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FINITE ELEMENT APPROXIMATION OF A NON-LOCAL

PROBLEM IN NON-FICKIAN POLYMER DIFFUSION

SIMON SHAW

Abstract. The problem of non-local nonlinear non-Fickian polymer diffusion as modelled by a
diffusion equation with a nonlinearly coupled boundary value problem for a viscoelastic ‘pseu-
dostress’ is considered (see, for example, DA Edwards in Z. angew. Math. Phys., 52, 2001,
pp. 254—288). We present two numerical schemes using the implicit Euler method and also the
Crank-Nicolson method. Each scheme uses a Galerkin finite element method for the spatial dis-
cretisation. Special attention is paid to linearising the discrete equations by extrapolating the
value of the nonlinear terms from previous time steps. A priori error estimates are given, based
on the usual assumptions that the exact solution possesses certain regularity properties, and nu-
merical experiments are given to support these error estimates. We demonstrate by example that
although both schemes converge at their optimal rates the Euler method may be more robust
than the Crank-Nicolson method for problems of practical relevance.
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1. Introduction and background

In [12, 11] Thomas & Windle demonstrated by experiment that diffusion of a
solvent in a viscoelastic polymer matrix is highly non-Fickian with the solvent
concentration developing a steep, and possibly travelling, wave front. This front
demarcates a concentration-forced phase transition of the polymer from a ‘glassy’
state to a ‘rubbery’ state. The viscoelastic time constants in the viscoelastic stress-
strain constitutive equation vary sharply across this transition, and this variation is
believed to be basic driving mechanism behind the formation of the steep stationary
or travelling fronts.

1991 Mathematics Subject Classification. (2010 version—macro doesn’t work?) 74S05 (FEM),
74S20 (FDM), 76R50 (diffusion), 74D10 (nonlinear constitutive equations), 82D60 (polymers).
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To date most modern attempts at modelling this phenomenon mathematically
have been based on introducing a temporal nonlocality into the classical Fickian
diffusion law using a hereditary integral for a concentration-induced ‘stress’. The
motivation is of course from the phenomenological theory of viscoelasticity, e.g. [8],
where stress is usually written as a convolution of strain with a ‘relaxation function’.
The decaying exponential form of this relaxation function then allows the stress in
the non-Fickian diffusion law to be represented in terms of an ordinary differential
equation (in time). This equation is nonlinearly coupled to the partial differential
equation for the concentration. See [4, 5] for more on this and [2, 10] for some
related numerical analysis.

In an alternative approach Edwards in [6, 7] argued the need to also permit
spatial nonlocality due to the ‘long chain’ polymer molecules being much larger
than the penetrant’s molecules. He then proposed a non-Fickian diffusion model
based on the introduction of a spatially nonlocal ‘viscoelastic psuedostress ’. The
result is still a non-Fickian diffusion law but with this time the ‘stress’ governed by
an elliptic partial differential equation which, again, is nonlinearly coupled.

It is important to realise that at present, in the absence of a ‘fundamental the-
ory’, these models have been proposed with the aim of developing a mathematical
formalism that can capture the experimentally observed behaviour. This type of
experimental mathematics requires numerical solution and so, with that motiva-
tion, our goal here is to give fully discrete formulations and derive a priori stability
and error estimates. First we review Edwards’ model and then we pose it in a form
more suited for our purpose.

The model proposed by Edwards in [6] for the concentration, C, and pseu-
dostress, Θ, takes the form,

Cτ = DCyy +MΘyy,(1)

−(β(C)−1Θy)y + β(C)Θ = ηC − κCy ,(2)

with D, M , η and κ constant with the first three positive and the last non-negative.
Edwards considers this problem on an unbounded domain, but if we restrict to

(a, b) ⊂ R, the pseudostress is given in [6] by,

(3) Θ(y, t) := −1

2

∫ b

a

f(C(y′, t), Cy′(y′, t)) exp

(

−
∣

∣

∣

∣

∫ y

y′

β(C(z, t)) dz

∣

∣

∣

∣

)

dy′

with f(C,Cy) := −ηC + νCy for η > 0, ν > 0 and β(R) > 0. In this β−1,
the dependence length, represents the radius of the smallest sphere, centred at z,
that contains a typical polymer chain passing through z. Since these chains will
be entangled in a random spaghetti-like manner ‘holes’ or ‘pockets’ are formed
at their intersections and these provide sites for the penetrant’s molecules. The
ability of such a molecule to diffuse then depends on the strength (density) of
the entanglement, β−1, which in turn is influenced by the degree of penetrant
saturation. Indeed the key ingredient in this model is the observation that, due
to swelling, β−1 in the saturated rubber phase is expected to be much larger than
β−1 in the drier and more crystalline glassy phase. We will return to this below,
but note that it is this effect that generates the nonlinear coupling. The spatial
nonlocality arises because a ‘path of holes’ needs to be formed for the penetrant
molecule to move, but we expect the entanglment density far from the molecule to
have less influence than that nearby—hence the decay built in to (3).
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Although it is not necessary to non-dimensionalise this problem it is convenient
to simplify it by scaling out some unneccessary parameters. Setting, β0 :=

√

η/D,
x = β0y, t = ητ , u = ηC and σ = β0Θ, with the definitions, γ(u) = β(C)/β0,
ν = β0κ/η and E = β0M , and then generalising to many space dimensions (since
there is no reason not to), we arrive at our model problem.

Let Ω ⊂ R
d (d = 1, 2, 3) be a bounded (polygonal or polyhedral for d = 2 or 3)

domain and I := (0, T ] a finite time interval. We consider the degenerate problem:
find u and σ such that,

ut = ∇2u+ E∇2σ(4)

−∇ · γ(u)−1∇σ + γ(u)σ = u− ν · ∇u,(5)

for E > 0 and γ(R) > 0. We assume initial and boundary data as follows,

u(x, 0) = ŭ(x) in Ω,(6)

n̂ · ∇(u+ Eσ) = λ(u♭ − u) on Γu,(7)

u = 0 on ∂Ω \ Γu,(8)

n̂ · γ(u)−1∇σ + σ = 0 on Γσ,(9)

σ = 0 on ∂Ω \ Γσ,(10)

where Γu ⊆ ∂Ω and Γσ ⊆ ∂Ω are time independent (and possibly empty), λ is a
positive constant, ŭ and u♭ are given functions and n̂ is (a.e.) the unit outward
normal to ∂Ω.

Although Edward’s model was posed on the whole of R we have had to restrict to
a bounded domain because we want to consider numerical approximations. There-
fore we have had to introduce some relevant boundary conditions. To motivate
them notice that if we partially differentiate (3) once with respect to y we can de-
rive boundary conditions of Robin type. Specifically, if ∂/∂n denotes the ‘outward’
derivative (i.e. ∂/∂n = ∂/∂y if y = b and ∂/∂n = −∂/∂y if y = a), then,

1

β(C)

∂Θ

∂n
+ Θ = 0 on the boundary.

This motivates (9), and if we (distributionally) differentiate again we arrive at
(2)—which we consider in the form (5).

Edwards takes γ to be a piecewise constant idealisation but, to avoid the ensuing
numerical difficulties as well as to recognise that the rubber-glass transition is in
practice likely to be more nebulous, we follow (in inverted form) the model given
in [4] and use the ‘smooth step function’,

(11) γ(u) =

(

γG + γR

2

)

+

(

γG − γR

2

)

tanh

(

u− uc

∆

)

.

Here ∆ is the width of the transition region around the critical concentration uc,
and 0 < γR ≪ γG where the subscripts refer to the rubber and glass ‘phases’ (note
that this is not a misprint, even though 0 < γG ≪ γR in [4]).

This article is organised as follows. The weak formulation of the problem and
a basic stability estimate is given in Section 2, and with that estimate we will see
that the main difficulty with this problem is not due to the nonlinearity but to ν.
In fact all of our estimates contain conditions that are related to this term. The
numerical schemes are given in Section 3. We concentrate on the implicit Euler
and Crank-Nicolson methods, each linearised by extrapolation from previous time
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levels. The advantage of this is a simpler implementation as well as easier-to-prove
well-posedness results for the discrete problems (see Prop. 3 below). Unlike in
[10, 2] (where there was a σt term) we have to make a special effort at the first time
step for the Crank-Nicolson method in order to preserve its second-order temporal
accuracy. These linearised discretisations are examples of what Lowrie in [9] calls
‘lagged’ schemes.

The error estimates are contained in Subsections 4.1 and 4.2 of Section 4, and
some numerical results are given in Section 5. We conclude in Section 6 with some
observations relating to this material as well as to its potential for extension to the
model in [7] where ‘preferred directions’ were eliminated.

The notation we use is fairly standard and is introduced as it is needed. For
clarity, we sometimes use an overdot for time derivatives, u̇ = ut etc.

2. Weak formulation and preliminaries

Recalling Green’s theorem in the form,

(12) −
∫

Ω

v∇ · F dΩ = −
∮

∂Ω

vF · n̂ dΓ +

∫

Ω

∇v · F dΩ,

we arrive at the following weak formulation of the problem (4), (5) with (6), (7),
(8), (9), (10) as: find (u, σ) : I → Vu × Vσ such that,

(ut(t), v) + (∇u(t),∇v) + (E∇σ(t),∇v) + (λu(t), v)Γu

= (λu♭(t), v)Γu ∀v ∈ Vu,(13)

(γ(u)−1∇σ(t),∇w) + (γ(u)σ(t), w) + (σ(t), w)Γσ

− (u(t), w) + (ν · ∇u(t), w) = 0 ∀w ∈ Vσ,(14)

where,

Vu := {v ∈ H1(Ω): v = 0 on ∂Ω \ Γu},
Vσ := {v ∈ H1(Ω): v = 0 on ∂Ω \ Γσ},

and also: (·, ·) denotes the L2(Ω) inner product; (·, ·)Γ the L2(Γ) inner product;
and the dependence of u, σ etc. on x ∈ Ω is suppressed.

Our basic assumptions on γ : R → R are that there exist constants, γ̌, γ̂ and C′
γ

such that,

(15) 0 < γ̌ 6 γ(x) 6 γ̂ and |γ′(x)| 6 C′
γ ∀x ∈ R,

so that we also have, 0 < γ̂−1 6 γ(x)−1 6 γ̌−1 for all x ∈ R. Moreover, it then
easily follows from the relationship,

γ(v) − γ(w) =

∫ 1

0

γ′(sv + (1 − s)w) ds (v − w),

that

(16) ‖γ(v) − γ(w)‖Lp(Ω) 6 C′
γ‖v − w‖Lp(Ω)

for all v, w ∈ Lp(Ω) and for any p > 1.
In what follows, ‖ · ‖X will always denote the norm on the Banach space X . For

simplicity, when X = Hr(Ω) we abbreviate ‖ · ‖Hr(Ω) to ‖ · ‖r, and ‖ · ‖Hr(Γ) to
‖ · ‖r,Γ.
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From [1, Thm. 6.3.14 & Exmpl. 6.3.16] for example, we have for ∂Ω Lipschitz,

‖v‖1 6 C
(

‖∇v‖0 + ‖v‖L1(Γ)

)

∀v ∈ H1(Ω)

and for any non-empty (i.e. measn−1(Γ) > 0) open or closed subset Γ ⊆ ∂Ω.
It follows that (‖∇ · ‖2

0 + ‖ · ‖2
L2(Γ))

1/2 is a norm on Vu (resp. Vσ) equivalent to

‖·‖1 in the case Γ = Γu (resp. Γ = Γσ). Also, by the Poincaré-Friedrich’s inequality
this equivalence continues to hold even if Γ = ∅ so long as v = 0 on ∂Ω (which
applies to our set-up).

The next step is to give a basic stability estimate. The method of proof will
be used for the stability of the discrete problems in Prop. 2 and also for the error
estimates later in Theorems 8 and 12. First, for use here and later we recall Young’s
inequality,

(17) ab 6
ap

pǫp
+
ǫqbq

q
∀a, b > 0, ∀ǫ > 0

and 1 < p, q < ∞ such that p−1 + q−1 = 1. And second, we obtain from Green’s
theorem, (12),

(18) (ν · ∇u, σ) =

∮

Γu∩Γσ

σuν · n̂ dΓ − (u,ν · ∇σ)

for all u ∈ Vu and σ ∈ Vσ. Now and later we use ‖ · ‖E to denote the usual 2-norm
on R

d so that ‖x‖E =
√

(x2
1 + · · · + x2

d).

Proposition 1 (basic stability). If at least one of the following conditions holds,

(A) ν = 0; (B) ‖ν‖E <
2

E

√

γ̌

γ̂
; (C) Γu∩Γσ = ∅; (D) ‖ν‖E <

2

E

√

2λ

γ̂
,

then there is a constant C > 0 such that,

∫ t

0

(

‖γ(u)−1/2∇σ(s)‖2
0 + ‖γ(u)1/2σ(s)‖2

0 + ‖σ(s)‖2
0,Γσ

)

ds

+ ‖u(t)‖2
0 +

∫ t

0

(

‖∇u(s)‖2
0 + ‖u(s)‖2

0,Γu

)

ds 6 C‖ŭ‖2
0 + C

∫ t

0

‖u♭(s)‖2
0,Γu

ds,

for all t ∈ I.

Proof. First note that if we can show that

(19)
d

dt
‖u(t)‖2

0 + ‖∇u(t)‖2
0 + ‖u(t)‖2

0,Γu
+ ‖γ(u)−1/2∇σ(t)‖2

0

+ ‖γ(u)1/2σ(t)‖2
0 + ‖σ(t)‖2

0,Γσ
6 C‖u♭(t)‖2

0,Γu
+ C‖u(t)‖2

0,

then the result is implied by Grönwall’s inequality. So all we need to do is derive
(19) for each of conditions (A), (B), (C) and (D).

First we choose v = 2u(t) ∈ Vu in (13) and, for some µ > 0 to be specified later,
choose w = µσ(t) ∈ Vσ in (14). Adding the results gives,

d

dt
‖u(t)‖2

0 + 2‖∇u(t)‖2
0 + 2λ‖u(t)‖2

0,Γu
+ µ‖γ(u)−1/2∇σ(t)‖2

0

+ µ‖γ(u)1/2σ(t)‖2
0 + µ‖σ(t)‖2

0,Γσ
= 2λ(u♭(t), u(t))Γu + µ(u(t), σ(t))

− 2E(∇σ(t),∇u(t)) − µ(ν · ∇u(t), σ(t)).
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We number the terms on the right as one, two, three and four and apply Young’s
inequality, (17), to the first three with ǫ subscripted by the number of the term.
This results in,

(20)
d

dt
‖u(t)‖2

0 +

(

2 − ǫ3E
2γ̂

µ

)

‖∇u(t)‖2
0 +

(

2 − 1

ǫ1

)

λ‖u(t)‖2
0,Γu

+

(

1 − 1

ǫ3

)

µ‖γ(u)−1/2∇σ(t)‖2
0 +

(

1 − ǫ2
2

)

µ‖γ(u)1/2σ(t)‖2
0 + µ‖σ(t)‖2

0,Γσ

6 ǫ1λ‖u♭(t)‖2
0,Γu

+
µ

2γ̌ǫ2
‖u(t)‖2

0 + µ|(ν · ∇u(t), σ(t))|.

Assuming condition (A) we now need only choose ǫ1 = ǫ2 = 1 and any µ > E2γ̂/2.
This ensures that we can find ǫ3 > 0 satisfying 1 − 1/ǫ3 > 0 and 2 − ǫ3E

2γ̂/µ > 0
and we arrive at a form of (19). This completes the proof under condition (A).

Now assume that condition (B) holds and note that,

µ|(ν · ∇u(t), σ(t))| 6
µ‖ν‖2

E

2ǫ4γ̌
‖∇u(t)‖2

0 +
ǫ4µ

2
‖γ(u)1/2σ(t)‖2

0.

Using this in (20) gives,

d

dt
‖u(t)‖2

0 +

(

2 − ǫ3E
2γ̂

µ
− µ‖ν‖2

E

2ǫ4γ̌

)

‖∇u(t)‖2
0 +

(

2 − 1

ǫ1

)

λ‖u(t)‖2
0,Γu

+

(

1 − 1

ǫ3

)

µ‖γ(u)−1/2∇σ(t)‖2
0 +

(

1 − ǫ2
2

− ǫ4
2

)

µ‖γ(u)1/2σ(t)‖2
0

+ µ‖σ(t)‖2
0,Γσ

6 ǫ1λ‖u♭(t)‖2
0,Γu

+
µ

2γ̌ǫ2
‖u(t)‖2

0.

We choose ǫ1 = 1 and ǫ4 ∈ (0, 2) such that condition (B) implies ǫ24γ̌ > E2γ̂‖ν‖2
E
.

Also, setting ǫ2 = 1 − ǫ4/2 > 0 we have 1 − ǫ2/2− ǫ4/2 = 1/2− ǫ4/4 > 0 and then
selecting µ = 2γ̌ǫ4/‖ν‖2

E
we find that,

(4γ̌ǫ4 − µ‖ν‖2
E
)µ

2γ̂γ̌E2ǫ4
>

γ̌ǫ24
γ̂E2‖ν‖2

E

> 1.

It is now clear that we can find ǫ3 satisfying 1 < ǫ3 < (4γ̌ǫ4 − µ‖ν‖2
E
)µ/2γ̂γ̌E2ǫ4

and so it follows that 1 − 1/ǫ3 > 0 and 2 − ǫ3E
2γ̂/µ − µ‖ν‖2

E
/2γ̌ǫ4 > 0 and we

arrive again at the form (19).
For conditions (C) and (D) we return again to (20) but this time using (18) to

get,

µ|(ν · ∇u(t), σ(t))| 6
δ‖ν‖2

E
µ

2ǫ4
‖u(t)‖2

0,Γu
+
δǫ4µ

2
‖σ(t)‖2

0,Γσ

+
µγ̂‖ν‖2

E

2
‖u(t)‖2

0 +
µ

2
‖γ(u)−1/2∇σ(t)‖2

0,
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where we understand that δ = 0 if condition (C) holds and δ = 1 otherwise. The
result is,

d

dt
‖u(t)‖2

0 +

(

2 − ǫ3E
2γ̂

µ

)

‖∇u(t)‖2
0 +

(

2λ− λ

ǫ1
− δ‖ν‖2

E
µ

2ǫ4

)

‖u(t)‖2
0,Γu

+

(

1

2
− 1

ǫ3

)

µ‖γ(u)−1/2∇σ(t)‖2
0 +

(

1 − ǫ2
2

)

µ‖γ(u)1/2σ(t)‖2
0

+

(

1 − δǫ4
2

)

µ‖σ(t)‖2
0,Γσ

6 ǫ1λ‖u♭(t)‖2
0,Γu

+

(

µ

2γ̌ǫ2
+
µγ̂‖ν‖2

E

2

)

‖u(t)‖2
0.

Now, for condition (C) we need only choose ǫ1 = ǫ2 = 1 and µ > E2γ̂ so that
we can find an ǫ3 satisfying 2 < ǫ3 < 2µ/E2γ̂. We then have 1/2 − 1/ǫ3 > 0 and
2 − ǫ3E

2γ̂/µ > 0 and, again, we arrive at (19).
Finally, condition (D) has δ = 1 and implies that γ̂E2 < ελ/‖ν‖2

E
for some

ε ∈ (0, 8) so choosing ǫ2 = 1 and ǫ1 > 0 so that 2λ− λ/ǫ1 = ελ/4 we can choose µ
satisfying γ̂E2 < µ < ελ/‖ν‖2

E
and, therefore, find ǫ4 such that, 2µ‖ν‖2

E
/ελ < ǫ4 <

2. These then imply that 1 − ǫ4/2 > 0 and 2λ− λ/ǫ1 − µ‖ν‖2
E
/2ǫ4 > 0.

Also, since γ̂E2 < µ we can find an ǫ3 satisfying 2 < ǫ3 < 2µ/γ̂E2 and this
results in 1/2 − 1/ǫ3 > 0 and 2 − ǫ3γ̂E

2/µ > 0. Once again we arrive at the form
(19) and this concludes the proof of the lemma under all four conditions. �

We close this section with a comment on the four conditions given in Prop. 1
since versions of them will appear later as well. We can see from (5) that ν controls
the degree to which the psuedostress is driven by the concentration gradient (flux)
as opposed to the level of concentration. Condition (A) therefore refers to cases
where σ is not flux-driven. Condition (C) is self-explanatory and conditions (B)
and (D) place limits of the magnitude of the convective influence exerted by ∇u in
a manner not unlike that of standard approaches to convection-diffusion problems.
Which one of (B) and (D) is more useful will depend on the problem at hand. For
example, if in (7) we assume near-perfect insulation on Γu then we can take λ as
small as we please and (D) tends (A). On the other hand (B) and (D) both reveal
that as the magnitude of influence of σ on u is decreased through making E smaller,
then the effect of ν · ∇u can be larger (and vice versa). This seems reasonable.

3. The numerical schemes

As usual we define finite dimensional subspaces V h
u ⊂ Vu and V h

σ ⊂ Vσ where
each of V h

u and V h
σ is built with piecewise polynomials of degree r > 1 using the

same member of a non-degenerate and quasi-uniform family, {T h}h, of subdivisions
of Ω. Also, for N ∈ N we define the time step k := T/N and set ti = ik. In general,
we write vi := v(ti) and in particular we write the approximate solution to (13)
and (14) as uh

i ≈ u(ti) and σh
i ≈ σ(ti).

We study two schemes, the first is an implicit Euler method and the second
a Crank-Nicolson method. Both are linear. The linearisation is achieved for the
Euler method by evaluating the nonlinearity at the previous (in time) solution,
while for the Crank-Nicolson method we extrapolate linearly from the previous two
time levels. This needs a starting value and for this the Euler method is used in a
predictor-corrector fashion.
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The notation used for the time discretisation is:

∂tvi :=
vi − vi−1

k
, Eiv :=

3

2
vi−1 −

1

2
vi−2,

v̄i :=
vi + vi−1

2
, ∆iv :=

vt(ti) + vt(ti−1)

2
− v(ti) − v(ti−1)

k
,

for i ∈ {1, 2, . . . , N} and where v−1 will be defined appropriately below. In terms
of deriving estimates related to these operators, notice that ∆i is related to the
trapezium rule, whereas Ei is a linear extrapolation of v to its value at the midpoint
ti−1/2.

The discrete schemes are defined by: for i = 1, 2, . . . , N in turn, find (uh
i , σ

h
i ) ∈

V h
u × V h

σ such that,

for the implicit Euler scheme:

(∂tu
h
i , v) + (∇uh

i ,∇v) + (E∇σh
i ,∇v) + (λuh

i , v)Γu

= (λu♭
i , v)Γu ∀v ∈ V h

u ,(21)

(γ(uh
i−1)

−1∇σh
i ,∇w) + (γ(uh

i−1)σ
h
i , w) + (σh

i , w)Γσ

− (uh
i , w) + (ν · ∇uh

i , w) = 0 ∀w ∈ V h
σ ,(22)

or for the Crank-Nicolson scheme

(∂tu
h
i , v) + (∇ūh

i ,∇v) + (E∇σ̄h
i ,∇v) + (λūh

i , v)Γu

= (λū♭
i , v)Γu ∀v ∈ V h

u ,(23)

(γ(Eiu
h)−1∇σ̄h

i ,∇w) + (γ(Eiu
h)σ̄h

i , w) + (σ̄h
i , w)Γσ

− (ūh
i , w) + (ν · ∇ūh

i , w) = 0 ∀w ∈ V h
σ ,(24)

uh
−1 := 2uh

0 − ûh
1(25)

with, in both cases,

(26) (uh
0 , v) = (ŭ, v) ∀v ∈ V h

u ,

and ûh
1 is given by the first step of the implicit Euler method. Note that in the

above, for the sake of clarity later on, we do not attempt to distinguish uh
i between

the schemes (like, say, uie
i and ucn

i ). It will always be clear in the sequel which
scheme is being discussed.

We notice that these equations are coupled but linear, and that the starting
condition for the Crank-Nicolson method is easy to implement. We also note that
for the Crank-Nicolson method only the σ̄h

i and not the σh
i are needed. A variant

Crank-Nicolson method could easily be constructed whereby a stationary problem
is solved for σh

0 at t = 0 (using ŭ) and then the subsequent σh
1 σh

2 , . . . are solved
for.

The first goal is to derive stability estimates.

Proposition 2 (basic discrete stability). If at least one of the following condi-
tions holds,

(A) ν = 0; (B) ‖ν‖E <
2

E

√

γ̌

γ̂
; (C) Γu∩Γσ = ∅; (D) ‖ν‖E <

2

E

√

2λ

γ̂
,
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then there are constants k̂ > 0 and C > 0 such that for k < k̂,

‖uh
j ‖2

0 + k

j
∑

i=1

(

‖∇uh
i ‖2

0 + ‖uh
i ‖2

0,Γu
+ ‖γ(uh

i−1)
−1/2∇σh

i ‖2
0

+ ‖γ(uh
i−1)

1/2σh
i ‖2

0 + ‖σh
i ‖2

0,Γσ

)

6 C‖ŭ‖2
0 + Ck

j
∑

i=1

‖u♭
i‖2

0,Γu

for the implicit Euler method and,

‖uh
j ‖2

0 + k

j
∑

i=1

(

‖∇ūh
i ‖2

0 + ‖ūh
i ‖2

0,Γu
+ ‖γ(Eiu

h)−1/2∇σ̄h
i ‖2

0

+ ‖γ(Eiu
h)1/2σ̄h

i ‖2
0 + ‖σ̄h

i ‖2
0,Γσ

)

6 C‖ŭ‖2
0 + Ck

j
∑

i=1

‖ū♭
i‖2

0,Γu

for the Crank-Nicolson method. Each of these holds for every j ∈ {1, 2, . . . , N}.

Proof. Choose v = 2kuh
i ∈ V h

u in (21) and, for some µ > 0 to be specified later,
w = µkσh

i ∈ V h
σ in (22) and add to get,

k∂t‖uh
i ‖2

0 + k2‖∂tu
h
i ‖2

0 + 2k‖∇uh
i ‖2

0 + 2kλ‖uh
i ‖2

0,Γu

+ µk‖γ(uh
i−1)

−1/2∇σh
i ‖2

0 + µk‖γ(uh
i−1)

1/2σh
i ‖2

0 + µk‖σh
i ‖2

0,Γσ

= 2kλ(u♭
i , u

h
i )Γu + µk(uh

i , σ
h
i ) − 2kE(∇σh

i ,∇uh
i ) − µk(ν · ∇uh

i , σ
h
i ),

where we used the identity 2k(∂twi, wi) = k∂t‖wi‖2
0 + k2‖∂twi‖2

0. Summing over
i = 1, 2, . . . , j then gives,

‖uh
j ‖2

0 + 2k

j
∑

i=1

‖∇uh
i ‖2

0 + 2kλ

j
∑

i=1

‖uh
i ‖2

0,Γu
+ k2

j
∑

i=1

‖∂tu
h
i ‖2

0

+ µk

j
∑

i=1

‖γ(uh
i−1)

−1/2∇σh
i ‖2

0 + µk

j
∑

i=1

‖γ(uh
i−1)

1/2σh
i ‖2

0 + µk

j
∑

i=1

‖σh
i ‖2

0,Γσ

= ‖uh
0‖2

0 + 2kλ

j
∑

i=1

(u♭
i , u

h
i )Γu + µk

j
∑

i=1

(uh
i , σ

h
i )

− 2kE

j
∑

i=1

(∇σh
i ,∇uh

i ) − µk

j
∑

i=1

(ν · ∇uh
i , σ

h
i ).

Labelling the terms on the right as 0, 1, . . . , 4 we apply Young’s inequality to each
with, when necessary, an ǫ subscipted with the term’s label and also note that
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‖uh
0‖0 6 ‖ŭ‖0 to obtain,

(

1 − kµ

2γ̌ǫ2

)

‖uh
j ‖2

0 +

(

2 − ǫ3E
2γ̂

µ

) j
∑

i=1

k‖∇uh
i ‖2

0 +

(

2 − 1

ǫ1

)

λ

j
∑

i=1

k‖uh
i ‖2

0,Γu

+ k2

j
∑

i=1

‖∂tu
h
i ‖2

0 +

(

1 − 1

ǫ3

)

µ

j
∑

i=1

k‖γ(uh
i−1)

−1/2∇σh
i ‖2

0

+
(

1 − ǫ2
2

)

µ

j
∑

i=1

k‖γ(uh
i−1)

1/2σh
i ‖2

0 + µ

j
∑

i=1

k‖σh
i ‖2

0,Γσ

6 ‖ŭ‖2
0 + ǫ1λ

j
∑

i=1

k‖u♭
i‖2

0,Γu
+

µ

2γ̌ǫ2

j−1
∑

i=1

k‖uh
i ‖2

0 + µ

j
∑

i=1

|k(ν · ∇uh
i , σ

h
i )|.

The remainder of the proof consists in using Young’s inequality on the last term and
tailoring the estimates to conditions (A), (B), (C) or (D). The method is similar

to that in Prop. 1, and identical (except that k̂ is different) to this proof for the
Crank-Nicolson method (see (28) below), full details of which now follow.

First we note that if we can derive an inequality of the form,

(27) k

j
∑

i=1

(

‖∇ūh
i ‖2

0 + ‖ūh
i ‖2

0,Γu
+ ‖γ(Eiu

h)−1/2∇σ̄h
i ‖2

0 + ‖γ(Eiu
h)1/2σ̄h

i ‖2
0

+ ‖σ̄h
i ‖2

0,Γσ

)

+ ‖uh
j ‖2

0 6 C‖uh
0‖2

0 + Ck

j
∑

i=1

‖ū♭
i‖2

0,Γu
+ Ck

j−1
∑

i=0

‖uh
i ‖2

0

then the result follows from (26) and the discrete Grönwall lemma.
Towards this end we choose v = 2ūh

i ∈ V h
u in (23) and w = µσ̄h

i ∈ V h
σ in (24),

for some µ > 0 to be specified later, and add the results to get,

∂t‖uh
i ‖2

0 + 2‖∇ūh
i ‖2

0 + 2λ‖ūh
i ‖2

0,Γu
+ µ‖γ(Eiu

h)−1/2∇σ̄h
i ‖2

0 + µ‖γ(Eiu
h)1/2σ̄h

i ‖2
0

+ µ‖σ̄h
i ‖2

0,Γσ
= 2λ(ū♭

i , ū
h
i )Γu + µ(ūh

i , σ̄
h
i ) − 2E(∇σ̄h

i ,∇ūh
i ) − µ(ν · ∇ūh

i , σ̄
h
i ).

We number the terms on the right as one, two, three and four and apply Young’s
inequality, (17), to the first three with ǫ subscripted by the number of the term.
Multiplying the result by k, summing over i = 1, 2, . . . , j and noting that,

µ

2γ̌ǫ2

j
∑

i=1

k‖ūh
i ‖2

0 6
µk

4γ̌ǫ2
‖uh

j ‖2
0 +

µ

2γ̌ǫ2

j−1
∑

i=0

k‖uh
i ‖2

0
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then results in,

(28)

(

1 − kµ

4γ̌ǫ2

)

‖uh
j ‖2

0 +

(

2 − ǫ3E
2γ̂

µ

) j
∑

i=1

k‖∇ūh
i ‖2

0

+

(

2 − 1

ǫ1

)

λ

j
∑

i=1

k‖ūh
i ‖2

0,Γu
+

(

1 − 1

ǫ3

)

µ

j
∑

i=1

k‖γ(Eiu
h)−1/2∇σ̄h

i ‖2
0

+
(

1 − ǫ2
2

)

µ

j
∑

i=1

k‖γ(Eiu
h)1/2σ̄h

i ‖2
0 + µ

j
∑

i=1

k‖σ̄h
i ‖2

0,Γσ

6 ‖uh
0‖2

0 + ǫ1λ

j
∑

i=1

k‖ū♭
i‖2

0,Γu
+

µ

2γ̌ǫ2

j−1
∑

i=0

k‖uh
i ‖2

0 +

j
∑

i=1

k|µ(ν · ∇ūh
i , σ̄

h
i )|,

and the proof for conditions (A) and (B) follows in exactly the same way as for the

proof of Prop. 1 except that we now also have to insist that k < k̂ := 4γ̌ǫ2/µ.
For conditions (C) and (D) we use (18) and Young’s inequality to get,

µ|(ν · ∇ūh
i , σ̄

h
i )| 6

δµ‖ν‖2
E

2ǫ4
‖ūh

i ‖2
0,Γu

+
δǫ4µ

2
‖σ̄h

i ‖2
0,Γσ

+
µγ̂‖ν‖2

E

2
‖ūh

i ‖2
0 +

µ

2
‖γ(Eiu

h)−1/2∇σ̄h
i ‖2

0,

where we understand that δ = 0 for condition (C) and δ = 1 for condition (D).
Noting that,

µγ̂‖ν‖2
E

2

j
∑

i=1

k‖ūh
i ‖2

0 6
µγ̂‖ν‖2

E
k

4
‖uh

j ‖2
0 +

µγ̂‖ν‖2
E

2

j−1
∑

i=0

k‖uh
i ‖2

0,

we incorporate these into (28) and get,

(29)

(

1 − kµ

4γ̌ǫ2
− µγ̂‖ν‖2

E
k

4

)

‖uh
j ‖2

0 +

(

2 − ǫ3E
2γ̂

µ

) j
∑

i=1

k‖∇ūh
i ‖2

0

+

(

2λ− λ

ǫ1
− δµ‖ν‖2

E

2ǫ4

) j
∑

i=1

k‖ūh
i ‖2

0,Γu
+

(

1

2
− 1

ǫ3

)

µ

j
∑

i=1

k‖γ(Eiu
h)−1/2∇σ̄h

i ‖2
0

+
(

1 − ǫ2
2

)

µ

j
∑

i=1

k‖γ(Eiu
h)1/2σ̄h

i ‖2
0 +

(

1 − δǫ4
2

)

µ

j
∑

i=1

k‖σ̄h
i ‖2

0,Γσ
6 ‖uh

0‖2
0

+ ǫ1λ

j
∑

i=1

k‖ū♭
i‖2

0,Γu
+

(

µ

2γ̌ǫ2
+
µγ̂‖ν‖2

E

2

) j−1
∑

i=0

k‖uh
i ‖2

0.

For condition (C) we have δ = 0 in (29) and we can choose ǫ1, ǫ2 and ǫ3 the
same as in the proof of Prop. 1. Noting that

1 − kµ

4γ̌ǫ2
− µγ̂‖ν‖2

E
k

4
> 0 is guaranteed if k <

4γ̌

(1 + γ̂γ̌‖ν‖2
E
)E2γ̂

,

we can obtain a value for k̂ and we once again find ourselves at (27).
For condition (D) we use exactly the same choices as in the proof for condition

(D) of Prop. 1 and require k bounded in the same way as for condition (C) above.
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This again gets us back to (27) and completes the proof for all four conditions
for the Crank-Nicolson method. The proof for the implicit Euler method makes

essentially the same choices in Young’s inequality, but uses a different k̂. �

Prop. 2 also provides a uniqueness result for the discrete solution and so (due to
the ‘linearised nonlinearities’) we can infer existence as well.

Corollary 3. The discrete solution exists and is unique.

4. Error estimates

We begin by recalling some standard results. From, for example, [3, Thm. (4.8.7),
Cor. (4.8.9)], we have with V = Vu or V = Vσ that if v ∈ V ∩W s

p (Ω), for 0 6 s 6 r+1

and 1 6 p 6 ∞, then there exists a map π : W s
p (Ω) → V h, for V h = V h

u or V h = V h
σ ,

such that,

‖v − πv‖W n
p (Ω) 6 Chs−n|v|W s

p (Ω), for 0 6 n 6 s,(30)

‖πv‖W s
p (Ω) 6 C|v|W s

p (Ω),(31)

where | · |W s
p (Ω) denotes the semi-norm.

We define the elliptic projection, see [13], of u as u∗ ∈ V h
u where,

(32) (∇(u∗ − u),∇v) + λ(u∗ − u, v)Γu = 0 ∀v ∈ V h
u ,

and define also σ∗ := πσ ∈ V h
σ . Setting:

ψi := uh
i − u∗(ti), ξ(t) := u(t) − u∗(t),

ζi := σh
i − σ∗(ti), ϑ(t) := σ(t) − σ∗(t),

we have uh
i − u(ti) = ψi − ξ(ti) and σh

i − σ(ti) = ζi − ϑ(ti), and it follows by the
approximation estimates above and standard techniques that,

‖∇ξ(t)‖2
0 + λ‖ξ(t)‖2

0,Γu
6 Ch2r‖u(t)‖2

r+1(33)

‖∇ξt(t)‖2
0 + λ‖ξt(t)‖2

0,Γu
6 Ch2r‖ut(t)‖2

r+1(34)

(where we noted that (32) can be partially differentiated with respect to t).
The main goal is to estimate ψi and ζi in terms of ξ and ϑ. For this we need the

following estimates.

Lemma 4. For p = 1 or p = 2 we have for each i ∈ {1, 2, . . .} that,

‖∂tξi‖2
0 6 kp−3‖ξt‖2

Lp(ti−1,ti;L2(Ω)) 6 Ch2rkp−3‖ut‖2
Lp(ti−1,ti;Hr+1(Ω))

whenever ut ∈ Lp(ti−1, ti;H
r+1(Ω)).

Proof. After noting first that,

‖∂tξi‖2
0 6

(

1

k

∫ ti

ti−1

‖ξs(s)‖0 ds

)2

6
1

k

∫ ti

ti−1

‖ξs(s)‖2
0 ds

the results follow from (30), (33) and (34). �

Lemma 5. Whenever v has the indicated regularity we have,

‖vt(ti) − ∂tvi‖0 6 ‖vtt‖L1(ti−1,ti;L2(Ω)),

‖∆iv‖0 6 Ck3/2‖vttt‖L2(ti−1,ti;L2(Ω)),

‖vi−1/2 − v̄i‖0 6 Ck3/2‖vtt‖L2(ti−1,ti;L2(Ω)),

‖vi−1/2 − Eiv‖0 6 Ck3/2‖vtt‖L2(ti−2,ti−1/2;L2(Ω)),
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for i ∈ {1, 2, . . .} except for the last where i = 1 is disallowed.

Proof. These follow from Taylor’s theorem with integral remainder. �

The proof of the error estimates will follow in much the same way as the proof of
the stability estimates given earlier except that there are more terms to deal with.

4.1. Error bound for the implicit Euler method. Our goal in this section
is an a priori error bound for the implicit Euler method. Since this is used as a
starting solution for the Crank-Nicolson method we need to be careful in tracking
the u and σ dependencies of the ‘constants’. Indeed, Corollary 9 relies on being
able to modify these constants and is also the key to obtaining an optimal order of
k for the Crank-Nicolson method.

We begin by estimating the error in the nonlinear terms.

Lemma 6 (‘nonlinearity error’). There is a constant, C > 0, independent of u, σ,
h and k such that,

∣

∣(γ(ui)
−1∇σi − γ(uh

i−1)
−1∇σ∗

i ,∇ζi) + (γ(ui)σi − γ(uh
i−1)σ

∗
i , ζi)

∣

∣

6
1

2ǫA
‖γ(uh

i−1)
−1/2∇ζi‖2

0 +
1

2ǫB
‖γ(uh

i−1)
1/2ζi‖2

0

+ (ǫA + ǫB)Ck‖σ‖2
L∞(ti−1,ti;W 1

∞
(Ω))‖ut‖2

L2(ti−1,ti;L2(Ω)) + (ǫA + ǫB)C‖ϑi‖2
1

+ (ǫA + ǫB)C‖σ‖2
L∞(ti−1,ti;W 1

∞
(Ω))‖ξi−1‖2

0

+ (ǫA + ǫB)C‖σ‖2
L∞(ti−1,ti;W 1

∞
(Ω))‖ψi−1‖2

0,

for all i ∈ {1, 2, . . . , N} and for all ǫA, ǫB > 0.

Proof. We have by the Cauchy-Schwarz inequality that,

∣

∣(γ(ui)
−1∇σi − γ(uh

i−1)
−1∇σ∗

i ,∇ζi) + (γ(ui)σi − γ(uh
i−1)σ

∗
i , ζi)

∣

∣

6 γ̂1/2‖γ(uh
i−1)

−1/2∇ζi‖0 ‖γ(ui)
−1∇σi − γ(uh

i−1)
−1∇σ∗

i ‖0

+ γ̌−1/2‖γ(uh
i−1)

1/2ζi‖0 ‖γ(ui)σi − γ(uh
i−1)σ

∗
i ‖0.

Dealing first with the last term on the right we have,

‖γ(ui)σi − γ(uh
i−1)σ

∗
i ‖0 6 ‖(γ(ui) − γ(ui−1))σi‖0

+ ‖(γ(ui−1) − γ(uh
i−1))σi‖0 + ‖γ(uh

i−1)(σi − σ∗
i )‖0,

6 C′
γk

1/2‖σi‖L∞(Ω)‖ut‖L2(ti−1,ti;L2(Ω)) + γ̂‖ϑi‖0

+ C′
γ‖σi‖L∞(Ω)‖ξi−1‖0 + C′

γ‖σi‖L∞(Ω)‖ψi−1‖0,

where we noted that ‖ui − ui−1‖0 6 k1/2‖ut‖L2(ti−1,ti;L2(Ω)).
For the first term on the right the procedure is similar but we begin by first

removing the denominators,

‖γ(ui)
−1∇σi − γ(uh

i−1)
−1∇σ∗

i ‖0 6 γ̌−2‖γ(uh
i−1)∇σi − γ(ui)∇σ∗

i ‖0.
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Then, almost as before,

‖γ(uh
i−1)∇σi − γ(ui)∇σ∗

i ‖0 6 ‖(γ(uh
i−1) − γ(ui−1))∇σi‖0

+ ‖(γ(ui−1) − γ(ui))∇σi‖0 + ‖γ(ui)(∇σi −∇σ∗
i )‖0

6 C′
γk

1/2‖∇σi‖L∞(Ω)‖ut‖L2(ti−1,ti;L2(Ω)) + γ̂‖∇ϑi‖0

+ C′
γ‖∇σi‖L∞(Ω)‖ξi−1‖0 + C′

γ‖∇σi‖L∞(Ω)‖ψi−1‖0.

The proof is then completed by merging these and then using Young’s inequality
along with obvious estimates. �

The next lemma deals with most of the technical details in deriving the error
bound.

Lemma 7. For j = 1, 2, . . . , N we have for the implicit Euler method that,

max
16i6j

‖ψi‖2
0 + 2k

j
∑

i=1

(

‖∇ψi‖2
0 + λ‖ψi‖2

0,Γu
+ k‖∂tψi‖2

0

)

+ µk

j
∑

i=1

(

‖γ(uh
i−1)

−1/2∇ζi‖2
0 + ‖γ(uh

i−1)
1/2ζi‖2

0 + ‖ζi‖2
0,Γσ

)

6 C1,jh
2r + C2,jk

2 + Ck‖σ‖2
L∞(0,tj ;W 1

∞
(Ω))

j−1
∑

i=0

‖ψi‖2
0

+ 4kE

j
∑

i=1

|(∇ζi,∇ψi)| + 2µk

j
∑

i=1

|(ψi, ζi)| + 2µk

j
∑

i=1

|(ν · ∇ψi, ζi)|,

where,

C1,j 6 C

(

‖ŭ‖2
r+1 + ‖ut‖2

L1(0,tj ;Hr+1(Ω)) + tj‖σ‖2
L∞(0,tj ;Hr+1(Ω))

+
(

‖σ‖2
L∞(0,tj;W 1

∞
(Ω)) + 1

)

tj‖u‖2
L∞(0,tj ;Hr+1(Ω))

)

C2,j 6 C

(

‖σ‖2
L∞(0,tj ;W 1

∞
(Ω)) ‖ut‖2

L2(0,tj ;L2(Ω)) + ‖utt‖2
L1(0,tj ;L2(Ω))

)

for constants µ,C > 0 both independent of u, σ, h, k and j, and where µ is arbitrary.

Proof. From (13), (14), (21) and (22) we get,

(∂tψi, v) + (∇ψi,∇v) + λ(ψi, v)Γu + (ζi, w)Γσ + (γ(uh
i−1)

−1∇ζi,∇w)

+ (γ(uh
i−1)ζi, w) = (u̇i − ∂tui, v) + (∂tξi, v) + (∇ξi, v) + E(∇ϑi,∇v)

+ λ(ξi, v)Γu + (ϑi, w)Γσ − (ξi, w) + (ν · ∇ξi, w)

− E(∇ζi,∇v) + (ψi, w) − (ν · ∇ψi, w)

+ (γ(ui)
−1∇σi − γ(uh

i−1)
−1∇σ∗

i ,∇w) + (γ(ui)σi − γ(uh
i−1)σ

∗
i , w).
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Choosing v = 2kψi ∈ V h
u and, for some µ > 0, w = µkζi ∈ V h

σ we again use the
identity 2k(∂tψi, ψi) = k∂t‖ψi‖2

0 + k2‖∂tψi‖2
0 and obtain,

k∂t‖ψi‖2
0 + k2‖∂tψi‖2

0 + 2k‖∇ψi‖2
0 + 2λk‖ψi‖2

0,Γu
+ µk‖ζi‖2

0,Γσ

+ µk‖γ(uh
i−1)

−1/2∇ζi‖2
0 + µk‖γ(uh

i−1)
1/2ζi‖2

0 = 2k(u̇i − ∂tui, ψi) + 2k(∂tξi, ψi)

+ 2k(∇ξi,∇ψi) + 2kE(∇ϑi,∇ψi) + 2kλ(ξi, ψi)Γu + µk(ϑi, ζi)Γσ − µk(ξi, ζi)

+ µk(ν · ∇ξi, ζi) − 2kE(∇ζi,∇ψi) + µk(ψi, ζi) − µk(ν · ∇ψi, ζi)

+ µk(γ(ui)
−1∇σi − γ(uh

i−1)
−1∇σ∗

i ,∇ζi) + µk(γ(ui)σi − γ(uh
i−1)σ

∗
i , ζi).

Now: eliminate the third and fifth terms on the right using (32); sum over i =
1, 2, . . . , j, noting from (26) that ‖ψ0‖0 6 ‖ξ0‖0; number the resulting terms (with
the one just referred to as first) on the right as I, II, . . . and use the following
estimates. For I, II and III, using (33), (34) with Lemmas 4 and 5 we have,

|I + II + III| 6 Ch2r‖ŭ‖2
r+1 + ǫ3Ch

2r‖ut‖2
L1(0,tj;Hr+1(Ω))

+ ǫ2k
2‖utt‖2

L1(0,tj ;L2(Ω)) +

(

1

ǫ2
+

1

ǫ3

)

max
16i6j

‖ψi‖2
0,

and for IV and V ,

|IV + V | 6
2k

ǫ4

j
∑

i=1

‖∇ψi‖2
0 +

µk

2ǫ5

j
∑

i=1

‖ζi‖2
0,Γσ

+ (ǫ4 + ǫ5)Ctjh
2r‖σ‖2

L∞(0,tj ;Hr+1(Ω)).

For V I and V II we have,

|V I+V II| 6

(

µk

2ǫ6
+
µk

2ǫ7

) j
∑

i=1

‖γ(uh
i−1)

1/2ζi‖2
0+(ǫ6+ǫ7)Ctjh

2r‖u‖2
L∞(0,tj ;Hr+1(Ω)),
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and so with these, Lemma 6 and the fact that the right-hand side that results is
non-decreasing, we arrive at,

(

1 − 1

ǫ2
− 1

ǫ3

)(

max
16i6j

‖ψj‖2
0

)

+ 2

(

1 − 1

ǫ4

)

k

j
∑

i=1

‖∇ψi‖2
0 + 2λk

j
∑

i=1

‖ψi‖2
0,Γu

+

(

1 − 1

2ǫ5

)

µk

j
∑

i=1

‖ζi‖2
0,Γσ

+

(

1 − 1

2ǫA

)

µk

j
∑

i=1

‖γ(uh
i−1)

−1/2∇ζi‖2
0

+

(

1 − 1

2ǫ6
− 1

2ǫ7
− 1

2ǫB

)

µk

j
∑

i=1

‖γ(uh
i−1)

1/2ζi‖2
0 +

j
∑

i=1

k2‖∂tψi‖2
0

6 Ch2r

(

‖ŭ‖2
r+1 + (ǫ6 + ǫ7)tj‖u‖2

L∞(0,tj ;Hr+1(Ω)) + ǫ3‖ut‖2
L1(0,tj ;Hr+1(Ω))

+ (ǫ4 + ǫ5)tj‖σ‖2
L∞(0,tj ;Hr+1(Ω)) + (ǫA + ǫB)tj‖σ‖2

L∞(0,tj ;Hr+1(Ω))

+ (ǫA + ǫB)tj‖σ‖2
L∞(0,tj ;W 1

∞
(Ω))‖u‖2

L∞(0,tj ;Hr+1(Ω))

)

+ k2

(

ǫ2‖utt‖2
L1(0,tj ;L2(Ω) + (ǫA + ǫB)C‖σ‖2

L∞(0,tj ;W 1
∞

(Ω)) ‖ut‖2
L2(0,tj ;L2(Ω))

)

+ (ǫA + ǫB)Ck‖σ‖2
L∞(0,tj;W 1

∞
(Ω))

j−1
∑

i=0

‖ψi‖2
0

+ 2kE

j
∑

i=1

|(∇ζi,∇ψi)| + µk

j
∑

i=1

|(ψi, ζi)| + µk

j
∑

i=1

|(ν · ∇ψi, ζi)|.

To complete the proof we choose ǫ2 = ǫ3 = 4, ǫ4 = 2, ǫ5 = ǫA = 1 and ǫ6 = ǫ7 =
ǫB = 3, and then multiply the resulting inequality by two. �

We can now state the error estimate.

Theorem 8 (error bound: implicit Euler). Assume that in (6) we have ŭ ∈
Hr+1(Ω) and also that u ∈ Vu ∩W 1

1 (I;Hr+1(Ω)) ∩ W 2
1 (I;L2(Ω)) and σ ∈ Vσ ∩

L∞(I;Hr+1(Ω) ∩W 1
∞(Ω)) in (13) and (14) then, if at least one of the following

conditions holds,

(A) ν = 0; (B) ‖ν‖E <
1

2E

√

γ̌

γ̂
; (C) Γu ∩ Γσ = ∅; (D) ‖ν‖E <

1

E

√

λ

2γ̂
,

there is a constant k̂ > 0 such that whenever k < k̂,

(

k

j
∑

i=1

(

1

γ̂
‖∇σ(ti) −∇σh

i ‖2
0 + γ̌‖σ(ti) − σh

i ‖2
0 + ‖σ(ti) − σh

i ‖2
0,Γσ

)

)1/2

+

(

k

j
∑

i=1

(

‖∇u(ti) −∇uh
i ‖2

0 + ‖u(ti) − uh
i ‖2

0,Γu

)

)1/2

+ ‖u(tj) − uh
j ‖0 6 C

1/2
1,j h

r + C
1/2
2,j k.

This holds for each j ∈ {1, 2, . . . , N} and the Ci,j are, up to a multiplicative con-
stant, those given in Lemma 7.
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Proof. We use Lemma 7 and follow a similar path as for Props. 1 and 2. First,
using the estimate,

4kE

j
∑

i=1

|(∇ζi,∇ψi)| + 2µk

j
∑

i=1

|(ζi, ψi)| 6
4ǫ1γ̂E

2k

µ

j
∑

i=1

‖∇ψi‖2
0 +

2µk

ǫ2γ̌

j
∑

i=1

‖ψi‖2
0

+
µk

ǫ1

j
∑

i=1

‖γ(uh
i−1)

−1/2∇ζi‖2
0 +

ǫ2µk

2

j
∑

i=1

‖γ(uh
i−1)

1/2ζi‖2
0

for all ǫ1, ǫ2 > 0, in Lemma 7 we obtain,

(

1 − 2µk

ǫ2γ̌

)

‖ψj‖2
0 + 2k

(

1 − 2ǫ1γ̂E
2

µ

) j
∑

i=1

‖∇ψi‖2
0 + 2kλ

j
∑

i=1

‖ψi‖2
0,Γu

+ µk

(

1 − 1

ǫ1

) j
∑

i=1

‖γ(uh
i−1)

−1/2∇ζi‖2
0 + µk

(

1 − ǫ2
2

)

j
∑

i=1

‖γ(uh
i−1)

1/2ζi‖2
0

+ µk

j
∑

i=1

‖ζi‖2
0,Γσ

6 C1,jh
2r + C2,jk

2

+

(

C‖σ‖2
L∞(0,tj ;W 1

∞
(Ω)) +

2µ

ǫ2γ̌

) j−1
∑

i=0

k‖ψi‖2
0 + 2µk

j
∑

i=1

|(ν · ∇ψi, ζi)|.

Now, if condition (A) holds then we choose ǫ1 = 2, ǫ2 = 1 and any µ > 4γ̂E2 to

get for some k̂ > 0 that,

k

j
∑

i=1

(

‖γ(uh
i−1)

−1/2∇ζi‖2
0 + ‖γ(uh

i−1)
1/2ζi‖2

0 + ‖ζi‖2
0,Γσ

)

+ ‖ψj‖2
0 + k

j
∑

i=1

(

‖∇ψi‖2
0 + ‖ψi‖2

0,Γu

)

6 C1,jh
2r + C2,jk

2 + Ck

j−1
∑

i=0

‖ψi‖2
0,

where the ‘generic constant’ in the Ci,j from Lemma 7 has been adjusted. An
application of Grönwall’s lemma and a further adjustment of these constants then
produces,

(35) k

j
∑

i=1

(

‖γ(uh
i−1)

−1/2∇ζi‖2
0 + ‖γ(uh

i−1)
1/2ζi‖2

0 + ‖ζi‖2
0,Γσ

)

+ ‖ψj‖2
0 + k

j
∑

i=1

(

‖∇ψi‖2
0 + ‖ψi‖2

0,Γu

)

6 C1,jh
2r + C2,jk

2.

Now, if ν 6= 0 then we can estimate,

2µ|(ν · ∇ψi, ζi)| 6
2µ

ǫ4γ̌
‖ν‖2

E
‖∇ψi‖2

0 +
ǫ4µ

2
‖γ(uh

i−1)
1/2ζi‖2

0,
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and then get,

(

1 − 2µk

ǫ2γ̌

)

‖ψj‖2
0 + 2k

(

1 − 2ǫ1γ̂E
2

µ
− µ‖ν‖2

E

ǫ4γ̌

) j
∑

i=1

‖∇ψi‖2
0 + 2kλ

j
∑

i=1

‖ψi‖2
0,Γu

+ µk

(

1 − 1

ǫ1

) j
∑

i=1

‖γ(uh
i−1)

−1/2∇ζi‖2
0 + µk

(

1 − ǫ2
2

− ǫ4
2

)

j
∑

i=1

‖γ(uh
i−1)

1/2ζi‖2
0

+µk

j
∑

i=1

‖ζi‖2
0,Γσ

6 C1,jh
2r +C2,jk

2 +

(

C‖σ‖2
L∞(0,tj ;W 1

∞
(Ω)) +

2µ

ǫ2γ̌

) j−1
∑

i=0

k‖ψi‖2
0.

If condition (B) holds then we select µ = γ̌ǫ4/2‖ν‖2
E

and then we can force,

0 < 1 − 2ǫ1γ̂E
2

µ
− µ‖ν‖2

E

ǫ4γ̌
=

1

2

(

γ̌ǫ4 − 8ǫ1γ̂E
2‖ν‖2

E

γ̌ǫ4

)

with some ǫ1 > 1 because condition (B) implies an ǫ4 ∈ (0, 2) such that 8γ̂E2‖ν‖2
E
<

ǫ4γ̌. Since we then have 1 − 1/ǫ1 > 0 and we can set ǫ2 = 1 − ǫ4/2 we can again

determine some k̂ > 0 and arrive at a form of (35) with adjusted constants.
For condition (C) or (D) we begin with,

2µ|(ν · ∇ψi, ζi)| 6
2δµ‖ν‖2

E

ǫ4
‖ψi‖2

0,Γu
+
ǫ4δµ

2
‖ζi‖2

0,Γσ

+ 2µγ̂‖ν‖2
E
‖ψi‖2

0 +
µ

2
‖γ(uh

i−1)
−1/2∇ζi‖2

0,

where δ = 0 for condition (C) and δ = 1 for (D). This yields,

(

1 − 2µk

ǫ2γ̌
− 2µkγ̂‖ν‖2

E

)

‖ψj‖2
0 + 2k

(

1 − 2ǫ1γ̂E
2

µ

) j
∑

i=1

‖∇ψi‖2
0

+ 2k

(

λ− δµ‖ν‖2
E

ǫ4

) j
∑

i=1

‖ψi‖2
0,Γu

+ µk

(

1

2
− 1

ǫ1

) j
∑

i=1

‖γ(uh
i−1)

−1/2∇ζi‖2
0

+ µk
(

1 − ǫ2
2

)

j
∑

i=1

‖γ(uh
i−1)

1/2ζi‖2
0 + µk

(

1 − ǫ4δ

2

) j
∑

i=1

‖ζi‖2
0,Γσ

6 C1,jh
2r + C2,jk

2 +

(

C‖σ‖2
L∞(0,tj;W 1

∞
(Ω)) +

2µ

ǫ2γ̌
+ 2µγ̂‖ν‖2

E

) j−1
∑

i=0

k‖ψi‖2
0.

For condition (C) we have δ = 0 and so we take ǫ2 = 1 and some µ > 4γ̂E2 so

that there exists an ǫ1 satisfying 2 < ǫ1 < µ/2γ̂E2. Once again, for some k̂ > 0 we
arrive at a form of (35).

Finally, in this part of the proof, for condition (D) we have δ = 1 and we
take ǫ1, ǫ2 and µ as for (C). (D) itself implies that we can select µ satisfying
4γ̂E2 < µ < 2λ‖ν‖−2

E
which, in turn, implies an ǫ4 satisfying, µ‖ν‖2

E
/λ < ǫ4 < 2.

Therefore, 1 − ǫ4/2 > 0 and λ− µ‖ν‖2
E
/ǫ4 > 0 and we have proven that a form of

(35) holds under all four conditions with, in each case, some appropriately chosen

k̂ > 0 and a minor scaling adjustment to the ‘generic constant’ in the Ci,j .
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Lastly, for ξ and ϑ we have,

‖ξj‖2
0 + k

j
∑

i=1

(

‖∇ξi‖2
0 + ‖ξi‖2

0,Γu

)

+ k

j
∑

i=1

(

‖γ(uh
i−1)

−1/2∇ϑi‖2
0 + ‖γ(uh

i−1)
1/2ϑi‖2

0 + ‖ϑi‖2
0,Γσ

)

6 Ch2r
(

(1 + tj)‖u‖2
L∞(0,tj ;Hr+1(Ω)) + tj‖σ‖2

L∞(0,tj;Hr+1(Ω))

)

,

and the proof is completed by invoking the triangle inequality and the simple fact
that n−1/2(x1 + · · · + xn) 6 (x2

1 + · · · + x2
n)1/2 6 x1 + · · · + xn (each xn non-

negative). �

Finally in this section we need a corollary for the error at the first time step
(recall (25)).

Corollary 9 (to Theorem 8). Assuming further that u|(0,k) ∈ Vu ∩H2(0, k;L2(Ω))
we have for the first step error in the Euler method that,

‖u(k) − uh
1‖0 6 Cie(h

r + k3/2),

for a constant, Cie > 0, independent of h and k.

Proof. It is necessary only to note that,
∫ k

0

‖ut(t)‖2
0 dt 6 k‖ut‖2

L∞(0,k;L2(Ω)),

and,
∫ k

0

‖utt(t)‖0 dt 6 k1/2‖utt‖L2(0,k;L2(Ω))

and then to adjust the constant C2,1 in the j = 1 case of Theorem 8. �

4.2. Error bound for the Crank-Nicolson method. This material parallels
the previous subsection except that we are not so careful about carrying through
the dependencies of the constants on u and σ. The first result deals with estimating
the error in the nonlinear terms.

Lemma 10 (‘nonlinearity error’). Assuming (15) we have for a constant µ > 0,

µk

j
∑

i=1

∣

∣

∣

(

(γ(u)−1∇σ)i − γ(Eiu
h)−1∇σ̄∗

i ,∇ζ̄i
)

+
(

(γ(u)σ)i − γ(Eiu
h)σ̄∗

i , ζ̄i

)
∣

∣

∣

6 µk

j
∑

i=1

(

1

2ǫA
‖γ(Eiu

h)−1/2∇ζ̄i‖2
0 +

1

2ǫB
‖γ(Eiu

h)1/2ζ̄i‖2
0

)

+(ǫA+ǫB)C

(

‖σ‖2
L∞(0,tj ;W 1

∞
(Ω))

j
∑

i=1

k‖ui−1/2 − Eiu
h‖2

0 + tjh
2r‖σ‖2

L∞(0,tj ;Hr+1(Ω))

)

+ (ǫA + ǫB)Ck4
(

‖σtt‖2
L2(0,tj ;H1(Ω)) + ‖(γ(u)σ)tt‖2

L2(0,tj ;L2(Ω))

+ ‖(γ(u)−1∇σ)tt‖2
L2(0,tj ;L2(Ω))

)

for all ǫA > 0 and ǫB > 0, where C is a constant independent of h, k, u and σ.
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Proof. The proof is similar to Lemma 6. First of all we have,

‖(γ(u)σ)i − γ(Eiu
h)σ̄∗

i ‖0 6 ‖(γ(u)σ)i − γ(ui−1/2)σi−1/2‖0

+ ‖(γ(ui−1/2)− γ(Eiu
h))σi−1/2‖0 + ‖γ(Eiu

h)(σi−1/2 − σ̄i)‖0 + ‖γ(Eiu
h)(σ̄i − σ̄∗

i ‖0,

6 Ck3/2
(

‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω)) + γ̂‖σtt‖L2(ti−1,ti;L2(Ω))

)

+ γ̂‖ϑ̄i‖0 + C′
γ‖σi−1/2‖L∞(Ω)‖ui−1/2 − Eiu

h‖0

by Lemma 5. Secondly, since

(γ(u)−1∇σ)i − γ(Eiu
h)−1∇σ̄∗

i = (γ(u)−1∇σ)i − γ(ui−1/2)
−1∇σi−1/2

+
1

γ(ui−1/2)γ(Eiuh)

(

γ(Eiu
h)∇σi−1/2 − γ(ui−1/2)∇σ̄∗

i

)

,

we have,

‖(γ(u)−1∇σ)i − γ(Eiu
h)−1∇σ̄∗

i ‖0 6 ‖(γ(u)−1∇σ)i − γ(ui−1/2)
−1∇σi−1/2‖0

+ γ̌−2‖(γ(Eiu
h) − γ(ui−1/2))∇σi−1/2‖0 + γ̌−2‖γ(ui−1/2)∇(σi−1/2 − σ̄i)‖0

+ γ̌−2‖γ(ui−1/2)∇(σ̄i − σ̄∗
i )‖0,

6 Ck3/2
(

‖(γ(u)−1∇σ)tt‖L2(ti−1,ti;L2(Ω)) + γ̂γ̌−2‖∇σtt‖L2(ti−1,ti;L2(Ω))

)

+ γ̂γ̌−2‖∇ϑ̄i‖0 + C′
γ γ̌

−2‖∇σi−1/2‖L∞(Ω)‖Eiu
h − ui−1/2‖0.

To complete the proof we merge these two esimates, use (30), multiply by µk, use
Young’s inequality and sum over i = 1, 2, . . . , j. �

The next lemma demonstrates how the implicit Euler predictor-corrector at the
first step merges with the linear extrapolation at later steps to give the optimal
order of k for the Crank-Nicolson method.

Lemma 11 (extrapolation error). If u ∈ H2(I;L2(Ω)) ∩ L∞(I;Hr+1(Ω)) and
ŭ ∈ Hr+1(Ω) then,

k

j
∑

i=1

‖ui−1/2 − Eiu
h‖2

0 6 C(h2r + k4) + Ck

j−1
∑

i=0

‖ψi‖2
0

for j ∈ {1, 2, . . .} where C > 0 is independent of h and k.

Proof. For i > 1 we have,

‖ui−1/2 − Eiu
h‖0 6 ‖ui−1/2 − Eiu‖0 + ‖Eiξ‖0 + ‖Eiψ‖0,

and we just need (33) and Lemma 5. For i = 1 we have E1u
h = 3

2u
h
0 − 1

2u
h
−1 with

uh
−1 = 2uh

0 − ûh
1 where ûh

1 is the first-step solution by the implicit Euler method.
Hence,

‖u1/2 − E1u
h‖0 6 ‖u1/2 − ū1‖0 +

1

2
‖ŭ− uh

0‖0 +
1

2
‖u1 − ûh

1‖0,

6 Ck3/2‖utt‖L2(0,k;L2(Ω)) + Chr‖ŭ‖r+1 +
Cie

2
(hr + k3/2),

by (33), Lemma 5 and Corollary 9. Squaring, merging and summing these then
completes the proof. �

We can now state the error bound.
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Theorem 12 (Crank-Nicolson: error bound). Assume that in (6) we have ŭ ∈
Hr+1(Ω) and also that u ∈ Vu ∩ H1(I;Hr+1(Ω)) ∩ H3(I;L2(Ω)) and σ ∈ Vσ ∩
H2(I;H1(Ω)) ∩ L∞(I;Hr+1(Ω) ∩ W 1

∞(Ω)) in (13) and (14). Assume also that
γ(u)σ ∈ H2(I;L2(Ω)) and γ(u)−1∇σ ∈ H2(I;L2(Ω)) then, if at least one of the
following conditions holds,

(A) ν = 0; (B) ‖ν‖E <
1

2E

√

γ̌

γ̂
; (C) Γu ∩ Γσ = ∅; (D) ‖ν‖E <

1

E

√

λ

2γ̂
,

there is a constant k̂ > 0 such that whenever k < k̂,

(

k

j
∑

i=1

(

1

γ̂
‖∇σ̄i −∇σ̄h

i ‖2
0 + γ̌‖σ̄i − σ̄h

i ‖2
0 + ‖σ̄i − σ̄h

i ‖2
0,Γσ

)

)1/2

+

(

k

j
∑

i=1

(

‖∇ūi −∇ūh
i ‖2

0 + ‖ūi − ūh
i ‖2

0,Γu

)

)1/2

+ ‖u(tj) − uh
j ‖0 6 C(hr + k2)

for each j ∈ {1, 2, . . . , N}. The constant C is independent of h and k.

Proof. Form the average of (13) at ti and ti−1 and subtract the result from (23).
Do the same with (14) and (24) then add the results and rearrange:

(36) (∂tψi, v) + (∇ψ̄i,∇v) + λ(ψ̄i, v)Γu + (ζ̄i, w)Γσ + (γ(Eiu
h)−1∇ζ̄i,∇w)

+ (γ(Eiu
h)ζ̄i, w) = (∆iu, v) + (∂tξi, v) + (∇ξ̄i,∇v) + E(∇ϑ̄i,∇v)
+ λ(ξ̄i, v)Γu + (ϑ̄i, w)Γσ − (ξ̄i, w) + (ν · ∇ξ̄i, w)

− E(∇ζ̄i,∇v) + (ψ̄i, w) − (ν · ∇ψ̄i, w)

+
(

(γ(u)−1∇σ)i − γ(Eiu
h)−1∇σ̄∗

i ,∇w
)

+
(

(γ(u)σ)i − γ(Eiu
h)σ̄∗

i , w
)

for all v ∈ V h
u , for all w ∈ V h

σ and for each i ∈ {1, 2, . . . , N}.
Now choosing, in (36), v = 2ψ̄i ∈ V h

u and w = µζ̄i ∈ V h
σ , for some µ > 0 to be

specified later, and noting that 2(∂tψi, ψ̄i) = ∂t‖ψi‖2
0, we get,

(37) ∂t‖ψi‖2
0 + 2‖∇ψ̄i‖2

0 + 2λ‖ψ̄i‖2
0,Γu

+ µ‖ζ̄i‖2
0,Γσ

+ µ‖γ(Eiu
h)−1/2∇ζ̄i‖2

0

+ µ‖γ(Eiu
h)1/2ζ̄i‖2

0 = 2(∆iu, ψ̄i) + 2(∂tξi, ψ̄i) + 2(∇ξ̄i,∇ψ̄i) + 2E(∇ϑ̄i,∇ψ̄i)

+ 2λ(ξ̄i, ψ̄i)Γu + µ(ϑ̄i, ζ̄i)Γσ − µ(ξ̄i, ζ̄i) + µ(ν · ∇ξ̄i, ζ̄i)
− 2E(∇ζ̄i,∇ψ̄i) + µ(ψ̄i, ζ̄i) − µ(ν · ∇ψ̄i, ζ̄i)

+ µ
(

(γ(u)−1∇σ)i − γ(Eiu
h)−1∇σ̄∗

i ,∇ζ̄i
)

+ µ
(

(γ(u)σ)i − γ(Eiu
h)σ̄∗

i , ζ̄i
)

.

The next step is to estimate the first eight terms on the right. Labelling them I,
II, . . . , V III we have III + V = 0 because of (32) and,

∣

∣

∣
I + II + IV + V I + V II + V III

∣

∣

∣
6

1

ǫ1
‖∆iu‖2

0 + ǫ1‖ψ̄i‖2
0 +

1

ǫ2
‖∂tξi‖2

0 + ǫ2‖ψ̄i‖2
0

+
E2

ǫ4
‖∇ϑ̄i‖2

0 + ǫ4‖∇ψ̄i‖2
0 +

µ

2ǫ6
‖ϑ̄i‖2

0,Γσ
+
ǫ6µ

2
‖ζ̄i‖2

0,Γσ

+
µ

2ǫ7γ̌
‖ξ̄i‖2

0 +
ǫ7µ

2
‖γ(Eiu

h)1/2ζ̄i‖2
0 +

µ‖ν‖2
E

2ǫ8γ̌
‖∇ξ̄i‖2

0 +
ǫ8µ

2
‖γ(Eiu

h)1/2ζ̄i‖2
0.
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Now, use these, multiply by k, sum over i = 1, 2, . . . , j, note that ‖ψ0‖2
0 = (ξ0, ψ0),

use Lemmas 4, 5, 10, 11, with the estimates (30) and (33) to obtain,

(

1 −
(

ǫ1 + ǫ2
2

)

k̂

)

‖ψj‖2
0 + (2 − ǫ4)k

j
∑

i=1

‖∇ψ̄i‖2
0 + 2λk

j
∑

i=1

‖ψ̄i‖2
0,Γu

+
(

1 − ǫ6
2

)

µk

j
∑

i=1

‖ζ̄i‖2
0,Γσ

+

(

1 − 1

2ǫA

)

µk

j
∑

i=1

‖γ(Eiu
h)−1/2∇ζ̄i‖2

0

+

(

1 − ǫ7
2

− ǫ8
2

− 1

2ǫB

)

µk

j
∑

i=1

‖γ(Eiu
h)1/2ζ̄i‖2

0

6

(

1 +
1

ǫ2
+

1

ǫ4
+

1

ǫ6
+

1

ǫ7
+

1

ǫ8
+ ǫA + ǫB

)

Ch2r +

(

1

ǫ1
+ ǫA + ǫB

)

Ck4

+ (ǫ1 + ǫ2 + ǫA + ǫB)Ck

j−1
∑

i=0

‖ψi‖2
0

+ k

j
∑

i=1

(

2E|(∇ζ̄i,∇ψ̄i)| + µ|(ψ̄i, ζ̄i)| + µ|(ν · ∇ψ̄i, ζ̄i)|
)

.

Choosing ǫ1 = ǫ2 = 1/2k̂, ǫ4 = ǫ6 = ǫA = 1, ǫ7 = ǫ8 = 1/4, ǫB = 2 and multiplying
through by two gives,

µk

j
∑

i=1

(

‖γ(Eiu
h)−1/2∇ζ̄i‖2

0 + ‖γ(Eiu
h)1/2ζ̄i‖2

0 + ‖ζ̄i‖2
0,Γσ

)

+ ‖ψj‖2
0 + 2k

j
∑

i=1

(

‖∇ψ̄i‖2
0 + λ‖ψ̄i‖2

0,Γu

)

6 C(h2r + k4) + Ck

j−1
∑

i=0

‖ψi‖2
0

+ 4kE

j
∑

i=1

|(∇ζ̄i,∇ψ̄i)| + 2µk

j
∑

i=1

|(ψ̄i, ζ̄i)| + 2µk

j
∑

i=1

|(ν · ∇ψ̄i, ζ̄i)|,

which, apart from the first term on the right, is a Crank-Nicolson analogue of
Lemma 7. The remainder of this proof can, therefore, be completed in the same
way as for the proof of Theorem 8. �

The next section gives some numerical demonstrations of these results.

5. Numerical results

In this section we use an artificial exact solution in order to demonstrate the
convergence rates claimed by Theorems 8 and 12, and then we go on to show
the results of some numerical experiments under more demanding conditions. We
will see that although the Crank-Nicolson method is theoretically superior to the
implicit Euler method (and that this shows through in the convergence tests) it
may not be so adequate in dealing with data that generate steep travelling fronts,
such as those observed in [12, 11].

All of the computations detailed here were carried out using version 2.24 of
Freefem++ (see www.freefem.org/ff++) in Windows XP and SuSE Gnu/Linux
10.3, and the graphics were generated by MATLAB R2007b. In all cases we used
the unit square, Ω = (0, 1)2, as the spatial domain and created a uniform mesh
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Table 1. Table of errors for the implicit Euler scheme illustrating
the convergence rate predicted by Theorem 8 for j = N .

M
N 8 16 32 64 128
8 2.041(0.843) 1.124(0.886) 0.7036(0.76) 0.5477(0.558) 0.5011(0.43)

16 1.9(0.942) 1.002(1.03) 0.5569(1.01) 0.3661(0.942) 0.2997(0.87)

32 1.892(0.849) 0.9782(0.957) 0.5078(0.98) 0.2834(0.974) 0.1892(0.953)

64 1.891(0.85) 0.972(0.961) 0.4932(0.988) 0.2552(0.993) 0.1429(0.988)

128 1.891(0.85) 0.9706(0.962) 0.4894(0.99) 0.2472(0.996) 0.1279(0.997)

Table 2. Table of errors for the Crank-Nicolson scheme illustrat-
ing the convergence rate predicted by Theorem 12 for j = N .

M
N 8 16 32 64 128
8 0.2413(2.12) 0.2087(1.48) 0.2063(1.35) 0.2061(1.34) 0.2061(1.34)

16 0.2952(0.717) 0.09699(1.32) 0.06356(1.72) 0.06079(1.76) 0.06061(1.77)

32 0.3353(1.58) 0.08933(1.72) 0.02768(1.81) 0.01739(1.87) 0.01653(1.88)

64 0.3468(1.75) 0.09101(1.88) 0.02341(1.93) 0.00716(1.95) 0.004472(1.96)

128 0.3498(1.78) 0.0917(1.92) 0.02325(1.97) 0.005922(1.98) 0.001806(1.99)

of triangles by forming an M by M array of the building block ⊠. We also took
Γu = Γσ = ∂Ω for all the examples that follow and, unless explicitly mentioned
otherwise, we used linear finite elements for the implicit Euler calculations and
quadratic elements for the Crank-Nicolson ones.

In order to demonstrate the theoretically predicted convergence rates we add
functions f ♮ and f ♯ to the right hand sides of (4) and (5) and a function σ♭ to
the right hand side of (9). These, along with u♭ and ŭ are then chosen so that the
exact solutions are given by u(x, y, t) = cos(2πx) cos(3πy) cos(6πt) and σ(x, y, t) =
cos(πx) cos(2πy) cos(8πt).

The remaining data are chosen as T = 1, γG = γ̂ = 1, γR = γ̌ = 0.1, ∆ = 2, uc =
8, E = 20, ν = (0.01, 0.03)T , λ = 3 and the uniform time step is given by k = T/N .
For these data it is readily checked that ‖ν‖E ≈ 0.032 while (1/2E)

√
(γ̌/γ̂) ≈ 0.008

and (1/E)
√

(λ/2γ̂) ≈ 0.061, and so the conditions of Theorems 8 and 12 are met.
Table 1 shows the errors resulting from the implicit Euler scheme while Table 2

shows those for the Crank-Nicolson scheme. The errors are measured in the norm
bounded in the relevant theorem. In each of these tables the subscript shows the
order of convergence estimated by that error as compared to the error immediately
north-west (the first columns and rows are using error not shown here). The first-
order convergence of the implicit Euler scheme is evident as is the second-order
convergence of the Crank-Nicolson scheme.

On the basis of these results it seems that the Crank-Nicolson scheme is the
superior of the two but this may not be the case.

To see this we now select the data γ̂ = 1, γ̌ = 0.01, ∆ = 0.01, uc = 4, E = 20,
ν = (0, 0)T , λ = 0.01, ŭ = 5, u♭ = 1, T = 25 and take M = 32 and N = 128. We
have no exact solution here and so no f ♮, f ♯ or σ♭ are used for these calculations.
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Figure 1. Snapshots for the Implicit Euler scheme.

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 0.390625)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 0.390625)

y

σ

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 2.73438)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 2.73438)

y

σ

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 5.07812)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 5.07812)

y

σ

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 7.42188)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 7.42188)

y

σ
Figure 2. Snapshots for the Crank-Nicolson scheme.
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Figure 1 shows snapshots of u and σ at various times for the implicit Euler
method while Figure 2 shows the calculations for the Crank-Nicolson method (at
a closest mid-time). We can see that the Euler method predicts ‘umbrella shaped’
surfaces morphing smoothly into approximately flat surfaces. The Crank-Nicolson
method on the other hand predicts a grossly similar behaviour but suggests that
more detail on the surface for u actually exists. In fact, an independently-coded
calculation using the proprietary COMSOL Multiphysics finite element package
produces results that are in agreement with the Euler method and casts doubt on
the Crank-Nicolson calculation. We will return to this claim in the conclusions
section.

As a last example in this section we alter the data just given so that ν = (1,−1)T

(which, given the other data, violates the conditions on ‖ν‖E required by the error
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Figure 3. Snapshots for the Implicit Euler scheme.

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 0.390625)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 0.390625)

y

σ

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 3.51562)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 3.51562)

y

σ

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 6.64062)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 6.64062)

y

σ

0

0.5

1

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

7

8

9

10

x

u(x,y,t = 10.1562)

y

u

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x

σ(x,y,t = 10.1562)

y

σ
Table 3. Table of errors for the Newton-Crank-Nicolson scheme
for j = N .

M

N 4 8 16 32 64

4 1.051 0.5802 0.5231 0.519 0.5187

8 0.4851 0.2413(2.12) 0.2087(1.48) 0.2062(1.34) 0.2061(1.33)

16 1.004 0.2948(0.719) 0.09576(1.33) 0.06166(1.76) 0.0588(1.81)

32 1.163 0.3353(1.58) 0.08911(1.73) 0.02696(1.83) 0.01623(1.93)

64 1.204 0.3468(1.75) 0.09099(1.88) 0.02334(1.93) 0.00694(1.96)

estimates) and plot the results in Figure 3 for the Euler method. We can see
that the Euler method predicts a steep front travelling smoothly across the domain
and settling to an approximately flat surface whereas the Crank-Nicolson method
gives surfaces (not shown here) that, seemingly, are again spurious. COMSOL
Multiphysics again agrees with the Euler method for this case.

6. Concluding remarks

Although the error bounds and convergence tests suggest that the extrapolated
Crank-Nicolson method is superior to the linearised implicit Euler method the
illustrations in Figures 1 and 2 suggest that the Euler scheme is in fact the more
robust of the two.

To test whether or not it is the extrapolation that is the cause of this inadequacy
in the Crank-Nicolson method we implemented two other schemes. A Newton-
Crank-Nicolson (NCN) method and a predictor-corrector Crank-Nicolson (PCCN)
method. The NCN method was based upon using the Euler method to obtain a
starting value and, thereafter, the solution from the previous time step was used
as a starting value for the current time step. At each time step the equations were
iterated until the L2(Ω) norm of the difference in iterates was below a tolerance of
10−4 or until thirty iterations had been made.
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Table 4. Table of errors for the predictor-corrector Crank-
Nicolson scheme for j = N .

M

N 4 8 16 32 64

4 1.051 0.5799 0.5228 0.5186 0.5184

8 0.4851 0.2413(2.12) 0.2087(1.47) 0.2062(1.34) 0.2061(1.33)

16 1.004 0.2948(0.719) 0.09575(1.33) 0.06164(1.76) 0.05877(1.81)

32 1.163 0.3353(1.58) 0.08911(1.73) 0.02695(1.83) 0.01622(1.93)

64 1.204 0.3468(1.75) 0.09099(1.88) 0.02334(1.93) 0.006941(1.96)

Figure 4. Snapshot for the NCN scheme.
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Figure 5. Snapshot for the PCCN scheme.
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Figure 6. Snapshot for the ‘hi-fi’ scheme.
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The PCCN method used at each time step the Euler method to predict a value
for uh

i as ûh
i and then this was used to form ūh

i in the γ(·) terms in the usual
Crank-Nicolson scheme.

To illustrate the convergence behaviour of the NCN and PCCN methods we
choose the same data as for the previous convergence tests and give the errors in
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Figure 7. Snapshot for the ‘hi-fi’ P1 scheme problem 3.
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Table 3 for the NCN method and in Table 4 for the PCCN method. The second-
order convergence in space and time is evident and suggests that the methods are
implemented correctly. (In fact Tables 2, 3 and 4 are almost indistinguishable.)

However, when we try to reproduce the solution in Figure 1 we obtain (at or near
the time t = 2.73 . . .) Figure 4 for the NCN method and Figure 5 for the PCCN
method. Clearly Figure 4 suggests that the NCN scheme is hopeless.

To investigate this recall that Figure 4 is based on T = 25 and N = 128 (so
k = 0.1953125). Reducing this time step by 10 (i.e. N = 1280) still gives very poor
results beyond the first time step and in fact only when we take k = 0.001953125 do
we get results of the correct appearance for the first seven time steps. Unfortunately,
after t7 the solution quality degraded rapidly.

Two further investigations were also carried out. In Figure 6 we show the results
of a ‘hi-fidelity’ calculation in time where the only difference in data, from that
used to produce Figure 2, is that N = 512.

Also, as a matter of completeness, in Figure 7 we show the result of using this
same ‘hi-fi’ calculation but with linear finite elements instead of quadratics.

Obviously, Figures 1, 2, 4, 5, 6 and 7 should, at least in the ‘eye norm’, be the
same and yet they are not. Moreover, Figures 2, 4, 5, 6 and 7 are not comparable
whereas Figure 1 agrees with an independent calculation using alternative software.

In conclusion, these numerical experiments suggest that while the Crank-Nicolson
scheme is a theoretically more accurate approximation it can produce solution sur-
faces which appear to exhibit gross oscillations and smaller travelling fronts. These
features appear to be spurious and it seems as though impractically fine discretiza-
tions would be needed to eliminate them. Overall, it seems likely that the Euler
method is the more robust of the two schemes under consideration.

Of course, we should bear in mind that the Crank-Nicolson method demands
higher temporal regularity but the numerical solutions do not suggest that this is
unreasonable in the cases presented. A further investigation could be based on
so-called ‘overkill’ computations in an effort to judge whether or not the norms
required by the error bounds do in fact exist.

To close we recall that our model problem was drawn from that in [6] and, in
particular, the term νux there gave rise to the term ν · ∇u in (5) and (14). In
a later study, [7], Edwards replaced that term with νu2

x in order to eliminate any
‘preferred directions’. It seems that the foregoing material could be adapted to deal
with an analogue of that replacement in the following way. If in (5) and (14) we
replace ν · ∇u with χ‖∇u‖E, for any p norm, ‖ · ‖E, on R

d and some real χ, then
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we would have ν · ∇uh
i (resp. ν · ∇ūh

i ) replaced with χ‖∇uh
i ‖E (resp. χ‖∇ūh

i ‖E) in
(22) (resp. (24)).

Focussing on the implicit Euler scheme and examining the effect on the proof
of (the resulting analogue of) Lemma 7 we see that (with χ = 1 for simplicity)
we would have to deal with the difference (‖∇ui‖E, w) − (‖∇uh

i ‖E, w). But with
the inverse triangle inequality (i.e.

∣

∣ ‖a‖E − ‖b‖E

∣

∣ 6 ‖a − b‖E for all a and b) this

can estimated as
∣

∣(‖∇ui‖E − ‖∇uh
i ‖E, w)

∣

∣ 6 ‖∇ξi‖0‖w‖0+‖∇ψi‖0‖w‖0 and we can
just pick up the proof as presented earlier.

On the other hand, if we follow [7] more literally and work instead with a qua-
dratic term, χ‖∇u‖2

E
say, then we can estimate with,

∣

∣(‖∇ui‖2
E
− ‖∇uh

i ‖2
E
, w)
∣

∣ 6
(

‖∇ui‖L∞(Ω) + ‖∇uh
i ‖L∞(Ω)

)(

‖∇ξi‖0 + ‖∇ψi‖0

)

‖w‖0

and we would need an a priori W 1
∞(Ω) bound on each uh

i in order to proceed. We
do not pursue these models any further here, but note that the implementation for
the implicit Euler method could be simplified considerably by lagging this nonlinear
gradient term (i.e. evaluating it at the previous time step).
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