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Abstract

Elliptic PDE systems of the second order with coefficients from L∞ or Hölder-Lipschitz spaces are consid-
ered in the paper. Continuity of the operators in corresponding Sobolev spaces is stated and the internal
(local) solution regularity theorems are generalized to the non-smooth coefficient case. For functions
from the Sobolev space Hs(Ω), 1

2 < s < 3
2 , definitions of non-unique generalized and unique canonical

co-normal derivative are considered, which are related to possible extensions of a partial differential op-
erator and the PDE right hand side from the domain Ω to its boundary. It is proved that the canonical
co-normal derivatives coincide with the classical ones when both exist. A generalization of the boundary
value problem settings, which makes them insensitive to the co-normal derivative inherent non-uniqueness
is given.

Keywords. Partial differential equation systems; Non-smooth coefficients; Sobolev spaces; Solution
regularity; Classical, generalized and canonical co-normal derivatives; Weak BVP settings.

1 Introduction

It is well known that for a function from the Sobolev space Hs(Ω), 1
2 < s < 3

2 , the strong co-normal derivative
defined on the boundary in the trace sense, does not generally exist. Instead, if the function satisfies a second
order partial differential equation (or a system of such equations) with a right-hand side from Hs−2(Ω), a
generalized co-normal derivative operator can be defined by the first Green’s identity, cf. e.g. [10, Lemma
4.3] for s = 1. However this definition is related to an extension of the PDE operator and its right hand
side from the domain Ω, where they are prescribed, to the domain boundary, where they are not. Since
the extensions are non-unique, the generalized co-normal derivative operator appears to be non-unique and
non-linear unless a linear relation between the PDE solution and the extension of its right hand side is
enforced. This leads to a revision of the boundary value problem settings, to make them insensitive to the
co-normal derivative inherent non-uniqueness. For functions u from a subspace of Hs(Ω), 1

2 < s < 3
2 , which

can be mapped by the (extended) PDE operator into the space H̃t(Ω), t ≥ −1
2 , one can define a canonical

co-normal derivative (cf. [6, Theorem 1.5.3.10] and [5, Lemma 3.2] for s = 1, t = 0), which is unique, linear
in u, and coincides with the co-normal derivative in the trace sense if the latter does exist. These notions
were developed, to some extent, in [12] for a PDE with an infinitely smooth coefficient on a domain with
an infinitely smooth boundary. In [14] the analysis was generalized to the co-normal derivative operators
for some elliptic PDE systems with infinitely smooth coefficients and the right hand side from Hs−2(Ω),
1
2 < s < 3

2 , on a Lipschitz domain.
In this paper, we extend the previous results to solutions of elliptic second order PDE systems on interior

or exterior Lipschitz domains with compact boundaries and L∞ or Hölder-Lipschitz coefficients. To show
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that the canonical co-normal derivatives coincide with the classical ones, some new facts about solution
regularity of PDEs with non-smooth coefficients are also proved in the paper.

The paper is arranged as follows. Section 2 provides a number of auxiliary facts on Sobolev (Bessel
potential) spaces. In Section 3, we describe some L∞−based Sobolev-Slobodetski spaces that essentially
coincide with the Hölder-Lipschitz spaces, to use them for PDE coefficients, and prove boundedness of PDE
operators with such coefficients in appropriate Sobolev spaces. In Section 4 we generalize the well know result
about the local solution regularity of elliptic PDE systems to the case of relaxed smoothness of the PDE
coefficients. In addition to the differentiation argument employed usually in the solution regularity analysis,
we use for our proof also the Bessel potential operator that appeared to be more suitable for Hölder-smooth
coefficients. The solution regularity theorems are implemented then in Section 6. In Section 5 all results
of [14] about the generalized co-normal derivatives for PDE systems with smooth coefficients are extended
to non-smooth coefficients. Particularly, we introduce and analyse the generalized co-normal derivatives
on interior and exterior Lipschitz domains (with compact boundaries), associated with elliptic systems of
second order PDEs with the right hand side from Hs−2(Ω), 1

2 < s < 3
2 . The weak settings of Dirichlet,

Neumann and mixed problems (revised versions for the latter two) are considered and it is shown that they
are well posed in spite of the inherent non-uniqueness of the generalized co-normal derivatives. In Section 6
we introduce and analyse the canonical co-normal derivative operator uniquely defined on some subspaces
Hs,t(Ω;A) of the usual Sobolev spaces Hs(Ω), 1

2 < s < 3
2 , −1

2 ≤ t, generalizing the corresponding results
of [14] to the case of non-smooth coefficients of the PDE operator. It is proved that for elliptic systems the
canonical co-normal derivative coincides with the classical (strong) one for the cases when both exist. Some
auxiliary estimates and necessary assertions from [14] are provided in two Appendices.

The present paper updates and complements the preliminary results from [13].

2 Some function spaces

2.1 Sobolev spaces

Unless stated otherwise, we suppose that Ω = Ω+ is an interior or exterior open domain of Rn, which
boundary ∂Ω is a compact, Lipschitz, (n−1)−dimensional set. Let Ω denote the closure of Ω and Ω− = Rn\Ω
its complement. In what follows D(Ω) = C∞comp(Ω) denotes the space of Schwartz test functions, D(Ω) :=
{ϕ = φ|Ω, φ ∈ D(Rn)}, while D∗(Ω) denotes the space of Schwartz distributions; Hs(Rn) = Hs

2(Rn),
Hs(∂Ω) = Hs

2(∂Ω) are the Sobolev (Bessel potential) spaces, where s ∈ R is a number (see, e.g., [9]).

We denote by H̃s(Ω) the closure of D(Ω) in Hs(Rn), which can be characterized as H̃s(Ω) = {g : g ∈
Hs(Rn), supp g ⊂ Ω}, see e.g. [10, Theorem 3.29]. The space Hs(Ω) consists of restrictions on Ω of
distributions from Hs(Rn), Hs(Ω) := {g|Ω : g ∈ Hs(Rn)}, and Hs

0(Ω) is the closure of D(Ω) in Hs(Ω). We
recall that Hs(Ω) coincide with the Sobolev–Slobodetski spaces W s

2 (Ω) for any non-negative s. We denote
Hs

loc(Ω) := {g : ϕg ∈ Hs(Ω) ∀ϕ ∈ D(Ω)}. We will use also the notation Hs
loc(Ω) := {g : ϕg ∈ Hs(Ω) ∀ϕ ∈

D(Ω)} and note that Hs
loc(Ω) = Hs(Ω) for interior domains but not for the exterior ones.

Note that distributions from Hs(Ω) and Hs
0(Ω) are defined only in Ω, while distributions from H̃s(Ω) are

defined in Rn and include the distributions supported only on the boundary ∂Ω. For s ≥ 0, we can identify
H̃s(Ω) with the subset of functions from Hs(Ω), whose extensions by zero outside Ω belong to Hs(Rn),
cf. [10, Theorem 3.33], i.e., identify functions u ∈ H̃s(Ω) with their restrictions, u|Ω ∈ Hs(Ω). However
generally we will distinguish distributions u ∈ H̃s(Ω) and u|Ω ∈ Hs(Ω), especially for s ≤ −1

2 .

We denote by Hs
∂Ω

the subspace of Hs(Rn) (and of H̃s(Ω)), whose elements are supported on ∂Ω, i.e.,
Hs
∂Ω

:= {g : g ∈ Hs(Rn), supp g ⊂ ∂Ω}. A characterization of this space is provided in Theorem B.1 in
Appendix B. To simplify notations for vector-valued functions, u : Ω→ Cm, we will often write u ∈ Hs(Ω)
instead of u ∈ Hs(Ω)m = Hs(Ω;Cm), etc.

As usual (see e.g. [9, 10]), for two elements from dual complex Sobolev spaces the bilinear dual product
〈·, ·〉Ω associated with the sesquilinear inner product (·, ·)Ω := (·, ·)L2(Ω) in L2(Ω) is defined as

〈u, v〉Rn :=

∫
Rn

[F−1u](ξ)[Fv](ξ)dξ =: (F ū,Fv)Rn =: (ū, v)Rn , u ∈ Hs(Rn), v ∈ H−s(Rn), (2.1)
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〈u, v〉Ω := 〈u, V 〉Rn =: (ū, v)Ω if u ∈ H̃s(Rn), v ∈ H−s(Ω), v = V |Ω with V ∈ H−s(Rn), (2.2)

〈u, v〉Ω := 〈U, v〉Rn =: (ū, v)Ω if u ∈ Hs(Rn), v ∈ H̃−s(Ω), u = U |Ω with U ∈ Hs(Rn) (2.3)

for s ∈ R, where ḡ is the complex conjugate of g, while F and F−1 are the distributional Fourier transform
operator and its inverse, respectively, that for integrable functions take form

ĝ(ξ) = [Fg](ξ) :=

∫
Rn
e−2πix·ξg(x)dx, g(x) = [F−1ĝ](x) :=

∫
Rn
e2πix·ξ ĝ(ξ)dξ.

For vector-valued elements u ∈ Hs(Rn)m, v ∈ H−s(Rn)m, s ∈ R, definition (2.1) should be understood as

〈u, v〉Rn :=

∫
Rn
û(ξ) · v̂(ξ)dξ =

∫
Rn
û(ξ)>v̂(ξ)dξ =: (û, v̂)Rn =: (ū, v)Rn ,

where û · v̂ = û>v̂ =
∑m

k=1 ûkv̂k is the product of two m−dimensional vectors.
Let J s be the Bessel potential operator defined as

[J sg](x) = F−1
ξ→x{(1 + |ξ|2)s/2ĝ(ξ)}. (2.4)

The inner product in Hs(Ω), s ∈ R, is defined as follows,

(u, v)Hs(Rn) := (J su,J sv)Rn =

∫
Rn

(1 + ξ2)sû(ξ)v̂(ξ)dξ =
〈
u,J 2sv

〉
Rn
, u, v ∈ Hs(Rn),

(u, v)Hs(Ω) := ((I − P )U, (I − P )V )Hs(Rn) , u = U |Ω, v = V |Ω, U, V ∈ Hs(Rn).

Here P : Hs(Rn)→ H̃s(Rn\Ω̄) is the orthogonal projector, see e.g. [10, p. 77].

3 Elliptic PDE systems with non-smooth coefficients

3.1 Some Sobolev-Slobodetski and Hölder-Lipschitz spaces

For an open set Ω let Wµ
∞(Ω), µ ≥ 0, be the Sobolev-Slobodetski space equipped with the norm

‖g‖Wµ
∞(Ω) :=

∑
0≤|α|≤µ

‖∂αg‖L∞(Ω) <∞

for integer µ, and with the norm

‖g‖Wµ
∞(Ω) := ‖g‖

W
bµc
∞ (Ω)

+ |g|Wµ
∞(Ω) <∞, |g|Wµ

∞(Ω) :=
∑
|α|=bµc

∥∥∥∥∂αg(x)− ∂αg(y)

|x− y|µ−bµc

∥∥∥∥
L∞(Ω×Ω)

for non-integer µ, where bµc is the integer part of µ. Evidently W 0
∞(Ω) = L∞(Ω), while (possibly after

adjusting functions on zero measure sets, cf. [20, Ch. V, §4, Proposition 6]) Wµ
∞(Ω) is the usual Hölder

space Cµ(Ω) = C0,µ(Ω) for 0 < µ < 1, Wµ
∞(Ω) = Cbµc,µ−bµc(Ω) for non-integer µ > 1, and Wµ

∞(Ω) is the
Lipschitz space Cµ−1,1(Ω) for integer µ ≥ 1.

Let R+(s) be the set of all non-negative numbers if s is integer and of all positive numbers otherwise.

DEFINITION 3.1. For an open set Ω and µ ≥ 0 let C̄µ(Ω) be the set of restrictions on Ω of all functions
from Wµ

∞(Rn), equipped with the norm ‖g‖C̄µ(Ω) = infG|Ω=g ‖G‖Wµ
∞(Rn).

The set C̄µ+(Ω) is defined as C̄µ(Ω) for integer non-negative µ and as
⋃
ν>µ C̄

ν(Ω) for non-integer non-

negative µ. Evidently g ∈ C̄µ+(Ω) if and only if g ∈ C̄µ+ε(Ω) for some ε ∈ R+(µ).

Obviously ‖g‖W 0
∞(Ω) = ‖g‖C̄0(Ω) = ‖g‖L∞(Ω) i.e. C̄0(Ω) = W 0

∞(Ω) = L∞(Ω), and ‖g‖Wµ
∞(Ω) ≤ ‖g‖C̄µ(Ω),

C̄µ(Ω) ⊂Wµ
∞(Ω) for µ > 0. The space C̄µ(Ω) for µ > 0 is similar to the space C

bµc,µ−bµc
c (Ω̄) for non-integer

µ and to the space Cµ−1,1
c (Ω̄) for integer µ, used in [6, p.21], except that functions from C̄µ(Ω) may not

have a compact support in Rn assumed for functions from Ck,αc (Ω̄).
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THEOREM 3.2. Let Ω be an open set, s ∈ R, g ∈ C̄µ(Ω), µ − |s| ∈ R+(s). Then gv ∈ Hs(Ω) for every
v ∈ Hs(Ω), and ‖gv‖Hs(Ω) ≤ C‖g‖C̄µ(Ω)‖v‖Hs(Ω), where C is independent of g, v or Ω.

Proof. Note that the theorem is close to the statement given in [6, Theorem 1.4.1.1] without proof.
Let first Ω = Rn. The case s = 0 is evident. For s > 0 the estimate can be obtained from [21, Theorem

2(b)] with parameters s1 = µ, s2 = s, p1 = ∞, q1 = p2 = q2 = p = q = 2 there (see also [6, Theorem
1.4.4.2]). A simpler proof for all s ∈ R is available in [3, §9, Theorems 11-13].

When Ω 6= Rn, let V ∈ Hs(Rn) and G ∈ W s
∞(Rn) be such that v = V |Ω, ‖V ‖Hs(Rn) = ‖v‖Hs(Ω),

g = G|Ω, ‖G‖Wµ
∞(Rn) < 2‖g‖C̄µ(Ω). Then GV ∈ Hs(Rn) by the previous paragraph and

‖gv‖Hs(Ω) ≤ ‖GV ‖Hs(Rn) ≤ C‖G‖Wµ
∞(Rn)‖V ‖Hs(Rn) < 2C‖g‖C̄µ(Ω)‖v‖Hs(Ω).

Note that the condition on g in Theorem 3.2 is equivalent to the membership g ∈ C̄ |s|+ (Ω).

3.2 PDE systems

Let us consider in an open set Ω a system of m complex linear differential equations of the second order
with respect to m unknown functions {ui}mi=1 = u : Ω→ Cm, which for sufficiently smooth u and f has the
following strong form,

Au(x) := −
n∑

i,j=1

∂i[aij(x) ∂ju(x)] +
n∑
j=1

bj(x) ∂ju(x) + c(x)u(x) = f(x), x ∈ Ω, (3.1)

where f : Ω → Cm, ∂j := ∂/∂xj (j = 1, 2, ..., n), a(x) = {aij(x)}ni,j=1 = {{aklij (x)}mk,l=1}ni,j=1, b(x) =

{{bkli (x)}mk,l=1}ni=1 and c(x) = {ckl(x)}mk,l=1, i.e., aij , bi, c : Ω → Cm×m for fixed indices i, j. If m = 1, then
(3.1) is a scalar equation. The PDE system formally adjoint to (3.1) is given in the strong form as

A∗v(x) := −
n∑

i,j=1

∂i[ā
>
ji(x) ∂jv(x)]−

n∑
j=1

∂j [ b̄
>
j (x)v(x)] + c̄>(x)v(x) = f(x), x ∈ Ω. (3.2)

DEFINITION 3.3. For σ ∈ R, we will say that the coefficients of equation (3.1) belong to the class

Cσ+(Ω), i.e. {a, b, c} ∈ Cσ+(Ω), if a ∈ C̄ |σ|+ (Ω), b ∈ C̄µb(σ)
+ (Ω), µb(σ) := max(0, |σ − 1

2 | −
1
2), c ∈ C̄µc(σ)

+ (Ω),
µc(σ) := max(0, |σ| − 1).

For an open set Ω, as usual, {a, b, c} ∈ Cσ+loc(Ω) means that {a, b, c} ∈ Cσ+(Ω′) for any Ω′ ⊂ Ω.

Note that if σ1 ≤ σ ≤ σ2, then Cσ1
+ (Ω)

⋂
Cσ2

+ (Ω) ⊂ Cσ+(Ω) ⊂ Cσ1
+ (Ω)

⋃
Cσ2

+ (Ω).
Let u ∈ Hs(Ω), {a, b, c} ∈ Cs−1

+ (Ω), f ∈ Hs−2(Ω), s ∈ R. Equation system (3.1) is understood in the
distributional sense as

〈Au, v〉Ω = 〈f, v〉Ω ∀v ∈ D(Ω),

where v : Ω→ Cm and
〈Au, v〉Ω := E(u, v) ∀v ∈ D(Ω), (3.3)

E(u, v) = EΩ(u, v) :=

n∑
i,j=1

〈aij∂ju, ∂iv〉Ω +

n∑
j=1

〈bj∂ju, v〉Ω + 〈cu, v〉Ω . (3.4)

Let us denote

sb(s) =


s− 1 if s < 1

0 if 1 ≤ s ≤ 2

s− 2 if 2 < s

, sc(s) =


s if s < 0

0 if 0 ≤ s ≤ 2

s− 2 if 2 < s

(3.5)

Taking into account that µb(s − 1) = |sb(s)| and µc(s − 1) = |sc(s)|, Theorem 3.2 implies that aij∂ju ∈
Hs−1(Ω), bj∂ju ∈ Hsb(s)(Ω), cu ∈ Hsc(s)(Ω). Thus bilinear form (3.4) is well defined for any v ∈ D(Ω)
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and moreover, the bilinear functional E : {Hs(Ω), H̃2−s(Ω)} → C is bounded for any s ∈ R. Since the set
D(Ω) is dense in H̃2−s(Ω), expression (3.3) defines then a bounded linear operator A : Hs(Ω)→ Hs−2(Ω) =
[H̃2−s(Ω)]∗, s ∈ R,

〈Au, v〉Ω := E(u, v) ∀v ∈ H̃2−s(Ω). (3.6)

Similar to the operator A, the weak form of the operator A∗ for any v ∈ H2−s(Ω), s ∈ R, is

〈A∗v, u〉Ω := E∗(v, u) ∀u ∈ H̃s(Ω), (3.7)

where E∗(v, u) = E(ū, v̄) is the bilinear form and so defined operator A∗ : H2−s(Ω) → H−s(Ω) = [H̃s(Ω)]∗

is bounded for any s ∈ R.
The above paragraph can be summarized as the following assertion.

THEOREM 3.4. If s ∈ R and {a, b, c} ∈ Cs−1
+ (Ω), then bilinear form (3.4), E : {Hs(Ω), H̃2−s(Ω)} → C

is bounded, while expressions (3.6) and (3.7) define bounded linear operators A : Hs(Ω) → Hs−2(Ω) and
A∗ : H2−s(Ω)→ H−s(Ω), respectively

Note that for the particular important case s = 1, the conditions on the coefficients in Theorem 3.4
mean a, b, c ∈ L∞(Ω).

4 Local regularity of solutions to elliptic systems with Hölder-Lipschitz
coefficients

In this section we extend the well known result about the local regularity of elliptic PDE solutions, to the
case of relaxed smoothness of the PDE coefficients. This will be used then to prove counterparts of [14,
Theorems 3.12 and 3.16] in Section 6.2.

The local regularity of solutions to elliptic PDEs (3.1) and (3.2) for the case of infinitely smooth coef-
ficients is well known (see e.g. [19, 1, 9]). For non-infinitely smooth coefficients, the case a, b, c ∈ Ck,1(Ω̄),
s1 = 1, s2 = k with integer k ≥ 0 can be found in [10, Theorem 4.16], and the case a ∈ C0,1(Ω̄), b = 0,
c = const, s2 ∈ (−3/2,−1/2) in [18, Theorem 4], extended in [4] to general elliptic systems with all co-
efficients from C0,1(Ω̄). In Theorems 4.3 and 4.4 below we prove the local regularity results for arbitrary
Hölder coefficients and wider ranges of the Sobolev space indices s1 and s2.

Let us define the matrix functionA(x, ξ) :=
∑

i,j=1 aij(x)ξiξj for ξ ∈ Rn. The partial differential operator

A is elliptic in the sense of Petrovsky at a point x, where the coefficients aklij (x) are defined, if detA(x, ξ) 6= 0

for any non-zero ξ ∈ Rn (see e.g. [15, Section 55]), evidently implying |detA(x, ξ)| ≥ C(x)|ξ|2m for all ξ ∈ Rn
with some positive C(x), which in turn gives the following estimate for the matrix norm | · | of the inverse
matrix A−1(x, ξ),

|A−1(x, ξ)| ≤ C0(x)|ξ|−2 ∀ ξ ∈ Rn (4.1)

with some C0(x) > 0. We say that the operator A is elliptic in a domain if it is elliptic at each point of the
domain.

Note that we will need the ellipticity in this paper only in proving solution regularity in Theorems 4.3
and 4.4, which will be then used only to prove equivalence of the strong and canonical co-normal derivatives
in Section 6.2.

Differentiation or Nirenberg difference quotient arguments are employed usually in the solution regularity
analysis in [17, 19, 1, 9], but we will also need for our proof some powers of the Bessel potential operator J
to deal with the Hölder-smooth coefficients along with the solution and the right hand side in some range
of Sobolev spaces and have to prove first Lemma 4.1 and Corollary 4.2 about commutators.

LEMMA 4.1. Let s be real, k be integer, w ∈ Hs(Rn)m, g ∈ W σ+ε
∞ (Rn)m, σ =

∣∣s− k + 1
2

∣∣ + |k| + 1
2 and

ε ∈ R+(σ). Then J 2k(gw)− gJ 2kw ∈ Hs−2k+1(Rn)
m

and

‖J 2k(gw)− gJ 2kw‖Hs−2k+1(Rn)m ≤ C|k| ‖g‖Wσ+ε
∞ (Rn)m‖w‖Hs(Rn)m . (4.2)
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Proof. The proof below is given for m = 1, generalization to the vector case, m > 1, is evident. For k = 0
the lemma is trivial. Let now k > 0. Denoting the Fourier convolution by ∗ we have due to(2.4),

K(ξ) := F [J 2k(gw)− gJ 2kw](ξ) = (1 + |ξ|2)k(ĝ ∗ ŵ)(ξ)− (ĝ ∗ F [J 2kw])(ξ) =∫
Rn

[(1 + |ξ|2)k − (1 + |ξ − η|2)k]ĝ(η)ŵ(ξ − η)dη =

∫
Rn

[(η · ξ + η · (ξ − η)]fk(ξ, ξ − η)ĝ(η)ŵ(ξ − η)dη

=
1

2πi

∫
Rn
∇̂g(η) · (ξ + ξ − η)fk(ξ, ξ − η)ŵ(ξ − η)dη,

where

fk(ξ, ξ − η) :=
(1 + |ξ|2)k − (1 + |ξ − η|2)k

|ξ|2 − |ξ − η|2
=
p2k(ξ)− p2k(ξ − η)

p2(ξ)− p2(ξ − η)
=

k∑
j=1

p2(k−j)(ξ)p2(j−1)(ξ − η)

and p(ζ) := (1 + |ζ|2)1/2. This implies

K(ξ) =
1

2πi

k∑
j=1

p2(k−j)(ξ)

[
ξ ·
∫
Rn
∇̂g(η)p2(j−1)(ξ − η)ŵ(ξ − η)dη +

∫
Rn
∇̂g(η) · (ξ − η)p2(j−1)(ξ − η)ŵ(ξ − η)dη

]

=
−1

4π2

k∑
j=1

p2(k−j)(ξ)F
[
∇ ·
{

(∇g)J 2(j−1)w
}

+∇g · J 2(j−1)∇w
]

(ξ).

Taking into account Theorem 3.2, we obtain,

‖J 2k(gw)− gJ 2kw‖Hs−2k+1(Rn) = ‖ps−2k+1K‖L2(Rn)

=
1

4π2

∥∥∥∥∥∥
k∑
j=1

ps+1−2jF
[
∇ ·
{

(∇g)J 2(j−1)w
}

+∇g · J 2(j−1)∇w
]∥∥∥∥∥∥

L2(Rn)

≤ 1

4π2

k∑
j=1

∥∥∥∇ · {(∇g)J 2(j−1)w
}

+∇g · J 2(j−1)∇w
∥∥∥
Hs+1−2j(Rn)

≤ C1

k∑
j=1

[
‖g‖

W
|s+2−2j|+1+ε1∞ (Rn)

+ ‖g‖
W
|s+1−2j|+1+ε1∞ (Rn)

]
‖w‖Hs(Rn).

for any ε1 ∈ R+(s). That is,

‖J 2k(gw)− gJ 2kw‖Hs−2k+1(Rn) ≤ C1k(‖g‖
W
|s|+1+ε1∞ (Rn)

+ ‖g‖
W
|s−2k+1|+1+ε1∞ (Rn)

)‖w‖Hs(Rn). (4.3)

Let now k < 0. If we denote v = J 2kw ∈ Hs−2k(Rn), then by inequality (4.3), where 2k is replaced with
−2k and s− 2k with s, we obtain,

‖J 2k(gw)−gJ 2kw‖Hs−2k+1(Rn) = ‖J 2k[gJ −2kv−J −2k(gv)]‖Hs−2k+1(Rn) = ‖gJ −2kv−J −2k(gv)‖Hs+1(Rn)

≤ C1|k|(‖g‖W |s−2k|+1+ε1∞ (Rn)
+ ‖g‖

W
|s+1|+1+ε1∞ (Rn)

)‖v‖Hs−2k(Rn)

= C1|k|(‖g‖W |s−2k|+1+ε1∞ (Rn)
+ ‖g‖

W
|s+1|+1+ε1∞ (Rn)

)‖w‖Hs(Rn).

Inequality (4.2) follows for both positive and negative k if we remark that

σ :=

∣∣∣∣s− k +
1

2

∣∣∣∣+ |k|+ 1

2
=

{
max(|s|+ 1, |s− 2k + 1|+ 1), k > 0

max(|s− 2k|+ 1, |s+ 1|+ 1) k < 0
.
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Let us denote by A0 the principal divergence part of the operator A from (3.1), i.e.,

A0u(x) := −
n∑

i,j=1

∂i[aij(x) ∂ju(x)]. (4.4)

Bearing in mind that the Bessel potential operators J 2k commutate with differentiation, Lemma 4.1
implies the following assertion.

COROLLARY 4.2. Let s be real, k be integer, u ∈ Hs(Rn)m, aij ∈ W σ+ε
∞ (Rn)m×m, σ =

∣∣s− k − 1
2

∣∣ +
|k|+ 1

2 , ε ∈ R+(σ). Then J 2k(A0u)−A0J 2ku ∈ Hs−2k−1(Rn)m and

‖J 2k(A0u)−A0J 2ku‖Hs−2k−1(Rn)m ≤ C|2k|‖a‖Wσ+ε
∞ (Rn)m‖u‖Hs(Rn)m .

If Ω is an open set while a set Ω′ is such that Ω′ ⊂ Ω, we will denote this as Ω′ b Ω.
Now we are in a position to prove the following local regularity theorem.

THEOREM 4.3. Let Ω be an open set in Rn, s1 ∈ R, m ≥ 1, u ∈ Hs1
loc(Ω)m, f ∈ Hs2

loc(Ω)m, s2 > s1 − 2.
If u satisfies either
(a) elliptic (in the sense of Petrovsky) system (3.1), Au = f , in Ω with {a, b, c} ∈ Cs1−1

+loc (Ω)
⋂
Cs2+1

+loc (Ω) or

(b) elliptic (in the sense of Petrovsky) system (3.2), A∗u = f , in Ω with {a, b, c} ∈ C1−s1
+loc (Ω)

⋂
C−s2−1

+loc (Ω),

then u ∈ Hs2+2
loc (Ω)m.

Proof. Note that the theorem hypothesis s2 > s1 − 2 implies that either s1 6= 1 or s2 6= −1 and thus
a ∈ C̄µloc(Ω) for some µ > 0 and particularly, a ∈ C(Ω) (maybe after adjusting a on a zero measure set, that
we will assume to be done). We give a proof only for part (a) of the theorem, organized in several steps, for
part (b) it is similar.

Step (0) As usual, cf. e.g. [9, Chapter 2, Theorem 3.1 ], let us first consider the case a = const, b = 0,
c = 0 and Ω = Rn. Suppose a function U satisfies equation (3.1). Application of the Fourier transform
reduces this equation to (2π)2A(ξ)Û(ξ) = f̂(ξ). Resolving it for Û and applying ellipticity estimate (4.1),
we obtain (1 + |ξ|2)|Û(ξ)| ≤ C1|f̂(ξ)|+ |Û(ξ)| with C1 = (2π)−2C0, implying

‖U‖Hs+2(Rn) ≤ C1‖f‖Hs(Rn) + ‖U‖Hs(Rn) ∀s ∈ R. (4.5)

Step (i) Let now the coefficients {a, b, c} ∈ Cs1−1
+loc (Ω)

⋂
Cs2+1

+loc (Ω) be not generally constant, Ω be not
generally Rn, and u ∈ Hs1

loc(Ω). Let Bρ = By,ρ ⊂ Ω′ b Ω be an open ball of radius ρ centered at a point
y ∈ Ω. Let a, b, c and u be extended outside Ω′ to {ae, be, ce} ∈ Cs1−1

+ (Rn)
⋂
Cs2+1

+ (Rn) and ue ∈ Hs1(Rn),
and we will further drop the superscript e for brevity.

Let η ∈ D(Bρ) be a cut-off function such that η(x) = 1 in Bρ/2. Then Uη(x) := η(x)u(x) belongs to
Hs1(Rn), is compactly supported in Bρ and satisfies equation

A0yUη = ηf +Aηu−A−0 Uη in Rn. (4.6)

Here A0y is the principal part of the operator with the coefficient matrix a(y), thus constant in x, i.e.,

A0yUη := −
n∑

i,j=1

aij(y)∂i∂jUη, (4.7)

Aηu := −
n∑

i,j=1

(∂iη)aij∂ju−
n∑

i,j=1

∂i[(∂jη)aiju]−
n∑
j=1

ηbj∂ju− ηcu, (4.8)

A−0 Uη := −
n∑

i,j=1

∂i(a
−
ij∂jUη), (4.9)
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Figure 1: Regions of parameters s1, s2.

and a−(x) := a(x)− a(y). Let
s2 + 1 ≤ s1 < s2 + 2, (4.10)

see Fig. 1. Then by Theorem 3.2,

‖Aηu‖Hs2 (Rn) ≤ C2

[
‖(∇η)a∇u‖Hs2 (Rn) + ‖(∇η)au‖Hs2+1(Rn) + ‖ηb∇u‖Hs2 (Rn) + ‖ηcu‖Hs2 (Rn)

]
≤ CC2

[
‖∇η‖

W
|s1−1|+ε1∞ (Rn)

‖a∇u‖Hs1−1(Rn) + ‖∇η‖
W
|s2+1|+ε2∞ (Rn)

‖au‖Hs2+1(Rn)

+ ‖η‖
W
|s2|+ε2∞ (Rn)

‖b∇u‖Hs2 (Rn) + ‖η‖
W
|s2|+ε2∞ (Rn)

‖cu‖Hs2 (Rn)

]
≤ C3(η)‖u‖Hs1 (Rn), (4.11)

C3(η) := CC2C
′
[
‖∇η‖

W
|s1−1|+ε1∞ (Rn)

‖a‖
W
|s1−1|+ε1∞ (Rn)

+ ‖∇η‖
W
|s2+1|+ε2∞ (Rn)

‖a‖
W
|s2+1|+ε2∞ (Rn)

+‖η‖
W
|s2|+ε2∞ (Rn)

‖b‖
W
µ0
b
+ε0
b∞ (Rn)

+ ‖η‖
W
|s2|+ε2∞ (Rn)

‖c‖
W
µ0
c+ε0c∞ (Rn)

]
, (4.12)

µ0
b := min{|s| : s2 ≤ s ≤ s1 − 1} = max{s2, 1− s1, 0} = max{µb(s1 − 1), µb(s2 + 1)},
µ0
c := min{|s| : s2 ≤ s ≤ s1} = max{s2,−s1, 0} = max{µc(s1 − 1), µc(s2 + 1)},

by Definition 3.3 and condition (4.10), while by the theorem hypothesis there exist ε1 ∈ R+(s1), ε2 ∈ R+(s2),
ε0
b ∈ R+(µ0

b), ε
0
c ∈ R+(µ0

c) such that the norms of the coefficients a, b, c are bounded in (4.12).
Let us assume the condition

|s2 + 1| < 1 (4.13)

in addition to condition (4.10), which correspond to region (i) in Fig. 1.

Let us define a−0 (x) :=

{
a−(x), x ∈ B̄ρ
a−(xρ/|x|), x 6∈ B̄ρ

.

Then it is easy to see that
‖a−0 ‖W |s2+1|+ε2∞ (Rn)

= ‖a−0 ‖C|s2+1|+ε2 (Rn) = ‖a−‖C|s2+1|+ε2 (B̄ρ) for some ε2 such that

ε2 ∈ R+(s2), |s2 + 1|+ ε2 < 1. (4.14)

Thus, since suppUη ⊂ B, we have from (4.9) by Theorem 3.2,
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‖A−0 Uη‖Hs2 (Rn) ≤ C4‖a−∇Uη‖Hs2+1(Rn) = C4‖a−0 ∇Uη‖Hs2+1(Rn)

≤ CC4‖a−0 ‖W |s2+1|+ε2/2∞ (Rn)
‖∇Uη‖Hs2+1(Rn) ≤ CC4‖a−‖C|s2+1|+ε2/2(Bρ)C5‖Uη‖Hs2+2(Rn) (4.15)

Applying estimate (4.5) to equation (4.6) and taking into account estimates (4.11) and (4.15), we then
have under conditions (4.10) and (4.14),

C6(ρ)‖Uη‖Hs2+2(Rn) ≤ C7(η)‖f‖Hs2 (Bρ) + C8(η)‖u‖Hs1 (Bρ), (4.16)

C6(ρ) := 1− C1CC4C5‖a−‖C|s2+1|+ε2/2(B̄ρ), C7(η) := C1C‖η‖C̄|s2|+ε2 (B̄ρ), C8(η) := C1C3(η) + C7(η).

The parameter C7(η) and, due to the theorem hypotheses, also C3(η) and thus C8(η) are finite for any
ρ ∈ (0,∞). We will prove that C6(ρ) is positive for sufficiently small ρ under conditions (4.10), (4.13).

Let first s2 = −1, and consider estimate (4.16) with ε2 = 0. Since a−(y) = 0 and a− is continuous in
B̄ρ, for any sufficiently small ρ > 0, the norm ‖a−‖C|s2+1|+ε2/2(B̄ρ) = ‖a−‖C(B̄ρ) becomes small enough for

C6(ρ) in (4.16) to be positive.
Let now 0 < |s2 + 1| < 1. Due to the theorem hypothesis, there exists ε2 ∈ (0, 1 − |s2 + 1|) such that

a− ∈ C |s2+1|+ε2(B̄ρ), which implies the following estimate,

‖a−‖C|s2+1|+ε2/2(B̄ρ) = ‖a−‖C(B̄ρ) + |a|C|s2+1|+ε2/2(B̄ρ) ≤ ‖a
−‖C(B̄ρ) + (2ρ)ε2/2|a|C|s2+1|+ε2 (B̄ρ),

|a|C|s2+1|+ε2 (B̄ρ) := sup
x,x′∈B̄ρ

|a(x)− a(x′)|
|x− x′||s2+1|+ε2

≤ |a|C|s2+1|+ε2 (Ω̄′) <∞.

Thus again for any sufficiently small ρ > 0, the norm ‖a−‖C|s2+1|+ε2/2(B̄ρ) becomes small enough for C6(ρ)

in (4.16) to be positive.
This means Uη ∈ Hs2+2(Rn) implying u ∈ Hs2+2(By,ρ(y)/2) for arbitrary point y ∈ Ω under conditions

(4.10), (4.13). Thus any compact subdomain Ω̄′ of the open domain Ω has an open cover by the balls
By,ρ(y)/2 such that u ∈ Hs2+2(By,ρ(y)/2). Due to the compactness of Ω̄′, there exists a finite subset of the

balls, Bj := Byj ,ρ(yj)/2, j = 1, 2, ..., J , still covering Ω̄′. Let {ϕj(x) ∈ D(Bj)}Jj=1 be a partition of unity,∑J
j=1 ϕj(x) = 1 for any x ∈ Ω′ and Uj ∈ Hs2+2(Rn) be such that Uj = u on Bj and ‖U j‖Hs2+2(Rn) =

‖u‖Hs2+2(Bj). Then by Theorem 3.2,

‖u‖Hs2+2(Ω′) = ‖
J∑
j=1

ϕju‖Hs2+2(Ω′) = ‖
J∑
j=1

ϕjU
j‖Hs2+2(Ω′) ≤

J∑
j=1

‖ϕjU j‖Hs2+2(Rn)

≤ C
J∑
j=1

‖ϕj‖Wµ
∞(Rn)‖U j‖Hs2+2(Rn) = C

J∑
j=1

‖ϕj‖Wµ
∞(Rn)‖u‖Hs2+2(Bj),

for any µ > |s2 + 2|. Thus u ∈ Hs2+2(Ω′) for any compact Ω̄′ ⊂ Ω, implying u ∈ Hs2+2
loc (Ω) under conditions

(4.10), (4.13).

Step (ii) Let us prove the theorem under conditions s2 + 1 ≤ s1 < s2 + 2, −3 < s2 ≤ −2, that are
satisfied in region (ii) in Fig. 1. We proceed as in Step (i) but instead of estimate (4.15) for the term A−0 Uη
we split it into two parts

A−0 Uη = A−01Uη +A−02Uη, A−01Uη :=

n∑
i,j=1

∂i((∂ja
−
ij)Uη), A−02Uη := −

n∑
i,j=1

∂i∂j(a
−
ijUη)

and estimate each of them as follows,

‖A−01Uη‖Hs2 (Rn) ≤ C4‖(∇a−)Uη‖Hs2+1(Rn) ≤ C4‖(∇a−)Uη‖Hs1 (Rn)

≤ CC4‖a−‖W |s1|+1+ε1/2∞ (Rn)
‖Uη‖Hs1 (Rn) = CC4‖a−‖W |s1−1|+ε1/2∞ (Rn)

‖Uη‖Hs1 (Rn)
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where we have taken into account that s1 < 0 in region (ii), and

‖A−02Uη‖Hs2 (Rn) ≤ C4‖a−Uη‖Hs2+2(Rn) ≤ CC4‖a−0 Uη‖Hs2+2(Rn) ≤ CC4‖a−‖C|s2+2|+ε2/2(Bρ)‖Uη‖Hs2+2(Rn)

Taking into account that ‖A−02Uη‖Hs2 (Rn) can be made arbitrarily small by choosing sufficiently small ball
radius ρ, as in Step (i), since 0 ≤ |s2 + 2| < 1, this proves the theorem for region (ii).

Step (iii) Let us prove the theorem under conditions

s2 + 1 ≤ s1 < s2 + 2, s2 ≤ −3, (4.17)

that are satisfied in region (iii) in Fig. 1. For arbitrary Ω′ b Ω let η ∈ C∞(Ω) with supp η ∈ Ω and η = 1 in
Ω′. Then the function Uη = ηu ∈ Hs1(Rn) satisfies equation

A0Uη = fη, fη = ηf +Aηu in Rn, (4.18)

where A0 is given by (4.4), Aη by (4.8), while Aηu ∈ Hs2(Rn) by estimate (4.11). This implies fη ∈ Hs2(Rn).

Let k = −
⌊
−1− s2

2

⌋
=

⌈
1 + s2

2

⌉
and let us denote v := J 2kUη. Then k ≤ −1 by the second condition

in (4.17), while v ∈ Hs1−2k(Rn). Acting by J 2k on (4.18), we arrive at the following equation for v

A0(v) = fv, in Rn, (4.19)

where fv = J 2kfη − [J 2kA0u−A0J 2ku]. To employ Corollary 4.2 with s = s1, we have for its parameter,

σ =

∣∣∣∣s1 − k −
1

2

∣∣∣∣+ |k|+ 1

2
= −s1 + k +

1

2
+ |k|+ 1

2
= 1− s1

since 0 < −k ≤ −1− s2

2
<

1− s1

2
due to the first condition in (4.17). Then by the theorem hypothesis on the

coefficients, the conditions of Corollary 4.2 are satisfied, which implies [J 2kA0u−A0J 2ku] ∈ Hs1−2k−1(Rn).
Then taking into account the first condition in (4.17) again, we obtain fv ∈ Hs2−2k(Rn). Denoting s′1 =
s1 − 2k, s′2 = s2 − 2k, we arrive at equation (4.19) for v ∈ Hs′1(Rn) with fv ∈ Hs′2(Rn), where s′2 + 1 ≤
s′1 < s′2 + 2, −3 < s′2 ≤ 1, and coefficients a ∈ C̄ |s1−1|

+ (Ω)
⋂
C̄
|s2+1|
+ (Ω) ⊂ C̄ |s

′
1−1|

+ (Ω)
⋂
C̄
|s′2+1|
+ (Ω), which is

covered by Steps (i) and (ii) implying v ∈ Hs′2+2(Rn) = Hs2+2−2k(Rn). Thus, Uη := J −2kv ∈ Hs2+2(Rn).
This gives u ∈ Hs2+2(Ω′), which implies the theorem claim in region (iii).

Step (iv) Let us prove the theorem under conditions s2 + 1 ≤ s1 < s2 + 2, s2 ≥ 0, that are satisfied in
region (iv) in Fig. 1. Let α be a multiindex such that |α| = bs2c+ 1. Then (4.18) implies

A0∂
αUη = ∂αfη + fαη , fαη = A0∂

αUη − ∂αA0Uη. (4.20)

Since fαη is a commutator, we obtain that fαη ∈ Hs1−|α|−1(Rn) ⊂ Hs2−|α|(Rn), where the theorem hypothesis
on smoothness of the coefficient matrix a and Theorem 3.2 were taken into account. Then ∂αfη + fαη ∈
Hs2−α(Rn) giving ∂αUη ∈ Hs2−|α|+2

loc (Rn) by Step (i), which implies u ∈ Hs2+2
loc (Ω), i.e. the theorem claim

for region (iv).

Step (v) Now we finally prove the theorem for s2 > s1 − 1, i.e. for region (v). Since f ∈ Hs2(Ω′) on
any open set Ω′ b Ω, we have also f ∈ Hs1−1(Ω′), i.e., we arrive at the situation covered by Steps (i)-(iv)
with s2 = s1 − 1, which implies u ∈ Hs1+1(Ω′). If s1 ≤ s2, we iterate this procedure, obtaining at the end
u ∈ Hs2+2(Ω′), i.e. the theorem claim, if s2 − s1 is integer, or u ∈ Hs1+k(Ω′), where k = bs2 − s1 + 2c,
otherwise. Recalling in the latter case that f ∈ Hs2(Ω′) we can apply the corresponding steps from (i)-(iv)
again, which finishes the proof for region (v).
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Theorem 4.3 gives solution regularity on any sub-domain Ω′ with compact closure Ω̄′ ⊂ Ω. The following
theorem generalizes it to sub-domain Ω′ with non-compact closure Ω̄′ ⊂ Ω and particularly proves regularity
at infinity for exterior (unbounded) domains.

THEOREM 4.4. Let Ω be Rn or an open exterior or interior domain with a compact boundary in Rn,
s1 ∈ R, s2 > s1 − 2, u ∈ Hs1(Ω′)m and f ∈ Hs2(Ω′)m on any open set Ω′ b Ω, m ≥ 1. Let u satisfy either
(a) elliptic (in the Petrovsky sense) system (3.1), Au = f , in Ω with {a, b, c} ∈ Cs1−1

+ (Rn)
⋂
Cs2+1

+ (Rn) or

(b) elliptic (in the Petrovsky sense) system (3.2), A∗u = f , in Ω with {a, b, c} ∈ C1−s1
+ (Rn)

⋂
C−s2−1

+ (Rn),
and in the case of the infinite domain Ω there exist finite matrices aij(∞) := limx→∞ aij(x) satisfying the
ellipticity condition det

∑
i,j=1 aij(∞)ξiξj 6= 0. Then u ∈ Hs2+2(Ω′)m on any Ω′ b Ω.

Proof. The theorem claim for subdomains Ω′ b Ω with compact closure is implied by Theorem 4.3. To
complete the proof, we have to consider an infinite subdomain Ω′ b Ω of an infinite domain Ω. Note that
the theorem hypothesis s2 > s1 − 2 implies that either s1 6= 1 or s2 6= −1 and thus a ∈ C̄µ(Ω) for any
Ω′ b Ω for some µ > 0 and particularly, a ∈ C(Ω) (maybe after adjusting a on a zero measure set, that we
will assume to be done).

The proof follows the pattern of the proof of Theorem 4.3 and we will mostly refer to that proof instead
of repeating it whenever possible. We give only a proof for part (a) of the theorem; the proof for part (b)
is similar.

Step (i) Let the coefficients a, b, c be not generally constant, Ω be either Rn or an open exterior domain
with a compact boundary in Rn. In the latter case let u be extended outside Ω to ue ∈ Hs1(Rn), and we
will further drop the superscript e for brevity. Let Bρ = B0,ρ be an open ball of radius ρ centred at zero. Let
ρ be sufficiently large, so that Bρ includes the boundary of Ω (if Ω 6= Rn). Let us chose a cut-off function
η ∈ C∞(Rn) such that η(x) = 1 in Rn\B2ρ and η(x) = 0 in Bρ. Denoting Uη(x) := η(x)u(x) we obtain that
suppUη ⊂ Rn\Bρ ⊂ Ω.

Then the function Uη satisfies equation

A0∞Uη = ηf +Aηu−A−∞Uη in Rn. (4.21)

Here A0∞ is the principal part of the operator with the constant coefficient matrix a(∞), i.e.,

A0∞Uη := −
n∑

i,j=1

aij(∞)∂i∂jUη, (4.22)

Aηu = −
n∑

i,j=1

(∂iη)aij∂ju−
n∑

i,j=1

∂i[(∂jη)aiju]−
n∑
j=1

ηbj∂ju− ηcu, (4.23)

A−∞Uη = −
n∑

i,j=1

∂i(a
−
ij∂jUη), (4.24)

where a−(x) = a(x)− a(∞).
Let

s2 + 1 ≤ s1 < s2 + 2, (4.25)

see Fig. 1. Then by Theorem 3.2, we again, as in the proof of Theorem 4.3 arrive at estimate (4.11), where
C3(ρ) is defined by (4.12).

Let us define a−∞(x) =

{
a−(x), x ∈ Rn\Bρ
|x|
ρ a
−
(
xρ
|x|

)
, x ∈ B̄ρ

.

Then evidently ‖a−∞‖C(Rn) = ‖a−‖C(Rn\Bρ) → 0 as ρ→∞. Moreover, it is easy to check (see Appendix A)
that ‖a−∞‖Cµ(Rn) ≤ 3‖a−‖Cµ(Rn\Bρ) for any µ ∈ [0, 1] and sufficiently large ρ, and ‖a−∞‖Cµ(Rn) → 0 as
ρ→∞ if a− ∈ Cµ+ε(Ω) for some ε > 0.
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Thus, since suppUη ⊂ Rn\Bρ, we have from (4.24) by Theorem 3.2,

‖A−∞Uη‖Hs2 (Rn) ≤ C4‖a−∇Uη‖Hs2+1(Rn) = C4‖a−∞∇Uη‖Hs2+1(Rn)

≤ CC4‖a−∞‖C|s2+1|+ε2/2(Rn)‖∇Uη‖Hs2+1(Rn) ≤ CC4‖a−∞‖C|s2+1|+ε2/2(Rn)C5‖Uη‖Hs2+2(Rn) (4.26)

for any ε2 such that
ε2 ∈ R+(s2), |s2 + 1|+ ε2/2 < 1. (4.27)

Applying estimate (4.5) to equation (4.21) and taking into account estimates (4.11) and (4.26), we then
have under conditions (4.25) and (4.27),

C6(ρ)‖Uη‖Hs2+2(Rn) ≤ C7(ρ)‖f‖Hs2 (Rn\B̄ρ) + C8(ρ)‖u‖Hs1 (Rn\B̄ρ), (4.28)

C6(ρ) := 1− C1CC4C5‖a−∞‖C|s2+1|+ε2/2(Rn), C7(ρ) := C1C‖η‖C̄|s2|+ε2 (Rn\Bρ), C8(ρ) := C1C3(ρ) + C7(ρ).

The parameter C7(ρ) and, due to the theorem hypotheses, also C3(ρ) and thus C8(ρ) are finite for any
ρ ∈ (0,∞).

Further in this step we prove that C6(ρ) is positive for sufficiently large ρ under conditions s2 + 1 ≤ s1 <
s2 + 2, |s2 + 1| < 1, which correspond to region (i) in Fig. 1.

Let first s2 = −1, and consider estimate (4.28) with s2 + 1 = ε2 = 0. Since a−(∞) = 0, the norm
‖a−∞‖C|s2+1|+ε2/2(Rn) = ‖a−∞‖C(Rn) for sufficiently large ρ < ∞ becomes small enough for C6(ρ) in (4.28) to
be positive.

Let now 0 < |s2 + 1| < 1. Due to the theorem hypothesis, there exists ε2 ∈ (0, 1 − |s2 + 1|) such that
a− ∈ C |s2+1|+ε2(Rn \Bρ), which implies ‖a−∞‖C|s2+1|+ε2/2(Rn) → 0 as ρ→ 0. Thus again for sufficiently large

ρ, the norm ‖a−∞‖C|s2+1|+ε2/2(Rn) becomes small enough for C6(ρ) in (4.16) to be positive.

This means that in the both cases Uη ∈ Hs2+2(Rn) implying u ∈ Hs2+2(Ω′ \B2ρ) for sufficiently large ρ.
Taking into account that u ∈ Hs2+2(Ω′

⋂
B3ρ) for any ρ by Theorem 4.3, we arrive at the present theorem

claim in region (i).

Step (ii) Let us prove the theorem under conditions s2 + 1 ≤ s1 < s2 + 2, −3 < s2 ≤ −2, that are
satisfied in region (ii) in Fig. 1. We proceed as in Step (i) but instead of estimate (4.26) for the term A−∞Uη
we split it into two parts

A−∞Uη = A−∞1Uη +A−∞2Uη, A−∞1Uη :=
n∑

i,j=1

∂i((∂ja
−
ij)Uη), A−∞2Uη := −

n∑
i,j=1

∂i∂j(a
−
ijUη)

and estimate each of them as follows,

‖A−∞1Uη‖Hs2 (Rn) ≤ C4‖(∇a−)Uη)‖Hs2+1(Rn) ≤ C4‖(∇a−)Uη‖Hs1 (Rn)

≤ CC4‖a−‖W |s1|+1+ε1/2∞ (Rn)
‖Uη‖Hs1 (Rn) = CC4‖a−‖W |s1−1|+ε1/2∞ (Rn)

‖Uη‖Hs1 (Rn)

where we took into account that s1 < 0 in region (ii), and

‖A−∞2Uη‖Hs2 (Rn) ≤ C4‖a−Uη‖Hs2+2(Rn) ≤ CC4‖a−0 Uη‖Hs2+2(Rn) ≤ CC4‖a−‖C|s2+2|+ε2/2(Bρ)‖Uη‖Hs2+2(Rn)

Taking into account that ‖A−∞2Uη‖Hs2 (Rn) can be made arbitrarily small by choosing sufficiently large ρ, as
in Step (i), since 0 ≤ |s2 + 2| < 1, this proves the theorem for region (ii).
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Steps (iii)-(v) The proofs of the theorem under condition s2 < −3 and under condition s2 ≥ 0, in
addition to condition (4.25) coincide word-for-word with the proof in Steps (iii) and (iv), respectively, of
Theorem 4.3, while for s2 > s1 − 1 with the proof in Step (v) of the same theorem.

REMARK 4.5. Conditions on the PDE coefficients in Theorem 4.4 can be evidently relaxed to the corre-
sponding conditions for all domains Ω′ b Ω (implying that the coefficients are extendable from such Ω′ to
the whole Rn such that the conditions hold) supplemented with the continuity of the coefficient a at infinity
for the extensions.

REMARK 4.6. The Theorem 4.4 proof works also for domains Ω with a non-compact boundary and for
an open set Ω′ for which there exist another open set Ω′′ such that Ω′ b Ω′′ b Ω and a cut-off function
η′ ∈ C∞(Rn) with sufficient number of bounded derivatives in Rn such that η′(x) = 1 in Ω′ and η′(x) = 0
in Rn \ Ω′′. In the first paragraph of Step (i) we can chose then a cut-off function ηρ ∈ C∞(Rn) such that
ηρ(x) = 1 in Rn \ B2ρ and ηρ(x) = 0 in Bρ. Defining η(x) := η′(x)ηρ(x) we have η(x) = 1 in Ω′ \ B2ρ

and η(x) = 0 in (Rn \ Ω′′)
⋃
Bρ. Then the support of Uη(x) := η(x)u(x) belongs to Ω̄′′\Bρ ⊂ Ω and we can

follow the proof of Theorem 4.4 as before.

5 Extensions and generalized co-normal derivatives for PDE systems
with non-smooth coefficients

5.1 Extension of partial differential operators

Let 1
2 < s < 3

2 and {a, b, c} ∈ Cs−1
+ (Ω) (which for the case s = 1 means a, b, c ∈ L∞(Ω)). In addition to the

operator A defined by (3.6), let us consider also the aggregate partial differential operator Ǎ, defined as,

〈Ǎu, v〉Ω := Ě(u, v) ∀v ∈ H2−s(Ω), (5.1)

where

Ě(u, v) = ĚΩ(u, v) :=
n∑

i,j=1

〈
Ẽs−1(aij∂ju), ∂iv

〉
Ω

+
n∑
j=1

〈
Ẽsb(s)(bj∂ju), v

〉
Ω

+
〈
Ẽsc(s)(cu), v

〉
Ω
, (5.2)

Ẽs−1 : Hs−1(Ω) → H̃s−1(Ω), Ẽsb(s) : Hsb(s)(Ω) → H̃sb(s)(Ω), Ẽsc(s) : Hsc(s)(Ω) → H̃sc(s)(Ω) are bounded
extension operators, which are unique by [14, Theorem 2.16] (Theorem B.3 in Appendix B) since −1

2 <
s− 1 < 1

2 and −1
2 < sb(s) ≤ 0, sc(s) = 0 by (3.5). Then the bilinear form Ě(u, v) : Hs(Ω)×H2−s(Ω)→ C

is bounded by Theorem 3.2, implying that the operator Ǎ : Hs(Ω) → H̃s−2(Ω) = [H2−s(Ω)]∗ is bounded,
for 1

2 < s < 3
2 .

Note that by (2.2)-(2.3) one can rewrite (5.1) also as (Ǎu, v)Ω := Φ(u, v) ∀v ∈ H2−s(Ω), where Φ(u, v) =

Ě(u, v̄) is the sesquilinear form.
If s = 1, i.e. u, v ∈ H1(Ω), then evidently

Ě(u, v) = E(u, v) =

∫
Ω

 n∑
i,j=1

(aij∂ju) · ∂iv +

n∑
j=1

(bj∂ju) · v + cu · v

 dx.
For 1

2 < s < 3
2 and {a, b, c} ∈ Cs−1

+ (Ω) let us consider also the aggregate operator Ǎ∗ : H2−s(Ω) →
H̃−s(Ω) = [Hs(Ω)]∗, defined as,

〈Ǎ∗v, u〉Ω := Ě∗(v, u) ∀u ∈ Hs(Ω), (5.3)
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Ě∗(v, u) = Ě(ū, v̄) = Φ(ū, v) =
n∑

i,j=1

〈
āij∂ju, Ẽ

1−s∂iv
〉

Ω
+

n∑
j=1

〈
b̄j∂ju, Ẽ

−sb(s)v
〉

Ω
+
〈
c̄u, Ẽ−sc(s)v

〉
Ω

(5.4)

by (5.2) since (Ẽp)∗ = Ẽ−p for −1
2 < p < 1

2 by [14, Theorem 2.16] (Theorem B.3 in Appendix B).
Due to Theorem 3.2 and relations (5.3), (5.4) and (5.1), we have the following statement.

THEOREM 5.1. If 1
2 < s < 3

2 and {a, b, c} ∈ Cs−1
+ (Ω), then bilinear form (5.2), Ě : {Hs(Ω), H2−s(Ω)} →

C is bounded and expressions (5.1), (5.3) define bounded linear operators Ǎ : Hs(Ω) → H̃s−2(Ω), Ǎ∗ :
H2−s(Ω)→ H̃−s(Ω), and the aggregate second Green’s identity holds true in the following form,

〈Ǎu, v̄〉Ω = 〈u, Ǎ∗v〉Ω, u ∈ Hs(Ω), v ∈ H2−s(Ω),
1

2
< s <

3

2
. (5.5)

For any u ∈ Hs(Ω), 1
2 < s < 3

2 , the functional Ǎu belongs to H̃s−2(Ω) and is an extension of the

functional Au ∈ Hs−2(Ω) from the domain of definition H̃2−s(Ω) to the domain of definition H2−s(Ω).
Similarly, for any v ∈ H2−s(Ω), 1

2 < s < 3
2 , the distribution Ǎ∗v belongs to H̃−s(Ω) and is an extension of

the functional A∗v ∈ H−s(Ω) from the domain of definition H̃s(Ω) to the domain of definition Hs(Ω).
The distribution Ǎu is not the only possible extension of the functional Au, and any functional of the

form
Ǎu+ g, g ∈ Hs−2

∂Ω (5.6)

gives another extension. On the other hand, any extension of the domain of definition of the functional Au
from H̃2−s(Ω) to H2−s(Ω) has evidently form (5.6). The existence of such extensions is provided by [14,
Theorem 2.16] (Theorem B.3 in Appendix B).

5.2 Generalized co-normal derivatives

Let γ+ : Hs(Ω) → Hs− 1
2 (∂Ω) denote the trace operator, which is bounded on Lipschitz domains for

1
2 < s < 3

2 .
For u ∈ Hs(Ω), s > 3

2 , and a ∈ C(Ω̄), the strong (classical) co–normal derivative operator

T+
c u(x) :=

n∑
i,j=1

aij(x) γ+[∂ju(x)]νi(x) (5.7)

is well defined on ∂Ω in the sense of traces. Here γ+[∂ju] ∈ Hs− 3
2 (∂Ω) ⊂ L2(∂Ω) if 3

2 < s < 5
2 , while the

outward (to Ω) unit normal vector ν(x) at the point x ∈ ∂Ω belongs to L∞(∂Ω) for the Lipschitz boundary
∂Ω, implying T+

c u ∈ L2(∂Ω). Note that for Lipschitz domains, T+
c u does not generally belong to Hs(∂Ω),

s > 0, even for infinitely smooth u.
A definition of the generalized co–normal derivative is given in [10, Lemma 4.3] for s = 1 (cf. also [8,

Lemma 2.2] for the generalized co–normal derivative on a manifold boundary) and in [14] for 1
2 < s < 3

2
and infinitely smooth coefficients. We can now extend the definition to the range of Sobolev spaces and
non-smooth coefficients.

DEFINITION 5.2. Let Ω be a Lipschitz domain, 1
2 < s < 3

2 , u ∈ Hs(Ω), {a, b, c} ∈ Cs−1
+ (Ω), and

Au = f̃ |Ω ∈ Hs−2(Ω) in Ω for some f̃ ∈ H̃s−2(Ω). Let us define the generalized co–normal derivative

T+(f̃ , u) ∈ Hs− 3
2 (∂Ω) as〈

T+(f̃ , u) , w
〉
∂Ω

:= Ě(u, γ−1w)− 〈f̃ , γ−1w〉Ω = 〈Ǎu− f̃ , γ−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω),

where γ−1 : H
3
2
−s(∂Ω)→ H2−s(Ω) is a bounded right inverse to the trace operator.
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THEOREM 5.3. Under the hypotheses of Definition 5.2, the generalized co–normal derivative T+(f̃ , u)
is independent of the operator γ−1, the estimate ‖T+(f̃ , u)‖

Hs− 3
2 (∂Ω)

≤ C1‖u‖Hs(Ω) + C2‖f̃‖H̃s−2(Ω)
takes

place, and the first Green’s identity holds in the following form,〈
T+(f̃ , u) , γ+v

〉
∂Ω

= Ě(u, v)− 〈f̃ , v〉Ω = 〈Ǎu− f̃ , v〉Ω ∀ v ∈ H2−s(Ω). (5.8)

Proof. The proof of the theorem coincides word-for-word with the proof of its counterpart for infinitely
smooth coefficients, Theorem 3.2 in [14] .

Because of the involvement of f̃ , the generalized co-normal derivative T+(f̃ , u) is generally non-linear
in u. It becomes linear if a linear relation is imposed between u and f̃ (including behaviour of the latter on
the boundary ∂Ω), thus fixing an extension of f̃ |Ω = Au into H̃s−2(Ω). For example, f̃ |Ω can be extended
as f̌ := Ǎu, which generally does not coincide with f̃ . Then obviously, T+(f̌ , u) = T+(Ǎu, u) = 0, meaning
that the co-normal derivatives associated with any other possible extension f̃ appear to be aggregated in f̌
as

〈f̌ , v〉Ω = 〈f̃ , v〉Ω +
〈
T+(f̃ , u) , γ+v

〉
∂Ω

∀ v ∈ H2−s(Ω) (5.9)

due to (5.8). This justifies the term aggregate for the extension f̌ , and thus for the operator Ǎu.
As follows from Definition 5.2, the generalized co-normal derivative is still linear with respect to the

couple (f̃ , u), i.e., T+(α1f̃1, α1u1)+T+(α2f̃2, α2u2) = T+(α1f̃1+α2f̃2, α1u1+α2u2) for any complex numbers
α1, α2.

In fact, for a given function u ∈ Hs(Ω), 1
2 < s < 3

2 , any distribution τ ∈ Hs− 3
2 (∂Ω) may be nominated as

a co-normal derivative of u, by an appropriate extension f̃ of the distribution Au ∈ Hs−2(Ω) into H̃s−2(Ω).
This extension is again given by the second Green’s identity (5.8) re-written as follows (cf. [2, Section 2.2,
item 4] for s = 1),

〈f̃ , v〉Ω := Ě(u, v)−
〈
τ, γ+v

〉
∂Ω

= 〈Ǎu− γ+∗τ, v〉Ω ∀ v ∈ H2−s(Ω). (5.10)

Here the operator γ+∗ : Hs− 3
2 (∂Ω) → H̃s−2(Ω) is adjoint to the trace operator, 〈γ+∗τ, v〉Ω := 〈τ, γ+v〉∂Ω

for all τ ∈ Hs− 3
2 (∂Ω) and v ∈ H2−s(Ω). Evidently, the distribution f̃ defined by (5.10) belongs to H̃s−2(Ω)

and is an extension of the distribution Au into H̃s−2(Ω) since γ+v = 0 for v ∈ H̃2−s(Ω).
For u ∈ C1(Ω) ⊂ H1(Ω), one can take τ equal to the strong co-normal derivative, T+

c u ∈ L∞(∂Ω), and
relation (5.10) can be considered as the classical extension of f = Au ∈ H−1(Ω) to f̃c ∈ H̃−1(Ω), which is
evidently linear.

For a sufficiently smooth function v and a, b ∈ C(Ω̄), let

T+
∗cv(x) :=

n∑
i,j=1

ā>ji(x) γ+[∂jv(x)]νi(x) +
n∑
i=1

b̄>i (x)γ+v(x)νi

be the strong (classical) modified co-normal derivative (it corresponds to B̃νv in [10]), associated with the
operator A∗.

If v ∈ H2−s(Ω), {a, b, c} ∈ Cs−1
+ (Ω), 1

2 < s < 3
2 , and A∗v = f̃∗|Ω in Ω for some f̃∗ ∈ H̃−s(Ω), we define the

generalized modified co–normal derivative T+
∗ (f̃∗, v) ∈ H

1
2
−s(∂Ω), associated with the operator A∗, similar

to Definition 5.2, as〈
T+
∗ (f̃∗, v) , w

〉
∂Ω

:= Ě∗(v, γ−1w)− 〈f̃∗, γ−1w〉Ω ∀ w ∈ Hs− 1
2 (∂Ω).

As in Theorem 5.3, this leads to the following first Green’s identity for the function v,〈
T+
∗ (f̃∗, v) , γ+u

〉
∂Ω

= Ě∗(v, u)− 〈f̃∗, u〉Ω ∀ u ∈ Hs(Ω), (5.11)
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which by (5.4) implies 〈
γ+u, T+

∗ (f̃∗, v)
〉
∂Ω

= Ě(u, v̄)− 〈u, f̃∗〉Ω ∀ u ∈ Hs(Ω). (5.12)

If, in addition, Au = f̃ |Ω in Ω with some f̃ ∈ H̃s−2(Ω), then combining (5.12) and the first Green’s identity
(5.8) for u, we arrive at the following generalized second Green’s identity,

〈f̃ , v̄〉Ω − 〈u, f̃∗〉Ω =
〈
γ+u, T+

∗ (f̃∗, v)
〉
∂Ω

−
〈
T+(f̃ , u) , γ+v

〉
∂Ω

. (5.13)

By (5.11), (5.3) and (5.8), (5.1), this, of course, leads to the aggregate second Green’s identity (5.5).

5.3 Generalized weak settings of boundary value problems

Similar to the case of infinitely smooth coefficients in [14, Section 3.2], let us consider the generalized BVP
weak settings for PDE system (3.1) on an interior Lipschitz domain for 1

2 < s < 3
2 and {a, b, c} ∈ Cs−1

+ (Ω).

The Dirichlet problem: for f ∈ Hs−2(Ω) and ϕ0 ∈ Hs− 1
2 (∂Ω), find u ∈ Hs(Ω) such that

〈Au, v〉Ω = 〈f, v〉Ω ∀v ∈ H̃2−s(Ω), (5.14)

γ+u = ϕ0 on ∂Ω, (5.15)

where Au is defined by (3.6).
The Neumann problem: for f̌ ∈ H̃s−2(Ω), find u ∈ Hs(Ω) such that

〈Ǎu, v〉Ω = 〈f̌ , v〉Ω ∀v ∈ H2−s(Ω), (5.16)

where Ǎu is defined by (5.1).

The mixed (Dirichlet-Neumann) problem: for f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]∗ and ϕ0 ∈ Hs− 1

2 (∂DΩ), find u ∈
Hs(Ω) such that

〈Ǎ∂DΩu, v〉Ω = 〈f̌m, v〉Ω ∀v ∈ H2−s
0 (Ω, ∂DΩ), (5.17)

γ+u = ϕ0 on ∂DΩ. (5.18)

Here Ǎ∂DΩ : Hs(Ω)→ [H2−s
0 (Ω, ∂DΩ)]∗ is the mixed aggregate operator defined as

〈Ǎ∂DΩu, v〉Ω := 〈Ǎu, v〉Ω = Ě(u, v) ∀ v ∈ H2−s
0 (Ω, ∂DΩ).

where, respectively, the Dirichlet and Neumann parts of the boundary, ∂DΩ and ∂NΩ = ∂Ω\∂DΩ are
nonempty, open sub–manifolds of ∂Ω, and Hs

0(Ω, ∂DΩ) = {w ∈ Hs(Ω) : γ+w = 0 on ∂DΩ}. The operator
Ǎ∂DΩ is bounded by the same argument as the aggregate operator Ǎ. For any u ∈ Hs(Ω), the distribution
Ǎ∂DΩu belongs to [H2−s

0 (Ω, ∂DΩ)]∗ and is an extension of the functional Au ∈ Hs−2(Ω) from the domain of

definition H̃2−s(Ω) = H2−s
0 (Ω) ⊂ H2−s

0 (Ω, ∂DΩ) to the domain of definition H2−s
0 (Ω, ∂DΩ), and a restriction

of the functional Ǎu ∈ H̃s−2(Ω) from the domain of definition H2−s(Ω) ⊃ H2−s
0 (Ω, ∂DΩ) to the domain of

definition H2−s
0 (Ω, ∂DΩ).

Note that one can take v = w̄ to make the settings (5.14)-(5.15), (5.16) and (5.17)-(5.18) in terms of the
sesquilinear inner product and look more like the usual variational formulations, cf. e.g. [9].

The Dirichlet problem setting (5.14)-(5.15) coincides with the usual one, c.f. [10], (i.e., does not need
a generalization), and the co-normal derivative does not evidently participate in it. The Neumann and
mixed problems are formulated in terms of the aggregate right hand sides f̌ and f̌m, respectively, prescribed
on their own, i.e., without necessary splitting them into the given right hand side of the PDE inside the
domain Ω and the part related with the co-normal derivative prescribed on the boundary. If, however, a
PDE right hand side extension f̃ and an associated non-zero generalized co-normal derivative T+(f̃ , u) = τ
are prescribed instead, then f̌ can be expressed through it by relation (5.9) and f̌m by relation

〈f̌m, v〉Ω = 〈f̃ , v〉Ω +
〈
τ , γ+v

〉
∂NΩ

= 〈f̃ + γ+∗τ, v〉Ω ∀ v ∈ H2−s
0 (Ω, ∂DΩ),
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also obtained from (5.9), where it is taken into account that the trace γ+v belongs to H̃s− 1
2 (∂NΩ) for

v ∈ H2−s
0 (Ω, ∂DΩ) and γ+∗ : Hs− 3

2 (∂NΩ) → [H2−s
0 (Ω, ∂DΩ)]∗ is a continuous operator adjoint to the

operator γ+.
Thus the co-normal derivative does not enter, in fact, the generalized weak settings of the Dirichlet,

Neumann or mixed problem, implying that the non-uniqueness of T+(f̃ , u) for a given function u ∈ Hs(Ω),
1
2 < s < 3

2 , does not influence the BVP weak settings, (cf. [2, Section 2.2, item 4] for s = 1). On the other
hand, for a given u ∈ Hs(Ω) the aggregate right hand sides f̌ and f̌m are uniquely determined by u from
(5.16), (5.17), as are, of course, f and ϕ0 by (5.14), (5.15)/(5.18).

Remark also that the formulation of the Neumann and mixed BVPs in terms of the aggregate right
hand side can be also illustrated by a physical interpretation. For the Neumann problem, for example,
if A is a partial differential operator of the Lamé system of linear elasticity in a body Ω ⊂ R3 for the
displacement vector u ∈ H1(Ω), then f̃ ∈ H̃−1(Ω) is the distributed volume force vector acting on the

body and T+(f̃ , u) = τ ∈ H−
1
2 (∂Ω) is the prescribed traction vector on the boundary. Then τ ∈ H−

1
2 (∂Ω)

from the mechanical point of view is indistinguishable from the corresponding volume force γ+∗τ ∈ H̃−1(Ω)
concentrated on the boundary surface and thus can be summed up with f̃ to produce the aggregate right
hand side f̌ .

6 Canonical co-normal derivative for PDE systems with non-smooth
coefficients

6.1 Canonical operator extension and co-normal derivative

As we have seen above, for an arbitrary u ∈ Hs(Ω), 1
2 < s < 3

2 , the co-normal derivative T+(f̃ , u) is generally
non-uniquely determined by u. An exception is T+(Ǎu, u) ≡ 0, which was in fact implemented in the revised
weak setting of the boundary value problems in Section 5.3. But such zero co-normal derivative evidently
differs from the strong co-normal derivative T+

c u, given by (5.7) for sufficiently smooth u. Another one way
of making the generalized co-normal derivative unique for u ∈ H1(Ω) was presented in [7, Lemma 5.1.1] and
is in fact associated with an extension of Au ∈ H−1(Ω) to f̃ ∈ H̃−1(Ω), such that f̃ is orthogonal in H−1(Rn)
to H−1

∂Ω ⊂ H
−1(Rn). However it appears (see [14, Lemma A.1]), that even for infinitely smooth functions f

such extension f̃ does not generally belong to L2(Rn), which implies that the so-defined co-normal derivative
operator from [7, Lemma 5.1.1] is not a bounded extension of the strong co-normal derivative operator.

Nevertheless, we can point out some subspaces of Hs(Ω), 1
2 < s < 3

2 , where a unique definition of the
co-normal derivative by u is still possible and leads to the strong co-normal derivative for sufficiently smooth
u. Following [14], we define below one such sufficiently wide subspace.

DEFINITION 6.1. Let s ∈ R and A∗ : Hs(Ω) → D∗(Ω) be a linear operator. For t ≥ −1
2 , we introduce

a space Hs,t(Ω;A∗) := {g : g ∈ Hs(Ω), A∗g|Ω = f̃g|Ω, f̃g ∈ H̃t(Ω)} equipped with the graphic norm,
‖g‖2Hs,t(Ω;A∗)

:= ‖g‖2Hs(Ω) + ‖f̃g‖2H̃t(Ω)
.

If s1 ≤ s2 and t1 ≤ t2, then we have the embedding, Hs2,t2(Ω;A∗) ⊂ Hs1,t1(Ω;A∗). Some other properties
of the space Hs,t(Ω;A∗) studied in [14, Section 3.2] are provided in Appendix B.

We will further use the space Hs,t(Ω;A∗) for the case when the operator A∗ is the operator A from (3.3)
or the formally adjoint operator A∗ from (3.7).

DEFINITION 6.2. Let s ∈ R, t ≥ −1
2 . The operator Ã mapping functions u ∈ Hs,t(Ω;A) to the extension

of the distribution Au ∈ Ht(Ω) to H̃t(Ω) will be called the canonical extension of the operator A.

REMARK 6.3. If s ∈ R, t ≥ −1
2 , then ‖Ãu‖

H̃t(Ω)
≤ ‖u‖Hs,t(Ω;A) by the definition of the space Hs,t(Ω;A),

i.e., the linear operator Ã : Hs,t(Ω;A) → H̃t(Ω) is continuous. Moreover, if −1
2 < t < 1

2 , then by

Theorem B.3 and uniqueness of the extension of Ht(Ω) to H̃t(Ω), we have the representation Ã := ẼtA.
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REMARK 6.4. Note that in the case of non-smooth coefficients of the operator A, the inclusion u ∈ Hs(Ω),
s > 3/2, does not generally imply that u ∈ Hs,t(Ω;A) for some t ≥ −1

2 , unlike the case of infinitely (or at

least sufficiently) smooth coefficients. Particularly, even u ∈ D(Ω̄) does not generally belong to H1,− 1
2 (Ω;A)

unless a ∈ C̄µ(Ω) for some µ > 1/2 (and b, c ∈ L∞(Ω)) by Theorem 3.2, i.e., the usual assumption
a ∈ L∞(Ω) is not generally sufficient for this.

As in [13, Definition 3] for scalar PDEs, let us define the canonical co-normal derivative operator. This
extends [6, Theorem 1.5.3.10] and [5, Lemma 3.2] where co-normal derivative operators acting on functions
from H1,0

p (Ω; ∆) and H1,0(Ω;A), respectively, were defined.

DEFINITION 6.5. For u ∈ Hs,− 1
2 (Ω;A), {a, b, c} ∈ Cs−1

+ (Ω), 1
2 < s < 3

2 , we define the canonical co-

normal derivative as T+u := T+(Ãu, u) ∈ Hs− 3
2 (∂Ω), i.e.,〈

T+u , w
〉
∂Ω

:= Ě(u, γ−1w)− 〈Ãu, γ−1w〉Ω = 〈Ǎu− Ãu, γ−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω),

where γ−1 : Hs− 1
2 (∂Ω)→ Hs(Ω) is a bounded right inverse to the trace operator.

Thus, unlike the generalized co-normal derivative, the canonical co-normal derivative is uniquely defined
by the function u and the operator A only, uniquely fixing an extension of the latter on the boundary, and
is linear in u.

Theorem 5.3 for the generalized co-normal derivative and Definition 6.1 imply the following assertion.

THEOREM 6.6. Under hypotheses of Definition 6.5, the canonical co-normal derivative T+u is indepen-
dent of the operator γ−1, the operator T+ : Hs,− 1

2 (Ω;A) → Hs− 3
2 (∂Ω) is continuous, and the first Green’s

identity holds in the following form,〈
T+u , γ+v

〉
∂Ω

=
〈
T+(Ãu, u) , γ+v

〉
∂Ω

= Ě(u, v)− 〈Ãu, v〉Ω = 〈Ǎu− Ãu, v〉Ω ∀ v ∈ H2−s(Ω).

Definitions 5.2 and 6.5 imply that the generalized co-normal derivative of u ∈ Hs,− 1
2 (Ω;A), 1

2 < s < 3
2 ,

for any other extension f̃ ∈ H̃s−2(Ω) of the distribution Au|Ω ∈ H−
1
2 (Ω) can be expressed as〈

T+(f̃ , u) , w
〉
∂Ω

=
〈
T+u , w

〉
∂Ω

+ 〈Ãu− f̃ , γ−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω).

Note that the distributions Ǎu − f̃ , Ǎu − Ãu and Ã − f̃ belong to H2−s
∂Ω since Ãu, Ǎu, f̃ belong to

H̃2−s(Ω), while Ãu|Ω = Ǎu|Ω = f̃ |Ω = Au|Ω ∈ Hs−2(Ω).
Since by Theorem 6.6 the canonical co-normal derivative does not depend on the extension operator γ−1,

the latter can be always chosen such that γ−1w has a support only near the boundary, which means that
the co-normal derivative T+u is determined by the behaviour of u near the boundary. We can formalize
this in the following statement.

THEOREM 6.7. Let Ω and Ω′ ⊂ Ω be interior or exterior open Lipschitz domains, ∂Ω ⊂ ∂Ω′, u ∈
Hs,− 1

2 (Ω;A), u ∈ Hs,− 1
2 (Ω′;A), {a, b, c} ∈ Cs−1

+ (Ω), 1
2 < s < 3

2 , while T+u and T ′+u be the canonical
co-normal derivatives on ∂Ω and ∂Ω′ respectively. Then T+u = r

∂Ω
T ′+u.

Proof. The proof is word-for-word the proof of the counterpart for infinitely smooth coefficients, Theo-
rem 3.10 in [14]

Theorem 6.7 can be considered as an alternative definition of the canonical co-normal derivative on ∂Ω,
where the domain Ω′ can be chosen arbitrarily small, and particularly can be taken interior when Ω is
exterior (with compact boundary). Note that a similar reasoning holds also for the generalized co-normal
derivative.
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If 1
2 < s < 3

2 , {a, b, c} ∈ Cs−1
+ (Ω) and v ∈ H2−s,− 1

2 (Ω;A∗), then similar to Definitions 6.2 and 6.5 we can

introduce the canonical extension Ã∗ of the operator A∗, and the canonical modified co-normal derivative
T+
∗ v := T+

∗ (Ã∗v, v) ∈ H
1
2
−s(∂Ω), i.e.,〈

T+
∗ v , w

〉
∂Ω

:= Ě∗(v, γ−1w)− 〈Ã∗v, γ−1w〉Ω ∀ w ∈ Hs− 1
2 (∂Ω).

Then the first Green’s identity (5.12) becomes,〈
γ+u, T+

∗ v
〉
∂Ω

= Ě(u, v̄)− 〈u, Ã∗v〉Ω ∀ u ∈ Hs(Ω).

For v ∈ H2−s,− 1
2 (Ω;A∗) and u ∈ Hs(Ω), Au = f̃ |Ω in Ω, where f̃ ∈ H̃s−2(Ω), the second Green’s identity

(5.13) takes form,

〈f̃ , v̄〉Ω −
〈
u, Ã∗v

〉
Ω

=
〈
γ+u, T+

∗ v
〉
∂Ω

−
〈
T+(f̃ , u), γ+v

〉
∂Ω

. (6.1)

This form was a starting point in formulation and analysis of the extended boundary-domain integral
equations in [11].

If, moreover, u ∈ Hs,− 1
2 (Ω;A), we obtain from (6.1) the second Green’s identity for the canonical

extensions and canonical co-normal derivatives,〈
Ãu, v̄

〉
Ω

−
〈
u, Ã∗v

〉
Ω

=
〈
γ+u, T+

∗ v
〉
∂Ω

−
〈
T+u , γ+v

〉
∂Ω

. (6.2)

Particularly, if u ∈ H1,0(Ω;A), v ∈ H1,0(Ω;A∗), with a, b, c ∈ L∞(Ω), then (6.2) takes the familiar form, cf.
[5, Lemma 3.4], ∫

Ω
[ v(x)Au(x)− u(x)A∗v(x) ]dx =

〈
γ+u, T+

∗ v
〉
∂Ω

−
〈
T+u , γ+v

〉
∂Ω

.

6.2 Classical verses canonical co-normal derivatives

In this section we generalize to the case when the PDE coefficients are not infinitely smooth, the results
of [14] on conditions when the canonical co-normal derivative T+u coincides with the strong co-normal
derivative T+

c u, if the latter does exist in the trace sense. To do this, we will need higher smoothness of the
coefficients than necessary for continuity of the PDEs in Theorems 3.4 and 5.1. First of all, we make the
following observation, c.f. Remark 6.4.

REMARK 6.8. Theorem 3.2 and Definition 3.3 imply that if {a, b, c} ∈ Ct+1
+ (Ω), t ≥ −1

2 , then D(Ω) ⊂
Hs,t(Ω;A) (and moreover, D(Ω) ⊂ Hs,t+ε(Ω;A) for some ε ∈ R+(t)) for any s ∈ R.

Now we are in the position to generalize the density theorem from [14, Theorem 3.12] to non-smooth
coefficients and exterior domains.

THEOREM 6.9. Let Ω be an interior or exterior Lipschitz domain and s ∈ R, −1
2 ≤ t < 1

2 . Let
{a, b, c} ∈ Cs−1

+ (Ω)
⋂
Ct+1

+ (Ω), the operator A be elliptic (in the sense of Petrovsky) on Ω and, if Ω is
exterior, there exists a finite a(∞) := limx→∞ a(x), which also satisfies the ellipticity condition. Then D(Ω)
is dense in Hs,t(Ω;A).

Proof. We adopt here for the non-smooth coefficients and exterior domains the proof from [14, Theorem
3.12].

For every continuous linear functional l on Hs,t(Ω;A) there exist distributions h̃ ∈ H̃−s(Ω) and g ∈
H−t(Ω) such that l(u) = 〈h̃, u〉Ω + 〈g, Ãu〉Ω ∀ u ∈ Hs,t(Ω;A).

Remark 6.8 and the theorem hypothesis on the coefficients imply that D(Ω) ⊂ Hs,t(Ω;A). To prove the
lemma claim, it suffices to show that any l, which vanishes on D(Ω), will vanish on any u ∈ Hs,t(Ω;A).

If l(φ) = 0 for any φ ∈ D(Ω), then

〈h̃, φ〉Ω + 〈g, Ãφ〉Ω = 0. (6.3)
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Let us consider the case −1
2 < t < 1

2 first and extend g outside Ω to g̃ = Ẽ−tg ∈ H̃−t(Ω), cf. Theorem B.3.
Let Ω′ ⊃ Ω be some domain, where the operator A is still elliptic. Such domain exists since the coefficients
a(x) are continuous and and the ellipticity condition holds in the closed domain Ω. Then equation (6.3)
gives

〈h̃, φ〉Ω′ + 〈g̃, Aφ〉Ω′ = 〈h̃, φ〉Ω + 〈g̃, Aφ〉Ω = 〈h̃, φ〉Ω + 〈Ẽ−tg,Aφ〉Ω
= 〈h̃, φ〉Ω + 〈g, ẼtAφ〉Ω = 〈h̃, φ〉Ω + 〈g, Ãφ〉Ω = 0 (6.4)

for any φ ∈ D(Ω′). This means
A∗g̃ = −h̃ in Ω′ (6.5)

in the sense of distributions, where A∗ is the operator formally adjoint to A. If t ≤ s − 2, then evidently
g̃ ∈ H̃2−s(Ω). If t > s− 2, then (6.5) and the local regularity Theorem 4.4(b) implies g̃ ∈ H2−s(Ω′′) for any
Ω′′ such that Ω b Ω′′ b Ω′ and consequently g̃ ∈ H̃2−s(Ω).

In the case t = −1
2 , one can extend g ∈ H

1
2 (Ω) outside Ω by zero to g̃ ∈ H̃

1
2
−ε(Ω), 0 < ε, and prove as

in the previous paragraph that g̃ ∈ H̃2−s(Ω).
If −1

2 < t < 1
2 or [t = −1

2 , s ≤ 3
2 ] then for any u ∈ Hs,t(Ω;A), we have,

l(u) = 〈−A∗g̃, u〉Ω + 〈g, Ãu〉Ω = −〈g̃, Au〉Ω + 〈g̃, Au〉Ω = 0.

Thus l is identically zero.
On the other hand, if t = −1

2 , s > 3
2 , let {g̃k} ∈ D(Ω) be a sequence converging, as k → ∞, to g in

H
1
2
0 (Ω) = H

1
2 (Ω), cf. Theorem B.2, and thus to g̃ in H̃2−s(Ω). Then for any u ∈ Hs, 1

2 (Ω;A), we have,

l(u) = 〈−A∗g̃, u〉Ω + 〈g, Ãu〉Ω = lim
k→∞

{
〈−A∗g̃k, u〉Ω + 〈g̃k, Ãu〉Ω

}
= lim

k→∞
{−〈g̃k, Au〉Ω + 〈g̃k, Au〉Ω} = 0,

which completes the proof.

Let us prove an analogue of Lemma 3.13 from [14].

LEMMA 6.10. Let Ω be a Lipschitz domain, 1
2 < s < 3

2 , {a, b, c} ∈ C
1
2
+(Ω), u ∈ Hs,− 1

2 (Ω;A), and
{uk} ∈ D(Ω) be a sequence such that

‖uk − u‖
Hs,− 1

2 (Ω;A)
→ 0 as k →∞. (6.6)

Then ‖T+
c uk − T+u‖

Hs− 3
2 (∂Ω)

→ 0 as k →∞.

Proof. By the lemma hypothesis on the coefficients, there exists ε ∈ (0, s − 1
2) such that

∑n
j=1 aij∂juk ∈

H
1
2

+ε(Ω). Then for any γ−1w ∈ H2−s(Ω) and uk ∈ D(Ω) there exist sequences {Wp}∞p=1, {Uqi}∞q=1 ∈ D(Ω)
such that

lim
p→∞

‖γ−1w −Wp‖H2−s(Ω) = 0, lim
q→∞

‖
n∑
j=1

aij∂juk − Uqi‖
H

1
2 +ε(Ω)

= 0

and we have

Ě(uk, γ−1w)−
n∑
j=1

〈
Ẽsb(s)(bj∂juk), γ−1w

〉
Ω
−
〈
Ẽsc(s)(cuk), γ−1w

〉
=

n∑
i,j=1

〈
Ẽs−1(aij∂juk), ∂iγ−1w

〉
Ω

= lim
p,q→∞

n∑
i=1

〈
Ẽs−1Uqi, ∂iWp

〉
Ω

= lim
p,q→∞

n∑
i=1

{∫
∂Ω
UqiνiWp dΓ−

∫
Ω

(∂iUqi)Wp dΩ

}

=

n∑
i,j=1

{∫
∂Ω

(aij∂juk)νiw dΓ−
〈
Ẽ−

1
2

+ε∂i(aij∂juk), γ−1w
〉

Ω

}
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=
〈
T+
c uk, w

〉
∂Ω

+ 〈Ãuk, γ−1w〉Ω −
n∑
j=1

〈
Ẽsb(s)(bj∂juk), γ−1w

〉
Ω
−
〈
Ẽsc(s)(cuk), γ−1w

〉
,

that is, the first Green’s identity holds for the classical co-normal derivative,
E(uk, γ−1w) = 〈T+

c uk, w〉∂Ω + 〈Ãuk, γ−1w〉Ω. Thus we have for any w ∈ H
3
2
−s(∂Ω),∣∣∣〈T+u− T+

c uk, w
〉
∂Ω

∣∣∣ =
∣∣∣Ě(u− uk, γ−1w)− 〈Ã(u− uk), γ−1w〉Ω

∣∣∣ ≤ C‖u − uk‖
Hs,− 1

2 (Ω;A)
‖w‖

H
3
2−s(∂Ω)

,

which implies ‖T+
c uk − T+u‖

Hs− 3
2 (∂Ω)

≤ C‖u− uk‖
Hs,− 1

2 (Ω;A)
→ 0 as k →∞.

Note that a sequence satisfying (6.6) does always exist for Lipschitz domains by Theorem 6.9 since

Definition 3.3 implies C
1
2
+(Ω) ⊂ Cs−1

+ (Ω) if 1
2 < s < 3

2 .
The following statement gives the equivalence of the classical co-normal derivative (in the trace sense)

and the canonical co-normal derivative, for functions from Hs(Ω), s > 3
2 .

COROLLARY 6.11. If Ω is an interior or exterior Lipschitz domain, {a, b, c} ∈ C
1
2
+(Ω) and u ∈ Hs(Ω),

s > 3
2 , then T+u = T+

c u.

Proof. The proof coincides with the proof of [14, Corollary 3.14] if we remark that γ+[∂ju] ∈ Hs− 3
2 (∂Ω)

for 3
2 < s < 5

2 and the condition {a, b, c} ∈ C
1
2
+(Ω) implies that T+

c u ∈ L2(∂Ω) and u ∈ Hs,− 1
2 (Ω;A) ⊂

H1,− 1
2 (Ω;A).

Similar to [16, page 85] we introduce the following definition.

DEFINITION 6.12. Let Ωk, Ω be Lipschitz domains. We say that Ωk → Ω as k → ∞ if ∂Ωk are
represented using the same system of covering charts ωj as ∂Ω for all sufficiently large k, and
limk→∞ |ζjk − ζj |C0,1(ω̄j) = 0, where ζjk and ζj are the corresponding Lipschitz functions for the boundary
representation.

LEMMA 6.13. Let Ω and Ωk b Ω be Lipschitz domains such that Ωk → Ω as k →∞ (cf. Definition 6.12).

If u ∈ Hs,t(Ω;A) for some s ∈ (1
2 ,

3
2) and t ∈ (−1

2 ,
1
2) and {a, b, c, } ∈ C

1
2
+(Ω), then 〈T+u, γ+v〉∂Ω =

limk→∞〈T+
c u, γ

+v〉∂Ωk for any v ∈ H2−s(Ω).

Proof. By Theorem 6.7 it suffices to consider only an interior domain Ω. Let Ω′k := Ω \ Ωk be the layer
between ∂Ω and ∂Ωk. By the solution regularity Theorem 4.3, u ∈ Ht′+2(Ωk) for some t′ > −1

2 . On ∂Ωk

then T+u = T+
c u ∈ L2(∂Ωk) by Corollary 6.11. Then

〈T+u, γ+v〉∂Ω − 〈T+
c u, γ

+v〉∂Ωk = 〈T+u, γ+v〉∂Ω − 〈T+u, γ+v〉∂Ωk = 〈T+u, γ+v〉∂Ω′k
=

ĚΩ′k
(u, v)− 〈ÃΩ′k

u, v〉Ω′k = ĚΩ′k
(u, v)− 〈Au, ṽΩ′k

〉Ω′k , (6.7)

where ÃΩ′k
u = ẼtΩ′k

rΩ′k
Au ∈ H̃t(Ω′k) and ṽΩ′k

= Ẽ−t
Ω′k
rΩ′k

v ∈ H̃−t(Ω′k) are the unique extensions of rΩ′k
Au ∈

Ht(Ω′k) and rΩ′k
v ∈ H2−s(Ω′k) ⊂ H−t(Ω′k), respectively.

By (5.2) and Theorem B.3 we have for the first term on the right hand side of (6.7), for 1
2 < s ≤ 1 and

any ε ∈ R+(s),

|ĚΩ′k
(u, v)| ≤ C

n∑
i,j=1

‖aij‖C̄|s−1|+ε(Ω̄)‖∂ju‖Hs−1(Ω′k)‖∂iv‖H1−s(Ω) +

C

n∑
j=1

‖bj‖C̄|s−1|+ε(Ω̄)‖∂ju‖Hs−1(Ω′k)‖v‖H1−s(Ω) + C‖c‖L∞(Ω)‖u‖H0(Ω′k)‖v‖H0(Ω)

≤ {C1‖∇u‖Hs−1(Ω′k) + C2‖∇u‖Hs−1(Ω′k)}‖v‖H2−s(Ω) + C3‖u‖H0(Ω′k)‖v‖H0(Ω) → 0, k →∞ (6.8)
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by Lemma B.4 since the Lebesgue measure of Ω′k tends to zero. For 1 < s < 3
2 similarly,

|ĚΩ′k
(u, v)| ≤ C

n∑
i,j=1

‖aij‖C̄|s−1|+ε(Ω̄)‖∂ju‖Hs−1(Ω)‖∂iv‖H1−s(Ω′k) +

C

n∑
j=1

‖bj‖L∞(Ω)‖∂ju‖Hs−1(Ω)‖v‖H1−s(Ω′k) + C‖c‖L∞(Ω)‖u‖Hs−1(Ω)‖v‖H0(Ω′k)

≤ {C4‖∇v‖H1−s(Ω′k) + C5‖v‖H0(Ω′k)}‖u‖Hs(Ω) + C6‖u‖Hs−1(Ω)‖v‖H0(Ω′k) → 0, k →∞. (6.9)

The norms of the coefficients a, b, c in (6.8) and (6.9) are bounded due to the lemma hypothesis.
For the last term in (6.7) we have by Lemmas B.5 and B.4,

|〈Au, ṽΩ′k
〉Ω′k | ≤ ‖Au‖Ht(Ω′k)‖ṽΩ′k

‖
H̃−t(Ω′k)

≤ C‖Au‖Ht(Ω′k)‖v‖H−t(Ω) ≤ C‖Au‖Ht(Ω′k)‖v‖H2−s(Ω) → 0, k →∞,

if −1
2 < t ≤ 0. On the other hand, if 0 < t < 1

2 , then again by Lemmas B.5 and B.4,

|〈Au, ṽΩ′k
〉Ω′k | = |〈ÃΩ′k

u, v〉Ω′k | ≤ ‖ÃΩ′k
u‖

H̃t(Ω′k)
‖v‖H−t(Ω′k) ≤ C‖Au‖Ht(Ω)‖v‖H−t(Ω′k) → 0, k → ∞.

Lemma 6.13 allows to show that the classical and canonical co-normal derivatives coincide also in another
case (apart from the one in Corollary 6.11). First note that C1(Ω) ⊂ H1(Ω) for any interior domain Ω
and C1(Ω′) ⊂ H1(Ω′) for any interior subdomain Ω′ of exterior domain Ω, but C1(Ω) is not a subset of

H1,− 1
2 (Ω;A). For u ∈ C1(Ω), evidently, limk→∞〈T+

c u, γ
+v〉∂Ωk = 〈T+

c u, γ
+v〉∂Ω for any v ∈ H2−s(Ω+) if

Ωk → Ω as k → ∞, Ωk ⊂ Ω. Then taking into account that Cs−1
+ (Ω) ⊂ C

1
2
+(Ω) for s = 1, Lemma 6.13

immediately implies the following assertion.

COROLLARY 6.14. If Ω is a Lipschitz domain, {a, b, c} ∈ C
1
2
+(Ω) and u ∈ C1(Ω)

⋂
H1,t

loc(Ω;A) for some
t ∈ (−1

2 ,
1
2), then T+u = T+

c u.

APPENDICES

A Some estimates

We will prove here some estimates used in Step (i) of the proof of Theorem 4.4. Let 0 ≤ µ ≤ 1 and

|a−∞|Cµ(Bρ) := sup
x′,x′′∈Bρ
x′ 6=x′′

|a−∞(x′′)− a−∞(x′)|
|x′′ − x′|µ

.

Let x′, x′′ ∈ Bρ and |x′′| ≥ |x′| for definiteness. Then

|a−∞(x′′)− a−∞(x′)|
|x′′ − x′|µ

=

∣∣∣ |x′′|ρ a−
(
x′′ρ
|x′′|

)
− |x

′|
ρ a
−
(
x′ρ
|x′|

)∣∣∣
|x′′ − x′|µ

≤ A+B,

where

A :=
|x′′|
ρ

∣∣∣a− (x′′ρ|x′′|)− a− (x′ρ|x′|)∣∣∣
|x′′ − x′|µ

, B :=
| |x′′| − |x′| |
ρ|x′′ − x′|µ

∣∣∣∣a−(x′ρ|x′|
)∣∣∣∣ .

The term A can be expressed as

A =

(
|x′′|
ρ

)1−µ
∣∣∣a− (x′′ρ|x′′|)− a− (x′ρ|x′|)∣∣∣

|∆̃|µ
, ∆̃ :=

x′′ρ

|x′′|
− x′ρ

|x′|
|x′|
|x′′|

.



JMAA, 2013, 400(1), 48-67 S.E.Mikhailov 23

Let ∆ := x′′ρ
|x′′|−

x′ρ
|x′| . Then |∆̃| ≥ ρ ≥ |∆|/2 if x′ ·x′′ ≤ 0, while |∆̃| ≥ |∆| | sin(x̂′,∆)| ≥ |∆| sin(π̂/4) = |∆|/

√
2

if x′ · x′′ > 0. Thus in the both cases,

A ≤ 2

(
|x′′|
ρ

)1−µ
∣∣∣a− (x′′ρ|x′′|)− a− (x′ρ|x′|)∣∣∣

|∆|µ
≤ 2|a−|Cµ(∂Bρ) ≤ 2|a−|Cµ(Rn\Bρ) if µ ∈ [0, 1].

On the other hand,

B ≤
(
|x′′| − |x′|

)1−µ
ρ

‖a−‖C(∂Bρ) ≤ ‖a−‖C(Rn\Bρ)

for µ ∈ [0, 1] and ρ ≥ 1. This implies ‖a−∞‖Cµ(Bρ) ≤ 2‖a−‖Cµ(Rn\Bρ) and considering also the case
x′ ∈ Rn \Bρ, x′′ ∈ Bρ and the case x′, x′′ ∈ Rn \ Bρ, we arrive at the desired estimate ‖a−∞‖Cµ(Rn) ≤
3‖a−‖Cµ(Rn\Bρ).

If a− ∈ Cµ1(Rn) for some µ1 such that 0 ≤ µ < µ1 ≤ 1, then

1

3
‖a−∞‖Cµ(Rn) ≤ ‖a−‖Cµ(Rn\Bρ) ≤ ‖a−‖C(Rn\Bρ) + |a−|Cµ(Rn\Bρ)

= ‖a−‖C(Rn\Bρ) + sup
|x′−x′′|≤r, x′ 6=x′′
x′,x′′∈Rn\Bρ

|a−(x′′)− a−(x′)|
|x′′ − x′|µ

+ sup
|x′−x′′|>r

x′,x′′∈Rn\Bρ

|a−(x′′)− a−(x′)|
|x′′ − x′|µ

≤ ‖a−‖C(Rn\Bρ) + rµ1−µ sup
|x′−x′′|≤r, x′ 6=x′′
x′,x′′∈Rn\Bρ

|a−(x′′)− a−(x′)|
|x′′ − x′|µ1

+ 2r−µ sup
x∈Rn\Bρ

|a−(x)|

≤ (1 + 2r−µ)‖a−‖C(Rn\Bρ) + rµ1−µ‖a−‖Cµ1 (Rn) .

Thus for any ε > 0 we can chose sufficiently small r > 0 so that the last term on the right hand side is less
than ε/2 and then chose ρ sufficiently large so that the first term on the right hand side is less than ε/2
since a−(x)→ 0 as x→∞. This means ‖a−∞‖Cµ(Rn) → 0 as ρ→∞.

B On Sobolev spaces characterization, traces and extensions

To make this paper more self-contained we provide here some assertions from [14] about Sobolev spaces
characterization, traces and extensions.

THEOREM B.1. [14, Theorem 2.10] Let Ω be a Lipschitz domain in Rn.
(i) If t ≥ −1

2 , then Ht
∂Ω = {0}.

(ii) If −3
2 < t < −1

2 , then g ∈ Ht
∂Ω if and only if g = γ∗v, i.e., 〈g,W 〉Rn = 〈v, γW 〉∂Ω ∀ W ∈ H−t(Rn),

with v = γ∗−1g ∈ Ht+ 1
2 (∂Ω), i.e., 〈v, w〉∂Ω = 〈g, γ−1w〉Rn ∀ w ∈ H−t−

1
2 (∂Ω), where v is independent of

the choice of the non-unique operators γ−1, γ∗−1, and the estimate ‖v‖
Ht+ 1

2 (∂Ω)
≤ C‖g‖Ht(Rn) holds with C

independent of t.

THEOREM B.2. [14, Theorem 2.12] Let Ω be a Lipschitz domain in Rn and s ≤ 1
2 . Then D(Ω) is dense

in Hs(Ω), i.e., Hs(Ω) = Hs
0(Ω).

THEOREM B.3. [14, Theorem 2.16] Let Ω be a Lipschitz domain and −3
2 < s < 1

2 , s 6= −1
2 . There

exists a bounded linear extension operator Ẽs : Hs(Ω) → H̃s(Ω), such that Ẽsg|Ω = g, ∀ g ∈ Hs(Ω). For
−1

2 < s < 1
2 the extension operator is unique, (Ẽs)∗ = Ẽ−s and ‖Ẽsg‖

H̃s(Ω)
≤ C‖g‖Hs(Ω), where C depends

only on s and on the maximum of the Lipschitz constants of the representation functions ζj for the boundary
∂Ω, see Definition 6.12.

LEMMA B.4. [14, Lemma 2.17] Let Ω and Ω′ ⊂ Ω be open sets, and s ≤ 0. If u ∈ Hs(Ω), then
‖u‖Hs(Ω′) → 0 as the Lebesgue measure of Ω′ tends to zero.
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LEMMA B.5. [14, Lemma 2.18] Let Ωk ⊂ Ω be a sequence of Lipschitz domains converging to a Lipschitz
domain Ω and −1

2 < s < 1
2 . If u ∈ Hs(Ω) and ũk = Ẽsu|Ωk , then there exists a constant C independent of

u and k such that ‖ũk‖H̃s(Ωk)
≤ C‖u‖Hs(Ω) for all sufficiently large k.

REMARK B.6. [14, Remark 3.14] If s ∈ R, −1
2 < t < 1

2 , and A∗ : Hs(Ω)→ Ht(Ω) is a linear continuous
operator, then Hs,t(Ω;A∗) = Hs(Ω) by Theorem B.3.

LEMMA B.7. [14, Lemma 3.5] Let s ∈ R. If a linear operator A∗ : Hs(Ω) → D∗(Ω) is continuous, then
the space Hs,t(Ω;A∗) is complete for any t ≥ −1

2 .
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