over the boson-boson sector6

Writing the retarded part of fk(t) in terms of Gaussian super-integrals requires

Fourier transforming the Dirac delta in Eq. (5.15), expanding the result7 in powers

of the Green function (i.e. the γ term inside the argument) and writing every such

power, separately, as an integral. Crucially, the latter can be done using a simple

5We could as well have defined sources, and write Eq. (5.15) as super-determinants to be
expressed as Gaussian integrals instead of averages.

6In the calculation of the 2-point function, the super-symmetry breaking was “shared” by the
numerator and denominator in Eq. (4.5), but for this case we will use only the bosonic part.

7Let us remind that this expansion is the real meaning of this delta function.
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version of the Wick’s theorem for (bosonic) Gaussian averages. For the nth term

of the expansion we have((
1

1− e−γU(k)†

)
x,x

)n

=

(∫
d(ψ, ψ†)|ψb,x|2e−ψ

†(1−e−γU(k)†)ψ

)n
(5.18)

=
1

n!

∫
d(ψ, ψ†)|ψb,x|2ne−ψ

†(1−e−γU(k)†)ψ, (5.19)

where ψb,x is the bosonic, x component of the auxiliary ψ-vector8.

Using Eq. (5.19) in the power expansion of the Dirac delta, we have

δ

(
t− 2Bl̄γ

(
1

1− e−γU(k)†

)
x,x

)
=∫ ∞

−∞
dze2πιzt

∞∑
n=0

(
−4πιzBl̄γ

)n
n!2

∫
d(ψ, ψ†)|ψb,x|2ne−ψ

†(1−U(k)†)ψ. (5.20)

Everything is ready now to carry out the spectral average in exactly the same way

as it was done in the previous chapter (page 41, equations Eq. (4.9) to Eq. (4.14)).

Combining the k-dependent parts of Eq. (5.16) and Eq. (5.20),

lim
K→∞

∆

K

∫ K

0

dke−ψ
†
+(1−e−γU(k)†)ψ+−ψ†−(1−U(k+))ψ− = ∆

∫
d(Z, Z̃)sdet(1−ZZ̃)e−Ψ†VγΨ,

(5.21)

where we introduce

Ψ†VγΨ ≡
(
ψ†+, ψ

†
−

)( 1 e−γ/2ΣZ

e−γ/2Σ†Z̃ 1

)(
ψ+

ψ−

)
, (5.22)

in advanced/retarded (+/-) blocks. The “Lagrangian” Ψ†VγΨ now contains inter-

actions between advanced and retarded Ψ-components, and between bosonic and

fermionic components as well, therefore the forthcoming integration of the Ψ fields

requires some care.

8Both in Eq. (5.16) and Eq. (5.19) we make use of sdet(1− U(k)) = 1.
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5.2.3 The Gaussian integration.

Recovering the pre-exponential terms appearing in Eq. (5.16) and Eq. (5.19), the

first step in the integration will require already an approximation9:∫
d(Ψ,Ψ†)

(
Ψ†Lπbπ−Ψ

)
|Ψ+,b,x|2ne−Ψ†VγΨ ≡

sdetVγ
∫
d(Ψ,Ψ†)

(
Ψ†Lπbπ−Ψ

)
e−Ψ†VγΨ

∫
d(Ψ,Ψ†)|Ψ+,b,x|2ne−Ψ†VγΨ. (5.23)

In applying Wicks theorem10 to the l.h.s. of Eq. (5.23) we have neglected cross-

terms, i.e. pairings of Ψ components that combine advanced and retarded com-

ponents. Falko and Efetov do this as well, and it is in fact a usual step in Efetov’s

method applied to disordered systems [23]. The argument in that context is that

those components correspond to different positions and their average vanishes in

the large size limit. In our language, two arguments can be constructed which

justify Eq. (5.23). The first and main argument is that the scalar product in the

integrand of the r.h.s of Eq. (5.23) implies that this integral is actually a sum of

2B integrals, while, in contradistinction, the integral that we are neglecting would

take the form∫
d(Ψ,Ψ†)

(
Ψ†Lπbπ−Ψ

)
|Ψ+,b,x|2e−Ψ†VγΨ

∫
d(Ψ,Ψ†)|Ψ+,b,x|2(n−1)e−Ψ†VγΨ,

(5.24)

where the first integral would, upon applying Wicks theorem again, take the shape

of a product proportional to

2B∑
a=1

∫
d(Ψ,Ψ†)Ψ†−,b,aΨ

2
+,b,xe

−Ψ†VγΨ

∫
d(Ψ,Ψ†)Ψ†+,b,xΨ−,b,ae

−Ψ†VγΨ. (5.25)

Despite the sum over the 2B arcs, only a number of terms proportional to the

degree of the digraph (that is, at most of the order of
√
B as it would happen

in the case of a full digraph) would not vanish, as V−1
γ connects only arcs which

coincide in a node. Therefore only arcs connected to the arc ij ≡ x by a single

9We introduce here π± as projectors over the +/- spaces.
10Now, obviously, in the opposite direction as in Eq. (5.19). The sdet factor in the r.h.s. does

not equal unity in this case, since Vγ is not super-symmetric.
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step will contribute, as can be seen from the typical +,− component11 of V−1
γ :(

ΣZ
1

1− Σ†Z̃ΣZ

)
ij,ki

= Σij,kiZki +
∑
l

Σij,liZliΣ
†
li,ikZ̃ik + . . . . (5.26)

This takes us to a second argument. For the uniform Z, Z̃-configuration, which

we call Y, Ỹ , there appears a factor Σij,ik attached to the term Eq. (5.26), which

would become Σ Y
1−Ỹ Y . However, the +,+ and −,− terms of V −1

γ become, due to

pair-wise cancellation of Σ and Σ†, Y Ỹ
1−Y Ỹ and Ỹ Y

1−Ỹ Y , losing all dependence on the

graph topology. This is relevant because, being Y, Ỹ diagonal in the space of arcs,

the +,− and −,+ would be subdominant with a term of the order Σ ∼ 1/
√
d,

where d is the typical degree.

To sum up, we have ∼ B terms, each with weight ∼ 1 in the main term, r.h.s. of

Eq. (5.23), against ∼ d .
√
B terms with weight ∼ 1√

d
. Thus Eq. (5.23) is justified

and we can continue the process of Gaussian-integrating. We point the reader to

the n! that will appear when applying Wicks theorem, now to the second integral

in the r.h.s. of Eq. (5.23),∫
d(Ψ,Ψ†)|Ψ+,b,x|2ne−Ψ†VγΨ = (n!)sdetVn−1

γ

(∫
d(Ψ,Ψ†)|Ψ+,b,x|2e−Ψ†VγΨ

)n
(5.27)

= n!sdetV−1
γ

(
V−1

)n
b,+,x;b,+,x

, (5.28)

where12 (V−1)b,+,x;b,+,x denotes the corresponding diagonal component of V−1. The

factorial will compensate for the second power in the denominator of the expansion

Eq. (5.20), allowing us to formally re-sum the series:

∫ ∞
−∞

dze2πιt

∞∑
n=0

(
−4πιzBl̄γ

)n
n!

((
V−1

)
+,b,x

)n
= δ

(
t− 2Bl̄γ

(
V−1

)
b,+,x;b,+,x

)
.

(5.29)

The first integral in the r.h.s. Eq. (5.23) naturally gives

sdet(V−1
γ )strLπbπ−V−1, (5.30)

11See Eq. (4.31).
12Outside the super-determinant, we use V instead on Vγ . Although not explicit in the work by

Falko and Efetov, this approximation is there as well. It is valid in the limit B →∞ while t ∼ 1,
because V−1

γ expands as V−1 plus a series of powers of γV−1, and these will become corresponding

powers of �γ
t

�γB
upon integration of the non-compact part of the uniform Q-manifold.
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so that after the Gaussian integration is completed, we have finally substituted

the spectral average by an integral over Efetov’s super-space, i.e. fk(t) → fQ(t)

with f(t) =
∫
DQfQ(t), and we are in the position to write13

fQ(t) =
∆

2π

∫
DQsdetV V−1

γ

(
strLπb,−V−1

)
δ
(
t− 2Bl̄γ

(
V−1

)
+,b,x

)
. (5.31)

In order to present a more recognizable form of this functional, we start by noticing

that the super-determinant gives rise to the action of the theory, S ≡ Sk + Sγ,

with the usual kinetic action, and with14

Sγ = str ln

(
1 + γ

ΣZΣ†Z̃

1− ΣZΣ†Z̃

)
(5.32)

= str ln
(

1 +
γ

2
π+Q

)
(5.33)

≈ γ

4
strΛQ. (5.34)

Making use of the equation 2V−1 = 1 + ΛQ, we can as well write

strLπb,+V−1 = strLπb,−
1 + ΛQ

2
(5.35)

≈ strLπb,−
ΛQ
2

(5.36)

≈ l̄

2
strπb,−ΛQ, (5.37)

where in Eq. (5.36) we use our prior knowledge of the fact the the 0-mode Q-

integration will have a non-compact component which will make the identity ma-

trix irrelevant, and in Eq. (5.37) we are neglecting bond lengths fluctuations, as

we are not interested in their effect. The argument of the Dirac delta is treated

similarly, and as a result we write

fQ(t) =
∆l̄

4π

∫
DQ str πb,−ΛQ δ

(
t−Bl̄γ (ΛQ)+,b,x

)
e−Sk−Sγ . (5.38)

13The sdetVγ cancel leaving finally a single negative power.
14The equation Eq. (5.33) is exact, as e−γ ≡ 1 − γ can be done anytime. The equation

Eq. (5.34) relies on our present knowledge of the fact that γ terms will be substitute by ∼ t/B
terms upon integration of the mean field part of the Q-manifold, and that B → ∞ while t is
finite.
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5.3 Universal limit

5.3.1 Mode separation

We define the 0-mode sub-manifold, Q0, as one which takes uniformly the value

that the original Q-manifold takes on the arc x, i.e.

(Q0)ij ≡ Qx, (5.39)

and perform the change of variables Q→ Q0, Q̃, with

Q ≡ T0Q̃T̄0, (5.40)

where T and V matrices are related through

T ≡ V ·

(
1/
√

1− ZZ̃ 0

0 1/
√

1− Z̃Z

)
. (5.41)

The condition

Q̃x ≡ Λ, (5.42)

prevents the number of degrees of freedom from increasing by 1. In terms of ma-

trices Y, Ỹ and W, W̃ parameterizing Q0 and Q̃ respectively, this change amounts

to

Z ≡ 1√
1− Y Ỹ

(Y +W )
1

1 + Ỹ W

√
1− Ỹ Y (5.43)

Z̃ ≡ 1√
1− Ỹ Y

(
Ỹ + W̃

) 1

1 + Y W̃

√
1− Y Ỹ , (5.44)

with the condition

Wx = W̃x = 0, (5.45)

where “0” is obviously meant as a 2×2 super-matrix with vanishing elements.

Except from boundary anomalies to which we will not pay attention, a linear con-

dition such as Eq. (5.45) produces a Jacobian 1 [5, 39]. With these considerations,



Chapter 5. A functional for wave function statistics 69

the functional Eq. (5.38) can be written as

fQ0,Q̃
(t) =

∆l̄

4π

∫
DQ̃DQ0 str Q̃0,(−b)ξQ̃ξ† δ

(
t−Bl̄γ

(
Q̃0,(+b)Λ

)
+,b,x

− c
)
e−Sk−Sγ , (5.46)

where we use the notation

Q̃0 ≡ T̄0ΛT0, Q̃0,(±b) ≡ T̄0πb,±ΛT0, (5.47)

and make use of the fact that the equalities

Q = T0Q̃T̄0 = ξT0ξ
†Q̃ξT̄0ξ

†, (5.48)

hold15. At this stage of the calculation, and writing the γ-action as

Sγ =
γ

4
strQ̃0ξ

†Q̃ξ, (5.49)

we realize that the main difference between our functional and Falko and Efe-

tov’s one, is the fact that the argument of the delta function does not loose its

dependence on the fluctuating modes. This happens due to the term

c ≡ l̄γ
(
Q̃0,(+b)ξ

(
Q̃ − Λ

)
ξ†
)

+,b,x
. (5.50)

The reason why the non-zero mode dependence disappears from the delta in the

disordered systems functional, while it does not in Eq. (5.46), we believe, is rather

deep. It is due to the fact that the integration over a sigma model manifold arises

there from a completely different transformation, for which the elimination of

certain fast degrees of freedom has to be performed beforehand. This implies that

the information relating to very small scales, i.e. scales that would correspond to

a single bond in the case of a QG, disappears in the process. The price to pay for

the exactness of the method developed in [2], in this case, is the term Eq. (5.50).

The rest of the calculation relies on the fact that only the the non-compact part of

the uniform manifold will compensate for the γ → 0 term, which can be justified

if only the 0-mode is completely massless, a quite general assumption. However,

the influence of the term Eq. (5.50) in the corrections to the 0-mode contribution

15ξ, ξ† can be defined in several ways, for example ξ =

(
1 0
0 Σ

)
.
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would have to be determined a posteriori. Now we will simply infer that, because

only the ∼ d arcs connected to x enter c, the contribution of it to the Gaussian

correction is negligible as well, and hence we will ignore it in the next subsection.

5.3.2 0-mode integration

The sigma model manifold is conveniently described using “Efetov’s parameteri-

zation” [23], according to which we decompose the Tx-matrix as16

Tx =


1− 2ηη̄ 2η 0 0

−2η̄ 1− 2η̄η 0 0

0 0 1 + 2κκ̄ 2iκ

0 0 −2iκ̄ 1 + 2κ̄κ



eiχ 0 0 0

0 eiφ 0 0

0 0 1 0

0 0 0 1

 ·

·



√
1
2
(λ1 + 1) 0

√
1
2
(λ1 − 1) 0

0
√

1
2
(λ+ 1) 0 i

√
1
2
(1− λ)√

1
2
(λ1 − 1) 0

√
1
2
(λ1 + 1) 0

0 i
√

1
2
(1− λ) 0

√
1
2
(λ+ 1)

 ,

(5.51)

and T̄x = T−1
x can be calculated knowing that pseudo hermitian conjugation is

defined so that

M̄ ≡

(
σ0 0

0 −σ3

)
M †

(
σ0 0

0 −σ3

)
. (5.52)

The result is

T̄x =



√
1
2
(λ1 + 1) 0 −

√
1
2
(λ1 − 1) 0

0
√

1
2
(λ+ 1) 0 −i

√
1
2
(1− λ)

−
√

1
2
(λ1 − 1) 0

√
1
2
(λ1 + 1) 0

0 −i
√

1
2
(1− λ) 0

√
1
2
(λ+ 1)

 ·

e−iχ 0 0 0

0 e−iφ 0 0

0 0 1 0

0 0 0 1




1− 2ηη̄ −2η 0 0

2η̄ 1− 2η̄η 0 0

0 0 1 + 2κκ̄ −2iκ

0 0 2iκ̄ 1 + 2κ̄κ

 .

(5.53)

16There are several way of doing this. Ours is dependent on the fact that we use bose-fermi
ordering as opposed to fermi-bose, and that we use str = trb− trf and not the other way around.
Also, due to the fact that ¯̄T = T , the parametrization that interchanges our T and T̄ is also
valid.
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The measure of the integration over Q0 reads17

∫
dQ0 =

∫ χ,φ=2π

χ,φ=0

∫ λ=1

λ=−1

∫ λ1=∞

λ1=1

1

26π2

dλdλ1

(λ1 − λ)2
dχdφ dηdη̄ dκ̄dκ. (5.54)

The integral is done easily taking to account that only terms proportional to λ1

survive the γ → 0 limit, or equivalently the λ1 →∞ limit (this also applies to the

pre-exponential super-trace, as it will be seen below). Under this consideration,

using Eq. (5.51) and Eq. (5.53), we have effectively

Q̃0 ≡ λ1ΛΠb, (5.55)

Q̃0,(+b) ≡
λ1

2
(1− 4ηη̄)ΛΠb, (5.56)

Q̃0,(+f) ≡ −2λ1κκ̄ΛΠb, (5.57)

where, in Eq. (5.55) and Eq. (5.56) we simply applied the limit λ1 ∼ 1
γ
→∞, and

defined

Πb ≡


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

 , (5.58)

while in Eq. (5.57) we have as well neglected terms not proportional to κκ̄ due to

the fact that no other such pair exists in the integrand (and the measure Eq. (5.54)

needs a pair like that for the integral not to vanish). The pre-exponential super-

trace now reads

str Q̃0,(−b)ξQ̃ξ† ≡ 2λ1κκ̄ str ΛΠbξQ̃ξ†, (5.59)

while the γ action becomes18

Sγ ≡
γλ1

4
strΛΠbξ

†Q̃ξ, (5.60)

17The ordering of the anti-commuting differentials is important!
18We notice that the Grassmann variables disappear from this term.
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and the delta term reduces to

δ

(
t−Bl̄γ

(
Q̃0,(+b)Λ

)
+,b,x

− c
)
≡ δ

(
t−Bl̄γλ1

2
(1− 4ηη̄)

)
(5.61)

≡ 2Bl̄γλ1ηη̄
d

dt
δ

(
t− Bl̄γ

2
λ1

)
(5.62)

≡ 4λ1ηη̄
d

dt
δ

(
λ1 − t

2

Bl̄γ

)
. (5.63)

Above, we have just Fourier transformed the Dirac delta (neglected the c term),

expanded in the Grassmann pair and used the “trick” of writing the expansion as

a derivative of the delta function19. The two λ1 factors in Eq. (5.63) and Eq. (5.59)

will compensate the 1/λ2
1 in the measure, Eq. (5.54), and this ultimately justifies

the neglecting of all the bounded λ terms: as they would multiply some 1/λ1 ∼
γ → 0 factor left over, their contribution would vanish. Now the integration can be

done very easily: the λ integral produces a factor of 2, the angles φ, χ, which have

disappeared from the integrand produce a (2π)2, and the Grassmann integration

has to be made with the anti-commutation rules in mind (they produce a global

minus sign). As the end result we write

fQ̃(t) = −∆l̄

4π
strΛΠbξ

†Q̃ξ d
dt
e−Sk−St (5.64)

=
∆l̄

4π
2Bl̄

d2

dt2
e−Sk−St (5.65)

=
l̄

2

d2

dt2
e−Sk−St , (5.66)

with

St =
t

2Bl̄
strΛΠbξ

†Q̃ξ. (5.67)

The universal result is obtained making Q̃ = Λ. Since strΛΠbΛ = 2 · 2B, we have

f(t)u = f(t)Λ =
2

l̄
e−

2
l̄
t. (5.68)

Expanding the action in Q̃ − Λ, up to second order in Z, Z̃,

S
(2)
k + S

(2)
t = str

(
SZS†Z̃ − ZZ̃ +

t

2Bl̄
4strπbSZS

†Z̃

)
, (5.69)

19Of course, a single derivative because the terms (ηη̄)2 etc vanish.
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we can calculate the Gaussian correction to Eq. (5.68):

f(t)Λ,2 = e−
2
l̄
t

∫
d(Z, Z̃)e−str ~̃Z(1−F+ 2t

Bl̄
Fπb)~Z (5.70)

= e−
2
l̄
tsdet2 1

1− F − 2t
Bl̄
Fπb

(5.71)

= e−
2
l̄
t

(
1 +

4t

Bl̄
tr

F

1− F
+O

(
1

B
tr

F

1− F

)2
)
. (5.72)



Chapter 6

Alternative quantization of

digraphs

6.1 Introduction

Kottos and Smilansky approach to quantizing a graph, in [3], consists in solving a

Schrödinger equation on the graph. The wave function, with wave number k, on

a bond b, takes the form1

ψb(xb; k) = ab,+e
ιkxb + ab,−e

−ikxb , (6.1)

where xb ∈ [0, lb] is the variable assigned to such bond. The bi-directionality of the

wave is clear in Eq. (6.1) as, on the one hand, ab,+, ab,− are complex constants which

take specific values, aks;b,+, aks;b,− for specific eigenvalues ks of the QG, but are in no

way restricted to be zero2, and on the other hand xb is the variable associated with

the bond irrespective of direction. For comparison, the wave traveling through the

arc ij, in a QdG, will have the form

ψij(xij; k) = aije
ιkxij + 0 · e−ιkxij , (6.2)

where the restriction in direction has been made explicit in the second term on

the r.h.s. If there exists an arc ji (as it is necessary in a symmetric digraph), two

1We ignore here magnetic fields.
2The vanishing of one of the constants would make the wave effectively mono-directional in

the bond. This could be the case for some wave number of the spectrum, but it is not true in
general.
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different functions, of two different variables, will correspond to the antiparallel

arcs ij and ji, as shown in the table 6.1.

Table 6.1: Nomenclature referring to the unidirectional waves moving across

the two anti-parallel arcs connecting the vertices i and j.

arc variable range wave amplitude

ij xij [0, lij] ψij = aije
ιkxij aij

ji xji [0, lji] ψji = ajie
ιkxji aji

It is convenient to point out here that in the quantum graph literature, and more

generally in the treatment of differential operators on graphs, the word directed is

sometimes used to reflect the fact that not only a “weight” is given to every edge

ij, i.e. the length lij > 0, but an interval [a, a + lij] which naturally enthuses ij

with the direction a→ a+ lij. This is necessary in order to have “well defined first

derivatives” [66] on the bonds, but it does not restrict the sign of the derivatives a

priori. Our use of the word directed, in this sense, implies that the sign of ψij(xij) is

equal to the sign of 1
ι
ψ′ij(xij) = kψij(xij), as it is obvious from the table above, and

unlike in Eq. (6.1), where this sign would depend on the dominant amplitude in

the r.h.s. It is possible that general treatments like Carlson’s [66, 67] can account

for directed graphs in our sense, for example considering pairs of bi-directional

edges in the place of our pairs of antiparallel arcs (each edge, of course, with a

different length) and enforcing the appropriate direction of the wave (that is, the

appropriate sign of 1
ι
ψ′) through appropriate boundary conditions. However, we do

not follow this general approach here, as we only aim to find boundary conditions

that will allow us to generalize the Robin’s boundary conditions employed in [3]

and consistently recover Neumann type scattering matrices, Eq. (3.67).

Kottos and Smilansky impose continuity of the wave function at the nodes. This

means that, if two bonds b and b′ are connected to the same vertex v, and, for

example xb = lb and xb′ = lb′ at this vertex, then3

ψb(lb; k) = ψb′(lb′ ; k). (6.3)

The condition Eq. (6.3) guarantees that ψb(xb; k) takes a unique value across the

network domain, including at the nodes. Imposing current conservation at the

3Obviously, if at the vertex v, xb = lb and xb′ = 0 then ψb(lb; k) = ψb′(0; k), etc.
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nodes (see subsections 6.2.1 and 6.2.3 for the essentially identical case of the QdG)

the authors are able to find the secular equation Eq. (3.78), in which the unitary

vertex scattering matrices (see equations Eq. (3.64) to Eq. (3.70)) take the form,

in the vertex i,

σicoutcin
≡ 2

di − λi
ιk

− δcincout , (6.4)

where λi is a positive definite constant that parameterizes the range of possible

boundary conditions from Neumann b.c. (λi = 0) to Dirichlet b.c. (λi →∞), i.e.

the Robin boundary conditions.

We are interested in applying the Neumann b.c. to the symmetric QdG, and

nothing prevents us from using Eq. (6.4) directly. The difference from the QG

case would simply be that T (k)ij 6= T (k)ji in our case (see Eq. (3.73)). However,

imposing continuity for the QG wave functions allows for the derivation of a secular

equation different from Eq. (3.78), an equation of the form

detH(k) = 0, (6.5)

where H is a V × V (as opposed to the much larger 2B × 2B dimensionality of

U(k)) Hermitian matrix which is better suited for numerical generation of the

spectrum. The question then arises whether there exists an equation analogous to

Eq. (6.5) for symmetric digraphs with Robin-like scattering matrices, Eq. (6.4),

and what the conditions on the directed waves (table 6.1) would be that would

allow us to derive such an equation. To this question we turn in section 6.2,

where we define what we call pseudo-continuity on symmetric QdG, from which

we derive an equation of the type Eq. (6.5) which will be the base of the numerical

calculations shown in the chapter 7, and re-derive the equation Eq. (3.78) (with

Eq. (6.4)).

6.2 Robin boundary conditions for digraphs

6.2.1 Pseudo-continuity and current conservation

The uniqueness of the wave function in a QG is a natural requirement, because

|ψb(xb)|2 is interpreted as the probability density distribution representing (con-

sidering the QG as a Schrödinger operator on a graph) the likelihood of measuring
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the position of an electron in the network and finding it to be xb, in the bond b4.

For this reason it is usual to impose Eq. (6.3) and to define φi as the value taken

at the vertex i by the wave function, no matter from which bond (connected to i)

we are accessing the vertex.

The situation is not so clear for the digraph. Keeping in mind the notation in

the table 6.1 from now on, |ψij(xij)|2 would represent the probability density

related to finding the electron in xij, and and moving from i to j, hence imposing

|ψij(0)| = |ψik(0)| = |ψli(lli)| = . . . for all j, k, l, . . . connected to i would imply

that the events of the electron being located in i and moving towards j, or located

in i and moving towards k, and the event of “entering” i from the arc li, etc need

to be equally probable. This seems to be too restrictive an unnatural. For the case

of a symmetric digraph, however, the “trick” of generalizing Eq. (6.3) by coupling

antiparallel arcs and considering the sum of the values of their respective wave

functions at the two ends will prove useful below.

We define the pseudo-continuity (or pseudo-uniqueness) as the property of the

QdG wave function that holds under the condition

φi =ψij(xij = 0; k) + ψji(xji = lji; k) (6.6)

=aij + ajie
ιklji for all j connected to i, (6.7)

where for Eq. (6.7) one needs to apply the definitions in the table. To every node

i, then, correspond di − 1 independent equations, arising from the application of

Eq. (6.7) to every two pairs of anti-parallel arcs that connect through i:

aij1 + aj1ie
ιklj1i =aij2 + aj2ie

ιklj2i (6.8)

=aij3 + aj3ie
ιklj3i (6.9)

. . . (6.10)

=aijdi + ajdi ie
ιklj

di
i . (6.11)

4It is natural, but not necessary. Arbitrary vertex propagators can be used, as in chapter 3,
for graphs or digraphs, for which the eigenfunctions are not unique (hence not defined) at the
vertices. The position of the electron can only be measured up to some degree of accuracy, hence
only the probability of finding the electron in a small region around a node is relevant, not at
the node itself. And such probability is calculated integrating |ψ|2 over that region without the
discontinuity at the node posing any problem.
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Hence we have a total of
∑V

i=1(di − 1) equations to be imposed on the 2B wave

amplitudes. This leaves us with

2B −
V∑
i=1

(di − 1) =
V∑
i=1

di −
V∑
i=1

(di − 1) (6.12)

= V, (6.13)

degrees of freedom : φ1, φ2, . . . , φV (exactly as in QGs [4]). In terms of these, the

wave amplitudes are

aij =
φi − φjeιk(l+ij−l

−
ij)

1− e2ιkl+ij
, (6.14)

where we have just defined

l+ij ≡
lij + lji

2
, (6.15)

l−ij ≡
lij − lji

2
. (6.16)

We impose now “current conservation”. Around the node i, this condition reads

λiφi
ιk

=
1

ιk

∑
j

(
d

dxij
ψij(xij = 0)− d

dxji
ψji(xji = lji)

)
(6.17)

=
∑
j

(
aij − ajieιk(l+ij−l

−
ij)
)

(6.18)

=
∑
j

(
φi − φjeιk(l+ij−l

−
ij)

1− e2ιkl+ij
− φj − φieιk(l+ij+l

−
ij)

1− e2ιkl+ij
eιk(l+ij−l

−
ij)

)
(6.19)

where the sum involves all vertices connected to i, and where λi is the constant

mentioned in the introduction, 6.1, parameterizing the family of Robin b.c. De-

pending on whether one applies Eq. (6.19) directly, or expresses it in terms of the

wave amplitudes using Eq. (6.7), one can derive, respectively, the secular equations

Eq. (3.78) and Eq. (6.5).
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6.2.2 Vertex secular equation

Re-arranging the sum in Eq. (6.19) so as to separate the “fixed” i term, we have

0 =φi

(
−λi
ιk

+
∑
j

1 + e2ikl+ij

1− e2ikl+ij

)
+
∑
j

φj
−2eιkl

+
ij−ιkl

−
ij

1− e2ιkl+ij
(6.20)

=φi

(
−λi
ιk

+ ι
∑
j

cot kl+ij

)
+
∑
j

φj

(
−ι

cos kl−ij
sin kl+ij

−
sin kl−ij
sin kl+ij

)
(6.21)

The V linear equations such as Eq. (6.21) can be solved if

detH(k) = 0, (6.22)

where the complex hermitian matrix H is defined as

Hij = δij

(
λi
k

+
∑
j′

cot kl+ij′

)
+ (1− δij)

(
−

cos kl−ij
sin kl+ij

+ ι
sin kl−ij
sin kl+ij

)
. (6.23)

The matrix H(k) together with the equation Eq. (6.22) generalize Kottos and

Smilansky vertex secular equation, which can be recovered re-imposing lij = lji

(thus l+ij = lij and l−ij = 0). We will use this result in the chapter 5 in order to

generate the spectrum of full Neumann digraphs.

6.2.3 The quantum map U(k)

Our aim is to derive now Eq. (3.78) with Robin-like scattering matrices, Eq. (6.4).

We start from Eq. (6.18):

λi
ιk
φi =

∑
j

aij −
∑
j

ajie
ιklji (6.24)

=
∑
j

(
φi − ajieιklji

)
−
∑
j

ajie
ιklji (6.25)

= diφi − 2
∑
j

ajie
ιklji . (6.26)

The idea is to write the amplitudes outgoing from i in terms of the amplitudes

incoming to that vertex; for that purpose, we choose any node k connected to i,
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and use continuity Eq. (6.7) in order to substitute for φi in Eq. (6.26),

aik =
1

di
2

1− λi
ιk

∑
j

eιkljiaji − eιklkiaki. (6.27)

We can then write, for a vertex i,

aik =
∑
j

σicout(k)cin(j)e
ιkljiaji, (6.28)

with σi given by Eq. (6.4).

Re-grouping all wave amplitudes in the graph in a single vector, as in section 3.4,

we find the stationarity condition Eq. (3.77) and the secular equation Eq. (3.78).



Chapter 7

Numerical experiments on large,

full Neumann digraphs

7.1 Introduction

It is known (see for example [41] or [68]), that in order to extract any conclusion,

through numerical calculations, on the large-size spectral-statistical behaviour of

the FNG, one needs to consider graphs of around 30 vertices an beyond. The size

must be much larger than the 5-vertex graphs considered, for example, in [4]. Re-

sults for such small graphs are quite misleading because their “good behaviour”,

i.e. their spectral statistics showing already strong similarity to Gaussian RMT

ensembles, can induce one to believe that the larger graphs will be even better

behaved (as this is what usually happens, and as we expect universal behaviour in

the B → ∞ limit) and not worth checking. The curves representing the spectral

statistics of bigger graphs are actually further away from the RMT curves, before

starting to converge to (or, at least, approach) universality again as we increase

the size beyond a certain point. The situation is not different for FNQdG (see for

example Fig. 7.6(a), where deviations from universality increase moving from the

10 to the 20-vertex graph, to diminish again from 30 vertices onwards).

The method to generate the spectrum of the Neumann QdG is identical to the

81
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one used by Kottos and Smilansky ([4])1, which consists in finding the solutions

of the vertex secular equation,

detH(k) = 0, (7.1)

where, from Eq. (6.23),

Hij = δij
∑
j′

cot kl+ij′ + (1− δij)

(
−

cos kl−ij
sin kl+ij

+ i
sin kl−ij
sin kl+ij

)
(7.2)

The exact equation that one solves, however, reads

f(k) = 0, where (7.3)

f(k) ≡
∏
ij

sin klij detH(k). (7.4)

The product of sine functions introduced in the r.h.s. of Eq. (7.4) is necessary

to compensate for poles in detH(k), whose presence would not make possible the

steps 3 and 4 of the algorithm we explain in the next section (7.2.1).

The large size of the graphs considered in this work posed considerable chal-

lenges in minimising the computational effort. The simple approach consist-

ing in discretizing the k-axis according to a constant, sufficiently fine mesh, i.e.

k0 < k0 + ∆k < k0 + 2∆k < . . . , with ∆k being small enough for our purpose,

and simply looking for sign changes in f , Eq. (7.4)), becomes unrealistically slow

beyond certain size. The algorithm we found to circumvent this problem is the

subject of the next section (7.2), but the aim is to minimize the number of explicit

calculations of f(k), while guaranteing that no zeros are missed and that the ac-

tual zeros are determined with adequate accuracy.

Two elements, strongly size-dependent, control the time consumption of obtaining

detH(k), for a given k. One is the calculation of H itself, i.e. the calculation of

the trigonometric functions that are applied to each of the 2B arc-lengths, which

we are calling l generally. This would be extremely time consuming, but it is easily

circumvented using basic trigonometry: if we know sin kl and cos kl, we “update”

those values to k + ∆k using sin (k + ∆k)l = sin kl cos ∆kl + cos kl sin ∆kl, etc.

1The computational time, however, increases slightly due to a QdG with V vertices having
twice the number of bond-lengths as a QG of the same vertex-size. The non-vanishing imaginary
parts of the non-diagonal components in H, above, probably also delays the calculations with
respect to the analogous, real, matrix in QGs.
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The precision, though, has to be kept under control since it is slowly lost at every

step. The second “bottleneck”, once H is taken care of as just explained, is the

calculation of its determinant. Because this is unavoidable, all we can do is find

an algorithm that locates and bounds all the zeros of f(k) (in a chosen interval)

with as few points,

(k1, f [k1]), (k2, f [k2]), . . . , (ki, f [ki]), . . . , (7.5)

as possible. We generally call a set of coordinates, such as in Eq. (7.5), a “dis-

cretisation” 2 of (the graph of) f(k).

The main object which we use to characterize the spectrum3 is the (integrated)

level spacing distribution or (i)LSD. For general spectral sequences, we referred to

the level spacing distribution as l̄(0; s) in Eq. (2.24) page 13 and we commented

on its relationship to the 2-point correlation function, Eq. (2.29). For the case

of the FNG, an exact analytical expression exists for the LSD [69]. The formula

is applicable to systems whose spectrum is given by a secular equation with a

quasi-periodic function, and it is suited for graphs with a small number of incom-

mensurate lengths, but for “complex graphs”, which the authors of [69] consider to

be fully connected Neumann tetrahedrons and pentagons, the formula is not prac-

tical. Their numerical LSD shows systematic deviations from RMT. The authors

note that the deviations are greater for the pentagon, and we know now that they

actually increase up to a size where they start decreasing again, probably between

20 and 30 vertices. More recently, the FNG-LSD has been studied as well in [68],

in connection with parameter-dependent spectral statistics4. The authors show

that the autocorrelation function of level velocities, for this graph model, is closer

to the behaviour predicted by RMT in the 6-vertex case, and then continuously

deviates (they work with graphs for up to 30 vertices), and they conjecture a large

size limit of this object different than the one predicted by RMT. On the other

hand, they find the iLSD to be close to RMT for any graph size. They there-

fore conclude that the latter magnitude is less affected “by non-universal features

of the spectrum and wave functions of the graphs, such as scars...”. They also

2And we use square brackets when, “[ ]”, when referring to the discrete version of f .
3However, the data available would allow for other physical quantities as well.
4The authors study the statistics of the evolution of the eigen-levels when varying parameters

such as bond lengths (“level velocities”). This is a work which relies as well on ensemble average,
which is an important difference with respect to ours.
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study the inverse participation ratio5, and find a much slower decay then than the

∼ 1/B they would expect from the random wave hypothesis. Although they do

not mention it, the decay that they obtain seems to be around 1/V , close to what

one would expect according to the results in [41]: taking into account, from 4.4.2.2

or the discussion in page 52, the approximately B eigenvalues of F which are of

order 1− 4
V

, simple power counting on Eq. (5.6), page 61 gives a 1/V .

In our study of the iLSD for the FNdG, we do see an approach towards universality

at increasing graph size. Although we cannot conclude that no finite deviations re-

mains at infinite size, a level repulsion corresponding to GUE seems to be present

beyond doubt.

In section 7.2 we present a time efficient algorithm to generate the spectrum of

large FNdG6. In section 7.4 we re-define the LSD in a way that is suitable for its

numerical approximation, and the cumulative version, iLSD, and describe the main

aspects of the numerical results for these quantities. In section 7.5 we attempt to

quantify the decay of the iLSD towards universality as graph-size increases, and

we discuss possible explanations for the lack of certainty as to whether the iLSD

converges towards RMT-GUE behaviour, or whether it saturates with a small but

finite deviation from universality. To finalize, in section 7.6 we describe our finding

that the sequences of level spacings seems autocorrelated up to a very long range,

a feature that has not been noticed, to the best of our knowledge, in the case of the

undirected FNG. If present in the latter model as well, these correlations would, on

the one hand, further enlarge the number of non-universal issues of an otherwise

“very universal” chaotic model, and on the other hand raise some question about

the statistical degree of validity of the previous work done on the subject.

7.2 Algorithm to generate the spectrum of large,

full Neumann (di)graphs

7.2.1 A 4-step scheme

It is important to remember that this is intended for large graphs, and some of the

choices of parameters that are proposed may not be the most suitable for small

5And we insist that they use averages other than the spectral average that we use here.
6It would equally work for the FNG or other models
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samples. In fact, graphs of size up to 20 vertices may be more efficiently dealt

with using the “naive”, constant interval-grid approach.

The following 4 steps outline the procedure to generate the spectrum (zeros) of

f(k).

1. Let k0 < k1 < . . . < ki−1 < ki, ki+1 < . . . < kn−1 < kn be a “grid” of n + 1

k-values, such that [k0, kn] is the interval in the k-axis where we wish to find

all the zeros, and such that consecutive k-points are equally spaced by a

rather wide interval, ∆k = ki+1 − ki. Obviously, n∆k = kn − k0. The first

step is simply to calculate the table of values (ki, f(ki)) on the grid.

We have found ∆k = 0.4 (we refer always to mean level spacing units) to

be very effective. It involves only 5 calculations of f(k) for every 2 units,

and we (almost) always manage to find all the zeros in the third step that

follows.

As mentioned in the introduction, H(k + ∆k) is calculated from H(k) using

general “update components”, sin ∆kl, cos ∆kl, calculated beforehand for

every arc length l. An efficient way to control the loss of precision is the

following: we start with H(k0), which is double precision, and we control the

precision of f(k0 + n∆k) for every step n. When, after a number of steps,

m, f(k +m∆k) has been seen to reach a precision as low as single precision,

the components of H(k+m∆k) are calculated again at double precision, the

corresponding f is re-calculated, H(k + (m + 1)∆k) is updated, as usual,

from the newly obtained, double precision H(k + m∆k), and the process

continues indefinitely.

2. The second step consists in counting the number of 2π-periods undergone

by the phase, Φ(k) ≡ arctan f(k), running counter-clockwise over a rectan-

gular, complex contour with corners at k0 + 50ι, k0 − 50ι, kn − 50ι, kn + 50ι.

This number will coincide with the number of zeros in the interval [k0, kn]

(which “cuts the rectangle” in two halves) as f has no poles, and as the

spectrum of f is the spectrum of a (non-degenerate) self-adjoint operator

and hence no zeros outside the real axis are expected.

The reason for this step is twofold: firstly, not missing any zeros ensures

a degree of statistical quality of the set of spacings that we analize (which

is convenient in any case, and more so given the fact that the finite, large

FNdG deviates only slightly form RMT behaviour), and secondly, the known

number of zeros that we need to find sets the benchmark for the next step.
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This “winding number” calculation is computationally “cheap”, because at

a “distance” of 50 (imaginary) units from the real axis, Φ(k) is extremely

smooth. In the lower (left to right) and upper (right to left) edges of the

contour, Φ(k) essentially acquires a phase 2π(kn − k0) progressively, in a

straight line Φ(k) ∼ πk, and in practice, taking the lower edge as an exam-

ple, we find it sufficient to calculate pairs Φ(k− 50ι),Φ(k + 0.01− 50ι) every

10 units, so as to keep a better control of the slope of Φ. The left and right

edges are “where things happen” (where the number of zeros is effectively

determined). While close to the extremes of the edge, Φ(k) is still smooth,

it varies much more strongly as we approach the middle section (close to the

real axis), and one needs to refine the k-mesh in this region. In practice (this

needs to be tested and tuned according to the efficiency), we calculate Φ(k)

every unit from 50ι to 10ι, every 0.1 units from 10ι to 1ι, and every 0.01

units from 1ι to 07.

3. The third step is the most important one. It consists in calculating “extra”

points (i.e. points on top of the original discretisation from the first step) and

re-counting the zeros of the discretisation f [k] (i.e. counting sign changes in

the discretization), until all the zeros (according to the count in the second

step) have been localised. The algorithm to decide where on the k-axis to

calculate new data, together with the interval ∆k in the first step are tuned

to minimise the total number of calculations of f [k] before having localized

all the zeros, and it is described in the subsection 7.2.2.

4. The fourth step consists in bounding the zeros already localised in the pre-

vious step, and then giving a final value to such zero through interpolation.

We mention the details about this in susbsection 7.2.3.

7.2.2 Choice of the extra points

Let us consider the ordered sequence of wave number values,

k0 < k1 < . . . < ki−1 < ki < ki+1 < . . . < kn−1 < kn,

7Let us mention that, as one can easily check, f(k∗) = f(k)∗, hence one only needs to count
the phase accumulated over the lower, or the upper, half of the contour and multiply by two in
order to obtain the total.
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Figure 7.1: Three situations where the second derivative of f changes sign
necessarily, at least once. In (a) and (b), there are also, at least, two and one
sign changes in f ′. In (c), the derivative could in theory be always negative and
no zeros be hidden, but in practice this configuration often does not reflect the

true shape of f(k).
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for which we dispose of the values f [k0], f [k1], . . . of our spectral generating func-

tion, f(k). Although the algorithm starts working from a k-sequence, generated

by a previous program with a fixed distance ki+1 − ki, the sequence will change

as we insert new data on it in order to find the “missing” zeros. The algorithm

decides for which extra value of k to calculate f according to the currently avail-

able discretization (ki, f [ki]), therefore ki+1− ki is generally not equal to kj+1− kj

for arbitrary i 6= j. In order to have an idea of the “smoothness” of any given

discretization, we will use first and second discrete derivatives. We define discrete

derivatives of any order n through

f 0[ki] ≡ f [ki], (7.6)

fn[ki, ki+1, . . . , ki+n] ≡ fn−1[ki+1, ki+2 . . . , ki+n]− fn−1[ki, ki+1, . . . , ki+n−1]. (7.7)

In the definitions above, the derivatives are not weighted according to any in-

crements in the abscissa, but these are not relevant since we will be only be

interested in sign changes of derivatives. Let us note that the nth derivative

takes n + 1 consecutive k values as variable, for example, we need a “triplet”

(f [ki], f [ki+1], f [ki+2]) to make up a discrete second derivative, and hence a quadru-

plet to find a sign-change affecting this derivative (or a “zero of the second discrete

derivative”, as we may call it). From Eq. (7.7),

f ′[ki, ki+1] = f [ki+1]− f [ki], (7.8)

f ′′[ki, ki+1, ki+2] = f [ki+2]− 2f [ki+1] + f [ki], (7.9)

f ′′′[ki, ki+1, ki+2, ki+3] = f [ki+3]− 3f [ki+2] + 3f [ki+1]− f [ki], (7.10)

. . . = . . . , (7.11)

fn[ki, . . . , kn] =
n∑

m=0

(−1)n+1

(
n

m

)
f [ki+n−m]. (7.12)

By the Mean Value Theorem, there exists some value k, ki < k < ki+1, such that

f ′(k) = f ′[ki, ki+1]/(ki+1 − ki). But let us suppose that the discretization (k, f [k])

is fine enough so as to reflect the sign of the derivative, i.e. suppose that

sgn f ′(k) = sgn f ′[ki, ki+1] for all ki < k < ki+1. (7.13)
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Then obviously, since no value of k exists in that interval for which f ′(k) = 0,

there are no relative extrema and f is bounded by the end points of the interval,

f(ki) < f(k) < f(ki+1) for all ki < k < ki+1, (7.14)

which means (we are assuming that Eq. (7.13) holds!) that a zero of f exists

iff sgn f(ki) 6= sgn(f(ki+1)) (by the Intermediate Value Theorem), and indeed

only one zero, since more would break the condition Eq. (7.13) as well. Let

us now assume that a “peak” exists in the discretazation, i.e. a point ki for

which sgn f ′[ki−1, ki] 6= sgn f ′[ki, ki+1] (a zero of the first discrete derivative). By

application of the Intermediate Value Theorem on the derivative, for some value

k0, with ki−1 < k0 < ki+1, we will have f ′(k0) = 0, hence the condition Eq. (7.13)

cannot be applied (if the minimum is to the left of ki, for example, then Eq. (7.13)

is necessarily violated in the interval [ki−1, ki] and so on). Now, we can still imagine

a condition similar to Eq. (7.13), but related to k0,

sgn f ′(k) = sgn f ′[ki−1, k0] for all ki−1 < k < k0 (7.15)

sgn f ′(k) = sgn f ′[k0, ki+1] for all k0 < k < ki+1. (7.16)

And we would reason as before and say that a zero exists between ki−1 and k0 iff

sgn ki−1 6= sgn k0, and so forth.

The conditions Eq. (7.15), Eq. (7.16) are actually equivalent to stating that, when

the condition on the sign of the first derivative, Eq. (7.13), cannot be applied, then

we assume that our grid is fine enough so as to reflect the sign of f ′′:

sgn f ′′(k) = sgn f ′′[ki−1, ki, ki+1] for all ki−1 < k < ki+1. (7.17)

Or in other words, the “smooth” f is convex (concave) along the interval [ki−1, ki+1]

if the peak is pointing downward (upward).

In the same way as it happens with the first derivatives, there are situations where

the above condition Eq. (7.17) cannot be applied a priori. The most obvious one

is a “double peak” such as in Fig. 7.1(a): two discrete extrema in a row. In

this case it is clear, anyway, that the discretization fails completely in outlining

the shape of f , since the condition on the first derivative fails at least twice and

the condition on the second derivative, as we will explain right below, at least

once. A more interesting picture is the one in Fig. 7.1(b). Here we could a pri-

ori postulate that the first condition holds, i.e. that the derivative is positive as
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the discrete derivative; but the condition on the second derivative will necessar-

ily fail at least once: since there is a point in k ∈ [ki, ki+2] where sgn f ′′(k) =

sgn f ′′[ki, ki+1, ki+2] (Mean Value Theorem applied to the second derivative), and

another point k ∈ [ki+1, ki+3] where sgn f ′′(k) = sgn f ′′[ki+1, ki+2, ki+3], but at the

same time sgn f ′′[ki, ki+1, ki+2] = − sgn f ′′[ki+1, ki+2, ki+3], then, for at least one

point k0 ∈ [ki, ki+3] we have f ′′(k0) = 0 and the condition Eq. (7.17) is violated in

the interval where such k-value lies. We have found in practice that where con-

figurations such as this one (Fig. 7.1(b)) appear, often the condition Eq. (7.13) is

also violated, with f(k) having local extrema, and these often hide missing (pairs

of) zeros.

One could keep considering higher order derivatives, but we have found a very

effective procedure that relies on discrete derivatives up to second order only, to-

gether with heavy use of polynomial interpolation. The main idea behind this

method is that polynomial interpolation over an existing grid of data is computa-

tionally much more efficient than calculating new data (it is, after all, completely

unrelated to the graph size). By way of example, let us count how many “points

per zero” we had to calculate in a practical case. This refers to the wave number

interval [800000,805000] for a graph with 120 vertices. We first obtain f for a grid

of constant separation 0.4, this amounts to 0.4−1 × 5000 = 12500 data points. We

then compare the zeros that we find checking sign changes, 4880, with the zeros

that we expect from the complex contour integral (second step in the precedent

section)
∫ dΦ(k)

dk
dk, which turns out to be 5036. The number of data points cal-

culated on the complex contour is rougly 1000. Applying the algorithm that we

are showing below, we only need to calculate 81 new data points (!) to find the

remaining zeros. In total, less than 14000 data points were needed to locate 5036,

which does not even add up to 3 data points per zero. Of course, these zeros are

not yet known with enough accuracy: to bound each zero within an interval of

length 0.01, we will need roughly (applying the algorithm in the fourth step, which

is outlined in the in the subsection 7.2.3) 2 extra points per zero (usually less),

which amounts to around 10000 new points. The total cost is therefore close to 5

data points per zero, and we are guaranteed all the zeros inside the 5000-length

above mentioned interval, and all located within an interval as small as 0.01 mean

level spacing units (i.e. the naive constant grid approach would require 100 points

per zero for this accuracy). Ultimately, it is this efficiency that justifies the algo-

rithm.

The process of calculating extra data, making use of the second discrete derivative,
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is outlined in the following loop, in which i refers to the “current position” in the

existing list of wave number values k0 < . . . < kn :

1. Check for the existence of a zero of f ′′[ ], i.e. if sgn f ′′[ki, ki+1, ki+2] 6=
sgn f ′′[ki+1, ki+2, ki+3] go to 2, else go to 7.

2. Interpolate 9-degree polynomial

P (k; {ki−3, ki−2, ki−1, ki, ki+1, ki+2, ki+3, ki+4, ki+5, ki+6}),

3. Solve P (k; {ki−3, . . . , ki+6}) = 0 and count (real) solutions in the interval

[ki−2, ki+5]. If the number of solutions is greater than the number of zeros

of the discretization f [ ], go to 4 and return the solutions that do not match

with zeros of f [ ], or “extra zeros”, i.e. any pair x1, x2 such that P (x1) =

P (x2) = 0 and kj < x1 < x2 < kj−1, with sgn f [kj] = sgn f [kj+1]8, else go to

7.

4. Calculate the derivative of the polynomial and solve P ′ = 0. Return the set

S of solutions (within [ki−2, ki+5]) that happen to lie between two extra zeros

selected in the previous step9.

5. Calculate and insert (x, f [x]) for every x ∈ S. If x < ki+3, go to 6, else go

to 7.

6. Select the correct next “position” i, taking into account the new elements in

f [ ], update i and go to 1.

7. Update position, i→ i+ 1, go to 1.

To test for zeros of the second derivative (step 1) we need and use four points,

ki < ... < ki+3. If the test is positive and takes us to the step of interpolation (step

2), we take 6 more points (3 to the left of ki, 3 to the right of ki+3), and we decide

whether to keep testing according to what happens within the 8 innermost points

(third step), [ki−2, ki+5]. One simple reason to expand the original quadruplet

to 10 points is that it is costless: we are focusing in this area and interpolating

anyway, so why not then make use of the data that we already have, to obtain a

8Or any x1, x2, x3 such that P (x1) = P (x2) = P (x3) = 0 and kj < x1 < x2 < x3 < kj+1 with
sgn f [kj ] 6= sgn f [kj+1]. . .

9Clearly, if the interpolated polynomial has any extra zeros, some extremum must exist
between those zeros.
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better polynomial?10. Another natural reason, also related to the absence of extra

cost, is that this polynomial gives us information over a wider range of data for

free, and it turns out that extra zeros of the interpolating polynomial, P , are often

found in this region outside the original quadruplet.

We do not choose zeros of P to calculate new values of f , but extrema of P that

lie between two of its zeros (step 6). As an example, let us have the pair of values

kj < kj+1 among our original points, such that sgn f [kj] = sgn f [kj+1], two “extra

zeros”, x1, x2, of P (k), i.e. P (x1) = P (x2) = 0, such that kj < x1 < x2 < kj+1.

We would then calculate the extremum of P , call it x, such that x1 < x < x2.

The reason for this choice is that we do not want, at this stage, to give a good ap-

proximation of the zeros of f , but only locate, and choosing the extremum of P as

the extra point to calculate f , we expect to find sgn f [x] 6= sgn f [kj] = sgn f [kj+1],

hence finding two missing zeros in one go. If f [x], on the other hand, is far from

P (x), then we can consider that the polynomial interpolation obtained from the

data was far from approximating f(k) and the new data was indeed needed (in

fact, the addition of the data will force new tests of second discrete derivative). In

any case, the choice of extrema to calculate new points is very convenient.

The algorithm is such that after having worked with the last four points in the

discretisation, there is no reason to re-check the entire list, because we know be-

forehand that no new points will be selected for calculation (either because the test

in step 1 fails in every group of four points, which is unusual, or because the test

in step three fails when the one in step 1 is positive, which is the usual outcome).

This feature is due to the step 6, which ensures that all possible configurations

which may have being modified with the addition of data points are checked “on

the fly”11.

If zeros are still missing when calculating the new points according to the above

criteria, we run an identical test that looks for “peaks” (zeros of f ′[ ]):

1. Check for the existence of a zero of f ′[ ], i.e. if sgn f ′[ki, ki+1] 6= sgn f ′[ki+1, ki+2]

go to 2, else go to 7.

2. Interpolate 9-degree polynomial

P (k; {ki−3, ki−2, ki−1, ki, ki+1, ki+2, ki+3, ki+4, ki+5}),
10The computing time difference between cubic and ninth polynomial interpolation is insignif-

icant.
11A simpler option would consist in updating the position naively (as in step 7) every time

until the end, and then re-running the algorithm from the beginning when the last. The entire
process would finish when no new points were selected after a run
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3. Solve P (k; {ki−3, . . . , ki+5}) = 0 and count (real) solutions in the interval

[ki−2, ki+4]. If the number of solutions is greater than the number of zeros of

the discretisation f [ ], go to 4 and return the solutions that do not match with

zeros of f [ ], (extra zeros), i.e. any pair x1, x2 such that P (x1) = P (x2) = 0

and kj < x1 < x2 < kj−1, with sgn f [kj] = sgn f [kj+1]12, else go to 7.

4. Calculate the derivative of the polynomial and solve P ′ = 0. Return the set

S of solutions (within [ki−2, ki+4]) that happen to lie between two extra zeros

selected in the previous step.

5. Calculate and insert (x, f [x]) for every x ∈ S. If x < ki+3, go to 6, else go

to 7.

6. Select the correct next “position” i, taking into account the new elements in

f [ ], update i and go to 1.

7. Update position, i→ i+ 1, go to 1.

If zeros are still missing, and if there are new points in the discretisation coming

from testing the first derivative as above, one can rerun a test on the second deriva-

tive, and so forth. But this is highly unusual: normally, the second derivative part

of the algorithm finds all the zeros.

As a last detail, we mention that a table of update components, sin 0.01l, sin 0.02l,

etc, calculated beforehand, and a way to combine them, are highly useful in order

to be able to “jump” from a point to another point of the k-axis (using trigonome-

try, as in the first of the four steps of the general algorithm -see 7.2.1). The option

of calculating H(k) anew, instead of updating it from the last H calculated and

stored, is never acceptable due to the computation time.

7.2.3 Bounding the zeros and giving a definite estimate of

the spectrum

At this stage, we have a list of data points,

k0 < k1 < . . . < ki−1 < ki < ki+1 < . . . < kn−1 < kn,

12Or any x1, x2, x3 such that P (x1) = P (x2) = P (x3) = 0 and kj < x1 < x2 < x3 < kj+1 with
sgn f [kj ] 6= sgn f [kj+1]. . .
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such that for every k, k0 < k < kn, for which f(k) = 0, a pair of consecutive

wave numbers kj < kj+1 are available such that kj < k < kj+1 and sgn f [kj] 6=
sgn f [kj+1]. To further “zero in” the unknown k, we obtain the cubic interpola-

tion, P (k), over kj−1 < kj < kj+1 < kj+2, calculate the solution of P (ks) = 0 in

the interval [kj, kj+1], and calculate f [ks]. If the sign of f [ks] equals the sign of

f [k], we calculate f [ks + 0.01], and f [ks + 0.02], etc13, until the sign of f changes

to sgn f [kj+1]. Most usually, the sign changes already after a single step, i.e.

sgn f [ks] 6= sgn f [ks + 0.01], very rarely one or two more steps are needed, and

often no step is needed because an existing data point acts as a bound.

One more detail are worth mentioning. The level of error smearing caused by a

0.01 uncertainty (which highly overestimates the real lack of accuracy of the posi-

tion of the zeros, anyway) is extremely small (we discuss it explicitly in section 7.5).

Therefore, a careful study of the error committed if we were to interpolate the zeros

directly on the data obtain in the previous step (subsection 7.2.2) could have led

us to infer that the bounding of the zeros that we have just explained was really

unnecessary. Skipping this step would save us the calculation of (roughly) two

data points per zero, hence leaving the total computational time to only 3 data

points per zero (see the example in page 90). This is an important consideration

regarding efficiency, particularly when dealing with very large graphs14.

7.3 The data

Our original intention was to generate around a million eigenvalues for the FNdG

with 10,20,30,40 and 50 vertices. The slow decay of the cumulative level spacing

distribution towards the universal curve (section 7.5), together with the improve-

ments made on the algorithm “along the way” made us generate a similar amount

of data for a 60-vertex graph, and explore graphs of over a 100 vertices. The table

7.1 refers to the “small graphs” (10 to 60 vertices); the exact wave number-intervals

for which the function f [k] of the previous section was calculated (and hence for

which the spectrum was found) are shown. The table 7.2 refers to graphs of size

100, 120, 140 vertices. The intervals for which f has been calculated in those cases

amount to a total of around 100000 or 200000 mls units, depending on the exact

13Obviously, if sgn f [ks] = sgnf [kj+1 the loop runs in the opposite direction.
14Another point to make is that the procedure outlined here is quite flexible, in the sense that

one can always use existing data to improve the accuracy of the zeros a posteriori, if needed.
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Table 7.1: Data generated for small size graphs.

Size (vertices) k-interval
10 [10000,990000]
20 [10000,990000]
30 [20000,1000000]
40 [10000,900000]
50 [50000,950000]
60 [50000,990000]

graph, but they are intended to span the same range of wave numbers that we

have for the small graphs, i.e. up to around k = 1000000, as can be seen in table

7.2. The reason why we have tried to cover the k-axis over a million mls (apart

from the obvious outcome of noise reduction in the 10 to 60 vertices case, where

we effectively cover between 900000 and 1000000 mls in total), is that unexpected,

very long-range, level spacing-to-level spacing correlations appeared, and we have

estimated that they are exhausted after the first million (see section 7.6).
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Table 7.2: Data generated for large graphs.

size (Vertices) 100 120 140

k-intervals

[60000, 65000]
[75000, 80000]
[100000, 110000]
[135000, 140000]
[165000, 170000]
[185000, 190000]
[205000, 215000]
[245000, 255000]
[265000, 270000]
[300000, 310000]
[335000, 340000]
[355000, 360000]
[380000, 390000]
[445000, 450000]
[465000, 470000]
[500000, 510000]
[595000, 605000]
[640000, 650000]
[690000, 700000]
[725000, 730000]
[775000, 785000]
[805000, 810000]
[830000, 835000]
[890000, 900000]
[925000, 930000]
[950000, 955000]
[985000, 995000]

[100000, 110000]
[205000, 215000]
[300000, 310000]
[380000, 390000]
[500000, 510000]
[595000, 605000]
[690000, 700000]
[775000, 785000]
[890000, 900000]
[985000, 995000]

[80000, 85000]
[110000, 115000]
[165000, 170000]
[205000, 210000]
[245000, 250000]
[320000, 325000]
[360000, 365000]
[405000, 410000]
[450000, 455000]
[495000, 500000]
[530000, 535000]
[570000, 575000]
[605000, 610000]
[640000, 645000]
[710000, 715000]
[745000, 750000]
[800000, 805000]
[875000, 880000]
[920000, 925000]
[935000, 940000]
[990000, 995000]

total length 195000 100000 105000

7.4 The level spacing probability and its cumu-

lative distribution

From the spectral sequence with N + 1 consecutive eigenvalues, corresponding to

our V -vertex graphs, we extract and order the N differences between every two

consecutive zeros,

s1 ≤ s2 ≤ . . . ≤ si−1 ≤ si ≤ si+1 ≤ . . . ≤ sN , (7.18)
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and define (assuming an arbitrarily large sample) the level spacing distribution,

LSD, as

LV (s) ≡ lim
∆s→0

(
lim
N→∞

LV (s; ∆s > 0)
)
, (7.19)

where

LV (s; ∆s) ≡ j − i+ 1

N∆s
, with si−1 < s− ∆s

s
≤ si ≤ sj < s+

∆s

2
≤ sj+1. (7.20)

The innermost limit in Eq. (7.19), i.e. limN→∞ LV (s; ∆s), represents the proba-

bility that the distance between two consecutive zeros of the FNdG with V vertices

lies within
[
s− ∆s

2
, s+ ∆s

2

)
, divided by the bin length ∆s, the outermost limit pro-

ducing then a probability density. The double limit converges because the positive

integer j − i+ 1 (in Eq. (7.20)) is proportional to both N and the small, positive

“bin length” ∆s. On the other hand, the second and third inequalities, together

with the fourth, strict inequality, in Eq. (7.20) ensure proper counting.

We naturally do not have an infinite sample, and work with the approximated

LSD as defined in Eq. (7.20). The numerical values of the LSD are obtained con-

sidering bins of length ∆s = 0.05 (always mls units), and no further average is

performed. The resulting LV (s; 0.05), for V = 10, 20, . . . is compared with the

“universal” LSD form the Gaussian Unitary Ensemble , LGUE(s), which we can

express analytically to great accuracy from [50] up to s ≈ 2.3, and beyond this

number we interpolate over tabulated values from Mehta’s book ([49]).

Apparent convergence towards universality occurs from V = 20 onwards (see Fig.

7.2), although a plot of the deviations (Fig. 7.3(b)), i.e. LV (s; 0.05) − LGUE(s),

already anticipates the difficulties, at large size and low frequency, that we will find

in the next section. Fig. 7.4, on the other hand, shows the 10-vertex graph-LSD

to be closer to the GUE-LSD, in the neighborhood of s ∼ 0.5 and of s ∼ 1.5, than

the larger, 20-vertex graph (in fact, the observation, below, of the cumulative LSD

shows the 10-vertex graph to be globally closer to universal behaviour than the

20-vertex one). This type of small-size anomaly is known to affect the (undirected)

FNG (see for example [68]) and is probably due to the increasing back-scattering

amplitude with increasing graph size being the most important mechanism affect-

ing spectral correlations in the small size region. The maximum deviation away

from universality probably occurs with a graph with size Vmax ∈ [10, 20], and

then from Vmax onwards, the increase of the “system dimension”, B, takes over as

dominant effect. Different quantities, however, may have different behaviours: the



Chapter 7. Numerical Experiments 98

authors in [68] claim, for the time reversal invariant FNG, that the autocorrelation

of level velocities moves further away from universal when going from 6-vertex to

30-vertex graphs, and seems to converge to a limiting curve which is not given by

the RMT-GOE predictions.
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Figure 7.2: Numerical LSD for several graph sizes.
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Figure 7.3: LSD deviations from universality, LV (s) − LGUE(s) for several

graph sizes. In (a), the deviations diminish going from 20 to 100; in (b) the

behavior appears not so clear for the three largest graphs.
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Figure 7.4: The small size effect in the LSD of the FNdG: the smallest graph,

10 vertices, is closer to GUE than the 20-vertex graph in some regions of the

spacing axis.
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The integrated level spacing distribution, ILSD, for the GUE ensemble is the defined

as

CGUE(s) ≡
∫ s

0

LGUE(x)dx, (7.21)

and represents the probability that the interval between two consecutive eigen-

values of a matrix obtained from the GUE ensemble be in the region [0, s]. The

cumulative level spacing distribution of the sequence Eq. (7.18), corresponding to

a V -vertex digraph, reads

CV (si;N) ≡ i

N
. (7.22)

The ILSD typically smoothes out the noise of the LSD. In Fig. 7.5 we show the

iLSD for some of the digraphs, and the GUE-iLSD for comparison. In Fig. 7.6

the square deviations of CV from CGUE are shown:

D2
V [si] ≡

(
i

T
− CGUE(si)

)2

. (7.23)

The noise reduction allows to fully appreciate the anomaly that we mentioned

earlier, as D2
10(s) < D2

20(s) almost everywhere in the s-axis. From V = 20 to

V = 100, D2
V clearly diminishes, but for the three largest graphs a constant

deviation becomes apparent in the region from half to one mls units. We try to

give some explanation to this fact in the next section.
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Figure 7.5: iLSD for several graph sizes.
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Figure 7.6: In (a), D2
V (s) for all graphs. In (b), the “collapse” of the deviations

at large sizes.
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7.5 The decay of the iLSD

We define

I(V ; s) ≡
∫ s

0

D2
V (x)dx. (7.24)

With the data at our disposal, we work with the values of I(V ; 3.5), which are

shown in the table 7.3.

Table 7.3: Integrated square deviations of the iLSD.

V I(V ; 3.5)

10 0.000705568

20 0.000790133

30 0.000566096

40 0.000429932

50 0.000317688

60 0.000250091

100 0.000102912

120 0.0000929369

140 0.0000777149

Fitting a polynomial in powers of 1/V to these values produces systematically a

negative constant when we allow a term linear in 1/V (see Table 7.4), therefore

we reject this possibility and try to fit a polynomial with powers not lower than

1/V 215. The result is in the Table 7.5, where we can see, moreover, that the (now

positive) constant term is of the same order as

I(100; 1.1) = 0.0000545716, (7.25)

which is the area under the leftmost “toe” of the curve to which the large graphs

seem to collapse, in Fig. 7.3.

15we are not including the 10-V data point in the fits, since I(V ; 3.5) increases from V = 10
to V = 20
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Table 7.4: Unrestricted polynomial fits resulting in negative constant terms.

1 1
V

1
V 2

1
V 3 sum of square residuals

-0.000040744 0.0173247 4.68702× 10−9

-0.000102751 0.0237345 - 0.116208 1.09238× 10−9

-0.0000881952 0.0211627 - 1.42886 8.59553× 10−10

-0.0000488523 0.0146092 0.280961 - 4.75852 6.31345× 10−10

Table 7.5: Polynomial fits without 1/V term.

1 1
V 2

1
V 3

1
V 4 sum of square residuals

0.000142059 0.290403 4.76657× 10−8

0.0000414796 0.892612 -11.89868 1.73883× 10−9

0.0000577567 0.647465 -142.546 3.47979× 10−9

0.0000129266 1.36532 -35.6529 291.246 3.29711× 10−10

Of course, these fits far from conclusive. The two highest order terms of the curves

fitted (see Table 7.5), i.e. the constant and the 1/V 2 term, are of the same order

when one substitutes V = 100, 120 . . ., indicating that one would need even larger

graphs to confirm this constant as the dominant term. We will later point out

other sources for the origine of this constant term.

In the Table 7.6 we show results of curve fitting where we have imposed no constant

term and no 1/V term. In this case, the lowest order term, 1/V 2, seems to be

dominant by a factor of ten over the higher terms, when applied to V ≈ 100,

suggesting that, if the constant term that appears in Table 7.5 (or Eq. (7.25))

is an artifact, the iLSD converges to universality at a rate of 1/V (taking into

account that we are measuring square deviations).

Table 7.6: Polynomial fits with no constant nor first order term.

1
V 2

1
V 3

1
V 4 sum of square residuals

0.38012 1.43674× 10−7

1.03249 -14.4095 5.73578× 10−9

0.774172 -184.88 1.24703× 10−8

1.50663 -42.153 366.849 4.9531× 10−10
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In order to try to justify the appearance of the finite discrepancy, I(100; 1.1) =

0.0000545716, as an artifact, we will pose and discuss three arguments :

1. The systematic error in the positioning of the zeros, and hence in the mea-

surements of the level spacings. If we assume that C∞ = CGUE, there exists

a digraph size Vmax such that for all V > Vmax, the error produced by the

finite accuracy of the zeros will dominate over the difference between CV

and CGUE, and D2
V will effectively collapse, at V > Vmax, to a curve that

reflects this error. It is then reasonable to ask whether indeed Vmax ≈ 100

and what we see in Fig. 7.6(b) is the result of this. The answer is negative,

as we show below.

2. The finiteness of the sample. The noise in the measurement of D2
V [s] could

be comparable to the difference D2
100[s]−D2

140[s], making the curves in Fig.

7.6(b) effectively indistinguishable, hence making it appear as if the D2
V [s]

is converging to some finite value.

3. The (computational) impossibility to cover the entire “phase space”,

φ1, φ2, . . . , φ2B, φi ∈ [0, 2π), with the “ergodic flow”,

k→ φ(kl1), φ(kl2), . . . , φ(kl2B), in the case of very large B.

In order to test (and reject) the limited accuracy of the level spacing measurements

as the cause of the apparent lack of universality of the large FNdG, let us assume

an uncertainty σ for every spacing measurement. Since the zeros that we produce

are bounded within an interval of 0.01 mls units (see subsection 7.2.3), σ is of the

same order, i.e. we can assume that for ith spacing of the sample, si
16,

|si − sreal
i | < σ = 0.01, (7.26)

holds, where sreal
i is the “infinite precision” version of the measurement si. Al-

though we have not checked this systematically, the dispersion Eq. (7.26) is likely

to be greatly exaggerated compared to the real one, given the cubic interpolation

carried out to find the zeros. In order to isolate the effect of this error, we further

assume an infinite number of measurements, and also that they arise from the

Gaussian Unitary Ensemble. If the deviations |si− sreal
i | distribute according to a

probability density distribution P (si−sreal
i ;σ), a modified spacing distribution will

16Small changes to this value do not make any noticeable difference.
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result, L̃GUE, which is a convolution of the theoretical LGUE with the mentioned

distribution :

L̃GUE(s) ≡
∫ ∞
−∞

LGUE(|s+ x|)P (x)dx. (7.27)

Assuming that the error are Gaussian distributed, i.e.

P (si − sreal
i ) =

1

σ
√

2π
exp

(
−(si − sreal

i )2

2σ2

)
, (7.28)

from Eq. (7.27) we can easily calculate the apparent, finite deviation D2
Vmax

(s),

which reads

(
C̃GUE(s)− CGUE(s)

)2

=(∫ ∞
0

LGUE(u)

(
1

2

[
erf

(
s− u√

2σ

)
+ erf

(
s+ u√

2σ

)]
−Θ(s− u)

)
du

)2

, (7.29)

and taking σ = 0.01, the curve to which a system converging to universality should

collapse (at V = Vmax, in the case of a graph) is plotted in 7.7(a), and the order

of magnitude is far too small account for the values of D2
V (s).

Examining the second argument like previous one, i.e. in a clear cut quantita-

tive manner, is not possible: we cannot know the noise affecting the numerically

generated curve D2
120, for example. What we can do, is to select from one of the

small graphs, for which we have close to 1,000,000 zeros, the zeros lying in the

same intervals at our disposal in the case of a big graph, and look at the effect this

has on the D2
V (s) curve. The result is shown in Fig. 7.7(b), where we superpose

the curve representing D2
60(s) obtained from the entire data set on the one and,

and the one obtained from only the zeros inside the intervals shown in Table 7.2

(referring to the 100-vertex graph) on the other. The difference between the two

is more pronounced precisely in the region from s ∼ 0.6 to s ∼ 0.9, where a simi-

lar discrepancy affecting the D2
V (s) curves corresponding to the three big graphs

could explain the lack of noticeable difference between them. A way to test this

hypothesis would be to consider even larger graphs: not existing any reason why

the noise should increase, for a large enough graph, with say W vertices, D2
W (s)

should be small enough so that D2
140(s)−D2

W (s) becomes “visible”.

The third argument is a more general one. In a sequence of increasing bond lengths

l1 < . . . < lB (whether we have a directed or undirected graph is irrelevant) nor-

malized to one, the minimal difference, ∆l between consecutive bond lengths is not
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greater than ∼ 1/B2. The majority of analytical work on QG relies on substitut-

ing the flow k → φ(klb) by independent phases φ1, . . . , φb . . . The phase average,

which eventually produces universal statistics, is supposed to mimic the k-average,

therefore the numerical evaluation of real QGs should theoretically resemble an

average over the entire phase space. Ideally, one would average over a k-interval

of length, K, large enough so that K∆l >> 2π, which means that K & 1004 for a

100-vertex full graph. The question is then, to which extent the extreme small-size

of the phase-space region covered by our spectral average affects the final results.
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Figure 7.7: In (a), (C̃(s) − CGUE(s))2. In (b), we compare the result for

D2
60(s) obtained with all the data to the one obtained with data similar to those

available for larger graphs. The noise introduced by the reduction of the data

could explain the the “mixing” of the curves D2
140(s), D2

120(s), D2
100(s).
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7.6 The long range correlation between spacings

When we had to decide the number of zeros that we would attempt to extract

from the big graphs, we needed to have an idea about how much “quality” is

lost when reducing the k-interval from 1000000 to 100000 mls units length. An

unexpected finding was that the result that one obtains for the smaller intervals,

besides obviously showing greater noise, seems to strangely depend on the interval

itself. In Fig. 7.8(a) we show, as an example, the difference that exists between

the D2
60(s) curves corresponding to the wave number intervals [349983, 449984]

and [549985, 649979], respectively, and between them and the curve drawn from

the entire data.

This already suggests that it is better to spread a 100000 mls-long run among

small intervals, rather than use consecutive zeros, but it also makes us wonder

how much should one spread the intervals. In Fig. 7.8(b) we compare the curves

for 100000 zeros spread in 10 intervals covering roughly 1000000 mls units from

k = 0 to k = 1000000, and spread in 10 intervals ranging from k = 1000000 to

k = 10000000 (these are shown in Table 7.7).

Table 7.7: Extra intervals explored for 10-vertex and 60-vertex graph.

[1100000, 1110000]

[2000000, 2010000]

[2950000, 2960000]

[3975000, 3985000]

[5000000, 5010000]

[6050000, 6060000]

[6990000, 7000000]

[8020000, 8030000]

[9130000, 9140000]

The curves obtained from zeros in separate intervals (Fig. 7.8(b)) are clearly closer

to the curve related to the entire data, than those obtained from the same number

of consecutive zeros (Fig. 7.8(a)). While the region of the curves below s ∼ 1

is noisier anyway, (we have discussed the problems related to this region in the

previous subsection), the region s > 1 is much more stable under removal of data,

when this is distributed across a long range of the spectrum.
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Spreading the the data over intervals within the second million of mls-units shows

that there is little difference the corresponding results and those concerning the

first million. All this lead us to decide to spread the calculation of zeros over

intervals of a 1000000 mls units, and not larger.

This result suggest that there exists a very long range “spacing-to-spacing” correla-

tion, hinting to another departure of the full Neumann graph from RMT statistics

which could be further investigated, for example, through the number variance

statistics ([49]). One could conjecture that while the level spacing distribution

is very close to universal, the correlation between spacings is not, in the exact

same way as the level velocity distribution is very close to Gaussian, but the level

velocity autocorrelation is strongly size dependent and non-universal, as found by

the authors in [68].
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Figure 7.8: In (a) we compare the result for D2
60(s) obtained with all the

data to the ones obtained with 100000 consecutive zeros belonging to different

wave number intervals. In (b), we show comparison for the cases when the total

interval length (around 100000 mls units) is spread over ten smaller intervals

that extend over 1000000 mls units or over 10000000.



Chapter 8

Conclusions

We have generalized the notion of wave function continuity at the nodes of a quan-

tum graph, to the case when the waves propagating in opposing directions between

any two given nodes do so across a pair of antiparallel arcs. The resulting quantum

symmetric digraph becomes a quantum graph when the two lengths assigned to ev-

ery pair of antiparallel arcs are made equal, and in this sense the former generalizes

the latter. Our pseudo-continuity conditions reduce to the usual continuity con-

ditions when the transition from quantum symmetric digraph to quantum graph

is made.

We have introduced a vertex secular equation for QdGs which generalizes the anal-

ogous object for QGs introduced by Kottos and Smilansky, and we have used it,

together with an original, efficient algorithm, for the numerical generation of the

spectra of large, full Neumann digraphs.

We have carried out a systematic study of the decay of the level spacing distri-

bution towards universality at increasing graph size. As a result, and thanks to

large data samples, we have confirmed the universality of spectral fluctuations at

small frequencies, complementing the knowledge that exists about the universality

of the short time form factor. As we find, however, systematic deviations from

RMT, full universality of spectral fluctuations cannot be ascertained within our

computational means.

The numerical data that were obtained would allow for the exploration of further

statistical measures, for example next-to-nearest level spacing distribution and

such, that could be compared to the universal equivalent.

The algorithm that we have devised in order to extract the spectrum of large

graphs is efficient enough to be further employed, both for graphs and digraphs.

114
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Finally, we suggest here that our quantization scheme, which is based on pseudo-

continuity at the nodes and which successfully implements Robin type boundary

conditions on symmetric quantum digraphs, could be employed to produce other

type of boundary conditions ([44]) on digraphs.

From the work by Gnutzmann and Altland [2], it was not clear that the FNG

did not fall in the category of graphs for which the saddle point approximation is

permitted. A systematic study of the breaking down of the perturbative expansion

of the Gnutzmann and Altland field theory (in the case of the FNG) was therefore

necessary, and has been carried out.

The reason for splitting a bi-directional bond into two incommensurate arcs with

opposite directions was getting rid of the symmetry consisting in associating the

same length to both directions in a bond, thereby reducing the number of degrees

of freedom of the corresponding field theory and facilitating the analytical treat-

ment (the core of the problem remains when going from the FNG to the FNdG).

Our attempt to a field theoretical, non-perturbative derivation of the universal

2-point correlation function has been based, first, on the simplification just men-

tioned, and second, on restricting the action to the extensive set of nearly massless

modes of Gnutzmann and Altland field theory. As a result, we have obtained a

theory whose main variables consist of sums of Efetov’s type Q-matrices corre-

sponding to arcs attached to a given node. The main difficulty from that point

seems to be the fact that interactions exist between these “compound” variables.

This is due to every Qij-matrix being contained both in the compound variable

corresponding to node i and that corresponding to node j. It is possible that a

different mechanism accounts for the expected universality of the 2-point func-

tion, for example a “Higgs mechanism” by which the anti-symmetric modes that

we have neglected would generate masses for the symmetric ones.

A number of reasons lead us to suggest that our theory could prove useful when

applied to a Neumann star graph. On the one hand, a convenient setup of the

system, consisting of B mono-directional loops joined together in a single, cen-

tral point, leads to an action with no anti-symmetric modes. On the other hand,

the resulting action is much simpler for the star topology than it is for the fully

connected graph, because there is obviously only one compound variable, thus

the interactions mentioned above do not appear. Since no attempt of using the

super-symmetry technique with the Neumann star graph has been made as far

as we know and, more generally, applications of Efetov’s technique to strongly
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non-universal systems (such as the Neumann star) are not frequent, we think this

approach could prove interesting.

We have derived an exact functional for wave function statistics in quantum di-

graphs and studied the universal limit. This work complements the existing under-

standing on wave function statistics on quantum graphs, and serves to introduce

in the quantum graph community a technique used before in the field theoretical

treatment of small disordered conductors.



Appendix A

Super-symmetry technique

A.1 Space of Grassmann variables and “super-

space”

N “numbers”, χ1, . . . , χN , and their “complex conjugates”, χ∗1, . . . , χ
∗
N , satisfying

χiχj = −χjχil (A.1)

χiχ
∗
j = −χ∗jχi (A.2)

χ∗iχ
∗
j = −χ∗jχ∗i , (A.3)

for all i, j, are called anticommuting, or Grassmann. Complex conjugation of

Grassmann numbers has the properties

(χiχj)
∗ = χ∗iχ

∗
j (A.4)

(χi + χj)
∗ = χ∗i + χ∗j (A.5)

(χ∗i )
∗ = −χi. (A.6)

A crucial consequence of the anti-commutativity is that products of Grassmann

numbers square to zero,

(χi . . . χj)
2 = 0. (A.7)
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A supervector, ψ, and its Hermitian conjugate, are defined as

ψ =

(
~s

~χ

)
, ψ† =

(
~s †, ~χ †

)
, (A.8)

where the “fermionic” vector ~χ contains the Grassmann numbers

~χ =


χ1

...

χN

 , ~χ † = (χ∗1, . . . , χ
∗
N) , (A.9)

and the “bosonic” vector, ~s, is simply a N -dimensional complex vector1, i.e. a

“commuting” vector containing “commuting” variables.

The scalar product of two super-vectors is defined in a natural way,

ψ†1ψ2 = ~s †1 ~s2 + ~χ†1~χ2, (A.10)

and one can see that the “square modulus” of a super-vector is “real”, in the sense

that ψ†ψ = (ψ†ψ)∗. Scalar products contain summands of the form χ∗iχj, which is

a commuting term, although not an usual, commuting, complex number. Those

terms are called nilpotent2.

Super-matrices perform linear operations transforming super-vectors into super-

vectors:

Fψ =

(
a σ

ρ b

)(
~s

~χ

)
=

(
a~s+ σ~χ

ρ~s+ b~χ

)
, (A.11)

where the 2N × 2N super-matrix F contains a boson-boson block, a, a fermion-

fermion block, b, a boson-fermion block, σ, and a fermion-boson block, ρ. Nat-

urally, the diagonal blocks are commuting numbers and the off-diagonal ones are

anti-commuting. If ψ is a super-vector as defined in Eq. (A.8), we see that the

super-vector Fψ contains a nilpotent term, σ~χ, in its bosonic part. It is worth

mentioning that a bosonic component will in general be the sum of a complex

number plus a nilpotent part consisting of a linear combination of even products

1The fermionic and bosonic spaces need not in general have the same dimension, but they
will in our case.

2This name can be given to any product of Grassmann numbers, since Eq. (A.7) holds, but
it is usually employed to refer to products of an even number of factors, which, on the one hand,
do not anti-commute with other Grassmann products, but on the other hand are not usual
commuting numbers.
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of Grassmann numbers, while fermionic components will include a linear combi-

nation of odd products of anti-commuting numbers3.

The product of super-matrices is defined in the same way as the usual product

of matrices, and the components of a super-matrix can acquire nilpotent parts in

a manner similar to that described in the previous paragraph concerning super-

vectors.

In order to preserve the property , The super-transposition operation is defined as

(
a σ

ρ b

)T

=

(
aT ρT

−σT bT

)
. (A.12)

This is highly convenient as, together with Eq. (A.1), it preserves the standard

algebraic property

(Fψ)T = ψTF T . (A.13)

Moreover, defining super-matrix Hermitian conjugation in the usual way,

F † = (F T )∗, (A.14)

and taking Eq. (A.6) into account, we have

(F †)† = F, (A.15)

while applying Eq. (A.4) and Eq. (A.5) as well, we find

(Fψ)† = ψ†F †. (A.16)

Super-trace (str) and super-determinant (sdet) are defined as

strF = tra− trb, sdetF =
det(a− σb−1ρ)

det b
, (A.17)

where det b is assumed not to be nilpotent. The properties

str(F1F2) = str(F2F1), ln sdetF = str lnF, (A.18)

hold and generalize the analogous properties of the usual matrix algebra.

3Any type of component may equal zero.



Appendix A. Anticommuting variables 120

A.2 Functions of Grassmann variables, differen-

tiation and integration

Due to the property Eq. (A.7), any function of Grassmann variables, f(χ1, . . . , χN),

takes the form of a finite polynomial in those variables:

f(χ1, . . . , χN) = c0 +
∑
i

ci1χi +
∑
i<j

cij2 χiχj + . . .+ cNχ1 . . . χN , (A.19)

where c0, c
ij
1 , . . . , cN are complex constants. The formula Eq. (A.19) can be ob-

tained from any function by Taylor expansion, although two comments are in

order. First, some standard properties of function of a complex variable are not

preserved when the function is applied to Grassmann variables, for example, it

is obvious that eχi+χj 6= eχieχj for i 6= j. Second, a function f(x) which is non-

analytic at x = 0 cannot be applied to nilpotents, e.g.
√
χi,

1
χi
, lnχi do not exist.

The first of these issues is not usually relevant, because in practice most functions

are defined over even products of Grassmann, and we observe that equalities such

as eχiχj+χkχlχmχn = eχiχjeχkχlχmχn do hold.

Integration over Grassmann variables is carried out based on the properties∫
dχi = 0,

∫
dχ1χ1 = −

∫
χidχ1 = 1, (A.20)

and the fact that the “differentials”, dχi, dχ
∗
i , . . ., have the exact same commuta-

tion properties as the variables themselves.

The most important use of the super-symmetry technique relies on the validity of

formulas for Gaussian integration, such as∫
d(ψ∗, ψ)e−ψ

†Fψ =
1

sdetF
(A.21)∫

d(ψ∗, ψ)ψiψ
∗
j e
−ψ†Fψ =

1

sdetF

(
F−1

)
ij
, (A.22)

where

d(ψ∗, ψ) =
1

πN
ds∗1ds1 . . . ds

∗
NdsNdχ

∗
1dχ

1 . . . dχ∗NdχN . (A.23)

The equalities Eq. (A.21) and Eq. (A.22) have the same form as for standard

Gaussian integrals, but it is worth mentioning that the order “complex conjugate

goes first” in the differential Eq. (A.23), together with “complex conjugate goes
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second” in the pair of averaged ψ-components in Eq. (A.22), and the convention

Eq. (A.20) make this formulae correct in the case of Grassmann variables (it

is irrelevant when averaging over complex-number components). A generalized

version of the Wicks theorem can be obtained, allowing for the calculation of

the average over any number of super-components. All those averages can be

found expanding the following formula on the auxiliary vectors, φ, φ†, and equating

powers of the same order on these vectors[9]:

sdetF

∫
(.ψ
∗, ψ)e−ψ

†Fψeψ
†φ+φ†ψ = eφ

†Fφ. (A.24)



Appendix B

Gaussian integration of

super-fields

We consider the second order approximation Eq. (4.28) to the full action Eq. (4.22),

Sk =− str ln(1− ZZ̃) + str ln(1− ΣZΣ†Z̃) (B.1)

=str(Z − ΣZΣ†)Z̃ +O(Z, Z̃)4 (B.2)

for the kinetic action. The source action written as

Sφ =φsstr
ΣZΣ†Z̃

1− ΣZΣ†Z̃
(B.3)

+strφ+
ΣZΣ†Z̃

1− ΣZΣ†Z̃
+ strφ−

Σ†Z̃ΣZ

1− Σ†Z̃ΣZ
, (B.4)

has a second order term

S2
φ =φsstrΣZΣ†Z̃ (B.5)

+strφ+ΣZΣ†Z̃ + strφ−Σ†Z̃ΣZ. (B.6)

The sources φ± are proportional to σBF
3 , and since neither Σ nor φ contains

non-vanishing Grassmann components, we can see that commuting and anti-

commuting variables in the action, at this order, do not multiply each other.

Separating both types of variable according to Z = ZD + ZO, we can re-write the
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second order action as

S2 = str ~̃ZD (1− F + φsF + φ+F + φ−F ) ~ZD (B.7)

+ str ~̃ZO (1− F + φsF + φ+F − φ−F ) ~ZO. (B.8)

The resulting independent gaussian integration of complex and Grassmann Z-

components is straightforward:∫
d(Z, Z̃)e−S

2
k−S

2
φ =

det(1− F + φsF + (φ+ − φ−)F )

det(1− F + φsF + (φ+ + φ−)F )
. (B.9)

The arguments of the determinants in Eq. (B.9) are not 2B × 2B matrices, but

rather 4B× 4B, the extra structure on top the arc-structure being inherited from

2× 2 super -structure of the Z-matrices. Linearizing now in φ± we find

det(1− F + φsF + (φ+ − φ−)F ) = det(1− F + φsF ) (B.10)

·
(

1 + tr(φ+ − φ−)
F

1− (1− φs)F
(B.11)

− 1

2
tr(φ+ − φ−)2

(
F

1− (1− φs)F

)2
)
, (B.12)

1

det(1− F + φsF + (φ+ + φ−)F )
=

1

det(1− F + φsF )
(B.13)

·
(

1− tr(φ+ + φ−)
F

1− (1− φs)F
(B.14)

+
1

2
tr(φ+ + φ−)2

(
F

1− (1− φs)F

)2
)
. (B.15)

The sources φ± are linear in σ3, in the extra structure, while being proportional

to the identity in the arc structure, therefore there is an automatic cancellation of

linear terms :

trφ±
F

1− (1− φs)F
= 0. (B.16)

They are also linear in the original sources j±, and according to the derive-and-

take-the-zero-limit procedure, Eq. (4.5), we have another cancellation:

trφ2
±

(
F

1− (1− φs)F

)2

= 0. (B.17)
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The final result then reads

lim
φ±→0

d2

dφ+dφ−

∫
d(Z, Z̃)e−S

2
k−S

2
φ =2 lim

φ±→0

d2

dφ+dφ−
trφ+φ−

(
F

1− (1− φs)F

)2

(B.18)

=2
( π

2B

)2

2tr

(
F

1− (1− φs)F

)2

(B.19)

=
( π
B

)2

tr

(
F

1− (1− φs)F

)2

. (B.20)

The appearance of an extra factor of 2 in Eq. (B.19) is due to the reduction by a

half in the dimension of F : (
F 0

0 F

)
→ F. (B.21)
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