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Abstract: The computer modelling and simulation of wastewater treatment plant and their 

specific technologies, such as membrane bioreactors (MBRs), are becoming increasingly 

useful to consultant engineers when designing, upgrading, retrofitting, operating and 

controlling these plant. This research uses traditional phenomenological mechanistic 

models based on MBR filtration and biochemical processes to measure the effectiveness of 

alternative and novel time series models based upon input–output system identification 

methods. Both model types are calibrated and validated using similar plant layouts and 

data sets derived for this purpose. Results prove that although both approaches have their 

advantages, they also have specific disadvantages as well. In conclusion, the MBR plant 

designer and/or operator who wishes to use good quality, calibrated models to gain a better 

understanding of their process, should carefully consider which model type is selected based 

upon on what their initial modelling objectives are. Each situation usually proves unique. 

Keywords: wastewater treatment; membrane bioreactor; modelling; time series analysis 

Nomenclature 

Cb Bulk concentration (g/L) 

f  Fractional amount of total foulant contributing to deposit growth 

J0 Initial flux rate of clean membrane (m/s) 

Qt Total volumetric flow rate (m3/s) 

Q0 Initial volumetric flow rate (m3/s) 

Rm Resistance of the clean membrane (m−1) 
Rp0

 Original resistance of the deposit (m−1) 

R  Specific protein layer resistance (m/kg) 
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t  Filtration time (s) 

tp  Filtration time after initial membrane blocking occurs (s) 

∆p Constant total membrane pressure (Pa) 

Greek Letters 

α  Pore blockage parameter (m2/kg) 

β  Pore constriction parameter (kg) 

 

1. Phenomenological Model-Duclos-Orsello (2006) 

A phenomenological dead-end filtration model [1] was used in this study that depicts the three main 

fouling mechanisms occurring on membranes, namely cake build-up, complete pore blocking, and 

pore constriction, as originally described in Hermia [2] under constant trans-membrane pressure 

(TMP) operation. In this model, Duclos-Orsello [1] splits the total flow, Qt, through the membrane into 

flow through the unblocked membrane surface area and flow through the blocked membrane surface 

area as shown in Equation (1). Hence the first algebraic term relates to the unblocked flow whilst the 

second integral term relates to blocked flow: 
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This initial model was extensively modified and added to by Paul et al. [3], so that it could be used 

to model a variety of real life membrane bioreactor (MBR) configurations. Modifications and add-ons 

to this basic model included: alteration so that it could be used for varying flux and varying TMP 

operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling) in 

relation to the concentration of soluble microbial product (SMP) in the liquor (with SMP being the key 

agent thought to determine membrane fouling [4]); and, it could be used in a cross flow scenario by the 

addition of scouring terms in the model formulation. Using data collected from a pilot membrane 

filtration unit, this modified deterministic model was calibrated and validated in Matlab©. 

Disadvantages of Using Phenomenological Membrane Fouling Models for Plant Design, Operation 

and Control 

Most current researchers model the membrane fouling process using a phenomenological 

mechanistic approach that obeys the fundamental laws of physics. This is the traditional approach used 

to model MBR systems that treat wastewater. However it has been found that it does suffer from the 

following disadvantages: 

− Membrane fouling is in reality highly complex and currently poorly understood as a process. 

Hence any mechanistic fouling model, either simple or complex, cannot hope to adequately 

address all aspects involved in the fouling procedure; 
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− Usually a mechanistic fouling model needs to be made bespoke for each individual filtration 

system so that it accurately depicts the specific hydrodynamics of the process and the membrane 

operational regime; 

− These models are normally highly dimensional and contain several parameters requiring 

determination by real life plant data sets (e.g., flux stepping trials, extended specialist laboratory 

experiments, etc.); 

− Parameter estimation and optimisation require expert knowledge and proves to be complex as 

most models of this type are over-parameterised with too many degrees of freedom; 

− For many applications insufficient quality data is usually available to allow a full model 

calibration and validation, and thus any verified model is not accurate for every situation; 

− The general application of such complex models means their take up for process control and the 

development of future operational strategies will always prove limited [5]. 

In a bid to overcome the distinct disadvantages of a traditional mechanistic approach, it has been 

suggested that a non-traditional approach can be used to describe the membrane filtration and fouling 

process for a MBR system. The non-traditional approach which was used in this study is based on time 

series system identification methods [6]. At its simplest, it uses the plant data set itself to determine 

that best fit model from a range of standard numerical model structures (e.g., autoregressive,  

state-space, sub-space, etc.), that are described in greater detail in the next section. 

2. Using Time Series System Identification Methods to Create Input-Output (IO) Models as a 

Possible Non-Traditional Alternative 

System identification is an iterative process in which models with different structures are identified 

from data, and the individual model performance compared. The normal start point is by estimating the 

parameters of very simple model structures. If the performance still proves poor, then the model 

structure is gradually increased in complexity. Ultimately the simplest of all model structures tested is 

eventually selected that best describes the dynamics of the system under scrutiny. In this iterative 

process, which can be automated, the system identification procedure commences by initially using 

linear continuous input-output (IO) model structures. This followed by using more complex non-linear 

structures. The best fit structure is then chosen as the optimal model formulation. 

Historically speaking the first real instance of using a times series approach to analyse wastewater 

treatment data was carried out by Berthouex et al. [7], and later on by Debelak and Sims [8], and 

Christodoulatos and Vaccari [9]. Following these initial studies into using autoregressive time series 

methods for analysing wastewater treatment processes, they did seem to lose their appeal in the late 

1990s and other artificial intelligence (AI) methodologies became in vogue instead. This loss of appeal 

was probably less to do with their predictive capacity and more to do with the increasing popularity and 

familiarity with AI methodologies by researchers over a wide range of differing academic disciplines. 

In this study a linear continuous IO state-space model structure is tested using the supplied times 

series data. The state space model structure is a good choice for quick estimation because it requires 

only two parameters, namely the model order and one or more input delays. These model formulations 

are usually solved using iterative optimisation techniques and algorithms like the least squares method. 

However, this requires a lot of computing power and they are prone to inherent inaccuracies. A much 
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more attractive model formulation is the sub-space one which does not need to be solved using 

iterative optimisation techniques and algorithms, but by only using algebraic calculations [10]. This 

means the sub-space model formulation is a very powerful version of the state-space one that uses only 

a single-shot solving procedure with improved accuracy. Hence this sub-space method was also tested 

under this study for comparative purposes. 

3. Calibration and Validation of Both Model Types 

3.1. Pilot Membrane Filtration Unit 

Both fouling model types have been tested on data obtained from flux stepping tests performed on 

an ITT Sanitaire Ltd. (Colwick, Nottingham, UK) pilot membrane filtration unit depicted in Figure 1. 

This unit treated tertiary effluent from Cardiff’s sequence batch reactor (SBR) wastewater treatment 

plant, and its basic operational information is described in Table 1 below. 

Figure 1. ITT Sanitaire membrane filtration unit (depicted with bioreactor). 

 

Table 1. Operational data for pilot membrane filtration unit. 

ITT Sanitaire membrane filtration unit (without bioreactor) 

Membrane type and area Horizontal “Kolon” fibres; PVDF 0.1 μm pore size; 20 m2 

Feed flow; permeate flow; backwash 1 to 2.4 m3/h; 0.6 to 1 m3/h; 1.2 to 1.8 m3/h 

Backwash interval & duration Every 4 min with 30 s ON 

TMP 300 to 500 mbar 

Aeration rate 13 Nm3/h from coarse bubble tube diffuser 

Cleaning regime hypochlorite dosed 4 times daily into permeate tank 

Feed flow biological data COD concentration 50 mg O2/L; TSS concentration 25 mg/L 

Indicative feed flow SMP data Measured glucose concentration 5 mg/L; measured protein concentration 100 mg/L

3.2. Model Simulation—Results for Duclos-Orsello (2006) Traditional Approach 

After various assumptions and simplifications of the plant data, the eight best flux steps were used 

to test the modified phenomenological model. Figure 2 shows the result obtained when using the 

calculated optimal parameter sets for the best eight flux steps for this pilot unit. The model fit is 

extremely good. 
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Figure 2. Modified phenomenological model—best model fit for 8 flux steps. 

 

3.3. Model Simulation—Results for Non-Traditional Approach Using IO Models 

After various assumptions and simplifications of the plant data, the eight best flux steps were used 

to test the proposed multi-input single output (MISO) model structure. As the plant layout for this unit 

is very simple with no bioreactor to complicate matters, the selected MISO model structure should 

give a very high degree of accuracy. In this case the permeate flux, the measured SMP levels, and the 

measured bulk mixed liquor concentration into the membrane were used as variables in the input 

model vector with the TMP being the single variable in the output model vector. Firstly an IO model 

based on a standard iterative state-space formulation was tested. This was followed by using a quicker 

single-shot algebraic sub-space method as a comparison. Results are described below. 

3.3.1. Best Fit for 8 Flux Steps for MISO Normal State-Space Model 

Figure 3 shows the result obtained when using the calculated optimal parameter sets for the best 

eight flux steps for this pilot unit. The model fit is extremely poor. 

Figure 3. Best model fit for 8 flux steps (4 for validation) for standard state-space formulation. 
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3.3.2. Best Fit for 8 Flux Steps for MISO Sub-Space Model 

Figure 4 shows the result obtained when using the calculated optimal parameter sets for the best 

eight flux steps for this pilot unit. The model fit is very good. 

Figure 4. Best model fit for 8 flux steps (4 for validation) for sub-space method. 

 

3.4. Discussion of Model Simulation Results 

The standard state-space formulation, whose equations are not given here for the sake of brevity, 

gave a workable fit, albeit not a very good one of 8.5% as shown in Figure 3. However, the shape and 

direction of the fit is correct even though the simulated data is prone to gradually attenuating fluctuations 

around a mean point. This poor fit could be attributed to the regular backwash events that cause a 

sudden large negative drop in the TMP that the simulated model in this case is unable to cope with. 

When this MISO model structure is run as a subspace formulation, the best fit is for a 6th order 

model with an algorithm block size of 4. This fit is carried out by using the last four flux stepping 

cycles as the validation data set. Again for simplicities sake, the subspace model equations are not 

given here. The result as shown in Figure 4 depicts an excellent fit amounting to 89.14%. The shape of 

the fit is extremely good and is in the right direction (i.e., TMP increases with time), thus validating 

the use of additional input biochemical data (e.g., SMP and mixed liquor concentration levels) to 

improve the overall model fit. 

4. Conclusions 

Overall it is clear that the phenomenological model performed very well even though it took a 

considerable time to be developed into a useful format, and the model had to be calibrated using 

complex genetic algorithm procedures. Conversely, the subspace method gave consistent results for 

the IO models used, and was very easy to set up and calibrate. 

It initially looks like this novel approach has many advantages over traditional mechanistic models 

while giving comparable results for some IO structures. Early simulation results described in this study 

prove this, especially for subspace methods. However these methods can prove very fragile and prone 

to crashing. Additionally a comprehensive “Model Conceptualisation Procedure” is required to tie it into 
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reality which needs expert know-how to set up. They also require very large data sets to produce accurate 

formulations, and these linear models are only useful around a very narrow operating range or operating 

point. Non-linear model versions can improve the predictive accuracy but are even more fragile. 

In conclusion, it may prove advantageous to use these methods for model prediction under most 

circumstances apart from the following instances: 

− Not for design of new plant (particularly for processes with long time constants), and the 

biological operation of plant (i.e., off-line measurements). 

− No good as research tools to investigate membrane fouling. Cannot predict one-off fouling 

events, only generalised scenarios. 

The situation, in which they may particularly prove themselves superior to traditional model 

structures, is for model predictive control (possibly in real time) for processes with very short time 

constants (i.e., rapidly changing flux/TMP data). However they would need constant automated 

updating of historical data sets using on-line sensors. In conclusion further research is required using 

longer historical data sets to definitively ascertain whether this non-traditional modelling approach can 

be further developed and improved upon. 
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