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Abstract Asymptotic homogenisation technique and two-scale convergence is used
for analysis of macro-strength and fatigue durability of composites with
a periodic structure under cyclic loading. The linear damage accumu-
lation rule is employed in the phenomenological micro-durability condi-
tions (for each component of the composite) under varying cyclic load-
ing. Both local and non-local strength and durability conditions are
analysed. The strong convergence of the strength as the structure pe-
riod tends to zero is proved and its limiting value is estimated.

1. INTRODUCTION
Different homogenisation methods are widely used for obtaining ho-

mogenised macro-stress fields and effective elastic properties of compos-
ites. In [2, 6], the first approximation to the micro-stress field was derived
from the properties of the components, micro-geometry of the composite
and the applied macro-loads. Convergence of the micro-stresses to some
limit, as the structure period tends to zero, can be proved by the two-
scale homogenisation technique [1, 3]. The present paper is based on
the fact that this limit is exactly the first term of the micro-stress field
approximation, which is the product of the homogenised stress tensor,
depending only on macro-geometry and boundary conditions, and the
so-called stress concentration tensor, related only to the micro-geometry
and stiffness tensors of composite components.
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Let B be a Banach space and Ω̃ be an open or closed domain in a
finite-dimensional space. Then C(Ω̃, B) denotes the space of continuous
Banach-valued functions f : Ω̃ 3 x 7→ f(x) ∈ B, that is such that
‖f(x1) − f(x2)‖B → 0 as Ω̃ 3 x2 → x1 for any x1 ∈ Ω̃. Let M(Ω̃) be
the space of all bounded functions on Ω̃.

2. ELEMENTS OF STRENGTH ANALYSIS
For a bounded stress field σij(y), i, j = 1, ..., 3, any local strength

condition for micro-stresses at a point y ∈ Ω ⊂ IRk (k is 1, 2 or 3) can
be written in the form Λ (σ(y), y) < 1, where Λ ∈ C(IR3×3,M(Ω)) is a
normalised equivalent stress function, a material characteristic, which is
non-negative and positively homogeneous of the order +1 w.r.t. σ.

Example 1. For some materials Λ can be associated with the von Mises
equivalent stress, ΛM (σ(y), y) = {[(σ1(y)− σ2(y))2 + (σ2(y)− σ3(y))2+
(σ3(y) − σ1(y))2]}1/2/(

√
2σr(y)), or with the Tresca equivalent stress,

ΛT (σ(y), y) = maxk,m |σk(y) − σm(y)|/σr(y), where σ1, σ2, σ3 are the
principal stresses and σr is a known uniaxial strength of material.

Assuming body rupture means rupture of at least one of its points,
the (initial) local strength condition for the whole body is then

sup
y∈Ω

Λ (σ(y), y) < 1. (1)

Such local strength condition, however, is generally not applicable to
unbounded stress fields since the conditions will predict fracture under
virtually any singular stress field.

For more general, especially singular stress fields, e.g. belonging to
L2(Ω), a (point) non-local strength condition Λ¯(σ; y) < 1 can be ap-
plied. Here Λ¯(σ; y) is a normalised equivalent stress functional, which
is defined on the tensor-functions σij ∈ L2(Ω) and is non-negative posi-
tively homogeneous of the order +1 w.r.t. σ, see [5].

Particularly for some materials Λ¯ can be related with a weighted
averaging of σij(x), x ∈ Ω along some neighbourhood of the point y,

Λ¯(σ; y) := Λ
(
σ¯(y), y

)
, σ¯ij(y) :=

∫

Ω
wijkl(y, x)σkl(x)dx, (2)

where σ¯ij ∈ C(Ω̄) is an auxiliary non-local stress tensor, and the weight
w ∈ C(Ω̄, L2(Ω)) is a material characteristics, such as

∫
Ω wijkl(y, x)dx =

δijδkl. Then the non-local strength condition for the whole body is
supy∈Ω Λ (σ¯, y) < 1.

2
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Example 2. (i) If wijkl(y, x) = δijδkl

{
3

4πd3 , |x− y| < d
0, |x− y| ≥ d

for 3D,

where d is a material constant, then σ¯ij(y) = 3
4πd3

∫
|x−y|<d σij(x)dx.

(ii) If wijkl(y, x) = δ(x− y)δijδkl, where δ(x− y) is the Dirac function,
then σ¯ij(y) = σij(y), and the non-local strength-condition coincides with
the local one.

3. ELEMENTS OF FATIGUE DURABILITY
ANALYSIS

Pure fatigue under cyclic loading is characterised by dependence of
the durability on the loading history considered as a sequence of loading
events but not on time or rate of loading. Then the cycle number n can
be considered as a a discrete or continuous time-like parameter, more
relevant to fatigue than the natural continuous time t. The Wöhler S–N
durability diagram (Wöhler function) for a material under an uniaxial
regular periodic cycling with constant stress range ∆σ = σmax−σmin and
mean stress σm = (σmax+σmin)/2, is a dependence of the critical number
of cycles n∗(∆σ, σm) to rapture, e.g. on ∆σ. For a multiaxial in-phase
periodic cycling, we consider ∆σ = ∆σij and σm = σmij (i, j = 1, 2, 3)
as tensors. For simplicity, suppose further that σmij = 0 and 1/n∗(∆σ)
is a continuous function. The approach discussed below works also for
σmij 6= 0 under in-phase cycling if one considers 1/n∗(∆σ, σm) as a
continuous function of the two tensor variables, and the corresponding
conditions on σm as a function of coordinate and scaling parameter have
to be applied as well.

If the material fatigue properties and/or stress field vary with the
coordinate, one can write for a body Ω an (initial) durability condition
under periodic cycling loading as

n < inf
y∈Ω

n∗(∆σ(y), y), (3)

where n∗(∆σ(y), y) is the Wöhler diagram for a homogeneous material
with the fatigue properties as at the point y, under the periodic cycling
∆σij homogeneous in space coordinates.

Let us consider now a loading process with varying cycle parameters
such that closed loops can be always identified but may be different. Let
m = 1, 2, ... be a number of a closed loop with the stress range ∆σij(m, y)
in the loading history {σ(·, y)} = {σ(m, y)}n

m=1 at the point y. Let
n∗(∆σ, y) be the Wöhler function for the material of the point y. The
Palmgren-Miner linear damage accumulation rule gives the durability
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condition for a cycle n in the form

ωN ({σ(·, y)}; n, y) :=
n∑

m=1

1
n∗[∆σ(m, y), y]

< 1. (4)

where ωN ({σ(·, y)};n, y) is called fatigue damage measure.
The corresponding body durability condition has the the form

sup
y∈Ω

ωN ({σ(·, y)}; n, y) < 1. (5)

Local fatigue durability condition (3) is generally not applicable to
singular stress fields. For more general classes of stress fields, e.g. L2(Ω),
a non-local fatigue durability condition can be applied. For example, for
the periodic cycling we can take

n < inf
y∈Ω

n∗¯(∆σ; y), n∗¯(∆σ; y) := n∗(∆σ¯(y), y), (6)

∆σ¯ij(y) :=
∫

Ω
wijkl(y, x)∆σkl(x)dx (7)

where w(y, x) is as above. For the non-periodic cycling, one can replace
∆σ(n, y) by ∆σ¯(n, y) in the linear damage accumulation rule (4).

4. ELEMENTS OF ASYMPTOTIC
HOMOGENISATION

A boundary value problem of elasticity for a composite solid Ω hav-
ing an εY−periodic structure, that is a large number of periodically
distributed inclusions or pores with a scaling parameter ε, is presented
by displacement uε

i ∈ H1(Ω) and stress σε
ij ∈ L2(Ω) fields for each ε > 0.

According to [6, 1, 3], the homogenised displacement and stress fields,
u0

i ∈ H1(Ω), σ̂ij ∈ L2(Ω), present a solution to a uniquely solvable
homogenised problem of elasticity in the domain Ω.

It is known [1, 3] that σε
ij ∈ L2(Ω) contains a subsequence, which

two-scale converges to a function σ0 ∈ L2(Ω× Y ), that is,

lim
ε→0

|
∫

Ω
ψ(x,

x

ε
)σε

ij(x)dx− 1
|Y |

∫

Ω

∫

Y
ψ(x, ξ)σ0

ij(x, ξ)dxdξ| = 0, (8)

for any ψ ∈ L2(Ω, Cper(Y )). Furthermore,

σ0
ij(x, ξ) = Aijkl(ξ)σ̂kl(x), (9)

where Aihjk(ξ) is the stress concentration tensor [6, Chap.9, Sec.4], ob-
tained after solution of an auxiliary periodic problem of elasticity and
such that 1

Y

∫
Y Aijkl(ξ)dξ = δijδkl.
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5. HOMOGENISATION OF LOCAL
STRENGTH AND DURABILITY
CONDITIONS

In a periodic medium, all becomes dependent on the scaling parameter
ε. Strength condition (1) and fatigue durability condition (3) become

sup
y∈Ω

Λε(σε, y) < 1, n < inf
y∈Ω

n∗ε(∆σε, y). (10)

Suppose,

Λε(σε, y) := Λ(σε,
y

ε
), n∗ε(∆σε, y) := n∗(∆σε,

y

ε
). (11)

Our aim is to derive macro-strength and macro-durability conditions
like (1), (3) and (4)–(5), where the homogenised strength Λ̂ function,
Wöhler function n̂∗, and damage measure ω̂N are functions of the ho-
mogenised stress σ̂ih(x) and the composite micro-characteristics only.
Let the notation |σ| for a tensor σij mean a matrix norm.

Proposition 1 (homogenisation of local normalised equivalent
strength function) Let a tensor function sequence σε(y) ∈ C(Ω̄) con-
verge to a tensor function σ0(y, ζ) ∈ C(Ω̄, Cper(Y )) uniformly w.r.t. y
as ε → 0, i.e.,

lim
ε→0

sup
y∈Ω

|σε(y)− σ0(y,
y

ε
)| = 0 (12)

and Λ ∈ C(IRn×n,Mper(Y )). Then,

lim
ε→0

sup
y∈Ω

∣∣∣Λ
(
σε(y),

y

ε

)
− Λ

(
σ0(y,

y

ε
),

y

ε

)∣∣∣ = 0 (13)

If σ0 is expressed by (9), then

lim
ε→0

sup
y∈Ω

Λ
(
σε(y),

y

ε

)
≤ sup

y∈Ω
Λ̂(σ̂(y)), Λ̂(σ̂(y)) := sup

ζ∈Y
Λ(Aijkl(ζ)σ̂kl(y), ζ).

and the limit sufficient local macro-strength condition is sup
y∈Ω

Λ̂(σ̂(y)) < 1.

Proof: sup
y∈Ω

∣∣∣Λ
(
σε(y),

y

ε

)
− Λ

(
σ0(y,

y

ε
),

y

ε

)∣∣∣ ≤

sup
y∈Ω

sup
ζ∈Y

∣∣∣Λ (σε(y), ζ)− Λ
(
σ0(y,

y

ε
), ζ

)∣∣∣ . (14)

Let us take any δ1 > 0. Belonging Λ(σ, ζ) to C(IRn×n,Mper(Y )) implies
that for any constant C1 > 0 there exists δ2 > 0 such that supζ∈Y |Λ (σ′, ζ)−
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Λ (σ′′, ζ) | < δ1 for any tensors σ′, σ′′ such that |σ′|, |σ′′| ≤ C1 and
|σ′ − σ′′| < δ2. Due to (12) and belonging σ0(y, ζ) to C(Ω̄, Cper(Y )),
one can choose such ε̃ > 0 that |σ0(y, ζ)|, |σε(y)| ≤ C1 for some C1 > 0
for any ε < ε̃, y ∈ Ω̄ and ζ ∈ Ȳ . Let us take ε̃ > 0 even smaller such
that |σε(y) − σ0(y, y

ε )| < δ2 due to (12). Thus, supζ∈Y |Λ (σε(y), ζ) −
Λ

(
σ0(y, y

ε ), ζ
) | < δ1. This implies the convergency of the right hand

side of (14) to zero as ε → 0, that proves (13).
The rest of the proposition follows from (13), (9) and (10). ¥
Note that although the hypotheses of Proposition 1 are satisfied for

not any two-scale converging tensor function sequence σε(y) ∈ L2(Ω) ap-
pearing in the elastic composite analysis, the range of their validity is not
empty. A trivial example is an infinite periodic composite with smooth
inclusions, under a uniform load at infinity: then σε(y) and σ0(y, y/ε)
simply coincide. Moreover, the hypotheses of Proposition 1 are always
satisfied for the non-local counterpart of any two-scale converging tensor
sequence, see Proposition 7 below.

Let us denote n∗−1(∆σ, y) := 1/n∗(∆σ, y). Similarly to Proposition
1, we have

Proposition 2 (homogenisation of local fatigue durability dia-
gram) Let a periodic stress cycling have a tensor range sequence ∆σε(y) ∈
C(Ω̄), which converges to a tensor function ∆σ0(y, ζ) ∈ C(Ω̄, Cper(Y ))
uniformly w.r.t. y as ε → 0 i.e., limε→0 supy∈Ω |∆σε(y)−∆σ0(y, y

ε )| = 0.

Let n∗(∆σ, y
ε ) be a durability diagram such that n∗−1 ∈ C(IRn×n,Mper(Y )).

Then lim
ε→0

sup
y∈Ω

∣∣∣n∗−1
(
∆σε(y),

y

ε

)
− n∗−1

(
∆σ0(y,

y

ε
),

y

ε

) ∣∣∣ = 0. (15)

If σ0 is expressed by (9), then

lim
ε→0

inf
y∈Ω

n∗
(
∆σε(y),

y

ε

)
≥ inf

y∈Ω
n̂∗(∆σ̂(y)),

where n̂∗(∆σ̂(y)) := inf
ζ∈Y

n∗(Aijkl(ζ)∆σ̂kl(y), ζ)

and the limit sufficient local fatigue macro-durability condition under
periodic cycling loading is n < infy∈Ω n̂∗(σ̂(y)).

Using Propositions 2 and the linear accumulation rule (4), (5), we
can write the limiting expression for the Palmgren-Miner fatigue damage
measure and the durability condition under varying cyclic loading.

Proposition 3 (homogenisation of local fatigue damage mea-
sure and durability condition) Let a stress cycling have a range
∆σε(m, y) from C(Ω̄), which converges to a tensor function ∆σ0(m, y, ζ)
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from C(Ω̄, Cper(Y )) uniformly w.r.t. y for each cycle number m, as
ε → 0, i.e., limε→0 supy∈Ω |∆σε(m, y)−∆σ0(m, y, y

ε )| = 0 for any m. Let
n∗(∆σ, y

ε ) be a durability diagram such that n∗−1 ∈ C(IRn×n,Mper(Y )).
Let ωN ({σε(·, y)};n, y

ε ) =
∑n

m=1 n∗−1
(
∆σε(m, y), y

ε

)
. Then

lim
ε→0

sup
y∈Ω

∣∣∣ωN
(
{σε(·, y)}; n,

y

ε

)
− ωN

(
{σ0(·, y,

y

ε
)}; n,

y

ε

)∣∣∣ = 0, (16)

If σ0 is expressed by (9), then

lim
ε→0

sup
y∈Ω

ωN
(
{σε(·, y)}; n,

y

ε

)
≤ sup

y∈Ω
ω̂N ({σ̂(·, y)}; n), where

ω̂N ({σ̂(·, y)}; n) := sup
ζ∈Y

ωN ({Aijkl(ζ)σ̂kl(·, y)}; n, ζ) =

sup
ζ∈Y

n∑

m=1

1
n∗ (Aijkl(ζ)∆σ̂kl(m, y), ζ)

≤
n∑

m=1

1
n̂∗ (∆σ̂(m, y))

(17)

and the limit sufficient local fatigue macro-durability condition under
variable cyclic loading is

sup
y∈Ω

ω̂N ({σ̂(·, y)}; n) < 1.

Proof: Using (15), we have

lim
ε→0

sup
y∈Ω

|ωN ({σε(·, y)}; n, y)− ωN ({σ0(·, y,
y

ε
)}; n, y)| ≤

n∑

m=1

lim
ε→0

sup
y∈Ω

∣∣∣n∗−1
(
∆σε(m, y),

y

ε

)
− n∗−1

(
∆σ0(m, y, ),

y

ε

)∣∣∣ = 0.

This proves (16), and the rest of the proposition does directly follow. ¥
Note that according to (17), the limit composite damage measure is

generally not expressed but only estimated by the damage measure based
on the limit composite durability diagram.

6. HOMOGENISATION OF NON-LOCAL
STRENGTH AND DURABILITY
CONDITIONS

Let us consider for a periodic medium the limits of non-local micro–
strength and micro–durability conditions supy∈Ω Λ¯ε (σε; y) < 1, n <
infy∈Ω n∗¯ε (∆σε; y) as ε → 0. Representations (2), (6) become

Λ¯ε (σε; y) := Λε
(
σ¯ε(y), y

)
, n∗¯ε (∆σε; y) := n∗ε

(
∆σ¯ε(y), y

)
,

σ¯ε
ij (y) :=

∫

Ω
wε

ijkl(y, x)σε
kl(x)dx, y ∈ Ω.
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Suppose the functions Λε and n∗ε have form (11). Let further
wε

ijkl(y, x) := wijkl(y,
y

ε
, x,

x

ε
). Then

Λε(σ¯ε, y) = Λ(σ¯ε(y),
y

ε
), n∗ε(∆σ¯ε, y) = n∗(∆σ¯ε(y),

y

ε
),

σ¯ε
ij (y) =

∫

Ω
wijkl(y,

y

ε
, x,

x

ε
)σε

kl(x)dx, (18)

Lemma 4 Let σε ∈ L2(Ω) be a sequence of tensor functions σε(x) two–
scale converging to a tensor σ0 ∈ L2(Ω × Y ) as ε → 0. Let w ∈
C(Ω̄, Cper(Y, L2(Ω, Cper(Y )))). Then the sequence

σ̃¯ε(y, ζ) :=
∫

Ω
w(y, ζ, x,

x

ε
)σε(x)dx, (19)

is bounded in C(Ω̄, Cper(Y )) and does strongly converge in this space to

σ¯0(y, ζ) =
1
|Y |

∫

Ω

∫

Y
w(y, ζ, x, ξ)σ0(x, ξ)dξdx. (20)

Proof: Since the sequence σε ∈ L2(Ω) two-scale converges, it converges
also weakly and, consequently is bounded in L2(Ω), that is, ‖σε‖L2(Ω) <
C < ∞.

The periodicity in ζ is evident for the both functions σ̃¯ε(y, ζ) and
σ¯0(y, ζ), and it is sufficient to prove the proposition in the space C(Ω̄×
Ȳ ).

From (19) we have,

sup
y∈Ω̄

sup
ζ∈Ȳ

|σ̃¯ε(y, ζ)| ≤ sup
y∈Ω̄

sup
ζ∈Ȳ

[∫

Ω

∣∣∣w(y, ζ, x,
x

ε
)
∣∣∣
2
dx

] 1
2

‖σε‖L2(Ω̄) ≤

sup
y∈Ω̄

sup
ζ∈Ȳ

[∫

Ω
sup
ξ∈Y

|w(y, ζ, x, ξ)|2 dx

] 1
2

C = ‖w‖C(Ω̄,Cper(Y,L2(Ω,Cper(Y ))))C.

That is, the sequence σ̃¯ε(y, ζ) is equi-bounded in C(Ω̄ × Ȳ ). Let us
check the continuity,

|σ̃¯ε(y1, ζ1)− σ̃¯ε(y2, ζ2)| =∣∣∣∣
∫

Ω

[
w(y1, ζ1, x,

x

ε
)− w(y2, ζ2, x,

x

ε
)
]
σε(x)dx

∣∣∣∣ ≤
[∫

Ω
sup
ξ∈Y

|w(y1, ζ1, x, ξ)− w(y2, ζ2, x, ξ)|2 dx

] 1
2

‖σε‖L2(Ω̄) =

‖w(y1, ζ1, ·, ·)− w(y2, ζ2, ·, ·)‖L2(Ω,Cper(Y ))C.
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The term ‖w(y1, ζ1, ·, ·) − w(y2, ζ2, ·, ·)‖L2(Ω,Cper(Y )) tends to zero as√
|y1 − y2|2 + |ζ1 − ζ2|2 → 0 uniformly w.r.t. {yi, ζi} ∈ Ω̄ × Ȳ , i = 1, 2,

since w ∈ C(Ω̄, Cper(Y, L2(Ω, Cper(Y )))). Thus, the sequence σ̃¯ε(y, ζ)
does not only belong to C(Ω̄ × Ȳ ) but is also equi-bounded and equi-
continuous. From the Ascoli-Arzelá theorem, the sequence is then com-
pact in C(Ω̄× Ȳ ).

On the other hand, as follows from the two-scale convergency of σε, the
sequence σ̃¯ε(y, ζ) converges point-wise to σ¯0(y, ζ) for any {y, ζ} ∈ Ω̄×
Ȳ . Since the sequence is also equi-bounded, this means it converges to
σ¯0(y, ζ) weakly in C(Ω̄× Ȳ ) (see, e.g., [4]). However, each compact and
weakly converging sequence in a Banach space converges also strongly
(see, e.g., [7, Section 20.2]). This proves the lemma. ¥

Proposition 5 Let σε ∈ L2(Ω) be a sequence of tensor functions σε(x)
two–scale converging to a tensor σ0 ∈ L2(Ω × Y ). Suppose, w ∈
C(Ω̄, Cper(Y, L2(Ω, Cper(Y )))). Then the sequence σ¯ε(y) given by (18)
is bounded in C(Ω̄) and does converge to the tensor function σ¯0(y, y

ε ),
given by (20), uniformly w.r.t. y as ε → 0, i.e.,

lim
ε→0

sup
y∈Ω̄

∣∣∣σ¯ε(y)− σ¯0(y,
y

ε
)
∣∣∣ = 0.

Proof: Let us note that σ¯ε(y) = σ̃¯ε(y, y
ε ), where the sequence σ̃¯ε

is given by (19) and belongs to and is equi-bounded in C(Ω̄, Cper(Y ))
according to Lemma 4. This implies the sequence σ¯ε(y) belongs to and
is equi-bounded in C(Ω̄). Then, owing to Proposition 4,
supy∈Ω̄

∣∣σ¯ε(y)− σ¯0(y, y
ε )

∣∣ = supy∈Ω̄

∣∣σ̃¯ε(y, y
ε )− σ¯0(y, y

ε )
∣∣ ≤

supy∈Ω̄ supζ∈Ȳ

∣∣σ̃¯ε(y, ζ)− σ¯0(y, ζ)
∣∣ → 0. ¥

Applying Proposition 1 to the non-local stresses (20) and taking into
account their convergency proved in Proposition 5, we arrive at the fol-
lowing proposition on homogenisation of non-local strength conditions.

Proposition 6 Let σε ∈ L2(Ω) be a sequence of tensor functions two–
scale converging to a tensor σ0 ∈ L2(Ω×Y ). Suppose the non-local stress
σ¯ε(y) is given by (18) with the weight w ∈ C(Ω̄, Cper(Y,L2(Ω, Cper(Y )))).
Suppose Λ ∈ C(IRn×n,Mper(Y )). Then

lim
ε→0

sup
y∈Ω

∣∣∣Λ
(
σ¯ε(y),

y

ε

)
− Λ

(
σ¯0(y,

y

ε
),

y

ε

) ∣∣∣ = 0,

where σ¯0(y, ζ) is given by (20). If σ0 is expressed by (9), then

lim
ε→0

sup
y∈Ω

Λ
(
σ¯ε(y),

y

ε

)
≤ sup

y∈Ω
Λ̂¯(σ̂; y),
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where Λ̂¯(σ̂; y) := sup
ζ∈Y

Λ
(∫

Ω
ŵijkl(y, ζ, x)σ̂kl(x)dx, ζ

)
,

ŵijkl(y, ζ, x) =
1
|Y |

∫

Y
wijpq(y, ζ, x, ξ)Apqkl(ξ)dξ.

Finally the limit sufficient non-local macro-strength condition is
supy∈Ω Λ̂¯(σ̂; y) < 1.

Changing the notations, we obtain a similar proposition on homogeni-
sation of non-local fatigue durability diagram n∗ and then of the fatigue
damage measure ω.

The approach developed in the paper is based on the two-scale con-
vergence for stresses (8) following from [1], see also [3], for the linear
elasticity. It will also work for more complex material behaviour, e.g.
plasticity or small-cyclic fatigue if the convergence (8) holds true for
such cases.
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